Secure Systems Development

My own experience is that developers with a clean, expressive set of specific security
requirements can build a very tight machine. They don’t have to be security gurus, but they have
to understand what they’re trying to build and how it should work.

- RICK SMITH

When it comes to being slaves to fashion, American managers make adolescent
girls look like rugged individualists.

- GEOFF NUNBERG

The fox knows many things; the hedgehog one big thing.
- ARCHILOCHUS

27.1 Introduction

So far we’'ve discussed a great variety of security applications, technologies and
concerns. If you're a working engineer, manager or consultant, paid to build
or maintain a system with some security assurance requirements, you will by
now be looking for a systematic way to go about it. This brings us to such topics
as risk analysis, system engineering methodology, and, finally, the secret sauce:
how you manage a team to write secure code.

The secret is that there isn’t actually a secret, whether sauce or anything else.
Lots of people claim there is one and get religious fervour for the passion of
the moment, from the Orange Book in the 1980s to Agile Development now.
But the first take offered on this was the right one. In the 1960s Fred Brooks led
the team on the world’s first really large software project, the operating system
for the IBM S/360 mainframe. In his classic book “The Mythical Man-Month”
he describes all the problems they struggled with, and his conclusion is that
“there is no silver bullet” [329]. There’s no magic formula that makes an
intrinsically hard job easy. There’s also the famous line from Archilochus at
the head of this chapter: the fox knows many things, while the hedgehog

965

966

Chapter 27 = Secure Systems Development

knows one big thing. Managing secure development is fox knowledge rather
than hedgehog knowledge. An experienced security engineering manager
has to know thousands of little things; that’s why this book is so fat! And the
security engineering manager’s job is getting harder all the time as software
gets everywhere and starts to interact with safety.

In 2017, I changed the way I teach undergraduates at Cambridge. Up till then
we’d taught security courses separately from software engineering, with the
latter focusing on safety. But most real-world systems require both, and they’re
entangled in complex ways. Both safety and security are emergent properties
that really have to be baked in from the beginning. Both involve systematic
thinking about what can go wrong, whether by accident or as a result of mal-
ice. Accidents can expose systems to attacks, and attacks can degrade systems
so they become dangerous. The course was developed further by my colleague
Alastair Beresford while I was on sabbatical in 2019, and the 2020 course on
software and security engineering is now online as ten video lectures, thanks
to the pandemic [90]. That course is designed to give our first-year undergrad-
uates a solid foundation for later work in security, cryptography and software
engineering. Like this book, it introduces the basics, from definitions through
the basics of protocols and crypto, then the importance of human and orga-
nizational issues as well as technical ones, illustrated with case histories. It
discusses how you set goals for safety and security, how you manage them
as a system evolves, and how you instil suitable ways of thinking and working
into your team. Success is about attitudes and work practices as well as skills.

The two questions you have to ask are, “Are we building the right system?”
and “Are we building it right?” In the rest of this chapter I'm going to start
with how we assess and manage risks — to both safety and security; and then
go on to discuss how we build systems, once we’ve got a specification to work
to. I'll then discuss some of the hazards that arise as a result of organisational
behaviour — a real but often ignored kind of insider threat.

27.2 Risk management

At the heart of both safety engineering and security engineering lie decisions
about priorities: how much to spend on protection against what. Risk man-
agement must be done within a broader framework of managing all the risks
to an enterprise or indeed to a nation. That is often done badly. The coron-
avirus crisis should have made it obvious to everyone that although pandemics
were at the top of the risk register of many countries, including the UK, most
governments spent much more of their resilience budget on terrorism, which
was several places down the list. Countries with recent experience of SARS or
MERS, such as Taiwan and South Korea, did better: they were ready to test res-
idents and trace contacts at scale, and responded quickly. Britain wasted two

27.2 Risk management

967

months before realising the disease was serious, at a cost of tens of thousands
of lives.

So what actually is a risk register? A common methodology, as used by the
governing body of my university, is to draw up a list of things that could
go wrong, giving them scores of 1 to 5 for seriousness and for probability of
occurrence, and multiplying these together to get a number between 1 and 25.
For example, a university might rate ‘loss of research contract income due to
economic downturn” at 5/5 for seriousness if 20% of its income is from that
source, and rate ‘probability” at 4/5 as downturns happen frequently but not
every year, giving a raw product of 20. You then write down the measures you
take to mitigate each of these risks, and have an argument in a risk committee
about how well each risk is mitigated. For example, you control the risk of
variable research contract income by making a rule that it can be used to hire
only contract staff, not tenured faculty; you might then agree that this rule
cuts that risk from 20 to 16. You then rank all the risks in order and assign one
senior officer to be the owner of each of them.

National risk assessments are somewhat similar: you rate each possible bad
event (pandemic, earthquake, forest fire, terrorist attack, ...) by how many
people it might kill (millions? thousands? dozens?) and then rate it for proba-
bility by how many you expect each century. The UK national risk register, for
example, put pandemic influenza at the top, with a 5 for severity (could kill up
to 750,000) and a 4 for likelihood, saying in 2017: “one or more major hazards
can be expected to materialise in the UK in every five-year period. The most
serious are pandemic influenza, national blackout and severe flooding” [363].
You then work out what’s reasonably practical by way of mitigation, be it quar-
antine plans and PPE stockpiles for a pandemic, or building codes and zoning
to limit the damage from floods and earthquakes. You do the cost-benefit anal-
ysis and turn priorities into policy. You can get things wrong in various ways.
The UK largely ignored pandemics because the National Security Council had
been captured by the security and intelligence agencies; they prioritised ter-
rorism, and the health secretary was not a regular attendee [1852]. I already
discussed terrorism in section 26.3; here I'll just add that another aspect of the
failure was policy overshoot. When 9/11 taught the world that terrorist attacks
can kill thousands rather than just dozens, and the agencies got a lot more of
the resilience budget, it made them greedy: they started talking up the risk of
terrorists getting hold of a nuke so they’d have an even scarier threat on the
register to justify their budgets.

In business too you can find that both political behaviour and organisational
behaviour get in the way of rational risk management. But you often have
real data on the more common losses, so you can attempt a more quantitative
approach. The standard method is to calculate the annual loss expectancy (ALE)
for each possible loss scenario, as the expected loss multiplied by the number
of incidents expected in an average year. A typical ALE analysis for a bank’s

968

Chapter 27 = Secure Systems Development

IT systems might have several hundred entries, including items such as we see
in Figure 27.1.

Loss type Amount Incidence ALE
SWIFT fraud $50,000,000 .005 $250,000
ATM fraud (large) $250,000 2 $100,000
ATM fraud (small) $20,000 5 $10,000
Teller takes cash $3,240 200 $648,000

Figure 27.1: Items of annualized loss expectancy (ALE)

Note that while accurate figures are likely to be available for common
losses (such as ‘teller takes cash’), the incidence of low-probability high-risk
losses such as a large money-transfer fraud is largely guesswork — though you
can sometimes get a rough sanity check by asking for insurance quotes.

ALEs have long been standardized by NIST as the technique to use in US
government procurements. The UK government uses a tool called CRAMM for
systematic analysis of information security risks, and the modern audit culture
is spreading such tools everywhere. But the process of producing such a table
for low-probability threats tends to be just iterative guesswork. The consultants
list all the threats they can think of, attach notional probabilities, work out the
ALEs, add them up, and find that the bank’s ALE exceeds its income. They
then tweak the total down to whatever will justify the largest security budget
that their client the CISO has said is politically possible. I'm sorry if this sounds
a bit cynical; but it’s what often seems to happen. The point is, ALEs may be
of some value, but you need to understand what parts are based on data, what
parts on guesswork and what parts on office politics.

Product risks are different. Different industries do things differently because
of the way they evolved and the history of regulation. The rules for each sector,
whether cars or aircraft or medical devices or railway signals, have evolved in
response to accidents and industry lobbying. Increasingly, the European Union
is becoming the world’s safety regulator as it’s the biggest market, as Washing-
ton cares less about safety than Brussels does, and as it’s simpler for OEMs to
engineer to EU safety specifications than to have multiple products. I'll discuss
safety and security certification in more detail in the next chapter. For present
purposes, software for cars, planes and medical devices must be developed
according to approved procedures, subjected to analyses we’ll discuss later,
and tested in specific ways.

Insurance can be of some help in managing large but unlikely risks. But the
insurance business is not completely scientific either. Your insurance premiums
used to give some signal of the risk your business was running, especially if
you bought cover for losses of eight figures or above. But insurance is a cyclical

27.3 Lessons from safety-critical systems

969

industry, and since about 2017 a host of new companies have started offering
insurance against cybercrime, squeezing the profits out of the market. As a
result, customers will no longer put up with intrusive questionnaires, let alone
site visits from assessors. So most insurers’ ability to assess risk is now limited;
I will discuss the mechanics of what they do further in section 28.2.9. They are
also wary of correlated risks that give rise to many claims at once, as that would
force them to hold greater reserves; as some cyber risks are correlated, policies
tend to either exclude them or be relatively expensive [276]. (The coronavirus
crisis is teaching firms about correlated risk as some insurers refuse to pay up
on business-interruption risk policies — even those that explicitly mention the
risk of staff not being able to get to the office because of epidemics; businesses
are asking insurers in turn what the point of insurance is.)

Actuarial risks aside, a very important reason for large companies to take out
insurance cover — and for much other corporate behaviour —is to protect exec-
utives, rather than shareholders. The risks that are being tackled may seem on
the surface to be operational but are actually legal, regulatory and PR risks.
Directors demand liability insurance, and under UK and US law, professional
negligence occurs when a professional fails to perform their responsibilities
to the level required of a reasonably competent person in their profession. So
negligence claims are assessed by the current standards of the industry or pro-
fession, giving a strong incentive to follow the herd. This is one reason why
management is such a fashion-driven business (as per the quote at the head of
this chapter). This spills over into the discourse used to justify security budgets.
During the mid 1980s, everyone talked about hackers (even if their numbers
were tiny). From the late 80s, viruses took over the corporate imagination,
and people got rich selling antivirus software. In the mid-1990s, the firewall
became the star product. The late 1990s saw a frenzy over PKI. By 2017 it was
blockchains. Amidst all this hoopla, the security professional must keep a level
head and strive to understand what the real threats are.

We will return to organisational behaviour in a later section. First, let’s see
what we can learn from safety engineering.

27.3 Lessons from safety-critical systems

Critical computer systems are those in which a certain class of failure is to be
avoided if at all possible. Depending on the class of failure, they may be
safety-critical, business-critical, security-critical, or critical to the environment.
Obvious examples of the safety-critical variety include flight controls and
automatic braking systems. There’s a large literature on this subject, and a lot
of methodologies have been developed to help manage risk intelligently.

970

Chapter 27 = Secure Systems Development

27.3.1 Safety engineering methodologies

Safety engineering methodologies, like classical security engineering, tend to
work systematically from a safety analysis to a specification through to a prod-
uct, and assume you're building safety in from the start rather than trying to
retrofit it. The usual procedure is to identify hazards and assess risks; decide on
a strategy to cope with them (avoidance, constraint, redundancy ...); trace the
hazards to hardware and software components which are thereby identified as
critical; identify the operator procedures which are also critical and study the
various applied psychology and operations research issues; set out the safety
functional requirements which specify what the safety mechanisms must do,
and safety integrity requirements that specify the likelihood of a safety function
being performed satisfactorily; and finally decide on a test plan. The outcome
of testing is not just a system you're confident to run live, but an integrated
part of a safety case to justify running it. The basic framework is set out in
standards such as ISO 61508, a basic safety framework for relatively simple
programmable electronics such as the control systems for chemical plants. This
has been extended with more specialised standards for particular industries,
such as ISO 26262 for road vehicles.

This safety case will provide the evidence, if something does go wrong, that
you exercised due care. It will typically consist of the hazard analysis, the safety
functional and integrity requirements, and the results of tests (both at compo-
nent level and system level), which show that the required failure rates have
been achieved. The testing may have to be done by an accredited third party;
motor vehicles firms get away with the safety case being done by a different
department in the same company, with independent management. Vehicles are
a more complex case because of their supply chains. At the top is the brand,
whose badge you see on the front of the car. Then there’s the original equipment
manufacturer (OEM), which in the case of cars is usually the same company,
but not always; in other industries the brand and the OEM are quite separate.
A modern car will have components from dozens of manufacturers, of which
the Tier 1 suppliers who deal directly with the brand do much of the research
and development work but get components from other firms in turn. In the car
industry, the brand puts the car through type approval and carries the primary
liability, but demands indemnities from component suppliers in case things go
wrong (the law in most countries does not allow you to disclaim liability for
death and injury). The brand relies on the supply chain for significant parts
of the safety functionality and integrity and thus for the safety case. There are
also tensions: as we already noted, safety certification can prevent the timely
application of security patches. Let’s now look at common safety engineering
methods and what they can teach us.

27.3 Lessons from safety-critical systems

971

27.3.2 Hazard analysis

In an ideal case, we might be able to design hazards out of a system
completely. As an example, consider the motor reversing circuits in Figure 27.2.
In the design on the left, a double-pole double-throw switch reverses the cur-
rent passing from the battery through the motor. However, this has a potential
problem: if only one of the two poles of the switch moves, the battery will be
shorted, and a fire may result. The solution is to exchange the battery and the
motor, as in the modified circuit on the right. Here, a switch failure will only
short out the motor, not the battery. Safety engineering is not just about correct
operation, but about correct failure too.

Hazard elimination is useful in security engineering too. We saw an example
in the early design of SWIFT in section 12.3.2: there, the keys used to authenti-
cate transactions between one bank and another were exchanged between the
banks directly, so SWIFT did not have the means to forge a valid transaction,
and its staff and systems had to be trusted less. In general, minimizing the
trusted computing base is an exercise in hazard elimination. The same applies
in privacy engineering too. For example, if you're designing a contact tracing
app to monitor who might have infected whom in an epidemic, one approach is
to have a central database of everyone’s mobile phone location history. How-
ever, that has obvious privacy hazards, which can be reduced by keeping a
Bluetooth contact history on everyone’s mobile phone instead, and uploading
the contact history of anyone who calls in sick. You then have a policy decision
to take between better privacy and better tracing.

| |

= P —— O {0
- S

(a) (b)

Figure 27.2: Hazard elimination in motor reversing circuit

27.3.3 Fault trees and threat trees

Once you have eliminated as many hazards as possible, the next step is to
identify failures that could cause accidents. A common top-down way of
identifying the things that can go wrong is fault tree analysis where a tree is

972

Chapter 27 = Secure Systems Development

constructed whose root is the undesired behavior and whose successive nodes
are its possible causes. This top-down approach is natural where you have
a complex system with a small number of well-known bad outcomes that
you have to avoid. It carries over in a natural way to security engineering.
Figure 27.3 shows an example of a fault tree (or threat tree, as it’s often called
in security engineering) for fraud from automatic teller machines.

Successful card forgery

Shoulder
surfing

Cryptanalysis of DES

False
terminal

attack Protocol failure

Maintenance
contractor

Bank insider

Abuse of Trojan Theft of Bug in Encryption Falsify

security keys ATM replacement auth
module response

Figure 27.3: A threat tree

Threat trees are used in the US Department of Defense. You start out from
each undesirable outcome, and work backwards by writing down each pos-
sible immediate cause. You then recurse by adding each precursor condition.
By working round the tree’s leaves you should be able to see each combina-
tion of technical attack, operational blunder, physical penetration and so on
that could break your security policy. The other nice thing you get from this
is a visualisation of commonality between attack paths, which makes it easier
to reason about how to disrupt the most attacks with the least effort. In some
variants, attack branches have countermeasure sub-branches, which may have
counter-countermeasure attack branches, and so on, in different colours for
emphasis. A threat tree can amount to an attack manual for the system, so it
may be highly classified, but it’s a DoD requirement — and if the system evalu-
ators or accreditors can find significant extra attacks, they may fail the product.

27.3.4 Failure modes and effects analysis

Returning to the safety-critical world, another way of doing hazard analysis
is failure modes and effects analysis (FMEA), pioneered by NASA, which is

27.3 Lessons from safety-critical systems

973

bottom-up rather than top-down!. This involves tracing the consequences
of a failure of each of the system’s components all the way up to the effect
on the mission. This is the natural approach in systems with a small number
of well-understood critical components or subsystems, such as aircraft. For
example, if you're going to fly a plane over an ocean or mountains where
you can’t glide to an airport in the case of engine failure, then engine power
is critical. You therefore study the mean time to failure of your powerplant
and its failure modes, from a broken connecting rod to running out of fuel.
You insist that single-engine aircraft use reliable engines and you regulate the
maintenance schedules; planes have more than one fuel tank. When carrying
a lot of passengers, you insist on multi-engine aircraft and drill the crews to
deal with engine failure.

An aerospace example of people missing a failure mode that turned out
to be critical is the 1986 loss of the space shuttle Challenger. The O-rings in
the booster rockets were known to be a risk by the NASA project manager,
and damage had been found on previous flights; meanwhile the contractor
knew that low temperatures increased the risk; but the concerns did not
come together or get through to NASA’s top management. An O-ring, made
brittle by the cold, failed — causing the loss of the shuttle and seven crew.
On the resulting board of inquiry, the physicist Richard Feynman famously
demonstrated this on TV by putting a sample of O-ring in a clamp, freezing it
in iced water and then showing that when he released it, it remained dented
and did not spring back [1615]. This illustrates that failures are often not just
technical but also involve how people behave in organisations: when protec-
tion mechanisms cross institutional boundaries, as for example with cars, you
need to think of the law and economics as well as just the engineering. Such
problems will become much more complex as we move towards autonomous
vehicles, which will rely on all sorts of third-party services and infrastructure.

27.3.5 Threat modelling

Both fault trees and FMEA depend on the analyst understanding the system
really well; they are hard to automate, not fully repeatable and can be up-ended
by a subtle change to a subsystem. So a thorough analysis of failure modes
will often combine top-down and bottom-up approaches with some methods
specific to the application that people have learned over time. Many industries
now have to rethink their traditional safety analysis methods to incorporate
security.

'FMEA is bottom-up in the technical sense that the analysis works up from individual compo-
nents, but its actual management often has a top-down flavour as you start work on the safety
case once you have an outline design and refine it progressively as the design is evolved into a
product.

974

Chapter 27 = Secure Systems Development

In car safety, complex supply chains mean we have to do multiple interlock-
ing analyses of vehicles and their subsystems. A traditional subsystem analysis
might work through the failure modes of headlamps, since losing them while
driving at night can lead to an accident. As well as mitigating the risk of a lamp
failure by having two or more lamps, you worry about switch failure, and when
the switch becomes electronic you build a fault tree of possible hardware and
software faults. When we extend this from safety to security, we think about
whether an attacker might take over the entertainment system in a car, and use
it to send a malicious ‘lamp off’ message on the CAN bus once the car is mov-
ing quickly enough for this to be dangerous. This analysis may lead to a design
decision to have a firewall between the cabin CAN bus and the powertrain
CAN bus. (This is the worked example in the new draft ISO 21434 standard for
cybersecurity in road vehicles [964].)

More generally, the shift from safety to security means having to think
systematically about insiders. Just as double-entry bookkeeping was designed
to be resilient against a single dishonest clerk and has been re-engineered
against the similar threat of a clerk with malware on their PC, so modern
large-scale systems are typically designed to limit the damage if a single
component is compromised. So how can you incorporate malicious insiders
into a threat model? If you're using FMEA, you can just add an opponent
at various locations, as with our malicious ‘lamp off’ message. As for more
complex systems, the methodology adopted by Microsoft following its big
push in 2003 to make Windows and Office more secure is described by Frank
Swiderski and Window Snyder [1855]. Rather than being purely top-down or
bottom-up, this is a meet-in-the-middle approach. The basic idea is that you
list not just the assets you're trying to protect (ability to do transactions, access
to confidential data, whatever) but also the assets available to an attacker
(perhaps the ability to subscribe to your system, or to manipulate inputs to the
smartcard you supply him, or to get a job at your call center). You then trace
the attack paths through the system, from one module to another. You try to
figure out what the trust levels might be; where the barriers are; and what
techniques, such as spoofing, tampering, repudiation, information disclosure,
service denial and elevation of privilege, might be used to overcome particular
barriers. The threat model can be used for various purposes at different points
in the security development lifecycle, from architecture reviews through
targeting code reviews and penetration tests.

There are various ways to manage the resulting mass of data. An elemen-
tary approach is to construct a matrix of hazards against safety mechanisms,
and if the safety policy is that each serious hazard must be constrained by at
least two independent mechanisms, then you can check for two entries in each
of the relevant columns. So you can demonstrate graphically that in the pres-
ence of the hazard in question, at least two failures will be required to cause
an accident. An alternative approach, system theoretic process analysis (STPA),

27.3 Lessons from safety-critical systems

975

starts off with the hazards and then designs controls in a top-down process,
leading to an architectural design for the system; this can be helpful in teasing
apart interacting control loops [1152]. Such methodologies go across to security
engineering [1559]. One way or another, in order to make the complexity man-
ageable, you may have to organise a hierarchy of safety and security goals. The
security policies discussed in Part 2 of this book may give you the beginnings
of an answer for the applications we discussed there, and some inspiration
for others. This hierarchy can then drive a risk matrix or risk treatment plan
depending on the terminology in use in your industry.

27.3.6 Quantifying risks

The safety-critical systems community has a number of techniques for dealing
with failure and error rates. Component failure rates can be measured statisti-
cally; the number of bugs in software can be tracked by techniques I'll discuss
in the next chapter; and there is a lot of experience with the probability of oper-
ator error at different types of activity. The bible for human-factors engineering
in safety-critical systems is James Reason’s book ‘Human Error’; I discussed in
Chapter 3 the rising tide of research in security usability through the 2010s as
the lessons from the safety world have started to percolate into our field.

The error rate in a task depends on its familiarity and complexity, the amount
of pressure and the number of cues to success. Where a task is simple, per-
formed often and there are strong cues to success, the error rate might be 1
in 100,000 operations. However, when a task is performed for the first time in
a confusing environment where logical thought is required and the operator
is under pressure, then the odds can be against successful completion. Three
Mile Island and Chernobyl taught nuclear engineers that no matter how many
design walkthroughs you do, it’s when the red lights go on for real that the
worst mistakes get made. The same lesson has come out of one air accident
investigation after another. When dozens of alarms go off at once, there’s a fair
chance that someone will push the wrong button. One guiding principle is to
default to a safe state: to damp down a nuclear reaction, to return an aircraft
to straight and level flight, or to bring an autonomous vehicle to a stop at the
side of the road. No principle is foolproof, and a safe state may be hard to mea-
sure. A vehicle can find it hard to tell where the side of the road is if there’s
a grass verge; and in the Boeing 737Max crashes (which I describe in detail
in section 28.2.4) the flight control computer tried to keep the plane level but
was confused by a faulty angle-of-attack sensor and dived the plane into the
ground instead.

Another principle of safety usability in an emergency is to keep the informa-
tion given to operators, and the controls available for them to use, both simple
and intuitive. In the old days, each feed went to a single gauge or dial and

976

Chapter 27 = Secure Systems Development

there was only so much space for them. The temptation nowadays is to give
the operator everything, because you can. In the old days, designers knew that
an emergency would give the pilots tunnel vision so they put the six instru-
ments they really needed right in the middle. Nowadays there can be fifty
alarms rather than two and pilots struggle to work out which screen on which
menu of the electronic flight information system to look at. It is much broader
than aviation. A naval example is the 2017 collision of the USS McCain in the
Straits of Singapore, where UI confusion was a major factor. Steering control
was shifted to the wrong helm station and an engine was not throttled back in
time, resulting in an uncommanded turn to port across a busy shipping lane,
impact with a chemical tanker, and the death of ten sailors [1933].

So systems that are not fully autonomous must remain controllable, and
for that the likely human errors need to be understood. Quite a lot is known
about the cognitive biases and other psychological factors that make particular
types of error more common; we discussed them in Chapter 3, and a prudent
engineer will study how they work out in their field. Errors are rare in
frequently-performed tasks at which the operator has developed some skill,
and are more likely when operators are stressed and surprised. This starts to
get us out of the territory of risk, where the odds are known, and into that of
uncertainty, where they’re not.

In security systems, too, the most egregious blunders can be expected in
important but rarely performed tasks. Security usability isn’t just about pre-
senting a nice intuitive interface to the end-user. It should present the risks in
a way that accords with common mental models of threat and protection, and
the likely user reactions to stress should lead to safe outcomes.

It is important to be realistic about the skill level of the people who will
perform each critical task and any known estimates of the likelihood of error.
An airplane designer can rely on a predictable skill level from anyone with
a commercial pilot’s license, and a shipbuilder knows the strengths and
weaknesses of an officer in the merchant marine. Cars can and do get operated
by drivers who are old and frail, young and inexperienced, distracted by
passengers, or under the influence of alcohol. At the professional end of
things, usability testing can be profitably integrated with staff training: when
pilots go for their refresher courses in the simulator, instructors throw all
sorts of combinations of equipment failure, bad weather, cabin crisis and
air-traffic-control confusion at them. They observe what combinations of
stress result in fatal accidents, and how these differ across cockpit types. Such
data are valuable feedback to cockpit designers. In aviation, the incentives for
safe operation are sufficiently strong and well aligned, and the scale is large
enough, to support a learning system. Even so, there are expensive disasters,
such as the Boeing 737Max flight control software. This not only had at least
one serious bug, but escaped a proper failure modes and effects analysis
because the engineers responsible — under pressure from their managers to

27.3 Lessons from safety-critical systems

977

complete the project on time — wrongly assumed that pilots would be able
to cope with any failure [90]. As a result, the software relied on a single
angle-of-attack sensor rather than using the two sensors with which the
aircraft was fitted, and sensor failure led to fatal accidents?.

When testing the usability of redundant systems, you need to pay attention to
fault masking: if the output is determined by majority voting between three pro-
cessors, and one of them fails, then the system will continue to work fine —but
its safety margin will have been eroded, perhaps in ways the operators won't
understand properly. Several air crashes have resulted from flying an airliner
with one of the cockpit systems out of action; although pilots may be intellec-
tually aware that one of the data feeds to the cockpit displays is unreliable,
they may rely on it under pressure by reflex rather than checking with other
instruments. So you have to think hard about how faults can remain visible
and testable even when their immediate effects are mitigated.

Another lesson from safety-critical systems is that although a safety require-
ments specification and test criteria will be needed as part of the safety case for
the lawyers and regulators, it is good practice to integrate both of them with the
mainstream product documentation. If the safety case is separate, then it’s easy
to sideline it after approval and fail to maintain it properly. (This was a factor in
the Boeing 737Max disaster as the usability assumptions underlying the safety
case for the flight control software were not updated from the previous model
of 737.) The move from project-based software management to agile method-
ologies, and via DevOps to DevSecOps, is finally starting to embed security
management into the way products evolve. We will discuss this in the next
section.

Finally, safety is like security in that it really has to be built in as a system
is developed, rather than retrofitted. The main difference between the two is
in the failure model. Safety deals with the effects of random failure, while in
security we assume a hostile opponent who can cause some of the compo-
nents of our system to fail at the least convenient time and in the most dam-
aging way possible. People are naturally more risk-averse in the presence of
an adversary; I will discuss this in section 28.4. A safety engineer will certify
a critical flight-control system with an MTBF of 10° hours; a security engi-
neer has to worry whether an adversary can force the preconditions for that
one-in-a-billion failure and crash the plane on demand.

In effect, our task is to program a computer that gives answers that are sub-
tly and maliciously wrong at the most inconvenient moment possible. I've
described this as ‘programming Satan’s computer” to distinguish it from the
more common problem of programming Murphy’s [114]. This is one of the
reasons security engineering is hard: Satan’s computer is harder to test [1671].

2 Aviation safety standards such as DO178 and DO254 generally require diversity in measurement
type, physics, processing characteristics in addition to redundancy to mitigate common-mode
failures.

978

Chapter 27 = Secure Systems Development

27.4 Prioritising protection goals

If you've a project to create an entirely new product, or to radically change an
existing one, it’s an idea to spend some time thinking through the protection
priorities from first principles. A careful safety analysis or threat modelling
exercise can provide some numbers to inform this. When developing a safety
case or a security policy in detail, it’s essential to understand the context, and
much of this book has been about the threat models relevant to a wide range
of applications. You should try to refine numerical estimates of risk from the
environment or context as well.

In the case of a business system, analysis will hinge on the tradeoff between
risk and reward. Security people often focus too much on the former. If your
firm has a turnover of $10m, gross profits of $1m and theft losses of $150,000,
you might make a loss-reduction pitch about ‘how to increase profits by 15% by
stopping theft’; but if you could double the turnover to $20m, then the share-
holders would prefer that even if it triples the losses to $450,000. Profit is now
$1.55m, up 85%, rather than 15%. This is borne out by the experience of online
fraud engines. When discussing fraud management strategies with a number
of retailers, I noticed that the firms who got the best results were those where
the fraud management team reported to sales rather than finance. A typical
bricks-and-clicks retailer in the UK might decline something like 4% of offered
shopping baskets because the fraud engine alerts at the combination of goods,
delivery address and payment details. So if you can improve the fraud engine
and reject only 3%, that’s 1% more sales —a prospect to light up your Chief Mar-
keting Officer’s eyes. But if the fraud team reports instead to the Chief Financial
Officer, they're likely to be seen as a cost rather than as an opportunity.

Similarly, the site reliability engineers of online services have learned not
to make a system too reliable. If local Internet availability is only 99%, then
a service that’s up 99.9% of the time will be fine; there’s no point spending
millions more to hit 99.99% if none of your users will notice the difference.
You're better off deliberately setting an 0.1% error budget, which you can use
productively — such as by causing occasional deliberate failures to exercise
your resilience mechanisms [237]. This brings me to one of the open debates in
security management: should one aim at having no CVEs open in any of the
software on which one relies? The tick-box approach is to say ‘Of course there
must be no open CVEs’, but that may impose a rather high compliance cost. If
you're Google, and wrote all your own infrastructure, maybe you can aim at
that; many firms can’t and have to prioritise. I'll discuss CVEs in more detail
in section 27.5.7.1 later.

So don’t trust people who can only talk about ‘tightening security’. Often
it’s too tight already, and what you really need to do is just focus it slightly

27.4 Prioritising protection goals

979

differently. In the first edition of this book, I presented a case study of
self-service checkout at supermarkets. Twenty years ago, a number of super-
markets started to introduce self-checkout lanes. Some started to obsess
about losses, and let security get in the way of usability by aggressively
challenging customers about product weight. One of the stores that got
an advantage started with a more forgiving approach that they tuned up
gradually in the light of experience. Eventually the industry figured out how
to operate self-checkout lanes, but the quality of the implementation still
varies significantly. By early 2020, the pioneers are small convenience stores
like Lifvs in Sweden that have no staff; you open the store’s door with an
app, scan your purchases and pay online. Amazon was also experimenting
with fully self-service food stores. We saw the next 20 years of innovation
crammed into the few months of the 2020 coronavirus lockdown; by June,
other supermarkets have been urging us to download their scanning app,
scan our purchases as we pick them, charge them to a card, and just go.

Many modern business models were once considered too risky, starting
with the self-service supermarket itself back in the days when grocers kept all
the goods behind the counter. Everyone thought Richard Sears would go bust
when he adopted the slogan ‘Satisfaction guaranteed or your money back” in
the 1880s, yet he invented the modern mail-order business. In business, profit
is the reward for risk. But entrepreneurs who succeed may have to improve
security quickly. One recent example is the videoconferencing platform
Zoom — which grew from 20 million users to 200 million in March 2020, and
changed in the process from an enterprise platform into something more like
a public utility — forcing them into a major security engineering effort [1767].

Trade-offs in safety are harder. Logically, the value of a human life in a devel-
oped country might be a few million dollars, that being an average person’s
lifetime earnings. However, our actual valuation of a human life as revealed by
safety behaviour varies from about $50,000 for improvements to road junctions,
up to over $500m for train protection systems — and that’s just in the context
of transport policy. The variance in health policy is even greater, with costs per
life saved ranging from a few hundred dollars for flu jabs and some cancer
screening to billions for the least effective interventions [1872]. In other safety
contexts, domestic smoke alarms cost a few hundred dollars per life saved
while the number for the “war on terror” is in the billions [1352]. The reasons
for this irrationality are fairly well understood — I discussed the psychology in
section 3.2.5 and the policy aspects in 26.3.3. Safety preferences can be changed
very sharply by the threat of hostile action; people may shrug off a 1-in-10,000
risk of being killed by poorly-designed medical devices until there’s a possi-
bility that the devices might be hacked, at which point even a 1-in-10,000,000
risk becomes scary. I discuss this phenomenon in section 28.4.

9280

Chapter 27 = Secure Systems Development

27.5 Methodology

Software projects usually take longer than planned, cost more than budgeted
and have more bugs than expected®. By the 1960s, this had become known as
the software crisis, although the word ‘crisis’ may be inappropriate for a state
of affairs that has now lasted, like computer insecurity, for two generations.
Anyway, the term software engineering was proposed by Brian Randall in 1968
and defined to be:

Software engineering is the establishment and use of sound engineering principles
in order to obtain economically software that is reliable and works efficiently on
real machines.

The pioneers hoped that the problem could be solved in the same way we
build ships and aircraft, with a foundation in basic science and a framework
of design rules [1422]. Since then there’s been a lot of progress, but the results
have been unexpected. Back in the late 1960s, people hoped that we’d cut the
number of large software projects failing from the 30% or so that was observed
at the time. But we still see about 30% of large projects failing — the difference is
that the failures are much bigger. Modern tools get us farther up the complexity
mountain before we fall off, but the rate of failure is set by company managers’
appetite for risk. We'll discuss this further in section 27.5.8 at the end of this
chapter.

Software engineering is about managing complexity, of which there are
two kinds. There is the incidental complexity involved in programming using
inappropriate tools, such as the assembly languages which were all that
some early machines supported; programming a modern application with a
graphical user interface in such a language would be impossibly tedious and
error-prone. There is also the intrinsic complexity of dealing with large and
complicated problems. A bank’s core systems, for example, may involve tens
of millions of lines of code that implement hundreds of different products sold
through several different delivery channels, and are just too much for any one
person to understand.

Incidental complexity is largely dealt with using technical tools. The most
important are high-level languages that hide much of the drudgery of dealing
with machine-specific detail and enable the programmer to develop code
at an appropriate level of abstraction. They bring their own costs; many
vulnerabilities are the result of the properties of the C language, and if we
were rerunning history we’d surely use something like Rust instead. There
are also formal methods such as static analysis tools, that enable particularly
error-prone design and programming tasks to be checked.

3This is sometimes known as “Cheops’ law” after the builder of the Great Pyramid.

27.5 Methodology

981

Intrinsic complexity requires something subtly different: methodologies that
help us divide up a problem into manageable subproblems and restrict the
extent to which these subproblems can interact. These in turn are supported
by their own sets of tools. There are basically two approaches — top-down and
iterative.

27.5.1 Top-down design

The classical model of system development is the waterfall model formalised
by Win Royce in the 1960s for the US Air Force [1631]. The idea is that you
start from a concise statement of the system’s requirements; elaborate this into
a specification; implement and test the system’s components; then integrate
them together and test them as a system; then roll out the system for live oper-
ation (see Figure 27.4). From the 1970s until the mid-2000s, this was how all
systems for the US Department of Defense were supposed to be developed,
and their lead was followed by many governments worldwide, including not
just in defence but in administration and healthcare. When I worked in bank-
ing in the 1980s, it was the approved process there too, promoted assiduously
by IBM, by governments and by the big accountancy firms.

Requirements Refine
A
\
Dttty Specification Code
Validate -1
A
1
‘oo Implementation | Build
Validate & unit testing _1
A
l\ _____ Integration & Field
Verify system testing _1
A
‘\ _______ Operations &
Verify maintenance

Figure 27.4: The waterfall model

The idea is that the requirements are written in the user language, the specifi-
cation is written in technical language, the unit testing checks the units against
the specification and the system testing checks whether the requirements are
met. At the first two steps in this chain there is feedback on whether we’re

982

Chapter 27 = Secure Systems Development

building the right system (validation) and at the next two on whether
we’re building it right (verification). There may be more than four steps: a com-
mon elaboration is to have a sequence of refinement steps as the requirements
are developed into ever more detailed specifications. But that’s by the way.

The defining feature of the waterfall model is that development flows inex-
orably downwards from the first statement of the requirements to the deploy-
ment of the system in the field. Although there is feedback from each stage to
its predecessor, there is no system-level feedback from (say) system testing to
the requirements.

There is a version used in safety-critical systems development called the
V model, where the system flows down to implementation, then climbs
back up a hill of verification and validation on the other side, where it’s
tested successively against the implementation, the specification and the
requirements. This is a German government standard, and also used in the
aerospace industry worldwide; it’s found in the ISO 26262 standard for
car software safety. But although it’s written from left to right rather than
top-down, it’s still a one-way process where the requirements drive the system
and the acceptance test ensures that the requirements were met, rather than a
mechanism for evolving the requirements in the light of experience. It's more
a different diagram than a different animal.

The waterfall model had a precursor in a methodology developed by Ger-
hard Pahl and Wolfgang Beitz in Germany just after World War II for the design
and construction of mechanical equipment such as machine tools [1492]; appar-
ently one of Pahl’s students later recounted that it was originally designed as
a means of getting the engineering student started, rather than as an accurate
description of what experienced designers actually do. Win Royce also saw
his model as a means of starting to get order out of chaos, rather than as the
prescriptive system it developed into.

The strengths of the waterfall model are that it compels early clarification of
system goals, architecture, and interfaces; it makes the project manager’s task
easier by providing definite milestones to aim at; it may increase cost trans-
parency by enabling separate charges to be made for each step, and for any late
specification changes; and it's compatible with a wide range of tools. Where
it can be made to work, it’s often the best approach. The critical question is
whether the requirements are known in detail in advance of any development
or prototyping work. Sometimes this is the case, such as when writing a com-
piler or (in the security world) designing a cryptographic processor to imple-
ment a known transaction set and pass a certain level of evaluation. Sometimes
a top-down approach is necessary for external reasons, as with an interplane-
tary space probe where you’ll only get one shot at it.

But very often the detailed requirements aren’t known in advance and an
iterative approach is necessary. The technology may be changing; the environ-
ment could be changing; or a critical part of the project may be the design of

27.5 Methodology

9283

a human-computer interface, which will probably involve testing several pro-
totypes. Very often the designer’s most important task is to help the customer
decide what they want, and although this can sometimes be done by discus-
sion, there will often be a need for some prototyping.

Sometimes a formal project is just too slow. Reginald Jones attributes much
of the UK’s relative success in electronic warfare in World War II to the fact
that British scientists hacked stuff together quickly, while the Germans used
a rigid top-down development methodology, getting beautifully engineered
equipment but always six months too late [993].

But the most common reason for using iterative development is that we’re
starting from an existing product that we want to improve. Even in the
early days of computing, most programmer effort was always expended on
maintaining and enhancing existing programs rather than developing new
ones; surveys suggest that 70-80% of the total cost of ownership of a successful
IT product is incurred after it first goes into service, even when a waterfall
methodology was used [2063]. Nowadays, as software becomes a matter
of embedded code, apps and cloud services-which all become ever more
complex—the reality in many firms is that ‘the maintenance is the product’.

Even in the late 1990s, when the most complex human artefacts were soft-
ware packages such as Microsoft Office, the only way to write such a thing
was to start off from the existing version and enhance it. That does not make the
waterfall model obsolete; on the contrary, it is often used to manage a project to
develop a major new feature, or to refactor existing code. However, the overall
management of a major product nowadays is likely to be based on iteration.

27.5.2 lterative design: from spiral to agile

There are different flavours of iterative development, ranging from a rapid pro-
totyping exercise to firm up the specification of a new product, through to a
managed process for fixing or enhancing an existing system.

In the first case, one approach is the spiral model in which development pro-
ceeds through a pre-agreed number of iterations in which a prototype is built
and tested, with managers being able to evaluate the risk at each stage so they
can decide whether to proceed with the next iteration or to cut their losses.
Devised by Barry Boehm, it’s called the spiral model because the process is
often depicted as in Figure 27.5. There are many applications where an initial
prototype is the key first step; from a startup aiming to produce a demo to
show to investors, through a company building a mockup of a new product to
show a focus group, to DARPA seedling projects that aim to establish that some
proposed technology isn’t completely impossible. Prototype applications for
the security engineer range from security usability testbeds to proof-of-concept
attack code. The key is to solve the worst problem you're facing, so as to reduce
the project risk as much as possible.

984 Chapter 27 = Secure Systems Development

Progress
Risk
analysis
Prototype
Commit / Test
Settle final
Development Product design
plan desi Code
sign
Test system
Ship

Figure 27.5: The spiral model

The second case we now describe as agile development, which may be summed
up in the slogan: “Solve your worst problem. Repeat”.

An early advocate for an evolutionary approach was Harlan Mills, who
taught that you should build the smallest system that works, try it out on
real users, and then add functionality in small increments. This is how the
packaged software industry had learned to work by the 1990s: as PCs became
more capable, software products became so complex that they could not be
economically developed (or redeveloped) from scratch. Indeed, Microsoft
tried more than once to rewrite Word, but gave up each time. A landmark
early book on evolutionary development was ‘Debugging the Development
Process’ by Steve Maguire of Microsoft in 1994 [1211]. In this view of the
world, products aren’t the result of a project but of a process that involves
continually modifying previous versions. Microsoft contrasted its approach
with that of IBM, then still the largest IT company; in the IBM ecosystem, the
waterfall approach was dominant. (IBMers for their part decried Microsoft as
a bunch of undisciplined hackers who produced buggy, unreliable code; but
IBM’s near-death experience after Microsoft stole their main business markets
has been ascribed to the rigidity of the IBM approach to development [392].)
Professional practice has evolved in the quarter century since then, and
evolutionary development is now known as ‘agile’, but it is recognisably the
same beast.

A key insight about evolutionary development is that just as each generation
of a biological species has to be viable for the species to continue, so each gen-
eration of an evolving software product must be viable. The core technology
is regression testing. At regular intervals — typically once a day — all the teams
working on different features of a product check in their code, which gets com-
piled to a build that is then tested automatically against a large set of inputs. The
regression test checks whether things that used to work still work, and that old

27.5 Methodology

985

bugs haven’t found their way back. It’s always possible that someone’s code
broke the build, so we consider the current ‘generation” to be the last build
that worked. Things are slightly more complex when systems have to work
together, as when an app has to talk to a cloud service, or when several elec-
tronic components in a vehicle have to work together, or where a single vehicle
component has to be customised to work in several different vehicles. You can
end up with a hierarchy of builds and test regimes. But one way or another, we
always have viable code that we can ship out for beta testing, or whatever the
next stage of our process might be.

The technology of testing was probably the biggest practical improvement
in software engineering during the 1990s and early 2000s. Before automated
regression tests were widely used, IBM engineers used to reckon that 15% of
bug fixes either introduced new bugs or reintroduced old ones [18]. The move
to evolutionary development was associated with a number of other changes.
For example, IBM had separated the roles of system analyst, programmer and
tester; the analyst spoke to the customer and produced a design, which the
programmer coded, and then the tester looked for bugs in the code. The incen-
tives weren’t quite right, as the programmer could throw lots of buggy code
over the fence and hope that someone else would fix it. This was slow and led to
bloated code. Microsoft abolished the distinction between analysts, program-
mers and testers; it had only developers, who spoke to the customer and were
also responsible for fixing their own bugs. This held up the bad programmers
who wrote lots of bugs, so that more of the code was produced by the more skil-
ful and careful developers. According to Steve Maguire, this is what enabled
Microsoft to win the battle to rule the world of 32-bit operating systems; their
better development methodology let them take a $100bn business-software
market from IBM [1211].

27.5.3 The secure development lifecycle

By the early 2000s, Microsoft had overtaken IBM as the leading tech company,
but it was facing ever more criticism for security vulnerabilities in Windows
and Office that led to more and more malware. Servers were moving to Linux
and individual users were starting to buy Macs. Eventually in January 2002 Bill
Gates sent all staff a “trustworthy computing” memo ordering them to prioritise
security over features, and stopping all development while engineers got secu-
rity training. Their internal training materials became books and papers that
helped drive change in the broader ecosystem. I already discussed their threat
modelling in section 27.3.5; their first take on secure development appeared
in 2002 in Michael Howard and David LeBlanc’s ‘Writing Secure Code’ [929],
which sets out the early Microsoft approach to managing the security lifecy-
cle, and which I discussed in the second edition of this book. More appeared

986

Chapter 27 = Secure Systems Development

over time and their security development lifecycle (SDL) appeared in 2008, being
adopted widely by Windows developers.

The widely used 2010 ‘simplified implementation” of SDL is essentially a
waterfall process [1310]. It “aims to reduce the number and severity of vulnera-
bilities in software” and “introduces security and privacy throughout all phases
of the development process’. The “pre-SDL’ component is security training; it’s
assumed that all the developers get a basic course, the contents of which will
depend on whether they’re building operating systems, web services or what-
ever. There are then five SDL components.

1. Requirements: this involves a risk assessment and the establishment
of quality gates or ‘bug bars’ that will prevent code getting to the next
stage if it contains certain types of flaw. The requirements themselves
are reviewed regularly; at Microsoft, the reviews are never more than six
months apart.

2. Design: this stage requires threat modelling and establishment of
the attack surface, to feed into the detailed design of the product.

3. Implementation: here, developers have to use approved tools, avoid or
deprecate unsafe functions, and perform static analysis on the code to
check this has been done.

4. Verification: this step involves dynamic analysis, fuzz testing, and a
review of the attack surface.

5. Release: this is predicated on an incident response plan and a final secu-
rity review.

As well as providing some basic security training to all developers, there
are some further organisational aspects. First, security needs a subject-matter
expert (SME) from outside the dev team, and a security or privacy champion
within the team itself to check that everything gets done.

Second, there is a maturity model. Starting in 1989, Watts Humphrey
developed the Capability Maturity Model (CMM) at the Software Engineer-
ing Institute at Carnegie-Mellon University (CMU), based on the idea that
competence is a function of teams rather than just individual developers.
There’s more to a band than just throwing together half-a-dozen competent
musicians, and the same holds for software. Developers start off with different
coding styles, different conventions for commenting and formatting code,
different ways of managing APIs, and even different workflow rhythms. The
CMU research showed that newly-formed teams tended to underestimate the
amount of work in a project, and also had a high variance in the amount of
time they took; the teams that worked best together were much better able
to predict how long they’d take, in terms of the mean development time, but
reduced the variance as well [1941]. This requires the self-discipline to sacrifice
some efficiency in resource allocation in order to provide continuity for

27.5 Methodology

987

individual engineers and to maintain the team’s collective expertise. Microsoft
adapted this and defines four levels of security maturity for developer teams.

27.5.4 Gated development

It’s telling that the biggest firm pushing evolutionary development reverted to
a waterfall approach for security. Many of the security engineering approaches
of the time were tied up with waterfall assumptions, and automated testing
on its own is less useful for the security engineer for a number of reasons.
Security properties are both emergent and diverse, we security engineers are
fewer in number, and there hasn’t been as much investment in tools. Specific
attack types often need specific remedies, and many security flaws cross
a system’s levels of abstraction, such as when specification errors interact
with user interface features — the sort of problem for which it’s difficult to
devise automated tests. But although regression testing is not sufficient, it
is necessary, as it finds functionality that’s been affected by a change. It's
particularly important when development sprints add lots of features that
can interact with each other. For this reason, security patches to Windows
are an example of gated development: at regular intervals, a pre-release version
of the product is pushed through a whole series of additional tests and
reviews and prepared for release. This is fairly common across systems
with safety or security requirements. The preparation may involve testing
with a wide variety of peripherals and applications in the case of Windows,
or recertification in the case of software for a regulated product.

An issue many neglect is that security requirements evolve, and also have to
be maintained and upgraded. They can be driven by changing environments,
evolving threats, new dependencies on platforms old and new, and a bundle
of other things. Some changes are implicit; for example, when you upgrade
your static analysis tools you may find hundreds of ‘new’ bugs in your
existing codebase, which you have to triage. Once more Microsoft was a
pioneer here. When a vulnerability was found in Windows, it’s not enough to
just patch it; whoever wrote it might have written a dozen similar ones that
are now scattered throughout the codebase, and once you publish a patch,
the bad guys study it and understand it. So rather than just fixing a single
bug, you update your toolchain so you find and eliminate all similar bugs
across your products. In order to manage the costs, both for Microsoft and
its customers, the company started bundling patches together into a monthly
update, the now famous ‘patch Tuesday’, in 2003. From then until 2015, all
customers — from enterprises to the users of home PCs and tablets — had their
software updated on the second Tuesday every month. And such patching
creates further dependencies. Modern quality tools can help you check that no
code has a CVE open, so all your customers should have to patch too, if they

988

Chapter 27 = Secure Systems Development

live by such tools. But many don’t: as many as 70% of apps on both phones
and desktops have vulnerabilities in the open-source libraries they use, and
which could usually be fixed by a simple update [1698]. Since 2015, Windows
home users receive continuous updates®.

Much the same considerations apply to safety-critical systems, which are
similar in many respects to secure systems. Safety, like security, is an emergent
property of whole systems, and it doesn’t compose. Safety used to depend,
in most applications, on extensive pre-market testing. But it’s hard for a
connected device to have safety without security, and now that devices such
as cars are connected to the Internet, they are acquiring patch cycles too. Yet
ensuring that the latest version of a safety-critical system satisfies the safety
case may require extensive and expensive testing. For example, a car may
contain dozens of electronic control units (ECUs) from different component
suppliers, and in addition to testing the individual ECUs you have to test
how they work together. Firms in the car industry are mutually suspicious
and won't share source code with each other, even under NDA, so testing can
be complex. The main test rig may be a ‘lab car” containing all the electronics
from a particular model of car, plus extra test systems that let you simulate
various maneuvers and even accidents. These cost real money, and you also
need to keep real vehicles for road testing. The cost of maintaining fleets of lab
cars and real test cars is one of the reasons car companies dragged their heels
when the EU decided to require them to patch car software for ten years after
the last vehicle left the showroom.

This is one respect in which Tesla has a significant advantage; as a tech com-
pany with software at the core of its business, Tesla can test and ship changes
in weeks that take the legacy car firms years, as they leave most of the soft-
ware development to the component suppliers [406]. Traditionally, automotive
software contracts involved ten years’ support; now you need to support a
product for three years” development, seven years in the showroom and a
further ten after that. I'll discuss the sustainability aspects of this in the next
chapter. Meanwhile, Tesla is forcing the legacy industry to raise its game, with
VW announcing they’ve spent $8bn to create a proper software division, just
as their main electric car project runs late [1689].

27.5.5 Software as a Service

Since the early 2010s, more and more software has been hosted on central
servers, accessed by thin clients and paid for on a subscription basis, rather

“This also breaks things: we were once about to demonstrate an experiment using a body
motion-capture suit to a TV crew when the Windows laptop we used to drive it updated itself,
and suddenly the capture software wouldn’t work any more. There followed frantic phone calls
to the software developer in the Netherlands and thankfully we got their update a few hours
later, just in time for the show.

27.5 Methodology

289

than being sold and distributed to users. The typical customer has many
costs for running software beyond the license fee, including not just the
cost of servers and operators but of deploying it, upgrading it regularly and
managing it. If the vendor can take over these tasks from all their customers,
many duplicated costs are removed, and they can manage things better
because of their specialised knowledge. Software can be instrumented so that
developers can monitor all aspects of its performance on a dashboard.

The key technical innovations behind Software as a Service (SaaS) are contin-
uous integration and continuous deployment. Rather than having thousands of
customers managing dozens of different versions of the software, the vendor
can migrate a few customers to a new version to test it, and then migrate the
rest. Upgrades become much more controllable, as they can be tested in a dry
run against a snapshot of the real customer data, called a staging environment.
Some companies now deploy several times a day, as their experience is that
frequent small changes can be safer and have less risk of breaking something
than a larger deployment, such as Microsoft’s Patch Tuesday.

Deployment itself is tentative. A SaaS company will typically run its
software on a number of service instances running on VMs behind a load
balancer, which provides a point of indirection for managing running services.
The separate instances also provide separate failure domains to improve
robustness. To do a rolling deployment we configure a load balancer to send
say 1% of the traffic to an instance with the new version, often called the
‘canary’ after the caged bird used by miners to detect carbon monoxide leaks.
If the canary survives, deployment can be rolled forward progressively to
new service instances. If the logging system detects any problems, developers
are alerted. Some care needs to be taken that things don’t go wrong if users
flap between old and new versions of a design between transactions. If you
make a change that breaks backwards compatibility, you typically build an
intermediate stage that will work with both old and new systems (we were
doing this in the world of bank mainframes back in the 1980s anyway).

The ability to manage risks through phased release and rolling deployment
changes the economics of testing. The fact that you can fix bugs extremely
quickly mean that you can achieve a target quality level with much less
testing. You can also see everything the users do, so for the first time you
can really understand how usability fails from the point of view of security,
safety —and revenue. Of course it's revenue that usually drives the exploitation
of this. Analytics collectors write all behavioural events to a log, which is fed
into a data pipeline for metrics, analytics and queries. This in turn supports
experiment frameworks that can do extensive A /B testing of possible features.
Ad-driven services can optimise by engagement metrics such as active users,
time per user session and use of specific features. Controlled experiments
are used to improve security too; for example, Google has tuned its browser
warnings by measuring how millions of users react to different warnings of

9290

Chapter 27 = Secure Systems Development

expired certificates. Such improvements are usually fairly small by themselves,
so you really need controlled experiments to measure them; but when you
do lots of them, they add up. The investment in building such frameworks
into the phased deployment mechanisms gives an increasing return to scale;
the more users you have, the faster you can achieve statistical significance.
So large firms can optimise their products more quickly than their smaller
competitors; SaaS, like a lot of other digital technology, not only cuts costs in
the short term, but increases lock-in in the long term. Each time you access a
service from a large SaaS firm, you may be an unwitting participant in tens or
even hundreds of experiments. There are lots of fiddly details about running
multiple concurrent experiments while also deploying system enhancements.

Things can get more complex still when you have services put together from
multiple microservices. This brings us to the world of infrastructure as code, also
known as cloud native development or DevOps, where everything is devel-
oped in containers, VMs etc., so all the infrastructure is based on code and can
be replicated quickly. You can also use containers to simplify things, packaging
as many security dependencies with the code as possible. New code can be
deployed to a test infrastructure rapidly and tested realistically. You could if
you wanted manage rolling deployment manually, but this is not scalable and
prone to error. The solution is to write deployment code, as part of the appli-
cation development process, that uses the cloud platform APIs to allow
applications to deploy themselves and the associated infrastructure, and to
hook into the monitoring mechanisms. In the last few years, some toolkits
have become available that allow engineers to do this in a more declarative
fashion.

The best guide to this I know is Google’s 2013 book ‘Site Reliability Engineer-
ing’; SRE is their term for DevOps [237]. Google led the industry in the art of
building large dependable systems out of large fleets of low-cost PCs, build-
ing the necessary engineering for load balancing, replication, sharding and
redundancy. As they operated at a larger scale than anybody else through the
2000s and early 2010s, they had to automate more tasks and became good at
it. The goals of SRE are availability, latency, performance, efficiency, change
management, monitoring, emergency response, and capacity planning. The
core strategy is to apply software engineering techniques to automate system
administration tasks so as to balance rapid innovation with availability.

Aswe already noted, there’s no point striving for 99.9999% availability if ISPs
only let users get to your servers 99% or 99.9% of the time. If you set a realistic
error budget, say 0.1% or 0.01% unavailability, you can use that to achieve a
number of things. First, most outages are due to live system changes, so you
monitor latency, traffic, errors and saturation well and roll back quickly when-
ever anything goes wrong. You use the rest of the error budget to support your
experimental framework, and doing controlled outages to flush dependencies.
(This was pioneered by Netflix whose ‘chaos monkey” would occasionally take

27.5 Methodology

991

down routers, servers, load balancers and other components, to check that the
resilience mechanisms worked as intended; such “fire drills” are now an indus-
try standard and involve taking down whole data centres.)

In section 12.2.6.2, we mentioned technical debt. This concept, due to Ward
Cunningham, encapsulates the observation that development shortcuts are
like debt. Whenever we skimp on documentation, fix a problem with a
quick-and-dirty kludge, don’t test a fix thoroughly, fail to build in security
controls, or fail to work through the consequences of errors, we're storing up
problems that may have to be repaid with interest in the future [42]. Technical
debt may make sense for a startup, or a system nearing the end of its life, but
it’'s more often a product of poor management or poorly-aligned incentives.
Over time, systems can fall so deeply into debt that they become too hard
to maintain or to use; they have to be refactored or replaced. For a bank to
have to replace its core banking systems is hugely expensive and disruptive.
So managing technical debt is really important; this is one of the changes
in system management thinking since the second edition of this book. One
important aspect of the philosophy of DevOps is to run debt-free.

27.5.6 From DevOps to DevSecOps

As I write, in 2020, the cutting edge is applying agile ideas and methodology
not just to development and operations, but to security too. In theory this can
mean a strategy of ‘everything as code’; in practice it means not just maintain-
ing an existing security rating (and safety case if relevant) but responding to
new threats, environmental changes, and surprising vulnerabilities. Bringing
the two together involves real work, and sometimes things need to be rein-
vented. I mentioned for example in section 12.2.2 that DevOps undermines the
separation between development and production on which banks have relied
for years; where separation of duties is necessary, we have to reimagine it.

We see several different approaches in the companies with which we work.
In what follows I will give two examples, which we might roughly call the
Microsoft world and the Google world. There are of course many others.

27.5.6.1 The Azure ecosystem

Most of the world’s largest commercial firms from banks and insurers through
retail to shipping and mining have built their enterprise systems on Windows
over the past 25 years and are now migrating them to Azure, often using sys-
tems integration and facilities management firms to do the actual work. The
typical client has a mixture of on-premises and cloud systems with new devel-
opments mostly migrating from the former to the latter. Here policy is largely
set by the Big Four auditors who, in addition to their standard set of internal

992

Chapter 27 = Secure Systems Development

control features, follow Microsoft in requiring a secure development lifecycle.
The several dozen tools used to do threat modelling, static analysis, dynamic
analysis, fuzz testing, app and network monitoring, security orchestration and
incident response impose a significant overhead with dozens of people copy-
ing data from one tool to another. The DevSecOps task here is to progressively
integrate the tools by automating these administrative tasks.

To support this ecosystem, Microsoft has extended its SDL with further steps:
defining metrics and compliance reporting; threat modelling; cryptography
standards; managing the security risks of third-party components; penetration
testing; and a standardised incident response. The firm now claims that 10%
of its engineering investment is in cybersecurity. The capable system integra-
tion and facilities management firms have worked out ways of building these
steps into their workflows; much of the actual work involves integrating the
third-party security products that they or their customers have bought. Appro-
priate automation is vital for the security team to continue raising their game,
extending their scope and increasing effectiveness; without it, they fall further
and further behind, and burn out [1850].

The organising principles for DevSecOps in such a company will be to
‘shift left’, which can cover a number of things: the unifying theme is moving
security, like software and infrastructure, into the codebase. One strategy is
to cause things to ‘fail fast” including engaging security experts early enough
in the development process to avoid delays later: doing pre-commit static
analysis of each developer’s code to minimise failed builds; buying or building
specialist tools to detect errors such as incorrect authentication, mistakes in
using crypto functions, and injection opportunities; both automated and man-
ual security testing of new versions; and automated testing of configuration
and deployment including scanning of the staging network and checks on
credentials, encryption keys and so on. And while, back in 2010, Microsoft con-
sidered operational security to be separate from software security, a modern
Azure shop will close the loop by following up deployment with continuous
monitoring, manual penetration tests and finally bug bounties for third parties
who spot something wrong. We will discuss these in more detail later.

27.5.6.2 The Google ecosystem

A second view comes from engineers working on infrastructure, and the best
reference I know is a 2020 book by six Google engineers, ‘Building Secure and
Reliable Systems’ [23]. Amazon’s DevSecOps strategy is somewhat similar, but
optimised for their product offerings; it is described by their CTO Werner
Vogels at [1970]. However, the Google experience is described in much more
detail. This section draws on their book, and on colleagues who have worked
recently at the major service firms.

27.5 Methodology

9293

When building infrastructure systems on which hundreds of millions of peo-
ple will rely, it is critical to automate support functions quickly, and to have
really robust processes for threat identification, incident response, damage lim-
itation and service recovery. So while a facilities-management firm might work
atintegrating support functions to save money and reduce errors, the emphasis
at major service firms is reliability. I already mentioned the Google approach
to site reliability engineering: set a realistic target, of say 99.9% availability,
and then use the residual error budget of 0.1% downtime by apportioning it
between failure recovery, upgrades and experiments.

This in turn drives further principles such as design for recoverability,
design for understandability, and a desire to stop humans touching produc-
tion systems wherever possible. It’s not enough to have automation for the
incremental deployment of new binaries; you also want to stop sysadmins
having to type complicated command lines into routers to configure net-
works; this is where most of the network outages come from, as we noted in
section 21.2.1. You manage such risks by building suitable tool proxies. This
can involve quite a lot of work to align the update of binary and config files
and work out how to allocate support and recovery effort between SRE and
security engineering teams. Further complexity arises with secure testing.
How do you build test infrastructures to exercise least privilege? How do you
test systems that contain large amounts of personal information? How do
you test the break-glass mechanisms that give SRE teams emergency human
access to live systems? Most of these are questions we already had to deal with
in the mainframe world of the 1980s, but they arose only occasionally and were
dealt with by human ingenuity and by trusting some key staff. Scaling every-
thing up from thousands of users to billions means that a lot more has to be
automated.

There are still tensions. In site reliability engineering, alarms should be as
simple, predictable and reliable as possible; but in security, some randomisa-
tion is often a good idea.

At the application level, systems are increasingly compartmentalised into
microservice components with defensible security boundaries and tamper-
resistant security contexts, so that if Alice compromises a shopping system’s
catalogue, she still can’t spend money as Bob as the payment service is
separate. Each component will typically be implemented as a number of
parallel copies or shards, giving still smaller failure domains. Such domains
enable you to limit the blast radius of any compromise; ideally, you want to
be able to deal with an intrusion without taking your whole system offline.
Compartmentalised systems can be engineered for resilience too, but this is not
straightforward. When a failure domain fails, when do you just spin up a new
one, and when do you do something different? What are the dependencies?
Which components should fail open, and which should fail secure? What sort
of degraded performance is acceptable under congestion, or under attack?

994

Chapter 27 = Secure Systems Development

What's the role of load shedding and throttling? And what sort of pain can
you rationally inflict on users, and on business models? Do you ditch some of
the ads, require extra CAPTCHAs for logons, or both? And how do you test
and validate all these resilience mechanisms?

Large firms invest a lot of engineering time in building application frame-
works for such services. There are also standard frameworks for web pages,
which should not only prevent SQL injection and cross-site scripting attacks in
the first place, but also provide support for dozens of different languages. Hav-
ing a single front end to terminate all http(s) and TLS traffic means that if you
have to update your certificate management mechanisms or ciphersuites you
only need to do it once, not in all your different services. A single front end can
also provide a single location for load balancing and DDoS protection, as well
as for many other functions such as supporting dozens of different languages.

Using type encapsulation to enforce properties of URLs, SQL and so on
can reduce the amount of code you need to verify. If you have secure-by-
construction APIs that are also understandable, that’s best. Google has a
crypto API called Tink that forces more correct use. It requires use of a key
management service, whether in the Google cloud, AWS or the Android
keystore. This fits into an overall framework for managing crypto termina-
tion, code provenance, integrity verification and workload isolation, called
BeyondProd [1000].

27.5.6.3 Creating a learning system

Whether you follow the Microsoft approach, the Google approach or your own,
to tune such a process you need metrics, and suitable candidates include the
numbers of security tickets opened to dev teams, the number of security-failed
builds, and the time it takes for a new application to achieve compliance under
the relevant regulation (whether SOX, GDPR or HIPAA). As Dev, Sec and Ops
converge, the metrics and management processes converge with the network
defence mechanisms discussed in section 21.4, from network monitoring to
security incident and event management. But all this needs to be managed
intelligently. A well-run firm can make the security process more visible to
all the dev/ops staff via the sprints that you do to work up a privacy impact
assessment, improve access controls, extend logging or whatever. A badly-run
firm will manage to the metrics, which will create tensions: their security staff
can end up with conflicting goals of keeping the bad guys out, and also of
‘feeding the beast’ by hitting all the metrics used to justify the team’s own exis-
tence [1850]. It’s important to understand where conflicts naturally arise as a
function of the organisation’s management structure, and somehow keep them
constructive.

One of the big drivers in either case, though, will be the vulnerability
lifecycle. The processes whereby bugs become exploits and then attacks, and

27.5 Methodology

995

these attacks are noticed leading to vulnerability reports, interim defences
using devices such as firewalls, then definitive patches that are rolled out not
just to direct users but along complex supply chains, is ever more central to
security management.

27.5.7 The vulnerability cycle

Back in the 1970s and 1980s, people sometimes described the evolutionary pro-
cedure of finding security bugs in systems and then fixing them dismissively
as penetrate-and-patch. It was hoped that some combination of an architecture
that limited the attack surface and the application of formal methods would
enable us to escape. As we’ve seen, that didn’t really work, exceptin a few edge
cases such as cryptographic equipment. By the early 2000s, we had come to the
conclusion that we just had to manage the patch cycle better, and the modern
approach of security breach disclosure laws, CERTs and responsible disclosure
bedded down during this period. I discussed the security economics of this in
section 8.6.2; let’s now look at the technical details.

The vulnerability cycle consists of the process whereby someone, the
researcher, discovers a vulnerability in a system that is maintained by a vendor.
The researcher may be a customer, an academic, a contractor for a national
intelligence agency or even a criminal. They may sell it in a market. The idea
of vulnerability markets was first suggested by Jean Camp and Catherine
Wolfram in 2000 [373]; firms were set up to buy vulnerabilities, and over
time several markets emerged. Most of the big software and service firms
now offer bug bounties, which can range from thousands to hundreds of
thousands of dollars; at the other extreme are operators who buy up exploits
for sale to exploiters such as cyber-arms manufacturers (who sell to military
and intelligence agencies) and forensic firms (who sell to law enforcement).
Such operators now offer millions of dollars for persistent remote exploits of
Android and iOS.

The researcher may also disclose the bug to the vendor directly — nowadays
many vendors have a bug bounty program that pays rewards for disclosed
vulnerabilities that attempt to match market prices, at least in order of
magnitude. As market prices for zero-day exploits against popular platforms
have headed into six and even seven figures, so have bug bounties. Apple,
for example, offers $1M for anyone who can hack the iOS kernel without
requiring any clicks by the user. In 2019, it emerged that at least six hackers
have now earned over $1M through the bug bounty platform HackerOne
alone [2033]. A downside of large bug bounties is that while bugs used to
occur naturally, we now see them being introduced deliberately, for example
by contributors to open-source projects whose code ends up in significant
platforms. Such supply-chain attacks used to be the preserve of nation states;
now they’re opening up [892].

996

Chapter 27 = Secure Systems Development

If an exploit is used in the wild before the vendor issues a patch, it is called
a zero day, and is typically used for targeted attacks. If it’s used enough,
then eventually someone will notice; the attack gets reported, and then the
vendor issues a patch, which may be reverse engineered so that many other
actors now have exploit code. Customers who fail to patch their systems
are now vulnerable to multiple exploits that can be deployed at scale by
crime gangs.

Getting the patching cycle right is a problem in the economics of information
security as much as anything else, because the interests of the various stake-
holders can diverge quite radically.

1. The vendor would prefer that bugs weren’t found at all, to spare the
expense of patching. They’ll patch if they have to but want to minimise
the cost, which may include a lot of testing if their code appears in
lots of product versions. Indeed, if their code is used in customer
devices that now need patching (like cars) they may have to pay
an indemnity to cover their customer’s costs; so in such industries
there’s an even more acute incentive for foot-dragging and denial.

2. The average customer might prefer that bugs weren’t found, to
avoid the hassle of patching. Lazy customers may fail to patch,
and get infected as a result. (If all the infected machines do is
send a bit of spam, their owners may not notice or care.)

3. The typical security researcher wants some reward for their discover-
ies, whether fame, cash or getting a fix for a system they rely on.

4. The intelligence agencies want to learn of vulnerabilities quickly, so
they can be used in zero-day exploits before a patch is shipped.

5. The security software firms benefit from unpatched vulner-
abilities as their firewalls and AV software can look for their
indicators of compromise to block attacks that exploit them.

6. Large companies don’t like patches, and neither do government depart-
ments, as the process of testing a new patch against the enterprise’s
critical systems and rolling it out is expensive. The better ones have
built automation to deal with regular events like Microsoft’s Patch
Tuesday, but updating or risk-assessing the zillions of IoT devices in
their offices and factories will be a headache for years to come. Most
firms just don’t have a good enough asset inventory system to cope.

During the 1990s, the debate was driven by people who were frustrated at
software vendors for leaving products unpatched for months or even years.
The bugtraq mailing list was set up to provide a way for people to disclose
bugs anonymously; but this meant that a product might be completely vulner-
able for a month or two until a patch was written, tested and shipped, and until

27.5 Methodology

997

customer firms had tested it and installed it. This led to a debate on ‘respon-
sible disclosure” with various proposals about how long a breathing space the
researcher should give the vendor [1575].

As we discussed in section 8.6.2, the consensus that emerged was responsi-
ble disclosure: that researchers should disclose vulnerabilities to a computer
emergency response team (CERT)® and the global network of CERTs would
inform the vendor, with a delay for a patch to be issued before the vulnera-
bility was published. The threat of eventual disclosure got vendors off their
butts; the delay gave them enough time to test a fix properly before releas-
ing it; researchers got credit to put on their CVs; customers got bug fixes at the
same time as bug reports; and the big companies organised regular updates for
which their corporate customers can plan. Oh, and the agencies had a hot line
into their local CERT, so they learned of naturally occurring exploits in advance
and could exploit them. This was part of the deal described in section 26.2.7.3
that ended Crypto War 1 back in 2000.

27.5.7.1 The CVE system

An industrial aspect is the Common Vulnerabilities and Exposures (CVE) system,
launched in 1999, which assigns numbers to reported vulnerabilities in pub-
licly released software packages. This is maintained by Mitre, but it delegates
the assignment of CVEs to large vendors. CVE IDs are commonly included
in security advisories, enabling you to search for details of the reporting date,
affected products, available remedies and other relevant information. Thereis a
Common Vulnerability Scoring System (CVSS) that provides a numerical rep-
resentation of the severity of a vulnerability. The method for calculating this
has become steadily more complex over time and now depends on whether
the attack requires local access, its complexity, the effort required, its effects,
the availability of exploit code and of patches, the number of targets and the
potential for damage.

NIST’s National Vulnerability Database (NVD), described as a “comprehen-
sive cybersecurity vulnerability database that integrates all publicly available
US Government vulnerability resources and provides references to industry
resources”, is based on the CVE List. These resources are critical for automating
the tracking of vulnerabilities and updates. There are now so many thousands
of vulnerabilities reported, and so many hundreds of patches shipped, that
automation is essential.

As the system was bedding down, it became a subject of study by security
economists. Traditionalists argued that since bugs are many and uncorre-
lated, and since most exploits use vulnerabilities reverse-engineered from
existing patches, there should be minimal disclosure. Pragmatists argued that,

5The EU is renaming these CSIRTs — computer security incident response teams.

998

Chapter 27 = Secure Systems Development

from both theoretical and empirical perspectives, the threat of disclosure was
needed to get vendors to patch. I discussed this argument in section 8.6.2. Since
then we have seen the introduction of automatic upgrades for mass-market
users, the establishment of firms that make markets in vulnerabilities, and
empirical research on the extent to which bugs are correlated. Modulo some
tuning, the current computer industry way of doing things has been stable for
over a decade.

27.5.7.2 Coordinated disclosure

Yet some industries are lagging well behind. In section 4.3.1 I described how
Volkswagen sued academics at Birmingham and Nijmegen universities after
they discovered, and responsibly disclosed, vulnerabilities in Volkswagen’s
remote key entry system that were already being exploited in car-theft tools
that were available online. This was Volkswagen’s mistake; it drew attention
to the vulnerability, and they also lost in court. Companies like Microsoft and
Google have had twenty years to learn that running bug bounty programs and
monthly patching works better than threatening to sue people, but a lot of firms
in legacy industries still haven’t worked this out even though their products
contain more and more software.

One of the problems in the Volkswagen case was that the researchers
initially disclosed the vulnerability to the supplier of its key entry system,
which in turn told Volkswagen only at the last minute. As a result of supply
chain problems like this, responsible disclosure has given way to coordinated
disclosure. Few firms build all their own tools any more, and even a child’s
toy may have multiple software dependencies. If it does speech and gesture
recognition, it probably contains an Arm chip running some flavour of Linux
or FreeBSD, communicates with a cloud service running another flavour of
Linux, and can be controlled by an app that may run on Android or iOS.
The safety of the toy will depend on secure communications; for example, it
was discovered in February 2019 that the communications between Enox’s
‘Safe-KID-One’ toy watch and its back-end server were unencrypted, so that
hackers could in theory track and call kids. The response was an immediate
EU-wide safety recall [653]. Getting this sort of thing wrong can be sudden
death for your product, and your company.

Now what happens when someone discovers an exploitable bug in a
platform used in dozens of embedded products? This can be traumatic,
as with the Shellshock bug in Linux and the Heartbleed bug in OpenSSL
(which also affected Linux). If Linux gets an emergency patch, coordinating
the disclosure is a nightmare: the Linux maintainers may be able to work in
private with the main Linux distributions, and with derivatives like Android
whose developers keep in close contact with them. But there are the thousands

27.5 Methodology

299

of products that incorporate Linux, from alarm clocks to TVs and from kids’
toys to land mines. You may suddenly find that the CCTV cameras in your
building security system have all become hackable, and the vendor can’t fix
them quickly or at all. Coordinating disclosure on platforms is one of the seri-
ously hard problems. There is no silver bullet, but there are still many things
you can do, ranging from documenting your upstream and downstream
dependencies, through aggressive testing of software you depend on so you
get to exercise and understand the bug reporting mechanisms, to becoming
part of its developer community.

Dealing with such shocks is just one aspect of a process that in the late
2010s became a speciality of its own, namely security incident and event
management.

27.5.7.3 Security incident and event management

You need an incident response plan for what you'll do when you learn of
a vulnerability or an attack. In the old days, vendors could take months to
respond with a new version of the product, and would often do nothing at all
but issue a warning (or even a denial). Nowadays, breach-notification laws in
both the USA and Europe oblige firms to disclose attacks where individuals’
privacy could have been compromised, and people expect that problems
will be fixed quickly. Your plan needs four components: monitoring, repair,
distribution and reassurance.

First, make sure you learn of vulnerabilities as soon as you can — and prefer-
ably no later than the bad guys (or the press) do. This means building a threat
intelligence team. In some applications you can just acquire threat intelligence
data from specialist firms, while if you're an IoT vendor, it may be prudent to
operate your own honeypots so you get immediate warning of people attack-
ing your products. Listening to customers is important: you need an efficient
way for them to report bugs. It may be an idea to provide some incentive,
such as points towards their next upgrade, lottery tickets or even cash. You
absolutely need to engage with the larger technical ecosystem of bug bounties,
vulnerability markets, CERTs and CVEs described in section 27.5.7.

Second, you need to be able to repair the problem. Twenty years ago, that
meant having one member of each product team ‘on call” with a pager in
case something needed fixing at three in the morning. Nowadays it means
preparing an orchestrated response to anything from a vulnerability report
to a major breach. This will extend from the intrusion-detection and network
monitoring functions we discussed in section 21.4.2.3 and the threat intelli-
gence team through to identifying the dev teams responsible and notifying
both your suppliers upstream and your customers downstream. Responder
teams may also need alternative means of communication. Did you ever stop
to think whether you need satellite phones?

1000 Chapter 27 = Secure Systems Development

Third, you need to be able to deploy the patch rapidly: if all the software runs
on your own servers, then it may be easy, but if it involves patching code in mil-
lions of consumer devices, then advance planning is needed. It may seem easy
to get your customers to visit your website once a day and check for upgrades,
but if their own systems depend on your devices and they need to test any
dependencies, there’s a tension [196]: pioneers who apply patches quickly can
discover problems that break their systems, while people who take time to test
will be more vulnerable to attack. The longer the supply chains get, the harder
the conflicts of interest are to manage. Operations matter hugely: an emergency
patch process that isn’t tested may do more harm than good, and experience
teaches that in an emergency you just run your normal patch process as fast as
possible [23].

Finally, you need to educate your CEO and main board directors in advance
about the need to deal quickly and honestly with a security breach in order
to keep confidence and limit damage, by giving them compelling examples of
firms that did well and others that did badly. You need to have a mechanism
to get through to your CEO and brief them immediately so they can show
the thing’s under control and reassure your key customers. So you need to
know the mobile and home phone numbers of everyone who might be needed
urgently. And you need a plan to deal with the press. The last thing you need
is for dozens of journalists to phone up and be stonewalled by your PR person
or even your switchboard operator as you struggle madly to fix the bug. Have
a set of press releases ready for incidents of varying severity, so that your CEO
only has to pick the right one and fill in the details. This can then ship as soon
as the first (or perhaps the second) journalist calls.

Remind your CEO that both the USA and Europe have security-breach dis-
closure laws, so if your systems are hacked and millions of customer card
numbers compromised, you have to notify all current and former customers,
which costs real money. As we discussed in section 26.6.2, you can expect to
lose customers and take a hit to your stock price if you have a large breach or
more than one small one; and if it’s really bad your CEO can get fired. Infor-
mation security is a CEO issue.

27.5.8 Organizational mismanagement of risk

Organizational issues are not just a contributory factor in system failure, as
with the loss of organizational memory and the lack of mechanisms for mon-
itoring changing environments. They can often be a primary cause. There’s a
large literature on how people behave in organisations, which I touched on in
section 8.6.8, and I've given a number of further examples in various chapters.
However, the importance of organisational factors increases as projects get big-
ger. Bezos’ law says you can’t run a dev project with more people than can

27.5 Methodology 1001

be fed from two pizzas. A team of eight people is just about manageable, but
you can’t go six times as fast by having six such teams in parallel. If a project
involves multiple teams the members can’t talk to each other at random, or you
get chaos; and they can’t route all their communications through the lowest
common manager as there isn’t the bandwidth. As you scale up, the coordina-
tion will start to involve a proliferation of middle managers, staff departments
and committees. The communications complexity of a clean military chain of
command, for N people with no lateral interaction, is log N; where everybody
has to consult everybody else, it’s N?; and where any subset can form a commit-
tee to think about the problem, it can head towards 2". Business school people
have written extensively about this, and their methodology is generally based
on case studies.

Many large development projects have crashed and burned. The problems
appear to be much the same whether the disaster is a matter of safety, of
security or of the software simply never working at all; so security people
can learn a lot from studying project failures documented in the general
engineering literature.

A classic study of large software project disasters was written by Bill Curtis,
Herb Krasner, and Neil Iscoe [504]. They found that failure to understand
the requirements was mostly to blame: a thin spread of application domain
knowledge typically led to fluctuating and conflicting requirements, which
in turn caused a breakdown in communication. The example I give in my
undergraduate lectures is the meltdown of a new dispatch system for the
London Ambulance Service where a combination of an overly ambitious
project, an inadequate specification and no real testing led to the city being
without ambulance cover for a day. There are all too many such examples;
I use the London Ambulance Service case because the subsequent inquiry
documented the causes rather well [1809]. I also happened to be in London
that day, so I remember it. If you haven’t ever read the inquiry report,
I recommend you do so. (In fact, I strongly recommend that you read lots of
case studies of project failure.)

The millennium bug gives another useful data point. If one accepts that
many large commercial and government systems needed extensive repair
work to change two-digit dates into four-digit ones in preparation for the year
2000, and the conventional experience that a significant proportion of large
development projects are late or never delivered at all, many people naturally
assumed that a significant number of systems would fail at the end of 1999,
and predicted widespread chaos. But this didn’t happen. Certainly, the risks
to the systems used by small and medium-sized firms were overstated; we did
a thorough check of all our systems at the university, and found nothing much
that couldn’t be fixed fairly easily [70]. Nevertheless, the systems of some large
firms whose operations are critical to the economy, such as banks and utilities,
did need substantial repairs. Yet there were no reports of high-consequence

1002 Chapter 27 = Secure Systems Development

failures. This appears to support Curtis, Krasner, and Iscoe’s thesis. The
requirement for Y2K bug fixes was known completely: “I want this system to
keep on working, just as it is now, through into 2000 and beyond”.

This is one of the reasons I chose the quote from Rick Smith to head this
chapter: “My own experience is that developers with a clean, expressive set of
specific security requirements can build a very tight machine. They don’t have
to be security gurus, but they have to understand what they’re trying to build
and how it should work.”

Organisations have difficulty dealing with uncertainty, as it gets in the way of
setting objectives and planning to meet them. So capable teams tackle the hard
problem first, to reduce uncertainty; that was DARPA’s mission, and the core
of the spiral model. There’s a significant business-school literature on how to
manage uncertainty in projects [1180]. But it’s easy to get this wrong, evenin a
fairly well-defined project. Faced with a hard problem, it is common for people
to furiously attack a related but easier one; we’ve seen a number of examples,
such as in section 26.2.7 4.

Risk management can be even worse in security where the problem is
open-ended. We really have no idea where the next shitstorm will come
from. In the late 1990s, we thought we’d got secure smartcards; then along
came differential power analysis. In the mid-2010s we thought we had secure
enough CPUs for competitor firms to run their workloads on the same
machines in Amazon data centres; then along came Spectre. We also used
to think that Apple products couldn’t get malware and that face recognition
would never be good enough to be a real privacy threat. Even though Moore’s
law is slowing down, there will be more surprises.

Middle managers prefer approaches that they can implement by box-ticking
their way down a checklist, but to deal with uncertainties and open-ended
risks, you need a process of open learning, with people paying attention to
the alerts, or the frauds, or the safety incidents, or the customer complaints —
whatever you can learn from. But checklists demand less management atten-
tion and effort, and the quality bureaucracy loves them. I noted in section 9.6.6
that certified processes had a strong tendency to displace critical thought;
instead of constantly reviewing a system’s protection requirements, designers
just reach for their checklists. The result is often perverse. By not tackling the
hard problem first, you hide the uncertainty and it’s worse later®. Also, people
rapidly learn how to game checklists. There is the eternal tension between us
security experts telling firms to pay smart people to anticipate what might go
wrong, and boards telling managers to deliver product faster using fewer and
cheaper engineers.

6T will discuss ISO 27001 in the next chapter. The executive summary for now is that almost every
firm hit by a big data breach had ISO 27001 certification, but it failed because their auditors said
something was OK that wasn't.

27.5 Methodology 1003

When the threat model is politically sensitive, things get more complicated.
The classic question is whether attacks come from insiders or outsiders.
Insiders are often the biggest security risk, whether because some of them are
malicious or because most of them are careless. But you can’t just train all your
staff to be unhelpful to each other and to customers, unless perhaps you are a
government department or other monopoly. You have to find the sweet spot
for control, and that often means working out how to embed it in the culture.
For example, bank managers know that dual-control safe locks reduce the risk
of their families being taken hostage, and requiring two signatures on large
transactions means extra shoulders to take the burden when something
goes wrong.

Getting the risk ecosystem right in an organisation can take both subtlety and
persistence. The cultural embedding of controls and other protective measures
is hard work; if you come into contact with multiple firms then it’s interesting
to observe how they manage their rules around everything from code audits
(which the tech majors insist on) to tailgating (which semiconductor firms are
at pains to prevent) and whether people are expected to keep one hand on a
banister as they walk up and down the stairs (a favourite of energy companies).
Where do these risk cultures come from, how are they promoted, and why do
they cluster by sector? Their transactional internal control structures may be
heavily influenced by their auditors, as we discussed in section 12.2.6.3, but
the broader security culture varies a lot — and matters.

A further factor is that good CISOs are almost as rare as hens’ teeth. There are
some stars at the top tech and fintech firms, but being a CISO can be a thank-
less job. Good engineers often don’t want it, or don’t have the people skills to
cope, while ambitious managers tend to avoid the job. In many organisations,
promotions are a matter of seniority and contacts; so if you want to be the CEO
you'll have to spend 20 years climbing up the hierarchy without offending too
many people on the way. Being CISO will mean saying no to people all the
time, and a generalist with no tech background can’t hack it anyway. The job
also brings a lot of stress, and the risk of burnout; a CISO’s average tenure is
about two years [432]. In any case, embedding an appropriate culture around
risk and security is for the CEO and the board. If they don’t think it’s impor-
tant, the CISO has no chance. But breaches have now led to enough CEOs being
tired, or losing millions on their stock, that other members of that tribe are
starting to pay attention.

One way the risk ecosystem can be skewed is that if a company manages to
arrange things so that some of the risks of the systems it operates get dumped
on third parties. This creates a moral hazard by removing the incentives to take
care. We discussed this in section 12.5.2 in the context of banks trying to shift
fraud liability in payment systems to cardholders, merchants or both. Staff can
getlazy or even crooked if they know that customer complaints will be brushed
off. Another example is Henry Ford, who took the view that if you were injured

1004 Chapter 27 = Secure Systems Development

by one of his cars, you should sue the driver, not him; it took decades for courts
and lawmakers to nail down product liability.

Companies may also swing from being risk takers to being too risk averse,
and back again. The personality of key executives does matter. My own uni-
versity has been gung-ho when we hired an engineer to be Vice-Chancellor,
timorous when we hired a lawyer, and in the middle when we hired a medic.

Another source of problems is when system design decisions are taken by
people who are unlikely to be held accountable for them. This can happen
for many reasons. IT staff turnover could be high, with much reliance placed
on contract staff; fear of redundancy can turn loyal staff into surreptitious
job-seekers. This can be a particular problem in big public-sector IT projects:
none of the ministers or civil servants involved expect to be around when the
thing is delivered seven years from now. So when working on a big system
project, don’t forget to look round and ask yourself who'll take the blame later
when things go wrong.

Yet another is that when hiring security or safety consultants to help with
product design, firms have an incentive to go for a firm that is ‘good enough’
but will not be too demanding; a gentle review from a Big Four firm will be
much more useful than a detailed review from an expert who might recom-
mend much more expensive design changes. Indeed, if a firm was determined
to get a completely secure product, then they should hire multiple experts. We
described in section 14.2.3 how this helped with the design of prepayment elec-
tricity meters, and a later experiment with students confirmed that the more
people you got to think about a proposed system design, the more potential
hazards and vulnerabilities they could spot [69]. Of course, this rarely happens.

27.6 Managing the team

To develop secure and reliable code, you need to build a team with the right
culture, the right mix of skills, and the right incentives.

Many modern systems are already so complex that few developers can cope
with all aspects of them. So how do you build strong development teams with
complementary skills? This has been a subject of vigorous debate for over fifty
years now, with different writers reflecting their personal style or company cul-
ture. It has long been entangled with cultural issues such as diversity, although
these have only got serious attention since the mid-2010s.

27.6.1 Elite engineers

Going back to the 1960s, Fred Brooks’s famous book ‘The Mythical Man-
Month” describes the lessons learned from developing the world’s first large

27.6 Managing the team 1005

software product, the operating system for the IBM S/360 mainframe [329].
He describes the ‘chief programmer team’, a concept evolved by his colleague
Harlan Mills, in which a chief programmer — a development lead, in today’s
language — is supported by a toolsmith, a tester and a language lawyer. The
thinking was that some programmers are much more productive than others,
so rather than promoting them to management and ‘losing” them you create
posts for them with the salary and esteem of senior managers. The same
approach was found in other tech companies in the 1960s through the 1980s,
and even in bank IT departments where I worked in the late 1980s.

The view taken by more modern companies such as Microsoft, Google, Face-
book and Netflix is that you only want to hire the ultra-productive engineers
in the first place — especially if you get a million CVs a year but plan to hire
only 20,000 new engineers. One approach is to hire people as contractors for a
few months to see how they do. But that’s harder with fresh graduates, as even
bright students from elite schools can take a few months to become productive
in a commercial team. Productivity is also a matter of culture; engineers who
thrive at one company may do much less well at another. A related issue is that
if you have each candidate interviewed by a number of your engineers, that’s
not just a drain on engineer time, but can also perpetuate a culture that’s not
very welcoming to women engineers. Elite universities are in a similar situa-
tion to the tech majors, with dozens of applicants for each place; over the years
we’ve developed mechanisms to monitor diversity in hiring and admissions.

The two approaches are not in conflict. Modern tech firms employ multiple
tech superstars from famous designers to Turing-award winning computer sci-
entists. The view at one such firm is that you cannot expect to write good soft-
ware if you don’t have a career structure for programmers. People who want
to spend their lives writing software, and are good at it, have to get respect,
however your organisation signals that — whether it’s salary, bonuses, stock or
fripperies like access to the executive dining room. Universities get this; we
professors run the place. Tech companies get it too, and one or two banks have
started to. But governments are generally appalling. In the UK civil service, the
motto is that “scientists should be on tap but not on top.” And more than one
car company I know of has real problems hiring and retaining decent software
engineers. In one of them, software engineers are expected to become managers
after five years or remain on a junior pay grade, while in another all engineers
are expected to wear business suits to work (and still get lousy money). I'll
return to this in section 27.6.6.

27.6.2 Diversity

At the beginning of computing, there were plenty of women programmers —
they were the majority until the late 1960s, and included pioneers such

1006 Chapter 27 = Secure Systems Development

as Grace Hopper and Dame Stephanie Shirley (who ran her company for
years as ‘Steve Shirley’). When I started in the early 1970s there was still
a much better gender balance than today. There were minorities too; the
orbital calculations for the Mercury, Gemini and Apollo missions were led
by an African-American woman, Katharine Johnson. But things have become
male-dominated in the USA and the UK. Since I became an academic in the
1990s, about a sixth of local computer science students have been women,
despite significant efforts to recruit more women students. But in the formerly
communist countries of Eastern Europe, the ratio is about a third. (We've
improved our gender balance by admitting lots of students from southern and
eastern Europe.) In India there’s close to gender balance. So this is a cultural
issue, and there’s a lot of debate on how it came about. Is it a lack of role
models, or is it the fault of careers advisers in schools, or are many IT shops
just an unpleasant working environment for women? That has certainly been
an issue: the Gamergate scandal, which I discussed in section 2.5.1, exposed
deep misogyny in some gaming communities, while the #MeToo movement
has highlighted many cases of sexism in Silicon Valley.

Even within computer science we see a lot of subcultural variation. The last
time I went to a hardware conference — an Arm developer event — I saw about
500 men but only three women (all of them Indian). In the security field, we
were overwhelmingly male in the 1990s when the emphasis was cryptology
and operating system internals, but are much more balanced now we have
embraced the importance of design, usability and psychology. Role models and
history do matter. Research groups with a woman faculty member get more
applications from able women’.

More diverse teams are more effective, and the real change doesn’t come with
the first woman you hire, but when you have enough to change the team cul-
ture. That might mean three or more. It also means getting more enlightened
managers. More subtly, if you want to attract more women and retain them, it
can be an idea to manage the people rather than the work. You have to protect
your staff and give them space to do what they’re good at. Clearly it’s a bad
idea to hire misogynistic bullies, though it can be hard to spot them in advance.
Bullies are often creeps too; as well as bossing the people under them they suck
up to the people above them. Very often such people don’t understand what’s
going on technically so they have no idea who's productive and have to judge
people by timekeeping or by how much they ingratiate themselves. It’s essen-
tial to identify such bullies and get rid of them, hard though firing can be. If
this management style spreads through an organisation, smart people will go
somewhere else.

"We have gender balance in our natural language processing group, started in the 1960s by the
late Karen Spérck Jones.

27.6 Managing the team 1007

27.6.3 Nurturing skills and attitudes

Modern development has a tension between the desire to keep teams together,
so that they get more efficient and predictable, and moving people around to
develop their skills, stop them going stale, and ensure that there’s more than
one person able to maintain everything that matters.

You will also need a diversity of skills. If you're writing an app, for example,
you may want a couple of people to write the Android code, a couple for the
Apple code and a couple for the server. Depending on the task, there may be a
user advocate who leads usability testing, advocates for safety and security, an
architect to keep the overall design clean and efficient, a language lawyer who
worries about APIs, a test engineer who runs the regression testing machinery
and a toolsmith who maintains the static and dynamic analysis tools. If you're
doing continuous integration you'll have an engineer specialising in A /B test-
ing while if you have a gated approach the test emphasis might be on com-
patibility with third-party products or with security certification. You'll need
to give some thought to how many of these skills you try to get in each dev,
and how many are subject-matter experts who work across teams or come in as
consultants. And as you can’t run a project with more people than you can feed
from two pizzas, you want some of your people to have two or more of these
skills. Good tech firms rotate engineers slowly through the company to acquire
a range of skills that maximises their value to the firm (even though it also
maximises their value to others, and makes it easier for them to leave) [1211].

But skills are not enough: you need to get people to work together. Here, too,
working practices have evolved over the years. By about 2010, agile developers
had adopted the ‘scrum” where the whole dev team has a stand-up meeting
for five minutes each day, at which the only people allowed to speak are the
developers. They describe what they’ve done, what they’re about to do and
what the problems are. Some firms have moved teams to collaboration tools
such as Jira. In our team we combined daily lunches together with a formal
progress meeting once a week. (Since the coronavirus lockdown the for-
mal meeting has become more important and we’ve worked to complement it
with other online activities.)

It’s bad practice if people who find bugs (even bugs that they coded them-
selves) just fix them quietly; as bugs are correlated, there are likely to be more.
Bug tracking matters, and a ticketing system that enables good statistics to be
kept is an important tool in improving quality. As an example of good prac-
tice, in air traffic control it’s expected that controllers making an error should
not only fix it but declare it at once by open outcry: “I have Speedbird 123 at
flight level eight zero in the terminal control area by mistake, am instructing
to descend to six zero.” That way any other controller with potentially con-
flicting traffic can notice, shout out, and coordinate. Software is less dramatic,

1008 Chapter 27 = Secure Systems Development

but is no different: you need to get your devs comfortable with sharing their
experiences, including their errors.

Another factor in team building is the adoption of a standard style. One signal
of a poorly-managed team is that the codebase is in a chaotic mixture of styles,
with everybody doing their own thing. When a programmer checks out some
code to work on it, they may spend half an hour formatting it and tweaking it
into their own style. Apart from the wasted time, reformatted code can trip up
your analysis tools. You also want comments in the code, as people typically
spend more time reading code than writing it. You want to know what a pro-
grammer who wrote a vulnerability thought they were doing: was it a design
error, or a coding blunder? But teams can easily fight about the ‘right” quan-
tity and style of comments. So when you start a project, sit everyone down
and let them spend an afternoon hammering out what your house style will
be. Provided it’s enough for reading the code later and understanding bugs, it
doesn’t matter hugely what the style is: but it does matter that there is a con-
sistent style that people accept and that is fit for purpose. Creating this style
is a better team-building activity than spending the afternoon paintballing, or
whatever the latest corporate team-building fad happens to be.

27.6.4 Emergent properties

One debate is whether you make everyone responsible for securing their own
code, or have a security guru on whom everyone relies. The same question
applies to safety in fields such as avionics. The answer, as the leading firms have
discovered, is ‘both’. We already noted that Microsoft found it more effective
to have developers responsible for evolving their own designs and fixing their
own bugs, rather than splitting these functions between analysts, program-
mers and testers, as IBM did in the last century. Both Microsoft and Google
now put rookie engineers through a security ‘boot camp’, so that everyone
knows the basics, and also have subject matter experts at a number of levels.
These range from working security consultants with a masters degree or the
equivalent internal qualification, to people with PhDs in the intricate details of
cryptography or virtualisation.

The trick lies in managing the amount of specialisation in the team, and the
way in which the specialists (such as the security architect and the testing guru)
interact with the other developers.

27.6.5 Evolving your workflow

You also need to think hard about the tools you’ll use. Professional devel-
opment teams avoid a large number of the problems described in this book
by using appropriate tools. You avoid buffer overflows by using a modern

27.6 Managing the team 1009

language such as Rust, or if you must use C or C++ then have strict coding
conventions and enforce them using static-analysis tools such as SonarQube
and Coverity. You avoid crypto problems, such as timing attacks and weak
random number generators, by using well-maintained libraries. But you need
to understand the limitations of your tools. In the case of Coverity, for example,
its authors explain that while it’s great if you use it from the start of a project,
adopting it in midstream imposes real costs, as you suddenly have 20,000 more
bug reports to triage, and your ship date slips by a few months [236]. Improve-
ments in static analysis tools, say in response to a new kind of attack, can also
throw up a lot of alarms in an existing codebase. In the case of crypto libraries,
we discussed in Chapter 5 how they tend to offer weak modes of operation
such as ECB as defaults, so you need to ensure your team uses GCM instead.
(Crypto is one of the areas where you need to talk to a subject matter expert.)

You'll be constantly adding new tools, whether to avoid cross-site script-
ing vulnerabilities and SQL injection as you update your website, or to make
sure you don’t leave your client data world-readable in an S3 bucket. If you
don’t follow the security news you may not be aware of the latest exploits and
attacks, so you may not realise when you have to either grow your own exper-
tise or buy it in. But you can’t just buy everything in; the security industry has
lots of unscrupulous operators who exploit ignorant customers. You need to
understand what you need to buy, and why, and then you will need to inte-
grate it with your existing tools, or your security ops people will spend ever
more of their time copying IP addresses from one tool to another. Doing some
of your own automation helps empower your staff as well as saving time.

Your tools and libraries have to support your architecture. One critical thing
here is that you need to be able to evolve APIs safely. A system’s architecture
is defined more than anything else by its interfaces, and it decays by a thou-
sand small cuts: by a programmer needing a file handling routine that uses
two more parameters than the existing one, and who therefore writes a new
routine — which may be dangerous in itself, or may just add to complexity and
thus contribute indirectly to an eventual failure. In an ideal world, you’d rely
on your programming language to prevent API problems using type safety
mechanisms.

But the cross-system fan-out of dependencies is a real hazard to safe APIs.
We saw in section 20.5 how the APIs of cryptographic hardware security
modules were extended to support hundreds of banks” legacy ATM systems
until we suddenly realised that the resulting feature interactions made them
completely insecure. There are similar tensions in many other application
areas, from mobile phone baseband software used in over a hundred different
models of phone, to vehicle components used in over a hundred different cars.
There must be better ways of managing this; I expect that applications with
high fan-out will move in the direction of a microservices architecture with a
common core and pluggable proxies for different calling applications.

1010 Chapter 27 = Secure Systems Development

27.6.6 And finally...

You also need to understand how to manage people, and the HR department
can’t do this for you®. Tech management cannot be done by generalists as
they’re unlikely to win the trust of their staff’. It also cannot be done well
by engineers who are too introverted to engage and motivate others. Far too
many managers went for the job not because they thought they might be
good at it, but because it was the only way to get a decent salary. Successful
managers in tech have to love and understand tech; they also have to love and
understand people.

For your star engineers, you need to create other leadership roles. They may
be innovators who will be most productive in an R&D lab. They may be the cus-
todians of your institutional memory: old-timers who know the thirty years of
history behind your product and can stop people repeating the mistakes of the
past. They may provide moral leadership to your engineering staff and reassur-
ance to your customers. They can help attract bright young recruits who want
to work with them. But the key, I feel, is this: that you have one or more engi-
neering professions in your firm. What’s their shape? Who leads them? How
do they compare to those in your competitors? How do you grow and develop
them? If you realise that all of a sudden you have to unify the safety engineer-
ing and security engineering professions in your company, who is going to do
that, and how?

27.7 Summary

Managing a project to build, or enhance, a system that has to meet critical
requirements for security, safety or both, is a hard problem. As more and
more devices acquire CPUs and communications, we need to build things that
do real work while keeping out any vulnerabilities that would make them a
target for attack. In other words, you want software security — together with
other functionality, and other emergent properties such as safety and real-time
performance.

If you're building something entirely new, or a major functional enhancement
of an existing system, then understanding the requirements is often the hardest
part of the process. More gentle system evolution can involve subtler changes
to requirements. Larger changes can be forced externally; systems that succeed
and get popular, can expect to get attacked.

8The main job of HR is damage limitation — stopping leavers from suing you.

°As a math geek I always tended to see the MBA types and other corporate politicians much as
the Earl of Rochester saw King Charles II: “Here lies our sovereign lord the king, Whose word no
man relies on; He never says a foolish thing, Nor ever does a wise one.”

Research problems 1011

Writing secure code is hard because of this dynamic context: the first problem
is to figure out what you're trying to do. However, even given a tight specifica-
tion, or constant feedback from people hacking your product, you're not home
and dry. There are a number of challenges in hiring the right people, giving
them the right tools, helping them develop the right ways of working, backing
them up with expertise in the right way, and above all creating an environment
in which they work to improve their security capability.

Research problems

The issues discussed in this chapter are among the hardest and the most impor-
tant of any in our field. However, they receive little attention because they lie at
the boundaries with software engineering, applied psychology, economics and
management. Each of these interfaces could be a productive area of research.
Security economics and security psychology have made great strides in the last
few years, and we now know we need to do a lot more work on making secu-
rity tools easier for developers to use. One logical next step is integrating what
we know with safety economics and safe usability.

Yet many failures are due to organisational behaviour. Every experienced
developer or security consultant has their share of horror stories about firms
with perverse incentives, toxic cultures, high staff turnover, incompetent man-
agement and all the rest of the things we see in the Dilbert cartoons. It could be
useful if someone were to collect a library of case histories of security failures
caused by unsatisfactory incentives in organisations, such as [878]. What might
follow given a decent empirical foundation?

The late Jack Hirshleifer took the view that we should try to design orga-
nizations in which managers were forced to learn from their mistakes: how
could we do that? How might you set up institutional structures to moni-
tor changes in the threat environment and feed them through into not just
systems development but into supporting activities such as internal control?
Maybe we need something like Management as Code? How can you design an
organization that is ‘safety-incentive-compatible’ in the sense that staff behave
with an appropriate level of care? And what might the cultural anthropology
of organisations have to say? We saw in the last chapter how the response of
governments to the apparently novel threats posed by Al-Qaida was maladap-
tive in many ways: far too much of our social resilience budget was spent on
anti-terror theatre, at the expense of preparedness for other societal risks such
as pandemics. Similarly, far too much of the typical firm’s resilience budget has
been captured by compliance, safety theatre and security theatre. As a result,
too much of the security development effort is aimed at compliance rather
than managing security and safety risks properly. How can we design feed-
back mechanisms that will enable us to put the right amount of effort in the

1012 Chapter 27 = Secure Systems Development

right place? Or do we need broader structural change, such as the breakup of
the Big Four accountancy firms?

Further reading

Managing the development of information systems has a large, diffuse
and multidisciplinary literature. There are classics everyone should read,
such as Fred Brooks’s ‘Mythical Man Month’ [329] and Nancy Leveson’s
‘Safeware” [1151]. An influential modern classic is Reed Hastings’ culture
slide deck, describing his management policy when building Netflix [872].
The economics of the software life cycle are discussed by Brooks and by
Barry Boehm [273]. The modern books everyone should read, as of 2020,
are probably the Google books on ’Site Reliability Engineering’ [237] and on
‘Building Secure and Reliable Systems’ [23]. The Microsoft approach to the
security development lifecycle has many online resources; their doctrine on
threat modelling is discussed by Frank Swiderski and Window Snyder [1855];
and their security VP Mike Nash describes the background to the big security
push and the adoption of the security development lifecycle at [1387]. The
most general set of standards on safety functional and integrity requirements,
and the associated engineering processes, is IEC 61508; there are further sets of
industry-specific standards. For example, there’s IEC 61511 for process plant
control systems, IEC 62061 for safety of machinery, and the EN 5012x series
for railways. In aviation it's RTCA DO-254 for electronic hardware and RTCA
DO-178C for software, while in the motor industry it’s ISO 26262 for safety
and ISO 21434 for security — though at the time of writing this is still just a
draft. Standards for the Internet of Things are also a work in progress, and the
current draft is ETSI EN 303 645 V2.1.

We can learn a lot from other engineering disciplines. Henry Petroski dis-
cusses the history of bridge building, why bridges fall down, and how civil
engineers learned to learn from the collapses: what tends to happen is that an
established design paradigm is stretched and stretched until it suddenly fails
for some unforeseen reason [1520]. IT project failures are another necessary
subject of study; there’s a casebook on how to manage uncertainty in projects
by Christoph Loch, Arnoud DeMeyer and Michael Pich [1180]. For security
failures, it’s important to follow the leading security blogs such as Schneier on
Security, Krebs on Security and SANS, as well as the trade press.

Organizational aspects are discussed at length in the business school liter-
ature, but this can be bewildering to the outsider. Many business academics
praise business, which is fine for selling airport books, but what we need is
a more critical understanding of how organisations fail. If you're only going

Further reading 1013

to read one book, make it Lewis Pinault’s ‘Consulting Demons’ — the confes-
sions of a former insider about how the big consulting firms rip off their cus-
tomers [1530]. Organisational theorists such as Charles Handy talk of firms
having cultures based on power, roles, tasks or people, or some combination.
It’s not just who has access to whom, but who's prepared to listen to whom and
who will just ignore orders from whom. Perhaps such insights might help us
design more effective tools and workflows that support how people actually
work best.

