
C H A P T E R

21

Network Attack and Defence
Simplicity is the ultimate sophistication.

– LEONARDO DA VINCI

There’s no security here – keepmoving!

– RICHARD CLAYTON

21.1 Introduction

In this chapter I’m going to try to draw together the network aspects of secu-
rity in a coherent framework. This is not straightforward as much of network
security is practical engineering; a purist from computer science might see the
�eld as one bodge piled on top of another. And network security may not be
that important tomanydevelopers: if youwrite apps forAndroids and iPhones
that talk to services on AWS or Azure, then you can leave much of the worry
to Amazon or Microsoft.
But many organisations need to pay attention to network security, and there

are some visible strategic trends. For twenty years, it was accepted that �rms
would have a trusted internal network or intranet, protected from the Internet
by �rewalls; while taken to extremes by defence and intelligence organisations
with classi�ed internal networks, milder versions were seen as best practice
by most normal �rms. And some industries have no viable alternatives.
For example, the protocols used in industrial control systems – DNP3 and
Modbus – don’t support encryption or authentication, as they evolved in the
days of leased lines and private radio links. By the late 1990s, control systems
engineers were attaching sensors and actuators to IP networks, as they were
cheaper – and then realising that anyone in the world who knew a sensor’s
IP address could read it, and anyone who knew an actuator’s IP address
could activate it. This led to the growth of specialist �rms who sell �rewalls
that understand these protocols; energy companies have thousands of them.

699

700 Chapter 21 ■ Network Attack and Defence

A typical electricity substation might have two hundred devices from a
multiplicity of vendors, on a LANwhere performance is critical, so retro�tting
crypto is impractical; but it has one connection to the outside world, so that’s
where you have to put the protection. This is known as re-perimeterization. The
same approach is taken with vehicles, where the internal CANBUS cannot be
protected, so the radio interfaces with the outside world have to be.
But in many �rms the trend is �rmly in the other direction, towards deperime-

terisation. One thought leader is Google, promoting an architecture without
�rewalls that it calls a zero-trust security model: “By shifting access controls from
the network perimeter to individual users and devices, BeyondCorp allows
employees, contractors, and other users to work more securely from virtually
any location without the need for a traditional VPN.” Google’s experience is
that the move to mobile and cloud technology is making network perimeters
ever harder to de�ne, let alone police, and if a �rm’s large enough that some
internal compromise is inevitable anyway then the perimeter is the wrong
place to put the primary protection [1988]. There are still some perimeter
defences, most notably against service-denial attacks, but internal networks
are otherwise unprivileged and the emphasis is on tight authentication and
authorisation of users and devices: each service has an Internet-facing access
proxy. One might see this as a per-service �rewall rather than a per-building
�rewall, but there is quite a lot more to it with tiers of sensitivity, a device
inventory service and an access control engine [1481]. You also need really
good HR data, so you can tie staff and contractors to devices and the services
they’re allowed to use. Much the same architecture is being adopted by other
�rms operating large-scale data centres, and zero-trust security is now the
subject of draft standards activity by NIST [1621]. It will no doubt get a boost
from the pandemic because of the huge increase in home working.
Other organisations may take a hybrid approach. The university where

I work, for example, has some defences at the perimeter but largely lets
departments do our own thing; a computer science department has quite
different requirements from a humanities department or the �nance of�ce.
In order to explore the options and constraints, I’m �rst going to discuss net-

working protocols such as BGP, DNS and SMTP and the service-denial attacks
that can result from their abuse. I’ll then take a closer look atmalware, and then
at defensive technologies such as �ltering and intrusion detection and how
defenders can coordinate them. I’ll then survey the limitations of widely-used
crypto protocols such as TLS, SSH and IPsec, and the particularly tricky role of
certi�cation authorities. Finally I’ll return to network architecture.Many issues
are complex and interlinked, with some signi�cant trade-offs. For example,
various kinds of end-to-end crypto can bring bene�ts – particularly against
bulk surveillance – but can get in the way of the surveillance we want for net-
work security.

21.2 Network protocols and service denial 701

This chapter will deal with �xed networks, and I’ll discuss what’s different
about mobile networks in the following chapter.

21.2 Network protocols and service denial

I’m going to assume some familiarity with basic network protocols. The tele-
graphic summary is as follows. The Internet Protocol (IP) is a stateless protocol
that transfers packet data from onemachine to another; IP version 4 uses 32-bit
IP addresses, often written as four decimal numbers in the range 0–255, such as
172.16.8.93. ISPs are migrating to IP version 6, as the 4 billion possible IPv4
addresses are just about allocated; IPv6 uses 128-bit addresses. Some 10–15%
of traf�c is now IPv6; in many countries a new broadband subscriptionwill get
you an IPv6 address which works for all normal consumer purposes.
Local networks mostly use ethernet, in which devices have unique ethernet

addresses (also called MAC addresses) that are mapped to IPv4 addresses
using the address resolution protocol (ARP). The Dynamic Host Con�guration
Protocol (DHCP) is used to allocate IP addresses to machines as needed and
to ensure that each IP address is unique. Network address translation (NAT)
also enables multiple devices on a network to use the same Internet-facing IP
address, typically with different port numbers; this is used by most mobile
network operators and many ISPs. So if you want to track down a machine
that has done something wicked, you will often have to get the logs that map
MAC addresses of devices to IP addresses. There may be more than one log,
and lots can go wrong – such as wrong timestamps, and failure to understand
time zones.
One of the most basic concerns is the prevention and mitigation of

denial-of-service (DoS) attacks. These have a number of �avours. An opponent
can try to steal some of your IP address space, or one or more of your domains,
in order to send spam; even when you get it back, you may �nd it’s been
extensively blacklisted. An opponent can send you huge �oods of traf�c from
a botnet of many compromised machines; a distributed denial-of-service (DDoS)
attack. They can abuse various online services such as DNS to send you �oods
of packet traf�c. Let’s work through these in turn.

21.2.1 BGP security

The Internet is an interconnected network of networks: its components are
Autonomous Systems (ASes) such as ISPs, telcos and large organisations, each
of which controls a range of IP addresses. The glue that holds them together,
the core routing protocol of the Internet, is the Border Gateway Protocol (BGP).

702 Chapter 21 ■ Network Attack and Defence

Routers – the specialized computers that switch packets on networks – use
BGP to exchange information about what routes are available to get to partic-
ular blocks of IP addresses, and to maintain routing tables so they can select
ef�cient routes to use. ASes can route traf�c to other ASes by buying service
from large transit providers but typically cut the costs of this by peering with
each other at a local Internet interchange (IX), of which most countries have at
least one and large countries may have several.
Internet interconnectivity is a complex ecosystemwithmany interdependent

layers. Its open and decentralised organisation has been essential to the success
and resilience of the Internet, which has meant that the effects of natural dis-
asters such as Hurricane Katrina and terrorist attacks such as 9/11 have been
limited in time and space, as have assorted technical failures. However, the
Internet is slowly becomingmore centralised, as a result of the consolidation of
Tier-1 providers, and is vulnerable to common-mode failures (such as electric
power cuts) as well as to disruptive attacks.
About the worst attack we can reasonably foresee would involve an attacker

planting malware on thousands of routers so they advertise large numbers of
false routes, clogging the routing tables and tearing up the routing fabric. There
have been several warnings already in the form of incidents and accidents.
In 2008, YouTube became inaccessible for a few hours after the government
of Pakistan tried to censor it locally by announcing false routes to it, which
propagated globally; and in 2010 China Telecom advertised over 100,000
invalid routes, hijacking 15% of Internet addresses for 18 minutes. Some
people ascribed that to accident, while others suggested that China had been
testing a ‘cyber-nuke’, some ofwhose fallout escaped.Most routers now accept
only a limited number of routes from each of their peers, be it a few dozen or a
few hundred; so large-scale disruption would require thousands of subverted
routers. Both China and (more recently) Russia have been working on making
the Internet in their countries separable, so that major disruptive attacks could
in theory be launched without in�icting unacceptable collateral damage on
local services and facilities. There have been reports of BGP hijacking being
used by China for intelligence collection; for example, traf�c from Canada to
Korean government websites was routed via China from February 2016 for six
months [533]. There has also been criminal misuse, ranging from the hijacking
of IP address space by spammers, to an eight-�gure ad fraud in 2018 whose
perpetrators hid in address space stolen from the US Air Force [792]. Finally,
there is a growing political tussle in 2019–20 about whether Huawei should
be allowed to sell routers at scale (or at all) in countries allied to the USA.
Taking a step backward, the resilience of the Internet is hard to de�ne and

to measure; it is in tension with ef�ciency and may be decreasing as a small
number of very large networks come to dominate. These range from the dom-
inant transit provider, Lumen (the company changed its name from Level 3 to
Lumen), to content delivery networks (CDNs) operated by Google, Akamai,

21.2 Network protocols and service denial 703

Cloud�are and others. There are many complex interactions between
resilience and ef�ciency, reachability and congestion, traf�c prioritisation and
commercial sensitivity, complexity and scale. There’s no mechanism to check
the validity of routing information distributed via BGP. The pervasivemistrust
between ISPs and governments makes regulation dif�cult. The lack of good
information about how the system works makes rational discussion dif�cult
too. Resilience has so far depended on surplus capacity and rapid growth, but
that cannot continue for ever. In 2011 colleagues and I wrote a major report for
the European Network and Information Security Agency that explores these
issues in detail [1910].
The main technical BGP security mechanism at present is the Resource Public

Key Infrastructure (RPKI), which enables registries to certify that “Autonomous
system X announces IP address range Y”. This will not prevent capable
attackers, as a malicious route announcement will just have the right AS
at the end of the route following the attacker’s in the middle; but it detects
the fat-�nger mistakes that cause most of the outages. Whether it will make
an already fragile BGP system more robust to have lots of certi�cates in it
remains to be seen; when RIPE’s certi�cate expired in February 2020 there
was a short outage until it was �xed. For the future, people are working on
Peerlock, whereby the main ASes at an interchange share information about
what routes they will and won’t announce; this has the prospect of bringing
enough local bene�t to exchange members for it to be practically deployable.

21.2.2 DNS security

The Domain Name System (DNS) allows human-readable names such as
ross-anderson.com to be mapped to IP addresses of either kind; there’s
a hierarchy of DNS servers that do this, ranging from several hundred
top-level servers down through machines at ISPs and on local networks,
which cache DNS records for performance and reliability. It does occasionally
get attacked: the Mirai botnet attacked DynDNS in October 2016, taking out
Twitter on the US eastern seaboard for �ve hours. But DNS has become a
massively distributed system with a lot of very fast machines connected to
very high-capacity networks, so service denial attacks on it are rare.
Hijacking does occur from time to time, and at various levels. Some states

intercept and redirect DNS queries as a means of censorship; some ISPs have
done so, as a means of replacing ads in web pages with ads from which they
get a cut; and a DNS server at an ISPmay be hacked to drive clients to a wicked
website. This is known as pharming, and in a variant called drive-by pharming,
the crooks lure you to a web page containing JavaScript that changes your
home router’s DNS server from the one at your ISP to one under their con-
trol [1819]. Next time you try to go to www.citibank.com, you may be directed
to a phishing site that emulates it. That’s one reason to change the default

http://www.citibank.com

704 Chapter 21 ■ Network Attack and Defence

password on your home router – even if it’s only accessible from inside your
network.
In order to prevent DNS hijacking, DNSSEC adds digital signatures to DNS

name records. By verifying such a signature you can check that the record came
from the authoritative server andwas not altered en route. Uptake is patchy: all
US government domains in .gov are supposed to be signed, andmost domains
in Sweden are signed, as the registrar made signed domains cheaper. How-
ever, somemajor �rms like Google don’t sign their DNS records out of concern
that cryptography makes systems more fragile; if anything goes wrong, you
can just disappear. Other �rms avoid DNSSEC because they don’t want com-
petitors to ‘walk the zone’ and enumerate all their subdomains; the NSEC3
extension enables �rms to avoid this using hashes, but many �rms (or their
service providers) have not yet built the infrastructure.
Another problem with DNSSEC is that it gets abused in denial-of-service

attacks. A common technique is that Alice attacks Bob by sending Charlie a
message saying, “Hey, can you tell me the very large answer to this short ques-
tion? Yours, Bob!” As signed DNS records are a lot larger, a DDoS-for-hire
service can use DNSSEC as an ampli�er, Alice can send packets that purport
to come from Bob’s IP address to many DNS servers, which then bombard the
target with replies. (Cheeky criminals use the FBI as Charlie, as fbi.gov has
two nice big keys.)
The controversial issue in 2020 is DNS-over-https (DoH). The main browser

maintainers, Chrome and Mozilla, propose that rather than sending DNS
traf�c in the clear, it will go encrypted over https to a DoH resolver. This is
claimed to be good for privacy, as your ISP will have less information about
your browsing (but unless you use Tor, it will still have plenty). The downside
is that many enterprise security products monitor DNS to detect abuse. If
malware compromises a machine in your �eet, you may spot it when it tries to
contact a command-and-control server, so enterprises buy threat intelligence
feeds and monitor the domain names (and IP addresses) blacklisted on them.
Sysadmins also like tomonitor for DNS hijacking, and to block certain domains
as inappropriate for work. DoH will make all this harder, and is questionable
architecture as running a core network service over an application means it’s
‘not the Internet any more’ [430]. On the commercial side, DoH may entrench
Google’s grip on the advertising market, while causing problems for content
delivery networks like Akamai and Cloud�are over routing, load balancing
and so on. It will also stop ISPs transcoding videos for mobile users to save
bandwidth. Experts would have preferred to run DNS over TLS instead.

21.2.3 UDP, TCP, SYN floods and SYN reflection

On wide-area networks, most data move between machines using either the
User Datagram Protocol (UDP), which is connectionless, or the Transmission

21.2 Network protocols and service denial 705

Control Protocol (TCP), which sets up persistent connections between end-
points. Let’s start with the 3-way handshake used by Alice to initiate a
TCP connection to Bob and set up sequence numbers for subsequent packet
traf�c (see Figure 21.1).

A −−→ B: SYN; my number is X
B −−→ A: CK; now X + 1

SYN; my number is Y
A −−→ B: ACK; now Y + 1

(start talking)

Figure 21.1: TCP/IP handshake

This protocol has been exploited in many ways. The classic service-denial
attack is the SYN �ood. Alice simply sends a lot of SYN packets and never
acknowledges any of the replies. Bob accumulates more records of SYN pack-
ets than his software can handle. This was used in one of the �rst distributed
denial-of-service attacks that brought down Panix, a New York ISP, for several
days in 1996.
The technical �x was the ‘SYNcookie’: rather than keeping a copy of the

incoming SYN packet, B simply sends out as Y an encrypted version ofX. That
way, Bob doesn’t have to retain a lot of state about half-open sessions. Despite
this, SYN�oods persisted, albeit at a declining rate, formanyyears. The general
principle is that when you’re designing a protocol anyone can invoke, don’t let
malicious users force honest ones to do work.
The more common attack now is SYN re�ection. Alice sends Bob a packet that

purports to come from Charlie. Bob replies to Charlie, and in practice systems
send up to �ve ACKs in response to each SYN as a robustness measure, so
there’s still a useful ampli�cation effect.

21.2.4 Other amplifiers

Many other protocols have been used in service-denial attacks than DNS and
TCP [1505]. An early favourite was smur�ng; this exploited the Internet control
message protocol (ICMP), which enables users to send an echo packet to a remote
host to check whether it’s alive. If Alice sent an ICMP packet purporting to
come from Bob to a broadcast address, all the machines on the subnet would
send him a response. The protocol was changed so that broadcast addresses
didn’t reply. The bad guys changed to use protocols such as NTP and DNS for
which ampli�ers could still be found.
More thorough �xes for attacks based on packet ampli�cation were to fol-

low. Most of the available ampli�ers use UDP packets, including ICMP and
NNTP but not SYN re�ection; so starting from the mid-2000s, broadband ISPs
started �ltering out UDP packets with forged source addresses. Microsoft also

706 Chapter 21 ■ Network Attack and Defence

changed their network stack to make it much harder for an infected machine
to send a packet with a spoofed IP address; you now need to hack the oper-
ating system, not just any old application. So attacks that exploit UDP packet
ampli�ers have to be run from servers in hosting centres. In the late 2010s,
such attacks have become increasingly the preserve of DDoS-for-hire opera-
tors, against whom the most effective countermeasure has been to raid them
and arrest them.

21.2.5 Other denial-of-service attacks

As the clever ways of creating service-denial attacks have been closed off one
by one, the bad guys have turned increasingly to brute force, by sending �oods
of packets from infected machines. The �rst distributed denial-of-service (DDoS)
attack may have been the Morris worm in the 1980s, and the �rst deliberate
one in the 1990s with the attack already mentioned on Panix. Nowadays,
botnets are assembled using all sorts of vulnerabilities, and underground
markets let some people specialise in hacking machines and selling them
to others who extract value in various ways. Since 2016, the machines most
used for DDoS have been IoT devices such as CCTV cameras, which are
now connected in large numbers to home WiFi networks with reasonable
bandwidth, but which tend to have known default passwords – and are often
incapable of being patched. The Mirai botnet appeared in 2016 to exploit this
opportunity, and there have been over a thousand variants of it since (its
source code got posted to Hackforums).
There are various motives for service-denial attacks. Most are launched

by schoolkids – typically gamers who want to take down an opposing
crew’s teamspeak server. There has for some years been a black market in
DDoS-for-hire, which the authorities in the USA and elsewhere have been
trying to close down. There have been some incidents of blackmail (e.g., of
online bookmakers), and a growing use of the technique for suppressing
political opponents – starting perhaps with attacks on the servers of an
opposition party in Kyrgyzstan, even when these were relocated to North
America [1616]. We discussed their use in con�ict by states in Chapter 2.
That said, one mustn’t forget online activism. If a hundred thousand

people send email to the White House protesting against some policy or
other, is this a DDoS attack? Protesters should not be treated as felons; but
protest can easily shade over into abuse, and drawing legislative distinctions
can be hard.

21.2.6 Email – from spies to spammers

The SMTP standard for email has particular issues around the prevention of
bulk interception, and the prevention of bulk unwanted mail.

21.2 Network protocols and service denial 707

Email is by default neither encrypted nor authenticated, andwas for decades
available to anyone who could either monitor the network or access mail
servers. It was possible to use programs such as PGP/GPG to encrypt mail,
but this never caught on outside small communities. First, such programs
can be a pain to use, and second, there are strong network effects: there’s no
point in using email encryption if none of your friends do. What’s more, if
only a small group of people use encryption, this may just bring them to the
attention of the authorities; subversive groups, spies and so on really need
anonymity rather than just con�dentiality, as we discussed in section 20.4. So
PGP/GPG tends to be used by specialists, such as sysadmins and anti-virus
researchers.
There are two main countermeasures to bulk interception. First, most mail

servers use starttls to set up encrypted communications with other mail
servers as they exchange mail, especially since the Snowden revelations.
Encrypted exchanges can be blocked by man-in-the-middle attacks, and
these have been reported in some less-democratic countries. The current
countermeasure to such attacks, MTA Strict Transport Security (MTA-STS),
is supported by Microsoft, Google and Yahoo [1222]: it allows mail service
providers to specify that mail should only be delivered to them via a TLS
session authenticated by a proper certi�cate which you download from their
website. This prevents downgrade or interception attacks on email to and
from the big boys, and also allows opportunistic, trust-on-�rst-use encryption
to other servers. MTA-STS has generally supplanted an earlier standard,
DNS-based Authentication of Named Entities (DANE) which put a TLS certi�cate
for starttls in the mail server’s DNS record1.
The second countermeasure is that some 95% of personal email accounts

nowadays are at the big �vewebmail providers, andmany corporates use them
too. In this case, the con�dentiality of email is assured by TLS, forti�ed with
certi�cate pinning and certi�cate transparency which we’ll discuss later. But
although bulk access may be blocked, webmail is subject to warranted access,
just like other services that corporates outsource.
Bulk unwanted mail, or spam, has two components. The �rst is entirely legal

but unwanted marketing communication. As marketers can make it tiresome
to opt out, users �nd it more convenient to press the ‘report spam’ button once
an offer or supplier is no longer of interest.
The second consists of �oods of generally unwanted traf�c sent out for the

most part by botnets, and often with clear criminal intent. This is in some
respects similar to a DDoS attack: just as DDoS bots may forge IP addresses,
spam bots may forge the sender’s email address. This is fought by the big
providers with four main mechanisms.

1DANE is still widely used in Germany, but Google refused to use it as it depends on DNSSEC,
which Google considers to be insuf�ciently dependable.

708 Chapter 21 ■ Network Attack and Defence

1. Domain Keys Identi�ed Mail (DKIM) ties email to the sending domain
by signing it using a signature key whose public veri�cation key is
kept in the sending domain’s DNS record. The signed material is
selected to identify the message unambiguously despite the additions
to headers that occur during transit, but to stop the bad guys adding
an extra “From: PayPal” header. Mail that hasn’t been altered too
much can be forwarded. There’s a replay attack in that the spammer
sends his spam through Gmail, which signs it, and then forwards
it afterwards; so mail servers cache DKIM signatures and discard
mail carrying a signature that’s already been seen a few times.

2. Sender Policy Framework (SPF) is similar but ties mail to the source
IP address. Again, this is veri�able against a key in the domain
DNS record. SPF doesn’t allow mail forwarding; mailing list
servers are supposed to use a related protocol called Authenti-
cated Received Chain (ARC) to re-sign mail they forward.

3. A domain’s DNS can also contain a Domain-based Message Authen-
tication, Reporting and Conformance (DMARC) record, which
enables its owner to recommend what a recipient should do
with email that appears to come from the owner’s domain but
which fails authentication using both DKIM and SPF.

4. Machine-learning systems are used to �lter mail against authentication
results and other criteria, and take much of their ground truth from
whether users report mail as spam. This is made more complicated
by user preferences for marketing material, which vary by user and
over time.

The illegal segment of spam is now a highly specialised business, run by
several large gangs. Its statistics have been ‘lumpy’ since the mid-2000s,
and this has been getting more pronounced. As of 2020, the gangs typically
steal IP address space using malicious BGP route announcements, register
thousands of domains, and send a few hundred spams from each before the
machine-learning �lters kick in and block them.

21.3 The malware menagerie – Trojans, worms
and RATs

The �rst examples of malicious code were Trojan Horses – named after the
horse the Greeks left for the Trojans, supposedly as a gift but which contained
soldiers who opened the gates of Troy to the Greek army [1131]. There have
been religious wars over nomenclature for years, which is why many people
prefer to just use the term malware. My usage is that a Trojan is a program

21.3 Themalwaremenagerie – Trojans, worms and RATs 709

that does something malicious (such as capturing passwords) when run by
an unsuspecting user. A worm is a malicious program that replicates itself on
other systems, while one that does so by hooking itself into the code of other
programs is a virus. A remote access Trojan (RAT) is software that may or may
not run as root but that enables a remote party to access the device it runs
on, while a rootkit is software installed as root on a device and that stealthily
enables a third party to control it. Potentially unwanted software (PUS) may have
been installed openly or by deception, but does something the user doesn’t
want (if they understand it at all).
These categories are not mutually exclusive and the boundaries can be con-

text dependent. For example, stalkerware – software that enables one person to
track another’s mobile phone location and use – falls into different categories
depending on whether it was installed covertly, or by a controlling man bul-
lying his partner, or by a court ordering it as a condition of bail. Even stealthy
malware isn’t always illegal as it can be used by law-enforcement agencies to
turn suspects’ phones and laptops into listening devices, as well as by fraud-
sters to operate bank accounts by remote control2.
Malware generally uses stealth techniques to hide, but eventually it’s identi-

�ed and tools to remove it are written. There’s a whole ecosystem aroundmal-
ware: malware writers, botnets of infected machines, and a range of security
�rms offering everything from threat intelligence to antivirus software. (There
are even �rms selling malware – particularly to government agencies.) And
in addition to the formal economy, there’s an underground economy of cyber-
crooks selling everything from banking Trojans to DDoS-for-hire services.

21.3.1 Early history of malware

It the early 1960s, machines were slow and their CPU cycles were rationed –
with students often at the tail of the queue. Students invented tricks such as
writing computer gameswith a Trojan inside to check if the program is running
as root, and if so to create a privileged account with a known password. By
the 1970s, time-sharing systems at universities were the target of more and
more pranks involving Trojans. All sorts of trickswere developed. In 1978, John
Shoch and JonHuppof Xerox PARCwrote a program they called aworm, which
replicated itself across a network looking for idle processors so it could assign
them tasks [1727].
In 1984, Ken Thompson gave a classic paper “Re�ections On Trusting Trust”,

when he accepted a Turing award, the top prize in computer science. He

2At the other end of the spectrum, some antivirus products behave like malware in various ways,
including being very hard to remove after a ‘free trial’, or by introducing insecurities. InDecember
2019, one brand of AV software was removed by Chrome, Firefox and Opera for ex�ltrating too
much personal information [354].

710 Chapter 21 ■ Network Attack and Defence

showed that even if the source code for a system were carefully inspected and
known to be free of vulnerabilities, a trapdoor could still be inserted [1887]. His
trick was to build the trapdoor into the compiler. If this recognized that it was
compiling the login program, it would insert a master password that would
work on any account3. Of course, someone might examine the source code
for the compiler, and then compile it again from scratch. So if the compiler
recognizes that it’s compiling itself, it inserts the vulnerability anyway, even if
it’s not present in the source. So even if you can buy a system with veri�ably
secure hardware, operating system and applications, the compiler binary can
still contain a Trojan. The moral is that in order to trust a system completely,
it is not enough to build all of it, in the sense that software engineers use the
word ‘build’, namely compiling it from source code. You have to create all of
it, including the tool chain, and the hardware too.
Malware next became mobile. The �rst-ever computer virus in the wild was

written for the Apple II by a 9th-grader in 1981 [1218]. In 1984 Fred Cohen
did a PhD on the topic; his experiments with different operating systems
showed how code could propagate itself from one machine to another, and as
I mentioned in Section 9.6.4, from one compartment of a multilevel system to
another. Within about three years we started to see the �rst real live viruses in
the wild: PC viruses which spread when users shared programs on diskettes
or via bulletin boards4.
One early innovation was the ‘Christma’ virus, which spread round IBM

mainframes inDecember 1987. Itwas a programwritten in themainframe com-
mand language REXX that had a header saying ‘Don’t read me, EXECme’ and
code that, if executed, drew a Christmas tree on the screen – then sent itself to
everyone in the user’s contacts �le. It was written as a prank, rather than out
of malice; and by using the network (IBM’s BITNET) to spread, and inviting
users to run it, it was ahead of its time.

21.3.2 The Internet worm

The press and public became aware of malware in November 1988 with
the Internet worm. This was a program written by Robert Morris Jr that
exploited a number of vulnerabilities to spread from one machine to another
in November 1988 [617]. It tried 432 common passwords in a guessing attack,
looked for any machines trusted by the machine it infected, and also tried
to exploit vulnerabilities in Unix (including the fingerd bug mentioned in

3This developed an idea �rst �oated by Paul Karger and Robert Schell in the Multics evaluation
in 1974 [1022].
4Before the Internet was opened up to the public, online servicesweremostly standalone; bulletin
boards were typically operated by hobbyists and would let subscribers or even anonymous users
dial in to share information and �les.

21.3 Themalwaremenagerie – Trojans, worms and RATs 711

section 6.4.1). It also took steps to camou�age itself: it was called sh, and it
encrypted its data strings (albeit with a Caesar cipher).
Its author claimed that his code was not a deliberate attack on the Inter-

net – merely an experiment to see whether code could replicate from one
machine to another. But it had a bug. It should have recognised machines that
were already infected, and not infected them again, but this feature didn’t
work. The result was a huge volume of traf�c that completely clogged up
the Internet (or more accurately, its predecessor the Arpanet) despite the fact
that it only affected some 10% of the 60,000 machines on the Arpanet at the
time. One lesson was that sites which kept their nerve and didn’t pull their
network connection recovered more quickly as they could �nd out what was
happening and get the �xes.

21.3.3 Further malware evolution

By the early 1990s, PC viruses had become such a problem that they gave rise
to a whole industry of anti-virus software. Through the 1990s, operating sys-
tems acquired better access controls, making the malware writer’s job harder,
but the spread of interpreted languages provided plenty of new opportunities.
By the start of the 21st century, the main vector was the macro languages in
products such as Word, and the main transmission mechanism had become
the Internet [299].
The next phase of malware evolution was to enlist the user as the prop-

agation mechanism. The ‘Love Bug’ in 2000 was a worm that sent itself to
everyone in the victim’s address book, with the subject line ‘I love you’
designed to get people to open it. Its author was Onel de Guzman, a poor
computer science student in Manila who wanted to collect passwords so he
could use other people’s ISP accounts to get online without paying [2019].
This hack to save a few dollars ended up costing millions, and taught us about
the dif�culty of stopping such things by �ltering: a Canadian company with
85,000 staff stripped out all Windows executables at the �rewall, but many of
their staff had personal webmail accounts, so the Love Bug got in anyway. The
company had given each employee a copy of the corporate directory in their
address book, and the result was meltdown as 85,000 mail clients each tried
to say ‘I love you’ to each of 85,000 addresses. The Love Bug was followed by
similar worms which persuaded people to click on them by offering pictures
of celebs such as Britney Spears and Paris Hilton.
The next development was �ash worms which propagate by scanning the

whole Internet for machines vulnerable to some exploit or other, and taking
them over; examples such as Code Red and Slammer infected all vulnerable
machines within hours or even minutes, and drove research into what sort of
automated defences might react in time [1824].

712 Chapter 21 ■ Network Attack and Defence

The early 2000s also saw the rise of spyware and adware. Spyware collects and
forwards information from your computer (and now, your phone) without the
owner’s authorization, or with at best an obscure popup that doesn’t really tell
you what you’re agreeing to. It may also be installed by someone else, such
as a parent or partner; spyware is increasingly involved in intimate partner
abuse. Adware may bombard the user with advertising popups and can be
bundledwith spyware. The vendors of such products have even sued antivirus
companies who blacklisted their wares. Some spyware is installed deliberately,
whether by companies who want to keep tabs on staff, by parents who want
to see what their kids are up to, or by abusive men who want to monitor and
control their partners. Boundaries are dif�cult and different people may have
different views.
A sea-change came about in 2004–6. Until then, most malware writers did so

for fun or to impress their friends – basically, they were amateurs. Since then,
the emergence of undergroundmarkets and crime forums has made the whole
business much more professional. Malware writers now get paid money for
software to recruit machines that can be sold on for cash to botnet herders and
for other exploits.
Back in the amateur era, most viruses were �aky; very few actually spread

in the wild. If code isn’t infectious enough it won’t spread, but if you make
it too infectious then within a few hours the world’s anti-virus vendors are
upgrading their products to detect and remove it. Now that malware writers
focus on money rather than bragging rights, they tend to avoid self-replicating
worms in favour of more controllable exploit campaigns. (The main exception
is when exploiting IoT devices that can’t be patched.)
By the late 2000s, the largest botnets were using professional online mar-

keting techniques to grow their network. Various stories were used to get
people to click on a link and run a Trojan that would drop a rootkit on to
their machine. Victims had to click away several warnings to install software;
but Windows pops up so many annoying dialog boxes that most people
just click them away. One of the �rst really large ones, Storm, earned its
living from pump-and-dump operators and pharmacy scammers [1092].
Security researchers tried to disable big botnets by �nding and taking down
their command-and-control server; Storm used a peer-to-peer architecture
that removed this single point of failure [1839]. In the end, it was targeted
by Microsoft for removal. The same game is still being played; in March
2020 Microsoft took down Necurs, a botnet with nine million machines that
had been growing for eight years, distributing banking Trojans as well as
ransomware and email spam [353].
Flashworms havemade a comeback since October 2016with theMirai worm

and its variants. Mirai initially took over WiFi-attached CCTV cameras that
had a known root password and software that could not be upgraded; all such
devices in the IPv4 address space could be found and recruited within an hour

21.3 The malware menagerie – Trojans, worms and RATs 713

or so. Since then, there have been over a thousand Mirai variants attacking
various IoT devices.

21.3.4 Howmalware works

Malware typically has two components – a replication mechanism or dropper,
and a payload. Aworm simplymakes a copy of itself somewhere else when it’s
run, perhaps by breaking into another system by password guessing or using
a remote code execution vulnerability (both of which were used by the Inter-
net worm). Viruses spread in other software, perhaps as macros in documents,
while Trojans are typically executed by the victim.
The second component of a virus is the payload. When activated, this may

do one or more of a number of bad things:

ex�ltrate your con�dential data;

attack you directly using banking malware or spyware;

encrypt your data and demand a ransom;

attack others, such as when GCHQ’s Operation Socialist described
in section 2.2.1.9 subverted Belgacom and installed software in it to
do surveillance of mobile-phone traf�c passing through Belgium to other
countries;

perform some other nefarious task, such as using the CPU to mine cryp-
tocurrency;

install a rootkit or remote access Trojan to enable its controllers to do
any of the above things, to coordinate attacks with malware on other
machines, and to update itself in response to any countermeasures.

If the target is not an individual but a company – as in the Belgacom
case – then the attack may involve weeks to months of work. Once attackers
control a device on the target network, they will want to move sideways to
map the network and �nd key assets such as authentication servers and mail
servers so they can expand the compromise and install remote access Trojans
to get a permanent presence. There are many possibilities.

1. In the old days, an attacker would install packet sniffer software
to harvest passwords and compromise other accounts, eventually
including a sysadmin’s. Good practice nowadays is to block such attacks
using two-factor authentication, or using a protocol such as Kerberos
or SSH to ensure that clear text passwords don’t go over the LAN.

2. Other techniques target shared resources such as �le servers. For
example, Linux servers may use the Network File System (NFS) protocol;
when a volume is �rst mounted, the client gets a root �lehandle from the
server – an access ticket that doesn’t depend on the time and can’t be

714 Chapter 21 ■ Network Attack and Defence

revoked. We block this at our own lab using Kerberos to authenticate
clients and servers. There are similar problems with Windows �le
shares, although the details are different; the EternalBlue vulnerability
used by the WannaCry and NotPetya worm exploited such �le shares.

3. Security mechanisms such as SSH bring further vulnerabilities in
that machines in large organisations may have many thousands
of SSH keys to communicate with each other, and intruders can
exploit them and the trust structures they create to move around.

To get an idea of the range of tools available to a capable attacker nowadays,
I’d suggest you browse the NSA papers released by Ed Snowden and the
CIA toolkits leaked in the Vault 7 disclosure. Cyber warriors have a range
of exploit kits, droppers, RATs and software for stealthy ex�ltration of
intelligence product.
The takeaway is that the ease with which an intruder on your network can

take over othermachines depends on how tightly you have the network locked
down, and the damage that can follow any breach will depend on the extent to
which other machines in your network trust, or are vulnerable to, the compro-
mised machine. This is one of the arguments for not trusting local networks,
but insisting on strong authentication between clients and servers at all times.

21.3.5 Countermeasures

Within a fewmonths of the �rst PC viruses appearing in the wild in 1987, there
were startups selling antivirus software. This led to an arms race inwhich virus
and antivirus developers tried to outwit each other.
Early antivirus software came in basically two �avours – scanners and check-

summers. Scanners search executable �les for an indicator of compromise (IoC),
typically a string of bytes from a speci�c virus. Malware developers responded
in variousways, and the dominant technique became polymorphism. The idea is
to change the code each time the malware replicates, to make it harder to �nd
stable IoCs. The usual technique is to encrypt the code, and have a small header
that contains decryption code. With each replication, the malware re-encrypts
itself under a different key, and tweaks the decryption code by substituting
equivalent sequences of instructions. Modern malware may be run through
half-a-dozen such packers in turn, and recursively unpack itself when run. AV
�rms �ght back by running the code in a virtual machine, so the malware devs
include VM-detection code. The AV �rms can at least use the unpacked code
as an IoC so long as they can hack through to the last unpacking operation.
Checksummers keep a whitelist list of all the authorised executables on the

system, together with checksums of the original versions, typically computed

21.4 Defense against network attack 715

using a hash function. The malware devs’ main countermeasure is stealth,
which in this context means that the malware watches out for operating
system calls of the kind used by the checksummer and hides itself whenever
a check is being done.
To provide robust defences against malware, you have to combine tools,

incentives and management. We learned in the old days of DOS-based �le
viruses to provide a central reporting point for all incidents, and to control all
software loaded on an organisation’s machines. The main risks were machines
used at home both for work and for other things (such as kids playing games),
and �les coming in from other organisations. The same principles still apply.
However, �rms now need a more coordinated response than before. One of
the reasons is that antivirus software has been getting steadily less effective.
The commercialisation of botnets and of machine exploitation has meant that
malware writers operate like companies, with research and test departments.
Almost all exploits are undetectable by the current antivirus products when
�rst launched (if their writers test them properly) and many of them recruit
their target number of machines without coming to the attention of the
antivirus industry. The net effect was that while antivirus software might have
detected almost all of the exploits in circulation in the early 2000s, by 2010
the typical product might detect only a third of them, and by 2020 you expect
to detect infection after the fact and have to clean up. That means having
good tool support, logging network traf�c and analysing it in the light of the
latest threat intelligence. What’s more, the rootkit vendors provide after-sales
service; if a removal kit is shipped, the rootkit vendor will rapidly ship
countermeasures. And nowadays many attackers – especially the competent
ones – don’t leave malware �les lying around but ‘live off the land’; they
might just add their ssh key to a list of authorised keys on one of your servers
so they can pop in when they feel like it, leaving nothing for legacy AV to �nd.

21.4 Defense against network attack

In defending against malware and network attack generally, the view from
the second edition of this book in 2008 was that you needed three things:
good enough management to keeping your systems patched up-to-date and
con�gured properly; �rewalls to stop known Trojans and network exploits;
and intrusion detection to monitor your networks and machines for indicators
of compromise so you can catch the stuff that got through and clean up
afterwards.
The principles remain the same in 2020 but reality is much more complex

now, because the scale and complexity of the task have made automation

716 Chapter 21 ■ Network Attack and Defence

almost essential. A large Windows shop might have something like the
following:

1. An agent running on each endpoint, reporting to a cloud service to give
you full visibility of what software is running where and to enable you
to push updates;

2. A vulnerability scanner that continually probes your network for known
vulnerabilities;

3. Various boundary control devices which may include �rewalls, a proxy
server that �lters all URLs of websites that staff visit, and proxies for crit-
ical applications;

4. An SSL gateway for staff working remotely;

5. A bring-your-own-device (BYOD) manager, to control laptops, phones and
other devices that staff members use but that the �rm doesn’t own;

6. A data leakage prevention (DLP) system to identify staff who attempt to
remove company documents or code;

7. A threat intelligence platform that integrates feeds from multiple
providers, to alert you to various indicators of compromise including
bad DNS names and IP addresses;

8. A log analysis tool that enables you to go back and work out
when a compromise �rst happened, and how far it spread;

9. A security orchestration and response (SOAR) system that helps you
respond quickly if you note that some devices in your network are
communicating with bad addresses such as the command-and-control
servers of known malware.

Making all this work together requires system integration, otherwise you’ll
have dozens of staff in your network security centre whose job is to copy lists
of bad domains, bad IP addresses and other indicators of compromise from
one tool to another.
That said, let’s work our way down this list.
Organisations that are serious about IT security – because they are targets

of state actors (like big service �rms), or have demanding compliance require-
ments (like banks), or have a lot to lose (like the military) – aim to stop all
vulnerabilities at source. This means keeping everything patched up to date,
which in turn means automated patch management. But such a strategy is
harder than it looks. It brings with it a number of hard subproblems, such
as maintaining an accurate inventory of all the devices on your network. If
you impose a rigid bureaucracy for registering new devices, people will have
to �nd ways to circumvent it to get their work done. So you need to also
scan your network to see what’s there and whether it’s vulnerable. And even
diligent organisations may �nd it’s just too expensive to �x all the security

21.4 Defense against network attack 717

holes at once; patches may break critical applications, and an organisation’s
most critical systems often run on the least secure machines, as administrators
have not dared to upgrade them for fear of losing service.
This interacts with operational security. In Chapter 2 and Chapter 8 we

discussed the practice and limitations of training staff to not expose systems
by foolish actions. By the mid-2000s, the main attack vector was spearphish-
ing – getting people to click on links in email that download and install
rootkits. We learned from Ed Snowden that this was the standard way for
the NSA to attack a company in 2013: they would monitor external traf�c
to identify sysadmins, do some background research to identify individual
targets, and craft a convincing phishing lure. Alternatively they would
direct the target to a website they could spoof or where they could mount a
man-in-the-middle protocol attack.
You may try to educate your staff to not click on links in suspicious mail,

but competent attackers create mails that don’t look suspicious. And so many
businesses expect their customers and suppliers to click on links that your staff
will have to do some clicking to get their work done.We discussed in Chapter 3
and elsewhere that victim blaming is maladaptive; if your security systems are
not usable, you have to �x them rather than blaming the poor users.
Many �rms mitigate the risk by opening all mail attachments in a cloud ser-

vice rather than a local machine, giving staff non-Windows machines such as
Chromebooks, iPads or Macs, or having a �rewall or mail �lter that strips out
suspicious content.

21.4.1 Filtering: firewalls, censorware and wiretaps

A �rewall is a machine that stands between a private network and the Internet,
and �lters out traf�c that might be harmful. It’s named after the metal bulk-
head that separates the passenger compartment of a car or light plane from the
engine compartment, to protect the occupants from a fuel �re. Firewalls were
controversial when they appeared in the mid-1990s; purists said that all the
machines in a company should be secured, while �rewall advocates said this
was impractical. The debate has swung back and forth since.
Firewalls are just one example of systems that examine streams of packets

and perform �ltering or logging operations. Bad packets may be thrown away,
or modi�ed in such a way as to make them harmless. They may also be copied
to a log or audit trail. Very similar systems are also used for Internet censorship
and for law-enforcement wiretapping; almost everything I’ll discuss in this
section goes across to those applications too. Developments in any of these
�elds potentially affect the others; and actual systems may have overlapping
functions. For example, many corporate �rewalls or mail �lters screen out
pornography, and some even block bad language, while ISP systems that

718 Chapter 21 ■ Network Attack and Defence

censor child pornography or dissenting political speech may report the
perpetrators automatically to the authorities. Many �lters also keep logs, so
that attacks can be investigated after the fact; and in parts of the �nancial
sector, all staff communications are required to be logged so that regulators
can investigate any suspicions of insider trading or money laundering.
Filters come in basically three �avours, depending on whether they operate

at the IP packet level, at the TCP session level or at the application level.

21.4.1.1 Packet filtering

The simplest kind of �lter merely inspects packet addresses and port numbers.
This functionality is available as standard in routers, in Linux and inWindows.
You can block IP spoo�ng by ensuring that only ‘local’ packets leave a network,
and only ‘foreign’ ones enter. It’s also easy to block traf�c to or from ‘known
bad’ IP addresses. For example, IP �ltering is a major component of the cen-
sorship mechanisms in the Great Firewall of China; a list of bad IP addresses
can be kept in router hardware, which enables packet �ltering to be done at
great speed.
Basic packet �ltering is often used to block all traf�c except that arriving on

speci�c port numbers. Youmight initially allow the ports used by common ser-
vices such as email and web traf�c, and then open up further ports as needed.
Aswemove to software de�ned networks (SDN),which replace expensive routers
with cheap switches controlled by software on commodity servers, packet �l-
tering rules become just the access-control rules in the SDN controller.
However, packet �lters can be defeated by a number of tricks. For example,

a packet can be fragmented in such a way that the initial fragment passes the
�rewall’s inspection but is then overwritten by a subsequent fragment, replac-
ing the source address with one that violates your security policy. Another
limitation is that maintaining a blacklist is dif�cult, especially when it’s not
the IP address speci�cally you want to block, but something that resolves into
an IP address, especially on a transient basis. For example, phishermen use
tricks like fast-�ux in which a site’s IP address changes several times an hour.

21.4.1.2 Circuit gateways

The next step up is a circuit gateway that reassembles and examines all the pack-
ets in each TCP session. This is more expensive than simple packet �ltering
but can also provide the added functionality of a virtual private network (VPN)
whereby corporate traf�c passed over the Internet is encrypted from �rewall
to �rewall. I’ll discuss the IPSEC protocol that’s used for this in the last section
of this chapter.

21.4 Defense against network attack 719

TCP-level �ltering can be used to do a fewmore things, such asDNS �ltering.
However, such a �lter can’t screen out bad things at the application level, from
malicious code to child sex abuse material. Thus it may be programmed to
direct certain types of traf�c to application �lters.

21.4.1.3 Application proxies

The third type of �rewall is the application proxy, which understands one or
more services. Examples are mail �lters that try to weed out spam, and web
proxies that block or remove undesirable content. The classic objective is strip-
ping out code, be it straightforward executables, active content inwebpages, or
macros from incomingWord documents. Themove toweb-basedmail services
and the adoption of https have left signi�cantly less work for mail �lters to
do, and as the service �rms adopt technical measures such as certi�cate trans-
parency to prevent proxying, �ltering needs to shift to endpoints.
An application proxy can also be a bottleneck. An example is the Great Fire-

wall of China, which tried through the 2000s to block mail and web content
that refers to banned subjects [450]. Since the adoption of https by the major
service providers, and the availability of services such as Google Docs that can
also be used for communication, China simply stops most of its citizens from
using services like Gmail and Facebook.
In the emerging BeyondCorpmodel promoted by Google, proxies sit in front

of the application servers themselves so that the internal network does not need
to be trusted.

21.4.1.4 Ingress versus egress filtering

Most �rewalls look outwards and try to keep bad things out, but some look
inwards and try to stop bad things leaving. The pioneers were military mail
systems that monitor outgoing traf�c to ensure that nothing classi�ed goes
out in the clear. Around 2005 some ISPs started looking at outgoing mail
traf�c to try to detect spam [444]; and by now most consumer ISPs prevent
their customers sending packets with spoofed source addresses. This source
address validationmeans that DDoS operators using UDP re�ection attacks can
no longer use botnets but need to rent servers in data centres.
The fastest-growing use of egress �ltering in 2020 is for data leakage preven-

tion (DLP). Software that ‘phones home’, whether for copyright enforcement
or marketing purposes, can disclose highly sensitive material, and prudent
organisations increasingly wish to monitor and control this kind of traf�c. But
the pervasive use of https means that DLP systems typically need to install
software on endpoints rather than using middleboxes.

720 Chapter 21 ■ Network Attack and Defence

21.4.1.5 Architecture

For years, many �rms bought a �rewall to keep their auditors happy. If that’s
your pain point, a simple �ltering router won’t need much maintenance and
won’t get in the way too much. At the other extreme, a serious �rewall system
at a defence contractor might consist of a packet �lter connecting the outside
world to a screened subnet, also known as a demilitarized zone (DMZ), which in
turn contains a number of application servers or proxies to �lter mail, web and
other services. You may also expect to �nd data diodes separating networks
operating at different clearance levels, to ensure that classi�ed information
doesn’t escape either outwards or downwards (Figure 21.2).
An alternative approach is to have more networks, but smaller ones. At our

university, we have �rewalls to separate departments, although we’ve got a
shared network backbone and some shared central services such as logging.
There’s no reason why the students and the �nance department should be on
the same network, and a computer science department has got quite different
requirements from a department of theology. Keeping each network small lim-
its the scope of any compromise and helps incentivise system administrators
to defend it.
Considerations in the design of a network security architecture include sim-

plicity, usability, deperimeterisation versus re-perimterisation, underblocking
versus overblocking, maintainability, and incentives.
First, since �rewalls do only a small number of things, it’s possible to make

them simple to remove sources of vulnerability and error. If your organisa-
tion has a heterogeneous population of machines, then loading as much of the
security task as possible on a small number of simple boxes makes sense. On

Filter

Mail
proxy

Web
server Mail

guard

Other
proxies

Filter

Internet

Intranet

Classi�ed
intranet

Figure 21.2: complex firewalls for an MLS network

21.4 Defense against network attack 721

the other hand, if you’re running something like a call centre, with a thousand
identically-con�gured PCs, it makes sense to put your effort into keeping this
con�guration tight. These are roughly the energy utility, and Google, models
discussed in the introduction at the start of this chapter.
Second, elaborate central installations not only impose greater operational

costs, but can get in the way so much that people install back doors, such as
cable modems that bypass the �rewall, to get their work done. I will discuss in
section 20.4 how diplomats have come unstuck by using private email when
their of�cial systemswere unusable.Manywell-run �rms have open guest net-
works, as does our department; there’s always got to be something that works.
And a prudent system administrator will monitor the actual network con�gu-
ration rather than just relying on ‘policy’.
Third, �rewalls only work until people �nd ways round them. Early �re-

walls let only mail and web traf�c through; so writers of applications from
computer games to anonymity proxies redesigned their protocols to make the
client-server traf�c look as much like normal web traf�c as possible. Then
everything moved to Web 2.0 and such �lters became largely ineffective.
Next, there’s deperimeterisation – as Google’s BeyondCorp notes, it’s becom-

ing steadily harder to put all the protection at the perimeter, thanks to the
proliferation of phones and PDAs being used for functions that used to be
done on desktop computers, and by changing business methods that involve
more outsourcing of functions – whether formally to subcontractors or infor-
mally to advertising-supported web apps. If some parts of your organisation
can’t be controlled (e.g., the sales force and the R&D lab) while others must
be (the �nance of�ce) then you may need separate architectures. The prolifer-
ation of web applications is complemented by a blunting of the incentive to
do things at the perimeter, as useful things become harder to do. The differ-
ence between code and data is steadily eroded by new scripting languages.
Many �rms tried to block JavaScript in the early 2000s but were beaten by
popular web sites that require it. Nowadays it may be impossible to prevent
your staff attaching large numbers of IoT devices that just cannot be secured
at all [1256].
And then there’s our old friend the Receiver Operating Characteristic or ROC

curve. No �ltering mechanism has complete precision, so there’s inevitably a
trade-off between underblocking and overblocking. If you’re running a cen-
sorship system to stop kids accessing pornography in public libraries, do you
underblock, and annoy parents and churches when some pictures get through,
or do you overblock and get sued for infringing free-speech rights? Things are
made worse by the fact that the �rewall systems used to �lter web content for
sex, violence and bad language also tend to block free-speech sites (as many of
these criticise the �rewall vendors – and some offer technical advice on how to
circumvent blocking).

722 Chapter 21 ■ Network Attack and Defence

And as we’ve repeatedly pointed out, security depends at least as much on
incentives as on technology. A sysadmin who looks after a departmental net-
work used by a hundred people they know, and who will personally have to
clear up anymess caused by an intrusion or a con�guration error, ismuchmore
motivated than someone who’s merely one member of a large team looking
after thousands of machines.

21.4.2 Intrusion detection

Attacks will happen, and it’s often cheaper to prevent some attacks and detect
the rest than it is to try to prevent everything. The systems used to detect bad
things happening are referred to generically as intrusion detection systems (IDS).
The antivirus software products I discussed earlier are one example; but the
term is most usually applied to boxes that sit on your network and look for
signs of an attack in progress or a compromised machine [1639]. Examples
include:

a machine trying to contact a ‘known bad’ service such as an
IRC channel that’s used to control a botnet, or a known-bad IP
address – or trying to resolve a known-bad DNS name;

packets with forged source addresses – such as packets that claim
to be from outside a subnet but that actually originate from it;

spam coming from a machine in your network.

In cases like this, the IDS typically tells the sysadmin that a particular
machine needs to be looked at. This may be just the �rst step in an investiga-
tion that involves staring at logs to see how it happened, and what else the
attackers might have infected.
Other examples of intrusion detection, which we’ve seen in earlier chapters,

include mechanisms for detecting payment card fraud and stock-market
systems that look for insider trading, such as via increases in trading volume
just before a price-sensitive announcement. This is now an active area of
research: the boom in AI since 2012 has created lots of startups looking for
pattern-matching problems.

21.4.2.1 Types of intrusion detection

The simplest intrusion detection method is to sound an alarm when a thresh-
old is passed. Three or more failed logons, a credit card expenditure of more
than twice the moving average of the last three months, or a mobile phone
call lasting more than six hours, might all �ag an account for attention. More
sophisticated systems generally fall into two categories.

21.4 Defense against network attack 723

Misuse detection systems operate using a model of the likely behaviour of
an intruder. A banking system may alarm if a user draws the maximum
permitted amount from a cash machine on three successive days; and a Unix
intrusion detection systemmay look for user account takeover by alarming if a
previously naive user suddenly starts to use sophisticated tools like compilers.
Simple misuse detection systems, such as antivirus scanners, look for a
signature – a known characteristic of a speci�c attack. This can be either
explicit in the data (such as a substring of an executable �le that marks it as a
speci�c piece of malware) or in behaviour (such as a machine contacting the
IP address of a known botnet command-and-control server). More complex
misuse detection systems treat a number of signatures as signals and then
train a machine-learning classi�er to make the decisions. As I discussed in
section 12.5.4, the systems used to detect card fraud use dozens of signals,
as they need low false alarm rates to be useful given the scale of modern
payment systems.
Anomaly detection systems attempt the much harder job of looking for

anomalous behaviour in the absence of a clear model of the attacker’s modus
operandi. The hope is to detect attacks that have not been previously rec-
ognized and cataloged. Systems of this type have used AI techniques since
the 1990s, though some �rms eschew them; Google policy, for example, is to
avoid systems that try to learn thresholds or automatically detect causality,
and instead have simple systems that detect changes in end-user request
rates [237].
The dividing line between misuse and anomaly detection is somewhat

blurred. A borderline case is Benford’s law, which describes the distribution
of digits in random numbers. One might expect that numbers beginning with
the digits ‘1’, ‘2’, … ‘9’ would be equally common. But when numbers come
from random natural sources and span more than one order of magnitude, so
that their distribution is independent of the number system in which they’re
expressed, the distribution is logarithmic: about 30% of decimal numbers start
with ‘1’. Crooked clerks who think up numbers to cook the books, or even use
random number generators without knowing Benford’s law, are often caught
this way [1249].
Another borderline case is the honeypot – something enticing left to attract

attention. I mentioned, for example, that some hospitals have dummy records
with celebrities’ names in order to entrap staff who ignore patient con�den-
tiality. In the network context, honeypots emulate many types of device so that
attackers scanning the Internet looking for (say) a DSL modem of a particular
upgrade status �nd one to attack; this may contain either a simple emulator, or
with more recent designs, the actual modem �rmware running in a VM [1959].
The upshot is that the honeypot operator gets to see who’s attacking what,
and how.

724 Chapter 21 ■ Network Attack and Defence

21.4.2.2 General limitations of intrusion detection

Some intrusions are obvious. If you’reworried about activists vandalising your
web site, then have a machine somewhere that fetches the page frequently and
rings an alarm when it changes. But in the general case, intrusion detection is
hard. The virus pioneer Fred Cohen proved that detecting viruses (in the sense
of deciding whether a program is going to do something bad) is as hard as the
halting problem, so we can’t ever expect a complete solution [452].
There’s also a matter of de�nitions. Some intrusion detection systems are

con�gured to block some kinds of suspicious behaviour. But this turns the
intrusion-detection system into an access control mechanism, as well as open-
ing the door to service-denial attacks. I prefer to de�ne an intrusion-detection
system as one that monitors the logs and draws attention to suspicious
occurrences.
Then there’s the cost of false alarms. Academic machine-learning researchers

often consider they’ve done well when they train a classi�er to have a false
alarm rate of 0.1%. But if you’re on the Gmail team and dealing with a billion
users authenticating themselves every day, that’s way too much. Large-scale
systems need really low false alarm rates.
Finally, there are three generic problems with machine-learning classi�ers:

the facts that they’re notmuch good at detecting new attacks, that people game
them, and that they inhale the prejudices of their training data. We will discuss
these in more detail in section 25.3.

21.4.2.3 Specific problems detecting network attacks

Turning now to the speci�c problem of detecting network intrusion, it’s harder
to spot than payment fraud. Network intrusion detection products still have
highmissed alarmand false alarm rates. It’s common to detect actual intrusions
only afterwards. The reasons for the poor performance include the following,
in no particular order.

The Internet is a very noisy environment – not just at the level of content
but also at the packet level. A lot of random crud arrives at any sub-
stantial site, and enough of it can be interpreted as hostile to provide a
signi�cant false alarm rate. Many bad packets result from software bugs;
others are the fault of out-of-date or corrupt DNS data; and some are
local packets that escaped, travelled the world and returned [214].

There are ‘too few attacks’. If there are ten real attacks per million
sessions – which is almost certainly an overestimate – then even if
the system has a false alarm rate as low as 0.1%, the ratio of false
to real alarms will be 100. We talked about similar problems with
burglar alarms; it’s also a well-known problem for medics running

21.5 Cryptography: the ragged boundary 725

screening programs for diseases like HIV where the test error rate
exceeds the disease prevalence. Where the signal is way below the
noise, the guards get tired and the genuine alarms get missed.

While a theft from a bank causes an incorrect state – money in
the wrong place, and evidence on the audit trail – many net-
work intrusions aim to avoid this, for example if their mission
is to ex�ltrate con�dential data. It’s easier to write software to
detect errors than it is to detect slightly odd behaviour.

Many network attacks are speci�c to particular versions of software, so
you need a large and constantly-changing library of attack signatures.
However, many �rms buy intrusion detection systems in order to satisfy
insurers or auditors, and the products aren’t always kept up to date.

As more and more traf�c is encrypted, it can’t easily be subjected to con-
tent analysis or �ltered for malicious code. If DNS-over-https becomes
the norm, tools that rely on analysing your DNS traf�c will become
much less effective.

The issues we discussed in the context of �rewalls largely apply to
intrusion detection too. You can �lter at the packet layer, which is fast
but misses a lot; or you can proxy your applications, which is expen-
sive – and needs to be constantly updated to cope with new applications
and attacks.

You may have to do intrusion detection both locally and globally.
More and more things have to be done on local machines, thanks to
encrypted web sessions; but some attacks are stealthy – the opponent
sends 1–2 packets per day to each of maybe 100,000 hosts, and you need
a central monitor that counts packets by source and destination address
and by port.

Nowadays, intrusion detection systems involve the coordination of multiple
monitoring mechanisms and products at different levels both in the network
and on your �eet of endpoint devices. A large company with tens of thou-
sands of staff using Windows will typically have several dozen products,
as I discussed previously in section 21.4. Integrating and automating both
monitoring and response makes up more and more of a CISO’s job. The
growth areas therefore include integration tools for security incident and event
management (SIEM), security orchestration and response (SOAR), and metrics.

21.5 Cryptography: the ragged boundary

Network security interactswith cryptography in a number ofways.We already
mentioned the debate about DNS over https; now I’m going to describe �ve

726 Chapter 21 ■ Network Attack and Defence

other aspects of crypto brie�y. They are SSH; the local link protection offered
by WiFi, Bluetooth and HomePlug; the IPSec mechanisms used in VPNs; TLS;
and the public key infrastructures (PKI) used to support many of these. In the
previous chapter, we discussed how attempts to build more trustworthy com-
ponents out of cryptography run up against many real-world engineering and
economic constraints. The tools that we use to set boundaries on networks, and
to translate trust within them, are no different.
The emerging themes are that the most distributed part of the problem is

unmanageable because the vendors don’t care; in particular the thousands of
device types being marketed as part of the ‘Internet of Things’ have no remote
management facility available to users, the vendor often doesn’t upgrade
the software, and the lack of a user interface means that authentication is
haphazard at best. Meanwhile the most centralised part of the problem – PKI –
is often subverted by government mandates.

21.5.1 SSH

When I use my laptop to access �les on my desktop machine, or do anything
with any other machine in our lab for that matter, I use secure shell (SSH) which
provides encrypted links between Unix and Windows hosts. So when I work
from home, my traf�c is protected, and when I log on from the PC at my desk
to another machine in the lab, the password I use doesn’t go across the LAN in
the clear.
SSH was initially written in 1995 by Tatu Ylönen, a researcher at Helsinki

University of Technology, following a password-snif�ng attack there [2061].
It sets up encrypted connections between machines, so that logon passwords
don’t travel across the network in the clear, and supports other useful features
that led to its rapid adoption [1620].
There are various con�guration options, but in themost straightforward one,

each machine has a public-private keypair. The private key is protected by a
passphrase that the user types at the keyboard. To connect from my laptop to
a server at the lab, I install my laptop public key in a �le on the relevant server.
When I wish to log on to a server I’m prompted for my passphrase; the two
machines set up a Dif�e-Hellman key; the private keys are used to sign the
transient public keys, to stop middleperson attacks; the subsequent traf�c is
thus both encrypted and authenticated.Manual key installation is intuitive, but
doesn’t scale particularly well. There are also options to use Kerberos, whether
to authenticate the session key set up using Dif�e-Hellman, or to set up the
session key directly. (In the latter case, SSH falls back to being a variant of Ker-
beros in the sense that it is now a trusted third-party protocol, and the police
can get the Kerberos server to decrypt the traf�c.)
Possible problems include the fact that if you’re typing at the keyboard

one character at a time, then each character gets sent in its own packet, and

21.5 Cryptography: the ragged boundary 727

the packet interarrival times can leak a lot of information about what you’re
typing [1807]. However, the worst is probably that most SSH keys used
for server-to-server communication are stored in the clear, without being
protected by a password at all. So if a server is compromised, the same can
happen to every other machine that trusts an SSH key installed on it.
SSH is often used as a simple logon mechanism; many IoT devices run Linux

and allow remote logon by anyone who knows an appropriate password. This
opens them to password-guessing attacks, and where there are weak pass-
words or a knowndefault password, to recruitment into botnets based onMirai
and similar tools. The countermeasure here is honeypots.

21.5.2 Wireless networking at the periphery

Many networks use wireless technology at the edge to go the last few feet from
an access point to a device, or from one device to another. Protocols such as
WiFi, Bluetooth andHomePlug all offer encryption to provide some protection
against service abuse and perhaps against eavesdropping. However most are
vulnerable to local attacks that are dif�cult to block completely because many
devices don’t get patched, lack user interfaces, or both.

21.5.2.1 WiFi

WiFi supportswireless local area networks,whether at home to connect phones
and other devices to a home router, or by businesses to connect payment ter-
minals and stock control devices as well as PCs. It has come with a series of
encryption protocols since its launch in 1997. The �rst widely-used one, WEP
(forwired equivalent privacy), was shown to be fairly easily broken because of the
weak ciphers demanded by US export control and poor protocol design [300,
1876]. Since 2004, an improved system called WPA2 uses AES encryption. The
key for each access point is typically printed on a card that �ts into the back of
the router.
Should WiFi networks be seen as untrusted? The reason to set a password is

more to prevent third parties using your bandwidth or quota, rather than the
risk of pharming.Many people in the UK or America �nd it convenient to have
an open network for guests to use, and so that you and your neighbours can
use each others’ networks as backups. In countries where you pay for down-
load bandwidth, home router passwords aremostly set. In some, like India, it’s
against the law to run an open WiFi access point (terrorists who mounted an
attack in Bombay in 2008 used them to call home unobtrusively). Having the
key on a card is a neat example of usable security design: the householder can
make their network as open or as secure as needed by pinning the card on the
wall or by locking it up.

728 Chapter 21 ■ Network Attack and Defence

WiFi security is still somewhat fragile. Universal Plug and Play (UPnP) lets
any device in a network punch a hole through the router’s �rewall; DHS has
been recommending since 2013 that people turn it off. However now thatmany
devices and domestic appliances come with an attached cloud service, that’s
hard. It’s used along withWiFi Protected Setup (WPS) which lets you enrol gad-
gets on your network with a simple button press. You can set a PIN but there
have been a couple of attacks found on the mechanism.
Businesses may have to take a bit more care. In March 2007, retail chain TJ

Maxx reported that some 45.7million credit card numbers had been stolen from
its systems; the Wall Street Journal reported that an insecure WiFi connection
in St Paul, Mn., was to blame [1511]. Banks sued the company, and eventually
settled for $41m [789].
Patching is an issue. For example, inMarch 2020we learned of the Kr00k vul-

nerability in BroadcomWiFi chips which will get patched inMacs and iPhones
but probably not in wireless routers or older Android phones [800]. As for the
great majority of IoT devices, from toys through home appliances, they won’t
get patched, ever.

21.5.2.2 Bluetooth

Bluetooth is another short-range wireless protocol, aimed at personal area
networks, such as linking a headset to a phone, or a phone in your pocket
to a hands-free interface in your car. It’s also used to connect cameras and
phones to laptops, keyboards to PCs and so on. Like WiFi, the �rst versions
of the protocol turned out to have �aws [1103, 1716]. From version 2.1
(released in 2007), Bluetooth has supported Secure Simple Pairing, which
uses elliptic-curve Dif�e-Hellman to thwart passive eavesdropping attacks.
Man-in-the-middle attacks are dealt with by generating a six-digit number for
numerical comparison. However, because one or both of the devices might
lack a keyboard or screen (or both), it’s also possible for the number to be
generated at one device and entered as a passkey at another; and there’s a
‘just works’ mode that’s not protected against middleperson attack. What’s
more, the data may or may not be signed, giving a total of about ten different
combinations of con�dentiality, integrity and resistance to man-in-the-middle
attack; and a number of attacks have been found, some inspired by NSA
tools listed in the Snowden disclosures [1638]. Again, patching is an issue.
In 2018, Eli Biham found that many implementations could be fooled by a
man-in-the-middle supplying an invalid elliptic curve to the authentication
protocol [245], and in 2020 Daniele Antonioli and colleagues discovered a
variant of the mig-in-the-middle attack where you just re�ect the challenge
from a bluetooth device back to it, claiming that you’re now the challenger

21.5 Cryptography: the ragged boundary 729

and the target device is the responder [126]. So if you have a device with a
bluetooth chip that hasn’t been patched, it may be vulnerable.

21.5.2.3 HomePlug

HomePlug is a protocol used for communication over the mains power cables.
HomePlug AV is widely used in WiFi extenders: you plug one station into
your router or cable modem, and another gives a remote WiFi access point at
the other end of your house. (Declaration of interest: I was one of the protocol’s
designers.) We were faced with the same design constraints as the Bluetooth
team: not all devices have keyboards or screens, and we needed to keep costs
low. We decided to offer only two modes of operation: secure mode, in which
the user manually enters into their network controller a unique AES key that’s
printed on the device label, and ‘simple connect’ mode in which the keys are
exchanged without authentication. The keys aren’t even encrypted in this
mode; its purpose is not to provide security but to prevent wrong associations,
such as when a device wrongly mates with a network next door [1438].
However many vendors just support the ‘simple connect’ mode and end up
with a policy of trust on �rst use, as already mentioned in section 4.7.1. Others
sell extenders in pairs, with keys already installed. There are variants for smart
meters to communicate with substations, and for electricity utilities to provide
broadband to the home over the power line (though these are not widely used
because of radio frequency interference). Vendors also customised the product
in various ways to make it incompatible with competitors. As a result of this
mess, little reliance can be placed on the key management.

21.5.2.4 VPNs

Virtual private networks (VPNs) typically do encryption and authentication
at the IP layer using a protocol suite known as IPsec. This de�nes a security
association as the combination of keys, algorithms and parameters used to
protect a particular packet stream. Protected packets may be just authenti-
cated, or encrypted too; in the former case, an authentication header is added
that protects data integrity, while in the latter the packet is also encrypted
and encapsulated in other packets. There’s also an Internet Key Exchange (IKE)
protocol to set up keys and negotiate parameters, and we may infer from Ed
Snowden’s disclosures that the standard default settings of this (with 1024-bit
Dif�e-Hellman) are insecure.
VPNs are offered by �rewall vendors so that by installing one of their boxes

in each branch between the local LAN and the router, all the internal traf�c
can pass encrypted over the Internet. Individual workers’ laptops and home

730 Chapter 21 ■ Network Attack and Defence

PCs can also join a VPN given appropriate software. VPNs are also offered
commercially, and are used for example by people and �rms in countries like
Iran and China to circumvent the national �rewall.

21.6 CAs and PKI

As we discussed in section 5.7.4, the pioneers of public-key cryptography
developed a vision of certi�cates that would bind public keys to the names or
roles of the organisations, people or devices that controlled the corresponding
private keys. Initially it was thought that governments or phone companies
would do this, but theywere too slow. During the dotcomboom, entrepreneurs
set up certi�cate authorities (CAs) and software �rms such as Microsoft and
Netscape embedded their public keys into their browsers. There followed a
gold rush as the CAs bought each other and consolidated; investors hoped
that every device would need a public-key certi�cate, so you’d need to pay
Verisign ten bucks every two years to renew the certi�cate on your toaster, or
it wouldn’t talk to your fridge.
Once that foolishness died down, the world’s governments moved to get

their own CAs’ root certi�cates into the browsers for intelligence and surveil-
lance purposes. As people moved to web services like Gmail, security agencies
developed tools to do man-in-the-middle attacks, and as TLS was used to
encrypt password entry (and later, the whole session), this meant having a CA
that would produce a certi�cate on www.gmail.com for a security agency public
key that the target’s browser would accept. In fact, at a panel discussion at
Financial Cryptography 2011, I asked the man from Mozilla how come, when
I updated Firefox the previous day, it had put back a certi�cate I’d removed
for Tubitak – a Turkish intelligence organisation. At this point a man stood up
in the audience and shouted ‘How dare you insult my country! Tubitak is not
an intelligence agency – it is a research organisation!’ The man from Mozilla
shrugged and said wryly, ‘Now you see how hard certi�cate governance is.’
Later that year came theDigiNotar scandal. DigiNotarwas aDutchCAwhich

was found to have issued wildcard certi�cates for Gmail. Iranian agents had
hacked it in order to monitor 300,000 Gmail users in Iran; sanctions meant that,
unlike Turkey, they could not just have their government certi�cate installed
in the major browsers. Mozilla and Google promptly put DigiNotar to death
by removing its root certi�cates; Microsoft and Apple followed quickly. This
caused real disruption in the Netherlands, many of whose online government
services usedDigiNotar certi�cates, and had to scramble to get others. It turned
out that there had been earlier attacks on another CA, Comodo, but that com-
pany claimed to have revoked all its wrongly-issued certi�cates. Since then,
there has been increasing pressure on CAs and auditors from the browsers’
root stores.

http://www.gmail.com

21.6 CAs and PKI 731

There is frequent semantic confusion between ‘public (key infrastructure)’
and ‘(public key) infrastructure’. In the �rst, the infrastructure can be used by
whatever new applications come along; I’ll call this an open PKI. In the second,
it can’t; I’ll call this a closed PKI. If you’re building a service that government
agencies are likely to attack, then it may be a good idea to keep your PKI
closed, with a CA that runs on your own premises – so you get to know of
any warrants. I advise �rms who maintain software that’s installed on many
millions of machines to use a private CA for their code signing keys.
PKI has a number of intrinsic limitations, many of which we discussed in the

chapter on distributed systems. Naming is dif�cult, and the more applications
rely on a certi�cate, the shorter its useful life will be. You can sometimes sim-
plify things by removing unnecessary names: rather than one certi�cate saying
‘Ross Anderson’s key is KR’ and another saying ‘Ross Anderson has the right
to administer x.foo.com’ you might just say ‘KR has the right to administer
x.foo.com.’
This is an aspect of the ‘one key or many’ debate. Should I expect to have a

single digital credential to replace each of the metal keys, credit cards, swipe
access cards and other tokens that I currently carry around? Or should each of
them be replaced by a different credential? Multiple keys protect the customer:
I don’t want to have to use a key with which I can remortgagemy house to buy
my lunchtime sandwich. As we saw in the chapter on banking and bookkeep-
ing, it’s easy to dupe people into signing a message by having the equipment
display another one.
Now the standard PKI machinery (the X.509 protocol suite) was developed

to provide an electronic replacement for the telephone book, so it started off by
assuming that everyone will have a unique name and a unique key in an open
PKI architecture.
This in turn leads to issues of trust, of which there are many.

If you remove one of the hundreds of root certi�cates from Fire-
fox, then Mozilla silently replaces it; Windows comes with even
more root certi�cates – but you can’t delete them at all. In each
case, you have to know how to mark a certi�cate as untrusted.

There have been some interesting effects where a government
that had its cert in Windows but not in other browsers (such
as Thailand’s, after the military coup in 2014) had to resort
to different surveillance methods for Mac users [1557].

Many �rms use certs that are out-of-date, or that correspond to the
wrong company, often because the �rm’s marketing department got
a contractor to run some promotion or another. As a result, users
have been trained to ignore security warnings, and only a small
minority used to pay attention to them [842]. Recently browsers
such as Firefox have made it harder to click past warnings.

732 Chapter 21 ■ Network Attack and Defence

Certs bind a company name to a DNS name, but their vendors are usu-
ally not authorities on either; they hand out certi�cates after checking
that the applicant can answer an email sent to that domain, or put up
a web page with a CA challenge on it. Things are slightly better with
‘extended validation’ certi�cates5, but even they aren’t foolproof.

On their ‘certi�cation practice statements’ CAs go out of their way to
deny all liability.

Certi�cate revocation is an issue. The original idea was that anyone rely-
ing on a cert could download a certi�cate revocation list (CRL) from the
CA and check any cert on which they were about to rely. However, this
vitiated much of the bene�t of public-key cryptography by requiring
online operation for high assurance. In addition, users of some systems
(particularly US government ones) had to download large CRLs every
time they started up their systems, leading to delay and network conges-
tion. Since about 2013, people have moved to the Online Certi�cate Status
Protocol (OCSP), a more ef�cient protocol for online status checking.

Behind all this mess lies, as usual, security economics. During the dotcom
boom in the 1990s, the SSL protocol (as TLS then was) won out over a more
complex and heavyweight protocol called SET, because it placed less of a
burden on developers [111]. The costs of compliance were dumped on the
users – who are often unable to cope [524]. Much of the engineering around
CAs and certs since then has been playing catchup.
The big issues at the time of writing are certi�cate lifetime; LetsEncrypt; and

certi�cate transparency.
The maximum permitted lifetime of a certi�cate, if it’s to be accepted by

the main browsers, has steadily reduced from 8 years to 3 years to 27 months.
Ballots in 2017 and 2019 proposed a cut to 13 months [1584] and in 2020 Apple
forced the issue by declaring that from September, its devices would no longer
accept any certs valid for longer than 398 days [1448]. This will force many
websites to refresh their certi�cates; it will be interesting to see how �rms
�ush out all the certs in DNS. (It will also widen the gap between systems
with annual certs and some industrial and IoT systems where certs have to
last for years because of the dif�culty of software upgrade.)
Getting certs used to be dif�cult as you had to go shopping for one, prove

you controlled your domain, get the cert, upload it to your server, change the
con�guration and then test it all. The change maker here has been a nonpro�t,
the Internet Security Research Group (ISRG) which provides certs for free and
by February 2020 had issued a billion of them. Making certs free allowed full

5These used to bring up a green padlock in your browser, though this is being discontinued in
Chromium from v 76 in 2020 after research showed that nobody paid any attention.

21.7 Topology 733

automation, which keeps costs down: their ‘LetsEncrypt’ CA supports 100m
sites on a budget of $3m pa. LetsEncrypt set out to make deploying certs easy,
and the impact has been real: 20% of browser connections are still in plaintext,
but this is down from 60% four years ago. This service started in 2015, two
years after the Snowden revelations. Their automated certi�cate management
environment is now standardised as RFC8555, so commercial CAs are using
it too. There’s a transparency log and the system has no manual override, so
there’s some assurance that they have never been compelled to issue a cert. (In
fact, the NSA uses their certs.) At November 2019, they were the largest CA,
with 112m certs for 188m domains; they had 5% of the top hundred sites but
35% of the top million. Their scale means that mistakes affect lots of sites; in
March 2020, a bug in their software meant that 3 million certi�cates covering
12 million server names had to be replaced [590].
Following the attacks on Comodo and DigiNotar, work started on mecha-

nisms to block maliciously issued certi�cates. Certi�cate transparency sets out
to do this by maintaining logs of all the certi�cates seen in the wild for each
domain, so that domain owners can rapidly spot certs that should not have
been issued for their domain. Google launched the �rst certi�cate transparency
log in 2013 and Chrome started insisting on such logs for extended validation
certi�cates in 2015. Google found that Symantec had issued certi�cates for a
number of domains (including their own) without the domain owner’s knowl-
edge [1790], and made certi�cate transparency mandatory for all CAs in 2018.

21.7 Topology

The topology of a network is the pattern in which its nodes are connected, and
this can be a signi�cant component of the security architecture.

A utility might have a number of islands, each containing a generator
or substation with dozens to hundreds of devices on a trusted network,
connected in turn via a specialised �rewall and a VPN to a network con-
trol centre.

A cloud service provider might have tens of thousands of machines
in a data centre, with hierarchies of certi�cates issued both by
the provider and its tenants determining which VMs or con-
tainers on which machines can communicate with each other.
And while the internal network may be untrusted, in the sense
that network location plays no role in access control decisions,
it may be shielded from DDoS attacks by front-end systems.

Classi�ed systems used by governments may have quite large trusted
networks operating at elevated levels, with separate LANs in buildings.

734 Chapter 21 ■ Network Attack and Defence

More complex topologies can be found where nodes are users and edges are
their presence in each others’ address books. Social-network analysis has been
applied to disciplines from epidemiology through criminology and the study
of how new technologies diffuse, to the study of harms transmitted directly
between users, such as macro viruses [1435]. Social networks can be modelled
by a graph with a power-law distribution of vertex order; a small number of
well-connected nodes help make the network resilient against random fail-
ure, and easy to navigate. Yet they also make such networks vulnerable to
targeted attack. Remove the well-connected nodes, and the network is easily
disconnected [37]. Dictators have known this intuitively; Stalin consolidated
his rule by killing the richer peasants, Pol Pot killed intellectuals, whileWilliam
the Conqueror killed the Saxon gentry. Now we have quantitative models,
they help explain why revolutionaries have tended to organise themselves in
cells [1375]; by doing traf�c analysis against just a fewwell-connected organis-
ers, a police force can identify a surprising number of members of a dissident
organisation – unless the dissidents organised in a cell structure in the �rst
place [510].

21.8 Summary

Preventing and detecting attacks that are launched over networks is the core
of a modern CISO’s job. It’s dif�cult because it involves a huge range of attack
types and security technologies. It can lead to newsworthy failures. There is
unlikely to be any magic solution, though a lot of things can help. Each new
advance opens up new things to worry about; for example, cloud services may
shift much of the network security task to a provider, but make con�guration
management more critical. Overall, the problems are so complex and messy
that managing them needs a whole-system approach with automation.
Hacking techniques depend partly on the opportunistic exploitation of

vulnerabilities introduced accidentally by the major vendors, and partly
on techniques to social-engineer people into running untrustworthy code.
However these have developed into a whole ecosystem of bad guys, which a
security engineer also needs to study and understand.

Research problems

In 2000, the centre of gravity in network security research was technical: we
were busy looking for new attacks on protocols and applications as the poten-
tial for denial-of-service attacks started to become clear. By 2010, there was
muchmore discussion of economics and policy: of how changing liability rules

Further reading 735

mightmake things better [98]. By 2020, there ismuchmorework onmetrics: on
measuring the actual wickedness that goes on, and feeding this not just into the
policy debate but also into law enforcement. At the operational level, the game
is about automation and integration – about enabling large �rms to process
large quantities of threat intelligence and network surveillance information,
turn it into actionable intelligence, and measure how effectively the network
security team is doing its job.

Further reading

The early classic on Internet security was written by Steve Bellovin and
Bill Cheswick, with Avi Rubin joining them for the second edition [222].
The seminal work on viruses is by Fred Cohen [452], while Java security is
discussed by Li Gong (who designed it) [784]. For BGP security, see our 2011
ENISA report: the full Monty is over two hundred pages, designed for people
starting a PhD in network security, but there’s a shorter executive summary
too [1910].
For a more detailed overview of malware, I might suggest Wenke Lee’s

Cybok survey paper [1139]; and Sanjah Jha’s Cybok survey of network
security provides more detail of IPSEC as well as ethernet and port-based
security [985].
I’m not aware of any good overview of the certi�cation authority ecosystem.

You might start with the 2004 oral history interview with Jim Bidzos, the
founder of Verisign [241]. The initial goal of Microsoft and Netscape was to
jump-start electronic commerce on the worldwide web; certi�cate use then
spread to passwords and software updates, and when Javascript came along,
the same origin principle shifted trust to websites. Many other players jumped
in, with some government agencies trying to undermine the CA ecosystem
and others trying to reinforce it. There’s con�ict between technical security
goals and legal goals, as well as between auditors and regulators. So there
are quite separate views on CA security from WebTrust (the American and
Canadian accountants) and ETSI (the most relevant European standards
body). For more detail, a presentation by Ryan Sleevi on what’s wrong with
the ecosystem [1789] has many pointers for those who want to dig into the
current problems, both technical and operational, and their background.

