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5.1 Introduction

Cryptography is where security engineering meets mathematics. It gives us the
tools that underlie most modern security protocols. It is the key technology for
protecting distributed systems, yet it is surprisingly hard to do right. As we’ve
already seen in Chapter 4, “Protocols,” cryptography has often been used to
protect the wrong things, or to protect them in the wrong way. Unfortunately,
the available crypto tools aren’t always very usable.

But no security engineer can ignore cryptology. A medical friend once told
me that while she was young, she worked overseas in a country where, for
economic reasons, they’d shortened their medical degrees and concentrated
on producing specialists as quickly as possible. One day, a patient who’d had
both kidneys removed and was awaiting a transplant needed her dialysis shunt
redone. The surgeon sent the patient back from the theater on the grounds that
there was no urinalysis on �le. It just didn’t occur to him that a patient with no
kidneys couldn’t produce any urine.

Just as a doctor needs to understand physiology as well as surgery, so
a security engineer needs to be familiar with at least the basics of crypto
(and much else). There are, broadly speaking, three levels at which one can
approach crypto. The �rst consists of the underlying intuitions; the second of
the mathematics that we use to clarify these intuitions, provide security proofs
where possible and tidy up the constructions that cause the most confusion;
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146 Chapter 5 ■ Cryptography

and the third is the cryptographic engineering – the tools we commonly use,
and the experience of what can go wrong with them. In this chapter, I assume
you have no training in crypto and set out to explain the basic intuitions.
I illustrate them with engineering, and sketch enough of the mathematics to
help give you access to the literature when you need it. One reason you need
some crypto know-how is that many common constructions are confusing,
and many tools offer unsafe defaults. For example, Microsoft’s Crypto API
(CAPI) nudges engineers to use electronic codebook mode; by the end of
this chapter you should understand what that is, why it’s bad, and what you
should do instead.

Many crypto textbooks assume that their readers are pure maths graduates,
so let me start off with non-mathematical de�nitions. Cryptography refers to
the science and art of designing ciphers; cryptanalysis to the science and art of
breaking them; while cryptology, often shortened to just crypto, is the study of
both. The input to an encryption process is commonly called the plaintext or
cleartext, and the output the ciphertext. Thereafter, things get somewhat more
complicated. There are a number of basic building blocks, such as block ciphers,
stream ciphers, and hash functions. Block ciphers may either have one key for
both encryption and decryption, in which case they’re called shared-key (also
secret-key or symmetric), or have separate keys for encryption and decryption,
in which case they’re called public-key or asymmetric. A digital signature scheme
is a special type of asymmetric crypto primitive.

I will �rst give some historical examples to illustrate the basic concepts. I’ll
then �ne-tune de�nitions by introducing the security models that cryptologists
use, including perfect secrecy, concrete security, indistinguishability and the
random oracle model. Finally, I’ll show how the more important cryptographic
algorithms actually work, and how they can be used to protect data. En route,
I’ll give examples of how people broke weak ciphers, and weak constructions
using strong ciphers.

5.2 Historical background

Suetonius tells us that Julius Caesar enciphered his dispatches by writing ‘D’
for ‘A’, ‘E’ for ‘B’ and so on [1847]. When Augustus Caesar ascended the throne,
he changed the imperial cipher system so that ‘C’ was now written for ‘A’, ‘D’
for ‘B’ etcetera. In modern terminology, we would say that he changed the key
from ‘D’ to ‘C’. Remarkably, a similar code was used by Bernardo Provenzano,
allegedly the capo di tutti capi of the Sicilian ma�a, who wrote ‘4’ for ‘a’, ‘5’ for
‘b’ and so on. This led directly to his capture by the Italian police in 2006 after
they intercepted and deciphered some of his messages [1538].
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The Arabs generalised this idea to the monoalphabetic substitution, in which a
keyword is used to permute the cipher alphabet. We will write the plaintext in
lower case letters, and the ciphertext in upper case, as shown in Figure 5.1:

abcdefghijklmnopqrstuvwxyz

SECURITYABDFGHJKLMNOPQVWXZ

Figure 5.1:Monoalphabetic substitution cipher

OYAN RWSGKFR AN AH RHTFANY MSOYRM OYSH SMSEAC NCMAKO; but it’s a
pencil and paper puzzle to break ciphers of this kind. The trick is that some
letters, and combinations of letters, are much more common than others; in
English the most common letters are e,t,a,i,o,n,s,h,r,d,l,u in that order. Arti�cial
intelligence researchers have experimented with programs to solve monoal-
phabetic substitutions. Using letter and digram (letter pair) frequencies alone,
they typically need about 600 letters of ciphertext; smarter strategies such as
guessing probable words can cut this to about 150 letters; and state-of-the-art
systems that use neural networks and approach the competence of human
analysts are also tested on deciphering ancient scripts such as Ugaritic and
Linear B [1196].

There are basically two ways to make a stronger cipher – the stream cipher
and the block cipher. In the former, you make the encryption rule depend on
a plaintext symbol’s position in the stream of plaintext symbols, while in the
latter you encrypt several plaintext symbols at once in a block.

5.2.1 An early stream cipher – the Vigenère

This early stream cipher is commonly ascribed to the Frenchman Blaise de
Vigenère, a diplomat who served King Charles IX. It works by adding a key
repeatedly into the plaintext using the convention that ‘A’ = 0, ‘B’ = 1, … , ‘Z’
= 25, and addition is carried out modulo 26 – that is, if the result is greater than
25, we subtract as many multiples of 26 as are needed to bring it into the range
[0, … , 25], that is, [A, … , Z]. Mathematicians write this as

C = P + K mod 26

So, for example, when we add P (15) to U (20) we get 35, which we reduce to
9 by subtracting 26. 9 corresponds to J, so the encryption of P under the key U
(and of U under the key P) is J, or more simply U + P = J. In this notation, Julius
Caesar’s system used a �xed key K = D, while Augustus Caesar’s used K = C
and Vigenère used a repeating key, also known as a running key. Techniques
were developed to do this quickly, ranging from printed tables to brass cipher
wheels. Whatever the technology, the encryption using a repeated keyword for
the key would look as shown in Figure 5.2:
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Plain tobeornottobethatisthequestion

Key runrunrunrunrunrunrunrunrunrun

Cipher KIOVIEEIGKIOVNURNVJNUVKHVMGZIA

Figure 5.2: Vigenère (polyalphabetic substitution cipher)

A number of people appear to have worked out how to solve polyalphabetic
ciphers, from the womaniser Giacomo Casanova to the computing pioneer
Charles Babbage. But the �rst published solution was in 1863 by Friedrich
Kasiski, a Prussian infantry of�cer [1023]. He noticed that given a long enough
piece of ciphertext, repeated patterns will appear at multiples of the keyword
length.

In Figure 5.2, for example, we see ‘KIOV’ repeated after nine letters, and ‘NU’
after six. Since three divides both six and nine, we might guess a keyword of
three letters. Then ciphertext letters one, four, seven and so on were all enci-
phered under the same keyletter; so we can use frequency analysis techniques
to guess the most likely values of this letter, and then repeat the process for the
remaining letters of the key.

5.2.2 The one-time pad

One way to make a stream cipher of this type proof against attacks is for the
key sequence to be as long as the plaintext, and to never repeat. This is known
as the one-time pad and was proposed by Gilbert Vernam during World War
I [1003]; given any ciphertext, and any plaintext of the same length, there’s a
key that decrypts the ciphertext to the plaintext. So regardless of the amount of
computation opponents can do, they’re none the wiser, as given any ciphertext,
all possible plaintexts of that length are equally likely. This system therefore has
perfect secrecy.

Here’s an example. Suppose you had intercepted a message from a wartime
German agent which you knew started with ‘Heil Hitler’, and the �rst ten let-
ters of ciphertext were DGTYI BWPJA. So the �rst ten letters of the one-time pad
were wclnb tdefj, as shown in Figure 5.3:

Plain heilhitler

Key wclnbtdefj

Cipher DGTYIBWPJA

Figure 5.3: A spy’s message

But once he’s burnt the piece of silk with his key material, the spy can claim
that he’s actually a member of the underground resistance, and the message
actually said ‘Hang Hitler’. This is also possible, as the key material could just
as easily have been wggsb tdefj, as shown in Figure 5.4:
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Cipher DGTYIBWPJA

Key wggsbtdefj

Plain hanghitler

Figure 5.4:What the spy can claim he said

Now we rarely get anything for nothing in cryptology, and the price of the
perfect secrecy of the one-time pad is that it fails completely to protect message
integrity. So if you wanted to get this spy into trouble, you could change the
ciphertext to DCYTI BWPJA (Figure 5.5):

Cipher DCYTIBWPJA

Key wclnbtdefj

Plain hanghitler

Figure 5.5:Manipulating the message to entrap the spy

Leo Marks’ engaging book on cryptography in the Special Operations Exec-
utive in World War II [1226] relates how one-time key material was printed on
silk, which agents could conceal inside their clothing; whenever a key had been
used it was torn off and burnt. In fact, during the war, Claude Shannon proved
that a cipher has perfect secrecy if and only if there are as many possible keys
as possible plaintexts, and every key is equally likely; so the one-time pad is
the only kind of system that offers perfect secrecy. He was �nally allowed to
publish this in 1948 [1717, 1718].

The one-time tape was used for top-level communications by both sides from
late in World War II, then for strategic communications between NATO allies,
and for the US-USSR hotline from 1963. Thousands of machines were produced
in total, using paper tapes for key material, until they were eventually replaced
by computers from the mid-1980s1. But such cryptography is too expensive for
most applications as it consumes as much key material as there is traf�c. It’s
more common for stream ciphers to use a pseudorandom number generator
to expand a short key into a long keystream. The data is then encrypted by
combining the keystream, one symbol at a time, with the data. It’s not enough
for the keystream to appear “random” in the sense of passing the standard
statistical randomness tests: it must also have the property that an opponent
who gets his hands on even quite a lot of keystream symbols should not be able
to predict any more of them.

1Information about the machines can be seen at the Crypto Museum, https://www
.cryptomuseum.com.

https://www.cryptomuseum.com
https://www.cryptomuseum.com
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An early example was rotor machines, mechanical stream-cipher devices that
produce a very long sequence of pseudorandom states2 and combine them
with plaintext to get ciphertext. These machines were independently invented
by a number of people from the 1920s, many of whom tried to sell them to the
banking industry. Banks weren’t in general interested, for reasons we’ll dis-
cuss below, but rotor machines were very widely used by the combatants in
World War II to encipher radio traf�c, and the efforts made by the Allies to deci-
pher German traf�c included the work by Alan Turing and others on Colossus,
which helped kickstart the computer industry after the war.

Stream ciphers have been widely used in hardware applications where the
number of gates had to be minimised to save power. However, block ciphers
are more �exible and are more common in systems being designed now, so let’s
look at them next.

5.2.3 An early block cipher – Playfair

The Playfair cipher was invented in 1854 by Sir Charles Wheatstone, a tele-
graph pioneer who also invented the concertina and the Wheatstone bridge.
The reason it’s not called the Wheatstone cipher is that he demonstrated it to
Baron Playfair, a politician; Playfair in turn demonstrated it to Prince Albert
and to Viscount Palmerston (later Prime Minister), on a napkin after dinner.

This cipher uses a 5 by 5 grid, in which we place the alphabet, permuted by
the key word, and omitting the letter ‘J’ (see Figure 5.6):

P A L M E

R S T O N

B C D F G

H I K Q U

V W X Y Z

Figure 5.6: The Playfair enciphering table

The plaintext is �rst conditioned by replacing ‘J’ with ‘I’ wherever it occurs,
then dividing it into letter pairs, preventing double letters occurring in a pair by
separating them with an ‘x’, and �nally adding a ‘z’ if necessary to complete the
last letter pair. The example Playfair wrote on his napkin was ‘Lord Granville’s
letter’ which becomes ‘lo rd gr an vi lx le sl et te rz’.

2letters in the case of the Hagelin machine used by the USA, permutations in the case of the
German Enigma and the British Typex
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Plain lo rd gr an vi lx le sl et te rz

Cipher MT TB BN ES WH TL MP TA LN NL NV

Figure 5.7: Example of Playfair enciphering

It is then enciphered two letters at a time using the following rules:

if the two letters are in the same row or column, they are replaced
by the succeeding letters. For example, ‘am’ enciphers to ‘LE’;

otherwise the two letters stand at two of the corners of a rectangle
in the table, and we replace them with the letters at the other two
corners of this rectangle. For example, ‘lo’ enciphers to ‘MT’.

We can now encipher our specimen text as follows:
Variants of this cipher were used by the British army as a �eld cipher in World

War I, and by the Americans and Germans in World War II. It’s a substan-
tial improvement on Vigenère as the statistics that an analyst can collect are
of digraphs (letter pairs) rather than single letters, so the distribution is much
�atter and more ciphertext is needed for an attack.

Again, it’s not enough for the output of a block cipher to just look intuitively
“random”. Playfair ciphertexts look random; but they have the property that
if you change a single letter of a plaintext pair, then often only a single letter
of the ciphertext will change. Thus using the key in Figure 5.7, rd enciphers to
TB while rf enciphers to OB and rg enciphers to NB. One consequence is that
given enough ciphertext, or a few probable words, the table (or an equivalent
one) can be reconstructed [740]. In fact, the quote at the head of this chapter
is a Playfair-encrypted message sent by the future President Jack Kennedy
when he was a young lieutenant holed up on a small island with ten other sur-
vivors after his motor torpedo boat had been sunk in a collision with a Japanese
destroyer. Had the Japanese intercepted it, they might possibly have decrypted
it, and history could be different. For a stronger cipher, we will want the effects
of small changes in the cipher’s input to diffuse completely through its out-
put. Changing one input bit should, on average, cause half of the output bits
to change. We’ll tighten these ideas up in the next section.

The security of a block cipher can also be greatly improved by choosing a
longer block length than two characters. For example, theData Encryption Stan-
dard (DES), which is widely used in payment systems, has a block length of 64
bits and the Advanced Encryption Standard (AES), which has replaced it in most
other applications, has a block length of twice this. I discuss the internal details
of DES and AES below; for the time being, I’ll just remark that we need more
than just an adequate block size.

For example, if a bank account number always appears at the same place
in a transaction, then it’s likely to produce the same ciphertext every time a
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transaction involving it is encrypted with the same key. This might allow an
opponent to cut and paste parts of two different ciphertexts in order to produce
a valid but unauthorised transaction. Suppose a crook worked for a bank’s
phone company, and monitored an enciphered transaction that he knew said
“Pay IBM $10,000,000”. He might wire $1,000 to his brother causing the bank
computer to insert another transaction saying “Pay John Smith $1,000”, inter-
cept this instruction, and make up a false instruction from the two ciphertexts
that decrypted as “Pay John Smith $10,000,000”. So unless the cipher block is
as large as the message, the ciphertext will contain more than one block and
we’ll need some way of binding the blocks together.

5.2.4 Hash functions

The third classical type of cipher is the hash function. This evolved to protect
the integrity and authenticity of messages, where we don’t want someone to
be able to manipulate the ciphertext in such a way as to cause a predictable
change in the plaintext.

After the invention of the telegraph in the mid-19th century, banks rapidly
became its main users and developed systems for transferring money electron-
ically. What’s ‘wired’ is a payment instruction, such as:

‘To Lombard Bank, London. Please pay from our account with you no.
1234567890 the sum of £1000 to John Smith of 456 Chesterton Road, who has
an account with HSBC Bank Cambridge no. 301234 4567890123, and notify
him that this was for “wedding present from Doreen Smith”. From First Cowboy
Bank of Santa Barbara, CA, USA. Charges to be paid by us.’

Since telegraph messages were relayed from one of�ce to another by human
operators, it was possible for an operator to manipulate a payment message.

In the nineteenth century, banks, telegraph companies and shipping com-
panies developed code books that could not only protect transactions but also
shorten them – which was important given the costs of international telegrams
at the time. A code book was essentially a block cipher that mapped words or
phrases to �xed-length groups of letters or numbers. So “Please pay from our
account with you no.” might become ‘AFVCT’. Sometimes the codes were also
enciphered.

The banks realised that neither stream ciphers nor code books protect mes-
sage authenticity. If, for example, the codeword for ‘1000’ is ‘mauve’ and for
‘1,000,000’ is ‘magenta’, then the crooked telegraph clerk who can compare the
coded traf�c with known transactions should be able to �gure this out and
substitute one for the other.

The critical innovation, for the banks’ purposes, was to use a code book but
to make the coding one-way by adding the code groups together into a number
called a test key. (Modern cryptographers would describe it as a hash value or
message authentication code, terms I’ll de�ne more carefully later.)
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Here is a simple example. Suppose the bank has a code book with a table of
numbers corresponding to payment amounts as in Figure 5.8.

0 1 2 3 4 5 6 7 8 9

x 1000 14 22 40 87 69 93 71 35 06 58

x 10,000 73 38 15 46 91 82 00 29 64 57

x 100,000 95 70 09 54 82 63 21 47 36 18

x 1,000,000 53 77 66 29 40 12 31 05 87 94

Figure 5.8: A simple test key system

Now in order to authenticate a transaction for £376,514 we might add
together 53 (no millions), 54 (300,000), 29 (70,000) and 71 (6,000) ignoring the
less signi�cant digits. This gives us a test key of 207.

Most real systems were more complex than this; they usually had tables for
currency codes, dates and even recipient account numbers. In the better sys-
tems, the code groups were four digits long rather than two, and in order to
make it harder for an attacker to reconstruct the tables, the test keys were com-
pressed: a key of ‘7549’ might become ‘23’ by adding the �rst and second digits,
and the third and fourth digits, ignoring the carry.

This made such test key systems into one-way functions in that although it
was possible to compute a test from a message, given knowledge of the key, it
was not possible to reverse the process and recover either a message or a key
from a single test – the test just did not contain enough information. Indeed,
one-way functions had been around since at least the seventeenth century. The
scientist Robert Hooke published in 1678 the sorted anagram ‘ceiiinosssttuu’
and revealed two years later that it was derived from ‘Ut tensio sic uis’ – ‘the
force varies as the tension’, or what we now call Hooke’s law for a spring. (The
goal was to establish priority for the idea while giving him time to do more
work on it.)

Banking test keys are not strong by the standards of modern cryptography.
Given between a few dozen and a few hundred tested messages, depending
on the design details, a patient analyst could reconstruct enough of the tables
to forge a transaction. With a few carefully chosen messages inserted into the
banking system by an accomplice, it’s even easier. But the banks got away
with it: test keys worked �ne from the late nineteenth century through the
1980s. In several years working as a bank security consultant, and listening
to elderly auditors’ tales over lunch, I only ever heard of two cases of fraud
that exploited it: one external attempt involving cryptanalysis, which failed
because the attacker didn’t understand bank procedures, and one successful
but small fraud involving a crooked staff member. I’ll discuss the systems that
replaced test keys in the chapter on Banking and Bookkeeping.
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However, test keys are our historical example of an algebraic function
used for authentication. They have important modern descendants in the
authentication codes used in the command and control of nuclear weapons,
and also with modern block ciphers. The idea in each case is the same: if you
can use a unique key to authenticate each message, simple algebra can give
you ideal security. Suppose you have a message M of arbitrary length and
want to compute an authentication code or tag A of 128 bits length, and the
property you want is that nobody should be able to �nd a different message
M′ whose authentication code under the same key will also be A, unless
they know the key, except by a lucky guess for which the probability is 2−128.
You can simply choose a 128-bit prime number p and compute A = k1M + k2

(mod p) where the key consists of two 128-bit numbers k1 and k2.
This is secure for the same reason the one-time pad is: given any other mes-

sage M′ you can �nd another key (k′
1
, k′

2
) that authenticates M′ to A. So without

knowledge of the key, the adversary who sees M and A simply has no infor-
mation of any use in creating a valid forgery. As there are 256 bits of key and
only 128 bits of tag, this holds even for an adversary with unlimited comput-
ing power: such an adversary can �nd the 2128 possible keys for each pair of
message and tag but has no way to choose between them. I’ll discuss how this
universal hash function is used with block ciphers below, and how it’s used in
nuclear command and control in Part 2.

5.2.5 Asymmetric primitives

Finally, some modern cryptosystems are asymmetric, in that different keys are
used for encryption and decryption. So, for example, most web sites nowadays
have a certi�cate containing a public key with which people can encrypt their
session using a protocol called TLS; the owner of the web page can decrypt the
traf�c using the corresponding private key. We’ll go into the details later.

There are some pre-computer examples of this too; perhaps the best is the
postal service. You can send me a private message by addressing it to me and
dropping it into a post box. Once that’s done, I’m the only person who’ll be
able to read it. Of course, many things can go wrong: you might get the wrong
address for me (whether by error or as a result of deception); the police might
get a warrant to open my mail; the letter might be stolen by a dishonest post-
man; a fraudster might redirect my mail without my knowledge; or a thief
might steal the letter from my doormat. Similar things can go wrong with
public key cryptography: false public keys can be inserted into the system,
computers can be hacked, people can be coerced and so on. We’ll look at these
problems in more detail in later chapters.

Another asymmetric application of cryptography is the digital signature. The
idea here is that I can sign a message using a private signature key and then
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anybody can check this using my public signature veri�cation key. Again, there
are pre-computer analogues in the form of manuscript signatures and seals;
and again, there is a remarkably similar litany of things that can go wrong,
both with the old way of doing things and with the new.

5.3 Security models

Before delving into the detailed design of modern ciphers, I want to look more
carefully at the various types of cipher and the ways in which we can reason
about their security.

Security models seek to formalise the idea that a cipher is “good”. We’ve
already seen the model of perfect secrecy: given any ciphertext, all possible plain-
texts of that length are equally likely. Similarly, an authentication scheme that
uses a key only once can be designed so that the best forgery attack on it is a
random guess, whose probability of success can be made as low as we want by
choosing a long enough tag.

The second model is concrete security, where we want to know how much
actual work an adversary has to do. At the time of writing, it takes the most
powerful adversary in existence – the community of bitcoin miners, burning
about as much electricity as the state of Denmark – about ten minutes to solve
a 68-bit cryptographic puzzle and mine a new block. So an 80-bit key would
take them 212 times as long, or about a month; a 128-bit key, the default in
modern systems, is 248 times harder again. So even in 1000 years the probability
of �nding the right key by chance is 2−35 or one in many billion. In general, a
system is (t, �)-secure if an adversary working for time t succeeds in breaking
the cipher with probability at most �.

The third model, which many theoreticians now call the standard model,
is about indistinguishability. This enables us to reason about the speci�c
properties of a cipher we care about. For example, most cipher systems
don’t hide the length of a message, so we can’t de�ne a cipher to be secure
by just requiring that an adversary not be able to distinguish ciphertexts
corresponding to two messages; we have to be more explicit and require that
the adversary not be able to distinguish between two messages M1 and M2
of the same length. This is formalised by having the cryptographer and the
cryptanalyst play a game in which the analyst wins by �nding an ef�cient
discriminator of something she shouldn’t be able to discriminate with more
than negligible probability. If the cipher doesn’t have perfect security this can
be asymptotic, where we typically want the effort to grow faster than any poly-
nomial function of a security parameter n – say the length of the key in bits.
A security proof typically consists of a reduction where we show that if there
exists a randomised (i.e., probabilistic) algorithm running in time polynomial
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in n that learns information it shouldn’t with non-negligible probability, then
this would give an ef�cient discriminator for an underlying cryptographic
primitive that we already trust. Finally, a construction is said to have semantic
security if there’s no ef�cient distinguisher for the plaintext regardless of any
side information the analyst may have about it; even if she knows all but one
bit of it, and even if she can get a decryption of any other ciphertext, she can’t
learn anything more from the target ciphertext. This skips over quite a few
mathematical details, which you can �nd in a standard text such as Katz and
Lindell [1025].

The fourth model is the random oracle model, which is not as general as the
standard model but which often leads to more ef�cient constructions. We call a
cryptographic primitive pseudorandom if there’s no ef�cient way of distinguish-
ing it from a random function of that type, and in particular it passes all the
statistical and other randomness tests we apply. Of course, the cryptographic
primitive will actually be an algorithm, implemented as an array of gates in
hardware or a program in software; but the outputs should “look random” in
that they’re indistinguishable from a suitable random oracle given the type and
the number of tests that our model of computation permits.

To visualise a random oracle, we might imagine an elf sitting in a black
box with a source of physical randomness and some means of storage (see
Figure 5.9) – represented in our picture by the dice and the scroll. The elf will
accept inputs of a certain type, then look in the scroll to see whether this query
has ever been answered before. If so, it will give the answer it �nds there; if
not, it will generate an answer at random by throwing the dice, and keep a
record for future reference. We’ll further assume �nite bandwidth – the elf

Figure 5.9: The random oracle
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will only answer so many queries every second. What’s more, our oracle can
operate according to several different rules.

5.3.1 Random functions – hash functions

The �rst type of random oracle is the random function. A random function
accepts an input string of any length and outputs a string of �xed length, say n
bits long. The same input gives the same output, but the set of outputs appears
random. So the elf just has a simple list of inputs and outputs, which grows
steadily as it works.

Random functions are our model for cryptographic hash functions. These were
�rst used in computer systems for one-way encryption of passwords in the
1960s and have many more uses today. For example, if the police seize your
laptop, the standard forensic tools will compute checksums on all the �les, to
identify which �les are already known (such as system �les) and which are
novel (such as user data). These hash values will change if a �le is corrupted
and so can assure the court that the police haven’t tampered with evidence.
And if we want evidence that we possessed a given electronic document
by a certain date, we might submit it to an online time-stamping service or
have it mined into the Bitcoin blockchain. However, if the document is still
secret – for example an invention for which we want to establish a priority
date – then we would not upload the whole document, but just the message
hash. This is the modern equivalent of Hooke’s anagram that we discussed in
section 5.2.4 above.

5.3.1.1 Properties

The �rst main property of a random function is one-wayness. Given knowl-
edge of an input x we can easily compute the hash value h(x), but it is very
dif�cult given h(x) to �nd x if such an input is not already known. (The elf
will only pick outputs for given inputs, not the other way round.) As the out-
put is random, the best an attacker can do to invert a random function is to
keep on feeding in more inputs until he gets lucky; with an n-bit output this
will take about 2n−1 guesses on average. A pseudorandom function will have
the same properties, or they could be used to distinguish it from a random
function, contrary to our de�nition. So a pseudorandom function will also be
a one-way function, provided there are too many possible outputs for the oppo-
nent to guess an input that has a desired target output by chance. This means
choosing n so that the opponent can’t do anything near 2n computations. If we
claim, for example, that SHA256 is a pseudorandom function, then we’re say-
ing that there’s no practical way to �nd an input that hashes to a given 256-bit
value, unless you knew it already and used it to compute that value.
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A second property of pseudorandom functions is that the output will not give
any information at all about even part of the input. So we can get a one-way
encryption of the value x by concatenating it with a secret key k and computing
h(x, k). If the hash function isn’t random enough, though, using it for one-way
encryption in this manner is asking for trouble. (I’ll discuss an example later in
section 22.3.1: the hash function used by many phone companies in the 1990s
and early 2000s to authenticate mobile phone users wasn’t random enough,
which led to attacks.)

A third property of pseudorandom functions with suf�ciently long outputs is
that it is hard to �nd collisions, that is, different messagesM1 ≠ M2 with h(M1) =

h(M2). Unless the opponent can �nd a shortcut attack (which would mean the
function wasn’t pseudorandom) then the best way of �nding a collision is to
collect a large set of messagesMi and their corresponding hashes h(Mi), sort the
hashes, and look for a match. If the hash function output is an n-bit number, so
that there are 2n possible hash values, then the number of hashes the enemy will
need to compute before he can expect to �nd a match will be about the square
root of this, namely 2n∕2 hashes. This fact is of huge importance in security
engineering, so let’s look at it more closely.

5.3.1.2 The birthday theorem

The birthday theorem gets its name from the following problem. A maths
teacher asks a class of 30 pupils what they think is the probability that two
of them have the same birthday. Most pupils intuitively think it’s unlikely,
and the maths teacher then asks the pupils to state their birthdays one after
another. The odds of a match exceed 50% once 23 pupils have been called.
As this surprises most people, it’s also known as the ‘birthday paradox’.

The birthday theorem was �rst used in the 1930’s to count �sh, so it’s also
known as capture-recapture statistics [1668]. Suppose there are N �sh in a lake
and you catch m of them, ring them and throw them back, then when you �rst
catch a �sh you’ve ringed already, m should be ‘about’ the square root of N.

The intuitive reason why this holds is that once you have
√

N samples, each
could potentially match any of the others, so the number of possible matches

is about
√

N x
√

N or N, which is what you need3.
This theorem has many applications for the security engineer. For example,

if we have a biometric system that can authenticate a person’s claim to identity
with a probability of only one in a million that two randomly selected subjects
will be falsely identi�ed as the same person, this doesn’t mean that we can use
it as a reliable means of identi�cation in a university with a user population of

3More precisely, the probability that m �sh chosen randomly from N �sh are different is
� = N(N − 1) … (N −m + 1)∕Nm which is asymptotically solved by N ≃ m2∕2log(1∕�) [1039].
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twenty thousand staff and students. This is because there will be almost two
hundred million possible pairs. In fact, you expect to �nd the �rst collision – the
�rst pair of people who can be mistaken for each other by the system – once
you have somewhat over a thousand people enrolled. It may well, however,
be OK to use it to verify a claimed identity (though many other things can go
wrong; see the chapter on Biometrics in Part 2 for a discussion).

There are some applications where collision-search attacks aren’t a problem,
such as in challenge-response protocols where an attacker has to �nd the
answer to the challenge just issued, and where you can prevent challenges
repeating. In identify-friend-or-foe (IFF) systems, for example, common
equipment has a response length of 48 to 80 bits. You can’t afford much more
than that, as it costs radar accuracy.

But there are other applications in which collisions are unacceptable. When
we design digital signature systems, we typically pass the message M through
a cryptographic hash function �rst, and then sign the hash h(M), for a num-
ber of reasons we’ll discuss later. In such an application, if it were possible
to �nd collisions with h(M1) = h(M2) but M1 ≠ M2, then a Ma�a owned book-
store’s web site might precalculate suitable pairs M1,M2, get you to sign an M1

saying something like “I hereby order a copy of Rubber Fetish volume 7 for
$32.95” and then present the signature together with an M2 saying something
like “I hereby mortgage my house for $75,000 and please send the funds to
Ma�a Holdings Inc., Bermuda.”

For this reason, hash functions used with digital signature schemes have
n large enough to make them collision-free. Historically, the two most com-
mon hash functions have been MD5, which has a 128-bit output and will thus
require at most 264 computations to break, and SHA1 with a 160-bit output
and a work factor for the cryptanalyst of at most 280. However, collision search
gives at best an upper bound on the strength of a hash function, and both these
particular functions have turned out to be disappointing, with cryptanalytic
attacks that I’ll describe later in section 5.6.2.

To sum up: if you need a cryptographic hash function to be collision resistant,
then you’d better choose a function with an output of at least 256 bits, such as
SHA-2 or SHA-3. However if you only need to be sure that nobody will �nd a
second preimage for an existing, externally given hash, then you can perhaps
make do with less.

5.3.2 Random generators – stream ciphers

The second basic cryptographic primitive is the random generator, also known
as a keystream generator or stream cipher. This is also a random function, but it’s
the reverse of the hash function in that it has a short input and a long output.
If we had a good pseudorandom function whose input and output were long
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enough, we could turn it into a hash function by throwing away all but a few
hundred bits of the output, and turn it into a stream cipher by padding all
but a few hundred bits of the input with a constant and using the output as a
keystream.

It can be used to protect the con�dentiality of our backup data as follows:
we go to the keystream generator, enter a key, get a long �le of random bits,
and exclusive-or it with our plaintext data to get ciphertext, which we then
send to our backup service in the cloud. (This is also called an additive stream
cipher as exclusive-or is addition modulo 2.) We can think of the elf generating
a random tape of the required length each time he is presented with a new key,
giving it to us and keeping a copy on his scroll for reference in case he’s given
the same input key again. If we need to recover the data, we go back to the
generator, enter the same key, get the same keystream, and exclusive-or it with
our ciphertext to get our plaintext back again. Other people with access to the
keystream generator won’t be able to generate the same keystream unless they
know the key. Note that this would not give us any guarantee of �le integrity; as
we saw in the discussion of the one-time pad, adding a keystream to plaintext
can protect con�dentiality, but it can’t detect modi�cation of the �le. For that,
we might make a hash of the �le and keep that somewhere safe. It may be easier
to protect the hash from modi�cation than the whole �le.

One-time pad systems are a close �t for our theoretical model, except in that
they are used to secure communications across space rather than time: the
two communicating parties have shared a copy of a keystream in advance.
Vernam’s original telegraph cipher machine used punched paper tape; Marks
describes how SOE agents’ silken keys were manufactured in Oxford by retired
ladies shuf�ing counters; we’ll discuss modern hardware random number gen-
erators in the chapter on Physical Security.

A real problem with keystream generators is to prevent the same keystream
being used more than once, whether to encrypt more than one backup tape or
to encrypt more than one message sent on a communications channel. During
World War II, the amount of Russian diplomatic traf�c exceeded the quantity
of one-time tape they had distributed in advance to their embassies, so it was
reused. But if M1 + K = C1 and M2 + K = C2, then the opponent can combine
the two ciphertexts to get a combination of two messages: C1 − C2 = M1 −M2,
and if the messages Mi have enough redundancy then they can be recovered.
Text messages do in fact contain enough redundancy for much to be recovered;
in the case of the Russian traf�c this led to the Venona project in which the US
and UK decrypted large amounts of wartime Russian traf�c from 1943 onwards
and broke up a number of Russian spy rings. In the words of one former NSA
chief scientist, it became a “two-time tape”.

To avoid this, the normal engineering practice is to have not just a key but also
a seed (also known as an initialisation vector or IV) so we start the keystream at a
different place each time. The seed N may be a sequence number, or generated
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from a protocol in a more complex way. Here, you need to ensure that both par-
ties synchronise on the right working key even in the presence of an adversary
who may try to get you to reuse old keystream.

5.3.3 Random permutations – block ciphers

The third type of primitive, and the most important in modern cryptography, is
the block cipher, which we model as a random permutation. Here, the function
is invertible, and the input plaintext and the output ciphertext are of a �xed
size. With Playfair, both input and output are two characters; with DES, they’re
both bit strings of 64 bits. Whatever the number of symbols and the underlying
alphabet, encryption acts on a block of �xed length. (So if you want to encrypt
a shorter input, you have to pad it as with the �nal ‘z’ in our Playfair example.)

We can visualise block encryption as follows. As before, we have an elf in a
box with dice and a scroll. This has on the left a column of plaintexts and on
the right a column of ciphertexts. When we ask the elf to encrypt a message, it
checks in the left-hand column to see if it has a record of it. If not, it rolls the
dice to generate a random ciphertext of the appropriate size (and which doesn’t
appear yet in the right-hand column of the scroll), and then writes down the
plaintext/ciphertext pair in the scroll. If it does �nd a record, it gives us the
corresponding ciphertext from the right-hand column.

When asked to decrypt, the elf does the same, but with the function of the
columns reversed: he takes the input ciphertext, looks for it on the right-hand
scroll, and if he �nds it he gives the message with which it was previously
associated. If not, he generates a new message at random, notes it down and
gives it to us.

A block cipher is a keyed family of pseudorandom permutations. For each
key, we have a single permutation that’s independent of all the others. We can
think of each key as corresponding to a different scroll. The intuitive idea is
that a cipher machine should output the ciphertext given the plaintext and the
key, and output the plaintext given the ciphertext and the key, but given only
the plaintext and the ciphertext it should output nothing. Furthermore, nobody
should be able to infer any information about plaintexts or ciphertexts that it
has not yet produced.

We will write a block cipher using the notation established for encryption in
the chapter on protocols:

C = {M}K

The random permutation model also allows us to de�ne different types of
attack on block ciphers. In a known plaintext attack, the opponent is just given a
number of randomly chosen inputs and outputs from the oracle corresponding
to a target key. In a chosen plaintext attack, the opponent is allowed to put a
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certain number of plaintext queries and get the corresponding ciphertexts. In
a chosen ciphertext attack he gets to make a number of ciphertext queries. In a
chosen plaintext/ciphertext attack he is allowed to make queries of either type.
Finally, in a related key attack he can make queries that will be answered using
keys related to the target key K, such as K + 1 and K + 2.

In each case, the objective of the attacker may be either to deduce the answer
to a query he hasn’t already made (a forgery attack), or to recover the key (unsur-
prisingly known as a key recovery attack).

This precision about attacks is important. When someone discovers a vul-
nerability in a cryptographic primitive, it may or may not be relevant to your
application. Often it won’t be, but will have been hyped by the media – so you
will need to be able to explain clearly to your boss and your customers why
it’s not a problem. So you have to look carefully to �nd out exactly what kind
of attack has been found, and what the parameters are. For example, the �rst
major attack announced on the Data Encryption Standard algorithm (differ-
ential cryptanalysis) required 247 chosen plaintexts to recover the key, while
the next major attack (linear cryptanalysis) improved this to 243 known plain-
texts. While these attacks were of huge scienti�c importance, their practical
engineering effect was zero, as no practical systems make that much known
text (let alone chosen text) available to an attacker. Such impractical attacks
are often referred to as certi�cational as they affect the cipher’s security certi�-
cation rather than providing a practical exploit. They can have a commercial
effect, though: the attacks on DES undermined con�dence and started mov-
ing people to other ciphers. In some other cases, an attack that started off as
certi�cational has been developed by later ideas into an exploit.

Which sort of attacks you should be worried about depends on your
application. With a broadcast entertainment system, for example, a hacker can
buy a decoder, watch a lot of movies and compare them with the enciphered
broadcast signal; so a known-plaintext attack might be the main threat. But
there are surprisingly many applications where chosen-plaintext attacks are
possible. A historic example is from World War II, where US analysts learned
of Japanese intentions for an island ‘AF’ which they suspected meant Midway.
So they arranged for Midway’s commander to send an unencrypted message
reporting problems with its fresh water condenser, and then intercepted a
Japanese report that ‘AF is short of water’. Knowing that Midway was the
Japanese objective, Admiral Chester Nimitz was waiting for them and sank
four Japanese carriers, turning the tide of the war [1003].

The other attacks are more specialised. Chosen plaintext/ciphertext attacks may
be a worry where the threat is a lunchtime attack: someone who gets temporary
access to a cryptographic device while its authorised user is out, and tries out
the full range of permitted operations for a while with data of their choice.
Related-key attacks are a concern where the block cipher is used as a build-
ing block in the construction of a hash function (which we’ll discuss below).
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To exclude all such attacks, the goal is semantic security, as discussed above; the
cipher should not allow the inference of unauthorised information (whether of
plaintexts, ciphertexts or keys) other than with negligible probability.

5.3.4 Public key encryption and trapdoor one-way
permutations

A public-key encryption algorithm is a special kind of block cipher in which the
elf will perform the encryption corresponding to a particular key for anyone
who requests it, but will do the decryption operation only for the key’s owner.
To continue with our analogy, the user might give a secret name to the scroll
that only she and the elf know, use the elf’s public one-way function to compute
a hash of this secret name, publish the hash, and instruct the elf to perform
the encryption operation for anybody who quotes this hash. This means that a
principal, say Alice, can publish a key and if Bob wants to, he can now encrypt
a message and send it to her, even if they have never met. All that is necessary
is that they have access to the oracle.

The simplest variation is the trapdoor one-way permutation. This is a computa-
tion that anyone can perform, but which can be reversed only by someone who
knows a trapdoor such as a secret key. This model is like the ‘one-way function’
model of a cryptographic hash function. Let us state it formally nonetheless: a
public key encryption primitive consists of a function which given a random
input R will return two keys, KR (the public encryption key) and KR−1 (the
private decryption key) with the properties that

1. Given KR, it is infeasible to compute KR−1 (so it’s not possible to com-
pute R either);

2. There is an encryption function {…} which, applied to a message M
using the encryption key KR, will produce a ciphertext C = {M}KR; and

3. There is a decryption function which, applied to a ciphertext C using the
decryption key KR−1, will produce the original message M = {C}KR−1 .

For practical purposes, we will want the oracle to be replicated at both ends
of the communications channel, and this means either using tamper-resistant
hardware or (more commonly) implementing its functions using mathematics
rather than metal.

In most real systems, the encryption is randomised, so that every time
someone uses the same public key to encrypt the same message, the answer
is different; this is necessary for semantic security, so that an opponent cannot
check whether a guess of the plaintext of a given ciphertext is correct. There
are even more demanding models than this, for example to analyse security
in the case where the opponent can get ciphertexts of their choice decrypted,
with the exception of the target ciphertext. But this will do for now.
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5.3.5 Digital signatures

The �nal cryptographic primitive we’ll de�ne here is the digital signature. The
basic idea is that a signature on a message can be created by only one principal,
but checked by anyone. It can thus perform the same function in the electronic
world that ordinary signatures do in the world of paper. Applications include
signing software updates, so that a PC can tell that an update to Windows was
really produced by Microsoft rather than by a foreign intelligence agency.

Signature schemes, too, can be deterministic or randomised: in the �rst,
computing a signature on a message will always give the same result and in
the second, it will give a different result. (The latter is more like handwritten
signatures; no two are ever alike but the bank has a means of deciding whether
a given specimen is genuine or forged.) Also, signature schemes may or may
not support message recovery. If they do, then given the signature, anyone can
recover the message on which it was generated; if they don’t, then the veri�er
needs to know or guess the message before they can perform the veri�cation.

Formally, a signature scheme, like a public key encryption scheme, has a key-
pair generation function which given a random input R will return two keys,
�R (the private signing key) andVR (the public signature veri�cation key) with
the properties that

1. Given the public signature veri�cation key VR, it is infeasible to compute
the private signing key �R;

2. There is a digital signature function which given a message M and a
private signature key �R, will produce a signature Sig�R{M}; and

3. There is a veri�cation function which, given a signature Sig�R{M} and
the public signature veri�cation key VR, will output TRUE if the signa-
ture was computed correctly with �R and otherwise output FALSE.

Where we don’t need message recovery, we can model a simple digital sig-
nature algorithm as a random function that reduces any input message to a
one-way hash value of �xed length, followed by a special kind of block cipher
in which the elf will perform the operation in one direction, known as signa-
ture, for only one principal. In the other direction, it will perform veri�cation
for anybody.

For this simple scheme, signature veri�cation means that the elf (or the
signature veri�cation algorithm) only outputs TRUE or FALSE depending
on whether the signature is good. But in a scheme with message recovery,
anyone can input a signature and get back the message corresponding to it.
In our elf model, this means that if the elf has seen the signature before, it
will give the message corresponding to it on the scroll, otherwise it will give
a random value (and record the input and the random output as a signature
and message pair). This is sometimes desirable: when sending short messages
over a low bandwidth channel, it can save space if only the signature has to
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be sent rather than the signature plus the message. An application that uses
message recovery is machine-printed postage stamps, or indicia: the stamp
consists of a 2-d barcode with a digital signature made by the postal meter
and which contains information such as the value, the date and the sender’s
and recipient’s post codes. We discuss this at the end of section 16.3.2.

In the general case we do not need message recovery; the message to be
signed may be of arbitrary length, so we �rst pass it through a hash function
and then sign the hash value. We need the hash function to be not just one-way,
but also collision resistant.

5.4 Symmetric crypto algorithms

Now that we’ve tidied up the de�nitions, we’ll look under the hood to see
how they can be implemented in practice. While most explanations are geared
towards graduate mathematics students, the presentation I’ll give here is based
on one I developed over the years with computer science undergraduates, to
help the non-specialist grasp the essentials. In fact, even at the research level,
most of cryptography is as much computer science as mathematics: modern
attacks on ciphers are put together from guessing bits, searching for patterns,
sorting possible results and so on, and require ingenuity and persistence rather
than anything particularly highbrow.

5.4.1 SP-networks

Claude Shannon suggested in the 1940s that strong ciphers could be built by
combining substitution with transposition repeatedly. For example, one might
add some key material to a block of input text, and then shuf�e subsets of the
input, and continue in this way a number of times. He described the proper-
ties of a cipher as being confusion and diffusion – adding unknown key values
will confuse an attacker about the value of a plaintext symbol, while diffu-
sion means spreading the plaintext information through the ciphertext. Block
ciphers need diffusion as well as confusion.

The earliest block ciphers were simple networks which combined sub-
stitution and permutation circuits, and so were called SP-networks [1011].
Figure 5.10 shows an SP-network with sixteen inputs, which we can imagine
as the bits of a sixteen-bit number, and two layers of four-bit invertible
substitution boxes (or S-boxes), each of which can be visualised as a lookup
table containing some permutation of the numbers 0 to 15.

The point of this arrangement is that if we were to implement an arbitrary 16
bit to 16 bit function in digital logic, we would need 220 bits of memory – one
lookup table of 216 bits for each single output bit. That’s hundreds of thousands
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Figure 5.10: A simple 16-bit SP-network block cipher

of gates, while a four bit to four bit function takes only 4 x 24 or 64 bits of
memory. One might hope that with suitable choices of parameters, the function
produced by iterating this simple structure would be indistinguishable from a
random 16 bit to 16 bit function to an opponent who didn’t know the value of
the key. The key might consist of some choice of a number of four-bit S-boxes,
or it might be added at each round to provide confusion and the resulting text
fed through the S-boxes to provide diffusion.

Three things need to be done to make such a design secure:

1. the cipher needs to be “wide” enough

2. it needs to have enough rounds, and

3. the S-boxes need to be suitably chosen.

5.4.1.1 Block size

First, a block cipher which operated on sixteen bit blocks would be rather lim-
ited, as an opponent could just build a dictionary of plaintext and ciphertext
blocks as they were observed. The birthday theorem tells us that even if the
input plaintexts were random, he’d expect to �nd a match as soon as he had
seen a few hundred blocks. So a practical block cipher will usually deal with
plaintexts and ciphertexts of 64 bits, 128 bits or even more. So if we are using
four-bit to four-bit S-boxes, we may have 16 of them (for a 64 bit block size) or
32 of them (for a 128 bit block size).

5.4.1.2 Number of rounds

Second, we have to have enough rounds. The two rounds in Figure 5.10 are
completely inadequate, as an opponent can deduce the values of the S-boxes
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by tweaking input bits in suitable patterns. For example, he could hold the
rightmost 12 bits constant and try tweaking the leftmost four bits, to deduce
the values in the top left S-box. (The attack is slightly more complicated than
this, as sometimes a tweak in an input bit to an S-box won’t produce a change
in any output bit, so we have to change one of its other inputs and tweak again.
But it is still a basic student exercise.)

The number of rounds we need depends on the speed with which data dif-
fuse through the cipher. In our simple example, diffusion is very slow because
each output bit from one round of S-boxes is connected to only one input bit in
the next round. Instead of having a simple permutation of the wires, it is more
ef�cient to have a linear transformation in which each input bit in one round
is the exclusive-or of several output bits in the previous round. If the block
cipher is to be used for decryption as well as encryption, this linear transfor-
mation will have to be invertible. We’ll see some concrete examples below in
the sections on AES and DES.

5.4.1.3 Choice of S-boxes

The design of the S-boxes also affects the number of rounds required for secu-
rity, and studying bad choices gives us our entry into the deeper theory of block
ciphers. Suppose that the S-box were the permutation that maps the inputs
(0,1,2,… ,15) to the outputs (5,7,0,2,4,3,1,6,8,10,15,12,9,11,14,13). Then the most
signi�cant bit of the input would come through unchanged as the most sig-
ni�cant bit of the output. If the same S-box were used in both rounds in the
above cipher, then the most signi�cant bit of the input would pass through to
become the most signi�cant bit of the output. We certainly couldn’t claim that
our cipher was pseudorandom.

5.4.1.4 Linear cryptanalysis

Attacks on real block ciphers are usually harder to spot than in this example,
but they use the same ideas. It might turn out that the S-box had the property
that bit one of the input was equal to bit two plus bit four of the output; more
commonly, there will be linear approximations to an S-box which hold with
a certain probability. Linear cryptanalysis [897, 1246] proceeds by collecting a
number of relations such as “bit 2 plus bit 5 of the input to the �rst S-box is equal
to bit 1 plus bit 8 of the output, with probability 13/16”, then searching for
ways to glue them together into an algebraic relation between input bits, out-
put bits and key bits that holds with a probability different from one half. If we
can �nd a linear relationship that holds over the whole cipher with probability
p = 0.5 + 1∕M, then according to the sampling theorem in probability theory
we can expect to start recovering keybits once we have about M2 known texts.
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If the value of M2 for the best linear relationship is greater than the total possi-
ble number of known texts (namely 2n where the inputs and outputs are n bits
wide), then we consider the cipher to be secure against linear cryptanalysis.

5.4.1.5 Differential cryptanalysis

Differential Cryptanalysis [246, 897] is similar but is based on the probability that
a given change in the input to an S-box will give rise to a certain change in the
output. A typical observation on an 8-bit S-box might be that “if we �ip input
bits 2, 3, and 7 at once, then with probability 11∕16 the only output bits that will
�ip are 0 and 1”. In fact, with any nonlinear Boolean function, tweaking some
combination of input bits will cause some combination of output bits to change
with a probability different from one half. The analysis procedure is to look at
all possible input difference patterns and look for those values �i, �o such that
an input change of �i will produce an output change of �o with particularly
high (or low) probability.

As in linear cryptanalysis, we then search for ways to join things up so that
an input difference which we can feed into the cipher will produce a known
output difference with a useful probability over a number of rounds. Given
enough chosen inputs, we will see the expected output and be able to make
deductions about the key. As in linear cryptanalysis, it’s common to consider
the cipher to be secure if the number of texts required for an attack is greater
than the total possible number of different texts for that key. (We have to be
careful of pathological cases, such as if you had a cipher with a 32-bit block
and a 128-bit key with a differential attack whose success probability given a
single pair was 2−40. Given a lot of text under a number of keys, we’d eventually
solve for the current key.)

There are many variations on these two themes. For example, instead of
looking for high probability differences, we can look for differences that can’t
happen (or that happen only rarely). This has the charming name of impossible
cryptanalysis, but it is quite de�nitely possible against many systems [243]4.

Block cipher design involves a number of trade-offs. For example, we can
reduce the per-round information leakage, and thus the required number of
rounds, by designing the rounds carefully. But a complex design might be slow
in software, or need a lot of gates in hardware, so using simple rounds but more
of them might have been better. Simple rounds may also be easier to analyse.
A prudent designer will also use more rounds than are strictly necessary to
block the attacks known today, in order to give some safety margin, as attacks
only ever get better. But while we may be able to show that a cipher resists
all the attacks we know of, and with some safety margin, this says little about

4This may have been used �rst at Bletchley in World War II where a key insight into breaking the
German Enigma machine was that no letter ever enciphered to itself.
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whether it will resist novel types of attack. (A general security proof for a block
cipher would appear to imply a result such as P ≠ NP that would revolutionise
computer science.)

5.4.2 The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is an algorithm originally known
as Rijndael after its inventors Vincent Rijmen and Joan Daemen [507]. It acts
on 128-bit blocks and can use a key of 128, 192 or 256 bits in length. It is an
SP-network; in order to specify it, we need to �x the S-boxes, the linear trans-
formation between the rounds, and the way in which the key is added into the
computation.

AES uses a single S-box that acts on a byte input to give a byte output. For
implementation purposes it can be regarded simply as a lookup table of 256
bytes; it is actually de�ned by the equation S(x) = M(1∕x) + b over the �eld
GF(28) where M is a suitably chosen matrix and b is a constant. This construc-
tion gives tight differential and linear bounds.

The linear transformation is based on arranging the 16 bytes of the value
being enciphered in a square and then doing bytewise shuf�ing and mixing
operations. The �rst step is the shuf�e, in which the top row of four bytes is
left unchanged while the second row is shifted one place to the left, the third
row by two places and the fourth row by three places. The second step is a
column-mixing step in which the four bytes in a column are mixed using matrix
multiplication. This is illustrated in Figure 5.11, which shows, as an example,
how a change in the value of the third byte in the �rst column is propagated.
The effect of this combination is that a change in the input to the cipher can
potentially affect all of the output after just two rounds – an avalanche effect
that makes both linear and differential attacks harder.

The key material is added byte by byte after the linear transformation. This
means that 16 bytes of key material are needed per round; they are derived
from the user supplied key material by means of a recurrence relation.
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Figure 5.11: The AES linear transformation, illustrated by its effect on byte 3 of the input
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The algorithm uses 10 rounds with 128-bit keys, 12 rounds with 192-bit
keys and 14 rounds with 256-bit keys. These are enough to give practical, but
not certi�cational, security – as indeed we expected at the time of the AES
competition, and as I described in earlier editions of this chapter. The �rst
key-recovery attacks use a technique called biclique cryptanalysis and were
discovered in 2009 by Andrey Bogdanov, Dmitry Khovratovich, and Christian
Rechberger [274]; they give only a very small advantage, with complexity now
estimated at 2126 for 128-bit AES and 2254.3 for 256-bit AES, as opposed to 2127

and 2255 for brute-force search. Faster shortcut attacks are known for the case
where we have related keys. But none of these attacks make any difference
in practice, as they require infeasibly large numbers of texts or very special
combinations of related keys.

Should we trust AES? The governments of Russia, China and Japan try to
get �rms to use local ciphers instead, and the Japanese offering, Camellia, is
found in a number of crypto libraries alongside AES and another AES com-
petition �nalist, Bruce Schneier’s Two�sh. (Camellia was designed by a team
whose own AES candidate was knocked out at the �rst round.) Conspiracy the-
orists note that the US government picked the weakest of the �ve algorithms
that were �nalists in the AES competition. Well, I was one of the designers of
the AES �nalist Serpent [95], which came second in the competition: the win-
ner Rijndael got 86 votes, Serpent 59 votes, Two�sh 31 votes, RC6 23 votes
and MARS 13 votes. Serpent has a simple structure that makes it easy to ana-
lyse – the structure of Figure 5.10, but modi�ed to be wide enough and to have
enough rounds – and was designed to have a much larger security margin than
Rijndael in anticipation of the attacks that have now appeared. Yet the simple
fact is that while Serpent is more secure, Rijndael is faster; industry and crypto
researchers voted for it at the last AES conference, and NIST approved it as the
standard.

Having been involved in the whole process, and having worked on the anal-
ysis and design of shared-key ciphers for much of the 1990s, I have a high level
of con�dence that AES is secure against practical attacks based on mathemat-
ical cryptanalysis. And even though AES is less secure than Serpent, practical
security is all about implementation, and we now have enormous experience at
implementing AES. Practical attacks include timing analysis and power analy-
sis. In the former, the main risk is that an opponent observes cache misses and
uses them to work out the key. In the latter, an opponent uses measurements of
the current drawn by the device doing the crypto – think of a bank smartcard
that a customer places in a terminal in a Ma�a-owned shop. I discuss both in
detail in Part 2, in the chapter on Emission Security; countermeasures include
special operations in many CPUs to do AES, which are available precisely
because the algorithm is now a standard. It does not make sense to implement
Serpent as well, ‘just in case AES is broken’: having swappable algorithms is
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known as pluggable cryptography, yet the risk of a fatal error in the algorithm
negotiation protocol is orders of magnitude greater than the risk that anyone
will come up with a production attack on AES. (We’ll see a number of examples
later where using multiple algorithms caused something to break horribly.)

The back story is that, back in the 1970s, the NSA manipulated the choice
and parameters of the previous standard block cipher, the Data Encryption
Standard (DES) in such a way as to deliver a cipher that was good enough
for US industry at the time, while causing foreign governments to believe it
was insecure, so they used their own weak designs instead. I’ll discuss this
in more detail below, once I’ve described the design of DES. AES seems to
have followed this playbook; by selecting an algorithm that was only just
strong enough mathematically and whose safe implementation requires skill
and care, the US government saw to it that �rms in Russia, China, Japan and
elsewhere will end up using systems that are less secure because less skill and
effort has been invested in the implementation. However, this was probably
luck rather than Machiavellian cunning: the relevant committee at NIST
would have had to have a lot of courage to disregard the vote and choose
another algorithm instead. Oh, and the NSA has since 2005 approved AES
with 128-bit keys for protecting information up to SECRET and with 192-bit
or 256-bit keys for TOP SECRET. So I recommend that you use AES instead
of GOST, or Camellia, or even Serpent. The de�nitive speci�cation of AES is
Federal Information Processing Standard 197, and its inventors have written
a book describing its design in detail [507].

5.4.3 Feistel ciphers

Many block ciphers use a more complex structure, which was invented by
Feistel and his team while they were developing the Mark XII IFF in the late
1950s and early 1960s. Feistel then moved to IBM and founded a research group
that produced the Data Encryption Standard (DES) algorithm, which is still a
mainstay of payment system security.

A Feistel cipher has the ladder structure shown in Figure 5.12. The input is
split up into two blocks, the left half and the right half. A round function f1 of the
left half is computed and combined with the right half using exclusive-or
(binary addition without carry), though in some Feistel ciphers addition
with carry is also used. (We use the notation ⊕ for exclusive-or.) Then, a
function f2 of the right half is computed and combined with the left half,
and so on. Finally (if the number of rounds is even) the left half and right half
are swapped.

A notation which you may see for the Feistel cipher is �(f , g, h, ...) where f ,
g, h, … are the successive round functions. Under this notation, the above
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Figure 5.12: The Feistel cipher structure

cipher is �(f1, f2, ... f2k−1, f2k). The basic result that enables us to decrypt a Feistel
cipher – and indeed the whole point of his design – is that:

�−1(f1, f2, ..., f2k−1, f2k) = �(f2k, f2k−1, ..., f2, f1)

In other words, to decrypt, we just use the round functions in the reverse
order. Thus the round functions fi do not have to be invertible, and the Feistel
structure lets us turn any one-way function into a block cipher. This means
that we are less constrained in trying to choose a round function with good
diffusion and confusion properties, and which also satis�es any other design
constraints such as code size, software speed or hardware gate count.
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5.4.3.1 The Luby-Rackoff result

The key theoretical result on Feistel ciphers was proved by Mike Luby
and Charlie Rackoff in 1988. They showed that if fi were random func-
tions, then �(f1, f2, f3) was indistinguishable from a random permutation
under chosen-plaintext attack, and this result was soon extended to show
that �(f1, f2, f3, f4) was indistinguishable under chosen plaintext/ciphertext
attack – in other words, it was a pseudorandom permutation. (I omit a number
of technicalities.)

In engineering terms, the effect is that given a really good round function,
four rounds of Feistel are enough. So if we have a hash function in which we
have con�dence, it is straightforward to construct a block cipher from it: use
four rounds of keyed hash in a Feistel network.

5.4.3.2 DES

The DES algorithm is widely used in banking and other payment applications.
The ‘killer app’ that got it widely deployed was ATM networks; from there
it spread to prepayment meters, transport tickets and much else. In its classic
form, it is a Feistel cipher, with a 64-bit block and 56-bit key. Its round function
operates on 32-bit half blocks and consists of three operations:

�rst, the block is expanded from 32 bits to 48;

next, 48 bits of round key are mixed in using exclusive-or;

the result is passed through a row of eight S-boxes, each of
which takes a six-bit input and provides a four-bit output;

�nally, the bits of the output are permuted according to a �xed pattern.

The effect of the expansion, key mixing and S-boxes is shown in Figure 5.13:

Si – 1 Si + 1

Key added
in here

Si

Figure 5.13: The DES round function
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The round keys are derived from the user-supplied key by using each user
key bit in twelve different rounds according to a slightly irregular pattern. A
full speci�cation of DES is given in [1399].

DES was introduced in 1974 and immediately caused controversy. The most
telling criticism was that the key is too short. Someone who wants to �nd a 56
bit key using brute force, that is by trying all possible keys, will have a total
exhaust time of 256 encryptions and an average solution time of half that, namely
255 encryptions. Whit Dif�e and Martin Hellman argued in 1977 that a DES key-
search machine could be built with a million chips, each testing a million keys
a second; as a million is about 220, this would take on average 215 seconds, or a
bit over 9 hours, to �nd the key. They argued that such a machine could be built
for $20 million in 1977 [557]. IBM, whose scientists invented DES, retorted that
they would charge the US government $200 million to build such a machine.
(In hindsight, both were right.)

During the 1980’s, there were persistent rumors of DES keysearch machines
being built by various intelligence agencies, but the �rst successful public key-
search attack took place in 1997. In a distributed effort organised over the net,
14,000 PCs took more than four months to �nd the key to a challenge. In 1998,
the Electronic Frontier Foundation (EFF) built a DES keysearch machine called
Deep Crack for under $250,000, which broke a DES challenge in 3 days. It con-
tained 1,536 chips run at 40MHz, each chip containing 24 search units which
each took 16 cycles to do a test decrypt. The search rate was thus 2.5 million
test decryptions per second per search unit, or 60 million keys per second per
chip. The design of the cracker is public and can be found at [619]. By 2006,
Sandeep Kumar and colleagues at the universities of Bochum and Kiel built
a machine using 120 FPGAs and costing $10,000, which could break DES in 7
days on average [1110]. A modern botnet with 100,000 machines would take a
few hours. So the key length of single DES is now inadequate.

Another criticism of DES was that, since IBM kept its design principles secret
at the request of the US government, perhaps there was a ‘trapdoor’ which
would give them easy access. However, the design principles were published
in 1992 after differential cryptanalysis was invented and published [473].
The story was that IBM had discovered these techniques in 1972, and the US
National Security Agency (NSA) even earlier. IBM kept the design details
secret at the NSA’s request. We’ll discuss the political aspects of all this
in 26.2.7.1.

We now have a fairly thorough analysis of DES. The best known shortcut

attack, that is, a cryptanalytic attack involving less computation than keysearch,
is a linear attack using 242 known texts. DES would be secure with more than
20 rounds, but for practical purposes its security is limited by its keylength.
I don’t know of any real applications where an attacker might get hold of even
240 known texts. So the known shortcut attacks are not an issue. However, its
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vulnerability to keysearch makes single DES unusable in most applications. As
with AES, there are also attacks based on timing analysis and power analysis.

The usual way of dealing with the DES key length problem is to use the
algorithm multiple times with different keys. Banking networks have largely
moved to triple-DES, a standard since 1999 [1399]. Triple-DES does an encryp-
tion, then a decryption, and then a further encryption, all with independent
keys. Formally:

3DES(k0, k1, k2;M) = DES(k2;DES
−1(k1;DES(k0;M)))

By setting the three keys equal, you get the same result as a single DES
encryption, thus giving a backwards compatibility mode with legacy equip-
ment. (Some banking systems use two-key triple-DES which sets k2 = k0; this
gives an intermediate step between single and triple DES.) Most new systems
use AES as the default choice, but many banking systems are committed to
using block ciphers with an eight-byte block, because of the message formats
used in the many protocols by which ATMs, point-of-sale terminals and bank
networks talk to each other, and because of the use of block ciphers to generate
and protect customer PINs (which I discuss in the chapter on Banking and
Bookkeeping). Triple DES is a perfectly serviceable block cipher for such
purposes for the foreseeable future.

Another way of preventing keysearch (and making power analysis harder) is
whitening. In addition to the 56-bit key, say k0, we choose two 64-bit whitening
keys k1 and k2, xor’ing the �rst with the plaintext before encryption and the
second with the output of the encryption to get the ciphertext afterwards. This
composite cipher is known as DESX. Formally,

DESX(k0, k1, k2;M) = DES(k0;M⊕ k1)⊕ k2

It can be shown that, on reasonable assumptions, DESX has the properties
you’d expect; it inherits the differential strength of DES but its resistance to
keysearch is increased by the amount of the whitening [1049]. Whitened block
ciphers are used in some applications, most speci�cally in the XTS mode of
operation which I discuss below. Nowadays, it’s usually used with AES, and
AESX is de�ned similarly, with the whitening keys used to make each block
encryption operation unique – as we shall see below in section 5.5.7.

5.5 Modes of operation

A common failure is that cryptographic libraries enable or even encourage
developers to use an inappropriate mode of operation. This speci�es how a block
cipher with a �xed block size (8 bytes for DES, 16 for AES) can be extended to
process messages of arbitrary length.
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There are several standard modes of operation for using a block cipher on
multiple blocks [1406]. It is vital to understand them, so you can choose the
right one for the job, especially as some common tools provide a weak one
by default. This weak mode is electronic code book (ECB) mode, which we
discuss next.

5.5.1 How not to use a block cipher

In electronic code book mode, we just encrypt each succeeding block of plain-
text with our block cipher to get ciphertext, as with the Playfair example above.
This is adequate for protocols using single blocks such as challenge-response
and some key management tasks; it’s also used to encrypt PINs in cash machine
systems. But if we use it to encrypt redundant data the patterns will show
through, giving an opponent information about the plaintext. For example,
�gure 5.14 shows what happens to a cartoon image when encrypted using DES
in ECB mode. Repeated blocks of plaintext all encrypt to the same ciphertext,
leaving the image quite recognisable.

In one popular corporate email system from the last century, the encryption
used was DES ECB with the key derived from an eight-character password.
If you looked at a ciphertext generated by this system, you saw that a cer-
tain block was far more common than the others – the one corresponding to
a plaintext of nulls. This gave one of the simplest attacks ever on a �elded DES
encryption system: just encrypt a null block with each password in a dictio-
nary and sort the answers. You can now break at sight any ciphertext whose
password was one of those in your dictionary.

In addition, using ECB mode to encrypt messages of more than one block
length which require authenticity – such as bank payment messages – is

(a) plaintext (b) ECB ciphertext

Figure 5.14: The Linux penguin, in clear and ECB encrypted (fromWikipedia, derived from images

created by Larry Ewing).
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particularly foolish, as it opens you to a cut and splice attack along the block
boundaries. For example, if a bank message said “Please pay account number
X the sum Y, and their reference number is Z” then an attacker might initiate
a payment designed so that some of the digits of X are replaced with some of
the digits of Z.

5.5.2 Cipher block chaining

Most commercial applications which encrypt more than one block used to use
cipher block chaining, or CBC, mode. Like ECB, this was one of the original
modes of operation standardised with DES. In it, we exclusive-or the previ-
ous block of ciphertext to the current block of plaintext before encryption (see
Figure 5.15).

This mode disguises patterns in the plaintext: the encryption of each block
depends on all the previous blocks. The input initialisation vector (IV) ensures
that stereotyped plaintext message headers won’t leak information by encrypt-
ing to identical ciphertexts, just as with a stream cipher.

However, an opponent who knows some of the plaintext may be able to cut
and splice a message (or parts of several messages encrypted under the same
key). In fact, if an error is inserted into the ciphertext, it will affect only two
blocks of plaintext on decryption, so if there isn’t any integrity protection on the
plaintext, an enemy can insert two-block garbles of random data at locations
of their choice. For that reason, CBC encryption usually has to be used with a
separate authentication code.

More subtle things can go wrong, too; systems have to pad the plaintext to a
multiple of the block size, and if a server that decrypts a message and �nds
incorrect padding signals this fact, whether by returning an ‘invalid padding’
message or just taking longer to respond, then this opens a padding oracle attack

EK EK EK

IV

P1 P2 P3

C1 C2 C3

...

Figure 5.15: Cipher Block Chaining (CBC) mode
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in which the attacker tweaks input ciphertexts, one byte at a time, watches
the error messages, and ends up being able to decrypt whole messages. This
was discovered by Serge Vaudenay in 2002; variants of it were used against
SSL, IPSEC and TLS as late as 2016 [1953].

5.5.3 Counter encryption

Feedback modes of block cipher encryption are falling from fashion, and not
just because of cryptographic issues. They are hard to parallelise. With CBC,
a whole block of the cipher must be computed between each block input and
each block output. This can be inconvenient in high-speed applications, such
as protecting traf�c on backbone links. As silicon is cheap, we would rather
pipeline our encryption chip, so that it encrypts a new block (or generates a
new block of keystream) in as few clock ticks as possible.

The simplest solution is to use AES as a stream cipher. We generate
a keystream by encrypting a counter starting at an initialisation vector:
Ki = {IV + i}K, thus expanding the key K into a long stream of blocks Ki of
keystream, which is typically combined with the blocks of a message Mi using
exclusive-or to give ciphertext Ci = Mi ⊕ Ki.

Additive stream ciphers have two systemic vulnerabilities, as we noted in
section 5.2.2 above. The �rst is an attack in depth: if the same keystream is
used twice, then the xor of the two ciphertexts is the xor of the two plaintexts,
from which plaintext can often be deduced, as with Venona. The second is that
they fail to protect message integrity. Suppose that a stream cipher were used
to encipher fund transfer messages. These messages are highly structured; you
might know, for example, that bytes 37–42 contain the sum being transferred.
You could then cause the data traf�c from a local bank to go via your computer,
for example by an SS7 exploit. You go into the bank and send $500 to an accom-
plice. The ciphertext Ci = Mi ⊕ Ki, duly arrives in your machine. You know Mi

for bytes 37–42, so you can recover Ki and construct a modi�ed message which
instructs the receiving bank to pay not $500 but $500,000! This is an example of
an attack in depth; it is the price not just of the perfect secrecy we get from the
one-time pad, but of much more humble stream ciphers, too.

The usual way of dealing with this is to add an authentication code, and the
most common standard uses a technique called Galois counter mode, which I
describe later.

5.5.4 Legacy stream cipher modes

You may �nd two old stream-cipher modes of operation, output feedback
mode (OFB) and less frequently ciphertext feedback mode (CFB).
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Output feedback mode consists of repeatedly encrypting an initial value and
using this as a keystream in a stream cipher. Writing IV for the initialization
vector, we will have K1 = {IV}K and Ki = {IV}K(i−1). However an n-bit block

cipher in OFB mode will typically have a cycle length of 2n∕2 blocks, after which
the birthday theorem will see to it that we loop back to the IV. So we may have
a cycle-length problem if we use a 64-bit block cipher such as triple-DES on a
high-speed link: once we’ve called a little over 232 pseudorandom 64-bit values,
the odds favour a match. (In CBC mode, too, the birthday theorem ensures that
after about 2n∕2 blocks, we will start to see repeats.) Counter mode encryption,
however, has a guaranteed cycle length of 2n rather than 2n∕2, and as we noted
above is easy to parallelise. Despite this OFB is still used, as counter mode only
became a NIST standard in 2002.

Cipher feedback mode is another kind of stream cipher, designed for
use in radio systems that have to resist jamming. It was designed to be
self-synchronizing, in that even if we get a burst error and drop a few bits, the
system will recover synchronization after one block length. This is achieved
by using our block cipher to encrypt the last n bits of ciphertext, adding
the last output bit to the next plaintext bit, and shifting the ciphertext along
one bit. But this costs one block cipher operation per bit and has very bad
error ampli�cation properties; nowadays people tend to use dedicated link
layer protocols for synchronization and error correction rather than trying to
combine them with the cryptography at the traf�c layer.

5.5.5 Message authentication code

Another of�cial mode of operation of a block cipher is not used to encipher
data, but to protect its integrity and authenticity. This is the message authentica-
tion code, or MAC. To compute a MAC on a message using a block cipher, we
encrypt it using CBC mode and throw away all the output ciphertext blocks
except the last one; this last block is the MAC. (The intermediate results are
kept secret in order to prevent splicing attacks.)

This construction makes the MAC depend on all the plaintext blocks as well
as on the key. It is secure provided the message length is �xed; Mihir Bellare,
Joe Kilian and Philip Rogaway proved that any attack on a MAC under these
circumstances would give an attack on the underlying block cipher [212].

If the message length is variable, you have to ensure that a MAC computed
on one string can’t be used as the IV for computing a MAC on a different string,
so that an opponent can’t cheat by getting a MAC on the composition of the two
strings. In order to �x this problem, NIST has standardised CMAC, in which
a variant of the key is xor-ed in before the last encryption [1407]. (CMAC is
based on a proposal by Tetsu Iwata and Kaoru Kurosawa [967].) You may see
legacy systems in which the MAC consists of only half of the last output block,
with the other half thrown away, or used in other mechanisms.
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There are other possible constructions of MACs: the most common one is
HMAC, which uses a hash function with a key; we’ll describe it in section 5.6.2.

5.5.6 Galois counter mode

The above modes were all developed for DES in the 1970s and 1980s (although
counter mode only became an of�cial US government standard in 2002). They
are not ef�cient for bulk encryption where you need to protect integrity as well
as con�dentiality; if you use either CBC mode or counter mode to encrypt your
data and a CBC-MAC or CMAC to protect its integrity, then you invoke the
block cipher twice for each block of data you process, and the operation cannot
be parallelised.

The modern approach is to use a mode of operation designed for authenti-
cated encryption. Galois Counter Mode (GCM) has taken over as the default
since being approved by NIST in 2007 [1409]. It uses only one invocation of
the block cipher per block of text, and it’s parallelisable so you can get high
throughput on fast data links with low cost and low latency. Encryption is per-
formed in a variant of counter mode; the resulting ciphertexts are also used as
coef�cients of a polynomial which is evaluated at a key-dependent point over
a Galois �eld of 2128 elements to give an authenticator tag. The tag computation
is a universal hash function of the kind I described in section 5.2.4 and is prov-
ably secure so long as keys are never reused. The supplied key is used along
with a random IV to generate both a unique message key and a unique authen-
ticator key. The output is thus a ciphertext of the same length as the plaintext,
plus an IV and a tag of typically 128 bits each.

GCM also has an interesting incremental property: a new authenticator
and ciphertext can be calculated with an amount of effort proportional to the
number of bits that were changed. GCM was invented by David McGrew and
John Viega of Cisco; their goal was to create an ef�cient authenticated encryp-
tion mode suitable for use in high-performance network hardware [1270]. It
is the sensible default for authenticated encryption of bulk content. (There’s
an earlier composite mode, CCM, which you’ll �nd used in Bluetooth 4.0
and later; this combines counter mode with CBC-MAC, so it costs about
twice as much effort to compute, and cannot be parallelised or recomputed
incrementally [1408].)

5.5.7 XTS

GCM and other authenticated encryption modes expand the plaintext by
adding a message key and an authenticator tag. This is very inconvenient
in applications such as hard disk encryption, where we prefer a mode of
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operation that preserves plaintext length. Disk encryption systems used to
use CBC with the sector number providing an IV, but since Windows 10,
Microsoft has been using a new mode of operation, XTS-AES, inspired by
GCM and standardised in 2007. This is a codebook mode but with the plaintext
whitened by a tweak key derived from the disk sector. Formally, the message
Mi encrypted with the key K at block j is

AESX(KTj,K,KTj;M)

where the tweak key KTj is derived by encrypting the IV using a different
key and then multiplying it repeatedly with a suitable constant so as to give
a different whitener for each block. This means that if an attacker swaps two
encrypted blocks, all 256 bits will decrypt to randomly wrong values. You still
need higher-layer mechanisms to detect ciphertext manipulation, but simple
checksums will be suf�cient.

5.6 Hash functions

In section 5.4.3.1 I showed how the Luby-Rackoff theorem enables us to con-
struct a block cipher from a hash function. It’s also possible to construct a hash
function from a block cipher5. The trick is to feed the message blocks one at
a time to the key input of our block cipher, and use it to update a hash value
(which starts off at say H0 = 0). In order to make this operation non-invertible,
we add feedforward: the (i − 1)st hash value is exclusive or’ed with the output
of round i. This Davies-Meyer construction gives our �nal mode of operation of
a block cipher (Figure 5.16).

The birthday theorem makes another appearance here, in that if a hash func-
tion h is built using an n bit block cipher, it is possible to �nd two messages
M1 ≠ M2 with h(M1) = h(M2) with about 2n∕2 effort (hash slightly more than
that many messages Mi and look for a match). So a 64 bit block cipher is not
adequate, as forging a message would cost of the order of 232 messages, which
is just too easy. A 128-bit cipher such as AES used to be just about adequate,
and in fact the AACS content protection mechanism in Blu-ray DVDs used
‘AES-H’, the hash function derived from AES in this way.

5.6.1 Common hash functions

The hash functions most commonly used through the 1990s and 2000s evolved
as variants of a block cipher with a 512 bit key and a block size increasing from

5In fact, we can also construct hash functions and block ciphers from stream ciphers – so, subject
to some caveats I’ll discuss in the next section, given any one of these three primitives we can
construct the other two.
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Figure 5.16: Feedforward mode (hash function)

128 to 512 bits. The �rst two were designed by Ron Rivest and the others by
the NSA:

MD4 has three rounds and a 128 bit hash value, and a collision was
found for it in 1998 [568];

MD5 has four rounds and a 128 bit hash value, and a collision was found
for it in 2004 [1983, 1985];

SHA-1, released in 1995, has �ve rounds and a 160 bit hash value. A colli-
sion was found in 2017 [1831], and a more powerful version of the attack
in 2020 [1148];

SHA-2, which replaced it in 2002, comes in 256-bit and 512-bit
versions (called SHA256 and SHA512) plus a number of variants.

The block ciphers underlying these hash functions are similar: their round
function is a complicated mixture of the register operations available on 32 bit
processors [1670]. Cryptanalysis has advanced steadily. MD4 was broken by
Hans Dobbertin in 1998 [568]; MD5 was broken by Xiaoyun Wang and her col-
leagues in 2004 [1983, 1985]; collisions can now be found easily, even between
strings containing meaningful text and adhering to message formats such as
those used for digital certi�cates. Wang seriously dented SHA-1 the follow-
ing year in work with Yiqun Lisa Yin and Hongbo Yu, providing an algorithm
to �nd collisions in only 269 steps [1984]; it now takes about 260 computations.
In February 2017, scientists from Amsterdam and Google published just such a
collision, to prove the point and help persuade people to move to stronger hash
functions such as SHA-2 [1831] (and from earlier versions of TLS to TLS 1.3).
In 2020, Gaëtan Leurent and Thomas Peyrin developed an improved attack
that computes chosen-pre�x collisions, enabling certi�cate forgery at a cost of
several tens of thousands of dollars [1148].
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In 2007, the US National Institute of Standards and Technology (NIST) organ-
ised a competition to �nd a replacement hash function family [1411]. The win-
ner, Keccak, has a quite different internal structure, and was standardised as
SHA-3 in 2015. So we now have a choice of SHA-2 and SHA-3 as standard hash
functions.

A lot of deployed systems still use hash functions such as MD5 for which
there’s an easy collision-search algorithm. Whether a collision will break any
given application can be a complex question. I already mentioned forensic sys-
tems, which keep hashes of �les on seized computers, to reassure the court
that the police didn’t tamper with the evidence; a hash collision would merely
signal that someone had been trying to tamper, whether the police or the defen-
dant, and trigger a more careful investigation. If bank systems actually took a
message composed by a customer saying ‘Pay X the sum Y’, hashed it and
signed it, then a crook could �nd two messages ‘Pay X the sum Y’ and ‘Pay X
the sum Z’ that hashed to the same value, get one signed, and swap it for the
other. But bank systems don’t work like that. They typically use MACs rather
than digital signatures on actual transactions, and logs are kept by all the par-
ties to a transaction, so it’s not easy to sneak in one of a colliding pair. And in
both cases you’d probably have to �nd a preimage of an existing hash value,
which is a much harder cryptanalytic task than �nding a collision.

5.6.2 Hash function applications – HMAC, commitments
and updating

But even though there may be few applications where a collision-�nding
algorithm could let a bad guy steal real money today, the existence of a vul-
nerability can still undermine a system’s value. Some people doing forensic
work continue to use MD5, as they’ve used it for years, and its collisions don’t
give useful attacks. This is probably a mistake. In 2005, a motorist accused of
speeding in Sydney, Australia was acquitted after the New South Wales Roads
and Traf�c Authority failed to �nd an expert to testify that MD5 was secure
in this application. The judge was “not satis�ed beyond reasonable doubt that
the photograph [had] not been altered since it was taken” and acquitted the
motorist; his strange ruling was upheld on appeal the following year [1434].
So even if a vulnerability doesn’t present an engineering threat, it can still
present a certi�cational threat.

Hash functions have many other uses. One of them is to compute MACs.
A naïve method would be to hash the message with a key: MACk(M) = h(k,M).
However the accepted way of doing this, called HMAC, uses an extra step
in which the result of this computation is hashed again. The two hashing
operations are done using variants of the key, derived by exclusive-or’ing
them with two different constants. Thus HMACk(M) = h(k⊕ B, h(k⊕ A,M)).
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A is constructed by repeating the byte 0x36 as often as necessary, and B
similarly from the byte 0x5C. If a hash function is on the weak side, this
construction can make exploitable collisions harder to �nd [1091]. HMAC is
now FIPS 198-1.

Another use of hash functions is to make commitments that are to be revealed
later. For example, I might wish to timestamp a digital document in order
to establish intellectual priority, but not reveal the contents yet. In that case,
I can publish a hash of the document, or send it to a commercial timestamping
service, or have it mined into the Bitcoin blockchain. Later, when I reveal the
document, the timestamp on its hash establishes that I had written it by then.
Again, an algorithm that generates colliding pairs doesn’t break this, as you
have to have the pair to hand when you do the timestamp.
Merkle trees hash a large number of inputs to a single hash output. The inputs

are hashed to values that form the leaves of a tree; each non-leaf node contains
the hash of all the hashes at its child nodes, so the hash at the root is a hash of
all the values at the leaves. This is a fast way to hash a large data structure; it’s
used in code signing, where you may not want to wait for all of an application’s
�les to have their signatures checked before you open it. It’s also widely used
in blockchain applications; in fact, a blockchain is just a Merkle tree. It was
invented by Ralph Merkle, who �rst proposed it to calculate a short hash of a
large �le of public keys [1298], particularly for systems where public keys are
used only once. For example, a Lamport digital signature can be constructed
from a hash function: you create a private key of 512 random 256-bit values
ki and publish the veri�cation key V as their Merkle tree hash. Then to sign
h = SHA256(M) you would reveal k2i if the i-th bit of h is zero, and otherwise
reveal k2i+1. This is secure if the hash function is, but has the drawback that
each key can be used only once. Merkle saw that you could generate a series of
private keys by encrypting a counter with a master secret key, and then use a
tree to hash the resulting public keys. However, for most purposes, people use
signature algorithms based on number theory, which I’ll describe in the next
section.

One security-protocol use of hash functions is worth a mention: key updating
and autokeying. Key updating means that two or more principals who share a
key pass it through a one-way hash function at agreed times: Ki = h(Ki−1). The
point is that if an attacker compromises one of their systems and steals the key,
he only gets the current key and is unable to decrypt back traf�c. The chain
of compromise is broken by the hash function’s one-wayness. This property is
also known as backward security. A variant is autokeying where the principals
update a key by hashing it with the messages they have exchanged since the
last key change: Ki+1 = h(Ki,Mi1,Mi2, …). If an attacker now compromises one
of their systems and steals the key, then as soon as they exchange a message
which he can’t observe or guess, security will be recovered; again, the chain
of compromise is broken. This property is known as forward security. It was
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�rst used in banking in EFT payment terminals in Australia [208, 210]. The
use of asymmetric cryptography allows a slightly stronger form of forward
security, namely that as soon as a compromised terminal exchanges a mes-
sage with an uncompromised one which the opponent doesn’t control, security
can be recovered even if the message is in plain sight. I’ll describe how this
works next.

5.7 Asymmetric crypto primitives

The commonly used building blocks in asymmetric cryptography, public-key
encryption and digital signature are based on number theory. I’ll give a brief
overview here, and look in more detail at some of the mechanisms in Part 2
when I discuss applications.

The basic idea is to make the security of the cipher depend on the dif�culty
of solving a mathematical problem that’s known to be hard, in the sense that a
lot of people have tried to solve it and failed. The two problems used in almost
all real systems are factorization and discrete logarithm.

5.7.1 Cryptography based on factoring

The prime numbers are the positive whole numbers with no proper divisors:
the only numbers that divide a prime number are 1 and the number itself. By
de�nition, 1 is not prime; so the primes are {2, 3, 5, 7, 11, … }. The fundamental
theorem of arithmetic states that each natural number greater than 1 factors into
prime numbers in a way that is unique up to the order of the factors. It is easy to
�nd prime numbers and multiply them together to give a composite number,
but much harder to resolve a composite number into its factors. And lots of
smart people have tried really hard since we started using cryptography based
on factoring. The largest composite product of two large random primes to
have been factorized in 2020 was RSA-250, an 829-bit number (250 decimal
digits). This took the equivalent of 2700 years’ work on a single 2.2GHz core; the
previous record, RSA-240 in 2019, had taken the equivalent of 900 years [302].
It is possible for factoring to be done surreptitiously, perhaps using a botnet; in
2001, when the state of the art was factoring 512-bit numbers, such a challenge
was set in Simon Singh’s ‘Code Book’ and solved by �ve Swedish students
using several hundred computers to which they had access [44]. As for 1024-bit
numbers, I expect the NSA can factor them already, and I noted in the second
edition that ‘an extrapolation of the history of factoring records suggests the
�rst factorization will be published in 2018.’ Moore’s law is slowing down, and
we’re two years late. Anyway, organisations that want keys to remain secure
for many years are already using 2048-bit numbers at least.
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The algorithm commonly used to do public-key encryption and digital sig-
natures based on factoring is RSA, named after its inventors Ron Rivest, Adi
Shamir and Len Adleman. It uses Fermat’s little theorem, which states that for all
primes p not dividing a, ap−1 ≡ 1 (mod p) (proof: take the set {1, 2, … , p − 1} and
multiply each of them modulo p by a, then cancel out (p − 1)! each side). For a
general integer n, a�(n) ≡ 1 (mod p) where Euler’s function �(n) is the number of
positive integers less than n with which it has no divisor in common (the proof
is similar). So if n is the product of two primes pq then �(n) = (p − 1)(q − 1).

In RSA, the encryption key is a modulus N which is hard to factor (take
N = pq for two large randomly chosen primes p and q, say of 1024 bits each)
plus a public exponent e that has no common factors with either p − 1 or q − 1.
The private key is the factors p and q, which are kept secret. Where M is the
message and C is the ciphertext, encryption is de�ned by

C ≡ Me (mod N)

Decryption is the reverse operation:

M ≡ e
√

C(mod N)

Whoever knows the private key – the factors p and q ofN – can easily calculate
e
√

C (mod N). As �(N) = (p − 1)(q − 1) and e has no common factors with �(N),
the key’s owner can �nd a number d such that de ≡ 1 (mod �(N)) – she �nds
the value of d separately modulo p − 1 and q − 1, and combines the answers.
e
√

C (mod N) is now computed as Cd (mod N), and decryption works because
of Fermat’s theorem:

Cd ≡ {Me}d ≡ Med ≡ M1+k�(N) ≡ M.Mk�(N) ≡ M.1 ≡ M (mod N)

Similarly, the owner of a private key can operate on a message with it to
produce a signature

Sigd(M) ≡ Md (mod N)

and this signature can be veri�ed by raising it to the power e mod N (thus,
using e and N as the public signature veri�cation key) and checking that the
message M is recovered:

M ≡ (Sigd(M))e (mod N)

Neither RSA encryption nor signature is safe to use on its own. The reason is
that, as encryption is an algebraic process, it preserves certain algebraic prop-
erties. For example, if we have a relation such as M1M2 = M3 that holds among
plaintexts, then the same relationship will hold among ciphertexts C1C2 = C3

and signatures Sig1Sig2 = Sig3. This property is known as a multiplicative homo-
morphism; a homomorphism is a function that preserves some mathematical
structure. The homomorphic nature of raw RSA means that it doesn’t meet the
random oracle model de�nitions of public key encryption or signature.
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Another general problem with public-key encryption is that if the plaintexts
are drawn from a small set, such as ‘attack’ or ‘retreat’, and the encryption pro-
cess is deterministic (as RSA is), then an attacker might just precompute the
possible ciphertexts and recognise them when they appear. With RSA, it’s also
dangerous to use a small exponent e to encrypt the same message to multiple
recipients, as this can lead to an algebraic attack. To stop the guessing attack,
the low-exponent attack and attacks based on homomorphism, it’s sensible to
add in some randomness, and some redundancy, into a plaintext block before
encrypting it. Every time we encrypt the same short message, say ‘attack’, we
want to get a completely different ciphertext, and for these to be indistinguish-
able from each other as well as from the ciphertexts for ‘retreat’. And there are
good ways and bad ways of doing this.

Crypto theoreticians have wrestled for decades to analyse all the things that
can go wrong with asymmetric cryptography, and to �nd ways to tidy it up.
Sha� Goldwasser and Silvio Micali came up with formal models of probabilistic
encryption in which we add randomness to the encryption process, and semantic
security, which we mentioned already; in this context it means that an attacker
cannot get any information at all about a plaintext M that was encrypted to
a ciphertext C, even if he is allowed to request the decryption of any other
ciphertext C′ not equal to C [778]. In other words, we want the encryption to
resist chosen-ciphertext attack as well as chosen-plaintext attack. There are a
number of constructions that give semantic security, but they tend to be too
ungainly for practical use.

The usual real-world solution is optimal asymmetric encryption padding
(OAEP), where we concatenate the message M with a random nonce N, and
use a hash function h to combine them:

C1 = M⊕ h(N)

C2 = N⊕ h(C1)

In effect, this is a two-round Feistel cipher that uses h as its round function.
The result, the combination C1,C2, is then encrypted with RSA and sent. The
recipient then computes N as C2 ⊕ h(C1) and recovers M as C1 ⊕ h(N) [213].
This was eventually proven to be secure. There are a number of public-key
cryptography standards; PKCS #1 describes OAEP [995]. These block a whole
lot of attacks that were discovered in the 20th century and about which people
have mostly forgotten, such as the fact that an opponent can detect if you
encrypt the same message with two different RSA keys. In fact, one of the
things we learned in the 1990s was that randomisation helps make crypto
protocols more robust against all sorts of attacks, and not just the mathematical
ones. Side-channel attacks and even physical probing of devices take a lot
more work.

With signatures, things are slightly simpler. In general, it’s often enough to
just hash the message before applying the private key: Sigd = [h(M)]d (mod N);
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PKCS #7 describes simple mechanisms for signing a message digest [1010].
However, in some applications one might wish to include further data in
the signature block, such as a timestamp, or some randomness to make
side-channel attacks harder.

Many of the things that have gone wrong with real implementations have
to do with side channels and error handling. One spectacular example was
when Daniel Bleichenbacher found a way to break the RSA implementation
in SSL v 3.0 by sending suitably chosen ciphertexts to the victim and observ-
ing any resulting error messages. If he could learn from the target whether
a given c, when decrypted as cd (mod n), corresponds to a PKCS #1 message,
then he could use this to decrypt or sign messages [265]. There have been many
more side-channel attacks on common public-key implementations, typically
via measuring the precise time taken to decrypt. RSA is also mathematically
fragile; you can break it using homomorphisms, or if you have the same cipher-
text encrypted under too many different small keys, or if the message is too
short, or if two messages are related by a known polynomial, or in several other
edge cases. Errors in computation can also give a result that’s correct modulo
one factor of the modulus and wrong modulo the other, enabling the modulus
to be factored; errors can be inserted tactically, by interfering with the crypto
device, or strategically, for example by the chipmaker arranging for one par-
ticular value of a 64-bit multiply to be computed incorrectly. Yet other attacks
have involved stack over�ows, whether by sending the attack code in as keys,
or as padding in poorly-implemented standards.

5.7.2 Cryptography based on discrete logarithms

While RSA was the �rst public-key encryption algorithm deployed in the SSL
and SSH protocols, the most popular public-key algorithms now are based on
discrete logarithms. There are a number of �avors, some using normal modular
arithmetic while others use elliptic curves. I’ll explain the normal case �rst.

A primitive root modulo p is a number whose powers generate all the nonzero
numbers mod p; for example, when working modulo 7 we �nd that 52 = 25
which reduces to 4 (modulo 7), then we can compute 53 as 52 × 5 or 4 × 5 which
is 20, which reduces to 6 (modulo 7), and so on, as in Figure 5.17.

Thus 5 is a primitive root modulo 7. This means that given any y, we can
always solve the equation y = 5x (mod 7); x is then called the discrete logarithm
of y modulo 7. Small examples like this can be solved by inspection, but for a
large random prime number p, we do not know how to do this ef�ciently. So the
mapping f ∶ x → gx (mod p) is a one-way function, with the additional prop-
erties that f (x + y) = f (x)f (y) and f (nx) = f (x)n. In other words, it is a one-way
homomorphism. As such, it can be used to construct digital signature and public
key encryption algorithms.
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51 = 5 (mod 7)

52 = 25 ≡ 4 (mod 7)

53
≡ 4 x 5 ≡ 6 (mod 7)

54
≡ 6 x 5 ≡ 2 (mod 7)

55
≡ 2 x 5 ≡ 3 (mod 7)

56
≡ 3 x 5 ≡ 1 (mod 7)

Figure 5.17: Example of discrete logarithm calculations

5.7.2.1 One-way commutative encryption

Imagine we’re back in ancient Rome, that Anthony wants to send a secret to
Brutus, and the only communications channel available is an untrustworthy
courier (say, a slave belonging to Caesar). Anthony can take the message, put
it in a box, padlock it, and get the courier to take it to Brutus. Brutus could then
put his own padlock on it too, and have it taken back to Anthony. He in turn
would remove his padlock, and have it taken back to Brutus, who would now
at last open it.

Exactly the same can be done using a suitable encryption function that com-
mutes, that is, has the property that {{M}KA}KB = {{M}KB}KA. Alice can take
the message M and encrypt it with her key KA to get {M}KA which she sends
to Bob. Bob encrypts it again with his key KB getting {{M}KA}KB. But the com-
mutativity property means that this is just {{M}KB}KA, so Alice can decrypt it
using her key KA getting {M}KB. She sends this to Bob and he can decrypt it
with KB, �nally recovering the message M.

How can a suitable commutative encryption be implemented? The one-time
pad does indeed commute, but is not suitable here. Suppose Alice chooses a
random key xA and sends Bob M⊕ xA while Bob returns M⊕ xB and Alice
�nally sends him M⊕ xA⊕ xB, then an attacker can simply exclusive-or these
three messages together; as X⊕ X = 0 for all X, the two values of xA and xB
both cancel out, leaving the plaintext M.

The discrete logarithm problem comes to the rescue. If the discrete log
problem based on a primitive root modulo p is hard, then we can use discrete
exponentiation as our encryption function. For example, Alice encodes her
message as the primitive root g, chooses a random number xA, calculates
gxA modulo p and sends it, together with p, to Bob. Bob likewise chooses
a random number xB and forms gxAxB modulo p, which he passes back to
Alice. Alice can now remove her exponentiation: using Fermat’s theorem,
she calculates gxB = (gxAxB)(p−xA) (mod p) and sends it to Bob. Bob can now
remove his exponentiation, too, and so �nally gets hold of g. The security of
this scheme depends on the dif�culty of the discrete logarithm problem. In
practice, it can be tricky to encode a message as a primitive root; but there’s a
simpler way to achieve the same effect.



190 Chapter 5 ■ Cryptography

5.7.2.2 Diffie-Hellman key establishment

The �rst public-key encryption scheme to be published, by Whit�eld Dif�e and
Martin Hellman in 1976, has a �xed primitive root g and uses gxAxB modulo p
as the key to a shared-key encryption system. The values xA and xB can be the
private keys of the two parties.

Let’s walk through this. The prime p and generator g are common to all users.
Alice chooses a secret random number xA, calculates yA = gxA and publishes it
opposite her name in the company phone book. Bob does the same, choosing
a random number xB and publishing yB = gxB. In order to communicate with
Bob, Alice fetches yB from the phone book, forms yBxA which is just gxAxB, and
uses this to encrypt the message to Bob. On receiving it, Bob looks up Alice’s
public key yA and forms yAxB which is also equal to gxAxB, so he can decrypt
her message.

Alternatively, Alice and Bob can use transient keys, and get a mechanism
for providing forward security. As before, let the prime p and generator g be
common to all users. Alice chooses a random number RA, calculates gRA and
sends it to Bob; Bob does the same, choosing a random numberRB and sending
gRB to Alice; they then both form gRARB , which they use as a session key (see
Figure 5.18).

Alice and Bob can now use the session key gRARB to encrypt a conversation.
If they used transient keys, rather than long-lived ones, they have managed
to create a shared secret ‘out of nothing’. Even if an opponent had inspected
both their machines before this protocol was started, and knew all their
stored private keys, then provided some basic conditions were met (e.g., that
their random number generators were not predictable and no malware was
left behind) the opponent could still not eavesdrop on their traf�c. This is
the strong version of the forward security property to which I referred in
section 5.6.2. The opponent can’t work forward from knowledge of previous
keys, however it was obtained. Provided that Alice and Bob both destroy the
shared secret after use, they will also have backward security: an opponent
who gets access to their equipment later cannot work backward to break their
old traf�c. In what follows, we may write the Dif�e-Hellman key derived
from RA and RB as DH(RA,RB) when we don’t have to be explicit about which
group we’re working in, and don’t need to write out explicitly which is the
private key RA and which is the public key gRA .

A → B ∶ gRA (mod p)
B → A ∶ gRB (mod p)
A → B ∶ {M}gRARB

Figure 5.18: The Diffie-Hellman key exchange protocol
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Slightly more work is needed to provide a full solution. Some care is needed
when choosing the parameters p and g; we can infer from the Snowden disclo-
sures, for example, that the NSA can solve the discrete logarithm problem for
commonly-used 1024-bit prime numbers6. And there are several other details
which depend on whether we want properties such as forward security.

But this protocol has a small problem: although Alice and Bob end up with a
session key, neither of them has any real idea who they share it with.

Suppose that in our padlock protocol Caesar had just ordered his slave
to bring the box to him instead, and placed his own padlock on it next
to Anthony’s. The slave takes the box back to Anthony, who removes his
padlock, and brings the box back to Caesar who opens it. Caesar can even run
two instances of the protocol, pretending to Anthony that he’s Brutus and to
Brutus that he’s Anthony. One �x is for Anthony and Brutus to apply their
seals to their locks.

With the Dif�e-Hellman protocol, the same idea leads to a middleperson
attack. Charlie intercepts Alice’s message to Bob and replies to it; at the same
time, he initiates a key exchange with Bob, pretending to be Alice. He ends up
with a keyDH(RA,RC) which he shares with Alice, and another keyDH(RB,RC)

which he shares with Bob. So long as he continues to sit in the middle of the
network and translate the messages between them, they may have a hard time
detecting that their communications are compromised. The usual solution is to
authenticate transient keys, and there are various possibilities.

In the STU-2 telephone, which is now obsolete but which you can see in the
NSA museum at Fort Meade, the two principals would read out an eight-digit
hash of the key they had generated and check that they had the same value
before starting to discuss classi�ed matters. Something similar is implemented
in Bluetooth versions 4 and later, but is complicated by the many versions that
the protocol has evolved to support devices with different user interfaces. The
protocol has suffered from multiple attacks, most recently the Key Negotiation
of Bluetooth (KNOB) attack, which allows a middleperson to force one-byte
keys that are easily brute forced; all devices produced before 2018 are vulner-
able [125]. The standard allows for key lengths between one and sixteen bytes;
as the keylength negotiation is performed in the clear, an attacker can force the
length to the lower limit. All standards-compliant chips are vulnerable; this
may be yet more of the toxic waste from the Crypto Wars, which I discuss in
section 26.2.7. Earlier versions of Bluetooth are more like the ‘just-works’ mode
of the HomePlug protocol described in section 4.7.1 in that they were princi-
pally designed to help you set up a pairing key with the right device in a benign

6The likely discrete log algorithm, NFS, involves a large computation for each prime number fol-
lowed by a smaller computation for each discrete log modulo that prime number. The open record
is 795 bits, which took 3,100 core-years in 2019 [302], using a version of NFS that’s three times more
ef�cient than ten years ago. There have been persistent rumours of a further NSA improvement
and in any case the agency can throw a lot more horsepower at an important calculation.
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environment, rather than defending against a sophisticated attack in a hostile
one. The more modern ones appear to be better, but it’s really just theatre.

So many things go wrong: protocols that will generate or accept very weak
keys and thus give only the appearance of protection; programs that leak keys
via side channels such as the length of time they take to decrypt; and software
vulnerabilities leading to stack over�ows and other hacks. If you’re imple-
menting public-key cryptography you need to consult up-to-date standards,
use properly accredited toolkits, and get someone knowledgeable to evalu-
ate what you’ve done. And please don’t write the actual crypto code on your
own – doing it properly requires a lot of different skills, from computational
number theory to side-channel analysis and formal methods. Even using good
crypto libraries gives you plenty of opportunities to shoot your foot off.

5.7.2.3 ElGamal digital signature and DSA

Suppose that the base p and the generator g are public values chosen in some
suitable way, and that each user who wishes to sign messages has a private
signing key X with a public signature veri�cation key Y = gX. An ElGamal sig-
nature scheme works as follows. Choose a message key k at random, and form
r = gk (mod p). Now form the signature s using a linear equation in k, r, the
message M and the private key X. There are a number of equations that will
do; the one that happens to be used in ElGamal signatures is

rX + sk = M

So s is computed as s = (M − rX)∕k; this is done modulo�(p). When both sides
are passed through our one-way homomorphism f (x) = gx mod p we get:

grXgsk ≡ gM

or

Yrrs ≡ gM

An ElGamal signature on the message M consists of the values r and s, and
the recipient can verify it using the above equation.

A few more details need to be �xed up to get a functional digital signature
scheme. As before, bad choices of p and g can weaken the algorithm. We will
also want to hash the message M using a hash function so that we can sign
messages of arbitrary length, and so that an opponent can’t use the algorithm’s
algebraic structure to forge signatures on messages that were never signed.
Having attended to these details and applied one or two optimisations, we get
the Digital Signature Algorithm (DSA) which is a US standard and widely used
in government applications.
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DSA assumes a prime p of typically 2048 bits7, a prime q of 256 bits dividing
(p − 1), an element g of order q in the integers modulo p, a secret signing key x
and a public veri�cation key y = gx. The signature on a message M, Sigx(M), is
(r, s) where

r ≡ (gk (mod p)) (mod q)

s ≡ (h(M) − xr)∕k (mod q)

The hash function used by default is SHA2568.
DSA is the classic example of a randomised digital signature scheme without

message recovery. The most commonly-used version nowadays is ECDSA, a
variant based on elliptic curves, which we’ll discuss now – this is for example
the standard for cryptocurrency and increasingly also for certi�cates in bank
smartcards.

5.7.3 Elliptic curve cryptography

Discrete logarithms and their analogues exist in many other mathematical
structures. Elliptic curve cryptography uses discrete logarithms on an elliptic
curve – a curve given by an equation like y2 = x3 + ax + b. These curves have
the property that you can de�ne an addition operation on them and the
resulting Mordell group can be used for cryptography. The algebra gets a bit
complex and this book isn’t the place to set it out9. However, elliptic curve
cryptosystems are interesting for at least two reasons.

First is performance; they give versions of the familiar primitives such
as Dif�e-Hellmann key exchange and the Digital Signature Algorithm that
use less computation, and also have shorter variables; both are welcome in
constrained environments. Elliptic curve cryptography is used in applications
from the latest versions of EMV payment cards to Bitcoin.

Second, some elliptic curves have a bilinear pairing which Dan Boneh and
Matt Franklin used to construct cryptosystems where your public key is
your name [287]. Recall that in RSA and Dif�e-Hellmann, the user chose his
private key and then computed a corresponding public key. In a so-called
identity-based cryptosystem, you choose your identity then go to a central
authority that issues you with a private key corresponding to that identity.
There is a global public key, with which anyone can encrypt a message

7In the 1990s p could be in the range 512–1024 bits and q 160 bits; this was changed to 1023–1024
bits in 2001 [1404] and 1024–3072 bits in 2009, with q in the range 160–256 bits [1405].
8The default sizes of p are chosen to be 2048 bits and q 256 bits in order to equalise the work factors
of the two best known cryptanalytic attacks, namely the number �eld sieve whose running speed
depends on the size of p and Pollard’s rho which depends on the size of q. Larger sizes can be
chosen if you’re anxious about Moore’s law or about progress in algorithms.
9See Katz and Lindell [1025] for an introduction.



194 Chapter 5 ■ Cryptography

to your identity; you can decrypt this using your private key. Earlier, Adi
Shamir had discovered identity-based signature schemes that allow you to
sign messages using a private key so that anyone can verify the signature
against your name [1707]. In both cases, your private key is computed
by the central authority using a system-wide private key known only to
itself. Identity-based primitives have been used in a few specialist systems:
in Zcash for the payment privacy mechanisms, and in a UK government
key-management protocol called Mikey-Sakke. Computing people’s private
keys from their email addresses or other identi�ers may seem a neat hack,
but it can be expensive when government departments are reorganised or
renamed [116]. Most organisations and applications use ordinary public-key
systems with certi�cation of public keys, which I’ll discuss next.

5.7.4 Certification authorities

Now that we can do public-key encryption and digital signature, we need
some mechanism to bind users to keys. The approach proposed by Dif�e and
Hellman when they invented digital signatures was to have a directory of the
public keys of a system’s authorised users, like a phone book. A more common
solution, due to Loren Kohnfelder, is for a certi�cation authority (CA) to sign
the users’ public encryption keys or their signature veri�cation keys giving
certi�cates that contain a user’s name, one or more of their public keys, and
attributes such as authorisations. The CA might be run by the local system
administrator; but it is most commonly a third party service such as Verisign
whose business is to sign public keys after doing some due diligence about
whether they are controlled by the principals named in them.

A certi�cate might be described symbolically as

CA = SigKS
(TS, L,A,KA,VA) (5.1)

where TS is the certi�cate’s starting date and time, L is the length of time for
which it is valid, A is the user’s name, KA is her public encryption key, and VA

is her public signature veri�cation key. In this way, only the administrator’s
public signature veri�cation key needs to be communicated to all principals in
a trustworthy manner.

Certi�cation is hard, for a whole lot of reasons. Naming is hard, for starters;
we discuss this in Chapter 7 on Distributed Systems. But often names aren’t
really what the protocol has to establish, as in the real world it’s often
about authorisation rather than authentication. Government systems are often
about establishing not just a user’s name or role but their security clearance
level. In banking systems, it’s about your balance, your available credit and
your authority to spend it. In commercial systems, it’s often about linking
remote users to role-based access control. In user-facing systems, there is
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a tendency to dump on the customer as many of the compliance costs as
possible [524]. There are many other things that can go wrong with certi�-
cation at the level of systems engineering. At the level of politics, there are
hundreds of certi�cation authorities in a typical browser, they are all more or
less equally trusted, and many nation states can coerce at least one of them10.
The revocation of bad certi�cates is usually �aky, if it works at all. There will
be much more on these topics later. With these warnings, it’s time to look at
the most commonly used public key protocol, TLS.

5.7.5 TLS

I remarked above that a server could publish a public key KS and any web
browser could then send a message M containing a credit card number to it
encrypted using KS: {M}KS. This is in essence what the TLS protocol (then
known as SSL) was designed to do, at the start of e-commerce. It was devel-
oped by Paul Kocher and Taher ElGamal in 1995 to support encryption and
authentication in both directions, so that both http requests and responses can
be protected against both eavesdropping and manipulation. It’s the protocol
that’s activated when you see the padlock on your browser toolbar.

Here is a simpli�ed description of the basic version of the protocol in TLS v1:

1. the client sends the server a client hello message that contains its
name C, a transaction serial number C#, and a random nonce NC;

2. the server replies with a server hello message that contains its name
S, a transaction serial number S#, a random nonce NS, and a cer-
ti�cate CS containing its public key KS. The client now checks
the certi�cate CS, and if need be checks the key that signed it
in another certi�cate, and so on back to a root certi�cate issued
by a company such as Verisign and stored in the browser;

3. the client sends a key exchange message containing a pre-master-secret key,
K0, encrypted under the server public key KS. It also sends a �nished
message with a message authentication code (MAC) computed on
all the messages to date. The key for this MAC is the master-secret,
K1. This key is computed by hashing the pre-master-secret key with
the nonces sent by the client and server: K1 = h(K0,NC,NS). From this
point onward, all the traf�c is encrypted; we’ll write this as {...}KCS
in the client-server direction and {...}KSC from the server to the client.
These keys are generated in turn by hashing the nonces with K1.

10The few that can’t, try to cheat. In 2011 Iran hacked the CA Diginotar, and in 2019 Kazakhstan
forced its citizens to add a local police certi�cate to their browser. In both cases the browser ven-
dors pushed back fast and hard: Diginotar failed after it was blacklisted, while the Kazakh cert
was blocked even if its citizens installed it manually. This of course raises issues of sovereignty.
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4. The server also sends a �nished message with a MAC computed on
all the messages to date. It then �nally starts sending the data.

C → S ∶ C,C#,NC

S → C ∶ S, S#,NS,CS
C → S ∶ {K0}KS
C → S ∶ {�nished,MAC(K1, everythingtodate)}KCS
S → C ∶ {�nished,MAC(K1, everythingtodate)}KSC, {data}KSC

Once a client and server have established a pre-master-secret, no more
public-key operations are needed as further master secrets can be obtained by
hashing it with new nonces.

5.7.5.1 TLS uses

The full protocol is more complex than this, and has gone through a number
of versions. It has supported a number of different ciphersuites, initially so
that export versions of software could be limited to 40 bit keys – a condition
of export licensing that was imposed for many years by the US government.
This led to downgrade attacks where a middleperson could force the use of
weak keys. Other ciphersuites support signed Dif�e-Hellman key exchanges
for transient keys, to provide forward and backward secrecy. TLS also has
options for bidirectional authentication so that if the client also has a certi�cate,
this can be checked by the server. In addition, the working keys KCS and KSC
can contain separate subkeys for encryption and authentication, as is needed
for legacy modes of operation such as CBC plus CBC MAC.

As well as being used to encrypt web traf�c, TLS has also been available as an
authentication option in Windows from Windows 2000 onwards; you can use
it instead of Kerberos for authentication on corporate networks. I will describe
its use in more detail in the chapter on network attack and defence.

5.7.5.2 TLS security

Although early versions of SSL had a number of bugs [1977], SSL 3.0 and later
appear to be sound; the version after SSL 3.0 was renamed TLS 1.0. It was for-
mally veri�ed by Larry Paulson in 1998, so we know that the idealised version
of the protocol doesn’t have any bugs [1504].

However, in the more than twenty years since then, there have been over
a dozen serious attacks. Even in 1998, Daniel Bleichenbacher came up with
the �rst of a number of attacks based on measuring the time it takes a server
to decrypt, or the error messages it returns in response to carefully-crafted
protocol responses [265]. TLS 1.1 appeared in 2006 with protection against
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exploits of CBC encryption and of padding errors; TLS 1.2 followed two years
later, upgrading the hash function to SHA256 and supporting authenticated
encryption; and meanwhile there were a number of patches dealing with
various attacks that had emerged. Many of these patches were rather inelegant
because of the dif�culty of changing a widely-used protocol; it’s dif�cult to
change both the server and client ends at once, as any client still has to interact
with millions of servers, many running outdated software, and most websites
want to be able to deal with browsers of all ages and on all sorts of devices.
This has been dealt with by the big service �rms changing their browsers to
reject obsolete ciphersuites, and to add features like strict transport security
(STS) whereby a website can instruct browsers to only interact with it using
https in future (to prevent downgrade attacks). The browser �rms have also
mandated a number of other supporting measures, from shorter certi�cate
lifetimes to certi�cate transparency, which we’ll discuss in the chapter on
network attack and defence.

5.7.5.3 TLS 1.3

The most recent major upgrade to the core protocol, TLS 1.3, was approved
by the IETF in January 2019 after two years of discussion. It has dropped
backwards compatibility in order to end support for many old ciphers, and
made it mandatory to establish end-to-end forward secrecy by means of a
Dif�e-Hellman key exchange at the start of each session. This has caused
controversy with the banking industry, which routinely intercepts encrypted
sessions in order to do monitoring for compliance purposes. This will no
longer be possible, so banks will have to bear the legal discomfort of using
obsolete encryption or the �nancial cost of redeveloping systems to monitor
compliance at endpoints instead11.

5.7.6 Other public-key protocols

Dozens of other public-key protocols have found wide use, including the fol-
lowing, most of which we’ll discuss in detail later. Here I’ll brie�y mention
code signing, PGP and QUIC.

5.7.6.1 Code signing

Code signing was introduced in the 1990s when people started downloading
software rather than getting it on diskettes. It is now used very widely to

11The COVID-19 pandemic has given some respite: Microsoft had been due to remove support
for legacy versions of TLS in spring 2020 but has delayed this.
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assure the provenance of software. You might think that having a public
signature-veri�cation key in your software so that version N can verify an
update to version N + 1 would be a simple application of public-key cryptog-
raphy but this is far from the case. Many platforms sign their operating-system
code, including updates, to prevent persistent malware; the mechanisms often
involve trusted hardware such as TPMs and I’ll discuss them in the next
chapter in section 6.2.5. Some platforms, such as the iPhone, will only run
signed code; this not only assures the provenance of software but enables
platform owners to monetise apps, as I will discuss in section 22.4.2; games
consoles are similar. As some users go to great lengths to jailbreak their
devices, such platforms typically have trustworthy hardware to store the
veri�cation keys. Where that isn’t available, veri�cation may be done using
code that is obfuscated to make it harder for malware (or customers) to tamper
with it; this is a constant arms race, which I discuss in section 24.3.3. As for the
signing key, the developer may keep it in a hardware security module, which
is expensive and breaks in subtle ways discussed in section 20.5; there may be
a chain of trust going back to a commercial CA, but then have to worry about
legal coercion by government agencies, which I discuss in section 26.2.7; you
might even implement your own CA for peace of mind. In short, code signing
isn’t quite as easy as it looks, particularly when the user is the enemy.

5.7.6.2 PGP/GPG

During the ‘Crypto Wars’ in the 1990s, cyber-activists fought governments
for the right to encrypt email, while governments pushed for laws restricting
encryption; I’ll discuss the history and politics in section 26.2.7. The crypto
activist Phil Zimmermann wrote an open-source encryption product Pretty
Good Privacy (PGP) and circumvented U.S. export controls by publishing the
source code in a paper book, which could be posted, scanned and compiled.
Along with later compatible products such as GPG, it has become fairly widely
used among geeks. For example, sysadmins, Computer Emergency Response
Teams (CERTs) and malware researchers use it to share information about
attacks and vulnerabilities. It has also been built into customised phones sold
to criminal gangs to support messaging; I’ll discuss this later in section 25.4.1.

PGP has a number of features but, in its most basic form, each user generates
private/public keypairs manually and shares public keys with contacts. There
are command-line options to sign a message with your signature key and/or
encrypt it using the public key of each of the intended recipients. Manual key
management avoids the need for a CA that can be cracked or coerced. Many
things were learned from the deployment and use of PGP during the 1990s. As
I described in section 3.2.1, Alma Whitten and Doug Tygar wrote the seminal
paper on security usability by assessing whether motivated but cryptologically
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unsophisticated users could understand it well enough to drive the program
safely. Only four of twelve subjects were able to correctly send encrypted email
to the other subjects, and every subject made at least one signi�cant error.

5.7.6.3 QUIC

QUIC is a new UDP-based protocol designed by Google and promoted as
an alternative to TLS that allows quicker session establishment and cutting
latency in the ad auctions that happen as pages load; sessions can persist as
people move between access points. This is achieved by a cookie that holds
the client’s last IP address, encrypted by the server. It appeared in Chrome
in 2013 and now has about 7% of Internet traf�c; it’s acquired a vigorous
standardisation community. Google claims it reduces search latency 8% and
YouTube buffer time 18%. Independent evaluation suggests that the bene�t is
mostly on the desktop rather than mobile [1009], and there’s a privacy concern
as the server can use an individual public key for each client, and use this for
tracking. As a general principle, one should be wary of corporate attempts
to replace open standards with proprietary ones, whether IBM’s EBCDIC
coding standard of the 1950s and SNA in the 1970s, or Microsoft’s attempts
to ‘embrace and extend’ both mail standards and security protocols since the
1990s, or Facebook’s promotion of Internet access in Africa that kept users
largely within its walled garden. I’ll discuss the monopolistic tendencies of
our industry at greater length in Chapter 8.

5.7.7 Special-purpose primitives

Researchers have invented a large number of public-key and signature prim-
itives with special properties. Two that have so far appeared in real products
are threshold cryptography and blind signatures.
Threshold crypto is a mechanism whereby a signing key, or a decryption key,

can be split up among n principals so that any k out of n can sign a message
(or decrypt). For k = n the construction is easy. With RSA, for example, you can
split up the private key d as d = d1 + d2 + … + dn. For k < n it’s slightly more
complex (but not much – you use the Lagrange interpolation formula) [554].
Threshold signatures were �rst used in systems where a number of servers
process transactions independently and vote independently on the outcome;
they have more recently been used to implement business rules on cryptocur-
rency wallets such as ‘a payment must be authorised by any two of the seven
company directors’.
Blind signatures are a way of making a signature on a message without

knowing what the message is. For example, if we are using RSA, I can take a
random number R, form ReM (mod n), and give it to the signer who computes
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(ReM)d = R.Md (mod n). When he gives this back to me, I can divide outR to get
the signature Md. Now you might ask why on earth someone would want to
sign a document without knowing its contents, but there are some applications.

The �rst was in digital cash; you might want to be able to issue anonymous
payment tokens to customers, and the earliest idea, due to David Chaum, was a
way to sign ‘digital coins’ without knowing their serial numbers [413]. A bank
might agree to honour for $10 any string M with a unique serial number and a
speci�ed form of redundancy, bearing a signature that veri�ed as correct using
the public key (e, n). The blind signature protocol ensures a customer can get a
bank to sign a coin without the banker knowing its serial number, and it was
used in prototype road toll systems. The effect is that the digital cash can be
anonymous for the spender. The main problem with digital cash was to detect
people who spend the same coin twice, and this was eventually �xed using
blockchains or other ledger mechanisms, as I discuss in section 20.7. Digital
cash failed to take off because neither banks nor governments really want pay-
ments to be anonymous: anti-money-laundering regulations since 9/11 restrict
anonymous payment services to small amounts, while both banks and bitcoin
miners like to collect transaction fees.

Anonymous digital credentials are now used in attestation: the TPM chip on
your PC motherboard might prove something about the software running on
your machine without identifying you. Unfortunately, this led to designs for
attestation in SGX (and its AMD equivalent) which mean that a single com-
promised device breaks the whole ecosystem. Anonymous signatures are also
found in prototype systems for conducting electronic elections, to which I will
return in section 25.5.

5.7.8 How strong are asymmetric cryptographic primitives?

In order to provide the same level of protection as a symmetric block cipher,
asymmetric cryptographic primitives generally require at least twice the block
length. Elliptic curve systems appear to achieve this bound; a 256-bit elliptic
scheme could be about as hard to break as a 128-bit block cipher with a 128-bit
key; and the only public-key encryption schemes used in the NSA’s Suite B of
military algorithms are 384-bit elliptic curve systems. The traditional schemes,
based on factoring and discrete log, now require 3072-bit keys to protect mate-
rial at Top Secret, as there are shortcut attack algorithms such as the number
�eld sieve. As a result, elliptic curve cryptosystems are faster.

When I wrote the �rst edition of this book in 2000, the number �eld sieve
had been used to attack keys up to 512 bits, a task comparable in dif�culty to
keysearch on 56-bit DES keys; by the time I rewrote this chapter for the second
edition in 2007, 64-bit symmetric keys had been brute-forced, and the 663-bit
challenge number RSA-200 had been factored. By the third edition in 2019,



5.7 Asymmetric crypto primitives 201

bitcoin miners are �nding 68-bit hash collisions every ten minutes, RSA-768
has been factored and Ed Snowden has as good as told us that the NSA can do
discrete logs for a 1024-bit prime modulus.

There has been much research into quantum computers – devices that perform
a large number of computations simultaneously using superposed quantum
states. Peter Shor has shown that if a suf�ciently large quantum computer
could be built, then both factoring and discrete logarithm computations will
become easy [1728]. So far only very small quantum devices have been built;
although there are occasional claims of ‘quantum supremacy’ – of a quan-
tum computer performing a task suf�ciently faster than a conventional one
to convince us that quantum superposition or entanglement is doing any real
work – they seem to lead nowhere. I am sceptical (as are many physicists) about
whether the technology will ever threaten real systems. I am even more scep-
tical about the value of quantum cryptography; it may be able to re-key a line
encryption device that uses AES for bulk encryption on a single uninterrupted
�bre run, but we already know how to do that.

What’s more, I �nd the security proofs offered for entanglement-based quan-
tum cryptography to be unconvincing. Theoretical physics has been stalled
since the early 1970s when Gerard ’t Hooft completed the Standard Model
by proving the renormalisability of Yang-Mills. Since then, a whole series of
ideas have come and gone, such as string theory [2035]. Quantum information
theory is the latest enthusiasm. Its proponents talk up the mystery of the
Bell tests, which are supposed to demonstrate that physics cannot be simul-
taneously local and causal. But alternative interpretations such as ’t Hooft’s
cellular automaton model [918] and Grisha Volovik’s super�uid model [1971]
suggest that the Bell tests merely demonstrate the existence of long-range
order in the quantum vacuum, like the order parameter of a super�uid. Since
2005, we’ve had lab experiments involving bouncing droplets on a vibrating
�uid bath that demonstrate interesting analogues of quantum-mechanical
properties relevant to the Bell tests [1560]. This book is not the place to discuss
the implications in more detail; for that, see [312]. There is a whole community
of physicists working on emergent quantum mechanics – the idea that to make
progress beyond the Standard Model, and to reconcile the apparent con�ict
between quantum mechanics and general relativity, we may need to look at
things differently. Meantime, if anyone claims their system is secure ‘because
quantum mechanics’ then scepticism may be in order.

I think it more likely that a major challenge to public-key cryptography could
come in the form of a better algorithm for computing discrete logarithms on
elliptic curves. These curves have a lot of structure; they are studied inten-
sively by some of the world’s smartest pure mathematicians; better discrete-log
algorithms for curves of small characteristic were discovered in 2013 [169]; and
the NSA is apparently moving away from using elliptic-curve crypto.
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If quantum computers ever work, we have other ‘post-quantum’ algorithms
ready to go, for which quantum computers give no obvious advantage.
In 2020, NIST began the third round of public review of submissions for
the Post-Quantum Cryptography Standardization Process. The 65 initial
submissions have been cut to 15 through two rounds of review12. One or more
algorithms will now be chosen and standardised, so ciphersuites using them
could be dropped into protocols such as TLS as upgrades. Many protocols in
use could even be redesigned to use variants on Kerberos. If elliptic logarithms
become easy, we have these resources and can also fall back to discrete logs in
prime �elds, or to RSA. But if elliptic logs become easy, bitcoins will become
trivial to forge, and the cryptocurrency ecosystem would probably collapse,
putting an end to the immensely wasteful mining operations I describe in
section 20.7. So mathematicians who care about the future of the planet might
do worse than to study the elliptic logarithm problem.

5.7.9 What else goes wrong

Very few attacks on systems nowadays involve cryptanalysis in the sense of a
mathematical attack on the encryption algorithm or key. There have indeed
been attacks on systems designed in the 20th century, mostly involving keys
that were kept too short by export-control rules, clueless designs or both.
I already discussed in section 4.3.1 how weak crypto has facilitated a wave of
car theft, as all the devices used for remote key entry were defeated one after
another in 2005–15. In later chapters, I give examples of how the crypto wars
and their export control rules resulted in attacks on door locks (section 13.2.5),
mobile phones (section 22.3.1) and copyright enforcement (section 24.2.5).

Most attacks nowadays exploit the implementation. In chapter 2, I men-
tioned the scandal of NIST standardising a complicated random number
generator based on elliptic curves that turned out to contain an NSA back-
door; see section 2.2.1.5. Poor random number generators have led to many
other failures: RSA keys with common factors [1142], predictable seeds for
discrete logs [1679], etc. These vulnerabilities have continued; thanks to the
Internet of Things, the proportion of RSA certs one can �nd out there on the
Internet that share a common factor with other RSA keys has actually risen
between 2012 and 2020; 1 in 172 IoT certs are trivially vulnerable [1048].

Many of the practical attacks on cryptographic implementations that have
forced signi�cant changes over the past 20 years have exploited side channels
such as timing and power analysis; I devote Chapter 19 to these.

12One of them, the McEliece cryptosystem, has been around since 1978; we’ve had digital signa-
tures based on hash functions for about as long, and some of us used them in the 1990s to avoid
paying patent royalties on RSA.
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In Chapter 20, I’ll discuss a number of systems that use public-key mecha-
nisms in intricate ways to get interesting emergent properties, including the
Signal messaging protocol, the TOR anonymity system, and cryptocurrencies.
I’ll also look at the crypto aspects of SGX enclaves. These also have interesting
failure modes, some but not all of them relating to side channels.

In Chapter 21, I’ll discuss protocols used in network infrastructure such as
DKIM, DNSSec versus DNS over HTTP, and SSH.

5.8 Summary

Many ciphers fail because they’re used badly, so the security engineer needs a
clear idea of what different types of cipher do. This can be tackled at different
levels; one is at the level of crypto theory, where we can talk about the
random oracle model, the concrete model and the semantic security model,
and hopefully avoid using weak modes of operation and other constructions.
The next level is that of the design of individual ciphers, such as AES, or
the number-theoretic mechanisms that underlie public-key cryptosystems
and digital signature mechanisms. These also have their own specialised
�elds of mathematics, namely block cipher cryptanalysis and computational
number theory. The next level involves implementation badness, which is
much more intractable and messy. This involves dealing with timing, error
handling, power consumption and all sorts of other grubby details, and is
where modern cryptosystems tend to break in practice.

Peering under the hood of real systems, we’ve discussed how block ciphers
for symmetric key applications can be constructed by the careful combination
of substitutions and permutations; for asymmetric applications such as public
key encryption and digital signature one uses number theory. In both cases,
there is quite a large body of mathematics. Other kinds of ciphers – stream
ciphers and hash functions – can be constructed from block ciphers by using
them in suitable modes of operation. These have different error propagation,
pattern concealment and integrity protection properties. A lot of systems fail
because popular crypto libraries encourage programmers to use inappropriate
modes of operation by exposing unsafe defaults. Never use ECB mode unless
you really understand what you’re doing.

There are many other things that can go wrong, from side channel attacks to
poor random number generators. In particular, it is surprisingly hard to build
systems that are robust even when components fail (or are encouraged to) and
where the cryptographic mechanisms are well integrated with other measures
such as access control and physical security. I’ll return to this repeatedly in later
chapters.

The moral is: Don’t roll your own! Don’t design your own protocols, or your
own ciphers; and don’t write your own crypto code unless you absolutely have
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to. If you do, then you not only need to read this book (and then read it again,
carefully); you need to read up the relevant specialist material, speak to experts,
and have capable motivated people try to break it. At the very least, you need to
get your work peer-reviewed. Designing crypto is a bit like juggling chainsaws;
it’s just too easy to make fatal errors.

Research problems

There are many active threads in cryptography research. Many of them are
where crypto meets a particular branch of mathematics (number theory,
algebraic geometry, complexity theory, combinatorics, graph theory, and
information theory). The empirical end of the business is concerned with
designing primitives for encryption, signature and composite operations, and
which perform reasonably well on available platforms. The two meet in the
study of subjects ranging from cryptanalysis, to the search for primitives that
combine provable security properties with decent performance.

The best way to get a �avor of what’s going on at the theoretical end of
things is to read the last few years’ proceedings of research conferences such
as Crypto, Eurocrypt and Asiacrypt; work on cipher design appears at Fast
Software Encryption; attacks on implementations often appear at CHES; while
attacks on how crypto gets used in systems can be found in the systems security
conferences such as IEEE Security and Privacy, CCS and Usenix.

Further reading

The classic papers by Whit Dif�e and Martin Hellman [556] and by Ron Rivest,
Adi Shamir and Len Adleman [1610] are the closest to required reading in this
subject. Bruce Schneier’s Applied Cryptography [1670] covers a lot of ground at
a level a non-mathematician can understand, and got crypto code out there
in the 1990s despite US export control laws, but is now slightly dated. Alfred
Menezes, Paul van Oorshot and Scott Vanstone’s Handbook of Applied Cryptog-
raphy [1291] is one reference book on the mathematical detail. Katz and Lindell
is the book we get our students to read for the math. It gives an introduction to
the standard crypto theory plus the number theory you need for public-key
crypto (including elliptic curves and index calculus) but is also dated: they
don’t mention GCM, for example [1025].

There are many more specialist books. The bible on differential cryptanalysis
is by its inventors Eli Biham and Adi Shamir [246], while a good short tutorial
on linear and differential cryptanalysis was written by Howard Heys [897].
Doug Stinson’s textbook has another detailed explanation of linear cryptanal-
ysis [1832]; and the modern theory of block ciphers can be traced through the
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papers in the Fast Software Encryption conference series. The original book on
modes of operation is by Carl Meyer and Steve Matyas [1303]. Neal Koblitz
has a good basic introduction to the mathematics behind public key cryptog-
raphy [1062]; and the number �eld sieve is described by Arjen and Henrik
Lenstra [1143]. For the practical attacks on TLS over the past twenty years, see
the survey paper by Christopher Meyer and Joerg Schwenk [1304] as well as
the chapter on Side Channels later in this book.

If you want to work through the mathematical detail of theoretical cryptol-
ogy, there’s an recent graduate textbook by Dan Boneh and Victor Shoup [288].
A less thorough but more readable introduction to randomness and algorithms
is in [836]. Research at the theoretical end of cryptology is found at the FOCS,
STOC, Crypto, Eurocrypt and Asiacrypt conferences.

The history of cryptology is fascinating, and so many old problems keep on
recurring that anyone thinking of working with crypto should study it. The
standard work is Kahn [1003]; there are also compilations of historical articles
fromCryptologia [529–531] as well as several books on the history of cryptology
in World War II by Kahn, Marks, Welchman and others [440, 1004, 1226, 2011].
The NSA Museum at Fort George Meade, Md., is also worth a visit, but perhaps
the best is the museum at Bletchley Park in England.

Finally, no chapter that introduces public key encryption would be complete
without a mention that, under the name of ‘non-secret encryption,’ it was �rst
discovered by James Ellis in about 1969. However, as Ellis worked for GCHQ,
his work remained classi�ed. The RSA algorithm was then invented by Clifford
Cocks, and also kept secret. This story is told in [626]. One effect of the secrecy
was that their work was not used: although it was motivated by the expense
of Army key distribution, Britain’s Ministry of Defence did not start building
electronic key distribution systems for its main networks until 1992. And the
classi�ed community did not pre-invent digital signatures; they remain the
achievement of Whit Dif�e and Martin Hellman.


