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Abstract

A compiler that automatically translates recursive function definitions in higher
order logic to clocked synchronous hardware is described. Compilation is by mech-
anised proof in the HOL4 system, and generates a correctness theorem for each
function that is compiled. Logic formulas representing circuits are synthesised in
a form suitable for direct translation to Verilog HDL for simulation and input to
standard design automation tools. The compilation scripts are open and can be
safely modified: synthesised circuits are correct-by-construction. The synthesisable
subset of higher order logic can be extended using additional proof-based tools that
transform definitions into the subset.
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1 Introduction

Our goal is to synthesise correct-by-construction hardware directly from math-
ematical specifications in higher order logic (HOL [5]). The ‘synthesisable
subset’ of HOL is not intended to be fixed, but to grow as we do case stud-
ies. The compiler currently generates hardware to implement tail-recursive
function definitions. An example is iterative accumulator-style multiplication:

MultIter(m,n,acc) =

if m = 0 then (0,n,acc) else MultIter(m-1,n,n+acc)

Since MultIter(m,n,acc) = (0,n,(m×n)+acc), a multiplier is defined by:

Mult(m,n) = SND(SND(MultIter(m,n,0)))

where SND(SND(x,y,z)) evaluates to z, so Mult(m,n) = m×n. Using this
multiplier one could then define the factorial function by:

FACT n = if n = 0 then 1 else Mult(n, FACT(n-1))

This isn’t tail-recursive, so isn’t synthesisable, however a separate tool linRec
(see Section 4) can automatically generate a synthesisable definition:
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FactIter(n,acc) =

if n = 0 then (n,acc) else FactIter(n-1,Mult(n,acc)))

Fact n = SND(FactIter (n,1))

linRec automatically proves FACT = Fact.

The compiler translates a function f , defined in HOL, into a device DEV f
that computes f via a four-phase handshake circuit on signals load, inp, done
and out. These signals are a request line, a data input bus, an acknowledge
line and a data output bus, respectively.
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Fig. 1. The handshaking protocol.

The exact behaviour of such a handshaking device is specified in the HOL def-
inition of the predicate DEV, which is given in the Appendix. This specification
says roughly that if a value v is input on inp when a request is made on load

then eventually f(v) will be output on out, and when this occurs is signalled
on done (Fig. 1). Here’s a more detailed description: at the start of a trans-
action (say at time t) the device must be outputting T on done (to indicate
it is ready) and the environment must be asserting F on load, i.e. in a state
such that a positive edge on load can be generated. A transaction is initiated
by asserting (at time t+1) the value T on load, i.e. load has a positive edge
at time t+1. This causes the device to read the value, v say, being input on
inp (at time t+1) and to set done to F. The device then becomes insensitive
to inputs until T is next asserted on done, at which time the computed value
f(v) will be output on out.

2 Representation of functions as circuits

A synchronous circuit clocked on the signal clk implements the handshake
protocol computing f if it guarantees that the higher order logic formula:

DEV f (load at clk, inp at clk, done at clk, out at clk)

is true (the Appendix has the formal definition of DEV). The signals load,
inp, done, out are modelled as functions mapping time to values, and the at-
operator projects a signal to the sequence of values occurring at rising edges
of the clock clk. More precisely σ at clk is the signal that for all times t has
the value at time t that the signal σ has at the tth rising edge of signal clk.
The notation “σ@clk” is sometimes used instead of “σ at clk”. The formal
theory of temporal projection is covered in detail in Melham’s monograph [9]
(where it is called ‘temporal abstraction’).
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An actual circuit is represented as a conjunction of formulas, each repre-
senting a component instance. Internal wires are existentially-quantified. This
is a standard modelling of hardware in higher order logic, and is also described
in detail in Melham’s book (ibid).

The result of compiling the definition of MultIter given earlier is the
following theorem:
` InfRise clk

==>

(∃ v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22

v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39 v40 v41 v42

v43 v44 v45 v46 v47 v48 v49 v50 v51 v52 v53 v54 v55 v56 v57.

DtypeT(clk,load,v21) ∧ NOT(v21,v20) ∧ AND(v20,load,v19) ∧ Dtype(clk,done,v18) ∧
AND(v19,v18,v17) ∧ OR(v17,v16,v11) ∧ DtypeT(clk,v15,v23) ∧ NOT(v23,v22) ∧
AND(v22,v15,v16) ∧ MUX(v16,v14,inp1,v3) ∧ MUX(v16,v13,inp2,v2) ∧
MUX(v16,v12,inp3,v1) ∧ DtypeT(clk,v11,v26) ∧ NOT(v26,v25) ∧ AND(v25,v11,v24) ∧
MUX(v24,v3,v27,v10) ∧ Dtype(clk,v10,v27) ∧ DtypeT(clk,v11,v30) ∧ NOT(v30,v29) ∧
AND(v29,v11,v28) ∧ MUX(v28,v2,v31,v9) ∧ Dtype(clk,v9,v31) ∧
DtypeT(clk,v11,v34) ∧ NOT(v34,v33) ∧ AND(v33,v11,v32) ∧ MUX(v32,v1,v35,v8) ∧
Dtype(clk,v8,v35) ∧ DtypeT(clk,v11,v39) ∧ NOT(v39,v38) ∧ AND(v38,v11,v37) ∧
NOT(v37,v7) ∧ CONSTANT 0 v40 ∧ EQ32(v3,v40,v36) ∧ Dtype(clk,v36,v6) ∧
DtypeT(clk,v7,v44) ∧ NOT(v44,v43) ∧ AND(v43,v7,v42) ∧ AND(v42,v6,v5) ∧
NOT(v6,v41) ∧ AND(v41,v42,v4) ∧ DtypeT(clk,v5,v48) ∧ NOT(v48,v47) ∧
AND(v47,v5,v46) ∧ NOT(v46,v0) ∧ CONSTANT 0 v45 ∧ Dtype(clk,v45,out1) ∧
Dtype(clk,v9,out2) ∧ Dtype(clk,v8,out3) ∧ DtypeT(clk,v4,v53) ∧ NOT(v53,v52) ∧
AND(v52,v4,v51) ∧ NOT(v51,v15) ∧ CONSTANT 1 v54 ∧ SUB32(v10,v54,v50) ∧
ADD32(v9,v8,v49) ∧ Dtype(clk,v50,v14) ∧ Dtype(clk,v9,v13) ∧ Dtype(clk,v49,v12) ∧
Dtype(clk,v15,v56) ∧ AND(v15,v56,v55) ∧ AND(v0,v7,v57) ∧ AND(v57,v55,done))

==>

DEV MultIter

(load at clk, (inp1<>inp2<>inp3) at clk, done at clk, (out1<>out2<>out3) at clk)

This theorem has the form:

` InfRise clk ==> circuit ==> device specification

The logic formula InfRise clk asserts that signal clk has an infinite number
of rising edges. This is a standard precondition for temporal projection (ibid)
and is needed because of the use of the at-operator in the device specification.

The logic formula circuit is the standard representation of the synthesised
circuit in higher order logic. The components are described in Section 2.
Circuits in this form are the lowest level of formal representation we generate.
However they are easily converted to HDL and then simulated or input to
other tools. We have written a ‘pretty-printer’ that generates Verilog HDL
and have used several simulators and the Quartus II FPGA synthesis tool to
run examples (including MultIter and Fact) on FPGAs.

The logic formula device specification uses the HOL predicate DEV de-
scribed above to specify that MultIter is computed using a four-phase hand-
shake. Our compiler defaults to using 32-bit words. The input and output
of MultIter are thus triples of 32-bit words, which are represented by terms
inp1<>inp2<>inp3 and out1<>out2<>out3 where inp1, inp2, inp3, out1,
out2, out3 are 32-bit words and <> denotes word concatenation.

The compiler generates circuits using components from a predefined li-
brary, which can be changed to correspond to the targeted technology (the
default target is Altera FPGAs synthesised using Quartus II).
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The components used to implement MultIter are NOT, AND, OR (logic
gates), EQ32 (32-bit equality test), MUX (multiplexer), DtypeT (Boolean D-
type register that powers up into an initial state storing the value T), Dtype
(D-type register with unspecified initial state), CONSTANT (read-only register
with a predefined value), ADD32 (32-bit adder) and 32-bit SUB32 (32-bit sub-
tracter). Each of these components is defined in a standard style in higher
order logic. For example, NOT is defined by:

NOT(inp,out) = ∀t. out(t) = ¬inp(t)
NOT is typical of all the combinational components (i.e. components that can
be implemented directly with logic gates without using registers). The two
sequential components, Dtype and DtypeT, are registers that are triggered on
the positive (rising) edge of a clock and their definitions use the predicate
Rise defined by:

Rise s t = ¬s(t) ∧ s(t+1)

and then Dtype and DtypeT are defined by:

Dtype (clk, d, q) = ∀t. q(t+1) = if Rise clk t then d t else q t

DtypeT(clk, d, q) = (q 0 = T) ∧ Dtype(clk, d, q)

These models are standard and are described in Melham’s book (ibid).

3 How the compiler works

The compiler is implemented in the HOL4 system and is a program in Stan-
dard ML that generates a proof in the version of higher order logic supported
by the system (which we refer to as “HOL”).

The compiler creates circuits implementing functions f in higher order logic
where f : σ1×· · ·×σm → τ1×· · ·× τn and σ1, . . . , σm, τ1, . . . , τn are the types
of values that can be carried on buses (e.g. n-bit words). The starting point
of compilation is the definition in HOL of such a function f by an equation
of the form: f(x1, . . . , xn) = e, where any recursive calls of f in e must be
tail-recursive. Invoking our compiler on such a definition (if necessary with a
user-supplied measure function to aid proof of termination) will first define f
in higher order logic (using TFL [15]) and then prove a theorem:

|- InfRise clk

==> circuit

==> DEV f (load at clk, inputs at clk, done at clk, outputs at clk)

where inputs is inp1<>· · ·<>inpm, outputs is out1<>· · ·<>outn (with the type
of inpi matching σi and the type of outj matching τj) and circuit is a HOL
formula representing a circuit with inputs clk, load, inp1, . . ., inpm and
outputs done, out1, . . ., outn that computes f .

The first step (Step 1) in compiling f(x1, . . . , xn) = e encodes e as an
applicative expression, E say, built from the operators Seq (compute in se-
quence), Par (compute in parallel), Ite (if-then-else) and Rec (recursion),
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defined by:

Seq f1 f2 = λx. f2(f1 x)

Par f1 f2 = λx. (f1 x, f2 x)

Ite f1 f2 f3 = λx. if f1 x then f2 x else f3 x

Rec f1 f2 f3 = λx. if f1 x then f2 x else Rec f1 f2 f3 (f3 x)

The encoding into an applicative expression built out of Seq, Par, Ite and Rec

is performed by a proof script and results in a theorem ` (λ(x1, . . . , xn). e) = E ,
and hence ` f = E . The algorithm used is straightforward and is not described
here. As an example, the proof script deduces from:

` FactIter(n, acc) =
if n = 0 then (n, acc) else FactIter(n− 1, n×acc)

the theorem:

` FactIter =
Rec (Seq (Par (λ(n, acc). n) (λ(n, acc). 0)) (=))

(Par (λ(n, acc). n) (λ(n, acc). acc))
(Par (Seq (Par (λ(n, acc). n) (λ(n, acc). 1)) (−))

(Seq (Par (λ(n, acc). n) (λ(n, acc). acc)) (×)))

The second step (Step 2) replaces the combinators Seq, Par, Ite and
Rec with corresponding circuit constructors SEQ, PAR, ITE and REC that com-
pose handshaking devices (see the Appendix for their definitions). The key
property of these constructors are the following theorems that enable us to
compositionally deduce theorems of the form ` Imp =⇒ DEV f , where Imp is
a formula constructed using the circuit constructors, and hence is a handshak-
ing device. The long arrow symbol =⇒ denotes implication lifted to functions:
f =⇒ g = ∀load inp done out. f(load, inp, done, out)⇒ g(load, inp, done, out).

` DEV f =⇒ DEV f

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2)

⇒ (SEQ P1 P2 =⇒ DEV (Seq f1 f2))

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2)

⇒ (PAR P1 P2 =⇒ DEV (Par f1 f2))

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2) ∧ (P3 =⇒ DEV f3)

⇒ (ITE P1 P2 P3 =⇒ DEV (Ite f1 f2 f3))

` Total(f1, f2, f3)

⇒ (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2) ∧ (P3 =⇒ DEV f3)

⇒ (REC P1 P2 P3 =⇒ DEV (Rec f1 f2 f3))

The predicate Total is defined so that Total(f1, f2, f3) ensures termination.

If E is an expression built using Seq, Par, Ite and Rec, then by instan-
tiating the predicate variables P1, P2 and P3, these theorems enable a logic
formula F to be built from circuit constructors SEQ, PAR, ITE and REC such
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that ` F =⇒ DEV E . From Step 1 we have ` f = E , hence ` F =⇒ DEV f

A function f which is combinational can be packaged as a handshaking
device using a constructor ATM, which creates a simple handshake interface
and satisfies the refinement theorem:

` ATM f =⇒ DEV f

The circuit constructor ATM is defined with the other constructors in the Ap-
pendix. To avoid a proliferation of internal handshakes, when the proof script
that constructs F from E is implementing Seq f1 f2, it checks to see whether f1

or f2 are compositions of combinational functions and if so introduces PRECEDE
or FOLLOW instead of SEQ, using the theorems:

` (P =⇒ DEV f2) ⇒ (PRECEDE f1 P =⇒ DEV (Seq f1 f2))

` (P =⇒ DEV f1) ⇒ (FOLLOW P f2 =⇒ DEV (Seq f1 f2))

PRECEDE f d processes inputs with f before sending them to d and FOLLOW d f
processes outputs of d with f . The definitions are:

PRECEDE f d (load, inp, done, out) =

∃v. COMB f (inp, v) ∧ d(load, v, done, out)

FOLLOW d f (load, inp, done, out) =

∃v. d(load, inp, done, v) ∧ COMB f (v, out)

COMB f (v1, v2) drives v2 with f(v1), i.e. COMB f (v1, v2) = ∀t. v2 t = f(v1 t).
SEQ d1 d2 introduces a handshake between the executions of d1 and d2, but
PRECEDE f d and FOLLOW d f just ‘wire’ f before or after d, respectively,
without introducing a handshake. Replacing SEQ by PRECEDE or FOLLOW is an
example of a ‘peephole’ optimisation.

Step 2 results in a theorem ` F =⇒ DEV f where F is a logic formula built
using the circuit constructors ATM, SEQ, PAR, ITE, REC, PRECEDE and FOLLOW.

The third step (Step 3) is to rewrite with the definitions of these construc-
tors (see their definitions in the Appendix) to get a circuit built out of standard
kinds of gates (AND, OR, NOT and MUX), the generic combinational component
COMB g (where g will be a function represented as a HOL λ-expression) and
Dtype registers.

Formulas of the form COMB g (inp, out) are then converted into circuits built
only using components in the library of predefined circuits. The default library
currently includes Boolean functions (e.g. ∧, ∨ and ¬), multiplexers and
simple operations on n-bit words (e.g. versions of +, − and <, various shifts
etc.). A special purpose proof rule uses a recursive algorithm to synthesise
combinational circuits. For example:

` COMB (λ(m,n). (m < n, m+1)) (inp1<>inp2, out1<>out2) =
∃v0. COMB (<) (inp1<>inp2, out1) ∧ CONSTANT 1 v0 ∧

COMB (+) (inp1<>v0, out2)
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where <> is bus concatenation, CONSTANT 1 v0 drives v0 high continuously, and
COMB < and COMB + are assumed given components (if they were not given,
then they could be implemented explicitly, but one has to stop somewhere).

The circuit resulting at the end of Step 3 uses unclocked abstract registers
DEL, DELT and DFF that were chosen for convenience in defining ATM, SEQ, PAR,
ITE and REC (see the Appendix). The register DFF is easily defined in terms
of DEL, DELT and some combinational logic (details omitted).

The fourth step (Step 4) introduces a clock (with default name clk) and
performs an automatic temporal projection as described in Melham’s book [9]
using the theorems:

` InfRise clk ⇒ ∀d q. Dtype(clk , d, q) ⇒ DEL(d at clk , q at clk)

` InfRise clk ⇒ ∀d q. DtypeT(clk , d, q) ⇒ DELT(d at clk , q at clk)

By instantiating load , inp, done and out in the theorem obtained by Step 3
to load at clk , inp at clk , done at clk and out at clk , respectively, and then
performing some deductions using the above theorems and the monotonicity
of existential quantification and conjunction with respect to implication, we
obtain a theorem:

|- InfRise clk ==>

circuit implementing f ==>

DEV f (load at clk, inputs at clk, done at clk, outputs at clk)

4 Additional tools: linRec

The ‘synthesisable subset’ of HOL is the subset that can be automatically
compiled to circuits. Currently this only includes tail-recursive function def-
initions. We anticipate compiling higher level specifications by using proof
tools that translate into the synthesisable subset. Such tools are envisioned as
‘third party’ add-ons developed for particular applications. As a preliminary
experiment we are implementing a tool linRec to translate linear recursions
to tail-recursions. This would enable, for example, the automatic generation
of MultIter and FactIter from the more natural definitions:

Mult(m,n) = if m = 0 then 0 else m+Mult(m-1,n)

Fact n = if n = 0 then 1 else n*Fact(n-1)

A prototype implementation of linRec exists. It uses the following defi-
nition of linear and tail-recursive recursion schemes:

linRec(x) = if a(x) then b(x) else c (linRec(d x)) (e x)

tailRec(x,u) = if a(x) then c (b x) u else tailRec(d x, c (e x) u)

A linear recursion is matched with the definition of linRec to find values of a,
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b, c, d, e and then converted to a tail recursion by instantiating the theorem:

∀ R a b c d e.
WF R
∧ (∀ x. ¬(a x) ==> R (d x) x)
∧ (∀ p q r. c p (c q r) = c (c p q) r)
==>
∀ x u. c (linRec a b c d e x) u = tailRec a b c d e (x,u)

where WF R means that R is well-founded. Heuristics are used to choose an
appropriate witness for R.

5 Current State and Future work

The compiler described here has been through several versions and now works
robustly on all the examples we have tried.

We have written a ‘pretty-printer’ that converts circuit formulas to Verilog,
so that they can be simulated and input to other tools. There were initially
difficulties when we first experimented with Verilog simulation. Our formal
model represents bits as Booleans (T, F), but the Verilog simulation model is
multi-valued (1, 0, x, z etc.), so our formal model does not predict the Verilog
simulation behaviour in which registers are initialised to x. As a result, Verilog
simulation was generating undefined x-values instead of the outputs predicted
by our proofs. The behaviour of most real hardware does not correspond
to Verilog simulation because in reality registers initialise to a definite value,
which is 0 for the Altera FPGAs we are using. By making our Verilog model
of Dtype initialise its state to 0 we were able to successfully simulate all our
examples. Since our proofs are valid for any initial value, the Verilog model
of Dtype is a valid implementation of the model in higher order logic. Our
investigation of this issue was complicated by a bug in the Verilog simulation
test harness: load was being asserted before done became T, violating the
precondition of the handshake protocol, so even after we understood the ini-
tialisation problem, simulation was giving inexplicable results. However, once
we fixed the test-bench, everything worked. All our examples now execute
correctly both under simulation and on an Altera Excalibur FPGA board.

If we simulate our implementation of MultIter with inputs (5, 7, 0) using
a standard Verilog simulator (http://www.icarus.com) and view the result
with a waveform viewer (http://home.nc.rr.com/gtkwave), the result is:

Main.clk

Main.done

Main.inp1[31:0]

Main.inp2[31:0]

Main.inp3[31:0]

Main.load

Main.out1[31:0]

Main.out2[31:0]

Main.out3[31:0]

0 s 100 s 145 s

0 5

0 7

0 0

0

0 7

0 7 14 21 28 35

load is asserted at time 15; done is T then, but immediately drops to F in
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response to load being asserted. At the time when load is asserted the values
5, 7 and 0 are put on lines inp1, inp2 and inp3, respectively. At time 135
done rises to T again, and by then the values on out1, out2 and out3 are 0, 7
and 35, respectively, thus Mult32Iter(5,7,0) = (0,7,35), which is correct.

In the immediate future we plan to complete a substantial example, being
done at the University of Utah, to use our compiler to implement the Ad-
vanced Encryption Standard (AES) [12] algorithm for private-key encryption.
This specifies a multi-round algorithm with primitive computations based on
finite field operations. Starting from an existing formalisation of AES [16],
we have generated netlists and circuits for the major components of an en-
cryption (and decryption) round. Although out work on AES is incomplete,
our current progress confirms the viability of our synthesis methodology. The
AES formalisation includes a proof of functional correctness for the algorithm:
specifically, encryption and decryption are inverse functions. Deriving the
hardware from the proven specification using logical inference assures us that
the hardware encrypter is the inverse of the hardware decrypter. Many of the
AES specifications are not tail-recursive, but formally deriving (and verify-
ing) tail-recursive versions was straightforward. To automate such proofs for
future work we developed the linRec tool (Section 4).

At present all data-refinement (e.g. from numbers or enumerated types to
words) must be done manually, by proof in higher order logic. The HOL4 sys-
tem has some ‘boolification’ facilities that automatically translate higher level
data-types into bit-strings, and we hope to develop ‘third-party’ tools based
on these that can be used for automatic data-refinement with the compiler.

We want to investigate using the compiler to generate test-bench monitors
that can run in parallel simulation with designs that are not correct by con-
struction. Thus our hardware can act as a “golden” reference against which
to test other implementations.

The work described here is part of a project to create hardware/software
combinations by proof. We hope to investigate the option of creating soft-
ware for ARM processors and linking it to hardware created by our compiler
(possibly packaged as an ARM co-processor). Our emphasis is likely to be on
cryptographic hardware and software, because there is a clear need for high
assurance of correct implementation in this domain.

6 Related work

Previous approaches to combine theorem provers and formal synthesis estab-
lished an analogy between the goal-directed proof technique and an interactive
design process. In LAMBDA, the user starts from the behavioural specifica-
tion and builds the circuit incrementally by adding primitive hardware com-
ponents which automatically simplify the goal [4]. Hanna et al. [6] introduce
several techniques (functions) that simplify the current goal into simpler sub-
goals. Techniques are adaptations to hardware design of tactics in LCF.
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Alternative approaches synthesise circuits by applying semantic-preserving
transformations to their specifications. For instance, the Digital Design Deriva-
tion (DDD) transforms finite-state machines specified in terms of tail-recursive
lambda abstractions into hierarchical Boolean systems [7]. Lava and Hydra
are both hardware description languages embedded in Haskell whose programs
consist of definitions of gates and their connections (netlists) [1,11]. While
Lava interfaces with external theorem provers to verify its circuits, Hydra de-
signers can synthesise them via formal equational reasoning (using definitions
and lemmas from functional programming). The functional languages µFP
and Ruby adopt similar principles in hardware design [8,14]. The circuits are
defined in terms of primitive functions over Booleans, numbers and lists, and
higher-order functions, the combining forms , which compose hardware blocks
in different structures. Their mathematical properties provide a calculational
style in design exploration.

These approaches deal with an interactive synthesis at the gate or state-
machine level of abstraction only. Moreover, the synthesis and the proof of
correctness require a substantial user guidance. Gropius and SAFL are two
related works that address these issues.

Gropius is a hardware description language defined as a subset of HOL [2,3].
Its algorithmic level provides control structures like if-then-else, sequential
composition and while loop. The atomic commands are DFGs (data flow
graphs) represented by lambda abstractions. The compiler initially combines
every while loop into a single one at the outermost level of the program:

PROGRAM out default (LOCVAR vars (WHILE c (PARTIALIZE b)))

The body b of the WHILE loop is an acyclic DFG. The list out default provides
initial values for the output variables. The term LOCVAR declares the local
variables vars and PARTIALIZE converts a non-recursive (terminating) DFG
into a potentially non-terminating command. The compiler then synthesises
a handshaking interface which encapsulates this program. Each of these hard-
ware blocks are now regarded as primitive blocks or processes at the system
level. Processes are connected via communication units (k-processes) which
implement delay, synchronisation, duplication, splitting and joining of a pro-
cess output data (actually there are 10 different k-processes [2]). Although
the synthesis produces the proof of correctness of each process and k-process,
the correctness of the top-level system is not generated. The reason for that is
mainly because the top-level interface of a network of processes and k-processes
does not match the handshaking interface pattern.

Our compilation method is partly inspired by SAFL (Statically Allocated
Functional Language) [10], especially the ideas in Richard Sharp’s PhD the-
sis [13]. SAFL is a first-order functional language whose programs consist
of a sequence of tail-recursive function definitions. Its high-level of abstrac-
tion allows the exploitation of powerful program analyses and optimisations
not available in traditional synthesis systems. However, the synthesis is not
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based on the correct-by-construction principles and the compiler has not been
verified.

The novelty of our approach is the automatic compilation of HOL functions
to hardware together with the automatic generation of the proof of correctness
of the synthesis. Our method provides an alternative approach to the compiler
verification. Instead of proving the correctness of a compiler, we only need to
prove the correctness of five circuit constructors once and for all. A verifying
compiler can then be easily programmed with the facilities provided by a
mechanised proof assistant such as HOL.
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APPENDIX: formal specifications in higher order logic

The specification of the four-phase handshake protocol is represented by the
definition of the predicate DEV, which uses auxiliary predicates Posedge and
HoldF. A positive edge of a signal is defined as the transition of its value from
low to high or, in our case, from F to T. The formula HoldF (t1 , t2 ) s says that

12



a signal s holds a low value F during a half-open interval starting at t1 to just
before t2. The formal definitions are:

` Posedge s t = if t=0 then F else (¬ s(t−1) ∧ s t )

` HoldF (t1, t2) s = ∀t. t1 ≤ t < t2 ⇒ ¬(s t)

The behaviour of the handshaking device computing a function f is de-
scribed by the term DEV f (load , inp, done, out) where:

` DEV f (load , inp, done, out) =

(∀t. done t ∧ Posedge load (t+1)

⇒
∃t′. t′ > t+1 ∧ HoldF (t+1, t′) done ∧

done t′ ∧ (out t′ = f(inp (t+1)))) ∧
(∀t. done t ∧ ¬(Posedge load (t+1)) ⇒ done (t+1)) ∧
(∀t. ¬(done t) ⇒ ∃t′. t′ > t ∧ done t′)

The first conjunct in the right-hand side specifies that if the device is available
and a positive edge occurs on load , there exists a time t ′ in future when done
signals its termination and the output is produced. The value of the output at
time t ′ is the result of applying f to the value of the input at time t+1. The
signal done holds the value F during the computation. The second conjunct
specifies the situation where no call is made on load and the device simply
remains idle. Finally, the last conjunct states that if the device is busy, it will
eventually finish its computation and become idle.

The circuit constructors

The following primitive components are used by the circuit constructors.

` AND (in1, in2, out) = ∀t. out t = (in1 t ∧ in2 t)

` OR (in1, in2, out) = ∀t. out t = (in1 t ∨ in2 t)

` NOT (inp, out) = ∀t. out t = ¬(inp t)

` MUX(sw , in1 , in2 , out) = ∀t. out t = if sw t then in1 t else in2 t

` COMB f (inp, out) = ∀t. out t = f(inp t)

` DEL (inp, out) = ∀t. out(t+1) = inp t

` DELT (inp, out) = (out 0 = T) ∧ ∀t. out(t+1) = inp t

` DFF(d , sel , q) = ∀t. q(t+1) = if Posedge sel (t+1) then d(t+1) else q t

` POSEDGE(inp, out) = ∃c0 c1. DELT(inp, c0) ∧ NOT(c0, c1) ∧ AND(c1, inp, out)

Atomic handshaking devices.

` ATM f (load , inp, done, out) =

∃c0 c1. POSEDGE(load , c0) ∧ NOT(c0, done) ∧ COMB f (inp, c1) ∧ DEL(c1, out)
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Sequential composition of handshaking devices.

` SEQ f g (load , inp, done, out) =

∃c0 c1 c2 c3 data.

NOT(c2, c3) ∧ OR(c3, load , c0) ∧ f(c0, inp, c1, data) ∧
g(c1, data, c2, out) ∧ AND(c1, c2, done)

Parallel composition of handshaking devices.

` PAR f g (load , inp, done, out) =

∃c0 c1 start done1 done2 data1 data2 out1 out2.

POSEDGE(load , c0) ∧ DEL(done, c1) ∧ AND(c0, c1, start) ∧
f(start , inp, done1, data1) ∧ g(start , inp, done2, data2) ∧
DFF(data1, done1, out1) ∧ DFF(data2, done2, out2) ∧
AND(done1, done2, done) ∧ (out = λ t. (out 1 t, out2 t))

Conditional composition of handshaking devices.

` ITE e f g (load , inp, done, out) =

∃c0 c1 c2 start start ′ done e data e q not e data f data g sel

done f done g start f start g .

POSEDGE(load , c0) ∧ DEL(done, c1) ∧ AND(c0, c1, start) ∧
e(start , inp, done e, data e) ∧ POSEDGE(done e, start ′) ∧
DFF(data e, done e, sel) ∧ DFF(inp, start , q) ∧
AND(start ′, data e, start f ) ∧ NOT(data e, not e) ∧
AND(start ′, not e, start g) ∧ f(start f , q, done f , data f ) ∧
g(start g , q, done g , data g) ∧ MUX(sel , data f , data g , out) ∧
AND(done e, done f , c2) ∧ AND(c2, done g , done)

Tail recursion constructor.

` REC e f g (load , inp, done, out) =

∃done g data g start e q done e data e start f start g inp e done f

c0 c1 c2 c3 c4 start sel start ′ not e.

POSEDGE(load , c0) ∧ DEL(done, c1) ∧ AND(c0, c1, start) ∧
OR(start , sel , start e) ∧ POSEDGE(done g , sel) ∧
MUX(sel , data g , inp, inp e) ∧ DFF(inp e, start e, q) ∧
e(start e, inp e, done e, data e) ∧ POSEDGE(done e, start ′) ∧
AND(start ′, data e, start f ) ∧ NOT(data e, not e) ∧
AND(not e, start ′, start g) ∧ f(start f , q, done f , out) ∧
g(start g , q, done g , data g) ∧ DEL(done g , c3) ∧
AND(done g , c3, c4) ∧ AND(done f , done e, c2) ∧ AND(c2, c4, done)
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Circuit diagrams of the circuit constructors are shown below.
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Fig. 2. Implementation of composite devices.
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