Formal Specification and Verification of ARM6

M.J.C. Gordon
Computer Laboratory
University of Cambridge

Final Report to EPSRC on grant GR/N13135

The titles of the sections that follow are taken from:

NOTES FOR GUIDANCE ON COMPLETING AN INDIVIDUAL GRANT REVIEW FORM AND REPORT
(Form NX0119).

1 Background/Context

The use of theorem proving for processor verification started to be investigated in the 1980s
and has continued since then. Early work done by groups at Cambridge [3], Calgary [18,
14] and Austin [16] established feasibility on simple academic designs. Following this first
phase, two threads of research emerged: continued study of academic designs with increasingly
sophisticated execution engines [23, 21, 2], and the application of theorem proving to fragments
of real processors [20, 17].

At the start of our project it was thus established that complete academic processors and
parts of commercial processors could be formally verified by automated theorem proving. Our
goal was to investigate whether it was feasible to completely verify a real-world commercial
processor, and if so to calibrate the effort needed. After discussions with ARM Ltd we chose
ARMG610 [1] as our target. This processor is similar to the still widely used ARM7, but em-
bodies less sensitive IP and so is appropriate for public domain research (all our formal models
are available on the web!). ARMG6 has a 3-stage pipelined Von Neumann Architecture. The
differences between it and ARMTY are that the latter has (i) a hardware debug capability, (ii)
the ‘Thumb’ instruction architecture to support both 16-bit and 32-bit instruction formats and
(iii) an enhanced multiplier.

In parallel to the automated theorem proving research described above, a group lead by
Tucker and Harman at the University of Wales Swansea were evolving a method of structuring
processor specifications using algebraic concepts [4]. They also developed pencil-and-paper proof
methods and, with a PhD student Anthony Fox, applied these to verify by hand superscalar
implementations of Hennessey and Patterson’s widely used pedagogical DLX RISC processor
[5, 13]. When the current project was funded, we recruited Fox as our postdoctoral research
assistant, and it was thus natural to see if the Tucker/Harman approach was suitable for mech-
anisation. It turned out to work very well indeed, and this is the approach we ended up using
to specify and verify ARMS.

The project was a collaboration with Professor Graham Birtwistle’s group at the Univer-
sity of Leeds, who produced accurate functional simulation models of the ARM6 architecture
in Standard ML. Dominic Pajak produced a specification of the ARM programmers view and
Daniel Schostak produced a model of the micro-architecture [22] (a three-stage pipeline imple-
mentation). Both these models were validated by extensive testing. Pajak and Schostak spent

Thttp://www.cl.cam.ac.uk/ mjcg/ARM/



time during their PhD studies as summer interns at ARM, where they had the opportunity of
discussing their models with experts, and are now both employed there full time.

Anthony Fox took Pajak and Schostak’s models and produced formal specifications in higher
order logic of the programmers view and the micro-architecture. The algebraic specification and
proof method developed by Tucker, Harman and Fox at the University of Wales Swansea, was
used as the basis for a mechanical verification by theorem proving that the micro-architecture
correctly implemented the programmers view.

2 Key Advances and Supporting Methodology

We believe we have advanced the field through methodological insights into the deployment of
theorem proving on a relatively large scale processor verification. We now have a much more
accurate understanding of the effort required to verify future ARM-like processors, and we have
a formal platform for future research by us and others.

An overview of the main scientific results of the project are listed below.

e As far as we know this project accomplished the first formal verification of all the instruc-
tions of a Commercial Off-The-Shelf (COTS) processor.

e Calibration of the current state-of-the-art of processor verification by theorem proving:
ARMSG6 took two person years (future proofs would be faster due to experience gained).

e Mechanisation of the ‘Swansea Approach’ of Tucker and Harman and confirmation that it
is effective on industrial scale examples.

e Importance of tight integration of symbolic execution and deduction. In particular, we
used a showed the benefits of a functional approach (similar to Boyer/Moore modelling)
over the relational methods traditionally used with higher order logic [19]. Although this
made non-determinism harder to represent, symbolic execution becomes easier.

e Value of an abstraction/refinement approach to overcome complexity of detail when ver-
ifying multi-cycle instructions. At first we found the ARM implementations of multiply
and and block data transfer instructions intractable, but by verifying abstracted versions
and then adding detail by refinement we were able to complete the formal proofs.

3 Project Plan Review

The objectives in the proposal were as listed in the following box:

1. to advance the practice of formal hardware specification and verification via a major industrial-
strength case study

2. to develop an executable formal specification of the ARM6 microprocessor at the instruction
set and at the pipeline levels of architecture

3. to formally verify the equivalence between a manageable yet representative subset of these
descriptions

4. to formally specify and reason about selected, challenging ARM6 subsystems, some current,
some of future interest




We ended up achieving 1, 2 and 3 of these, but we did not attempt 4. There were two reasons
for this.

(i) Towards the end of the project we realised that not only would we be able to formally
verify the equivalence between a manageable yet representative subset (see item 3 above)
— we might even be able to verify the implementation of all the ARM6 instructions. As
this would be a first, and enable exciting future research, we decided to concentrate on
achieving this, which we eventually did.

(ii) We had intended that 4 would be partly tackled by a PhD student attached to the project.
We recruited a student, but at the last minute he was awarded a personal studentship from
Trinity College, Cambridge, which he decided to accept. Unfortunately, we were unable
to recruit a replacement within the timescale of the project, so the studentship remained
unfilled.

In the rest of this section we give a very brief overview of the programmer and micro-
architecture views of ARM6 and the formal verification of their equivalence that we accom-
plished. This work was extremely detailed and so we cannot do more than summarise it here.
However, a longer overview in available online in a paper entitled ARM6 Formal Verification:
Ezperience with a Commercial Microprocessor [8], and details of the verification of the two most
complex instruction classes are also available online: data transfers [6] and multiply [7].

3.1 Programmer’s view
Version 4 of the ARM architecture was modelled. This has the following features.
e It is a 32-bit RISC architecture.

e There are six operating modes and the registers are arranged into overlapping banks. The
program counter is register fifteen.

e There is a program status register (CPSR) and five saved versions (SPSR registers).
e All instructions are conditionally executed (there are four condition flags).

e There are seven types of exceptions: reset, undefined instruction, software interrupt,
prefetch abort, data abort, normal interrupt and fast interrupt.

e There are eight main instruction classes (Table 1) plus coprocessor instructions.

3.2 The micro-architecture

The ARMG6 is a three stage pipelined processor with a multi-cycled execute stage. A swap
instruction, for example, is fetched, decoded and then takes four (or six) cycles to execute.

The HOL specification of the ARMG6 was derived from Schostak’s specifications, which con-
sisted of a number of tables. The HOL specification represents each table by a function in
higher order logic. The overall cycle level behaviour of the processor is specified using a next
state function in a style derived from the Tucker/Harman algebraic approach.



Table 1: The ARM instruction classes.

Class Instructions

Branch and Branch with Link B, BL

Data Processing ADD, ADC, SUB, SBC, RSB, RSC, CMP,
CMN, AND, ORR, EOR, MOV, MVN, BIC,
TST, TEQ

Multiply and Multiply Accumulate MUL, MLA

PSR Transfer MRS, MSR

Single Data Transfer LDR, STR

Block Data Transfer LDM, STM

Single Data Swap SWP

Software Interrupt and Exceptions SWI

The initial HOL processor model left out: hardware interrupts; coprocessor instructions;
swaps; multiplies and block data transfers. The design was progressively extended with the
inclusion of the swaps, followed by the block transfers and then the multiplies. At each stage the
design was verified with respect to an instruction set model which only covered the instructions
implemented. This approach enabled working verifications to be completed (and archived) before
adding new features which would take some time to verify.

3.3 The formal verification

The correctness of the ARMG6 is expressed using data and temporal abstraction maps. The
data abstraction projects out the memory and registers from the processor’s state space. The
processor’s program counter has value pc+8 because it is used for instructions fetch (i.e. it is two
instructions, or eight bytes, ahead of the instruction being executed) and the data abstraction
accounts for this by subtracting eight. It is shown that the data abstraction is a surjective map
from the initial states implementation to the initial (all) states of the specification; this proves
that the implementation is not partial (or trivial). The temporal abstraction is defined using a
duration map: this gives the number of cycles needed to complete instruction execution from a
given processor state (it is similar to clock functions used in the Boyer-Moore approach).

Store instructions require special attention when the memory address is pc 4+ 4 or pc + 8;
instruction fetch and decode are invalidated by this localised self modification of code. Two
approaches to this were tried before settling on a third solution. The first approach was to block
writes to these addresses and the second solution was to ‘fix’ the processor implementation
by ensuring that the pipeline’s state is correctly updated. Both of these methods have the
disadvantage that they do not reflect the actual ARM6 behaviour. The third method was to
modify the ISA model so as to reflect the pipelined behaviour; this was comparatively simple to
specify and verify. The data abstraction projects out the opcodes of the fetched and decoded
instructions.

The main top-level correctness statement conforms to the Tucker/Harman framework using
the ARM temporal and data abstractions we developed. It is an algebraic formulation of the



normal commuting digram relating abstract and concrete state machines.

4 Research Impact and Benefits to Society

The main beneficiaries of this work are potential formal verifiers of ARM-like processors. We
have established the effort needed for this (2 person years) and have accumulated much method-
ological wisdom on how to conduct such proofs.

We have created complete and public-domain? models of ARM6 and we hope others can
build on this (see Section 6).

A side-effect of the work has been enhancements to the HOL4 public-domain system, par-
ticularly support for words and symbolic execution.

5 Explanation of Expenditure

As explained in Section 3, we didn’t appoint a PhD student to the project but, with EPSRC’s
permission, studentship funds were used to extend the appointment of Dr. Anthony Fox.

6 Further Research or Dissemination Activities

We have submitted a successor project to EPSRC entitled Formal Specification and Verification
of ARM-based Systems. Details of this application are available on the web? and it is currently
being refereed.

We have had contact from both a company and a University (both in the USA) about future
formal verification research on XScale (Intel’s implementation of ARM). We are also liaising
with Professor Konrad Slind (of the University of Utah), a past collaborator, about using our
verified ARM6 models to create highly assured implementations of AES encryption, which he
has modelled and analysed in higher order logic. If our successor project is funded, then we
hope to explore and deepen these contacts further.

We have also had fairly detailed discussions with a US Government Agency about using our
models to support the formal verification of ARM7 assembly code implementing Elliptic Curve
Cryptography (ECC) primitives. An examination by Anthony Fox of examples of hand proofs
of such code shows that our models should be suitable for this task, and we hope to pursue this.

References
[1] ARM Ltd. ARM610 Data Sheet. ARM Ltd, Document ARM DDI 0004E, Cambridge, January 1996.

[2] C.Berg, S. Beyer, C. Jacobi, D. Kroning and D. Leinenbach. Formal Verification of the VAMP Microprocessor
(Project Status), Symposium on the Effectiveness of Logic in Computer Science (ELICS02), Technical Report
MPI-1-2002-2-007, Max-Planck-Institut fiir Informatik Saarbruecken, Germany, 2002, pages 31-36, edited by
Witold Charatonik and Harald Ganzinger

[3] A. J. Cohn. A Proof of Correctness of the VIPER Microprocessor: The First Level. In G. Birtwistle
and P. A. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis, pages 27-71, Norwell,
Massachusetts, 1988. Kluwer.

?http://cvs.sourceforge.net/viewcvs.py/hol/hol98/examples/armé/
Shttp://www.cl.cam.ac.uk/ mjcg/proposals/ARM2/



[4] A.C.J. Fox and N.A. Harman. Algebraic Models of Correctness for Microprocessors. Formal Aspects of
Computing, 12(4): 298-312, 2000.

[5] A.C.J Fox and N.A. Harman. Algebraic models of correctness for abstract pipelines. The Journal of Logic
and Algebraic Programming, 57(1-2): 71-107, 2003.

[6] A.C.J Fox. Verifying the ARM Block Data Transfer Instructions. Presented at DCC 2004, Barcelona, 2004.
http://www.cl.cam.ac.uk/users/acjf3/papers/bdt.pdf

[7] A.C.J Fox. Verifying ARM6 Multiplication. Unpublished report.
http://www.cl.cam.ac.uk/users/acjf3/papers/mul.pdf

[8] A.C.J Fox. ARM6 Formal Verification: Experience with a Commercial Microprocessor. To be presented under
Emerging Trends at TPHOLSs ’04, Utah, USA, 2003. http://www.cl.cam.ac.uk/users/acjf3/papers/r.pdf

[9] A.C.J Fox. Formal specification and verification of ARM6. In David Basin and Burkhart Wolff, editors,
TPHOLSs ’03, volume 2758 of LNCS, pages 25-40. Springer-Verlag, 2003.

[10] A.C.J. Fox. Formal verification of the ARM6 micro-architecture. Technical report No. 548, University of
Cambridge Computer Laboratory, November 2002. www.cl.cam.ac.uk/users/acjf3/papers/tr548.ps.gz

[11] A.C.J. Fox. An Algebraic Framework for Modelling and Verifying Microprocessors using HOL. Technical

report No. 512, University of Cambridge Computer Laboratory, April 2001.
www.cl.cam.ac.uk/users/acjf3/papers/tr512.ps.gz

[12] A.C.J.Fox. A HOL Specification of the ARM Instruction Set Architecture. Technical report No. 545, Univer-
sity of Cambridge Computer Laboratory, June 2001. www.cl.cam.ac.uk/users/acjf3/papers/tr545.ps.gz

[13] A.C.J. Fox. Algebraic Models for Advanced Microprocessors, PhD thesis, University of Wales Swansea,
1998. www.cl.cam.ac.uk/users/acjf3/papers/fox98.ps.bz2

[14] Brian T. Graham. The SECD Microprocessor, A Verification Case Study. Kluwer International Series in
Engineering and Computer Science. Kluwer Academic Publishers, Boston, 1992.

[15] N.A. Harman and J.V. Tucker Algebraic models of microprocessors: architecture and organisation, Acta
Informatica, 33 (1996), 421-456.

[16] W. A. Hunt. Microprocessor Design Verification. Journal of Automated Reasoning, 5(4):429-461, 1989.

[17] R. B. Jones, J. W. O’Leary, C.-J. H. Seger, M. D. Aagaard and T. F. Melham. Practical Formal Verification
in Microprocessor Design. IEEE Design & Test of Computers, vol. 18, no. 4, July/August, 2001, pages 16-25.
ftp://ftp.dcs.gla.ac.uk/pub/users/tfm/Pubs/PracFV.pdf

[18] J. Joyce. Formal Verification and Implementation of a Microprocessor. In G. Birtwistle and P. Subrah-
manyam, editors, VLSI Specification, Verification and Synthesis, pages 129-159. Kluwer, 1987.

[19] T. F. Melham. Higher Order Logic and Hardware Verification. Cambridge Tracts in Theoretical Computer
Science, vol. 31, Cambridge University Press, 1993.

[20] S. Miller and M.Srivas. Formal Verification of the AAMP5 Microprocessor: a Formal Case Study in the
Industrial Use of Formal Methods. In Proceedings of WIFT 95, Boca Raton, 1995.

[21] J. Sawada and W. Hunt. Processor Verification with Precise Exceptions and Speculative Execution. In
Tenth International Conference on Computer Aided Verification, Vancouver, Canada, July, 1998.

[22] D. Schostak Methodology for the Formal Specification of RTL RISC Processor Designs
(With Particular Reference to the ARMSG), PhD thesis, The University of Leeds, 2003.
http://www.comp.leeds.ac.uk/research/pubs/theses/schostak.pdf

[23] S. Tahar and R. Kumar. A Practical Methodology for the Formal Verification of RISC Processors. Formal
Methods in Systems Design, 13(2):159-225, September 1998.



