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4 hum=n being when looked at from the point of view of a behavioural 3

psycgqlogist is an automatén A which gives 'responses' when stimulstion
of a.éprtHin kind is applied. In particular such an automatén can be
taughtsto recognise patterns in the following sense: Say we wish to
teach it to give a response "Yes" when shown a picture of the numer=1l 2 and
"No" when shown some other numeral. Suppose we have arranged that "Yeg"
and "No" are the only responses A can make. We begin by choosing a sequence
of patterns Pl’ P2 «+.. etc such that each Pr is a picture of =ome numersl,
we then stimulate A with Pl’ if the required response is given we stimulate it
with P? and =0 on until a wrong response is made (i.e. "Yes" if Pr is not a 2
or "No" if Pr is a 2) whereupon A is 'punished’ by an unpleasant stimulus.
e.g. an electric shock, this process is continued and it is an observable fact
that after a certain time the frequency of wrong responses becomes very small.
Various attempts h-ve been made to explain how the human visual system can
recognise patterns such as the numeral 2, and also various attempts have been
made to design an artificial automaton capable of exhibitine the above
learning and recognising behaviour, the perceptron nd its descend-nts is one
such attempt.

rom the szhove it is clenr that 2's have the property th=t a human can
be taught to recognise all 2's by being shown just 2 finite number of
examples of them. FK.M, Braverman, a Russian cybernetician has ca2lled such
collections of objects "images", he defines an image to be a collection of
physical objects such that a human can be taught to recognise whether any
given object is a member of the collection by being shown just a finite
number of the members of the collection. Other examples of images aret
Pictures of John Smith, things which smell of rotten eggs etc. An example
of a non-image is: The collection of people whose surn=me is Smith. It
shonld be noticed that the definition of an image depends on the elements of
it being recognisable by a human, such images will be called "human-images" to
distinguish them from a more general kind of image which we now describe.
Let A be an automaton and Q some collection of physical objects such th-+ A
can be stimuloted by being shown elements of Q, we say Q is an A-image if
there exists some training process such thit A can be taught to recognise
whether something is an element of Q, by showing it only a finite number
of elements of Q. In what has just been said the terms "automaton",
"Physical objects" and "training process" were used very vaguely in order to
give them some intuitive significance. However, the rest of this essay will
be mainly concerned with the construction of a very simple mathemstical model
in which these terms are given rigorous definitions. Firet, let us concentrate
on defining entities which will function as "physical objects" in our model.
It is important to realise that there are dangers in trying to be more
rigorous whilst still being general, consider for example the 'set'
X={x| x is a 2} At first sight this looks like a2 well defined entity,
capable of being used like any other set. In fact X looks like being a
nice extensional definition of the property "being a 2", but X is not a

set, firstly, because we have no well defined definition of "being a 2"

and secondly, even if we did the class of entities we would call 2's is



—_

continually ch-neing(e.g. artists are inventing new shapes of 2's). 1In
order to make the idez of a physical object well defined we must impose some
artificial phvsical structure on the sort of object which will fenture in the
recognition process. Let us restrict our attention to visual patterns and
assume each pattern, like a newspaper picture, is made up of a large finite
number N of dots arranged in a rectangular array. Assume further that the
degree of blackness of each dot can be described by a number x" ¢ EO, ﬂ cR

th

so that x = O means the r dot is white, xr:;l, means rth dot is black and

xr:u% means the rth dot is a shade of gray midway betwesen white and black etc.
Thus each pattern is now thought of as an N-tuple (xl, . aiiiaTy XN) where xre ﬁu ]J
and so the universe of physical objects we shall consider is the set

p={(x}, veus 2| xte o, )= Jo, 2]V
Restricting patterns to be elements of P eliminates the problem of the nature of
'sets' like (x| x is a 2} for now we can interpret thris as the real set.

{x ] x ¢ P and nine out of ten pecple say x is a 2}

This definition of a pattern is the first step in the formalisation
of the concept of an image, recall that intuitively we think of an image
as dependent on two things, a collection of physical objects Q and an
automaton A capable of being taught to recognise elements of Q. Now the
set P can be interpreted (in this context) as the collection of all physical
objects a2nd so Q will be some subset of P. So far we hsve made no attempt
to formalise the automaton part of an image, this we now do.
We assume there exists a set of states S of the automaton A such that

each state s ¢ S determines entirely the input/output behaviour of A. We
thus think of A as a mapping

A s iinputs} X SMWAuwnéﬂbutputs}
The dinputs here will be elements of P (applying an input x will be interpreted
as showing x to A) and there will be two possible outputs =1 (corresponding
to "No") and 1 (corresponding to "Yesh), The nature of S will be discussed
later. Thus:

A+ Pxs—=sf-1, 1j
Since §-1, 1}¢R (the real numbers) we can regard A as mapping P x S intof
rather than onto 1-1, 1}
During the training process as described in the first paragraph we show A
elements of P and indic=ate whether the output given is correct, if it is not
then A modifies its internal state s<¢ S according to some rule. We capture
this notion of a rule in a function
o : Px {-1, 1} x 83—

A

Vhere we interpret 0, s giving the next state Sl

where A gives output a when it is in state Sy and input p is applied.

= CTA (Psassn) of A,

Given a modification function Tps & sequence of patterns D, e P and an
initial state slé S we can derive a sequence of states s, & S of A
determined by

s, 1= % (2, Alegs s,)s s,) ,
this sequence {sﬁ&we call the sequence of states corresponding to }pn} and

87 via T and it is interpreted as the sequence of states A goes through
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as it is trained, starting in state 819 by being shown the P in turn
and being modified by Ty
We can now define rigorously an A-image as a set Q< P such that there
exists 2 modification function UAQ such that:
(2) For any sequence {pn} ¢ P and any initial state s, ¢ 8

the sequence of states {sn} corresponding to {pn} via OAQ

is eventually constant with value s (i.e.J m s.t.nzm—> S, = s)

(b) & (x,s): [ 1if xe Q
1~1 if x¢ @
Thus an A-image is a sef of patterns (Q) such that there exists a training
process ( DAQ) such that if A starts in any state and is tr-ined according
to “aq on any sequence of patterns ( {pn} } 5t will, after a finite time,
settle down to a state in which it responds "Yes" if and only if an element
of Q is applied to its input.

Let us now summarise the model we have set up, we have defined a

gquadruple (P,S,A,Oh) where:

p=[o, 1|V
S is a set - called the set of states of A4,
A PxS—>([-1, 1}
o ¢ Pz {14} x8—>8
Given = sequence{pn} of elements of P, an element 5, € 5 and = O, we have

defined the corresponding sequence in 5 to be {sn? where

Spe1 = G rA(e s )ys )
Finally we have defined an A-image to be a subset @ ¢ P such that there exists
a oy such that if {pn} is a sequence in P, 8, is arbitrary in S and:snj is
the corresponding sequence in S, then

(a) 3M s.5. nz ¥— s, = 8

(v) A(x,s)::l<;:t> X e @

Let us now consider the classical problem of pattern recognition in
terms of the above model. Assume we zre given a finite collection {Qa} of
human-images, for example, we might have

Qa = {x!xe-P & x is a picture of the numeral a}
We want to construct an automaton A such that Qa is also a collection of
A-images. For if we can find such an A, then we can build a machine to
recognise out of which Qa a given pattern x comes, as follows: We train A

in turn on each Qa and so obtzin states saf S such that
A(x,sa):: I xe Q)

Then given chQa, to decide out of which Qa it came we Just evaluate A(x,sa)
A

for each a and find the one(s) for which this is 1.
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It has been widely held that it is possible to define an inner-product
on R N (e.g. the natural inner—product) such th=t the induced metric on
B ESJN has the property that patterns which look the same in P are near
together with respect to this induced metric and patterns which are far apart
in P look different. Furthermore it is held (especially by the Russians who
invented images) that human-images form 'compact clusters' in P ("compact" as
used here has no topological significance) so that, for example, if one looks
at the points in P corresponding to the human-images: numeral 1, numeral 2,

one would see something as in Fig. 1 below:-

Fig. 1

Points of the paper represent points of P

t (e.g. 1ts) f

Q?
(e.g. 2's)

Eyg </ [ i—>f¢~5

Surface f::O—i

It can be convincingly argued that this assumption concerning the structure
of human-images is misleading.fﬂowever, if we assume it, we can give an
interesting heuristic derivation of the structure of a well known type

of automaton known as a perceptron. Let us restrict ourselves to
designing a device for discriminal ing between two images Ql and Q2 which
form well separated, disjoint clumps in P with respect to some metrical
structure. From the diagram above it seems re=asonable to assume Ql and Q2
can be separated by a nice well behaved function, f : P—>Ff, by this it is
meant that f satisfies

% tezi,;) f(x) > & 2 0 ~
some § > 0 1)

.

X eQ, £f(x) < =& < 0

We now choose a hasis 5¢%(x); of the vector—-space of well behaved functions
mapping RN- L such that as n increases -@r(kéwbecomes more 'jagged'. The
assumption is then made th2t there exists an m esuch that there is a
separating function f which can be expanded in a Fourier series with respect
to g:ir(x)} with all Fourier coefficients zero for n » m. Intuitively this
is saying we can find a separating function f which has no very 'jagged'

harmonics, i.e.

2()- Job 4, () ®
-]



_5_

The previous paragraph could be made more rigorous but there seems little

point as it is only a heuristic justification for assuming fé) . Define

E: P—>R™ by xt—>( E%(x), ceee y P(x))= D(x)
Thus with each point x¢P we can associate a point &(x) & }}’\jm
in such a way th=t the points in !Rm'corresponding to any two disjoint images
can be separated by a hyperplane, For this reason}Rm is called the
linearisation space. We use there ideas to motivate a2 concrete realisation of
(7,8,4,0,) . Let S =R", At PxS——>{-1,1} be defined by

A(x,s) = [l+1 if (&(x),s) » 0
-1 if (H(x)ys) < O

where for x,ye®' (x,y) denotes the natural inner-product and D: P—>R" is

as above. Thus the automaton A corresponding to a state s¢&¢S just sends points
on the -ve side of the hyperplane {x](x,s): O} determined by s to =1 and points
on the positive side to 1. We would like to define Cp in such a way that if
{pr:}is a sequence of points such that P, QlLIQQ then the corresponding
sequence of states eventually becomes a vector s which determines a hyperplane
separating Ql and Q2 in the linearisation space,i.e. fA(x,sn)} regarded as

a sequence of functions of x 'tends' to a function separating Ql and Q2 as
tn———=500", Intuitatively what we want to do is to increase s, {10

meke s, sn) if A(pn,sn) is negative when it should be positive and

decrease s  if A(pn,sn) is positive when it should be negative, this motivates

the following definition of )

0y(xsa,8)= (g if x¢QUQ, or (xeQ & a=+1) or(xe 0 & a= -1)
s+ P(x) if xs=Q1 & a = =1
s— P(x) if x €Qy &a=+1

We now prove the following theorem which says that under certnin conditions

A will learn to distinguish members of Ql and Q2 in the sense discussed in
the first paragraph of this essay.

Theorem I:
for some § >0
xe@ﬂQl)ﬁ'%@(x),lxe4%jffn> (8,x)>+86 > 0
xe\f‘;_i(Qz)f-— {Qﬁ(x) 1‘ xE»Qél =% {@,x)¢~-5 < 0
= | ]

be two subsets of P such that there exists a vector si%{m such that

UJ;
s

FPurther =ssume @?(Ql) and é?(Qg) are bounded in K. Then if Fpnl is any
=equence of points from Qlu Q2 and 89 is any point of 8™ there exists a

ar s i oo
number M independent of 1 Pn } . such that Sn%-l n-Ci(pn,A(pn,sn),sn)

for n=1,2,3, ... takes on at most M distinct values (i.e. A makes less than M
mistakes).
Proof:

Define Q = {x|x e @(Ql) 0L =X e@(Qg)}

{s | obtained by deleting all terms of |s

n,y L nf

Let {sr(n)} be the subsequence of
sychithat s - so the g 5 . (So,for exan if
ych that n‘”sn+1 o that Sr(n+-1)% gr(n) for all n. o,for example if

[sn}:(sl,a,a,b,a.a,b,c,c,c,c, s ewe )then Sr(n)::(sl’a’bfa'b’) where sl,a,b,ceﬁ

koral=1, 1(2)=3, 13)=4 .T{#=6, T(s) =7 T(m for my,6 not efined )
; 2 f

R ]



-6~
We show that l{sr(n)lﬁ(ﬂ)xs“def:ntd}‘ < N and this is clearly equivalent to
the number of distinct values of Sy being less than M?l’M.From the definition

of {sn} and 0, it is easy to check that

Sr(n+1) © oh(pr(n)’a’sr(n)) = 1®rn) T é(pr(n)) if x e Q1

Sr(n) - é(pr(n)) i xeQ,
Let {xn} ¢ R™ be the sequence defined by

n= é(pr(n)) if Pr(n)€ 9

Eé(pr(n)) if Priy)e R
then xne Q. Thus Sr(n+ 1)=Sr(n)+xn so that:

n-1
sI'(n) = ):: Xr+ 8 @
r=1
set a=inf (s,x)
30 sl
b=33{\615 Ixl, b<oe by assumption,

then xe Q =>(s,x)> & by @ so a >/ﬁ%ﬂ >0 @
Also by the definition of "inf":

(s,x) »aVxeq so (s,xn) > a Vn, ®
Isi lisll

Summing @ over n and using @ gives! (s,srgn)-sl) >/ (n-1)a @
is])
but by the Cauchy-Schwarz inequality |sl “Sr(n)u>/ (s,sr(n)) S0 from@

[eaqmyl ¥ (5:5) + (a-1)a
s

Now from (4) S2(n) = Sr(n-1)* *n-1

2
= %) - Pr(n-1)] T 2(Sr(n-l)’xn--l)‘*~ (LY °
2 2 2 n
::>Hsr(n)” < “Sr(nt-l)” +b as (sr(n-l)’xn-l) £ 0 by def . of isr(n)}&o‘a

2 2 2
= 8p(n)ll < =y ]| + (n-1)v ©)
2 2 2 e \ . .
&®:>||sl I+ (n=-1)v > USr(n)U > Es,sl) + (n~-1)a , , @ Since a > 0 by @
\isll 2
@ for sufficiently large n cannot hold, let M be the first integer such that
Is4l 2+ (ma)? < rs,sl) + (M’-‘-l)ar

L

. - e s
thus {Sr(n)} must terminate before T(n) = M. @ is independent of {pn} and so

the maximum number of terms, M’: in 5sr(n)] is independent of {pn} - Q.E.D.
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The above theorem shows that during a training process A will eventually

stop making errors, however, the state s in which A eventually comes to rest

in, is not necessarily the normal vector of a hyperplane separating @ (Ql) and

& (Qz) for example, if the training sequence {pn} was defined by pP,=Pp e’Ql Vn
then A would come to rest in the first state s, for which A(p,sn) = 1 and it
would not follow that for this sn, and for arbitrary x te that A(x,sn) =1,
It can be shown that if P, is chosen 'sufficiently random' then § will, with
probability 1, be the normal vector of a hyperplane separating @(Ql) and & (Q2).
In proving this the phase "sufficiently random" is replaced by well defined
statistical assumptions. The number M which gives an upper bound, over all
training sequences, of the number of errors A can make, could be calculated if
we knew something about the siges- of & (Ql) and @(QQ) since M is only a function
of a,b and 819 however, in practice we do not know anything about a and b. The
importance of Theorem I is mainly that it seems intuitively to indicate that we
are on the right track in defining (P,S,A,O‘A) as above, however, it is possible
to construct a slightly different realisation of (P.S,4, JA) such that
Theorem I is still true but now it does not intuitpfively indicate that
anything we should call lezrning is going on, to see this, define P,S,A as

before and redefine C"A. First let

S'= {x|xeS & x has rational coordinates w.r.t. the natural basis of FR"}

S' is countable so let S':{yl,yz, ...} then define
OA(p,a,s): fg if (pe Q & a=+1) or (pc—Q2 & a=-1)

otherwise y, if s ¢S'

N v if S::yn

n+1

Thus training A using this new oy merely amounts to trying out each element »
of S' in turn. Since S!' is dense in S it is easy to see that if there exists
an 8 € S satisfying condition @ of Theorem I then there exists an s'e S' which
will satisfy @ Let Hyr be the first such element in S' then clearly Theorem I
is still true if M is replaced by M! (strictly speaking for Theorem I to be true,
in this context, the initial state 8, must not be In for n>M', however if 89
is chosen at random this occurrence has probability zero).

Around 1960 F. Rosenblatt, an American Scientest proposed a design for a

learning machine, known now as a perceptron, shown in Fig., 2

Figo 2.
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It worked as follows: The photocells were connected, initially in a random
manner, to threshold devices known as associative or A-elements. These would
compute an output a, as a funetion of the inputs from the photocells, these
outputs then would be multiplied by constants hf}(by the devices marked (-
in Fig. 2), and then all the signals )\rar Wouldfgummed by the box marked L. ,
finally, the box marked D would compute the sign of the outpuj'zﬁrar of 2. and
indicate "1" if the sign w=s positive and "O" otherwise. That is, if a_, was
the output from the rth A-element the perceptron would indicate "1" or "O"
according asz;Arar was greater or less than O. The perceptron was 'taught' to
descriminate between two classes of patterns by showing it a sequence of
patterns chosen at random from the two classes and modifying the varisbles }‘r
in a preassigned way each time it made a mistake. Now if we interpret the
A-elements of the perceptron as components of a function ¢ mapping the set of
outputs from the photocell into B " (where there are m A-elements), we see

the prceptron is just a physical realisation of the automaton A which features
in Theorem I. (With S= %( ST ,\m)! Aje E?} ) 4nd in fact the modification
process OA turns out to be very similar to the process Rosenblatt proposed

for modifying the variables)\r in the perceptron. It ie interesting to

note th»t Rosenblatt based the design of the perceptron on the then current
ideas about the structure of the human visual system, whereas in this essay

we have arrived at essentially the same structure by assuming similar patterns
form 'compact clusfers' in a certain spaoe,(P).

50 far we have only considered the structure of human-imzges and we have
shown that if +these form 'compact clusters' in P a perceptron-~like device
can learn to distinguish them, it turns out, however, to be most unlikely
that human-images form such nice 'compact clusters'. Marvin Minsky and
Seymour Papert have looked at what sort of sets perceptrons can learn to
discriminate between, i.e. they have tried to determine what 'perceptron—~
images' look like. In view of the large number of light receptors humans
have in each eye, if the perceptron is to have any chance of being a plausible
model of the human visual system each A~element must hnve inputs coming from
only a small fraction of all the receptors. Winsky and Papert have shown thot
if this is so then no perceptron could be built (let alone taught) to

recognise whether a pattern is 'connected' or not in the sense of Fig. 3 below:

Mg, -3
Fxamples of connected patterns hxamples of unconnected patterns
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Since humans can distingnish between connected and unconnected patterns

it follows that the eye is not just a perceptron. There are many other
properties of human-images which make it seem unlikely that they can be
represented as 'compact clusters' in any metric space. For example, the
fact that it usually does not change the essential characteristics of the
pattern if we translate it around (a 2 at the top of the rage is just as much
a 2 as a 2 at the bottom of the page, i.e. '2-ness' is position invariant)
coupled with the fact that two patterns, one of which is a translate of the
other, are not usually near together in P with respect to the sort of metrics
we have imposed provides good evidence against any metrical characterisation
of pattern similarity. Furthermore, experimental results obtazined using
perceptrons as pattern recognising devices are not encouraging, for example,
it seems that no matter how much 'training' a perceptron is given it can
never be taught to get more than about nine out of ten correct recognitions
of the numerals. However, although human-images probably do not in general
form’compact clusters' there is experimental evidence (according to

A.G. Arkadev and E.M, Braverman) thaticompact clusters do form human-images,
although such images look rather odd.in general. fig. 4 belew shows
examples from two artificially generated sets of points which form 'compzct
clusters' in Pé-m:N (where N=25 x 25) with respect to the Fuclidean metric
(the degree of bluckness of each point has been 'quantized' to either O or1

i.e. white or black).
Fig. 4.
(From "Teaching Computers to Recognize Patterns" by A.G.Arkadev & E,M. Braverman)

2

2, & & come from one'qompact clusters: 1, 4, 5 from the other.
ol ‘
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