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Preface

For a long time I’ve been aware of corecursion and coinduction as something
mysteriously dual to recursion and induction, and related to maximal fixed
points and bisimulation … but I’ve never understood what they are or what the
duality signified by the “co” means. My goal here is to try to understand these
things through the activity of creating a simple explanation.
Early drafts of this article were rather formal and included proofs of everything
– I even started to check some of the details with a proof assistant to try to
increase my confidence that I’d got them right. After a while I realised that
the writing was taking too long. Furthermore, the notational infrastructure
needed for fully rigorous formal precision was obscuring the essence of the ideas.
I also realised that the thing I was producing was in danger of ending up as
an amateur and inferior version of existing expositions, so I decided to scale
back on mathematical precision and largely give up on including formal proofs.
A result of this is that I make assertions that I haven’t checked in detail, so
there are bound to be errors, technical mistakes and embarrassing omissions
and misunderstandings. If you happen to be reading this and spot any of these,
then please let me know!
To get started, I did some googling and found the link What the heck is coin-
duction1 and a couple of excellent tutorials:

• A Tutorial on Co-induction and Functional Programming2 by Andy Gor-
don.

• An introduction to (co)algebra and (co)induction3 by Bart Jacobs and Jan
Rutten;

I also spotted a new book Introduction to Coalgebra4 by Bart Jacobs whilst
browsing in the Cambridge CUP bookshop – subsequent googling discovered a
preliminary version of this online here.5

It’s a small world: in the distant past both Andy Gordon and Bart Jacobs
worked as postdocs on grants for which I was one of the investigators. I think
this was long before either of them became authorities on coinduction.
There is nothing new here. The material is adapted from several sources,
particularly those mentioned above, as well as other papers and web pages that

1http://ask.metafilter.com/42858/What-the-heck-is-coinduction
2http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.7706&rep=rep1&type=pdf
3http://homepages.cwi.nl/~janr/papers/files-of-papers/2011_Jacobs_Rutten_new.pdf
4http://www.cambridge.org/9781107177895
5http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
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I stumbled across and found enlightening – links to some of these are included in
the text. I mostly didn’t read these beyond the introductory and motivational
parts, so it’s inevitable that I’ve misunderstood some things. As my sources are
just those I happened to find, there might be better ones I could have read and
cited. Please let me know if you have any suggestions.

Summary

The first three sub-sections of this summary are an example-based preview il-
lustrating some of the core ideas covered in the rest of the article as they apply
to lists. In particular:

• lists and their constructors versus
colists and their destructors;

• recursion on finite lists versus
corecursion on finite or infinite colists;

• the relation of least fixed points to lists and induction versus
the relation of greatest fixed points to colists and bisimulation coinduction.

The summary concludes with a fourth sub-section that itemises the topics cov-
ered in the remainder of the article.

Recursion and induction are most familiar for natural numbers, but corecusion
and coinduction for numbers are pretty useless and I couldn’t find illustrative
examples that didn’t seem vacuous – this is why I focus on lists in this summary.
However, the main part of this article is about concepts rather than examples
and it starts with numbers, as they provide a minimal setting for explaining some
of the core ideas. Lists can then be seen as a generalisation, as well a providing
examples that hint at useful applications. Lists are also a nice stepping stone to
a superficial account of the general frameworks of algebras and coalgebras and
then F-algebras and F-coalgebras.

The material in the sections following the summary provides more explanation
and details, starting with corecursion and coinduction for numbers. At the end
there are brief and superficial discussions of how the number and list examples fit
into the more general framework of algebras and coalgebras, and then how this
relates to programming language datatypes and function definitions on these
types.

Data, codata, constructors and destructors

Data represents finite values and is built by evaluating a finite number of applica-
tions of constructor functions. Codata often – but not necessarily – represents
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infinite values and is defined by specifying the values of destructor functions.
Here are two examples.

• Data: The 4-element finite list L4 = [1, 1, 1, 1] is built by specifying
L4 = cons(1, cons(1, cons(1, cons(1, nil)))), where cons is a list constructor
and nil, the empty list, a nullary constructor.

• Codata: The infinite list L∞ = [1, 1, 1, 1, . . . ] is defined by specifying
hd(L∞) = 1 and tl(L∞) = L∞, where hd and tl are destructors.

Recursion and corecursion

Recursion defines a function mapping values from a datatype by invoking itself
on the components of the constructors used to build data values. Corecursion
defines a function mapping to a codatatype by specifying the results of applying
destructors to the results of the function. This is illustrated with examples using
finite and infinite lists.

Let N be the set of natural numbers, L be the set of finite lists of numbers and
L∞ the set of infinite lists of numbers. Let L = L ∪ L∞ be the set of finite or
infinite lists of numbers.

The list constructors are nil and cons: nil is the empty list and cons(n, l) is the
list constructed by adding the number n to the front of list l.

The list destructors are null, hd and tl: null(l) is true if and only l = nil, hd(l) is
the first element of l and tl(l) is the list resulting from removing its first element.
The equation l = if null(l) then nil else cons(hd(l), tl(l)) holds for every list l.

In what follows, the functions π1 : X1×X2 → X1 and π2 : X1×X2 → X2 extract
the first and second elements of pairs: π1(x1, x2) = x1 and π2(x1, x2) = x2. The
notation A ⇔ B means A is true if and only if B is true.

Example. The function Add1 adds 1 to each element of a list of numbers and is
defined below both by recursion and corecursion. The recursively defined Add1
maps finite lists to finite lists, so Add1 : L → L. The corecursively defined Add1
maps finite lists to finite lists and infinite lists to infinite lists, so Add1 : L → L.

• Recursion:
Add1(nil) = nil and Add1(cons(n, l)) = cons(n+1, Add1(l))

• Corecursion:
null(Add1(l)) = (l=nil) and hd(Add1(l)) = hd(l)+1 and tl(Add1(l)) = Add1(tl(l))

More generally, recursion defines functions from L to some set X, whereas core-
cursion defines functions from some set X to L.
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• If x0 ∈ X and θ : N× X → X, then f : L → X is defined by recursion by:
f(l) = if l = nil then x0 else θ(hd(l), f(tl(l))

which specifies the result of applying f to values build using constructors:
f(nil) = x0 and f(cons(n, l)) = θ(n, f(l))

• If P ⊆ X and ϕ : X → N × X, then g : X → L is defined by corecursion
by:

g(x) = if x ∈P then nil else cons(π1(ϕ(x)), g(π2(ϕ(x))))
which determines the result of applying the destructors to g(x):

null(g(x)) ⇔ x ∈ P and hd(g(x)) = π1(ϕ(x)) and tl(g(x)) = g(π2(ϕ(x)))

Returning to the Add1 example, recall the equation:

Add1(l) = if l = nil then nil else cons(hd(l)+1, Add1(tl(l)))

This can be viewed as a definition by recursion by taking f = Add1, X =L,
x0 = nil and θ(n, l) = cons(n+1, l) in the recursion scheme for f in the first bullet
point above.

It can be viewed as a definition by corecursion by taking g = Add1, X =L,
P = {nil} and ϕ(l) = (hd(l)+1, tl(l)) in corecursion scheme for g in the second
bullet point.

The version of Add1 defined by recursion maps L to L, so only finite lists can
be arguments and results, but the version defined by corecursion maps L to L,
which allows both finite and infinite lists to be arguments and results.

This sub-section concludes with three examples of corecursion that will reappear
later.

Example. The function CountFrom : N → L maps a number to an infinite list,
i.e. to a member of the L∞ subset of L.

CountFrom(n) = cons(n, CountFrom(n+1))

This corecursion equation defines CountFrom(n) to be the infinite list counting
up from n, i.e. cons(n, cons(n+1, cons(n+2, . . .))). If X =N, P is the empty set
and ϕ(n) = (n, n+1), then CountFrom = g, where g is defined by corecursion by
the single corecursion equation:

g(x) = if x ∈P then nil else cons(π1(ϕ(x)), g(π2(ϕ(x))))

CountFrom can also be specified by giving equations for the destructors:
null(CountFrom(n)) = false
hd(CountFrom(n)) = n
tl(CountFrom(n)) = CountFrom(n+1)

Example. The function CountUp : N × N → L maps a pair of numbers (m, n)
to a finite list when m ≤ n and to an infinite lists when m > n.

CountUp(m, n) = if m = n then nil else cons(m, CountUp(m+1, n))
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If m ≤ n, then this corecursion equation defines CountUp(m, n) to be the finite
list counting up from m until n (including m but not n, so CountUp(m, m) = nil
and CountUp(m, m+1) = cons(m, nil)).

If m > n, then the equation defines CountUp(m, n) to be the infinite list counting
up from m.

If X =N × N, P = {(m, n) | m = n} and ϕ(m, n) = (m, (m+1, n)), then
CountUp = g, where g is defined by corecursion by the single corecursion
equation:

g(x) = if x ∈P then nil else cons(π1(ϕ(x)), g(π2(ϕ(x))))

CountUp can also be specified by giving equations for the destructors:
null(CountUp(m, n)) = (m = n)
hd(CountUp(m, n)) = m if m ̸= n
tl(CountUp(m, n)) = CountUp(m+1, n) if m ̸= n

Example. The function CountUpTo : N × N → L maps a pair of numbers to a
finite lists, i.e. to a member of the L subset of L.

CountUpTo(m, n) = if m ≥ n then nil else cons(m, CountUpTo(m+1, n))

If m ≤ n then this corecursion equation defines CountUp(m, n) to be the finite
list counting up from m until n (including m but not n. If m > n, then
CountUp(m, n) = nil.

If X =N × N, P = {(m, n) | m ≥ n} and ϕ(m, n) = (m, (m+1, n)), then
CountUpTo = g, where g is defined by corecursion by the single corecursion
equation:

g(x) = if x ∈P then nil else cons(π1(ϕ(x)), g(π2(ϕ(x))))

CountUpTo can also be specified by giving equations for the destructors:
null(CountUpTo(m, n)) = (m ≥ n)
hd(CountUpTo(m, n)) = m if m < n
tl(CountUpTo(m, n)) = CountUpTo(m+1, n) if m < n

Fixed points, induction, coinduction and bisimulation

A fixed point of a function θ is an x such that θ(x) = x.

If L ⊆ L, define F(L) = {nil} ∪ {cons(n, l) | n ∈ N and l ∈ L}.

L and L are both fixed points of F , i.e. F(L) =L and F(L) =L. The least fixed
point is L and the greatest fixed point is L.

L is also the least pre-fixed point of F , that is the least L ⊆ L such that
F(L) ⊆ L. Thus if F(L) ⊆ L then by leastness L ⊆ L. This is the principle of
induction for finite lists since F(L) ⊆ L is equivalent to nil ∈ L (the base case
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of the induction) and ∀n ∈ N. ∀l ∈ L. cons(n, l) ∈ L (the induction step). L ⊆ L
is equivalent to ∀l ∈ L. l ∈ L.

L is also the greatest post-fixed point of F , that is the greatest L ⊆ L such
that L ⊆ F(L), but there doesn’t seem to be any interesting reasoning principle
arising from this. The principle dual to induction is: if L ⊆ F(L) then by
greatestness L ⊆ L – but this is vacuous as L ⊆ L is assumed.

However, there is a useful reasoning principle for binary relations on L that is
derived from greatest fixed points. This is the main coinduction principle and
is based on subsets of L × L rather than subsets of just L.

If R ⊆ L × L is a binary relation on L, then define B(R) ⊆ L × L by:

B(R) = {(nil, nil)} ∪ {(cons(n, l1), cons(n, l2)) | n ∈ N ∧ (l1, l2) ∈ R}

The least fixed point of B is the equality relation on L, i.e. {(l, l) | l ∈ L}, and
the greatest fixed point is the equality relation on L, i.e. {(l, l) | l ∈ L}.

The relation {(l, l) | l ∈ L} is also the greatest post-fixed point of B, that is the
greatest R such that R ⊆ B(R). Thus if there exists an R such that R ⊆ B(R),
then by greatestness R ⊆ {(l, l) | l ∈ L}. This is a principle of coinduction.

The property R ⊆ B(R) means that if (l1, l2) ∈ R then either l1 = nil and l2 = nil
or else l1 = cons(n, l′

1) and l2 = cons(n, l′
2) and (l′

1, l′
2) ∈ R, for some n ∈ N and

l′
1, l′

2 ∈ L. Such an R is called a bisimulation.

The proof principle that if R is a bisimulation then ∀l1 l2 ∈ L. (l1, l2) ∈ R ⇒
l1 = l2 is called bisumulation coinduction here, or just coinduction, which is the
more common name for this principle.

Recall the corecursively defined functions:
CountFrom(n) = cons(n, CountFrom(n+1))
CountUp(m, n) = if m = n then nil else cons(m, CountUp(m+1, n))
CountUpTo(m, n) = if m ≥ n then nil else cons(m, CountUpTo(m+1, n))

Examples of bisimulations are R1 and R2, where:
R1 = {(CountUp(m, n), CountFrom(m)) | m > n}
R2 = {(CountUp(m, n), CountUpTo(m, n)) | m ≤ n}

The easy arguments that R1 and R2 are bisimulations are given at the beginning
of the section on examples of bisimulation coinduction for lists.

By bisimulation coinduction applied to R1:
∀m n ∈ N. m > n ⇒ CountUp(m, n) = CountFrom(m).

By bisimulation coinduction applied to R2:
∀m n ∈ N. m ≤ n ⇒ CountUp(m, n) = CountUpTo(m, n).

By combining these two applications of bisimulation coinduction, the equation
below can be deduced.

CountUp(m, n) = if m ≤ n then CountUpTo(m, n) else CountFrom(m)
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Both the terms “bisimulation” and “coinduction” originate from Robin Milner.
For further historical details see Section 4.3 of Sangiorgi’s paper On the Origins
of Bisimulation and Coinduction6 and Milner and Tofte’s paper Co-induction
in relational semantics7.

Overview of the rest of this article

The rest of this paper consists of the following.

• A discussion of the traditional Peano axioms for numbers and their equiv-
alence to another definition, which is based on the unique existence of
functions and whose dual yields the conumbers.

• Numbers are fitted into the general framework of algebras and its dual,
coalgebras, is introduced. Corecursion for conumbers is explained and
some examples given.

• Lists are introduced as another example of algebras and colists as another
example of coalgebras. Examples of corecursion for lists are given.

• Coinduction is explained and the way in which it is dual to induction
discussed. Bisimulation relations are introduced and their central role in
coinduction explained. Examples for numbers and lists are described.

• F-algebras and F-coalgebras are introduced as a uniform framework with
numbers and lists being special cases. Algebra and coalgebra morphisms
are defined. Initial and terminal algebras and coalgebras are explained as a
general way of defining datatypes, with numbers and lists being examples.

• The roles of least and greatest fixed points in characterising numbers,
conumbers, lists and colists are explained and so is the relation of fixed
points to induction and coinduction.

• Some brief comments are made on how algebras and coalgebras relate to
programming language datatypes, and how recursion and corecursion can
be used to define function on data and codata.

• The article concludes with a brief discussion of what is and isn’t covered
and some reflections on what I’ve learnt by writing it.

I think that most of the key ideas about the relationships between recursion, in-
duction, corecursion and coinduction have been covered in this summary section
– the rest of the article is just more details and examples.

6http://www.cs.unibo.it/~sangio/DOC_public/history_bis_coind.pdf
7http://www.sciencedirect.com/science/article/pii/030439759190033X
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Natural numbers, Peano’s axioms and Peano
structures

The Wikipedia article8 says that coinduction is the “mathematical dual to struc-
tural induction”, so a good starting place is ordinary mathematical induction,
which is structural induction applied to the natural number structure (N, 0, S),
where N is a set, 0 ∈ N a constant and S : N → N a one-argument function.

The five Peano axioms characterise the natural number structure (N, 0, S).

1. 0 ∈ N

2. ∀n ∈ N. S(n) ∈ N

3. ∀n ∈ N. S(n) ̸= 0

4. ∀m ∈ N. ∀n ∈ N. S(m) = S(n) ⇒ m = n

5. ∀M. 0 ∈ M ∧ (∀n ∈ M. S(n) ∈ M) ⇒ N ⊆ M

The structure (N, 0, S) is an instance of a class of structures (A, z, s), where A
is a set, z ∈ A and s : A → A. These structures seem to have several names,
including discrete dynamical systems9 and Peano structures10. The latter name
is used here.

The existence of (N, 0, S) satisfying Peano’s axioms follows from the axioms of
set theory11, e.g. see this wikipedia article12. Peano’s axioms entail the principle
of recursive definition. This says that for any Peano structure (A, z, s) there
is exactly one function f : N → A such that f(0) = z and ∀n ∈ N.f(S(n)) =
s(f(n)). Showing this is straightforward, but not entirely trivial (e.g. see here13

for a discussion and here14 for a detailed proof).

The principle of recursive definition is equivalent to Peano’s axioms be-
cause (N, 0, S) satisfies the five Peano axioms if and only if for all Peano
structures (A, z, s) there is exactly one function f : N → A such that:
f(0) = z ∧ ∀n ∈N. f(S(n)) = s(f(n)). (N, 0, S) an example of an initial algebra.

8https://en.wikipedia.org/wiki/Coinduction
9http://abel.math.harvard.edu/~mazur/preprints/when_is_one.pdf

10https://proofwiki.org/wiki/Definition:Peano_Structure
11https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory
12https://en.wikipedia.org/wiki/Set-theoretic_definition_of_natural_numbers
13http://devlinsangle.blogspot.co.uk/2011/11/how-multiplication-is-really-defined-in.html
14https://proofwiki.org/wiki/Principle_of_Recursive_Definition_for_Peano_Structure
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Algebras and coalgebras

A Peano structure is an example of an algebra. The dual of an algebra is a
coalgebra. The dual of the natural numbers are the conatural numbers, also
called the conumbers. These will be described using coalgebras.

Algebras and coalgebras can be formulated in various ways. A simple one defines
an algebra to be a structure consisting of a carrier set plus some number of
distinguished elements and some number of functions, called constructors, whose
range is the carrier set.

The dual of an algebra is a coalgebra. This also has a carrier set, but instead
of constructor functions that build members of the carrier, a coalgebra has
destructor functions that split members of the carrier into the components they
are built from. The carrier of an algebra is the range of its constructors, but
the carrier of a coalgebra is the domain of its destructors.

A destructor is dual to a constructor in that it splits the results of a construction
into its components. If c is an n-ary constructor and c(a1, . . . , an) = a, then
its dual destructor, d say, splits a into (a1, . . . , an), i.e. d(a) = (a1, . . . , an). In
general, the dual of a non-nullary constructor is a partial function – it is only
defined on those elements that are constructed by the dual constructor, these
elements are the domain of the destructor. The domain of d is denoted by
Dom(d).

The domain of a non-nullary destructor is the set of members of the carrier that
are constructed using the dual constructor. The domain of a nullary operator is
the set just containing it. The carrier of a coalgebra is required to be partitioned
by the domains of its destructors. Thus each element of the carrier will be a
member of the domain of exactly one destructor.

The relation between constructors and destructors described above is only in-
tended to provide some intuition. I don’t know whether in general algebras and
coalgebras come in pairs with each constructor in an algebra dual to a destructor
in the coalgebra it’s paired with. Such a relationship may hold for some par-
ticular algebra-coalgebra pairs, like the Peano algebra and coalgebra described
below (and maybe also for all initial F-algebras and terminal F-coalgebras). I’m
ignorant of the full theory, but my guess is that such a relationship doesn’t hold
in general.

For scarily more abstract views, see this 15 and this16, which are random exam-
ples I found with Google.

15https://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf
16http://www.math.uni-duesseldorf.de/~wisbauer/algebra-coalgebra.pdf
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Numbers and conumbers

As discussed in the previous section, an example of an algebra is a Peano algebra,
which was also previously called a Peano structure. A Peano algebra (A, z, s)
has a carrier A, only one distinguished element z ∈ A and only one constructor
function s : A → A. The arity of a constructor is the number of arguments it
takes. Distinguished elements like z are considered to be nullary constructors,
i.e. to have arity 0.

The natural numbers are the Peano algebra (N, 0, S) with the property that for
any Peano structure (A, z, s) there’s exactly one function f : N → A such that
f(0) = z and ∀n ∈ N. f(S(n)) = s(f(n)). The function f can also be defined by
a single equation f(n) = if n=0 then z else s(f(n−1)).

The dual of the unary number constructor S is the predecessor function P de-
fined by P(n) = n−1, where P is the partial function only defined on non-zero
numbers, so Dom(P) = {n | n > 0}. Why P is the dual of S is explained below,
when the conatural numbers are characterised.

Nullary constructors represent distinguished elements of the carrier, so it’s not
obvious what their corresponding destructors are, since there are no compo-
nents of a corresponding constructor to return. To cope with this, destructors
corresponding to nullary constructors return a ‘dummy value’ to represent ‘no
components’. This value is traditionally denoted by ∗, though ( ) might be more
mnemonic. This may seem like an odd way to represent the duals of nullary
constructors, but it should become more motivated in the section on F-algebras
and F-coalgebras below. In the summary section at the beginning of this article,
x ∈ d is an abbreviation for x ∈ Dom(d), where d is a nullary destructor.

The conumber dual of the distinguished number 0 is the partial function is0 :
{0} → {∗}, and so necessarily is0(0) = ∗ and Dom(is0) = {0}.

If a coalgebra has more than one destructor, then all its destructors are partial
functions. Here’s some useful notation for partial functions.

• Writing θ : X ↛ Y means θ is a partial function from set X to set Y .

• The subset of X where θ is defined – the domain of θ – is denoted by
Dom(θ).

• If θ : X → Y – i.e. θ is a total function – then Dom(θ) = X.

• If θ : X ↛ Y or θ : X → Y and if U ⊆ X and V ⊆ Y , then writing
θ : U → V means that if x ∈ U then θ(x) ∈ V . In particular, if θ : X ↛ Y
then θ : Dom(θ) → Y .

The dual of a Peano algebra (A, z, s) is a Peano coalgebra (C, isz, p) where isz
and p are destructors: isz : C → {∗} is a nullary destructor and p : C ↛ C is a
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unary destructor. The domains of isz and p partition C, so if x ∈ C then either
x ∈ Dom(isz) or x ∈ Dom(p), but not both.

The conatural numbers are the Peano coalgebra (N, is0, P) with the property
that for any Peano coalgebra (C, isz, p) there is exactly one function g : C → N
such that for all x ∈ C:

• if x ∈ Dom(isz) then g(x) ∈ Dom(is0) and is0(g(x)) = isz(x);

• if x ∈ Dom(p) then g(x) ∈ Dom(P) and P(g(x)) = g(p(x)).

The coalgebra (N, is0, P) is an example of a terminal coalgebra.

It turns out that the unique existence of g determines the Peano coalgebra
(N, is0, P) to have carrier set N = N∪{∞}, the nullary destructor is0 : {0} → {∗}
satisfying is0(0) = ∗ and the unary destructor P to be the predecessor function
n 7→ n−1 extended by defining P(∞) = ∞, thus P : {n | (n ∈ N ∧ n > 0) ∨ n =
∞} → N.

It’s useful to extend the addition operator17 to conumbers N by specifying that
if either argument is ∞ then so is the result. For example, ∞+1 = ∞. Note
that + extended to N is associative and commutative; these properties are used
in examples below. With this extension, m = P(n) ⇔ m+1 = n for all m and
n in N.

With this extended definition of +, the function g is defined by the single equa-
tion g(x) = if isz(x) = ∗ then 0 else g(p(x))+1.

Note the ways in which natural numbers are dual to conatural numbers:

• constructors 0 ∈ N, S : N → N versus
destructors is0 : N ↛ {∗}, P : N ↛ N;

• unique f : N → A versus
unique g : C → N;

• define f on constructed values: f(0) = z ∧ f(S(n)) = s(f(n)) versus
define destructors on values of g: is0(g(x)) = isz(x) ∧ P(g(x)) = g(p(x));

• recursion f(n) = if n=0 then z else s(f(n−1)) versus corecursion18

g(x) = if isz(x) = ∗ then 0 else g(p(x))+1.

• simple recursion on natural numbers always terminates versus
corecursion on conumbers sometimes doesn’t terminate (see example be-
low).

17https://ncatlab.org/nlab/show/corecursion
18https://ncatlab.org/nlab/show/corecursion
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Example of corecursion for numbers

The notation [x1 7→ v1, . . . , xk 7→ vk] denotes the function θ with domain
{x1, . . . , xk} defined by θ(xi) = vi. Using this notation, consider the Peano
coalgebra (C, isz, p) where:

C = {A, B, C, D, E, F, G, H, I, J},
isz = [F 7→ ∗, J 7→ ∗],
p = [A 7→ A, B 7→ C, C 7→ B, D 7→ E, E 7→ F, G 7→ H, H 7→ I, I 7→ J ].

Dom(isz) = {F, J} and Dom(p) = {A, B, C, D, E, G, H, I}, so Dom(isz) and
Dom(p) partition C.

This coalgebra is diagrammed in Figure 1 below: an arrow from x to x′ means
that if x ∈ Dom(p) then p(x) = x′, and if x ∈ Dom(isz) then isz(x) = ∗.

Figure 1:

Consider now the definition of g : C → N specified for x ∈ C by g(x) =
if isz(x) = ∗ then 0 else g(p(x))+1.

Rewriting g(A) with this equation yields:

g(A) = g(p(A))+1 = g(A)+1

The only way this can be satisfied is with g(A) = ∞.

Rewriting g(B) and g(C) yields:

g(B) = g(p(B))+1 = g(C)+1 = (g(p(C))+1)+1 = (g(B)+1)+1 = g(B)+2
g(C) = g(p(C))+1 = g(B)+1 = (g(p(B))+1)+1 = (g(C)+1)+1 = g(C)+2

The only way these can be satisfied is with g(B) = ∞ and g(C) = ∞.
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Thus if x ∈ {A, B, C} then evaluating g(x) by rewriting with the equation for
g loops.

On other arguments the rewriting terminates:
g(F ) = 0
g(E) = g(p(E))+1 = g(F )+1 = 0+1 = 1
g(D) = g(p(D))+1 = g(E)+1 = 1+1 = 2

g(J) = 0
g(I) = g(p(I))+1 = g(J)+1 = 0+1 = 1
g(H) = g(p(H))+1 = g(I)+1 = 1+1 = 2
g(G) = g(p(G))+1 = g(H)+1 = 2+1 = 3

These rewriting calculations show that:

g = [A 7→ ∞, B 7→ ∞, C 7→ ∞, D 7→ 2, E 7→ 1, F 7→ 0, G 7→ 3, H 7→ 2, I 7→ 1, J 7→ 0]

For an arbitrary Peano coalgebra (C, isz, p), the function g : C → N satisfying
the equation g(x) = if isz(x) = ∗ then 0 else g(p(x))+1 is described by:

g(x) =

{
n ∃x0 · · · xn. x = x0 ∧ isz(xn) = ∗ ∧ ∀i<n. p(xi) = xi+1

∞ otherwise

The example just given illustrates this.

Lists and colists

If A is a set – “A” for “alphabet” – then the set LA of finite lists (or strings)
of members of A is defined by two constructors: the empty list nil ∈ LA and
the function cons : A × LA → LA which constructs the new list cons(a, l) that
results from adding the element a ∈ A to the front of list l ∈ LA.

Peano-style axioms for lists are:

1. nil ∈ LA

2. ∀a ∈ A. ∀l ∈ LA. cons(a, l) ∈ LA

3. ∀a ∈ A. ∀l ∈ LA. cons(a, l) ̸= nil

4. ∀a1 a2 ∈ A. ∀l1 l2 ∈ LA. cons(a1, l1) = cons(a2, l2) ⇒ a1 = a2 ∧ l1 = l2

5. ∀M. nil ∈ M ∧ (∀a ∈ A. ∀l ∈ M. cons(a, l) ∈ M) ⇒ LA ⊆ M

Axiom 5 entails that if l ∈ LA then l = nil or l = cons(a, l′) for some a ∈ A and
l′ ∈ LA (to see this specialise M to {l | l = nil∨∃a ∈ A. ∃l′ ∈ LA. l = cons(a, l′)}).
This and Axiom 4 shows that there are destructors hd : LA ↛ A and tl : LA ↛
LA, which satisfy ∀l ∈ LA. l = nil ∨ l = cons(hd(l), tl(l)).
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These five Peano-style axioms for lists are equivalent to the single property that
if A is a set, nl ∈ A and cs : A × A → A, then there is a unique function
f : LA → A such that ∀l ∈ LA. f(l) = if l = nil then nl else cs(hd(l), f(tl(l))).

A structure (A, nl, cs) where nl ∈ A and cs : A × A → A is an A-list algebra.
The dual concept is an A-list coalgebra (C, test, dest) where C is the carrier set
and test : C ↛ {∗} and dest : C ↛ A × C are destructors whose domains
partition the carrier C.

Some notation is useful when discussing the dual of the A-list algebra
(LA, nil, cons).

• For any sets X1, X2, if (x1, x2) ∈ X1 × X2 then π1(x1, x2) = x1 and
π2(x1, x2) = x2. The functions π1 : X1 ×X2 → X1 and π2 : X1 ×X2 → X2
are called projections.

• If θ1 : X1 → Y1 and θ2 : X2 → Y2, then θ1 × θ2 : X1 × X2 → Y1 × Y2
is defined by (θ1 × θ2)(x1, x2) = (θ1(x1), θ2(x2)). The function
θ1 × θ2 is called the product of functions θ1 and θ2. Note that
(θ1 × θ2)(x) = (θ1(π1(x)), θ2(π2(x))).

• If E is an expression containing a variable n (e.g. E = σ(n+1)), then
λn.E denotes the function that when applied to an argument returns the
value obtained by evaluating E after the argument has been substituted
for n, so λn. σ(n+1) denotes the function n 7→ σ(n+1).

• The identity function is denoted by id, so ∀x. id(x) = x and id = λx. x. The
notation idX is used to make the domain of id explicit, so idX : X → X.

The dual of the A-list algebra (LA, nil, cons) is the A-list coalgebra
(LA, null, destcons) with the property that for any A-list coalgebra (C, test, dest),
there is exactly one function g : C → LA such that for all x ∈ C:

• if x ∈ Dom(test) then
g(x) ∈ Dom(null) and null(g(x)) = test(x);

• if x ∈ Dom(dest) then
g(x) ∈ Dom(destcons) and destcons(g(x)) = (id × g)(dest(x)).

It turns out that the unique existence of g determines the A-list coalgebra
(LA, null, destcons) to have carrier set LA = LA ∪ AN, where AN is the set of
infinite lists of members of A. Formally AN = {σ | σ : N → A}, i.e. infinite lists
are represented as functions σ from the natural numbers to A, with σ(n) being
the nth element of the list σ, counting from 0, so σ(0) is the first element. The
nullary destructor null : {nil} → {∗} satisfies null(nil) = ∗ and the unary destruc-
tor destcons : {l | l ̸= nil} → LA is the function that returns the pair (hd(l), tl(l))

16



when applied to a non-empty finite list l, and returns the pair (σ(0), λn. σ(n+1))
when applied to an infinite list σ.

It is useful to extend cons, hd and tl from Lα to all of LA ∪ AN by defining:
cons(a, σ) = λn. if n = 0 then a else σ(n−1)
hd(σ) = σ(0)
tl(σ) = λn. σ(n+1))

With these definitions, the unique function g : C → LA is defined by the single
equation:

g(x) = if test(x) = ∗ then nil else cons((id × g)(dest(x)))

which can also be written as:

g(x) = if test(x) = ∗ then nil else cons(π1(dest(x)), g(π2(dest(x))))

and is equivalent to:

null(g(x)) = test(x) ∧ hd(g(x)) = (π1(dest(x)) ∧ tl(g(x)) = g(π2(dest(x)))

Note the ways in which colists are dual to lists:

• constructors nil ∈ LA, cons : A × LA → LA versus
destructors null : LA ↛ {∗}, destcons : LA ↛ A × LA;

• unique f : LA → A versus
unique g : C → LA;

• define f on constructors: f(nil) = nl ∧ f(cons(a, l)) = cs(a, f(l)) versus
define destructors on g: null(g(x))=test(x) ∧ destcons(g(x))=(id×g)(dest(x));

• recursion f(l) = if l = nil then nl else cs(hd(l), f(tl(l))) versus
corecursion g(x) = if test(x) = ∗ then nil else cons((id × g)(dest(x))).

• recursion always terminates versus
corecursion sometimes doesn’t terminate (see example below).

Example of corecursion for lists

The Peano coalgebra example used above can be reinterpreted as a LA coalgebra.
A ={A, B, C, D, E, F, G, H, I, J},
C = {A, B, C, D, E, F, G, H, I, J},
test = [F 7→ ∗, J 7→ ∗],
dest= [A 7→ (A, A), B 7→ (B, C), C 7→ (C, B), D 7→ (D, E), E 7→ (E, F ),

G 7→ (G, H), H 7→ (H, I), I 7→ (I, J)].

Dom(test) = {F, J} and Dom(dest) = {A, B, C, D, E, G, H, I}, so Dom(test)
and Dom(dest) partition C.
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Figure 2:

In the diagram in Figure 1 below: an arrow from x to x′ means that if x ∈
Dom(dest) then dest(x) = (x, x′), and if x ∈ Dom(test) then test(x) = ∗.

Consider now the definition of g : C → LA specified for x ∈ C by
g(x) = if test(x) = ∗ then nil else cons((id × g)(dest(x))).

The notation [a0, a1, . . . , an] abbreviates cons(a0, cons(a1, . . . , cons(an, nil) · · · ))
and [ ] is used as a synonym for nil.

Rewriting g(A) with the equation defining g yields:

g(A) = cons((id × g)(dest(A))) = cons((id × g)(A, A)) = cons(A, g(A)) = [A, g(A)]

The only way this can be satisfied is with g(A) being the infinite list of As, i.e.
g(A) = [A, A, A, . . .]. Formally this is the function λn. A.

Rewriting g(B) and g(C) yields:

g(B) = cons((id × g)(dest(B)))
= cons((id × g)(B, C))
= cons(B, g(C))
= cons(B, cons((id × g)(dest(C))))
= cons(B, cons(C, g(B)))
= [B, C, g(B)]

g(C) = cons((id × g)(dest(C)))
= cons((id × g)(C, B))
= cons(C, g(B))
= cons(C, cons((id × g)(dest(B))))
= cons(C, cons(B, g(C)))
= [C, B, g(C)]
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The only way these can be satisfied is with g(B) being the infinite list
that repeats B followed by C, i.e. g(B) = [B, C, B, C, B, C, B, C . . .]
and g(C) being the infinite list that repeats C followed by B, i.e.
g(C) = [C, B, C, B, C, B, C, B . . .].

Thus if x ∈ {A, B, C}, then evaluating g(x) by rewriting with the equation for
g returns an infinite list, i.e. a member of AN.

On other arguments the rewriting results in a finite list, i.e. a member of LA.
The rewriting calculations below take bigger steps than the ones above (the
expansion of (id × g)(· · ·) is omitted).

g(F ) = nil = [ ]
g(E) = cons(E, g(F )) = cons(E, nil) = [E]
g(D) = cons(D, g(E)) = cons(D, [E]) = [D, E]

g(J) = nil = [ ]
g(I) = cons(I, g(J)) = cons(I, nil) = [I]
g(H) = cons(H, g(I)) = cons(H, [I]) = [H, I]
g(G) = cons(G, g(H)) = cons(G, [H, I]) = [G, H, I]

These rewriting calculations show that:
g = [A 7→ [A, A, A, . . . ], B 7→ [B, C, B, C, B, C, B, C, . . . ], C 7→ [C, B, C, B, C, B, C, B, . . . ],

D 7→ [D, E], E 7→ [E], F 7→ [ ], G 7→ [G, H, I], H 7→ [H, I], I 7→ [I], J 7→ [ ]]

For an arbitrary A-list coalgebra (C, test, dest), the function g : C → LA satisfy-
ing the equation g(x) = if test(x) = ∗ then nil else cons((id × g)(dest(x)))
is described by:

g(x) =


[a0, . . . , an−1 ] ∃x0 · · · xn.

x = x0 ∧ test(xn) = ∗ ∧ ∀i<n. dest(xi) = (ai, xi+1)

[a0, a1, a2, . . . ] ∃σ : N → C. x = σ(0) ∧ ∀i. dest(σ(i)) = (ai, σ(i+1))

The example just given illustrates this.

Coinduction and bisimulation

Induction for natural numbers is the fifth Peano axiom. For lists, it is the fifth
of the Peano-like axioms given at the start of the section on Lists and colists
above. Both of these are equivalent to the uniqueness of the functions resulting
from the principle of recursive definition from N or Lα to the carriers of the
appropriate algebras.

As far as I can discover there is no canonical notion of coinduction for the dual
of natural numbers or lists. The term “coinduction” (actually “co-induction”)
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is generally attributed to Milner and Tofte in their 1991 paper Co-induction in
relational semantics19 whose abstract is:

An application of the mathematical theory of maximum fixed points
of monotonic set operators to relational semantics is presented. It is
shown how an important proof method which we call co-induction, a
variant of Park’s (1969) principle of fixpoint induction, can be used
to prove the consistency of the static and the dynamic relational
semantics of a small functional programming language with recursive
functions.

Milner and Tofte’s paper is based on fixed points, but other more recent work
on coinduction is based on terminal algebras, which is the approach taken here
(see the sections below entitled least and greatest fixed points and Initial and
terminal algebras).

The coinduction principle described here is called bisimulation coinduction,
where a bisimulation is a relation R between members of the carrier of a
coalgebra. The name “bisimulation coinduction” is not standard, usually just
called “coinduction” is used. The principle is derived from the corecursion
equation defining the unique functions from arbitrary coalgebras to the
conumber coalgebra N or to the colist coalgebra Lα. This derivation is given
for conumbers and colists in the sections on the justification of bisimulation
coinduction for numbers and the justification of bisimulation coinduction for
lists.

Bisimulation coinduction for conumbers

For the conatural numbers N, a bisimulation is a relation R ⊆ N × N such that
if (n1, n2) ∈ R then either n1 = 0 and n2 = 0 or else n1 = S(n′

1) and n2 = S(n′
2)

for some (n′
1, n′

2) ∈ R.

The bisimulation coinduction principle for N states that if R is any bisimulation,
then R ⊆ {(n, n) | n ∈ N}.

Example of bisimulation coinduction for numbers It’s hard to come up
with examples for N that illustrate useful applications of coinduction. This is
because coinduction is actually not much use in practice. The rather contrived
example that follows is inspired by part of a (hopefully) more convincing exam-
ple used later to illustrate coinduction on lists. In the example even(n) means
that n is an even number (even(0) is considered true) and odd(n) that n is odd.

Consider the unique function g : N → N determined by the Peano coalgebra
(N, isz, p) where Dom(isz) = {n | even(n)} and Dom(p) = {n | odd(n)}, and the

19http://www.sciencedirect.com/science/article/pii/030439759190033X
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destructors are defined by p(n) = ∗ ⇔ even(n) and s(n) = n+2. This function
g is defined by:

g(x) = if isz(x) = ∗ then 0 else g(p(x))+1

and with the particular isz and p just specified, is equivalent to:

g(n) = if even(n) then 0 else g(n+2)+1

Intuitively this function returns 0 on even numbers and loops on odd numbers,
so is equal to h : N → N defined by: h(n) = if even(n) then 0 else ∞.

This can be proved by showing that R = {(g(n), h(n)) | n ∈ N} is a bisimulation.

Suppose (n1, n2) ∈ R, then n1 = g(n) and n2 = h(n) for some n ∈ N.

If n is even then n1 = g(n) = 0 and n2 = h(n) = 0.

If n is not even, then n1 = g(n) = g(n+2)+1 = S(g(n+2)) (including when
g(n+2) = ∞) and n2 = h(n) = ∞ = S(∞) = S(h(n+2)), as n+2 is not even if n
is not even.

Thus if (n1, n2) ∈ R then either n1 = 0 and n2 = 0 or else n1 = S(n′
1) and

n2 = S(n′
2) for some (n′

1, n′
2) ∈ R – here n′

1 = g(n+2) and n′
2 = h(n+2) – so

R is a bisimulation, hence by the bisimulation coinduction principle it follows
that ∀n ∈ N. g(n) = h(n).

Justification of bisimulation coinduction for numbers To establish
that the uniqueness of corecursively specified functions entails the principle
of bisimulation coinduction, let R ⊆ N × N be a bisimulation. Consider the
Peano coalgebra (R, iszR, pR), where iszR(n1, n2) = ∗ ⇔ n1 = 0 ∧ n2 = 0 and
pR(n1, n2) = (P(n1), P(n2)). The definition of a bisimulation ensures that the
domains of iszR and pR partition the coalgebra carrier set R. By the defining
property of (N, is0, P), there is a unique function g : R → N such that for all
(n1, n2) ∈ R:

g(n1, n2) = if iszR(n1, n2) = ∗ then 0 else g(pR(n1, n2))+1

i.e. for all (n1, n2) ∈ R:

g(n1, n2) = if n1 = 0 ∧ n2 = 0 then 0 else g(P(n1), P(n2))+1

Recall the projection functions: π1(σ1, σ2) = σ1 and π2(σ1, σ2) = σ2. As is about
to be shown, it is easy to verify the equation for g is satisfied with both g = π1
and g = π2.

Taking g = π1 and assuming (n1, n2) ∈ R:

π1(n1, n2) = if n1 = 0 ∧ n2 = 0 then 0 else π1(P(n1), P(n2))+1

which simplifies to:

n1 = if n1 = 0 ∧ n2 = 0 then 0 else P(n1)+1
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which holds for all (n1, n2) ∈ R, since if (n1, n2) ∈ R then n1 = 0 ⇔ n2 = 0 as
R is a bisimulation.

Now take g = π2, then assuming (n1, n2) ∈ R:

π2(n1, n2) = if n1 = 0 ∧ n2 = 0 then 0 else π2(P(n1), P(n2))+1

which simplifies to:

n2 = if n1 = 0 ∧ n2 = 0 then 0 else P(n2)+1

which also holds for all (n1, n2) ∈ R.

Since g is unique, π1 : R → N and π2 : R → N must be the same function, so if
(n1, n2) ∈ R then n1 = π1(n1, n2) = π2(n1, n2) = n2, so R ⊆ {(n, n) |∈ N}.

The argument just given shows that the bisimulation coinduction principle fol-
lows from the uniqueness of the function g : C → N corecursively specified by:

g(x) = if isz(x) = ∗ then 0 else g(p(x))+1

To prove the reverse implication, i.e. that the bisimulation coinduction principle
entails the uniqueness of corecursively specified functions, suppose that:
g1(x) = if isz(x) = ∗ then 0 else g1(p(x))+1
g2(x) = if isz(x) = ∗ then 0 else g2(p(x))+1

then it’s easy to see that R, where R = {(g1(x), g2(x)) | x ∈ C}, is a bisimulation.

If (n1, n2) ∈ R then n1 = g1(x) and n2 = g2(x) for some x ∈ C.

If isz(x) = ∗, then n1 = g1(x) = 0 and n2 = g2(x) = 0.

If isz(x) ̸= ∗, then n1 = g1(x) = g1(p(x))+1 = S(g1(p(x))) and
n2 = g2(x) = g2(p(x))+1 = S(g2(p(x))). Since (g1(p(x)), g2(p(x))) ∈ R by the
definition of R, it follows that R is a bisimulation, hence by the bisimulation
coinduction principle: ∀x ∈ C. g1(x) = g2(x).

Bisimulation coinduction for lists

A bisimulation on LA is a relation R ⊆ LA × LA such that if (σ1, σ2) ∈ R then
either σ1 = nil and σ2 = nil or else σ1 = cons(a, σ′

1) and σ2 = cons(a, σ′
2) for some

a ∈ A and (σ′
1, σ′

2) ∈ R.

The bisimulation coinduction principle for LA states that if R is any bisimulation,
then R ⊆ {(σ, σ) | σ ∈ LA}.

Examples of bisimulation coinduction for lists Recall the corecursively
defined functions CountFrom, CountUp and CountUpTo from the summary at
the beginning of this article.
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CountFrom(n) = cons(n, CountFrom(n+1))
CountUp(m, n) = if m = n then nil else cons(m, CountUp(m+1, n))
CountUpTo(m, n) = if m ≥ n then nil else cons(m, CountUpTo(m+1, n))

It is asserted in the summary that R1 and R2 are bisimulations, where:
R1 = {(CountUp(m, n), CountFrom(m)) | m > n}
R2 = {(CountUp(m, n), CountUpTo(m, n)) | m ≤ n}

This assertion is verified in the next two paragraphs.

Suppose (σ1, σ2) ∈ R1, then σ1 = CountUp(m, n) and σ2 = CountFrom(m)
for some (m, n) with m > n. It follows from the definitions of CountUp and
CountFrom that σ1 = cons(m, CountUp(m+1, n)) and σ2 = cons(m, CountFrom(m+1)).
As m > n implies m+1 > n, it follows that (CountUp(m+1, n), CountFrom(m+1)) ∈
R1, hence R1 is a bisimulation, so by bisimulation coinduction: ∀m n ∈ N. m >
n ⇒ CountUp(m, n) = CountFrom(m).

Suppose (σ1, σ2) ∈ R2, then σ1 = CountUp(m, n) and σ2 = CountUpTo(m, n) for
some (m, n) with m ≤ n. If m = n then from the definitions of CountUp and
CountUpTo it follows that σ1 = nil and σ2 = nil. If m < n, then from the defini-
tions of CountUp and CountUpTo it follows that σ1 = cons(m, CountUp(m+1, n))
and σ2 = cons(m, CountUpTo(m+1, n)). As m < n implies m+1 ≤ n, it
follows that (CountUp(m+1, n), CountUpTo(m+1, n)) ∈ R2, hence R2 is
a bisimulation, so by bisimulation coinduction: ∀m n ∈ N. m ≤ n ⇒
CountUp(m, n) = CountUpTo(m, n).

By combining the results of coinduction based on the bisimulations R1 and R2,
the equation below can be deduced.

CountUp(m, n) = if m ≤ n then CountUpTo(m, n) else CountFrom(m)

The remaining examples in this section are adapted from similar ones in An
introduction to (co)algebra and (co)induction20 by Bart Jacobs and Jan Rutten,
except that here lists can be finite or infinite, but in Jacobs & Rutton they are
only infinite. Allowing lists to be finite complicates the examples as there are
extra cases to consider. It’s not clear whether the examples below illustrate
anything significant that isn’t already shown by the examples above.

If σ ∈ LA – i.e. σ is a finite or infinite list – then geven(σ) is the sublist consisting
of those elements at even numbered positions and godd(σ) is the sublist consisting
of those elements at odd numbered positions.
σ : a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 · · ·
geven(σ) : a0 a2 a4 a6 a8 a10 · · ·
godd(σ) : a1 a3 a5 a7 a9 a11 · · ·

The functions geven and godd are defined by corecursion below, and then two
lemmas are proved by bisumulation coinduction:

Lemma 1. ∀σ ∈ LA. godd(σ) = geven(tl(σ))
20http://homepages.cwi.nl/~janr/papers/files-of-papers/2011_Jacobs_Rutten_new.pdf
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Lemma 2. ∀σ ∈ LA. σ ̸= nil ⇒ tl(geven(σ)) = godd(tl(σ))

Next merge(σ1, σ2) is defined by corecursion to be the interleaving of σ1 and
σ2. Using these two lemmas, it is then shown by bisimulation coinduction that
merge(geven(σ), godd(σ)) = σ.

To define geven and godd consider the following A-list coalgebras:

Ceven = (LA, testeven, desteven)
Codd = (LA, testodd, destodd)

where
testeven(σ) = ∗ ⇔ σ = nil
testodd(σ) = ∗ ⇔ σ = nil or tl(σ) = nil

and
desteven(σ) = (hd(σ), if tl(σ) = nil then nil else tl(tl(σ)))
destodd(σ) = (hd(tl(σ)), tl(tl(σ)))

The domains of destructors partition Ceven, so the definition of testeven entails
that the domain of desteven is the set of lists with at least one element. The
definitions of desteven is illustrated by:
desteven([a0]) = (a0, nil)
desteven([a0, a1]) = (a0, nil)
desteven([a0, a1, a2]) = (a0, [a2])
desteven([a0, a1, a2, a3, . . . ]) = (a0, [a2, a3, . . . ])

The domains of destructors partition Codd, so the definition of testodd entails
that the domain of destodd is the set of lists with at least two elements. The
definition of destodd is illustrated by:
destodd([a0, a1]) = (a1, nil)
destodd([a0, a1, a2]) = (a1, [a2])
destodd([a0, a1, a2, a3, . . . ]) = (a1, [a2, a3, . . . ])

Recall the general form of the unique corecursively specified function

g : C → LA from the carrier of a coalgebra (C, test, dest) to the carrier of
(LA, null, destcons):

g(x) = if test(x) = ∗ then nil else cons((id × g)(dest(x)))

For the coalgebras Ceven and Codd, this general schema instantiates, respectively,
to:
geven(σ) = if σ = nil

then nil
else cons(hd(σ), geven(if tl(σ) = nil then nil else tl(tl(σ))))

godd(σ) = if σ = nil or tl(σ) = nil
then nil
else cons(hd(tl(σ)), godd(tl(tl(σ)))
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These equations look intuitively correct.

To prove Lemma 1: ∀σ ∈ LA. godd(σ) = geven(tl(σ)), let R = {(godd(σ), geven(tl(σ))) |
σ ∈ LA}. It is shown below that R is a bisimulation.

If (σ1, σ2) ∈ R, then σ1 = godd(σ) and σ2 = geven(tl(σ)) for some σ ∈ LA. Three
cases need to be considered.

1. If σ = nil or tl(σ) = nil then σ1 = σ2 = nil by the definitions of geven and godd.

2. If σ ̸= nil and tl(σ) ̸= nil and tl(tl(σ) = nil then
σ1 = godd(σ) = cons(hd(tl(σ)), godd(nil)) and
σ2 = geven(tl(σ)) = cons(hd(tl(σ))geven(nil)).
As godd(nil) = nil and geven(nil) = nil, (godd(nil), geven(nil)) ∈ R.

3. If σ ̸= nil and tl(σ) ̸= nil and tl(tl(σ) ̸= nil then
σ1 = godd(σ) = cons(hd(tl(σ)), godd(tl(tl(σ)))) and
σ2 = geven(tl(σ)) = cons(hd(tl(σ)), geven(tl(tl(tl(σ))))).
Thus (tl(σ1), tl(σ2)) = (godd(tl(tl(σ))), geven(tl(tl(tl(σ))))) ∈ R.

As (σ1, σ2) ∈ R if either σ1 = nil and σ2 = nil or else σ1 = cons(a, σ′
1) and

σ2 = cons(a, σ′
2) for some a ∈ A and (σ′

1, σ′
2) ∈ R, it follows that R is a

bisimulation.

To prove Lemma 2: σ ̸= nil ⇒ tl(geven(σ)) = godd(tl(σ)),
let R = {(tl(geven(σ)), godd(tl(σ)) | σ ∈ LA ∧ σ ̸= nil}. It is shown below that R
is a bisimulation.

If (σ1, σ2) ∈ R, then σ1 = tl(geven(σ)) and σ2 = godd(tl(σ)) for some σ ̸= nil.
Three cases need to be considered.

1. If tl(σ) = nil then σ1 = σ2 = nil by the definitions of geven and godd.

2. If tl(σ) ̸= nil and tl(tl(σ)) = nil then σ1 = tl(geven(σ)) = geven(tl(tl(σ))) = nil
and σ2 = godd(tl(σ)) = nil by the definitions of geven and godd.

3. If tl(σ) ̸= nil and tl(σ) ̸= nil and tl(tl(σ)) ̸= nil then
σ1 = tl(geven(σ)) = geven(tl(tl(σ))) = cons(hd(tl(tl(σ))), tl(geven(tl(tl(σ)))))
and σ2 = godd(tl(σ)) = cons(hd(tl(tl(σ))), godd(tl(tl(tl(σ))))). As
tl(tl(σ)) ̸= nil, (tl(σ1), tl(σ2)) = (tl(geven(tl(tl(σ)))), godd(tl(tl(tl(σ))))) ∈ R.

As (σ1, σ2) ∈ R if either σ1 = nil and σ2 = nil or else σ1 = cons(a, σ′
1) and

σ2 = cons(a, σ′
2) for some a ∈ A and (σ′

1, σ′
2) ∈ R, it follows that R is a

bisimulation.

The function merge : LA × LA → LA interleaves two lists. It will be proved
by bisimulation coinduction that ∀σ ∈ LA. merge(geven(σ), godd(σ)) = σ. Before
proving this, the function merge needs to be defined. The natural recursion to
achieve this is:

25



merge(σ1, σ2) =
if σ1 = nil
then σ2
else
if tl(σ1) = nil
then cons(hd(σ1), σ2)
else cons(hd(σ1), merge(σ2, tl(σ1)))

To make this fit the corecursion format:

g(x) = if test(x) = ∗ then nil else cons((id × g)(dest(x)))

where, x ranges over pairs (σ1, σ2) of lists, the destructors test and dest need
to be defined. To achieve this the equation for merge can be reformulated to:
merge(σ1, σ2) =
if σ1 = nil and σ2 = nil
then nil
else
if σ1 = nil
then cons(hd(σ2), merge(σ1, tl(σ2))
else cons(hd(σ1), merge(σ2, tl(σ1)))

This reformulated equation is shown equivalent to the original equation below.
The reformulated version becomes an instance of

g(x) = if test(x) = ∗ then nil else cons((id × g)(dest(x)))

if g = merge and test : {(nil, nil)} → {∗} is (necessarily) defined by:

test(σ1, σ2) = ∗ ⇔ σ1 = nil and σ2 = nil

and dest : {(σ1, σ2) | σ1 ̸= nil or σ2 ̸= nil} → A × (LA × LA) by:

dest(σ1, σ2) = if σ1 = nil
then (hd(σ2), (σ1, tl(σ2)))
else (hd(σ1), (σ2, tl(σ1)))

The reformulated equation for merge is then the unique function from the
carrier of the coalgebra (LA × LA, test, dest) to the carrier of the coalgebra
(LA, null, destcons).

The original recursion for merge is equivalent to the reformulated equation be-
cause σ2 = cons(hd(σ2), tl(σ2)) and merge(nil, tl(σ2)) = tl(σ2), when σ2 ̸= nil. The
second of these equations is an instance of ∀σ ∈ LA. merge(nil, σ) = σ, which is
proved by bisimulation coinduction by showing that R = {(merge(nil, σ), σ) |
σ ∈ LA} is a bisimulation.

To show this let (σ1, σ2) ∈ R, then σ1 = merge(nil, σ) and σ2 = σ for some σ ∈ LA.
If σ = nil, then σ1 = σ2 = nil. If σ ̸= nil then σ1 = cons(hd(σ), merge(nil, tl(σ)))
and σ2 = σ = cons(hd(σ), tl(σ)). Thus (tl(σ1), tl(σ2)) = (merge(nil, tl(σ)), tl(σ)) ∈
R, so R is a bisimulation.
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To prove merge(geven(σ), godd(σ)) = σ for arbitrary σ ∈ LA, it is sufficient to
show that R = {(merge(geven(σ), godd(σ)), σ) | σ ∈ LA} is a bisimulation.

If (σ1, σ2) ∈ R, then σ1 = merge(geven(σ), godd(σ)) and σ2 = σ for some σ ∈ LA.
Three cases need to be considered.

1. If σ = nil then σ1 = merge(nil, nil) = nil and σ2 = σ = nil.

2. If σ ̸= nil and tl(σ) = nil then σ1 = merge(cons(hd(σ), nil), nil) = cons(hd(σ), nil)
and σ2 = σ = cons(hd(σ), nil).

3. If σ ̸= nil and tl(σ) ̸= nil by the definitions of geven, godd and merge, and
using Lemma 1 and Lemma 2:
σ1 = merge(geven(σ), godd(σ))

= merge(cons(hd(σ), geven(tl(tl(σ)))), cons(hd(tl(σ)), godd(tl(tl(σ)))))
= cons(hd(σ), merge(cons(hd(tl(σ)), godd(tl(tl(σ)))), geven(tl(tl(σ)))))
= cons(hd(σ), merge(cons(hd(tl(σ)), tl(geven(tl(σ)))), godd(tl(σ))))
= cons(hd(σ), merge(cons(hd(geven(tl(σ))), tl(geven(tl(σ)))), godd(tl(σ))))
= cons(hd(σ), merge(geven(tl(σ)), godd(tl(σ)))).

Also σ2 = σ = cons(hd(σ), tl(σ)), so
(tl(σ1), tl(σ2)) = (merge(geven(tl(σ)), godd(tl(σ))), tl(σ)) ∈ R.
Hence R is a bisimulation.

Justification of bisimulation coinduction for lists A bisimulation on LA

is a relation R ⊆ LA × LA such that (σ1, σ2) ∈ R if either σ1 = nil and σ2 = nil
or else σ1 ̸= nil and σ2 ̸= nil and hd(σ1) = hd(σ2) and (tl(σ1), tl(σ2)) ∈ R.

To establish that the uniqueness of corecursively specified functions entails the
principle of bisimulation coinduction, let R ⊆ LA×LA be a bisimulation. Define
the A-list coalgebra (R, testR, destR) by: testR(σ1, σ2) = ∗ ⇔ σ1 = nil∧σ2 = nil
and destR(σ1, σ2) = (hd(σ1), (tl(σ1), tl(σ2))). Note that if (σ1, σ2) ∈ R then
hd(σ1) = hd(σ2), so in the definition of destR in the last sentence hd(σ1) could
have been hd(σ2).

The definition of a bisimulation ensures that the domains of testR and destR par-
tition the coalgebra carrier set R. By the defining property of (LA, null, destcons),
there is a unique function g : R → LA such that for all (σ1, σ2) ∈ R:

g(σ1, σ2) = if testR(σ1, σ2) = ∗ then nil else cons((id × g)(destR(σ1, σ2)))

i.e. for all (σ1, σ2) ∈ R:

g(σ1, σ2) = if σ1 = nil ∧ σ2 = nil then nil else cons(hd(σ1), g(tl(σ1), tl(σ2)))

The easy verification that the equation for g is satisfied with both g = π1 and
g = π2 is below.

Take g = π1, then:

π1(σ1, σ2) = if σ1 = nil ∧ σ2 = nil then nil else cons(hd(σ1), π1(tl(σ1), tl(σ2)))
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which simplifies to:
σ1 = if σ1 = nil ∧ σ2 = nil then nil else cons(hd(σ1), tl(σ1))

which holds since if (σ1, σ2) ∈ R then (σ1 = nil) ⇔ (σ1 = nil ∧ σ2 = nil) and if
σ1 ̸= nil then σ1 = cons(hd(σ1), tl(σ1)).
Now take g = π2, then:
π2(σ1, σ2) = if σ1 = nil ∧ σ2 = nil then nil else cons(hd(σ1), π2(tl(σ1), tl(σ2)))

which – since if (σ1, σ2) ∈ R then hd(σ1) = hd(σ2) – simplifies to:
σ2 = if σ1 = nil ∧ σ2 = nil then nil else cons(hd(σ2), tl(σ2))

which holds since if (σ1, σ2) ∈ R then (σ2 = nil) ⇔ (σ1 = nil ∧ σ2 = nil) and if
σ2 ̸= nil then σ2 = cons(hd(σ2), tl(σ2)).
Since g is unique, π1 : R → LA and π2 : R → LA must be the same function, so
if (σ1, σ2) ∈ R then σ1 = π1(σ1, σ2) = π2(σ1, σ2) = σ2. Thus R ⊆ {(σ, σ) | σ ∈
LA.
The argument just given shows that the bisimulation coinduction principle fol-
lows from the uniqueness of the function g : C → LA corecursively specified
by:
g(x) = if test(x) = ∗ then nil else cons((id × g)(dest(x)))

To prove the implication in the other direction, i.e. that the bisimulation coinduc-
tion principle entails the uniqueness of corecursively specified functions, suppose
that:
g1(x) = if test(x) = ∗ then nil else cons((id × g1)(dest(x)))
g2(x) = if test(x) = ∗ then nil else cons((id × g2)(dest(x)))

then it’s easy to see that R, where R = {(g1(x), g2(x)) | x ∈ C}, is a bisimulation.
Here is the argument.
If (σ1, σ2) ∈ R then σ1 = g1(x) and σ2 = g2(x) for some x ∈ C.
If test(x) = ∗, then σ1 = g1(x) = nil and σ2 = g2(x) = nil.
If test(x) ̸= ∗,
then σ1 = g1(x) = cons((id × g1)(dest(x))) = cons(π1(dest(x)), g1(π2(dest(x))))
and σ2 = g2(x) = cons((id × g2)(dest(x))) = cons(π1(dest(x)), g2(π2(dest(x)))),
so as (g1(π2(dest(x))), g2(π2(dest(x)))) ∈ R, it follows that R is a bisimulation
and hence by bisimulation coinduction ∀x ∈ C. g1(x) = g2(x).4

F-algebras and F-coalgebras

F-algebras and F-coalgebras are a uniform framework with numbers and lists
being special cases. An introduction to (co)algebra and (co)induction21 by Bart

21http://homepages.cwi.nl/~janr/papers/files-of-papers/2011_Jacobs_Rutten_new.pdf
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Jacobs and Jan Rutten is a great tutorial, so only an outline of some of the core
ideas is given here – just enough to explain how the particular number and list
algebras and coalgebras described above fit into the framework.

The F in F-algebras and F-coalgebras is an operator that maps a set X, the
algebra or coalgebra carrier, to a disjoint union of sets that represents the arities
of the operators – constructors for algebras and destructors for coalgebras.

Set theory notation

The examples of F below use the following set theory concepts and notation.

• If θ1 : X → Y and θ2 : Y → Z, then θ2 ◦ θ1 : X → Z is the function
composition defined by ∀x ∈ X. (θ2 ◦ θ1)(x) = θ2(θ1(x)). Note that idY ◦
θ1 = θ1 and θ1 ◦ idX = θ1.

• The disjoint union of sets X and Y is just the union X ∪ Y when X and
Y are disjoint. This is the case for the examples here. If X and Y have
elements in common, then they are ‘forced’ to be disjoint … but details of
how this is done are not needed here.

• X + Y denotes the disjoint union of X and Y . If x ∈ X + Y then either
x ∈ X or x ∈ Y , but not both. X + Y is sometimes called the sum of X
and Y .

• If θ1 : X1 → Y1 and θ2 : X2 → Y2, then θ1 + θ2 : X1 + X2 → Y1 + Y2 is
defined by: (θ1 + θ2)(x) = if x ∈ X1 then θ1(x) else θ2(x).

• 1 denotes the single-element set {∗}. It’s assumed that ∗ isn’t a member of
any of the carrier sets in the examples, so that the sums in the definitions
of FN and FLA

below are between disjoint sets.

Numbers and lists

The particular Fs for natural numbers and lists are FN and FLA
, defined by:

FN(X) = 1 + X
FLA

(X) = 1 + (A × X)

The F for lists that are only infinite is:

FAN(X) = A × X

In general, F(X) is a ‘polynomial’ built out of X and other sets (e.g. 1 and A
in the examples above) using disjoint sum and Cartesian product.

An F-algebra is a pair (A, a) where a : F(A) → A.
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The FN-algebra a : FN(A) → A represents the Peano algebra (A, z, s) where a
is the function defined by: a(∗) = z and a(x) = s(x) when x ∈ A.
The FLA

-algebra a : FLA
(A) → A represents the A-list algebra (A, nl, cs) where

a is the function defined by: a(∗) = nl and a(a, x) = cs(a, x) when (a, x) ∈ A×A.
Note how the nullary operators – the distinguished elements z and nl – are
represented as function from 1 to the carrier.
An F-colgebra is a pair (C, c) where c : C → F(C).
The FN-coalgebra c : C → FN(C) represents the Peano coalgebra (C, isz, p) where
c is the function defined by: c(x) = ∗ when x ∈ Dom(isz) – i.e. isz(x) = ∗ –
and c(x) = p(x) when x ∈ Dom(p). This works because the domains of the
destructors isz and p partition the carrier set C.
The FLA

-coalgebra c : C → FLA
(C) represents the A-list algebra (C, test, dest)

where c is the function defined by: c(x) = ∗ when x ∈ Dom(test) – i.e. test(x) = ∗
– and c(x) = dest(x) when x ∈ Dom(dest). This works because the domains of
the destructors test and dest partition the carrier set C.
Notice the duality: algebra a : F(A) → A versus coalgebra c : C → F(C).

Morphisms

The concept of a morphism is needed to generalise the unique function properties
characterising conumbers and colists. To say what a morphism is, F operators
are defined on functions as well as on sets.
If θ : X → Y then F(θ) : F(X) → F(Y ) is the natural extension of θ as illustrated
by the following examples.

• If X = Y = 1 then necessarily θ = id1 and then F(θ) = F(id1) = id1.

• If F(X) = 1 + X then F(θ) : 1 + X → 1+Y and F(θ) = id1 + θ.

• If F(X) = 1 + (A × X) then F(θ) : 1+(A × X) → 1+(A × Y ) and F(θ) =
id1 + (idA × θ).

A function f : A1 → A2 is a morphism from an F-algebra (A1, a1) to an F-
algebra (A2, a2) if and only if f ◦ a1 = a2 ◦ F(f).
To illustrate the definition of an F-algebra morphism, consider an FN-algebra
morphism f : A1 → A2 from an FN-algebra (A1, a1) corresponding to the Peano
algebra (A1, z1, s1) to an FN-algebra (A2, a2) corresponding to the Peano algebra
(A2, z2, s2).
The condition for f to be an FN-algebra morphism is f ◦ a1 = a2 ◦ FN(f).
Expanding the definition of FN(f) converts this equation to f ◦a1 = a2◦(id1+f),
which means ∀x ∈ (1 + A1). f(a1(x)) = a2((id1 + f)(x)).
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Now, if x ∈ (1 + A1) then either x ∈ 1 or x ∈ A1, so there are two cases to
consider.

i. If x ∈ 1 then x = ∗ and a1(x) = z1 so f(a1(x)) = f(z1). If x = ∗ then
(id1 + f)(x) = id1(x) = x = ∗, so a2((id1 + f)(x)) = a2(∗) = z2. Thus the
equation f(a1(x)) = a2((id1 + f)(x)) reduces to f(z1) = z2.

ii. If x ∈ A1 then a1(x) = s1(x), so f(a1(x)) = f(s1(x)). If x ∈ A1 then
(id1 + f)(x) = f(x), so a2((id1 + f)(x)) = a2(f(x)) = s2(f(x)).
Thus the equation f(a1(x)) = a2((id1+f)(x)) reduces to f(s1(x)) = s2(f(x)).

A morphism from the FN-algebra corresponding to the natural num-
bers (N, 0, S) to an FN-algebra corresponding to (A, z, s) is a function
f : N → A such that f(0) = z and ∀n ∈ N. f(S(n)) = s(f(n)), i.e.:
f(n) = if n=0 then z else s(f(n−1)). This is the recursive equation
characterising the natural numbers.

A function g : C1 → C2 is a morphism from an F-coalgebra (C1, c1) to an F-
coalgebra (C2, c2) if and only if c2 ◦ g =F(g) ◦ c1.

To see what morphisms between coalgebras are, consider FN-coalgebras. Recall:
FN(X) = 1 + X.

Suppose g : C1 → C2 is a morphism from an FN-coalgebra c1 : C1 → FN(C1) corre-
sponding to a Peano coalgebra (C1, isz1, p1) to an FN-coalgebra c2 : C2 → FN(C2)
corresponding to a Peano coalgebra (C2, isz2, p2).

If g : C1 → C2 is a morphism then c2(g(x)) =FN(g)(c1(x)) holds. As FN(g) = id1+
g, the right hand side of this morphism equation can be simplified corresponding
to the two cases above:

• if x ∈ Dom(isz1) then FN(g)(c1(x)) = (id1 + g)(∗) = id1(∗) = ∗;

• if x ∈ Dom(p1) then FN(g)(c1(x)) = (id1 + g)(p1(x)) = g(p1(x));

so for these two cases the morphism equation c2(g(x)) =FN(g)(c1(x)) simplifies
to:

• if x ∈ Dom(isz1) then c2(g(x)) = ∗;

• if x ∈ Dom(p1) then c2(g(x)) = g(p1(x)).

Now c2(g(x)) = ∗ if and only if isz2(g(x)) = ∗ and c2(g(x)) = g(p1(x)) if and only
if g(x) /∈ Dom(isz2) and hence g(x) ∈ Dom(p2) and then c2(g(x)) = p2(g(x)),
so the two cases of the morphism equation further simplify to:

• if x ∈ Dom(isz1) then isz2(g(x)) = ∗;
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• if x ∈ Dom(p1) then p2(g(x)) = g(p1(x)).

Thus a morphism from an FN-coalgebra corresponding to (C, isz, p) to the FN-
coalgebra corresponding to the conatural numbers (N, is0, P) is a function g :
C → N such that:

• if isz(x) = ∗ then g(x) = 0;

• if x ∈ Dom(p) then P(g(x)) = g(p(x)).

These two conditions are equivalent to g satisfying the equation:

g(x) = if isz(x) = ∗ then 0 else g(p(x))+1.

This is the corecursion equation characterising the conatural numbers.

Initial and terminal algebras

An initial F-algebra is one for which there is a unique morphism from it to any
other F-algebra. The natural numbers are characterised as being the unique
initial FN-algebra and the finite lists of members of A are characterised as being
the unique initial FLA

-algebra.

A terminal F-coalgebra is one for which there is a unique morphism to it from
any other F-coalgebra. Terminal coalgebras are sometimes called final coalge-
bras. The conatural numbers are characterised as being the unique terminal
FN-coalgebra. and the finite and infinite lists of elements of A are characterised
as being the unique terminal FLA

-coalgebra.

Least and greatest fixed points

Some presentations of induction and coinduction are based around least and
greatest fixed points (e.g. A Tutorial on Co-induction and Functional Program-
ming22 by A.D. Gordon) whilst others are based on initial and terminal algebras
(e.g. An introduction to (co)algebra and (co)induction23 by Jacobs & Rutten).
The algebra-coalgebra view has been taken here, but in this section its relation
to fixed points is superficially sketched.

There are at least two ways that fixed points arise. The first is to provide
a uniform way to construct initial F-algebras and terminal F-coalgebras for a
wide class of Fs. Very roughly, the idea is that a least fixed point of F yields
an initial F-algebra and a greatest fixed point yields a terminal F-coalgebra.

22http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.7706&rep=rep1&type=pdf
23http://homepages.cwi.nl/~janr/papers/files-of-papers/2011_Jacobs_Rutten_new.pdf
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These algebras and coalgebras can be explicitly constructed using a generali-
sation (dualised for coalgebras) of the proof of the Tarski-Knaster fixed point
theorem. The mathematics of this generalisation is way beyond my comfort
zone and I don’t attempt to explain it here (further discussion can be found in
Section 14 starting on Page 55 of Rutten’s paper Universal coalgebra: a theory
of systems24).

Fixed points, numbers and conumbers

A hint of the idea behind the first way fixed points arise can be glimpsed by
looking at numbers. If the mapping FN from subsets of N to subsets of N is
defined by:

FN(X) = {0} ∪ {S(x) | x ∈ X}

then N and N are both fixed points of FN – FN(N) =N and FN(N) =N – but N
is the least fixed point and N is the greatest fixed point.

N is also the least pre-fixed point of FN, that is the least X such that FN(X) ⊆ X
and hence N =

∩
{X | FN(X) ⊆ X}.

Dually N is the greatest post-fixed point of FN, that is the greatest X such that
X ⊆ FN(X) and hence N =

∪
{X | X ⊆ FN(X)}.

The second way fixed points arise is as a justification of induction and coinduc-
tion proof principles.

To illustrate this, compare proving ∀n ∈ N. θ1(n) = θ2(n) by induction, where
θ1 : N → A and θ2 : N → A, with proving ∀x ∈ C. ϕ1(x) = ϕ2(x) by coinduction,
where ϕ1 : C → N and ϕ2 : C → N.

To prove ∀n ∈ N. θ1(n) = θ2(n) by induction, let P = {n | θ1(n) = θ2(n)}, then
the proof of ∀n ∈ N. n ∈ P by induction on n consists of the base case 0 ∈ P
and the induction step ∀n. n ∈ P ⇒ S(n) ∈ P .

This induction argument can be seen as an application of least fixed points
because the base and induction correspond to proving that FN(P ) ⊆ P , i.e. that
P is a pre-fixed point of FN, so as N is the least pre-fixed point of FN it follows
that N ⊆ P , hence ∀n ∈ N. n ∈ P .

To prove ∀x ∈ C. ϕ1(x) = ϕ2(x) by coinduction, let R = {(ϕ1(x), ϕ2(x)) | x ∈
C}, then the proof by coinduction consists in proving R is a bisimulation,
i.e. that for all x: either ϕ1(x) = 0 and ϕ2(x) = 0 or else ϕ1(x) = S(ϕ1(x′)) and
ϕ2(x) = S(ϕ2(x′)), for some x′ ∈ C.

This coinductive argument can be seen as an application of greatest fixed points
because the set of pairs EQN = {(n, n) | n ∈ N} is the greatest post-fixed point
of BN, where BN maps subsets N × N to subsets of N × N and is defined by:

24https://fldit-www.cs.uni-dortmund.de/~peter/Rutten/UniversalCoalgebra.pdf
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BN(R) = {(0, 0)} ∪ {(S(n1), S(n2)) | (n1, n2) ∈ R}

EQN being a post-fixed point means EQN ⊆ BN(EQN) and being the greatest
post-fixed point means that if R ⊆ BN(R) then R ⊂ EQN.

Another way of saying that EQN is the greatest post-fixed point of BN is with
the equation EQN =

∪
{R | R ⊆ BN(R)}.

R is a bisimulation if R ⊆ BN(R). The principle of bisimulation coinduction
is that if R is a bisimulation then R ⊆ EQN, i.e. if $R is a bisimulation then
∀n1 n2 ∈ N. (n1, n2) ∈ R ⇒ n1 = n2.

Summary of fixed point proof rules for numbers and con-
umbers

If θ1, θ2 : N → A then ∀n ∈ N. θ1(n) = θ2(n) is proved by induction using the
rule:

if P = {n | θ1(n) = θ2(n)} and FN(P ) ⊆ P then N ⊆ P

This expands to:

θ1(0) = θ2(0) ∧ (∀n ∈ N. θ1(n) = θ2(n) ⇒ θ1(S(n)) = θ2(S(n)))
⇒ ∀n ∈ N. θ1(n) = θ2(n)

If ϕ1, ϕ2 : C → N then ∀x ∈ C. ϕ1(x) = ϕ2(x) is proved by coinduction using:

if R = {(ϕ1(x), ϕ2(x)) | x ∈ C} and R ⊆ BN(R) then R ⊆ EQN

This expands to:

(∀x ∈ C.
(ϕ1(x) = 0 ∧ ϕ2(x) = 0) ∨ ∃x′. ϕ1(x) = S(ϕ1(x′)) ∧ ϕ2(x) = S(ϕ2(x′)))

⇒ ∀x ∈ C. ϕ1(x) = ϕ2(x)

Fixed points, lists and colists

The details of how fixed points relate to lists and colists are analogous to num-
bers, so are only briefly summarised here.

If the mapping FLA
from subsets of LA to subsets of LA is defined by:

FLA
(X) = {nil} ∪ {cons(a, x) | (a ∈ A ∧ x ∈ X}
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then LA and LA are both fixed points of FLA
, but LA is the least fixed point

and LA is the greatest fixed point.

LA is also the least pre-fixed point of FLA
, that is the least X such that

FLA
(X) ⊆ X and hence LA =

∩
{X | FLA

(X) ⊆ X}.

Dually LA is the greatest post-fixed point of FLA
, that is the greatest X such

that X ⊆ FLA
(X) and hence LA =

∪
{X | X ⊆ FLA

(X)}.

The second way fixed points arise is as a justification of induction and coinduc-
tion proof principles.

To illustrate this, compare proving ∀l ∈ LA. θ1(l) = θ2(l) by induction, where θ1 :
LA → A and θ2 : LA → A, with proving ∀x ∈ C. ϕ1(x) = ϕ2(x) by coinduction,
where ϕ1 : C → LA and ϕ2 : C → LA.

To prove ∀l ∈ LA. θ1(l) = θ2(l) by induction, let P = {l | θ1(l) = θ2(l)}, then the
proof of ∀l ∈ LA. l ∈ P by induction on l consists of the base case nil ∈ P and
the induction step ∀l. l ∈ P ⇒ ∀a ∈ A. cons(a, l) ∈ P .

This induction argument can be seen as an application of least fixed points
because the base and induction correspond to proving that FLA

(P ) ⊆ P , i.e. that
P is a pre-fixed point of FLA

, so as LA is the least pre-fixed point of FLA
it

follows that LA ⊆ P , hence ∀l ∈ LA. l ∈ P .

To prove ∀x ∈ C. ϕ1(x) = ϕ2(x) by coinduction, let R = {(ϕ1(x), ϕ2(x)) | x ∈ C},
then the proof by coinduction consists of showing that R is a bisimulation,
i.e. that for all x: either ϕ1(x) = nil and ϕ2(x) = nil or else ϕ1(x) = cons(a, ϕ1(x′))
and ϕ2(x) = cons(a, ϕ2(x′)) for some a ∈ A and x′ ∈ C.

This coinductive argument can be seen as an application of greatest fixed points
because the set of pairs EQLA

= {(l, l) | l ∈ LA} is the greatest post-fixed point
of BLA

defined by:

B(R) = {(nil, nil)} ∪ {(cons(n, l1), cons(n, l2)) | n ∈ N ∧ (l1, l2) ∈ R}

EQLA
being a post-fixed point means EQLA

⊆ BLA
(EQLA

) and being the greatest
post-fixed point means that if R ⊆ BLA

(R) then R ⊂ EQLA
.

Another way of saying that EQLA
is the greatest post-fixed point of BLA

is with
the equation EQLA

=
∪

{R | R ⊆ BLA
(R)}.

R is a bisimulation if R ⊆ BLA
(R). The principle of bisimulation coinduction

is that if R is a bisimulation then R ⊆ EQLA
, i.e. if R is a bisimulation then

∀l1 l2 ∈ LA. (l1, l2) ∈ R ⇒ l1 = l2.

Summary of fixed point proof rules for lists and colists

If ϕ1, ϕ2 : LA → A then ∀l ∈ LA. ϕ1(l) = ϕ2(l) is proved by induction using the
rule:
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if P = {l | ϕ1(l) = ϕ2(l)} and FLA
(P ) ⊆ P then LA ⊆ P

This expands to:

ϕ1(nil) = ϕ2(nil) ∧ (∀l ∈ LA. ϕ1(l) = ϕ2(l) ⇒ ∀a ∈ A. ϕ1(cons(a, l)) = ϕ2(cons(a, l)))
⇒ ∀l ∈ LA. ϕ1(l) = ϕ2(l)

If ϕ1, ϕ2 : C → LA then ∀x ∈ C. ϕ1(x) = ϕ2(x) is proved by coinduction using:

if R = {(ϕ1(x), ϕ2(x)) | x ∈ C} and R ⊆ BLA
(R) then R ⊆ EQLA

This expands to:

(∀x ∈ C.
(ϕ1(x) = nil ∧ ϕ2(x) = nil)
∨
∃a ∈ A. ∃x′ ∈ C. ϕ1(x) = cons(a, ϕ1(x′)) ∧ ϕ2(x) = cons(a, ϕ2(x′)))

⇒ ∀x ∈ C. ϕ1(x) = ϕ2(x)

Use in programming

Initial F-algebras correspond to programming language datatypes. Compare
the ingredients of the initial FN-algebra of numbers:

FN(N) = 1 + N, 0 ∈ N, S : N → N

with functional programming pseudocode for a datatype declaration on num-
bers:

data N= 0 | S of N

These contain essentially the same specifications. The of indicates that the
thing before it is a constructor of data taking arguments of the type shown after
it. If there is no of, then the element is a nullary constructor, i.e. a distinguished
element of the datatype.

The ingredients of the initial FLA
-algebra of lists of members of A are:

FLA
(LA) = 1 + (A × LA), nil ∈ LA, cons : A × LA → LA

and the pseudocode for a corresponding datatype declaration:

data LA = nil | cons of (A × LA)

The values specified by data declarations consists of finite structures built
from the distinguished elements by applying constructors, e.g. S(S(S(0))) or
[a0, a1, a2], i.e. cons(a0, cons(a1, cons(a2, nil))). Recursion is used to construct
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data, for example the list [n, n−1, . . . , 1] would be constructed by executing
CountDownFrom(n), where:

CountDownFrom(n) = if n = 0 then nil else cons(n, CountDownFrom(n−1))

Codatatypes are less common, but compare the ingredients of the terminal F-
coalgebras for conumbers and colists.

FN(N) = 1 + N, is0 : N ↛ 1, P : N ↛ N
FLA

(LA) = 1 + (A × LA), null : LA ↛ 1, destcons : LA ↛ A × LA

with the made up pseudocode:

codata N = null & P to N
codata LA = null & destcons to (A × LA)

The F-coalgebra specifications also contain essentially the same material as the
pseudocode. The to indicates that the thing before it is a destructor that
decomposes data into components of the type shown after it. If there is no to,
then the element is a nullary destructor, i.e. a test for a distinguished element
of the datatype.

For lists, hd and tl would normally be specified, rather than destcons. The made
up pseudocode corresponding to:

FLA
(LA) = 1 + (A × LA), null : LA ↛ 1, hd : LA ↛ A, tl : LA ↛ LA

would be:

codata LA = null & hd to A & tl to LA

The values specified by codata declarations may not be finite, so can’t necessar-
ily be represented explicitly in finite computer memories. However, these values
can be implicitly represented and accessed incrementally by destructors, i.e. by
lazy evaluation.

One way to define codata is by corecursion, for example

CountFrom(n) = cons(n, CountFrom(n+1))

defines CountFrom(n) to be the infinite list starting from n. i.e. [n, n+1, . . . ].
This corecursion is the instance of:

g(x) = if test(x) = ∗ then nil else cons((id × g)(dest(x)))

where A=N, test(n) = ∗ is always false and dest(n) = (n, n+1). It is is the
unique morphism from the FN-coalgebra (N, ∅, λn. (n, n+1)) to the final FN-
coalgebra (LN, null, destcons), where Dom(∅) is the empty set, so ∅(n) = ∗ is
never true.

Another way codata is specified is by giving equations for the destructors, for
example CountFrom(n) could be specified by:

hd(CountFrom(n)) = n ; tl(CountFrom(n)) = CountFrom(n+1)
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This style can be used to define codata corresponding to automata as already
suggested by the discussion of the function g in the example of corecursion for
lists used above and repeated in Figure 2 below.

Figure 3:

The function g defined by this could be specified by:
hd(g(A)) = A; hd(g(B)) = B; hd(g(C)) = C; hd(g(D)) = D; hd(g(E)) = E;
hd(g(F )) = F ; hd(g(G)) = G; hd(g(H)) = H; hd(g(I)) = I; hd(g(J)) = J ;

tl(g(A)) = g(A); tl(g(B)) = g(C); tl(g(C)) = g(B); tl(g(D)) = g(E);
tl(g(E)) = g(F ); tl(g(G)) = g(H); tl(g(H)) = g(I); tl(g(I)) = g(JA);

null(g(F )); null(g(J))

Unlike CountFrom, which only creates infinite lists, the function g creates both
infinite and finite lists: g(A), g(B) and g(C) are infinite and g(x) for x ∈
{D, E, F, G, H, I, J} are finite, with g(F ) and g(J) being nil.

There’s an illuminating blog post that discusses Data vs Codata25.

I’ve read that infinite data imported from external sources, e.g. from an analog-
to-digital converter or a Twitter stream, can be considered to be codata. Pre-
sumably this view considers reading inputs as applying destructors, like hd and
tl, so that coalgebra inspired programming methods can be used to process such
imported data streams. Due to my near total ignorance, more will not be said
on this now!

25http://www.tac-tics.net/blog/data-vs-codata
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Concluding thoughts

I wrote this article as a way to learn about coinduction. Did I succeed? I think
I did in that I now have a feeling – possibly delusional – of understanding the
core ideas of coinduction and how it is dual to induction. I also now think I
have a rough idea of the elementary parts of the general theory of algebras and
coalgebras – at least the part that lives in set theory – and how this theory
relates to recursion, induction, corecursion and coinduction. The most general
formulations live in category theory – a territory in which I struggle to survive …
but Google finds plenty of stuff, a random example being Worrell’s PhD thesis26

and there’s an alluring motivational discussion in the Preface of Introduction to
Coalgebra27 by Bart Jacobs.

Most articles on coinduction aim to evangelise its use for applications. This is
something I’ve pretty much ignored here. Particularly important applications
are to reasoning about concurrent systems, indeed the Wikipedia article on
coinduction28 starts with the sentence “In computer science, coinduction is a
technique for defining and proving properties of systems of concurrent interact-
ing objects”. In such applications the bisimulations that arise are often between
labelled transition system29. As far as I am aware there are no significant appli-
cations of coinduction to reasoning about numbers and only a few to lists. The
bulk of applications are to systems modelled with transition systems, so perhaps
I should add something about these … but I’m burned out on coinduction and
the tutorials cited at the beginning of this article are excellent, so I probably
won’t ever get around to adding anything on this.

First complete draft: February 03, 2017.

26http://www.cs.ox.ac.uk/people/james.worrell/thesis.ps
27https://goo.gl/BK0Pmr
28https://en.wikipedia.org/wiki/Coinduction
29https://en.wikipedia.org/wiki/Bisimulation
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