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1 Introduction

Set theory is the standard foundation for mathematics. However, the majority of general-purpose
theorem provers support versions of type theory. Examples include ALF, Coq, HOL, LEGO,
Nuprl and PVS. For many applications type theory works well and provides, for specification,
the benefits of type checking that are well-known in programming. However, there are areas
where types get in the way or seem unmotivated. For instance, the classical construction of
the natural numbers via the set {0,{0},{0,{0}},...} is impossible in type theory and Scott’s
classical set-theoretic construction of a non-trivial model Dy, of the A-calculus is impossible in
simple type theory but could probably be performed in dependently typed systems, which on
the other hand do not provide fully automatic type checking.

A question now is: Would it be desirable to base theorem provers on set theory rather than
type theory in order to support such applications. It was already demonstrated in [2, 3] that the
inverse limit construction, which is a categorical method for constructing solutions to recursive
domain equations that generalizes Scott’s original set-theoretic construction, can be formalized
in Zermelo-Fraenkel (ZF) set theory. As an example to help shed further light on this question
this research will consider the formalization of some basic concepts of category theory in a me-
chanical theorem prover which supports both higher order logic and ZF set theory; this is an
axiomatic extension of the HOL system [5] with ZF set theory, called HOL-ST [6].

NB! None of the definitions and theorems presented here have actually been entered into HOL
or HOL-ST. We encountered the problems mentioned below before coming to that part of the
formalization process.

2 Higher Order Logic

This section provides a quick introduction to the higher order logic of the HOL system, which
is roughly Church’s simply typed A-calculus extended with ML-style polymorphism. We shall
not go into the details of the theorem proving infrastructure of HOL but mainly concentrate on
logic issues such that a reader will be able to read the syntax of the rest of the paper without
knowing HOL in advance.

The terms of the HOL logic can be variables, constants, A-abstractions (written \x.t) and
applications (written t1 t2). The usual logical connectives are represented as constants. Types
can be atomic types (like bool for the boolean truth values), type variables (like *, ** or *o),
compound types (like *#*#* for the product type), and function types *->%*. Type variables
range over any type. All terms must be well-typed in the usual sense. Types can usually be
inferred automatically in ML by type inference but terms may also be typed explicitly using ‘:’,
e.g. t:*#x*->bool, where parentheses can be omitted since product types binds stronger than
function types.

The HOL logic is a higher-order logic, so it is possible to quantify over any type. Universal
and existential quantification are written !'x. t and ?x. t, where t may contain x and the
type of x may be any valid HOL type, including a type variable. Restricted quantification is
also supported: universal quantification !'x::P. t abbreviates !'x. P x ==> t, where ==> is
logical implication, and existential quantification ?x::P. t abbreviates ?x. P x /\ t, where
/\ is conjunction. Disjunction is written \/, negation ~, truth T and falsity F. Unique existence
is written as ?!x. t. The usual projection functions associated with the product type are
written FST and SND. Function composition is written o. Local declarations can be written
using let x = t in t’[x].



The restricted A-abstraction \x::P. t yields a function which equals t [t’/x] when applied
to a term t’ satisfying P and ARB otherwise. The constant ARB is a fixed but arbitrary value of
some type. It is defined using the choice operator, written @x. t and used to select an element
of some type such that some predicate term holds (in the case of ARB the predicate is just truth).

HOL has a large collection of built-in types, theorems and proof tools to support all kinds
of reasoning. For instance, the predicate sets library, which provides typed set theory (not ZF
untyped set theory) is used in the development below. Sets are represented as subsets of HOL
types, via predicates of type *->bool. It provides set notation, like set membership x::s and
set abstraction {x::s | P x}, and the usual operations on sets.

3 Category Theory in Higher Order Logic

This section introduces some basic notions of category theory and presents a formalization in
higher order logic. In Section 3.9 a number of problems and limitations of the formalization are
discussed.

3.1 Definition of Category

The following definition is copied almost directly from Jaap van QOosten’s “Basic Category The-
ory” [9]:

A category C is given by a class Cq of objects and a class C; of arrows which have
the following structure:

e FEach arrow has a domain and a codomain which are objects; one writes f :
X — Y if X is the domain and Y the codomain of the arrow f. One also writes
X =dom(f) and Y = cod(f).

e Given two arrows f and g such that cod(f) = dom(g), the composition of f
and g, written as g f, is defined, i.e. is an arrow, and has domain dom(f) and
codomain cod(g).

e Composition is associative: given f : X - Y, g:Y - Zand h: Z — W,
h(gf)=(hg)f.

e For every object X there is an identity arrow idx : X — X, satisfyingidx g =g
forevery g: Y — X and fidx = f forevery f: X — Y.

This can be translated easily to higher order logic:

DEF (Category):
category(C_0:*0->bool,C_1:*a->bool,dom,cod,c) =
('f::C_1. (dom £)::C_0 /\ (cod £)::C_0) /\
('f g::C_1.
(cod £ = dom g) ==>
let h=c g f in h::C_1 /\ (dom h = dom f) /\ (cod h = cod g)) /\
('f g h::C_1.
(cod £ = dom g) /\ (cod g = dom h) ==> (c h(c g £f) = c(c h g)f)) /\
(1'X::C_0.

(7id::C_1.
(dom id = X) /\ (cod id = X) /\
(1'Y::C_0.
(1f::C_1. (dom £ = X) /\ (cod £ =Y) ==> (c £ id = £)) /\
(1f::C_1. (dom f =Y) /\ (cod f =x) ==> (c id £ = £)))))



Here we represent a category as a 5-tuple, consisting of predicate sets of objects and arrows,
functions for obtaining the domain and codomain of arrows, and finally a composition operation.
The “informal” classes have been represented by predicates over some HOL type. Though this
representation is perhaps too weak in general, we hope that it is strong enough for some category
theory. A stronger representation is presented in Section 4.2.

Note that we use the type variables #o and *a for objects and arrows, respectively. This
means that any HOL type can be used to represent objects and arrows. Also note that we use
HOL equality to compare arrows. In ALF [4], Coq [7] and LEGO [1] the equality is part of the
category structure; so each category has its own equality on arrows.

It is convenient to treat a category as one entity CC (corresponding to C) instead of as a
5-tuple. Therefore we shall make use of projections to extract the components of a category.
These are called 0bj (objects), Arr (arrows), Dom (domain of an arrow), Cod (codomain of an
arrow), and Comp (composition). We can also define a function to obtain the identity arrow for
a given object of a category Id CC X (using the choice operator).

3.2 The Category of Sets

A first challenge when formalizing category theory is to formalize the category of all sets, called
Set. The objects of Set are the class of all sets and the arrows are the class of all functions
between sets. Set can be defined in HOL as follows:

DEF (Category of all sets):
Set =
({s:*->bool | T},
{(f,s,t) | map f (s,t)}, FST o SND, SND o SND,
\(g,s’,t’)(f,s,t). (g o f,s,t’))
where the notion of map is defined by:

DEF (Map between sets):
map f (s,t) = (image f s) SUBSET t /\ (!x. “(x::s) ==> (f x = ARB))

We have used a type variable * to represent the type of elements of sets; sets are represented as
predicates of type *=>bool. Note that arrows are triples where the domain and codomain are
specified explicitly.

A HOL function f is called a map from s to t if it sends elements of s to elements of ¢, and
furthermore, if it is determined by its action on s. Determinedness ensures that all partially
specified functions always return a fixed arbitrary value outside their domain. In this way, we
become able to distinguish partial functions by how they behave on their domain; this notion is
needed because HOL extensional equality works on the whole underlying type of the elements
of sets.

Informal category theory is based on untyped set theory, so the present formalization in typed
set theory does not fully capture the textbook meaning of Set; as mentioned above, higher order
logic, and in particular its typed set theory, is not expressive enough. A formalization of Set
in HOL and ST as described in Section 4.2 may be more faithful to informal category theory,
but more clever people than myself have told me that even in ZF set theory one needs some
inaccesible cardinals to have a strong enough theory. Apparently, the Mizar system provides
such a very strong set theory [8].

3.3 Arrows, Morphisms and Hom Sets

Arrows are sometimes called homomorphisms, or simply morphisms. Often it is useful to consider
the “set” of arrows between two objects of a category, called the Hom set:



DEF (Hom set):
Homset CC (X,Y) = {f :: (Arr CC) | (Dom CC f = X) /\ (Cod CC f = Y)}

In category theory textbooks, the collection of arrows between any two objects is not necessarily
a set. If it always is then one says that the category is locally small. We do not have to make
this assumption here since it is always satisfied; in fact, the formalization only supports small
categories where both the collection of objects and arrows are sets. Note that the Hom set yields
an object of the category of all sets.

3.4 Definition of Functor

Jaap von Oosten defines the notion of functor between two categories as follows:

Given two categories C and D a functor F : C — D consists of operations Fy : Co —
Dy and Fy : C; — Dy, such that for each f: X — Y, Fi(f) : Fo(X) — Fo(Y) and:

e for f: X »Yand g:Y — Z, Fi(g f) = Fi(g) Fi(f);
e Fi(idx) = id g, (x) for each X € Co.

Again, this can be translated easily to higher order logic:

DEF (Functor):
functor (F_0:*o->%*o,F_1:*xa->%*a) (CC,DD) =
('X Y::(0bj CC).
('f::(Homset CC(X,Y)).
(F_1 f) :: Homset DD(F_0 X,F_0 Y))) /\
('X Y Z::(0bj CC).
(' (f::Homset CC(X,Y))(g::Homset CC(Y,Z)).
F_1(Comp CC g f) = Comp DD(F_1 g)(F_1 £)) /\
('X::(0bj CC). F_1(Id CC X) = Id DD(F_0 X))

So, a functor is a pair of functions which works on objects and on arrows respectively. Usually,
a functor is viewed as one entity FF and we shall apply op0 and op1 to a functor to obtain each
of its two operations.

3.5 The Category of Categories

A second challenge when formalizing category theory is formalizing the category of categories,
called Cat, whose objects are all categories and whose arrows are functors between categories.
Size problems and paradoxes are usually (more or less) ignored in informal category theory, but
of course we cannot do that in HOL. The definition of Cat is:

DEF (Category of all categories):
Cat =
({cC:cat | category CC},
{(FF,CC,DD) | functor FF(CC,DD)}, FST o SND, SND o SND,
(\((G_0,G_1),DD,EE) ((F_0,F_1),CC,DD’). ((G_0 o F_0,G_1 o F_1),CC,EE)))

where the type cat abbreviates (¥0->bool)#(*a->bool)# (*a->*o0) #(*a->%o0)# (*a—>*a->*a).

Note that as part of an arrow we also take the domain and codomain of a functor in order to

be able to define the corresponding operations on arrows more easily.
We can prove the quite suspiciously sounding fact that Cat is an object of itself:

THM: Cat :: (Obj Cat)

However, this is not inconsistent since the two occurrences of Cat do not have the same type.
Thus, in a sense we can use the polymorphism to build a kind of hierarchy of types and categories.



3.6 Commuting Squares

A central notion in category theory is that of commuting squares (or diagrams):

f

gl
This says that if we start in the upper-left corner then the upper path is the same (arrow) as the
lower path: g f = ¢’ f'. Sometimes the domains and codomains of arrows are given explicitly.
When this is formalized we have to make sure that the domains and codomains of arrows are
right:

DEF (Commuting square):
square CC (f,g) (f’,g’) =
f::Arr CC /\ g::Arr CC /\ f’::Arr CC /\ g’::Arr CC /\
(Dom CC £ = Dom CC £’) /\ (Cod CC g = Cod CC g’) /\
(Cod CC £ = Dom CC g) /\ (Cod CC £’ = Dom CC g’) /\
(Comp CC g £ = Comp CC g’ £’)

3.7 The Functor Category and Other Constructions

A natural transformation between two functors FF,GG: CC->DD is a family of morphisms in DD,
indexed by objects of CC:

DEF (Natural transformation):
nattrans (mu:*o->**a) (FF,GG,CC:catl,DD:cat2) =
(!'C::0bj CC. mu C :: Homset DD(opO FF C,op0 GG C))
(!C C’::0bj CC. !'f::Homset CC(C,C’).
square DD(mu C’,opl GG f)(opl FF f,mu C))

In the definition we used the following type abbreviations:

catl abbr. (*xo0->bool)#(*a->bool)#(*a->*o)#(*a->*o)#(*a->xa->*a)
cat2 abbr. (k*xo0->bool)#(**a->bool)# (*kkxa->k*o)# (*kka->k*o)# (kka—D>kka->x*xa)

Often the notation mu: FF=>GG is used for a natural transformation between functors FF,GG:
CC->DD.

In the functor category, functors between given categories are objects and natural transfor-
mations are arrows:

DEF (Functor category):
FunCat(CC,DD) =
({FF | functor FF CC DD},
{(mu,FF,GG) | nattrans mu(FF,GG,CC,DD)}, FST o SND, SND o SND,
(\(nu,GG,HH) (mu,FF,GG’)C. (Comp DD(nu C)(mu C),FF,HH)))

This defines a construction on categories: we can prove that given categories CC and DD then

FunCat (CC,DD) is also a category.
Another important construction is the dual category construction, defined by



DEF (Dual category):
DualCat (CC:cat) = (Obj CC,Arr CC,Cod CC,Dom CC,Comp CC)

In the dual category the direction of arrows is reversed, so in the definition the domain and

codomain of arrows have just been interchanged.
The last construction we shall consider in this paper is the product category, defined by

DEF (Product category):
ProdCat(CC:catl,DD:cat2) =
({¢c,d) | C::0bj CC /\ D::0bj DD},
{(f,g) | f::Arr CC /\ g::Arr DD},
(\(£,g). (Dom CC f,Dom DD g)),
(\(f,g). (Cod CC f,Cod DD g))
(\(£,g)(£f’,g’). (Comp CC f £’>,Comp DD g g’)))

We can define the usual projections 71 and 7y for product categories.

3.8 The Hom Functor

The Hom functor is an extension of the Hom set to a functor Hom CC: (ProdCat (DualCat
CC,CC)) -> Set, sometimes written as CC(-—,--):

DEF (Hom functor):
Hom CC =
((\(X,Y). Homset CC(X,Y)),
(\(f,g). let A = Dom CC f and C = Cod CC f and
B =Dom CC g and D = Cod CC g
in ((\h::Homset CC(C,B). Comp CC g(Comp CC h £)),A,D)))

The restricted A-abstraction yields a determined function as it should (for the Hom functor to
yield an arrow of Set). Note that f is an arrow from C to A in the dual category of CC and is
therefore an arrow from A to C in CC.

Often the following one-variable special cases of the Hom functor are considered and confused

with the two-variable Hom functor. We have a functor Hom1 CC X: CC -> Set, sometimes
written CC(X,-=):

DEF (Fixed-left Hom functor):
Homl CC X =
((\Y. Homset CC(X,Y)),
(\f. let Y = Dom CC f and Z = Cod CC f
in ((\g::Homset CC(X,Y). Comp CC f g),X,Z)))

The other one-variable Hom functor is the functor Hom2 CC Y: (DualCat CC) -> Set, some-
times written CC(—-,Y):

DEF (Fixed-right Hom functor):
Hom2 CC Y =
((\X. Homset CC(X,Y)),
(\f. let X = Dom CC f and Z = Cod CC f
in ((\g::Homset CC(Z,Y). Comp CC g £),X,Y)))

3.9 Comments

e Using predicates to represent collections of objects and arrows we can only formalize small
categories.



e The representation of the partial functions that were used as arrows in the category of
sets is complicated via a determinedness condition, due to the presence of an underlying
type in typed set theory; extensional equality works on all elements of the underlying type
rather than only at the predicate subsets.

e We must use triple representations for arrows of most categories in order to make the
domain and codomain explicit.

e Some type checking is done automatically, some must be done by theorem proving due to
presence of predicates, representing sets.

e Polymorphism supports hierarchies of categories, for instance, the category of categories
Cat can be made an object of itself by using different instantiations of type variables.

4 Category Theory in Higher Order Logic and Set Theory

In this section, we will try to obtain a more faithful formalization of category theory by exploting
an axiomatization of Zermelo-Fraenkel set theory in higher order logic, provided by Mike Gordon
[6]. However, while this seems to work at a first sight, problems arise quite quickly. We first
describe the axiomatization in Section 4.1, then discuss a reformalization of some category theory
concepts in Section 4.2.

4.1 ZF Set Theory in HOL

HOL is extended with set theory by declaring a new type V and a new constant ‘ZFin’ (set
membership) of type V->V->bool,! and then postulating eight new axioms about V and ZFin:

Axiom of extensionality.
'st. (s = t) = (!x. x ZFin s = x ZFin t)

Axiom of empty set.
?s. !'x. “(x ZFin s)

Definition of the empty set:
|- 'x. "x ZFin Empty

Axiom of union.
's., 7t. !x. x ZFin t = ?u. x ZFin u /\ u ZFin s

Definition of big union:
|- 'x t. t ZFin (UU x) = (?z. t ZFin z /\ z ZFin x)

Definition of set inclusion.
|- 's t. Subset s t = !x. x ZFin s ==> x ZFin t

Axiom of power-sets.
!'s. ?t. !x. x ZFin t = x Subset s

Definition of the power set constructor.

'In the type of the set membership operator, note that elements of sets are themselves sets. Generally speaking,
new sets must be constructed from existing sets some way, in principle starting from the empty set and then using
axioms.



|- 's x. x ZFin (Pow s) = (!y. y ZFin x ==> y ZFin s)

Axiom of separation.
'ps. ?t. !'x. x ZFin t

x ZFin s /\ p x

Axiom of replacement.
'f s. 7t. 'y. y ZFin t = ?x. x ZFin s /\ (y = £ x)

Definition of set intersection.
|- 's t x. x ZFin (s Intersect t) = x ZFin s /\ x ZFin t

Axiom of foundation.
's. "(s = Empty) ==> 7x. x ZFin s /\ (x Intersect s = Empty)

Definition of image.
|- 'f t y. y ZFin (Image f t) = (?x. x ZFin t /\ (y = f x))

Definition of singleton set.
|- 'x y. y ZFin (Singleton x) = (y = x)

Definition of infixed binary union of sets.
|- 's t x. x ZFin (s U t) = (x ZFin s) \/ (x ZFin t)

Definition of successor of a set.
|- 'x. Suc x = x U (Singleton x)

Axiom of Infinity.
?s. Empty ZFin s /\ !x. x ZFin s ==> Suc x ZFin s

Pairs and functions can be defined in ZF set theory. Pairs are defined by
DEF: <x,y> = {{x},{x,y}}
The cartesian product of two sets can then be defined by:
DEF: ZFprod X Y = {<x,y> ZFin Pow(Pow(X U Y)) | x ZFin X /\ y ZFin Y}

The usual projection functions Fst and Snd can be defined on pairs.
A total function is a set of pairs

DEF: ZFfun X Y = {f ZFin Pow(ZFprod X Y)) | !'x ZFin X. ?'!y. <x,y> ZFin f}

Universal quantification restricted over ZF sets is available through a parser and pretty-printer
hack: !'x ZFin X. t stands for !'x. x ZFin X ==> t. Note that a set function, which has
type V, is different that a logical function, which has type e.g. *=>**. The domain and range
operations on functions are provided:

DEF: domain f = Image Fst f
DEF: range f = Image Snd f

Total functions can be written using the ZF lambda abstraction:
(ZFlam (x ZFin X). t[x]) = {<x,y> ZFin (ZFprod X(Image f X)) | y = t[x]}
Set function application is defined by:

DEF: £ "~ x = (Qy. <x,y> ZFin f)



Finally, set function composition is provided through the following definition:

DEF:
comp f g =
{<x,z> ZFin (ZFprod(domain g)(range f)) | ?y. <x,y> ZFin g /\ <y,z> ZFin f}

More details on ZF theory in HOL can be found in [6, 2].

4.2 Formalizing the Category of Sets in ZF

With the axiomatization of the new type V our formalization of categories in Section 3.1 suddenly
becomes considerably more powerful, because type variables then also range over V. This means
that ZF classes can be expressed as predicates over V, and further, the category of all sets can
really consist of the class of all untyped sets and the class of all set functions as arrows:

DEF (Category of all sets):
Set = ({x:V | T},{£f:V | ?X Y. £ ZFin (ZFfun X Y)},domain,range,comp)

In other words, our formalization of category now supports (at least some kind of) large cate-
gories.

With this definition of Set we must redefine the Hom set function, which must yield objects
of Set. Let us rename the previous Hom set function to a Hom class function:

DEF (General Hom function):
Homclass CC(X,Y) = {f :: (Arr CC) | (Dom CC £ = X) /\ (Cod CC f = Y)}

Then a Hom set function into Set can be obtained from it by restricting the definition to work
in situations where the Hom classes are ZF sets:

DEF (Hom set):
Homset (CC:lcat) (X,Y) = mk_ZFset(Homclass CC(X,Y))

The type lcat abbreviates the type of large (and locally small) categories:
lcat abbr. (V->bool)#(V->bool)#(V->V)#(V->V)#(V->V->V)
The constant mk_ZFset is used to convert a ZF class into a ZF set, if this is possible:
DEF: mk_ZFset (P:V->bool) = (@s:V. !x:V. x ZFin s = x :: P)
It only works if we assume (or prove) categories are locally small:

DEF: is_ZFset (P:V->bool) = (?s:V. 'x:V. x ZFin s = x :: P)
DEF: locally_small CC = !X Y :: (Obj CC). is_ZFset(Hom CC(X,Y))

Hence, also in this respect this formalization of the category of sets is more faithful to textbook
presentations.

However, with the above definition of Homset, which works when arrows and objects are
represented in ZF set theory, it becomes problematic to represent functors and the functor
category properly. For compatibility, the objects (and arrows) of the functor category should
be sets and therefore functors should be sets. In turn this means that the Hom functor should
be represented as a set. Recall from Section 3.8 that given a category CC the Hom functor must
map pairs of objects of CC to sets of arrows and pairs of arrows of CC to set functions, which are
the arrows of Set. These maps from pairs to sets must themselves be sets and would naturally
be represented as set functions. But set functions must specify their domain explicitly and these
domains must be sets:
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DEF *BAD* (Hom functor):
Hom CC =
<(ZFlam (<X,Y> ZFin (ZFprod(*0Obj CCx,*0bj CCx))). Homset CC(X,Y)),
(ZFlam (<f,g> ZFin (ZFprod(*Arr(DualCat CC)*,*Arr CC*))).
let A = Dom CC £ and C = Cod CC f and
B =Dom CC g and D = Cod CC g
in
<(ZFlam (h ZFin (Homset CC(C,B))). Comp CC g(Comp CC h £)),A,D>)>

This only works if the category CC is small in the sense that both its objects and its arrows
constitute sets and then, to be precise, we should either insert conversion functions above, to
convert classes to sets, or use sets instead of classes in the first place to represent the collections
of objects and arrows. Neither approach would work generally, because there are categories
which simply are not small, e.g. Set.

5 Conclusions

From the above and other attempts to use ZF sets for the category of sets we have come to
the conclusion that this will always make the definitions of the Hom functor and the functor
category problematic, because the formalization forces objects and arrows of categories to be
sets rather than classes. Generally speaking this is due to the restriction in ZF that sets must
be built from existing sets, starting from the empty set and then using the axioms, to avoid
paradoxes. There is no easy way around this (sensible) restriction. For instance, it would not
be a good idea to represent categories as the small categories whose collections of objects and
arrows are ZF sets. Then it would not be possible to define the category of sets. Making a
distinction between small and large categories, where the collections of objects and arrows in
large categories are represented using predicates over sets, would solve this problem. However,
the Hom functor would only be defined for small categories so it would be impossible to use
it with for instance the functor category of functors from some dual category to Set (which is
done in the Yoneda lemma). Even using conversion functions like mk_ZFset introduced above
would not be possible, for the simple reason that Set cannot be converted to a small category.

It therefore seems that employing ZF set theory at any level of the formalization is problem-
atic, at least when we choose to formalize the concepts of category theory as in this paper. There
might be other formulations of category theory than the (standard) one presented in Jaap von
Oosten’s introduction that are more suitable for formalization. The conclusion must be that
the higher order logic formalization presented first is the better one in this paper because it
does not immediately give any problems. However, HOL and its typed set theory is a rather
weak basis for the formalization of category theory which therefore might not follow textbook
presentations precisely (and correctly). Furthermore, as we saw in Section 3, it is possible to use
the polymorphism of higher order logic to make this hierarchy explicit. With one polymorphic
definition of the notion of category we can make various instantiations, as we may wish. But in
category theory the hierarchy of categories is never considered. Finally, an advantage of using
set theory rather than higher order logic is that when we use set theory partial functions can be
treated more naturally as ordinary set functions between sets. In higher order logic we have the
problems of an underlying type and extensional equality (which meant that we had to introduce
a determinedness condition on functions to make them proper arrows of Set).
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