
Set Theory, Higher Order Logic or Both?Mike GordonUniversity of Cambridge Computer LaboratoryNew Museums SitePembroke StreetCambridge CB2 3QGU.K.Abstract. The majority of general purpose mechanised proof assistantssupport versions of typed higher order logic, even though set theory isthe standard foundation for mathematics. For many applications higherorder logic works well and provides, for speci�cation, the bene�ts oftype-checking that are well-known in programming. However, there areareas where types get in the way or seem unmotivated. Furthermore,most people with a scienti�c or engineering background already know settheory, but not higher order logic. This paper discusses some approachesto getting the best of both worlds: the expressiveness and standardnessof set theory with the e�cient treatment of functions provided by typedhigher order logic.1 IntroductionHigher order logic is a successful and popular formalism for computer assistedreasoning. Proof systems based on higher order logic include ALF [18], Automath[20], Coq [9], EHDM [19], HOL [13], IMPS [10], LAMBDA [11], LEGO [17], Nuprl[6], PVS [22] and Veritas [14].Set theory is the standard foundation for mathematics and for formal no-tations like Z [24], VDM [15] and TLA+ [16]. Several proof assistants for settheory exist, such as Mizar [23] and Isabelle/ZF [21].Anecdotal evidence suggests that, for equivalent kinds of theorems, proof inhigher order logic is usually easier and shorter than in set theory. Isabelle usersliken set theory to machine code and type theory to a high-level language.Functions are a pervasive concept in computer science and so taking themas primitive, as is done by (most forms of) higher order logic, is natural. Higherorder logic is typed. Types are an accepted and e�ective method of structuringdata and type-checking is a powerful technique for �nding errors. Types can beused to index terms and formulae for e�cient retrieval. General laws becomesimpler when typed.Unfortunately, certain common mathematical constructions do not �t intothe type disciplines associated with higher order logic. For example, the setf;, f;g, f;,f;gg, f;,f;g,f;,f;ggg, : : : g is traditionally used as the de�nitionof the nateral numbers and lists are de�ned as the union of the in�nite chainfhig [(X � fhig) [(X � X � fhig) [: : : . These sets are essentially untyped.

Furthermore, the traditional axiomatic method used in mathematics needs to bereformulated to �t into type theory [3].There is no standard formulation of higher order logic. The various higherorder logics/type theories di�er widely both in the notation used and in theirunderlying philosophical conception of mathematical truth (e.g. intuitionistic orconstructive versus classical). Automath is based on de Bruijn's own very gen-eral logic [20, A.2] (which anticipated many more recent developments). Coq andLEGO support di�erent versions of the Calculus of Constructions. EHDM, PVSand Veritas each support di�erent classical higher order logics with subtypesand/or dependent types. HOL and LAMBDA support similar polymorphic ver-sions of the simple theory of types. IMPS supports monomorphic simple typetheory with non-denoting terms and a theory interpretation mechanism. ALFand Nuprl support versions of Martin L�of type theory (a constructive logic witha very elaborate type system).There is much less variation among set theories. The well known formulationsare, for practical purposes, pretty much equivalent. They are all de�ned by ax-ioms in predicate calculus. The only variations are whether proper classes are inthe object or meta language and how many large cardinals are postulated to ex-ist. The vast majority of mathematicians are happy with ZFC (Zermelo-Fraenkelset theory with the Axiom of Choice).It would be wonderful if one could get the best of both worlds: the expres-siveness and standardness of set theory with the e�cient treatment of functionsprovided by typed higher order logic. In Section 2 an approach is outlined inwhich set theory is provided as a resource within higher order logic, and in Sec-tion 3 a reverse approach is sketched in which higher order logic is built on topof set theory. Both these approaches are explored in the context of the HOLsystem's version of higher order logic1, but in the presentation I have tried tominimise the dependence on the details of the HOL logic. Some conclusions arediscussed in Section 4.2 Sets in Higher Order LogicSet theory can be postulated inside higher order logic by declaring a type V anda constant 2 : V � V ! bool (where bool is the type of the two truthvalues)and then asserting the normal axioms of set theory. The resulting theory hasa consistency strength stronger than ZF, because one can de�ne inside it asemantic function from a concrete type representing �rst order formulae to V1 The HOL logic is just higher order predicate calculus with a type system, due toMilner, consisting of Church's simple theory of types [5] with type variables movedfrom the meta-language into the object language. In Church's system, a term withtype variables is actually a meta-notation { a term-schema { denoting a family ofterms, whereas in HOL it is a single polymorphic term. Other versions of mechanisedsimple type theory (e.g. IMPS, PVS) use uninterpreted type constants instead oftype variables, and then permit these to be instantiated via a theory interpretationmechanism.

such that all the theorems of ZF can be proved.2 However, a model for higherorder logic plus V can be constructed in ZF with one inaccessible cardinal.Thus the strength of higher order logic augmented with ZF-like axioms for V issomewhere between ZF and ZF plus one inaccessible cardinal.3An alternative approach to using some of the linguistic facilities of higherorder logic, whilst remaining essentially �rst order, has been investigated byFrancisco Corella. His PhD thesis [8] contains a very interesting discussion ofthe di�erent roles type theory can have in the formalisation of set theory.De�ning set theory inside higher order logic is very smooth. For example theAxiom of Replacement is simply:8f s: 9t: 8y: y 2 t = 9x: x 2 s ^ y = f(x) (1)In traditional �rst-order formulations of ZF, the second-order quanti�cation off is not permitted, so a messy axiom scheme is needed. Another example of auseful second order quanti�cation is the Axiom of Global Choice:49f: 8s: :(s = ;)) f(s) 2 s (2)Standard de�nitional methods allow all the usual set-theoretic notions to bede�ned and their properties established. Such notions include, for example, theempty set, numbers, Booleans, union, intersection, �nite sets, powersets, orderedpairs, products, relations, functions etc.When set theory is axiomatised in higher order logic, the Axiom of Separationinteracts nicely with �-notation to allow fx 2 X j P (x)g to be represented bySpec X (�x: P (x)), for a suitably de�ned constant Spec.More generally, ff(x1; : : : ; xn) 2 X j P (x1; : : : ; xn)g can be represented bySpec X (�x: 9x1 : : : xn: x = f(x1; : : : ; xn) ^ P (x1; : : : ; xn)).In HOL, new types are de�ned by giving names to non-empty subsets ofexisting types. Each element s of type V determines a subtype of V whosecharacteristic predicate is �x: x 2 s (i.e. the set of all members of set s). A type� of HOL is represented by s : V i� there is a one-to-one function of type � ! Vonto the subtype of V determined by s. It is straightforward to �nd members ofV corresponding to the built-in types of HOL, for example f;; f;gg representsthe type of Booleans, and f;, f;g, f;,f;gg, f;,f;g,f;,f;ggg, : : : g represents thenatural numbers.Standard set-theoretic constructions can be used to mimic type operators. Ifs1, s2 represent types �1 and �2, respectively, then the Cartesian product of s1and s2, which will be denoted here by s1��s2, represents the type �1��2. The setof all total, single-valued relations between s1 and s2, denoted here by s1 !! s2,2 In HOL jargon, this is a deep embedding [4] of ZF in higher order logic plus V .3 These facts about consistency strength were provided by Ken Kunen (privatecommunication).4 When type V is postulated in the HOL logic this is actually a theorem (because ofHilbert's "-operator).

represents the type �1 ! �2.5 Since there are lots of non-empty subsets of theclass of sets, this provides a rich source of new types.There are two ways this richness can be exploited: (i) to de�ne types thatcould be de�ned without V in a slicker and more natural manner, and (ii) tode�ne types that could not be de�ned at all.An example of a construction that can be done in HOL without V , butis neater with it, is the de�nition of lists. In the current HOL system, lists ofelements of type � are represented as a subtype of the type (num ! �)� num,the idea being that a pair (f; n) represents the list [f(0); f(1); : : : ; f(n�1)].6 Amore direct and natural approach uses hx1; hx2; : : : ; hxn;Truei : : :ii to representthe list [x1; : : : ; xn] (the empty list hi can be represented by an arbitary set).However, this is not `well-typed' since tuples with di�erent lengths have di�erenttypes. Thus this approach cannot be used to de�ne lists in higher order logic.However, the construction can easily be performed inside V, by de�ning (usingprimitive recursion):List(X) = fhig [(X � fhig) [(X �X � fhig) [: : : (3)The required properties of lists are easily derived, such as the �xed-point prop-erty: 8X: List(X) = fhig [(X � List(X)) (4)and structural induction:8P X:P (hi) ^ (8l 2 List(X): P (l)) 8x 2 X: P (hx; li))8l 2 List(X): P (l) (5)If s:V represents a type �, then List(s) represents the type of �nite lists ofelements of type �. Thus a type of lists of elements of type � could be de�nedin HOL as the subtype of V determined by the predicate �x: x 2 List(s). Thisillustrates how having a type of ZF-like sets can bene�t developments in higherorder logic.An example of a construction using V that would be di�cult or impossiblewithout it, is Scott's classical model D1 of the �-calculus. This is a subset ofan in�nite product D0 �D1 �D2 : : : where D0 is given and Di+1 is a subset ofthe set of functions from Di to Di. If the Dis are represented as sets inside V(they are actually sets equipped with a complete partial order structure) thenScott's classical inverse limit can be performed directly, as has been elegantlyshown by Sten Agerholm [1]. However, there seems to be no way to do it within5 Details are in the technical report `Merging HOL with Set Theory' [12] available athttp://www.cl.cam.ac.uk/users/mjcg/papers/holst/index.html.6 To ensure that the pairs (f1; x1) and (f2; x2) are equal if and only if the correspondinglists are equal, it is required that pairs (f; n) representing lists have the property thatf m equals some canonical value when m is greater than or equal to the length n ofthe list. The subtype consisting of such pairs (f; n) is used to de�ne lists.

higher order logics based on simple type theory (HOL, PVS, IMPS), though itcould be done in type theories with dependent products.7The set-theoretic construction of lists outlined above only works if the typeof the list's elements has already been represented as a set. In type systemswith polymorphism, like the HOL logic, a type-operator can be de�ned thatuniformely constructs a type (�)list of lists over an arbitrary type � (� is a typevariable). Ching-Tsun Chou8 has proposed a method of de�ning such polymor-phic operations via set theory. He suggests that instead of having just a type V ,one could have a type operator that constructed a universe of sets, (�)V say,over an arbitrary type � of atoms (`urelements'). The type (�)list could thenbe de�ned as a suitable subtype of (�)V , for an arbitrary �, using a similarconstruction to the one given above.To make this work, a set theory with atoms needs to be axiomatised { thatis, members of (�)V are either atoms { i.e. non-sets { or sets (but not both). Thesubtype of atoms is speci�ed to be in bijection with �. Such atoms or `urelements'have a long history in set-theory. For example, before the technique of forcingwas developed, they were used for �nding models in which the Axiom of Choicedoesn't hold. The axioms of set theory need to be tweaked to cope with atoms;in particular, the Axiom of Extensionality needs to be restricted to apply onlyto sets.9I have not tried working out the details of Chou's proposal, but it strikesme as very promising. Not only does it appear to enable generic constructionsto be done over an arbitrary type, by it is also philsophically satisfying in thatit seems to correspond to a certain common mathematical practice in whichgeneral (e.g. categorical) developments are done directly in a kind of informaltype theory, and set-theoretic constructions are restricted to where they areneeded.Adding a type V of sets (or a type operator (�)V) to higher order logic canbe compared to the already successful mechanisations of �rst-order set theoryprovided by Isabelle/ZF and Mizar. It is not clear whether axiomatising ZF inhigher order logic is really better than using �rst order logic.Sten Agerholm has compared Isabelle/ZF with HOL + V for the construc-tion of D1 [2]. The results of his study were somewhat inconclusive. He foundthat using higher order logic can simplify formulation and proof, but one is facedwith a \di�cult question" of \which parts of the formalisation should be donein set theory and which parts in higher order logic". Chains (sequences) of setsillustrate the issue: with higher order logic chains can be represented as logicalfunctions from the type of numbers to V , i.e. as elements of type num ! V ,but with �rst order logic the user is not burdened with this decision as chainshave to be represented inside set theory as set-functions.10 However, if chains are7 De�ne types Di (for i = 0; 1; 2; : : :), then D1 is a subtype of the product Q1n=0Di.8 Private communication.9 Ken Kunen provided me with information (private communication) on the use ofurelements in set theory.10 Isabelle does have a polymorphic higher order metalogic but, as Agerholm puts it:

represented as set-functions, then certain things that correspond to type check-ing in higher order logic need to be done using theorem proving in Isabelle/ZF.Agerholm found that Isabelle's superior theorem proving infrastructure ensuredthat this was not much of a burden.3 Higher Order Logic on top of Set TheoryIn the previous section set theory { in the guise of the type V { was providedas a resource within typed higher order logic. An alternative approach is to turnthis upside down and to take set theory as primary and then to `build' higherorder logic on top of it. The idea is to provide the notations of higher order logicas derived forms on top of set theory and then to use set-theoretic principlesto derive the axioms and rules of higher order logic. A key component of thisscheme would be the development of special purpose decision procedures thatcorrespond to typechecking.The set-theoretic interpretation of the HOL logic is straightforward [13,Chapter 15] and can be used to provide a shallow embedding [4] of it in settheory. Each type constant corresponds to a (non-empty) set and each n-arytype operator op corresponds to an operation, |op| say, for combining n setsinto a set. In HOL + V such an operation on sets can be represented as a func-tion with type V ! V ! � � � ! V . For example, j�j is the Cartesian productoperation�� and j!j takes sets X and Y to the set X !! Y .The set, [[�]] say, corresponding to an arbitary type � is de�ned inductivelyon the structure of �. If � is a a type constant c, then [[�]] is just jcj. Typevariables can be simply interpreted as ordinary variables ranging over V . Acompound type (�1; : : : ; �n)opn is interpreted as the application of the logicalfunction jopnj to the types corresponding to �1, : : :, �n { i.e. [[(�1; : : : ; �n)opn]] =jopnj [[�1]] : : : [[�n]].The interpretation of HOL constants in set theory is complicated by poly-morphism, because the interpretation of a polymorphic constant depends on thesets corresponding to the type variables it contains. For example, the identityfunction in HOL is a polymorphic constant I : � ! �. For any type �, I is theidentity on �. The interpretation of I in set theory, jIj say, is the identity set-function on some set A { where the set-valued variable A corresponds to the typevariable �. Thus |I| takes a set A and returns the identity set-function on A (sois a logical function of type V ! V). If c is monomorphic (has a type containingno type variables), then |c| will have type V. If the type of c contains n distincttype variables, then |c| will be a (curried) function taking n arguments of typeV and returning a result of type V.The fact that the type parameterisation of functions like I is hidden makes theHOL logic clean and uncluttered compared with set theory. One of the challengesin supporting higher order logic on top of set theory is to gracefully manage thecorrespondence between implicit type variables and explicit set-valued variables.\The metalogic is meant for expressing and reasonining in logic instantiations ... notfor formalising concepts in object logics".

The embedding of terms (i.e. the simply-typed �-calculus) in set theory re-quires set-theoretic counterparts of function application and �-abstraction. Theapplication of a set-function f to an argument x is the unique y such that thepair hx; yi is a member of f (necessarily unique if f is a set-function { i.e. a totaland single-valued relation). Let us write this set-theoretic application as f�x,which is neatly de�ned using Hilbert's "-operator by:f�x = "y: hx; yi 2 f (6)The set-theoretic counterpart to �-abstraction is Fn x 2 X: t[x], where t[x] is aset-valued term containing a set variable x. The de�nition of this notation is:Fn x 2 X: t[x] = fhx; yi 2 X��Image(�x:t[x])X j y = t[x]g (7)where Image F X is the image of set X under a logical function F (which existsby the Axiom of Replacement).Each HOL term t is translated to a term [[t]] of type V as follows:[[x : �]] = x : V (variables)[[c : �[�1; : : : ; �n]]] = jcj [[�1]] : : : [[�n]] (constants)[[�x : �: t]] = Fn x 2 [[�]]: [[t]] (abstractions)[[t1 t2]] = [[t1]] � [[t2]] (applications) (8)Notice that [[t]] lies in (monomorphic) simple type theory using just the typeV . Applying this translation to the term 8m n: m+ n = n+m results is:(j8j jnumj) �(Fn m 2 jnumj:(j8j jnumj) �(Fn n 2 jnumj:((j=j jnumj) � ((j+j �m) � n)) � ((j+j � n) �m))) (9)This is a set-denoting term { i.e. a term of type V { the logical constants 8 and= have been `internalised' into set-functions j8j and j=j, respectively.In HOL, Boolean terms can play the role of formulae which denote `true'or `false' { i.e. are judgements. Terms play this role when they are postulatedas axioms or de�nitions or occur in theorems. When embedding higher orderlogic in set theory, formulae of the former should be translated to formulae ofthe latter. The translation of a Boolean term via (8) can be made into a logicalformula of set theory by equating it to the set representing `true' inside V , jTjsay. Thus the formula corresponding to 8m n: m + n = n +m is obtained byequating (9) to jTj. Using suitable de�nitions of the internalised constants, theresulting formula will be equivalent to:8m n 2 jnumj: (j+j �m) � n = (j+j � n) �m (10)Free variables in formulae are interpreted as implicitly universally quanti�ed.Thus the set-theoretic formula corresponding to m + n = n + m should be

equivalent to (10). If we want higher order logic formulae with free variablesto translate to set-theoretic formulae with the same free variables, then theuniversal quanti�er in (10) can be stripped o� { but the restrictions that m andn be in jboolj must be retained, i.e.:m 2 jnumj ^ n 2 jnumj) ((j+j �m) � n = (j+j � n) �m) (11)Thus when translating formulae, the typing of variables in higher order logic hasto be converted into explicit set membership conditions in set theory.11Using the scheme just described, a term tm of higher order logic is inter-preted, depending on context, as the set-denoting term [[tm]] or the formulax1 2 [[�1]] ^ : : : ^ xn 2 [[�n]]) [[tm]] = jTj (where the free variables in tmare x1:�1, : : : , xn:�n). These interpretations could be handled by a parser andpretty printer (i.e. implemented as a shallow embedding).In the HOL logic there are two primitive types bool and ind and three prim-itive constants) , = and ". The internalised primitive types jboolj and jindjare the set of two truthvalues and some arbitrary in�nite set. The internalisedprimitive constants j)j, j=j and j"j are easily de�ned { j)j by explicitly writingdown the set representing the appropriate set-function (details omitted), andthe other two by:j=j X = fhx; yi 2 X��X j x = ygj"j X = Fn f: Choosefx 2 X j f � x = jTjg (12)where Choose is a suitable choice operator (of logical type V ! V) legitimatedby the Axiom of Choice.If the shallow embedding described here is to provide the user with higherorder logic, then the axioms and rules must be derived. An example of an axiomof the HOL logic is the Law of Excluded Middle: 8t: t=T _ t=F. Using (8) thisis interpreted as the formula:(j8j jboolj) �(Fn t 2 jboolj:(j _ j � (((j=j jboolj) � t) � jTj)) � (((j=j jboolj) � t) � jFj))= jTj (13)which, with suitable de�nitions of j_j and j=j will be equivalent to:8t 2 jboolj: t = jTj _ t = jFj (14)which can be proved in set theory if jboolj = fjTj; jFjg.An example of a rule of inference in higher order logic is �-conversion. A�-redex (�x : �: t1[x])t2 translates to: (Fn x 2 [[�]]: [[t1[x]]])[[t2]]. Now it is atheorem of set theory that:y 2 X) (Fn x 2 X: t(x)) � y = t(y) (15)11 In HOL, di�erent variables can have the same name as long as they have di�erenttypes, so if a HOL formula contains two distinct variables with the same name, thenthese variables will need to be separated on translation (e.g. by priming one of them).

and hence (using higher-order matching etc.) �-conversion can be derived. No-tice, however, that to apply (15) an instance of the the explicit set membershipcondition x 2 X has to be proved. In higher order logic this happens automat-ically via typechecking. In set theory, a special `typechecking' theorem provercan be implemented [12, Section 6.6] using theorems such as:f 2 (X !! Y) ^ x 2 X) f � x 2 Y(8x: x 2 X) t[x] 2 Y)) (Fn x: t[x]) 2 (X !! Y) (16)The set-theoretic versions of the non-primitive types and constants could bede�ned by interpreting the HOL de�nitions in set theory. However, this leads to apotential confusion between certain standard set-theoretic constructions, and theversions obtained by translating HOL de�nitions. In particular, the translationof the HOL de�nition of ordered pairs (product types) via (8) does not result inthe familiar model of pairing used in set theory. This is an area needing furtherthought. Probably the best strategy is to support on top of set theory a higherorder logic with more primitives than the HOL logic (e.g. with pairing built-in){ and then to augment the translation (8) to interpret the additional constructsas their natural set-theoretic counterparts.A potentially useful feature of having set theory as the underlying logicalplatform is that theories in set theory can be encoded as single (large) theo-rems in a way that can't be done for theories in some versions of higher or-der logic (e.g. HOL). A theory in set theory can be regarded as an implicationwith the antecedents being the axioms. Constants declared in the theory willbe monomorphic and can just be treated as free variables. This doesn't workin HOL because polymorphic constants can occur at di�erent type instances oftheir declared (i.e. generic) type in di�erent axioms and theorems of a theory,but a polymorphic variable must have the same type at all its occurrences in anindividual theorem. Relaxing this restriction is known to make the HOL logicinconsistent [7].Being able to code up theories as theorems could enable `abstract theories' tobe naturally supported, since theory interpretation then becomes just ordinaryinstantiation.4 Discussion and ConclusionsIn Section 2 it was shown how by postulating V (or, better, (�)V) it was possibleto increase the power of higher order logic, whilst still retaining its attractivefeatures. This idea has been explored in some detail by Sten Agerholm and seemsa success.In Section 3 a more radical idea is outlined in which higher order logic is`mounted' on top of set theory as a derived language (via a shallow embedding).If this can be made to work { and it is not yet clear whether it can { thenit would seem to o�er the best of the two worlds. Users could choose to workentirely within higher order logic, but they could also choose to stray into the

rich pastures of set theory. Furthermore, users could add additional constructsthemselves without having to modify the core system. Thus, for example, therecord and dependent subtypes of PVS could be added (type correctness condi-tions just being handled by normal theorem proving). However, this is currentlyall fantasy: it still remains to see whether it is possible to get an e�cient andwell-engineered type theory via a shallow embedding into set theory.In conclusion, my answer to the question posed as the title of this paper isthat both set theory and higher order logic are needed. In the short term usefulthings can be done by adding a type of sets to higher order logic, but buildinghigher order logic on top of set theory is an exciting research challenge thatpromises a bigger payo�.AcknowledgementsSten Agerholm, Ching-Tsun Chou, Francisco Corella, John Harrison, Tom Mel-ham, Larry Paulson and Andy Pitts provided various kinds of help in the devel-opment of the ideas described here.References1. S. Agerholm. Formalising a model of the �-calculus in HOL-ST. Technical Report354, University of Cambridge Computer Laboratory, 1994.2. S. Agerholm and M.J.C. Gordon. Experiments with ZF Set Theory in HOL andIsabelle. In E. T. Schubert, P. J. Windley, and J. Alves-Foss, editors, Higher OrderLogic Theorem Proving and Its Applications: 8th International Workshop, volume971 of Lecture Notes in Computer Science, pages 32{45. Springer-Verlag, Septem-ber 1995.3. Jackson Paul B. Exploring abstract algebra in constructive type theory. InA. Bundy, editor, 12th Conference on Automated Deduction, Lecture Notes in Ar-ti�cal Intelligence. Springer, June 1994.4. R. J. Boulton, A. D. Gordon, M. J. C. Gordon, J. R. Harrison, J. M. J. Herbert,and J. Van Tassel. Experience with embedding hardware description languagesin HOL. In V. Stavridou, T. F. Melham, and R. T. Boute, editors, TheoremProvers in Circuit Design: Theory, Practice and Experience: Proceedings of theIFIP TC10/WG 10.2 International Conference, IFIP Transactions A-10, pages129{156. North-Holland, June 1992.5. A. Church. A formulation of the simple theory of types. The Journal of SymbolicLogic, 5:56{68, 1940.6. R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Develop-ment System. Prentice-Hall, 1986.7. Thierry Coquand. An analysis of Girard's paradox. In Proceedings, Symposiumon Logic in Computer Science, pages 227{236, Cambridge, Massachusetts, 16{18June 1986. IEEE Computer Society.8. Francisco Corella. Mechanizing set theory. Technical Report 232, University ofCambridge Computer Laboratory, August 1991.

9. G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring, and B. Werner. The Coq proof assistant user's guide - version 5.8.Technical Report 154, INRIA-Rocquencourt, 1993.10. W. M. Farmer, J. D. Guttman, and F. Javier Thayer. IMPS: An interactive math-ematical proof system. Journal of Automated Reasoning, 11(2):213{248, 1993.11. S. Finn and M. P. Fourman. L2 { The LAMBDA Logic. Abstract Hardware Lim-ited, September 1993. In LAMBDA 4.3 Reference Manuals.12. M. J. C. Gordon. Merging HOL with set theory. Technical Report 353, Universityof Cambridge Computer Laboratory, November 1994.13. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem-proving Environment for Higher-Order Logic. Cambridge University Press, 1993.14. F. K. Hanna, N. Daeche, and M. Longley. Veritas+: a speci�cation language basedon type theory. In M. Leeser and G. Brown, editors, Hardware speci�cation, veri-�cation and synthesis: mathematical aspects, volume 408 of Lecture Notes in Com-puter Science, pages 358{379. Springer-Verlag, 1989.15. C. B. Jones. Systematic Software Development using VDM. Prentice Hall Inter-national, 1990.16. L. Lamport and S. Merz. Specifying and verifying fault-tolerant systems. InProceedings of FTRTFT'94, Lecture Notes in Computer Science. Springer-Verlag,1994. See also: http://www.research.digital.com/SRC/tla/papers.html#TLA+.17. Z. Luo and R. Pollack. LEGO proof development system: User's manual. Techni-cal Report ECS-LFCS-92-211, University of Edinburgh, LFCS, Computer ScienceDepartment, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JZ,May 1992.18. L. Magnusson and B. Nordstr�om. The ALF proof editor and its proof engine. InTypes for Proofs and Programs: International Workshop TYPES '93, pages 213{237. Springer, published 1994. LNCS 806.19. P. M. Melliar-Smith and John Rushby. The enhanced HDM system for speci�ca-tion and veri�cation. In Proc. Verkshop III, volume 10 of ACM Software Engi-neering Notes, pages 41{43. Springer-Verlag, 1985.20. R. P. Nederpelt, J. H. Geuvers, and R. C. De Vrijer, editors. Selected Papers onAutomath, volume 133 of Studies in Logic and The Foundations of Mathematics.North Holland, 1994.21. L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notesin Computer Science. Springer-Verlag, 1994.22. PVS Web page. http://www.csl.sri.com/pvs/overview.html.23. Piotr Rudnicki. An Overview of the MIZAR Project. Unpublished manuscript;but available by anonymous FTP from menaik.cs.ualberta.ca in the directorypub/Mizar/Mizar Over.tar.Z, 1992.24. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall InternationalSeries in Computer Science, 2nd edition, 1992.
This article was processed using the LATEX macro package with LLNCS style

