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Abstract:

This paper presents a method for extracting explanations of goal-
oriented proofs from the process of generating such proofs in the
HOL system. The aim has been to produce natural (if stylized)
explanations which are phrased in conventional terms, even where
the tactics used in generating the proof are specific to HOL, HOL’s
implementation, or mechanized theorem proving in general. Inter-
nal forms of the explanations are constructed by enriching the ML
types that support goal-oriented proof in HOL, so that adequate
information can be saved during the generation of a proof to enable
explicit, annotated proof trees to be produced. These trees are then
rendered in readable form by a suite of printing functions.
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1 Introduction

Proof accounts are intended to explain and document HOL! proofs in some-
thing approaching conventional or textbook terms. They do this for proofs
which are generated ‘top down’ in HOL through the application of tactics
to goals. Tactic and goals in HOL (as in LCF) are metalanguage constructs
which are used to generate inferences in an underlying formal logic. Thus, a
proof in the sense of a proof strategy (a procedure expressed as a structure of
metalanguage tactics), when applied successfully to a goal, generates a proof
in the sense of a chain of primitive inferences culminating in the desired
theorem. Proof accounts explain ‘proofs’ in the former sense.

Generally, top-down (goal oriented) proofs in HOL can be represented by
tree structures of ‘proof steps’, where each step is a tactic. A tactic can be:

e One of HOL’s built-in tactics

e The result of applying a tactic-valued function when applied to argu-
ments of appropriate type

e A combination (such as alternation) of existing tactics

e A tactic implemented directly in the metalanguage by a user?.

The tactics are composed into a tree structure via the metalanguage com-
binators THEN (for sequencing) or THENL (for selective sequencing). Thus, for
tactics Ty, Ty, - - -, Ty:

e 1) THEN T; is a tactic which, given a goal, first applies T} to the goal,
then applies T5 to each resulting subgoal.
e T THENL [Ty; -+ T,] is a tactic?

which, to produce its results given a goal, first applies T; respectively
to the 7 results, for ¢ from 2 to n.

!The HOL (higher order logic) system is a system designed by Mike Gordon for helping
to automate formal proofs in higher order logic. It is based on Robin Milner’s LCF system.

2This last possibility, however, is not considered in this paper.

3This notation denotes the list of elements shown.



Given an initial goal, each step of a proof results in a set of intermedi-
ate subgoals, which, if and when established, are adequate to establish the
original goal. That is, each proof step computes the function which will map
the established subgoals (i.e. theorems) back to a theorem establishing the
original goal, via logical inference. Goals are decomposed successively in this
way until they yield axioms or previously proved theorems; then the inter-
mediate functions are applied to construct a chain of theorems culminating
in the theorem establishing the initial goal.

Proofs in HOL are typically performed during interactive sessions in which
tactics are applied to successive goals, in the context of a HOL theory*. Dur-
ing a successful interaction, the user is made aware of intermediate subgoals
as they are generated by tactics; and in due course, of the theorem that estab-
lishes each subgoal. However, this information is ephemeral, and is available
only at certain times during the interactive session. In the end, all that can
be preserved of the working session within the HOL theory is the final theo-
rem itself. This is adequate in that the type system of HOL’s metalanguage
assures that no theorem can be computed except by inferences in the logic;
and the logic itself has been shown consistent (Pitts, manual ref). However,
should a user wish to know more about the way in which a proof was accom-
plished after the working session is finished, none of the intermediate goals
or theorems will have been saved in the relevant HOL theory.

As the HOL system stands, the only persistent record that can be kept of
the way in which a formal proof was produced is the text file that a user keeps
— optionally, of course — in order to document the interactive session. (Most
users do preserve, in some systematic way, the metalanguage procedures that
prove their theorems.) Records of this sort are, however, extraneous to the
formal logic or any theory extending the logic; they associate only informally
with such theories.

In any case, the metalanguage text which generates a proof is not neces-
sarily, in itself, a useful explanation of the proof strategy. Comments added
by the user may help, but inserting comments by hand is tedious, difficult to
do in adequate detail, and not guaranteed to be accurate. The metalanguage

4A HOL theory corresponds to a logical theory in the standard sense of an extension
of a logic via well-founded definitions and deduced theorems.

5This use of the type discipline of the metalanguage was Milner’s key idea in the LCF
system. It dispenses with the need to preserve primitive inference sequences, but without
loss of security.



text itself may not be accurately saved, or wholly intelligible to a reader in
certain situations. This is so particularly

For longer or more complex structures of tactics
For theorem-proving based, technical or HOL-specific tactics

When proof steps are specified as the result of tactic-valued functions
applied to appropriate arguments (such specifications may be arbitrar-
ily nested and complex)

When tactic-valued functions produce tactics which obscure individual
proof steps

For context or implementation dependent tactics (e.g. a tactic which
refers to the ‘third current assumption’)

For combined tactics (e.g. combined by the operator ‘ORELSE’)

When previously proved lemmas are denoted simply by name, or are
computed in situ

When parallel branches of a proof are treated simultaneously by non-
branching strategies

When expert HOL users rely on personal styles of tactical proof not
familiar to other users.

In this paper, we propose what we hope is an intelligible, accurate and
informative style of documentation of goal oriented proofs, and a method for
deriving proof explanations in this style automatically upon the application
of tactics to goals. The purpose of these proof accounts is to clarify and doc-
ument successfully completed HOL proofs in a style free from HOL-related
or theorem-prover based terms and concepts; that is, as close in spirit as
is possible to textbook style proof presentations without involving natural
language expertise.

Possible future applications of proof accounts might include

Debugging user-designed tactics



e Tools for teaching HOL

e Tools for improving successful proofs.

Further possible applications are discussed in ... .

Although this paper is probably of most interest to HOL users, and does
not contain a presentation of the HOL system, we hope that the main ideas
will be clear to other interested readers. Documentation of the HOL system
may be found in ().

All of the example sessions and remarks pertain to Version 11 of HOL
(1990). Minor modifications for Version 12 (1991) are currently in progress.

1.1 The HOL System
1.1.1 The Metalanguage and Logic

LCF-based systems such as HOL are built around (i) a sequent calculus,
and (ii) a programming language (ML, for metalanguage) in which objects
of the calculus can be represented and computed. In particular, terms and
theorems of the logic can be denoted, and proofs can be computed. This
is done by representing rules of inference as metalanguage functions which
map theorems (sometimes with various parameters) to new theorems; and
implementing these functions as ML procedures.

ML’s type system plays an essential role in enabling theorems to be pro-
tected as abstract types. Thus, one may inspect the conclusion or hypotheses
of a theorem (i.e. decompose a theorem into its syntactic parts) but may not
construct a theorem from its parts; theorems can be produced only by ap-
plication of functions expressing rules of inference.

In recent years, the language ML has been interfaced to several logics in
the hope of assisting in the proof of theorems in these logics. The original
logic (PPLAMBDA) of the LCF system was intended for proofs about recur-
sive functions defined in domains, which are useful in algorithm and software
verification. In HOL, a version of Church’s higher-order predicate calculus
(also called HOL) is used. This is intended for proofs about digital systems,
and for other areas in which the issues of definedness and termination are
less central. The Nuprl system (...) uses the logic ITT (intuitionistic type
theory).



For many applications, the full expressiveness of a general-purpose pro-
gramming language is not necessary; a set of primitive proof-building oper-
ations would suffice. One of the capabilities which ML, as a full program-
ming language, provides — for users experimenting with proof methods, proof
styles, automation, and so on — is a way to express and test informal proof
strategies of their own design. These strategies can be anything from very
simple proof techniques (for example: “In order to prove P, assume —P and
prove falsity”) to sophisticated searching heuristics. However, this paper
restricts itself to HOL’s main built-in tactics.

1.1.2 Goal Oriented Proof

In both simple and complex cases, the LCF-HOL methodology is geared to
the natural ‘backward’ style of proof often used in textbook presentations:
proceding from goal to subgoals via strategies, until recognizably trivial sub-
goals are reached. Each stage of the decomposition is accompanied by a
gustification function in which is embedded the inference pattern enabling
the move from established subgoal to established goals. The justification
is again a function: it maps the set of theorems purporting to achieve the
respective subgoals to the theorem achieving the original goal — by invoking
the inference pattern in question. (A theorem is said to achieve a goal if the
conclusion of the theorem is the term of the goal, up to alpha-conversion,
and the hypotheses of the theorem are a subset of the assumptions of the
goal.)

There are therefore two stages in a tactical proof: the search stage, in
which successive subgoals are generated until (and if) axioms or previously
established subgoals are produced; and the justification stage in which the-
orems achieving goals are deduced in succession from theorems achieving
their subgoals, via formal inference. These are often thought of as reverse
processes, the first producing and working down a tree structure of subgoals,
and the second working back up to the original goal.

This proof style, of course, is really no more than a convenient way of pre-
senting a proof, and of dressing the ‘real’ proof, namely, the sequence of theo-
rems culminating in the desired theorem, where each theorem in the sequence
is either an axiom or is a consequence of earlier theorems in the sequence.
The style conceals from the user the book-keeping process through which
the real proof is contructed as the subgoals are decomposed and eventually

10



achieved. Thus the simple strategy above (“In order to prove P, assume —P
and prove falsity”) is a presentation of the inference rule: “From the theorem
asserting falsity, under the assumption that P is false, derive the theorem
asserting P”; the strategy packages the inference rule in a convenient way.
The sequences of theorems culminating in a given theorem are not recorded
as a result of performing a goal oriented proof; they are simply computations
occurring in time. That is, the function representing each inference rule used
is applied to arguments, which in turn means that the ML procedure rep-
resenting that function is executed. Because inferences are represented as
functions, the proof (in the sense of the inference sequence) is an ephemeral
part of the computation which represents the goal oriented proof effort.
Proof accounts are based on enhancements of the metalanguage types of
goals, tactics and justifications which allow sufficient additional information
to be recorded for an explanation of the proof to be generated and preserved.

1.1.3 The Subgoal-Theorem Tree

The tree structure of successive subgoals — together with a record of the proof
steps leading from goals to subgoals, and the theorems achieving the various
goals — is a concept which is always in the background when tactical proofs
are performed in HOL. For example, application of the tactic encoding the
strategy above (“In order to prove P, assume —P and prove falsity”) to an
appropriate goal would always produce exactly one subgoal, and this would
be achieved by one theorem; the usual numerical induction tactic would
produce two subgoals (the base and step cases); case analyses would produce
at least two, and so on. However, such trees are neither represented explicitly
in HOL nor open to exploration®.

The structure of achieving theorems forms an essential part of the tree.
In a successful top-down proof, there is, for each node (i.e. goal) of the
tree, starting at the leaves, a theorem achieving that goal. Where one goal
diverges (under the application of a tactic) into several subgoals, the several
achieving theorems converge (by inference) to produce one theorem. Thus
the numerical induction strategy would induce two subgoals when applied to

6The subgoal package in Version 11 of HOL, which is an add-on facility, can be used
to manage the subgoal-theorem tree during a working session; it is based on a stack
representation of the tree. Again, however, this stack is not open to exploration by users;
nor is it explicit, or preservable

11



a goal, and a justification function. The justification function at that node
would accept the two achieving theorems and produce the theorem achieving
the original goal.

The whole tree structure representing the proof thus includes the proof
steps, the subgoals, and the achieving theorems. Proof accounts are based
on an explicit and preservable representation of this structure of goals, proof
steps and theorems.

1.2 An Example Textbook Proof

To give an idea of the textbook style to which proof accounts aspire, we
give some fragments of a real example. The proof from which these are
taken is from “The Higher Arithmetic” by H. Davenport. The proof is of the
uniqueness of prime factorization.

Theorem: Any natural number can be represented in ... only one way as a
product of primes.

Proof: We prove the uniqueness of factorization by induction. This requires
us to prove it for any number n, on the assumption that it is already estab-
lished for all numbers less than n. If n itself is a prime, there is nothing to
prove. Suppose, then, that n is composite, and has two different representa-
tions as products of primes, say

) ) )

n=pqr--=p q r -

where p, ¢, r, --- and p’, ¢’, r’, --- are all primes. The same prime can-
not occur in both representations, for if it did we could cancel it and get
two different representations of a smaller number, which is contrary to the
induction hypothesis.

Now consider the number n - p p’. This is a natural number less than n,
and so can be expressed as a product of primes in one and only one way.

This contradiction proves that n has only one factorization into primes.

12



This presentation of the proof has the following features:

e The presentation is in sophisticated but still stylized English, using
standard phrases such as “This requires us to prove ---7, “Suppose,
then, that---” and “Now consider - --”.

e [t is generally presented in a goal oriented style, and this requires the
reader to maintain his location in the implied subgoal tree (and hence
to understand the scope of assumptions such as “Suppose, then, that
n is composite”).

e Within the goal oriented format there are intervals of forward reasoning;
for example, “Now consider the number n - p p’. This is a natural
number less than n, and so ---”.

e Minor steps are omitted in places; for example, “If n itself is a prime,
there is nothing to prove” — there is, of course.

e The presentation is cast in purely problem-related and logical terms —
i.e. it refers to numbers and their properties; to patterns of reasoning
such as proof by contradiction; and to standing assumptions such as
the induction hypothesis — but to nothing more technical in the realm
of theorem-proving.

Our aim is to produce proof accounts which have as many of these prop-
erties as possible without approaching the natural language issues. That is,
we will be satisfied with pre-packaged phrases in a tiny subset of English, as
long as the explanations are structured in something approaching the con-
ventional style, and depend on similar concepts.

1.3 Design Decisions

The current prototype accounting facility rests on the following design deci-
sions:

e The facility is not interactive in the first instance; i.e. is not intended to

be used whilst developing a proof, but rather to generate explanations
of successfully completed proofs.

13



e The proof explained is the proof in the sense of the strategy rather than
the proof in the sense of the inference sequence. A proof step is taken
to be a tactic without internal sequencing. These tactics are taken to
be the main proof steps.

e There is an explicit data structure to represent subgoal-theorem trees
with proof steps. Each account is a presentation of an instance of this
data structure.

e The construction of this tree is separated from its presentation. That
is, there is an internal representation of the tree, as well as a set of
printing functions for producing a readable rendition.

e We attempt to capture the character of the textbook prose but without
any natural language capabilities.

e For the present, the basic HOL tactics are re-implemented to produce
accounts, and for this purpose are given distinct names.

Improvements and elaborations are discussed in ().

1.4 Related Work

The only other similar explanation facility we know about is the one provided
for the Boyer-Moore theorem-prover (). As we understand it, the present
facility differs from that one in the following ways:

e The Boyer-Moore facility explains the action of the (automatic) theo-
rem prover as it searches for a proof. Though it searches very efficiently,
the explanation is still given in terms of the search rather than of the
proof directly. The facility for HOL aims at explaining the proof found
rather than the search process.

e The Boyer-Moore system produces explanatory text in real time, as the
proof search is in progress. Ours re-runs completed proofs in order to
generate explanations.

e The Boyer-Moore facility does not (apparently) construct an explicit
internal respresentation of an explanation, but rather, produces frag-
ments of explanation as a side effect of the proof search. We do aim

14



at constructing an internal representation — which can itself be trans-
formed, printed, etc.

e The Boyer-Moore facility does give attention to the quality of the nat-
ural language produces, while ours does not.

2 The Basic Idea

In this chapter we give an example of a successful proof session in HOL and
show, for this proof, the style and content of the explanation being proposed.
The accounting facility uses HOL’s methods of subgoal decomposition and
proof assembly to generate a proof account as a side-effect of performing a
goal oriented proof. The information preserved makes it possible to identify
certain key ‘proof events’ such as the solution of a subgoal, the splitting of
a goal into subgoals, proof by contradiction, assumptions made behinds the
scenes, and invalid use of lemmas.

In the following HOL session, a simple theorem is proved: the associativ-
ity of addition. (This is actually one of the theorems that is already proved in
the theory of arithmetic when HOL is entered.) The proof uses the theorem
called ADD_CLAUSES:

ADD_CLAUSES

[- (0 +m=m) /\
(m+ 0 =m) /\
((SUC m) + n = SUC(m + n)) /\
(m + (SUC n) = SUC(m + n))

This is the HOL session in which the theorem ADD_ASSOC is proved’.
#let g=[1,"mnp. m+ (n+p) = (m+n)+p";;
g= (0, "mnp. m+ (n+p)=(>m+n)+p") : (x list # term)

#let tac = INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES];;
tac = - : tactic

#let gl,p = tac g;;

gl = []1 : goal list

p = - : proof
#let ADD_ASSOC = p[1;;
ADD_ASSOC = |- mnp. m+ (n+p) = (m+n) +p

"In the sessions that follow, we use HOL in mode in which hypotheses of theorems
are printed in full; the ML top level printing function has been set to print hypotheses of
theorems in full.

15



In this session, a goal, g, is first constructed; it consists of the term to
be proved (namely, "!mn p. m + (n + p) = (m + n) + p"), together with
a list (initially empty) of assumptions which may be used subsequently. A
tactic (tac) is applied to the goal; the tactic is a function. The tactic is
formed by sequencing two of HOL’s built-in tactics: a tactic INDUCT_TAC,
which implements the numerical induction strategy, and a tactic of the form
ASM_REWRITE_TAC [, (where [ is a list of theorems), which implements the
strategy of rewriting (simplifying) using (i) the theorems in the list [, (ii) any
of HOL’s built-in basic rewriting theorems, and also (iii) any assumptions of
the goal in question® (hence the ‘ASM_’ — the tactic RENRITE_TAC [ would not
use the assumptions of the goal).

The application of tac to g yields a list of goals (gl), together with a
justification function (p). The list of goals represent the collection of sub-
goals which, if all achieved, would suffice to achieve the original goal. The
justification function maps the list of theorems (respectively) satisfying the
subgoals to a theorem achieving the original goal. The mapping consists of
a sequence of inferences leading from the given theorems to the desired theo-
rem. Thus, the interaction consists in two stages: the generation of subgoals
until there are no more subgoals; and the construction of the proof through
inference, based on the various justification functions.

The theorem produced can be named and preserved for future use as part
of the logical theory in which it was established; and the text of the tactic
can be saved in a file (outside of the logical theory); but that is all that can
be preserved of the proof process and proof session.

The tactic (tac) in this case is so simple that at first sight it would seem
to point directly to a proof explanation — which might read:

To prove "!'mn p. m + (n + p) = (m + n) + p", do induction on m, and
then, for all resulting cases, simplify with the fact ADD_CLAUSES, with any
current assumptions, and with the basic tautologies.

However, the explanation does not follow so obviously from examination of
tac. First, the fact that the proof is by induction depends on associat-
ing the ML function name ‘INDUCT_TAC" with the strategy of mathematical
induction. Second, it actually requires some thought to perceive that the

8The assumptions are represented as terms t, so for purposes of rewriting they are
considered as theorems of the form ¢ F ¢
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induction step produces two subgoals even though the goal is solved by a
‘linear’ sequence of steps. It also takes some thought to realize that an in-
duction assumption applies in the step case, but not in the basis case (and
hence that ASM_REWRITE_TAC amounts to REWRITE_TAC in the basis case). It
requires further thought to state the induction hypothesis precisely. Finally,
the name ‘ADD_CLAUSES’ does not immediately reveal the theorem or defini-
tion denoted by that name. If the tactic were more complex, the pattern of
reasoning indicated might be even less obvious.

An equivalent tactic could be formed in this case by selective sequencing;
this makes the underlying tree of subgoals, and hence the explanation, a little
clearer:

#let gl,p =
(INDUCT_TAC

THENL [ASM_REWRITE_TAC[ADD_CLAUSES];ASM_REWRITE_TAC[ADD_CLAUSES]]) g;;
##gl = [1 : goal list

p = - : proof
#let ADD_ASSOC = p[l;;
ADD_ASSOC = |- 'mnp. m+ (n+p) = (m+n) +p

but this form is verbose and thus often avoided.

Some further information is revealed by generating the proof in stages.
(Normally, the subgoal package would be used to do the book-keeping seen
here.) The head and tail of the list (g11) of induction subgoals are computed
respectively by the ML functions hd and t1. Subsequent subgoal lists and
justification functions are named as shown:

#let gll,pl = INDUCT_TAC g;;
gll =

[(([], "'np. 0O+ (n+p)=(0+mn)+p")
("np.m+ (n+p)=(m+n) +p"l,
"In p. (SUC m) + (n +p) = ((SUC m) + n) + p")]
: goal list
pl = - : proof

#let gl2,p2 = ASM_REWRITE_TAC[ADD_CLAUSES] (hd gl1);;
gl2 = [] : goal list

p2 = - : proof
#let th2 = p2[];;
th2 = |- Inp. 0+ (n+p) =(0+mn)+p

#let gl3,p3 = ASM_REWRITE_TAC[ADD_CLAUSES] (hd(tl gl1));;
gl3 = [] : goal list
p3 = - : proof

17



#let th3 = p3[];;
th3 =
mp.m+ (n+p)=(m+n)+p

[- 'np. (SUCm) + (n+p) = ((SUCm) +n) +p

#let ADD_ASSOC = pi1[th2;th3];;
ADD_ASSOC = |- 'mnp. m+ (n+p) = (m+n) +p

Here, the list of subgoals, g11, shows explicitly the two intermediate sub-
goals produced by the induction step, and it can be seen how each is sub-
sequently affected by the rewriting step, and finally achieved by a theorem.
However, though they can be viewed, the goals, steps and theorems are nei-
ther structured into a tree nor preserved, but are simply bound to ML iden-
tifiers for the duration of the particular HOL session in which they occur.
The meaning of the name ADD_CLAUSES is still not explicit; and the reasoning
pattern denoted by ‘INDUCT_TAC’ still depends on knowing the names and
effects of the built-in ML functions.

The completed tree, if it could be seen now, might look something like
this?:

goal: [1,"'mnp. m+ (mn+ p) = (m+ n) + p"
achieved by: |- mnp. m+ (n+p) = (m+n) +p
advanced by proof step: INDUCT_TAC

goal: [], goal: ["'np. m+ (n + p) =
"Inp. 0+ (n+p)= (m + 1) + p"],
(0 + n) + p" “In p. (SUCm) + (n + p) =
((SUC m) + n) + p"
achieved by: |- 'np. 0 + (n + p) = achieved by: Inp. m+ (n+p) =
(0 +mn) +p (m +n) +p

|- 'np. (SUCm) + (n +p) =
| ((SUC m) + n) + p
|
|
|

solved by proof step: solved by proof step:
ASM_REWRITE_TAC[ADD_CLAUSES] ASM_REWRITE_TAC[ADD_CLAUSES]

9How it ‘looks’ depends on the conventions for displaying it, of course.
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Using the subgoal package!®, the subgoal-theorem tree is represented (but
only implicitly within HOL) using stacks. However, the tree cannot be
searched or examined, except by proceding with (or undoing) the interac-
tive proof, and it cannot be preserved; and the problems of ADD_CLAUSES and
INDUCT_TAC still remain. In the session below, the command set_goal has
the side effect of putting a goal on the goal stack, and a command of the form
expand tac applies tac to the goal at the top of the stack. Sibling subgoals are
stacked in left-to-right order, and the subgoal tree is traversed in left-to-right
order. A useful reminder of the next remaining subgoal is printed when a
goal is achieved. (Note that the hypotheses of a theorem is printed as ‘.’.)
#set_goal([l,"!'mn p. m+ (n + p) = (m + n) + p");;

"mnp. m+ (n+p)=(m+n)+p"

O : void

#expand INDUCT_TAC;;

gKéﬁbgoals

"In p. (SUC m) + (n + p) = ((SUC m) + n) + p"
["'mnp.m+ (n+p)=(mn+n)+p"]

"Inp. 0+ (n+p)=(0+n)+p"

) : void
#expand(ASM_REWRITE_TAC[ADD_CLAUSES]);;
0K

goéi proved
[-'np. 0O+ (n+p) =( +n) +p
Previous subproof:

"In p. (SUC m) + (n + p)
["'np. m+ (n+ p)

((SUC m) + n) + p"
(m + n) +p" 1]

) : void
#expand(ASM_REWRITE_TAC[ADD_CLAUSES]);;
0K

goéi proved
|- 'np. (SUCm) + (n +p) = ((SUCm) +n) +p
[-'mnp. m+ (n+p) =(@m+mn) +p

Previous subproof:
goal proved
() : void

The proof account facility produces the following explanation of the same
proof. It does so as a result of applying to a goal based on the original goal a

106f HOL Version 11 — that of HOL Version 12 is more sophisticated
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tactic based on the given tactic. The marker >>>> indicates a proof step, and
>>, a goal to be achieved. The subgoal tree is presented depth-first, left to
right. Theorems are shown as they are achieved. Each return to a pending
subgoal is remarked:

This is the proof of the conjecture
>> ADD_ASSOC:
"Imnp. m+ (n+p)=(m+n)+p"

>>>> The proof is by mathematical induction on "m".
This gives two cases to prove, the basis and step:

>> basis:
"Inp. 0+ (n+p)=(0+mn)+ p"
>> induction step:
"In p. (SUC m) + (n + p) = ((SUC m) + n) + p"
Assuming
The induction hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the
>> basis:
"Inp. 0+ (n+p)=(0+mn) +p"
is as follows:
>>>>"This follows by using the equality,
|- (0 +m=m) /\
(m + 0 =m) /\
((SUC m) + n = SUC(m + n)) /\

(m + (SUC_n) = SUC(m + n))
basic logical identities, and the assumptions made thus far.

This establishes
[-'np. 0O+ (n+p) =( +n) +p

The proof of the
>> induction step:
"In p. (SUCm) + (n +p) = ((SUCm) +n) + p"

Assuming
The induction hypothesis: "!n p. m+ (n + p) = (m + n) + p"
is as_follo
>>>> This follows by using the equality,
|- (0 +m=m) /\
(m + 0 =m) /\

((SUC m) + n = SUC(m + n)) /\
(m + (SUC_n) = SUC(m + n))
basic logical identities, and the assumptions made thus far.
This establishes

Inp. m+ (n+p)=(@m+n) +p
[- 'np. (SUCm) + (n+p) = ((SUCm) +n) +p

This establishes

20



[-'mnp. m+ (n+p) =(@m+mn) +p

This completes the proof of the conjecture
>> ADD_ASSOC:
"Imnp. m+ (n+p)=(m+n)+p"

In other words, all the information that is implicit or ephemeral in the
interactive proof session, or simply bound to ML identifiers in an ad hoc way,
is now explicitly structured and saved. Because it is saved, it can be printed
in a readable form for later inspection and study.

To produce the account shown, the whole tree structure of intermediate
subgoals, proof steps and and achieving theorems that is generated when a
tactic is applied to a goal is preserved in an internal form. Thus, the meaning
of names such as ADD_CLAUSES can be shown; separate branches of the tree
(such as the branching into two cases that is caused by the induction proof
step) are shown individually, even when the tactic is not phrased that way.
After the printing of one branch of the tree, a reminder can be given of the
next pending branch. ML identifiers such as ‘INDUCT_TAC’ are referred to by
their meaning and effect rather than simply by name. Most importantly, the
account avoids using HOL-specific terminology or concepts. For example,
reference is avoided to goals and subgoals, current assumptions, tactics, and
rewrite rules.

The account is produced in the following way: First, the ML type of a goal
is modified to include more information, such as a name for each assumption
of the goal, and a name for the whole goal (useful when more than one
subgoal is produced at some stage). A new type, account, is introduced to
represent subgoal-theorem trees. Justifications are reconceived as mapping
lists of accounts (of subgoals) to an account (of the original goal). Next, the
ML type of a tactic is modified to map a new type goal to a list of new type
subgoals together with a new type justification. Finally, a suite of printing
functions is written in ML to enable the subgoal-theorem trees to be output
in an understandable format.

Further whole and partial examples of accounts occur throughout this
paper.
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3 The Extended ML Types

The accounts depicted in the previous chapter are based on more elaborate
types of goals, tactics, and justifications than exist in HOL itself. The new
types enable enough information to be stored during the performance of a
goal oriented proof to generate a comprehensible explanation afterwards.

In the existing system, the following expressions introduce the types for
justifications (proofs), goals and tactics, respectively:

lettype proof = thm list -> thm ;;
lettype goal = term list # term;;
lettype tactic = goal -> ((goal list) # proof);;

A goal is a term together with a list of current assumptions; and a tactic
maps a goal to a list of subgoals and a justification, where the justifica-
tion maps the theorems achieving the subgoals to the theorem achieving the
original goal.

For the purpose of producing accounts, a new type, named goal, is intro-
duced (via a constructor function):

type named_goal =
mk_named_goal of string # (string # bool # term) list # term;;

A named goal of the form mk_named_goal(s,sbtl,t) corresponds to an ordinary
goal tl,t, where the list of third components of the elements of sbtl is simply
tl. That is, each assumption of a named goal is accompanied by a name
(i.e. a string) and a boolean value (whose purpose is explained later); and
each goal itself has a name (a string). The names are used in the printing of
accounts to identify certain assumptions, and to distinguishe among multiple
subgoals.

To specify the structure of an account, we first introduce a type for proof
steps:

lettype proof_step =
string # term list # thm list;;

The string part of a proof step identifies the function comprising the step

(that is, a tactic or a tactic-valued function); while the lists of terms and
theorems allow for parameters to be recorded (in case the function comprising
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the step is not a tactic but a function mapping a term to a tactic, a theorem
to a tactic, etc).

An account is defined recursively as consisting of a proof step (which acts
on a goal), together with a list of the named subgoals induced by that step;
a list of sub-accounts of the respective subgoals; and a theorem (purporting
to achieve the original goal):

rectype named_account =
mk_node of proof_step # (named_account list) # (named_goal list) # thm;;

An auxiliary function extract_theorem selects the theorem component of an
account. It is defined by:

let extract_theorem ac =
let mk_node(ps,al,gl,th) = ac in th;;

The relation of achievement between a theorem and a goal is the same
here as in HOL.

In the new scheme, a justification (named proof) function simply maps a
list of (sub)accounts back to an account:

lettype named_proof =
(named_account)list -> named_account;;

This subsumes the justification in the HOL sense since each account includes
a theorem (as its fourth component).

A tactic, finally, maps a named goal to a list of named subgoals and a
justification function:

lettype named_tactic =
named_goal -> (named_goal list) # named_proof;;

The recursiveness of accounts means that an account is a tree structure.
This gives an explicit internal representation of the subgoal-proof tree asso-
ciated with a goal oriented proof. A readable version then can be produced
by a suite of print functions. These can be arbitrarily sophisticated — for ex-
ample, choosing to present only ‘important’ proof steps, and doing so using
natural language expertise. However, we consider only a simple presentation
in this paper, presenting every proof step, and doing so using unvarying,
stored phrases. Even so the print functions are rather complicated.
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There are two modes of printing named goals, one for goals which are
either one of several goals to be printed together, or are the initial goals
in a proof; and one for solitary and non-initial goals. In either case, goals
are identified with the symbol >>. The term is printed first (using HOL’s
function for printing terms); then the labelled assumptions are announced
and printed (using HOL’s string and term printing functions).

For example, the following is a named goal whose account was displayed
in the previous chapter ():

mk_named_goal (‘ADD_ASSOC‘, [1, "'mn p. m+ (n + p) = (m + n) + p")

The induction tactic was applied to this goal to yield two subgoals. The
induction step subgoal is printed as follows, since it is one of two subgoals
produced at once:

>> induction step:
"In p. (SUCm) + (n +p) = ((SUCm) +n) + p"
Assuming
The induction hypothesis: "!n p. m+ (n + p) = (m + n) + p"

Printed as an only, non-initial goal it would look the same but without the
name of the goal:

> "In p. (SUC m) + (n + p) = ((SUC m) + n) + p"
Assuming
The induction hypothesis: "!n p. m + (n + p) = (m + n) + p"

There are also two modes of printing proof steps: one for steps which
advance a goal and one for steps which solve it. In either case, proof steps are
identified by the symbol >>>>. The function which prints a proof step looks
up the string identifying the step. This produces the appropriate phrases
for explaining that step. The elements lists of term and theorem parameters
may appear in the printed result. For example, the induction step of the
proof in question is

(‘NAMED_INDUCT_TAC‘, ["m"]1, [1)

and that step is presented as follows, including the term parameter m:

>>>> The proof is by mathematical induction on "m".
This gives two cases to prove, the basis and step:
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This step advances rather than solves the goal, and is worded accordingly. In
contrast, the induction case is subsequently solved by applying a rewriting
tactic which uses any relevant current assumptions as well as an existing
theorem of arithmetic. The rewriting proof step is

(‘NAMED_ASM_REWRITE_TAC®,

[I- (0+m
(m+ 0
((SUC m) + n = SUC
(m + (SUC n) = SUC

[I]
B8
N
~
-~

e

and is printed as follows, including the theorem parameter shown:

>>>> This follows by using the equality,

[- (0 +m=m) /\
(m+ 0 =m) /\
((SUC m) + n = SUC(m + n)) /\

(m + (SUC_n) = SUC(m + n)) )
basic logical identities, and the assumptions made thus far.

An account is presented (recursively) relative to a goal. Given a goal
and an account of its proof, the print function first prints the proof step
component of the account (i.e. the top node of the subgoal-proof tree). That
is either the only node of the tree (meaning that the goal was solved in
one step) or not (meaning that the goal is just advanced by the step); the
appropriate mode is thus selected for printing the proof step.

Second, the subgoal list component of the account is printed. Depending
on whether the list contains just one or more than one subgoal, the appro-
priate mode is selected for printing the element(s) of the subgoal list.

Third, the subaccounts are printed (recursively), relative to the respective
subgoals. This is accomplished by announcing, for each subgoal-subaccount
pair, that the proof of the subgoal is about to follow; then printing the
subgoal followed by the subaccount. (Where there is only one such pair, the
announcement and the repeated printing of the subgoal are omitted.)

Finally, the theorem achieving the original goal is announced and printed.
Where the theorem does not in fact achieve the goal, a message to that effect
is also printed; an example of this contingency is shown in ().

In the example case, the original goal is

mk_named_goal (‘ADD_ASSOC‘, [1, "mnp. m+ (n + p) = (m + n) + p")
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and the internal representation of the whole account is

mk_node (( *NAMED_INDUCT_TAC‘, ["m"]1, [1),
[mk_node ((‘NAMED_ASM_REWRITE_TAC®,

[I- (0+m
(m+ 0
((SUC m) + n = SUC(m + n)) /\
(m + (SUC n) = SUC(m + n))]),

I
8
N
~
-~

0,

1,

|- lnp. 0O+ (mn+p)=(0+mn) +p);
mk_node ((*NAMED_ASM_REWRITE_TAC®,

[I- (0 +m=m) /\
(m+ 0 =m /\
((SUC m) + n = SUC(m + n)) /\
(m + (SUC n) = SUC(m + n))]),
1,
I,

|- 'np. (SUCm) + (n+ p) = ((SUCm) +n) +p)l,
[mk_named_goal(‘basis‘, [1, "!np. 0 + (n + p) = (0 + n) + p");
mk_named_goal(‘induction step‘,
[(‘induction hypothesis‘,
true,
"Inp. m+ (n+p)=(m+mn)+pM)],
"In p. (SUCm) + (n + p) = ((SUC m) + n) +p")],
|-'mnp. m+ (n+p)=(m+mn) + p)

The whole account is thus printed as follows:

>>>> The proof is by mathematical induction on "m".
This gives two cases to prove, the basis and step:

>> basis:
"Iln p. 0+ (n+ p) =(0+mn) + p"

>> induction step:
"In p. (SUC m) + (n + p) = ((SUC m) + n) + p"
Assuming
The induction hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:
"In p. 0+ (n+ p) =(0+mn) + p"

is as follows:
>>>> This follows by using the equality,
|- (0 +m=m) /\
(m + 0 =m) /\
((SUC m) + n = SUC(m + n)) /\
(m + (SUC_n) = SUC(m + n)) )
basic logical identities, and the assumptions made thus far.
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This establishes
[-'np. 0O+ (n+p) = (0 +n) +p
The proof of the
>> induction step:
"In p. (SUCm) + (n + p) = ((SUC m) + n) + p"
Assuming
The induction hypothesis: "!n p. m+ (n + p) = (m + n) + p"

is as follows: . .
>>>> This follows by using the equality,

[- (0 +m=m) /\
(m+ 0 =m) /\
((SUC m) + n = SUC(m + n)) /\

(m + (SUC_n) = SUC(m + n)) .
basic logical identities, and the assumptions made thus far.

This establishes

Imp.m+ (n+p)=(m+mn)+p

[- 'np. (SUCm) + (n+p) = ((SUCm) +n) +p
This establishes

[-'mnp. m+ (n+p) =(@m+mn) +p

In contexts in which an account to be printed is a top level account rather
than a subaccount of another, a prologue and epilogue are printed around
the rest of the printout. Here, the prologue is

This is the proof of the conjecture
>> ADD_ASSOC:
"Imnp. m+ (n+p)=(m+n)+p"

and the epilogue is

This completes the proof of the conjecture
>> ADD_ASSOC:

"!mnp.m+ (n+p)=(mn+n) +p"
This produces the whole account shown in the previous chapter. The al-
gorithm described for printing accounts determines the order in which the
nodes of the subgoal-proof tree are printed: the tree is traversed depth first
and left to right. This method of printing a (tree-structured) account has the
advantage of producing a ‘flat’ result rather than a result mirroring the tree
structure by use of indentation or other device, which is useful, as the ac-
counts can be indefinitely deep. The method also maintains indicators of the
original tree structure by repeating each subgoal before giving its account,
where there is more than one subgoal to be presented.

Further examples of printed accounts are shown throughout the paper.
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4 Elementary Tactics

For the purpose of generating proof accounts, the tactics provided in HOL
can be represented by three groups of corresponding named tactics:

1. Simple tactics which mirror the corresponding standard tactics, merely
elaborating them with names for their relevant values;

2. Complex tactics which use the corresponding standard tactics, but
which then further process the results into more meaningful formats;

3. Tactics whose relation to natural patterns of reasoning is distant, and
for which generating accounts raises philosophical problems; these can-
not be implemented along the lines of the corresponding standard tac-
tics.

This section and Section (...) address the first group; Sections (...), (...)
and (...) address the second group; and Sections (...), (...) and (...) address
the third.

In producing an account of the application of a tactic to a goal, it is
useful to know something about the possible outcomes of the application.
A particular tactic, when applied to a goal, either produces some number
of subgoals (together with a justification), or else it raises an exception (i.e.
fails). Where a tactic succeeds on a goal, the number of subgoals produced
may be fixed for the tactic, or it may vary indefinitely, depending on the goal.
Some tactics have the capacity to solve goals; i.e. to produce no subgoals
(together with an appropriate justification). Other tactics are able to advance
goals (i.e. to produce one or more subgoals); some can do either. Finally,
a tactic that advances a goal can do so by producing subgoals either with
changed lists of assumptions, or with changed terms — or both.

Based on the possible outcomes of applying a tactic to a goal, a scheme
for comprehensibly presenting the proof step it represents, and the subgoals
it induces, can be designed. The treatment of a few simple tactics illustrates
the methods and the range of issues involved.

4.1 The Implementation of Named Tactics: (GEN_TAC)

In this section, we sketch the way in which simple named tactics are imple-
mented to produce accounts. GEN_TAC is used as an example.
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The tactic GEN_TAC maps a goal with a universally quantified term (i.e.
a term of the form !'z.¢[z] to a list with just one subgoal, whose term is
instantiated to the bound variable (or, if necessary, a fresh variable not free
anywhere in the goal). That is, the new term is of the form ¢[z’]. GEN_TAC
fails on goals whose terms are not universally quantified; where it succeeds
it produces a subgoal list of fixed length (one). GEN_TAC changes the term of
a goal, where it succeeds, but never the assumption list. It cannot solve a
goal, but only advance one.

The use of GEN_TAC is illustrated in the example below. Two new predi-
cates, DIVIDES and PRIME, are defined here:

DIVIDES_DEF = |- !m n. m DIVIDES n = “(m = 0) /\ (?7q. ¢ * m = n)

PRIME_DEF =
|- 'n. PRIMEn =n>1/\ (!m. m DIVIDES n ==> (m = 1) \/ (m = n))

Suppose that a goal, g, is introduced, as shown below, and that GEN_TAC is
applied to g to give a list (gl1) of one subgoal, and a justification function
(p1):

let g = [1, "'!n. (n > 1) ==> (?p. (PRIME p) /\ (p DIVIDES n))";;

g= ([0, "!n. n >1 ==> (?p. PRIME p /\ p DIVIDES n)")

#let gli,pl = GEN_TAC g;;
glt = [([], "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")] : goal list
pl = - : proof

Given, eventually, the theorem th

th = |- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

the function p maps th to a theorem achieving g:

#p1[thl;;
[- 'n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

To produce an account of this goal-oriented proof, a corresponding new
tactic, called NAMED_GEN_TAC is defined. NAMED_GEN_TAC maps the correspond-
ing named goal to a list of one named goal, together with a named proof
(the justification). The justification, in turn, maps a list of one account (the
account of the one subgoal) to another account (the account of the original
goal). To define NAMED_GEN_TAC, given an arbitrary named goal, requires (i)
the subgoal to be constructed and (ii) the justification to be specified. The
corresponding named goal (ng), called ‘example_1‘, is:
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#let ng =
mk_named_goal (‘example_1°,

1,
"In. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")

Since it is easy to extract an ordinary goal from a named goal, the effect
of the ordinary tactic GEN_TAC on the corresponding ordinary goal can be
computed; this gives an ordinary subgoal and justification (as shown earlier).
To then construct the named subgoal using the ordinary subgoal is very
simple, since the (named and flagged) assumptions of the original named
goal should not be changed by application of NAMED_GEN_TAC. The name of
the subgoal does not matter, since it is an only subgoal, so the name of the
original goal is used, arbitrarily, as the subgoals’s name. The term of the
subgoal is just the term of the ordinary subgoal. Thus the list of subgoals
produced by NAMED_GEN_TAC on the named goal (ng) is:

[mk_named_goal(‘example_1°,

1,
"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")]

Computing the justification for a named goal is also straightforward. A
function is defined which maps a list containing one account (the account of
the named subgoal) to a new account (the account of the named goal). That
is, the new justification is specified as a function of the form

\ [ac:named account]. mk_node(..., ..., ..., ...)

with the parameter ac representing the account of the subgoal, and the four
slots representing the following components:

1. The proof step;
2. The list containing the sub-account of the subgoal
3. The list containing the subgoal, and

4. The theorem that achieves the subgoal.

The proof step consists of a string, to identify the tactic applied, a list of any
term parameters to be remembered, and a list of any theorem parameters.
NAMED_GEN_TAC (like GEN_TAC) does not involve theorem parameters, but does
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involve a term: the term which is instantiated. To identify the proof step,
the string ‘NAMED_GEN_TAC‘ will do. The new subgoal is known (as explained
above), so the third component is easy. The list containing the account (ac)
of the subgoal is supplied to the justification (via the lambda binding), so this
gives the fourth item. Finally, the justification of the ordinary GEN_TAC has
already been computed. From the account of the new subgoal, the theorem
achieving the new subgoal can be extracted (it is the fourth component of
the account); then the ordinary justification can be applied to that theorem
to produce the theorem achieving the main goal. Thus the new justification
is denoted by the expression

\[ac]. mk_node((‘NAMED_GEN_TAC‘, ["n:num"], []),
fac],
[mk_named_goal (‘example_1°,

1,
"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")],

pllextract_theorem ac])

When the named tactic is applied to the named goal, a list of named subgoals
and a named proof (justification) result:

#NAMED_GEN_TAC ng; ;
([mk_named_goal (‘example_1°,

(1,
"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")],

-)

(named_goal list # named_proof)

When the account of the original goal ng is finally produced — by applying
the named proof to the actual account of the subgoal — it is of the form

mk_node ((‘NAMED_GEN_TAC‘, ['"'n"]1, [1),
[mk_node ($\cdots$)],
[mk_named_goal(‘example_1°,
1,
"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")],
|- 'n. n>1 ==> (?p. PRIME p /\ p DIVIDES n))
: named_account

43 b

where the
arbitrarily complex.

This internal representation is made readable by a suite of printing func-
tions which (i) produce a linear layout, and (ii) use the strings recording

representing the actual account of the subgoal may be
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proof steps to look up a packaged ‘explanation’ of the strategy behind the
tactic.

To print the account of a named goal, the proof step is first announced and
printed; then the subgoals are announced and printed; then the account of
each subgoal is announced and (recursively) printed; and finally, the theorem
achieving the original goal is announced and printed. To print a proof step
requires a print function defined as a large conditional with a branch for each
possible string which identifies a proof step. The print function provides a
natural wording for the step denoted by the string — that is, it describes the
natural pattern of reasoning implemented by the tactic behind the step. To
print a goal involves identifying and printing the term of the goal, and then
identifying and printing the assumptions.

The printed form of the example account is shown (partially) below. (As
we have not said anything about the proof of the subgoal, the the - -.”
represents the printout of the account of the subgoal.)

>>>> Consider an arbitrary "n":
We show:

>> "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

This establishes

|- n>1==> (?p. PRIME p /\ p DIVIDES n)
This establishes

[- 'n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

The string ‘GEN_TAC' is used to generate the wording at “Consider an ar-
bitrary - --” (and the term remembered then appears). The wording suggests
the natural pattern of reasoning in something like the way that a textbook
might put it. If an account to be printed is the outermost account of a
particular proof, a prologue and epilogue are added around its printout:

This is the proof of the conjecture
>> example_1:
“tn. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

This completes the proof of the conjecture
>> example_1:
“tn. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"
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The internal form of the account could be rendered in many other ways,
of course, each with its own suite of print functions. The particular suite
that has been implemented reports every proof step in detail, and uses the
format shown.

Most of the named tactics corresponding to simple HOL tactics are im-
plemented similarly way to GEN_TAC.

4.2 Solving a Goal: ACCEPT_TAC

Several tactics are capable, unlike GEN_TAC, of solving goals. The simplest
of these is ACCEPT_TAC, which in fact only solves, and cannot advance, goals.
ACCEPT_TAC is a function which maps a theorem to a tactic which when ap-
plied to a goal either produces an empty list of subgoals, or else fails. The
former happens iff the conclusion of the theorem is the same as the term of the
goal (up to alpha-conversion); in that case, the justification of ACCEPT_TAC,
applied to the corresponding empty list of theorems, produces the same theo-
rem as provided to ACCEPT_TAC. This is demonstrated by solving the following
goal (which might, perhaps be a case in a larger proof) using the pre-proved
HOL theorem MULT_SYM:

#let g = ["x > 0";"y > 0"],"x * y
g = (["X > 0", ny > 0“], "y % y =
#MULT_SYM; ;

|- 'mn. m*n=mn*m

#let thm = SPECL ["x:num";"y:num"] (MULT_SYM);;
thm = |- x *x y =y * x

#let gl,p = ACCEPT_TAC thm g;;

gl = []1 : goal list

p = - : proof

#pll;;

|- x xy=y*x

x") : goal

The account of this fragment of proof uses a wording to express the nat-
ural strategy behind ACCEPT_TAC. (In the corresponding named goal, the two
assumptions are given names.)

This is the proof of the conjecture
>> example_2:

"X*y=y*X“

Assuming
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The factl: "
The fact2: '

>>>> The theorem
[-x*xy =73 % x
is proposed to satisfy this.

This establishes
[-x *y=y *x

This completes the proof of the conjecture
>> example_2:

"X*y=y*X“

Assuming

The factl: :

> OII
The fact2: > o

X
y

Note that NAMED_ACCEPT_TAC must record its theorem parameter in order
that the account be understandable.

If the theorem to which the justification of ACCEPT_TAC is applied has an
appropriate conclusion but fails to achieve the original goal through having
hypotheses beyond the assumptions of the goal, then this failure is noted at
the appropriate points in the account — here, in the prologue and epilogue.
Suppose, for example, that we have proved the easy theorem thm’, as shown
below, and that thm’ is supplied to NAMED_ACCEPT_TAC in place of thm:

x=3|-x*xy=yx*xx

In HOL, an empty list of subgoals would again ensue, but the justifica-
tion would then produce the theorem x = 3 |- x * y = y * x. The account
makes the nature of this failure clear:

This is the attempted proof of the conjecture
>> example_2:

"X*y=y*X”

Assuming

The factl: '
The fact2: '

>>>> The theorem
X = - X *xy =y *xXx
is proposed to satisfy this.

This establishes

x=3|-x*xy=yx*xx

which does not satisfy
>> "x x y =y * x"
Assuming

34



The factl: "x > 0"
The fact2: "y > O"

This completes the attempted proof of the conjecture
>> example_2:

"X*y=y*X”

Assuming

The factl: '
The fact2: '

The wording seen in the prologue and epilogue are chosen by the print
functions when the achievement failure is detected in the subgoal-proof tree
being printed.

NAMED_ACCEPT_TAC is implemented similarly to NAMED_GEN_TAC, except that
instead of constructing a list containing one subgoal, it simply returns an
empty list of subgoals. The justification does not involve inference — as
GEN_TAC’s does, but simply maps the empty list of theorems to the theorem
provided. While the implementation of NAMED_GEN_TAC must remember a
term, that of NAMED_ACCEPT_TAC must remember the theorem parameter to
which it was applied.

4.3 Naming New Assumptions: DISCH_TAC

DISCH_TAC, like GEN_TAC, can advance but not solve goals; and where it suc-
ceeds, it produces exactly one subgoal. Unlike GEN_TAC, it not only changes
the term of a goal, but also changes the assumption list (by adding a new
assumption):

#let g = [1,"n > 1 ==> (7p. PRIME p /\ p DIVIDES n)";;
g = ([0, "n >1 ==> (?7p. PRIME p /\ p DIVIDES n)") : (* list # term)

#let gl,p = DISCH_TAC g;;
gl = [(["n > 1"], "?p. PRIME p /\ p DIVIDES n")] : goal list
p = - : proof

Once we have proved the theorem th

th = |- ?p. PRIME p /\ p DIVIDES n

we can then apply the justification (p) to yield the theorem achieving the
original goal:

#p[thl;;
|- n>1==> (?p. PRIME p /\ p DIVIDES n)
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The corresponding named tactic is implemented along the lines of the
previous named tactics, except that it must in addition give a name to the
added assumption to indicate that this assumption was, in a previous goal,
the antecedent of an implication. The account constructed by the named
tactic uses this name, and supplies a natural wording for the strategy, applied
to the corresponding named goal:

This is the proof of the conjecture

>> example_3:
“n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

>>>> It is sufficient to prove:

>> "?p. PRIME p /\ p DIVIDES n"
Assuming
The antecedent: "n > 1"

This establishes

n>1 |- ?p. PRIME p /\ p DIVIDES n

This establishes

|- n>1==> (?p. PRIME p /\ p DIVIDES n)

This completes the proof of the conjecture
>> example_3:
“n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

4.4 Transforming Subgoals: SUBST1_TAC

The ML function SUBST1_TAC, like ACCEPT_TAC, maps a theorem to a tactic.
The theorem must have a conclusion of equational form; it is is used to make
and justify a substitution throughout the term of a goal for all free instances
of the left hand side of the equation by the right hand side of the equation.
Like GEN_TAC, a tactic of the form SUBST1_TAC th, where it succeeds, produces
a subgoal list of fixed length one. Also like GEN_TAC, it advances but does
not solve goals; and it transform the term of a goal but does not alter the
assumptions. For example:

#let g = [1,"!n:num. n > 1 ==> n DIVIDES n";;
g = ([0, "!n. n >1 ==>n DIVIDES n")

Suppose that the theorem th is an instance of the definition of division:

th = |- n DIVIDES n = “(n = 0) /\ (?q. @ * n = n)
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Then substituting throughout the goal according to the specialized form of
the definition, is a way of unfolding the goal into more basic terms:

#let gll,pl = (GEN_TAC THEN SUBST1_TAC th)g;;
gli = [([], "n>1==>"(n=0) /\ (?7q. g *n =n)")] : goal list
pl = - : proof

The printed form of the account on the corresponding named goal explains
the effect of SUBST_TAC:

This is the proof of the conjecture
>> example_4:
"In. n > 1 ==>n DIVIDES n"

>>>> Consider an arbitrary "n":
We show:

>> "n > 1 ==> n DIVIDES n"

>>>> We substitute according to the following equality:
|- n DIVIDES n = “(n =0) /\ (?q. 9 * n = n).
Thus, it is sufficient to prove:

> '"'n >1==>"(n=0)/\ (?q. g *n=mn)"

This establishes

[-n>1==>"(n=0) /\ (?q. g * n = n)
This establishes

|- n > 1 ==>n DIVIDES n

This establishes

|- 'n. n > 1 ==>n DIVIDES n

This completes the proof of the conjecture
>> example_4:
"In. n > 1 ==> n DIVIDES n"

It can be seen that the theorem parameter to NAMED_SUBST_TAC has to be re-
membered in order to explain fully the substitution — as for NAMED_ACCEPT_TAC.
The implementation is similar to previous ones.

4.4.1 Implicit Assumptions from Invalid Proof Steps

Although SUBST_TAC is apparently straightforward, there is one difficulty that
may arise. To explain it, we use the arithmetic constants SUC and PRE, pro-
vided in HOL, for the successor and predecessor functions (respectively) on
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the natural numbers. The predecessor function is characterized by the theo-
rem

|- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m)

and about the successor we know that

[- In. “(SUC n = 0)

Suppose that the goal is to prove the following (for any x)

#let g = [1, "PRE(SUC(PRE x)) = PRE x";;
g = ([1, "PRE(SUC(PRE x)) = PRE x") : (x list # term)

and that we have already proved the theorem th:

“(x = 0) |- SUC(PRE x) = x

(which is not difficult to prove).

If a user unwittingly were to try to procede in HOL by making a substi-
tution based on the theorem th, the resulting subgoal would appear without
recording the fact that an assumption (“(x = 0)) had thereby been intro-
duced. The result would appear to be as hoped:

#let gll,pl = SUBST1_TAC th g;;
gli = [([], "PRE x = PRE x")] : goal list
pl = - : proof

This subgoal could then be solved by appeal to reflexivity:

#let th’ = REFL "PRE x";;
th’ = |- PRE x = PRE x

#let gl2,p2 = ACCEPT_TAC th’ (hd gli);;
gl2 = [] : goal list

P2 = - : proof
#let th2 = p2[];;
th2 = |- PRE x = PRE x

This still appears to solve the problem; it leads to a theorem which achieves
the one subgoal in gli. However, the justification of the substitution (p1)
maps th2 to a theorem thi
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#let thl = pi[th2];;
thl = . |- PRE(SUC(PRE x)) = PRE x

#print_all_thm thil;;
“(x = 0) |- PRE(SUC(PRE x)) = PRE x

which, because it is contingent on some hypothesis, does not achieve the
original goal. This sudden failure of achievement is the first indication to the
user that an assumption has been introduced ‘behind the scenes’ — as a result
of the theorem parameter to SUBST1_TAC having depended on the hypothesis
“(x = 0). The cause of the failure may not be immediately apparent — even
after the hypothesis (printed by default as a dot) is examined.

Indeed, if instead of th’ (|- PRE x = PRE x) we had proved an easy the-
orem th’’

“(x = 0) |- PRE x = PRE x

and we had supplied th’’ rather than th’ as the solution of the subgoal in g11
(i.e. ([1, "PRE x = PRE x")), then the theorem (th2) which was supplied
to the justification (p1) of the substitution would already depend on the
hypothesis ~(x = 0):

#let gl2,p2 = ACCEPT_TAC th’’ (hd gll1);;
gl2 = [] : goal list

p2 = - : proof
#let th2 = p2[];;
th2 = . |- PRE x = PRE x

#print_all_thm th2;;
“(x =0) |- PRE x = PRE x

#let thl = p1[th2];;
thl = . |- PRE(SUC(PRE x)) = PRE x

#print_all_thm thi;;
“(x = 0) |- PRE(SUC(PRE x)) = PRE x

As can be seen, the end result is the same as before. That is, the justification
of the substitution (the function p1) “knows” about the invisible assumption
~(x = 0), so whether the justification is applied to the theorem with conclu-
sion PRE x = PRE x) with the hypothesis “(x = 0) or without the hypothesis
makes no difference; in either case, the result is a theorem with the hypothe-
sis “(x = 0). However, what the justification function “knows” is not readily
apparent to a user. We will take this behaviour of the justification to be the
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criterion of whether a tactic applied to a given goal introduces an implicit
assumption.

To see why the justification necessarily adds the hypothesis to the theo-
rem it returns, where it is lacking, one must examine the inference rule for
substitution which supports the substitution tactic. The rule specifies that
in using an established equality to substitute equals for equals throughout
the conclusion of a given theorem, the hypotheses of the equality theorem,
as well as the hypotheses of the theorem into which the substitution is made,
are propagated through to the resulting theorem. (See ref, Ch 3.)

AuB |- P/t)

In general, a tactic is called invalid if it is able to generate, on some
goal, subgoals and a justification such that achieving the subgoals does not
necessarily entail, via the justification, achieving the goal. Invalidity nec-
essarily characterizes any tactic constructed by applying a function of type
thm -> tactic (or thm list -> tactic), etc, to appropriate values to create
a tactic. The property thereby pertains to quite a few of the commonly used
HOL tactics, including DISCH_TAC, which was described earlier, as well as
SUBST1_TAC. (See appendix ... listing all such HOL tactics.)

Any of these invalid tactics can be applied validly or invalidly to goals.
SUBST1_TAC th, for example, was applied invalidly to the goal g, in the last
example, because g included no assumptions —in particular, it did not include
as an assumption the hypothesis “(x = 0) of the substitution theorem th.

4.4.2 Implicit Assumptions without Use

In the previous example, the theorem th was used in the substitution step;
it may appear that that is essential for the hypothesis “(x = 0) to have been
made implicitly. However, this is not so. Another example of the same sort
illustrates the subtle point that the appearance of the invisible assumption
does not depend on the theorem with the hypothesis having had an effect on
the goal. In the following example, the attempted substitution has no effect,
because there is no suitable substitution instance for the term SUC(PRE x).
Suppose the goal is

#let g = [],"PRE(SUC x) = x";;
g = ([1, "PRE(SUC x) = x") : (* list # term)
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and the same substitution theorem, th (*(x = 0) |- SUC(PRE x) = x), is
engaged (but to no effect):

#let gl,p = SUBST1_TAC th g;;

gl = [([], "PRE(SUC x) = x")] : goal list

p = - : proof

Once the single subgoal is achieved — without our specifying how — by a
theorem th’

#th’;;

|- PRE(SUC x) = x

the justification can be applied to give a result:
#pl[th’];;
|- PRE(SUC x) = x

#print_all_thm it;;
“(x = 0) |- PRE(SUC x) = x

Thus, despite the fact that the theorem th’ itself achieves the subgoal
[J, "PRE(SUC x) = x")

and the fact that the substitution tactic has had no effect, the justification
(p) of the substitution tactic still produces a theorem depending on the
hypothesis “(x = 0). That is, the substitution step necessarily introduces an
assumption behind the scenes — by embedding that hypothesis in the function
that justifies the (effective or ineffective) substitution step.'!

4.4.3 Implicit Assumptions from Valid Proof Steps

Although the appearance of the unexpected hypothesis in the previous two
sections was caused by an invalid use of a tactic, the introduction of invis-
ible assumptions does not arise only through invalidity — the mechanism is
actually more subtle still. We return to the first substitution example (Sec-
tion 4.4.1) to illustrates the same effect, but without the invalid use of tactics
and without failing to achieve the original goal.

Suppose we refer to the same theorem th:

"Possibly, HOL’s substitution tactic could be implemented so that if it detected that it
has had no effect it would return a justification that did not rely on the inference rule for
substitution — which is the origin of the hypothesis of the result. However, this would be
complicated, probably inefficient, and would have to be done for quite a few other similarly
constructed tactics.
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“(x = 0) |- SUC(PRE x) = x

and this time use a goal resembling that of Section 4.4.1, but which includes
the assumption in question to begin with:

#let g = [""(x = 0)"], "(PRE(SUC(PRE x)) = PRE x)";;

g = ([""(x =0)"], "PRE(SUC(PRE x)) = PRE x") : goal

The use of the substitution tactic is now valid:

#let gll,pl = SUBST1_TAC th (hd gll);;
gli = [(["“(x = 0)"], "PRE x = PRE x")] : goal list
pl = - : proof

If the theorem th’ (as in Section 4.4.1)
th’ = |- PRE x = PRE x

or indeed th’’ (also as in Section 4.4.1)

“(x = 0) |- PRE x = PRE x

is now supplied as the solution to the goal in gl1, the justification (p1) of
the substitution — as before — produces a theorem (th2) that depends on the
condition “(x = 0). (This time, though, the resulting theorem does achieve
the goal g.)

#let gl2,p2 = ACCEPT_TAC th’ (hd gl2);;

gl2 = [] : goal list

P2 = - : proof

#let th2 = p2[];;

th2 = |- PRE x = PRE x

#let thl = p1[th2];;

thl = . |- PRE(SUC(PRE x)) = PRE x

#print_all_thm thil;;
“(x = 0) |- PRE(SUC(PRE x)) = PRE x

The dependence on “(x = 0) happens despite the validity of the substitution
on the subgoal — that is, despite the fact that at the point where the sub-
stitution tactic was applied, the condition ~(x = 0) was already a standing
assumption. (This is not an automatic effect of “(x = 0) having already been
an assumption — not all assumptions reappear thus.) The implicit assump-
tion introduced by the tactic manifests itself in the effect of the justification
function of that tactic, and for exactly the same reason as in the previous
two examples: the propagation of assumptions in the inference rule for sub-
stitution.
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4.4.4 Accounting for Implicit Assumptions

The first and second examples (in Sections 4.4.1 and 4.4.2 respectively),
involving invalid reasoning, might be dismissed simply as poor HOL style;
indeed, such reasoning is precluded by the HOL subgoal interface in its most
restrictive mode. However, in the third example, the reasoning is completely
valid, and the example in fact illustrates a commonly used method in HOL
tactical proof. There are, in addition, several other (valid) ways in which
assumptions can be caused to appear behind the scenes, and these likewise
cannot be dismissed as poor HOL style — they are features of HOL’s current
design. (These other ways are discussed in ... .) For all of these cases, it is
necessary, in proof accounts, to deal with the issue of implicit assumptions.

The accounting method we propose is to record all assumptions that
pertain to a goal, whether or not they would be visible ordinarily. Implicit
assumptions are identified by the boolean value false; this is the purpose of
the boolean component of an assumption of a named goal. Whether or when
implicit assumptions are printed is a feature of a particular printing routine,
but the information is anyway available to print. (Currently, they are always
printed.)

With implicit assumptions recorded in accounts, the invalid use of substi-
tution seen above in the first (invalid) example (Section 4.4.1) — which might
well have puzzled the user — is accounted for as follows:

This is the attempted proof of the conjecture

>> example_5b:
"PRE(SUC(PRE x)) = PRE x"

>>>> We substitute according to the following equality:

“(x = 0) |- SUC(PRE x) = x.
Thus, it 1s sufficient to prove:

>> "PRE x = PRE_x"
Assuming implicitly
The hypothesis of the equality: "“(x = 0)"
>>>> The_theorem
|- PRE x = PRE x| .
1s proposed to satisfy this.
This establishes
|- PRE x = PRE x
This establishes
“(x = 0) |- PRE(SUC(PRE x)) = PRE x

which does not satisfy
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>> "PRE(SUC(PRE x)) = PRE x"

This completes the attempted proof of the conjecture
>> example_5:
"PRE(SUC(PRE x)) = PRE x"

This account clears up all the mystery from the situation: first, the sub-
goal decomposition records the introduced assumption so that it can be seen
from the point at which it becomes an assumption onward; second, the transi-
tion (via the justification of the substitution tactic) from the establishment of
the theorem |- PRE x = PRE x to the theorem “(x = 0) |- PRE(SUC(PRE x))
can be understood by reference to the implicit assumption of the relevant
subgoal; and finally, the failure to achieve the original goal (because of the
additional hypothesis) is noted and made clear.

The account of the second example (Section 4.4.2), in which the (invalid)
substitution step has no effect on the term of the goal, makes clear that
the step does have the side effect of introducing an implicit assumption,
which later manifests itself in the chain of achieving theorems produced by
successive justifications:

This is the attempted proof of the conjecture
>> example_6:
"PRE(SUC x) =

>>>> We substitute according to the following equality:

“(x = 0) |- SUC(PRE x) =
Thus, it 1s sufficient to prove

>> "PRE(SUC x) = x"
Assuming implicitly

The hypothesis of the equality: "“(x = 0)"

This establishes
|- PRE(SUC x) =
This establishes
“(x = 0) |- PRE(SUC x) =

which does not satisfy
>> "PRE(SUC x) = x"

This completes the attempted proof of the conjecture
>> example_6:
"PRE(SUC x) =

The account produced for the third (valid) example (Section 4.4.3), in
which the assumption ~“(x = 0) belongs to the goal at the point where the
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substitution is made, is again intended to clear up any mystery about the
reappearance of the implicit assumption in the chain of achieving theorems:

This is the proof of the conjecture
>> example_T7:

"PRE(SUC(PRE x)) = PRE x"
Assuming

The fact: "“(x = 0)"

>>>> We substitute according to the following equality:

“(x = 0) |- SUC(PRE x) = x.
Thus, it 1s sufficient to prove:

>> "PRE x = PRE x"
Assuming

The fact; "“(x =_0)"
Assuming implicitly
The hypothesis of the equality: "“(x = 0)"
>>>> The_theorem
|- PRE x = PRE x| .
1s proposed to satisfy this.
This establishes
|- PRE x = PRE x
This establishes
“(x = 0) |- PRE(SUC(PRE x)) = PRE x

This completes the proof of the conjecture
>> example_T7:

"PRE(SUC(PRE x)) = PRE x"
Assuming

The fact: "“(x = 0)"

The explicit assumption ~(x = 0), in the subgoal

>> "PRE x = PRE x"
Assuming

The fact: "“(x = 0)"
Assuming implicitly
The hypothesis of the equality: "“(x = 0)"

does not explain the dependence on ~“(x = 0) of the corresponding achieving
theorem

~“(x = 0) |- PRE(SUC(PRE x)) = PRE x

The noting of the introduction of the implicit assumption, in each of the
accounts of substitution, is achieved by implementing NAMED_SUBST_TAC so
that whenever it is applied to a theorem, and the resulting tactic to a goal,
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any hypotheses of the theorem are recorded as implicit assumptions of the
subgoal being constructed. Any such assumption is labelled to indicate its
origin — in the case of substitution with the string

‘the hypothesis of the equality®

and with the boolean value false to indicate that it is an implicit assumption.
The only futher care required is that in extracting an ordinary goal from a
named goal (so that the results of the ordinary SUBST1_TAC can be computed),
only explicit assumptions should be included; assumptions of the named goal
labelled with false are ignored. Implicit assumptions are included again,
however, in the named subgoal being constructed by NAMED_SUBST_TAC — that
is, implicit assumptions persist from named goals to named subgoals, as one
would expect.

The printing routine for goals is then arranged to print explicit and im-
plicit assumptions separately (as illustrated in the accounts above). The
routine for printing whole accounts is arranged to produce an appropriate
message (again, as illustrated) when a candidate theorem fails to achieve the
subgoal for which it was intended; and when the theorem purporting to do
so fails to achieve an initial (outermost) goal.

4.5 Multiple Subgoals: INDUCT_TAC

The numerical induction tactic is an example of a tactic which produces more
than one subgoal — it always produces one basis and and one step case, when
it succeeds at all. In both subgoals, there is a transformed term; and in
the step goal, there is a different assumptions list — a new assumption (the
induction hypothesis) is added. For example, the proof of the associativity
of addition (normally pre-proved in HOL) is by induction:

#let g = [1,"'mnp. m+ (n+p) = (m+n)+p";;

g= (], "'mnp.m+ (n+p)=(m+n)+p")

#let [gl;g2],p = INDUCT_TAC g;;

gl =(, "np. 0+ (n+p)=1(0 +n) +p") : goal

g2 =

("np.m+ (n+p)=(
"In p. (SUCm) + (n +p
: goal

p = - : proof

m + n) + p"],
) = ((SUC m) + n) + p")
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The corresponding named goal is

mk_named_goal (‘example_8‘, [1, "'mn p. m+ (n + p) = (m + n) + p")

To specify the corresponding named tactic NAMED_INDUCT_TAC requires
constructing the two named subgoals from the two ordinary subgoals. This
in turn requires naming each subgoal, and naming the new assumption of
the step subgoal. The named justification is constructed much as for the
previous tactics. Here, it is a function that maps a list of two sub-accounts
to an account of the original goal. The string ‘NAMED_INDUCT_TAC' identifies
the tactic used, and the induction variable (m) is recorded. When the whole
proof is completed and printed, the induction is accounted for as follows:

This is the proof of the conjecture
>> example_8:
"!Imnp.m+ (n+p)=(mn+n) +p"
>>>> The proof is by mathematical induction on "m".
This gives two cases to prove, the basis and step:

>> basis:
"Inp. 0+ (n+p)=(0 +mn) +p"

>> induction step:
"In p. (SUC m) + (n + p) = ((SUC m) + n) + p"
Assuming
The induction hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:
"Iln p. 0+ (n+ p) =(0+mn) + p"

is as follows:

This establishes
[-'np. 0O+ (n+p) =( +n) +p

The proof of the
>> induction step:
"In p. (SUCm) + (n +p) = ((SUCm) +n) + p"
Assuming
The induction hypothesis: "!n p. m + (n + p) = (m + n) + p"

is as follows:

This establishes

Inp.m+ (n+p)=(m+n)+p
[- 'np. (SUCm) + (n+p) = ((SUCm) +n) +p
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This establishes
[-'mnp. m+ (n+p) =(@m+mn) +p

This completes the proof of the conjecture
>> example_8:
"!Imnp.m+ (n+p)=(mn+n) +p"

In printing this account, the accounts of the two subgoals are printed in
the order in which the subgoals were announced. Since there is more than one
subgoal, and the account of each can be arbitrarily long, each sub-account is
prefaced by a reminder of the subgoal to which it pertains.

4.6 Advancement or Solution: REWRITE_TAC

The function that implements HOL’s rewriting scheme maps a list of theo-
rems (to be used as left-to-right rewrite rules) to a tactic. For a given list 1,
the tactic REWRITE_TAC 1 (or any of the several variants of REWNRITE_TAC, in-
cluding ASM_REWRITE_TAC and so on — see ...) can produce a variable number
of subgoals: either none or one. That is, a goal can be solved by rewriting, or
it can be advanced to a single subgoal. In the former case, as for ACCEPT_TAC,
an empty list of subgoals ensues. In the latter, the subgoal produced is un-
changed as regards its assumption list, but may be changed as regards the
term.

4.6.1 Solution by REWRITE_TAC

The following list, containing one pre-proved HOL theorem, can be used to
complete the proof in the previous example (Section 4.5):

#let 1 [ADD_CLAUSES] ;;

1_
[I- (0 +m=m) /\
(m +0=m) /\
((SUC m) + n = SUC(m + n))
(m_+ (SUC n) = SUC(m + n))]
: thm list

/\

In both the basis and step cases of that proof, it is sufficient to rewrite
using ADD_CLAUSES, using any assumptions pertaining at the time of rewriting,
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and using a standard list of basic tautologies'?. This strategy is implemented
by the tactic ASM_REWRITE_TAC 1. Thus the goal is solved by the tactic

NAMED_INDUCT_TAC THEN
NAMED_ASM_REWRITE_TAC 1

Once the corresponding named tactic NAMED_REWRITE_TAC is implemented,
the procedure for printing the account of the rewriting proof step must choose
between two ways of presenting the rewriting step: one which gives a wording
appropriate to solution, and one for advancement only.

For solution, the account below shows the presentation of the (advancing)
rewriting step in both cases:

This is the proof of the conjecture
>> example_8:
"!mnp.m+ (n+p)=(mn+n) +p"

>>>> The proof is by mathematical induction on "m".
This gives two cases to prove, the basis and step:

>> basis:
"In p. 0+ (n+p)=( +mn) + p"
>> induction step:
"In p. (SUC m) + (n + p) = ((SUC m) + n) + p"
Assuming
The induction hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the
>> basis:
"Iln p. 0+ (n+ p) =(0+mn) + p"

is as follows: . .
>>>> This follows by using the equality,

|- (0 +m=m) /\
(m+ 0 =m) /\
((SUC m) + n = SUC(m + n)) /\

(m + (SUC_n) = SUC(m + n)) )
basic logical identities, and the assumptions made thus far.

This establishes
[-'np. 0O+ (n+p) =( +n) +p

The proof of the
>> induction step:
"In p. (SUC m) + (n + p) = ((SUC m) + n) + p"
Assuming
The induction hypothesis: "!n p. m + (n + p) = (m + n) + p"

12 A1l of HOL’s rewriting functions use these basic rewrite rules except those with names
suffixed by ‘PURE’, such as PURE_ASM_REWRITE_TAC.
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is as follows: . .
>>>> This follows by using the equality,

|- (0 +m=m) /\
(m+ 0 =m) /\
((SUC m) + n = SUC(m + n)) /\
(m + (SUC_n) = SUC(m + n)) )
basic logical identities, and the assumptions made thus far.

This establishes

np.m+ (n+p)=(m+n)+

[- 'np. (SUCm) + (n+p)=(SUCmM +n) +p
This establishes

[-'mnp. m+ (n+p) =@m+mn) +p

This completes the proof of the conjecture
>> example_8:
"Imnp. m+ (n+p)=(m+n)+p"

In the implementation of NAMED_REWRITE_TAC, the list provided of poten-
tial rewrite theorems is saved so that it can be printed as part of the account
of the rewriting step. A more sophisticated account would perhaps not re-
port every potential rewrite theorem, but only those on which changes to the
term of the goal were based. Likewise, a more informative account would
indicate, in both cases, which, if any, of the basic logical identities were en-
gaged, and which, if any, of the assumptions — by name. However, to report
only the rewrites actually engaged is beyond the scope of the current ac-
counting method, which implements named tactics based on the values that
would be produced by the corresponding ordinary tactics (on the correspond-
ing ordinary goals). The method treats the ordinary tactics as ‘black boxes’.
To cause the ordinary rewriting tactic to keep a record of rewrites actually
engaged would involve re-implementing the existing rewriting tactic (which
happens to be particularly complex).

However, an analysis of the account shown, giving all potential rewrite
rules, does have a use: an analysis of the account might suggest to the user
some improvements to the tactic used. In the basis case, for example, the
function ASM_REWRITE_TAC was specified, but in fact it is obvious from the
account that no assumptions are present, and so REWRITE_TAC would have
sufficed. The user could then decide whether

NAMED_INDUCT_TAC THENL
[NAMED_REWRITE_TAC 1;
NAMED_ASM_REWRITE_TAC 1]
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were preferable to the original tactic.

It is worth noting here that the subgoal-theorem tree constructed in the
process of accounting is structured exactly as the goal-oriented proof is actu-
ally performed. That is, although the original tactic is specified as a ‘linear’
sequence of two tactics, the induction proof step in fact yields two subgoals;
the sequencing functional THEN is defined so as to apply its second argument
to all the subgoals produced by its first argument. In this way, the account
clarifies the proof’s actual structure in a way that is not necessarily made
apparent by the ML expression that generates the proof.

4.6.2 Advancement by REWRITE_TAC

The account of applying the following alternative tactic to the goal illustrates
the wording for rewriting steps that do not solve goals. (It also happens to
demonstrate the simpler tactic that is sufficient in the basis case.) It divides
the rewriting step for the step case into two rewriting steps (the second using
the basic rewrites and assumptions only), but is still a linear tactic.

NAMED_INDUCT_TAC THEN
NAMED_REWRITE_TAC[ADD_CLAUSES] THEN
NAMED_ASM_REWRITE_TACI[]

The account is then as follows, illustrating (in the step case) the wording for
a rewriting step that does not solve a subgoal:

This is the proof of the conjecture
>> example_8:
"Imnp. m+ (n+p)=(m+n)+p"

>>>> The proof is by mathematical induction on "m".
This gives two cases to prove, the basis and step:
>> basis:
"In p. 0+ (n+ p) =(0+mn) + p"
>> induction step:
"In p. (SUC m) + (n + p) = ((SUC m) + n) + p"
Assuming
The induction hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:
"Inp. 0+ (n+p)=(0+mn) + p"

is as follows: . .
>>>> This follows by using the equality

|- (0 +m=m) /\
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(m + 0 =m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))
and basic logical identities.

This establishes
[-!'np. 0O+ (m+p) = (0+mn) +p

The proof of the
>> induction step:
"In p. (SUCm) + (n +p) = ((SUCm) + n) + p"

Assuming
The induction hypothesis: "!n p. m + (n + p) =
is as_follo
>>>> U31ng the following equality
|- (0 +m=m) /\
(m + 0 =m) /\

((SUC m) + n = SUC(m + n)) /\
(m + (SUC n) = SUC(m + n))

(m + n) + p"

and using basic tautologies, it is sufficient to prove:

>> "In p. SUC(m + (n + p)) = SUC((m + n) + p)"
Assuming

The induction hypothesis: "!n p. m + (n + p) =

>>>> This follows from basic logical identities,
the assumptions made thus far.

This establishes

Inp.m+ (n+p)=(u+n)+
|- 'n p. SUC(m + (n + p)) = SUC((m + n) + p)

This establishes

Inp. m+ (n+p)=(@m+n) +p
[- 'np. (SUCm) + (n+p) = ((SUCm) +n) +p

This establishes
[-'mnp. m+ (n+p) =(@m+mn) +p

This completes the proof of the conjecture
>> example_8:
"Imnp. m+ (n+p)=(m+n)+p"

The account clarifies the fact that the first rewriting step of the linear
tactic solves the basis case; this, again, is not immediately apparent from the

ML procedure.

Finally, as the point about invalidity made in Section 4.4 applies also to
the rewriting functions (which take a list of theorems as their parameter);
any of the theorems on the list can introduce implicit assumptions, and these

D2

(m + n) + p"

as well as



assumptions are treated just as for substitution.!?

4.7 Adding an Assumption: ASSUME_TAC

Like several tactics so far, ASSUME_TAC maps a theorem to a tactic. It simply
adds the conclusion of the theorem provided to the assumption list, and jus-
tifies this step by discharging the assumption and applying Modus Ponens.
Thus, an implicit assumption may again be introduced. The following ac-
count shows the wording for printing such a proof step, and illustrates how
implicit assumptions can be raised by using ASSUME_TAC to access assumptions
by text (a common method in HOL proofs).
For example, suppose we wish to prove

mk_named_goal (‘example_9‘, [1, "(p = q) ==> (@ = 1) ==> (p = r)")

(for p, q and r) of some given type, by assuming the antecedents in turn, ap-
pealing to the transitivity of equality to derive as a new assumption "p = r",
and then using the new assumption as a rewrite rule. The account of this
proof, using the corresponding NAMED_ASSUME_TAC is:

This is the proof of the conjecture
>> example_9:

"(p = q) ==> (q = r) ==> (p = r)"
>>>> It is sufficient to prove:

>> "(g=1) ==> (p=1r)"
Assuming
The antecedent: "p = q"

>>>> It is sufficient to prove:

>> llp = rll
Assuming
The antecedent: '"q = r"
The antecedent: "p = q"

>>>> We use the fact that
p=gq,9q=r [-p=r.
It is sufficient to prove:

>> llp = rll

13Indeed, any of the assumptions that happens to be engaged as a rewrite rule by
ASM_REWRITE_TAC — but not those which are not — must also, necessarily, introduce
an implicit assumption. However, these particular implicit assumptions seem unlikely to
cause confusion, and so are not recorded as implicit in the accounts.
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Assuming

The added hypothesis: "p = r"
The antecedent: '"q
The antecedent: '"p
Assuming implicitly
The hypothesis of the theorem used: '"p
The hypothesis of the theorem used: '"q

q,
r

>>>> This follows from basic logical identities, as well as
the assumptions made thus far.

This establishes

p=rl-p=r

This establishes
pP=d,q=rl-p=r

This establishes
p=ql-(@=1) ==> (p=r)
This establishes

|- (p=q ==>(q=1) ==> (p = 1)

This completes the proof of the conjecture
>> example_9:
"(p = q) ==> (q = r) ==> (p = r)"

Note that the second theorem established (p = q, 9 = r |- p = r) car-
ries as hypotheses the two implicit assumptions of the theorem parameter to
ASSUME_TAC. This assumption step is explained by the phrase ‘We use the fact that

b

5 Conversions

A conversion in HOL is a function mapping a term to a theorem — that
is, a theorem parameterized on a term. For example, the concept of beta-
conversion is represented in HOL by the function BETA_CONV which maps a
term (the beta redex) to a theorem expressing the reduction:

#BETA_CONV "(\x. x > 0) 3";;
I- (\x. x>0)3=3>0

Conversions provide a way of deriving particular instances of facts which
cannot themselves be expressed as theorems in the HOL logic. (To express
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beta-conversion in general, for example, would require quantification over
syntax classes of logical expressions.)

To enable the use of such equational theorems as reduction tactics, a
function CONV_TAC is provided. CONV_TAC maps a given conversion to a tactic
which will perform the reduction on a goal with suitable term. The tactic
thus produced, when applied to a goal, will either fail to be applicable, or
will produce exactly one subgoal.

#CONV_TAC BETA_CONV; ;
- : tactic

#CONV_TAC BETA_CONV ([1,"(\x. x > 0) 3");;
(Ccer, "3 > 0"1, -) : subgoals

The reduction is justified by a simple substitution.

To construct the account of a proof step generated by applying a tactic of
the form CONV_TAC ¢, for some conversion ¢, the usual method is used. The
theorem —

[- (\x. x>0)3=3>0
— which justifies the beta-reduction step is saved as a theorem parameter

in the account, for purposes of explanation. For example, to explain the
application of the named tactic

NAMED_CONV_TAC BETA_CONV

to the goal

mk_named_goal (‘example‘,[1,"(\x. x > 0) 3")

the account produced is:

This is the proof of the conjecture
>> example:
"(\x. x > 0)3"
>>>> We yge the ingtantiated theorem-schema
- (\x. x >0)3=3>
making it sufficient to prove:

>> "3 > 0"

This establishes
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|I-3>0
This establishes
- (\x. x> 0)3

This completes the proof of the conjecture
>> example:
"(\x. x > 0)3"

Because the named tactic records the particular fact that was used, the
method gives a meaninful explanation however the conversion is expressed.
For example, the function DEPTH_CONV is one of several functions which trans-
form conversions to new conversions. The conversion (DEPTH_CONV BETA_CONV
produces a conversion which will apply recursively — to arbitrary depth — to
all the beta-redexes of a term.)

For example, to explain the application of the named tactic

NAMED_CONV_TAC (DEPTH_CONV BETA_CONV)

to the goal

(mk_named_goal (‘example‘, [1,"(\x. x > 0)3 = ((\x. x > 0)4 = T)"))

the account produced is:

This is the proof of the conjecture
>> example:
"(\x. x> 03=(N\x. x>0)4=T)"
>>>> We use the ingtantiated theorem-schema
[- ((\x, x>0)3=(\x. x>04=T) =@3>0=(#4>0=T))
making it sufficient to prove:

> "3 >0=(#4>0=1T)"

This establishes
[-3>0=(4>0=T)

This establishes

[- (\x. x> 0)3=(\x. x>0)4=T)

This completes the proof of the conjecture
>> example:

"(\x. x> 0)3=(\x. x>0)4=T)"
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For complex expressions denoting a conversion, it could be quite diffi-
cult to reconstruct the tactic produced by CONV_TAC when applied to that
conversion. The explanation makes it unnecessary to remember what form
of theorem each conversion (such as BETA_CONV) gives on appropriate terms;
what effects the various conversion transformers (such as DEPTH_CONV) have on
conversions in general; and in what sense the parameterized tactic CONV_TAC
produces a tactic given a conversion. The explanation instead supplies the
actual equational theorem justifying the reduction.

6 Resolution

The ‘resolution’ tactics provided in HOL — IMP_RES_TAC and RES_TAC — are
the basis of the second group of named tactics. Members of this group rely
on the results of the corresponding ordinary tactics, but they further process
the results so that they can be presented in a meaningful way'.

The function IMP_RES_TAC maps a theorem to a tactic. It gives a way of
bringing to bear an implicative!® axiom or previously proved theorem on a
goal by adding to the current assumptions of a goal a certain subset of the
collective direct and indirect consequences of that theorem together with the
current assumptions.

The consequences are found by attempting to match the antecedent of the
implicative theorem to each existing assumption (i.e. candidate antecedent);
so determining an instantiation, wherever a match is made. The appropriate
instance of the consequent of the implication is then added as a new assump-
tion, to the subgoal. A single application of IMP_RES_TAC th to a goal, for a
theorem th, is sufficent for finding all new assumptions of the form sought;
subsequent applications of IMP_RES_TAC have no further effect.

The instantiated consequents are processed before new the new subgoal(s)
are constructed. If the consequent is an n-ary disjunction, n subgoals are
created, one with each respective disjunct as a new assumption. If it is an n-
ary conjunction, the n conjuncts are added separately to the (single) subgoal.
(Existential and other consequents are not further processed.)

14The resolution tactics are mis-named in that they do not do resolution in the classical
sense (based on unification), but simply some one-way matching of an implication to a
candidate antecedent, followed by forward inference based on Modus Ponens.

5Implications, in this context, are taken in a generalized sense, as described in ...
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The tactic RES_TAC, on a goal, looks for pairs of resolvents within the
set, of current assumptions. It considers each implicative assumption against
the set of all other assumptions in the same way that IMP_RES_TAC resolves
an implication against a set of assumptions. For each implication matched,
RES_TAC similarly adds as a new assumption the appropriate instance of the
consequent. Like IMP_RES_TAC, RES_TAC applied to a goal produces n subgoals
when the consequent of a matched implication is an n-ry disjunction. The
full set of results that RES_TAC is able to find is not necessarily found in a
single application of the tactic; whether it is depends on the ordering of the
initial assumptions.

Both IMP_RES_TAC th and RES_TAC can either solve goals or advance them.
They can solve a goal either by deriving as a new assumption the term itself
of the goal, or by deriving falsity as a new assumption (in which case any-
thing desired could be established, including the particular term of the goal).
Where these tactics advance goals, they can produce an indefinite number
of subgoals; just one subgoal if no match made involves an implication with
a disjunctive consequent; and more than one subgoal if at least one match
does so. Where these tactics advance a goal, they can add to the assumption
list, but they cannot change the term.

To construct the account of a proof step involving one of the resolution
tactics involves computing the results of the corresponding ordinary tactic
on the corresponding ordinary goal, then identifying the nature of the result,
and (in the advancement case) naming the relevant parts of subgoals. Where
the step solves the goal, direct solution and solution by contradiction are
distinguished. This is done by checking whether an arbitrary goal would also
be solved at that point. An appropriate string is then chosen to denote the
proof step so that the two solution cases can be printed appropriately. For
example, consider the pre-proved theorem LESS_MONO:

#LESS_MONO; ;
|- 'mn. m < n ==> (SUC m) < (SUC n)

In the following proof, LESS_MONO is used to solve a trivially easy goal by
resolution:

#let g = [llp < q“],“SUC P < SUC qu;;
g = (["p < q"], "(SUC p) < (SUC q@)") : goal

#let gl,p = IMP_RES_TAC LESS_MONO g;;
gl = []1 : goal list
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p = - : proof
#let th = p[l;;
th = . |- (SUC p) < (SUC q)

#print_all_thm th;;
p < q |- (SUC p) < (SUC q)

The account generated by the named tactic shows the wording used:

This is the proof of the conjecture
>> example:

"(SUC p) < (SUC g)"

Assuming

The fact: "p < q"

>>>> This follows directly
by using the assumptions made thus far and the fact
|- 'mn. m <n ==> (SUC m) < (SUC n).

This establishes
p <q |- (SUC p) < (SUC q)

This completes the proof of the conjecture
>> example:

"(SUC p) < (SuC g)"

Assuming

The fact: "p < q"

The next example demonstrates solution by contradiction. (Since the
term of the goal does not matter, we use an arbitrary provable term t.) The
pre-proved theorem LESS_NOT_EQ is the theorem parameter:

#LESS_NOT_EQ;
|- !Imn. m<

ﬁ ==> “(m = n)

The implication of LESS_NOT_EQ is taken by IMP_RES_TAC to be a form of the
canonical
|-m<n=>(m=n) ==>F

Though IMP_RES_TAC this time succeeds by deriving a contradiction, there is
nothing in the following ordinary HOL session to indicate that fact:

#let g = ["p < q";"(p:num) = g"],"t:bool";;

g = ([llp < qll; Ilp = qll] s lltll) . goal

#let gl,p = IMP_RES_TAC LESS_NOT_EQ g;;

gl = []1 : goal list
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p = - : proof

#let th = p[l;;
th=.. |-t

#print_all_thm th;;
P<q p=ql-t

The wording of the account makes the proof method clear!®:

This is the proof of the conjecture

>> example:
"t"
Assuming
The factl:
The fact2:

>>>> This follows by contradiction,
using the assumptions made thus far and the fact
|- 'mn. m<n==>""(m=n).
This establishes
p<a, p=ql-t
This completes the proof of the conjecture
>> example:
"t"
Assuming

The factl: "p
The fact2: "p

L
P=gq

< qll
=q

Where resolution advances a goal rather than solving it, this is indicated
in the account; the new result is identified. Here, LESS_MONO is again used:

This is the proof of the conjecture
>> example:

"t"

Assuming

The fact: "p < q"

>>>> From the assumptions made thus far and the fact
|- 'mn. m<n ==> (SUC m) < (SUC n),
it is sufficient to prove the following:

>> lltll
Assuming

The consequence: "(SUC p) < (SUC "
The fact: "p < q"

16 An alternative presentation could print the canonical form of LESS_ NOT_EQ (i.e. the
form actually used by the tactic), if that were felt to be more informative.
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This establishes
(SUC p) < (SUC @), p<ql-t
This establishes

p<ql-t
This completes the proof of the conjecture
>> example:

"t"

Assuming

The fact: "p < q"

Of course, there may be more than one new result; in that case, the new
results are numbered in the order in which they would ordinarily be added
to the assumptions in HOL:

This is the proof of the conjecture
>> example:

"t"

Assuming

The factl: "pl < ql"

The fact2: "p2 < q2"

>>>> From the assumptions made thus far and the fact
|- 'mn. m<n ==> (SUC m) < (SUC n),
it is sufficient to prove the following:
>> lltll
Assuming
The consequence 2: "(SUC p2) < (SUC g2)"
The consequence 1: "(SUC pl) < (SUC q1)"
The factl: "pl < ql"
The fact2: "p2 < q2"

This establishes

(SUC p2) < (SUC g2), (SUC p1) < (SUC ql1), pl < ql, p2 < qg2 |-t
This establishes

pl <qgl, p2 < g2 |-t

This completes the proof of the conjecture
>> example:

"t"

Assuming

The factl: "pl < ql"

The fact2: "p2 < g2"

As noted earlier, a resolvent with a disjunctive conclusion can cause a
case split. If that happens, the cases are numbered and identified in the
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account (and new results identified as before). In the following example, we
resolve against the pre-proved LESS_LEMMA:

#let LESS_LEMMA1 = theorem ‘prim_rec‘ ‘LESS_LEMMA1‘;;
LESS_LEMMA1 = |- Imn. m< (SUCn) ==> (m=1n) \/ m<n

This is the proof of the conjecture
>> example:

lltll

Assuming

The fact: "p < (SUC g)"

>>>> From the assumptions made thus far and the fact
|- 'mn. m< (SUCn) ==> (m=n) \/ m< n,
it is sufficient to prove the following:

>> disjunctive case 1 of 2:
lltll
Assuming
The consequence: "p = q"

The fact: "p < (SUC q)"

>> disjunctive case 2 of 2:
"t"
Assuming
The consequence: "p < q"

The fact: "p < (SUC g)"

The proof of the

>> disjunctive case 1 of 2:
lltll
Assuming
The consequence: "p = q"

The fact: "p < (SUC g)"
is as follows:

This establishes
p=4g, p<(SUCqQ |-t

The proof of the

>> disjunctive case 2 of 2:
"t"
Assuming
The consequence: "p < q"

The fact: "p < (SUC g)"

is as follows:

This establishes
p<qg, p<(SUCQ |-t
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This establishes
p<(SUCq I-t

This completes the proof of the conjecture
>> example:

"t"

Assuming

The fact: "p < (SUC g)"

Finally, the point made in (...) about implicit assumptions applies to any
tactic of the form IMP_RES_TAC th; implicit assumptions may be introduced
by the theorem parameter th. RES_TAC does not have this property.

The implementations of NAMED_IMP_RES_TAC and NAMED_RES_TAC follow the
outlines of simpler implementations (...) but involve rather more processing
of the ordinary results in order to build useful accounts into the named
functions.

7 Popping Assumptions

There are several groups of functions in HOL whose members produce new
tactics from old. Such functions might be called ‘tactic transformers’. One
such group contains the HOL function POP_ASSUM, which maps a function f
of type thm -> tactic to a new function of type tactic so that

POP_ASSUM f = \((a.A),t). £ (ASSUME a) (A,t)

That is, the function POP_ASSUM transforms f into a tactic which takes a goal
(with at least one term on the assumption list), removes the first term (a)
on the assumption list, assumes that term (to produce the theorem a |- a),
supplies that theorem to the function £ (to yield a new tactic), and finally,
applies that tactic to the reduced goal (the goal without the leading assump-
tion).

The other two members of this group of functions are POP_ASSUM_LIST
and SUBST_ALL_TAC. The method of viewing the assumption list of a goal as
a stack which can be ‘popped’ was developed for LCF by Larry Paulson (...).

The reasons for wishing to pop or remove an assumption before using it
may not be immediately apparent, as this technique does not correspond to
any natural strategy. For example, in the textbook proof shown in (...), one
of the proof steps was:
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If n itself is a prime, there is nothing to prove. Suppose, then,
that n is composite...

The argument then continues until the desired fact is established for n, under
the assumption that n is composite; and the assumption is used at some
point. It would sound very odd if, after the assumption were used, but
before the case were solved, the proof were to continue:

...We now cease to assume that n is composite, as this fact is no
longer required.

This sounds odd because assumptions in a normal subgoaling framework
cannot, be ‘dropped’ once they have been used, and they would normally be
used once introduced. In the example, the assumption that n is composite
persists from subgoal to subgoal, past the point of its use, right until the
composite case of the proof is established. However, in proofs in HOL, there
are at least two reasons for wishing to give the appearance of dropping an
assumption from a subgoal, and one reason for actually doing so.

7.1 Popping to Erase Used Assumptions

The simplest reason for causing an assumption to seem to vanish is that dur-
ing an interactive session in which proof steps are made one at a time, each
subgoal of the proof tree is printed out to the user explicitly. To reduce appar-
ent clutter, it has become a common practice to use the function POP_ASSUM
to supress the printing of assumptions that were but are no longer required.
Thus, application of the tactic POP_ASSUM SUBST1_TAC not only effects a sub-
stitution (and without explicit mention of the substitution equation — i.e.
of the leading assumption), but also prevents the leading assumption from
appearing subsequently in the subgoal. It does not, of course, prevent the
theorem achieving the original goal from depending on the popped assump-
tion, since the justification of POP_ASSUM SUBST1_TAC necessarily adds the
popped assumption to any theorem achieving the subgoal.

#let g = ["x = 5"],"x > 0";;

g = (["x =5"], "x >0") : goal

#let gl,p = POP_ASSUM SUBST1_TAC g;;

gl = [([1, "5 > 0")] : goal list
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p = - : proof

=|-5>0

#print_all_thm(p[thl);;
x=51]-x>0

th’ =x=5 |-5>0

#print_all_thm(p[th’]);;
=5 |-x>0

7.2 Popping to Replace an Assumption

The second reason for popping an assumption is to re-introduce it imme-
diately in a different form. For example, it may be convenient to ‘replace’
an assumption of the form ¢1 = ¢2 with the equivalent {2 = ¢1, in which
case the original assumption is no longer required, and indeed, may be an
obstacle if it does not co-exist happily with the new form (in this case, for
example, it would prevent a subsequent application of ASM_REWRITE_TAC. ..
from terminating). One way to achieve this is illustrated below:

#let = ["5 = x"],"t:bool";;

([ll5 = ] s Iltll) . goal

#let gl,p = POP_ASSUM (ASSUME_TAC o SYM) g;;
= [(["x = 5"], "t")] : goal list

p = — : proof

Again, the justification of POP_ASSUM (ASSUME_TAC o SYM) necessarily pro-
duces a theorem depending on the popped assumption 5 = x, given a theorem
achieving the subgoal — so the popped theorem is not gone, but simply not
printed.

7.3 Popping to Erase Irrelevant Assumptions

The third reason for popping assumptions is that in HOL proofs in which
certain kinds automation come into play, useless assumptions are sometimes
introduced into subgoals; the resolution tactics (...), which add to the as-
sumptions of a goal all the collective consequences of a certain type of the
existing assumptions (with or without an additional implicative lemma), are
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notorious for this. Useless assumptions are therefore popped (and genuinely
dropped) in order to reduce the confusion (and clutter) that might result from
the presence of assumptions which are never used and on which nothing ever
actually depends. For example:

#let g = ["5 = x"],"t:bool";;

g = (["5 = Xll] s Iltll) . goal

#let gl,p = POP_ASSUM (\th. ALL_TAC) g;;

gl = [([], "t")] : goal list

p=-: (x1list -> *)
th = |-t

#plthl;;

- t

In this case, the assumption 5 = x is genuinely lost; the justification of
POP_ASSUM (\th. ALL_TAC)'” - or, to use a combinator, POP_ASSUM (K ALL_TAC)
— does not add the popped assumption to the theorem achieving the goal.
This cases arises for any user-defined function which shares the property of
genuinely dropping assumptions.

It is also the case that if the achieving theorem does depend on the lost
assumption, the justification still maps that theorem to a theorem achieving
the original goal, even though the subgoal is not achieved:

#let g = [l15 = X”] ,Ilt:boolll;;
g = (["5 = X"] s Iltll) . goal

#let gl,p = POP_ASSUM (K ALL_TAC) g;;
gl = [([1, "t")] : goal list
p=-: (x list -> %)

#print_all_thm th;;

5=x |-t
#print_all_thm(p[thl);;
5=x |-t

7.4 Accounting for Popping Assumptions

For whatever reasons it is used, the assumption-popping strategy is perfectly
valid, since a theorem that achieves the subgoal less an assumption must

7as POP_ASSUM is currently implemented in HOL
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also achieve a subgoal with that assumption, by the definition of achievement.
Whether, in each case, popping assumptions is the best method for producing
the desired effect is a question of style, taste and clarity, but this is not the
question of interest here. Instead, the question is how to produce a natural
account of a proof that relies on this technical and non-natural device.

The key to producing such accounts, in the first and second cases, is
the concept of an implicit assumption, introduced in (...). This is suggested
by the way assumptions not visible in subgoals are nevertheless known to
justifications, exactly as happens when a tactic is applied which has been
constructed from a theorem whose hypotheses do not correspond to current
assumptions.

The account desired would simply document the tactic actually applied,
show the subgoal with the popped assumption no longer explicit, but leave
no mystery about the persistence of the assumption in the justification. That
is, the popped assumption would appear as implicit where it ceased to appear
as explicit.

7.4.1 Accounting for Popping to Erase Used Assumptions

A sensible account of the first case (popping to erase used assumptions)
is constructed by first defining a function NAMED_POP_ASSUM in parallel with
HOL’s POP_ASSUM function. Thus, for a function £ of type thm -> named_tactic,
the function NAMED_POP_ASSUM f is a named tactic which when applied to a
named goal

1. finds the term part (tm, say) of the first ezplicit assumption of a goal;

2. assumes tm to give a theorem tm |- tm and applies £ to the resulting
theorem to form a named tactic; and

3. applies the named tactic £(ASSUME tm) to the named goal minus its
first explicit assumption.

This means that in relation to the reduced goal, the new tactic is bringing
to bear a theorem which depends on a hypothesis not represented in the goal
—namely, tm. Thus the situation is the same as in (...). The account produced
for the first case(Section 7.1), in which the tactic POP_ASSUM SUBST1_TAC was
used to substitute with and dispense with the leading assumption, is as
follows:
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This is the proof of the conjecture
>> examplel:

llx > OII
Assuming

The fact: "x = 5"

>>>> We substitute according to the following equality:
x=5|-x=5,
Thus, 1t is sufficient to prove:

>> "5 > 0"
Assuming implicitly
The hypothesis of the equality: "x = 5"

This establishes
[-5>0

This establishes
x=51-x>0

This completes the proof of the conjecture
>> examplel:

llx > OII
Assuming
The fact: "x = 5"

This interpretation of NAMED_POP_ASSUM assures that when the popped as-
sumption (tm) is actually used (e.g. in this case, by the substitution tactic
NAMED_SUBST1_TAC(ASSUME tm)), it will necessarily be recorded in the substi-
tution subgoal as an implicit assumption. The account describes just one
proof step: the substitution. It does not mention the popping function,
but simply documents the ‘loss’ of the explicit assumption at the point of
substitution, where the implicit assumption arises. This gives the effect of
transferring the popped, explicit assumption to the list of implicit assump-
tions, which is what was desired.

A different interpretation of NAMED_POP_ASSUM f is to insist that a popped
assumption always be recorded as implicit. To implement this view, the
goal to which the tactic £ (ASSUME tm) is applied does not have the popped
assumption removed, but simply marked as implicit.

If an implicit assumption is ultimately recorded in the first way, then
the same assumption is recorded as implicit in the new way. However, the
advantage of the new method over the first is that the new method is not com-
mitted to the phrasing with which, in the first way, the function £ identifies
the implicit assumption — indicating that the assumption was used invalidly.
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The first method s committed to this phrasing, as it is built into the ac-
count produced by the justification of £; the name of the assumption before it
was popped cannot be restored. (In the example, the implicit assumption is
labelled The hypothesis of the equality by NAMED_SUBST1_TAC.) Using the
new method, the name borne by the assumption in the previous subgoal
(fact, in the example) could be retained (or some other preferred phrase
used instead). The disadvantage of the new method is that it does not cover
the third case (popping to erase irrelevant assumptions); we return to this
point in Section 7.4.3.

An elaboration of NAMED_POP_ASSUM f is to have it notice when f is exactly
equivalent to NAMED_ASSUME_TAC, in which case there is no overall effect. In
that case, the justification of £ can be replaced with the identity justification
(i.e. the function mapping a list containing one account to that account) so
that instead of the account

This is the proof of the conjecture
>> examplel:

"X > OII

Assuming

The fact: "x = 5"

>>>> We use the assumption that
x=5|-x=05.
It is sufficient to prove:

>> lIx > QII
Assuming

The added hypothesis: "x = 5"
Assuming implicitly
The hypothesis of the theorem used: "x = 5"

This establishes
x=51]-x>0

which documents the double re-assumption of x = 5 without it ever obviously
having been lost, the following less confusing account is produced:

This is the proof of the conjecture
>> examplel:

llx > OII
Assuming

The fact: "x = 5"
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This establishes
x=51[]-x>0

This is a minor elaboration, as the exact situation described is infrequent,
and the trick does not extend to anything more complex (i.e. to anything
involving modification of the justification of £).

7.4.2 Accounting for Popping to Replace Assumptions

The original interpretation of popping also gives a reasonable account of the
second case: popping to replace an assumption (Section 7.2). In the example
used, the tactic POP_ASSUM (\th. ASSUME_TAC(SYM th)) was used to drop an
old assumption and add a new one, as if replacing the old one. The account
produced is:

This is the proof of the conjecture
>> example?2:

lltll

Assuming

The fact: "5 = x"

>>>> We use the fagt that
It ig suf%icieﬁt to prove:
>> lltll
Assuming
The added hypothesis: "x = 5"
Assuming implicitly
The hypothesis of the theorem used: "5 = x"

This establishes

x=51|-t
This establishes
5=x |-t

This completes the proof of the conjecture
>> example?2:

"t"

Assuming

The fact: "5 = x"

Again, by using the new interpretation of popping (i.e. by insisting that
popped assumptions are immediately made implicit) the phrase
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The hypothesis of the theorem used

identifying the implicit assumption, could be varied as desired and does not
have to be the one seen above, which was supplied by ASSUME_TAC.

7.4.3 Accounting for Popping to Erase Irrelevant Assumptions

The original interpretation of NAMED_POP_ASSUM also gives a natural account of
the third case (Section 7.3), in which an unnecessary assumption is actually
dropped, and is not stitched into any justification function. In the example
shown, POP_ASSUM (\th. ALL_TAC) (i.e. POP_ASSUM (K ALL_TAC)) was used
to give this effect. The account produced is:

This is the proof of the conjecture
>> example3:

lltll

Assuming

The fact: "5 = x"

>>>> It is sufficient to prove:
>> lltll

This establishes

- t

This establishes

-t

This completes the proof of the conjecture
>> ﬁzﬁmpleB:

Assuming
The fact: "6 = x"

The account documents the loss of the assumption (a valid step), and
shows that when the subgoal is ultimately achieved, the justification of
the proof step returns a theorem which does not depend on the original
(and lost) fact. This corresponds to — and explains — the behaviour of
POP_ASSUM (K ALL_TAC) in HOL, as shown in Section 7.3.

It is also the case, as mentioned in Section 7.3, that the justification
of POP_ASSUM (K ALL_TAC) maps the theorem 5 = x |- t to itself, and so
achieves the original goal, even though the theorem does not achieve the
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subgoal. If the theorem 5 = x |- t is eventually established and then sup-
plied as the purported achievement of the subgoal, the following account
results:
This is the proof of the conjecture
>> example3:

lltll

Assuming

The fact: "5 = x"

>>>> It is sufficient to prove:
>> lltll

This establishes
5=x |-t
which does not satisfy
>> lltll
This establishes
5=x |-t
This completes the proof of the conjecture
>> example3:
lltll

Assuming
The fact: "6 = x"

The local failure is noted, as well as the ultimate achievement of the original
goal. This also corresponds to —and explains — the behaviour of POP_ASSUM (K ALL_TAC)
in HOL.

In contrast to this interpretation of NAMED_POP_ASSUM f — in which the
popped assumption (tm) is allowed to appear or not in the course of applying
the tactic £ (ASSUME tm) to the goal containing no version of the assump-
tion — is the second interpretation, in which the popped assumption is made
implicit in the goal to which the tactic is applied. (We call this function
NAMED_POP_TRACE because it necessarily leaves a ‘trace’ of the popped as-
sumption.) Under the second interpretation, the account is:

This is the proof of the conjecture
>> example3:

"t"

Assuming

The fact: "5 = x"

>>>> It is sufficient to prove:
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>> lltll
Assuming implicitly
The fact: "5 = x"

This establishes
- t
This establishes
- t

This completes the proof of the conjecture
>> example3:

"t"

Assuming

The fact: "5 = x"

Here, a record of the popped assumption is kept, so it is not definitively
lost. This still corresponds to HOL’s behaviour, but it no longer satisfies the
original definition of implicit assumptions, which was based on the behaviour
of justifications. It seems desirable to retain the present definition of implicit
assumptions as the basis for explaining why certain assumptions do or do
not appear as hypotheses of certain theorems. Therefore, it seems sensible
to retain the original view of the pop operation, which covers all three cases
adequately. However, there is another use for this version of the pop function;
it arises in the next section.

An alternative might be to implement NAMED_POP_ASSUM f differently for
different £, using the original view of popping for cases resembling the third
case and the new view in others. Probably, the choice would have to be
represented by a conditional within the implementation of a more general
pop function, as there seems no way in advance to tell which sort of function
f one has been given. This would be a complicated way around the problem,
if it could be made to work at all.

The root of the difficult with K ALL_TAC is the definition of achievement in
HOL. This specifies that a theorem’s hypotheses need only be a subset of the
assumptions of the subgoal it purports to achieve. If the definition required
the full set, the problem would not arise. A less drastic modification of HOL,
however, would at least produce uniformity over all functions to which the
pop operator could be applied; that would be to re-implement HOL’s function
POP_ASSUM so that for any appropriate f, the justification of POP_ASSUM f were
not simply the justification (p, say) of £, but rather (ADD_ASSUM tm) o p.
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where ADD_ASSUM : term -> thm -> thm is the inference rule in HOL that
adds a hypothesis to a theorem. Under this definition, the two views of the
pop operator would be the same, so we could use the second, if desired, to
choose a way of identifying the popped assumption.

7.5 Accounting for POP_ASSUM _LIST

The function POP_ASSUM_LIST is a generalization of POP_ASSUM which removes
all of the assumptions of a goal and passes the list of (assumed) assumptions
to a function of type thm 1list -> tactic. The account is therefore similar;
for example, the following proof

= ["x = 5ll;lly = 4"],"}{ > yu;;
g = (["X 5", ny = 4n:|’ "y > yn) . goal
#let gl,p = POP_ASSUM_LIST SUBST_TAC g;;

gl = [([0, "5 > 4")] : goal list
p = - : proof

th = [-5>4
#print_all_thm(p[thl);;
x=5,y=41-x>y

receives the following account:

This is the proof of the conjecture
>> example4:

"X > yII

Assuming

The fact: "x = 5"
The fact: "y = 4"

>>>> We substitute according to the following equalities:
x=5|-x=5
y=4I|-y=4.
Thus, it is sufficient to prove:

>> "5 > 4"
Assuming implicitly
The hypothesis of the equality: "x
The hypothesis of the equality: "y

5ll
4"

This establishes
|- 5> 4
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This establishes
x=5,y=4|-x>y

This completes the proof of the conjecture
>> example4:

llx > yII

Assuming

The fact: "x
The fact: "y

7.6 Accounting for SUBST_ALL_TAC

The function SUBST_ALL_TAC, of type thm -> tactic, is not a tactic trans-
former, but the tactic SUBST_ALL_TAC th shares with POP_ASSUM f the property
of causing assumptions of a goal to seem to disappear. SUBST_ALL_TAC uses an
equational theorem to effect a substitution throughout the term of the goal
— in the style of SUBST1_TAC — and also to effect the substitution throughout
the assumption list. In particular, SUBST_ALL_TAC th resembles POP_ASSUM f
when the latter is used for replacing assumptions by equivalent terms — and
at the same time, making the original assumptions implicit (Section 7.2).
This, again, does not correspond to a natural pattern of reasoning, and that
makes it difficult to give a natural account. The effects of SUBST_ALL_TAC are
illustrated in the following example:

rth=|-x=1
#let g = ["(y:num) = x";"w > x";"w < 5"],"(z:num) = x";;
g = ([uy = x"; "w > x"; "w < 511]’ Ny = X") goal

#let gl,p = SUBST_ALL_TAC rth g;;
gl = [(["y =1"; "w > 1"; "w < 5"], "z = 1")] : goal list
p = - : proof

th=y=1,w> 1, w<5b5 |-z=1

#print_all_thm(p[thl);;
y=x,w>x, w<5|-z=x

In HOL, SUBST_ALL_TAC happens to be implemented as an application of
SUBST1_TAC (to modify the term of the goal), sequenced with a application
of POP_ASSUM_LIST (Section 7.5) to a function that substitutes through and
re-assumes each assumption (to modify the assumptions). That is, to modify
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the assumptions, all are removed, and each is transformed, then re-assumed.
Although the method of implemening named tactics so far has not been
to parallel the actual HOL implementation — the HOL functions are taken
as ‘black boxes’ — one reason for trying to do so in this case is to leave
the recording of the implicit assumptions to the ASSUME_TAC’s, so that it is
automatic.
The parallel implemantation satisfies:
NAMED_SUBST_ALL_TAC rth =

NAMED_SUBSTI TAC rth THEN
NAMED_POP_ASSUM_LIST

(\[th1l;...;thn]. ASSUME_TAC (SUBS [rth] thn)
THEN

THEN
ASSUME_TAC (SUBS [rth] thl))

The account that is produced in this way turns out to be rather in-
scrutable. Although this implementation of NAMED_SUBST_ALL_TAC gives the
correct end result, the intermediate proof steps — normally not visible — are
not what one would expect; they reveal local failures of theorems to achieve
subgoals:

This is the proof of the conjecture
>> exampleb:

lIz = XII

Assuming

The factl: "y = x"
The fact2: "w > x"
The fact3: "w < 5"

>>>> We substitute according to the following equality:

-x=1.
%hus, it is sufficient to prove:
>> "z = 1"
Assuming
The factl: "y = x"
The fact2: "w > x"
The fact3: "w < 5"

>>>> We use the assumption that

w <5 |-w<5b.
It is sufficient to prove:

>> llZ = 1II
Assuming
The added hypothesis: "w < 5"
Assuming implicitly
The hypothesis of the theorem used: "w < 5"

76



>>>> We use the fact that

w>x |l-w>1.
It is sufficient to prove:
>> lIz = 1II
Assuming

The added hypothesis: "w > 1"

The added hypothesis: "w < 5"
Assuming implicitly

The hypothesis of the theorem used:
The hypothesis of the theorem used:

>>>> We use the fact that
y=x|-y=1.
It is sufficient to prove:

>> llZ = 1II
Assuming
The added hypothesis: "y = 1"
The added hypothesis: "w > 1"
The added hypothesis: "w < 5"

Assuming implicitly

The hypothesis of the theorem used:
The hypothesis of the theorem used:
The hypothesis of the theorem used:

This establishes

y=1,w>1, w<b5 |-z=1
This establishes
w>1l,w<b,y=x|-z=1

which does not satisfy
>> llZ = 1II
Assuming
The added hypothesis: "w > 1"
The added hypothesis: "w < 5"
Assuming implicitly
The hypothesis of the theorem used:
The hypothesis of the theorem used:

This establishes

w<b5,y=x,w>x|-z=1
which does not satisfy
>> "z = 1"

Assuming

The added hypothesis: "w < 5"
Assuming implicitly
The hypothesis of the theorem used:

This establishes
y=%x,w>x,w<5b5|-z=1
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This establishes
y=x,w>x,w<5|-2z=x

This completes the proof of the conjecture
>> exampleb:

Ny, = xi

Assuming

The factl: "y = x"
The fact2: "w > x"
The fact3: "w < 5"

That is, the first subgoal correctly reflects the modification of the term
part of the goal; but of the three subsequent subgoals that reflect the re-
assumption of the modified assumption terms, only the last one is correct: it
shows the three new assumptions and the three implicit assumptions as de-
sired. The other two subgoals reflect intermediate states of the computation
in which certain assumptions are missing — neither implicit nor explicit, but
held in temporary data structures.

Whether the current implementation of SUBST_ALL_TAC in HOL is the best
one is not relevant here; nor is whether SUBST_ALL_TAC represents a ‘good’
style of reasoning. It is sufficient to note that, in this case, following the
implementation is not a useful technique.

In any case, this account shown is flawed in two other ways: (i) the
fact that the assumption w < 5 is not affected by the substitution would
be explained more clearly if that assumption were not said to have been
processed like the others (although it is); and (ii) the account would be
less tedious and if it did not report the processing of each assumption in
sequence, but all together. The sequence results from the fact that although
POP_ASSUM_LIST removes all of the assumptions at once, ASSUME_TAC th is
not one of the HOL tactics for which a simultaneous version is provided (as
SUBST_TAC is for SUBST1_TAC).

This suggests a second approach: namely, to implement a function called,
Say,NAMED_ASSUME_LIST_TACthatgenerahzesNAMED_ASSUME_TAC.NAMED_ASSUME_LIST_TAC
computes the effect of adding a list of assumptions in sequence to a goal, then
presents and justifies the result in one proof step, as though the assumptions
had been added simultaneously. Implicit assumptions are recorded as a mat-
ter of course by the internal ASSUME_TAC’s. When the addition of the assump-
tions is packaged into one step with its own account, then NAMED_SUBST_ALL
can then be implemented to satisfy

78



NAMED_SUBST_ALL TAC rth =
NAMED_SUBSTI TAC rth THEN
NAMED_POP_ASSUM_LIST

(\thl. NAMED_ASSUME_LIST_TAC [SUBS [rth] thn;

SUBS [rth] thi] )

so that its account spares the user the sequential computation of the re-
assumptions. The account thus produced for the example is:

This is the proof of the conjecture
>> exampleb:
Ny = x!

Assuming

The factl: "y = x"
The fact2: "w > x"
The fact3: "w < 5"

>>>> We substitute according to the following equality:

- X .
Thus, it is sufficient to prove:

>> "z = 1"
Assuming
The factl: "y = x"
The fact2: "w > x"
The fact3: "w < 5"
>>>> We use the facts that
y=xl-y=1
w>x |l-w>1
w <5 |-w<5.
It is sufficient to prove:
>> "z = 1"
Assuming
The added hypothesis: "y = 1"
The added hypothesis: "w > 1"
The added hypothesis: "w < 5"

Assuming implicitly

The hypothesis of the theorem used: "y = x"
The hypothesis of the theorem used: "w > x"
The hypothesis of the theorem used: "w < 5"

This establishes

y=1,w>1, w<b65 |-z=1
This establishes
y=x,w>x,w<5|-z=1

This establishes
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y=%x,w>x,w<b|-2z=x

This completes the proof of the conjecture
>> exampleb:
Ny = x!
Assuming
The factl: "y

The fact2: "w > x"
The fact3: "w <

This is a great improvement over the previous account in showing only two
steps: the modification of the term, and the one-step modification of the
assumptions. It also has the property that the theorems returned by the
justifications respectively achieve the subgoals shown.

A minor flaw of this version is that there is no way, in passing control from
NAMED_POP_ASSUM_LIST to NAMED_ASSUME_LIST_TAC, to make special provisions
for particular assumptions which are not affected by substitution; thus w < 5,
in the example, has to be treated in the same way as the others. This causes
a slight obscurity in the account.

It was noted in Section 7.4.1 that NAMED_POP_ASSUM could be elaborated,
in the case that NAMED_POP_ASSUM f had no net effect, to return the iden-
tity justification, and so omit the account of the re-assumption on the re-
duced goal. The corresponding generalization of NAMED_POP_ASSUM_LIST per-
tains when NAMED_POP_ASSUM_LIST f has no net effect — that is, when all
the popped assumptions reappear intact and in order. This elaboration of
NAMED_POP_ASSUM_LIST would only help with NAMED_SUBST_ALL_TAC where no
assumption were affected by substitution; that is, the choice is between re-
porting the re-assumption of all the modified assumptions, or reporting noth-
ing.

A more serious flaw is that in implementing NAMED_SUBST_ALL_TAC in a
different manner than HOL’s SUBST_ALL_TAC, it is not necessarily the case
that the two computations are (in a suitable sense) equivalent — the account
therefore might not be explaining the HOL proof. This would at least require
an argument about the two computations.

The third (and last) approach we consider is to implement NAMED_SUBST_ALL_TAC
itself as a unit function with a one-step acount. To compute its results,
NAMED_SUBST_ALL_TAC analyzes the results of applying SUBST_ALL_TAC to the
corresponding ordinary goal, and then presents the results as if derived in
one stroke. As part of the presentation, unchanged assumptions are noticed
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and presented as if no substitution had been attempted. The analysis stage
allows the new assumptions as well as the implicit (old) assumptions to be
named in a meaningful way (rather than in due course by ASSUME_TAC).

The implementation of NAMED_SUBST_ALL_TAC in terms of SUBST_ALL_TAC
is not difficult, but it does involve a certain amount of internal analysis. The
account produced is as follows:

This is the proof of the conjecture
>> exampleb:
Ny = x!

Assuming
The factl: "y = x"
The fact2: "w > x"
The fact3: "w < 5"

>>>> We substitute according to the following equality:
- x=1.
(likewise restating any assumptions made thus far which involve "x").
Thus, it is sufficient to prove:

>> Mz = 1"
Assuming
The new factl: "y = 1"
The new fact2: "w > 1"
The fact3: "w < 5"
Assuming implicitly
The old factl: "y = x"
The old fact2: "w > x"
This establishes
y=1,w>1, w<b65 |-z=1
This establishes
y=x,w>x,w<5|-2z=x

This completes the proof of the conjecture
>> exampleb:
Ny = x!
Assuming
The factl: "y

The fact2: "w > x"
The fact3: "w <

This approach has the advantages of using the implementation of HOL’s
corresponding tactic in the usual way, so there is no issue of differing com-
putations. It also allows for a clearer naming scheme in the account pro-
duced. Finally, it gives an opportunity to note the rather odd pattern of
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reasoning being used, at the node in the subgoal-proof tree representing the
NAMED_SUBST_TAC step (before the subgoal in the account).

However, there is a new difficulty: whereas, in the previous attempts at
an account, the new assumptions assumptions (made by NAMED_ASSUME_TAC)
automatically caused the implicit assumptions to be recorded, there is no
way to do this given only the results of the ordinary SUBST_ALL_TAC. In-
stead, the implicit assumptions (i.e. those original assumptions which would
be affected by substitution) have to be identified and added as part of the
presentation. Thus, there is again an argument to be made that HOL’s be-
haviour is reflected here: it has to be argued that the direct implementation
of NAMED_SUBST_ALL_TAC produces the same implicit assumptions that can be
observed by experiment in HOL itself.

Whether the second or the third approach is best is difficult to say, but
in any case, the first approach is clearly not adequate.

NAMED_SUBST_ALL_TAC th is the first example of a named tactic with a com-
plex implementation (p. ...). A meaningful account neither parallels the HOL
implementation of the ordinary tactic nor follows directly from it, but re-
quires some new function to be implemented directly (VAMED_ASSUME_LIST_TAC,
in the second approach, or NAMED_SUBST_ALL_TAC itself, in the third). The
next such example are the strip functions (Section ...).

8 Continuations

The HOL functions in the next group to be considered also produce new
tactics from old, as do the functions in the previous chapter. The members
of this group differ from functions such as POP_ASSUM in that they all cause
some inference to be done behind the scenes, and they can also affect the
term parts of goals, in addition to the assumptions. The concealed inferences
give the effect of performing two proof steps in one. The difficulty in giving
accounts for these functions is to explain the concealed inferences coherently.

8.1 The Disjunctive Transformer

A typical example is DISJ_CASES_THEN, which maps a function f of type
thm -> tactic and a disjunctive theorem to a new tactic. For the sake of
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example, suppose that a new type, :voltage, has been introduced, with
exactly two values, hi and lo. The new type is characterized by:

[- !(v:voltage). (v = hi) \/ (v = lo)

Suppose also that there is an operator, AND, such that

|- hi AND hi = hi
and
|- 1o AND lo = lo

The effect of DISJ_CASES_THEN is illustrated below The goal is to show (for
all v) that v AND v = v, given that hi AND hi = hi and lo AND lo = lo.

#let g = [1,"v AND v = v";;
g = ([1, "v AND v = v") : (* list # term)

th = |- (v = hi) \/ (v = 10)

#let gl,p = DISJ_CASES_THEN SUBST1_TAC th g;;
gl = [([], "hi AND hi = hi"); ([], "lo AND lo = 1lo")] : goal list
p = - : proof

#thil

= |- hi AND hi = hi
th2 = |- 1o AND 1o = lo
thl’ = v = hi |- hi AND hi = hi
th2’ = v = 1o |- 1o AND lo = lo
#p[thl;th2];;
|- v AND v = v
#p[thl’;th2°];;
|- v AND v = v

In the example, the new tactic DISJ_CASES_THEN SUBST1_TAC th maps the
goal to two subgoals by extracting from the disjunctive theorem

|- (v = hi) \/ (v = lo)
the two disjunct terms, v = hi and v = lo, assuming these, and using the

two resulting theorems — in parallel — as parameters to two applications of
the substitution function. The two new subgoals are the values of
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SUBST1_TAC (ASSUME "v = hi'") g
and
SUBST1_TAC (ASSUME '"v = lo") g

The subgoals carry the implicit assumptions v = hi and v = 1o respectively;
these are introduced, in each case, by the act of assuming the disjunct term.
The justification (p) relies on (i) the inference rule for substitution (see Sec-
tion ...) and (ii) the rule for disjunction (DISJ_CASES, see Description ...).
The substitution rule adds the respective assumptions to the two achieving
theorems if they are not already present:

thl = |- hi AND hi = hi

th2 |- 1o AND lo = lo

#let gll,pl = SUBST1_TAC (ASSUME "v = hi") g;;
gli = [([], "hi and hi = hi")] : goal list

pl = - : proof
#print_all_thm(pl[thl]);;
v=hi|-vandv=yvw

#let gl2,p2 = SUBST1_TAC (ASSUME "v = 1lo") g;;
gl2 = [([], "lo and lo = 1lo")] : goal list

p2 = - : proof
#print_all_thm(p2[th2]);;
v=1lo |l-vand v =yv

The disjunction rule then dismisses the two added assumptions as it combines
the two achieving theorems to yield the theorem achieving g:

#print_all_thm(DISJ_CASES th (p1[th1]) (p2[th2]));;
|- v AND v = v

The addition of the implicit assumptions to the subgoals does not depend
on the function f to which DISJ_CASES_THEN is applied, but rather, on the
assumptions being made at all; for example, using the function X ALL_TAC
to throw away the assumed terms, as in Section ..., we have the following
results (having established above, for all v, that |- v AND v = v):
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#let gl,p = DISJ_CASES_THEN (K ALL_TAC) th g
gl = [([], "v AND v = v"); ([], "v AND v = v")] : goal list
p = - : proof

#thl1’’ = |- v AND v = v
th2’’ = |- v AND v = v
thl1’’’ = v =hi |- v ANDv = v
th2’’’ =v =10 |- v AND v = v

#p[thl’’;th2°°];;
|- v AND v = v

#p[thl”’;th2”’];;
|- v AND v = v

In any case, the tactic DISJ_CASES_THEN SUBST1_TAC th, in one step, splits
a goal into two subgoals by applying two distinct substitutions — based on
the disjuctive theorem th — in parallel to the original goal. In this one-step
process, the assumptions v = hi and v = 1o do not appear explicitly; they
are added and then dismissed only behind the scenes, when the justification
function is applied. This one-step process shown below is more elegant than
the straightforward two-step process shown below, as the latter (i) requires
explicit reference to the terms v = hi and v = 1o, and (ii) leaves the two
‘used’ assumptions in the respective subgoals after the substitutions based
on them have been made:

#let gl3,p3 = DISJ_CASES_TAC th g;;

gl3 =
[(["v = hi"], "v AND v = v"); (["v = 1o0"], "v AND v = v")]
: goal list
p3 = - : proof
#let gld,p4 = SUBST1_TAC(ASSUME "v = hi") (hd gl13);;
g1l%,p g
gld = [(["v = hi"], "hi AND hi = hi")] : goal list
p4 = - : proof

#let gl5,p5 = SUBST1_TAC(ASSUME "v = 1o") (hd(tl gl13));;
gls = [(["v = 1o"], "lo AND lo = lo")] : goal list

p5 = - : proof
#let th4 = p4[thil;;
thd = . |- v AND v = v

#print_all_thm th4;;
v=hi|-v AND v =v

#let th5 = p5[th2];;
th = . |- v AND v = v
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#print_all_thm th5;;
v=1l |- v AND v = v

#print_all_thm(p3[th4;th5]);;
|- v AND v = v

From the viewpoint of accounts, however, the one-step tactic presents dif-
ficulties. It was possible (Section ...) to report the tactic POP_ASSUM SUBST1_TAC
in one step, as a substitution. That was possible because the tactic trans-
former POP_ASSUM simply supplied the argument for an application of NAMED_SUBST1_TAC
to an amended goal. The tactic DISJ_CASES_THEN SUBST1_TAC th, in contrast,
cannot be explained clearly in one step (e.g. as a substitution), because it
consists internally of a disjunctive split into two identical subgoals followed
by distinct and parallel substitutions on two ‘copies’ of the original goal.
In the current example, what has to be explained is the move from the
named goal (ng, say)

>> "y AND v = v"

to the two named subgoals

>> "hi AND hi = hi"

and

>> "lo AND lo

loll

and this move is not explained by any single existing tactic.

Even by devoting a node in the subgoal-proof tree to the application of
compound tactics of the form NAMED_DISJ_CASES_THEN f th, so that there
is an opportunity for choosing a wording to explain the disjunctive split, a
coherent account still cannot be produced. (This is demonstrated below.)

To devote a node in this way, NAMED_DISJ_CASES_THEN is implemented in
parallel with the HOL implementation of the ordinary tactic DISJ_CASES_THEN
f th. The proof step of the node is identified by a string, say ‘NAMED_DISJ_CASES_THEN®.
In the example case,

NAMED_DISJ_CASES_THEN NAMED_SUBST1_TAC th ng

would compute
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NAMED_SUBST1_TAC (ASSUME "v = hi") ng
and
NAMED_SUBST1_TAC (ASSUME "v = lo") ng

and then use the pair of resulting subgoals and justifications to construct
the justification. The justification is the function which when given the
two respective sub-accounts returns an account consisting of (i) the single
combined proof step, (ii) the two subgoals, (iii) the two sub-accounts, and
(iv) the method for computing the achieving theorem: namely, by applying
the two justifications respectively to the two sub-accounts, selecting the two
theorems from within these accounts, and combining these theorems to justify
the disjunctive split. The account thus produced is:

This is the proof of the conjecture
>> examplel:
"v AND v = v"

>>>> We consider the two cases suggested by the fact
|- (v = hi) \/ (v = lo),

namely

v =hi |- v =nhi

and

vy =..01-Vv =210 . .

It is thus sufficient to prove the following:

>> left disjunctive case:
"hi AND hi =_hi"
Assuming implicitly
The hypothesis of the equality: "v

hi n

>> right disjunctive case:
"lo AND 1o =_1lo"
Assuming implicitly
The hypothesis of the equality: "v

The proof of the
>> left disjunctive case:
"hi AND hi =_hi"
Assuming implicitly
The hypothesis of the equality: "v

10"

hi n

is as follows:

This establishes
|- hi AND hi = hi

The proof of the
>> right disjunctive case:
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"lo AND 1o =_1lo"
Assuming implicitly
The hypothesis of the equality: "v = lo"

is as follows:

This establishes
|- 1o AND 1o = lo
This establishes
|- v AND v = v

This completes the proof of the conjecture
>> examplel:
"v. AND v = v"

The problem with this account is that although it explains the disjunc-
tive split, it does not provide any opportunity for reporting or explaining the
substitutions; the node that is constructed for the compound step branches
directly into the two subgoals, each with an account of its own. The substi-
tutions are justified, internally to the tactic, as part of the combined justifi-
cation. The only evidence in the account that any substitutions took place
is the move from the term v AND v = v to the terms hi AND hi = hi and
lo AND lo = lo — and the implicit assumption that is introduced in each
case. Accounts of the substitutions are thus not part of the account of the
combined step.

In this case, it might be possible for a user to guess that the unexplained
step was substitution, but it might not be possible to guess for a more com-
plex function than substitution.

The account produced in this way becomes even more obscure when one
of the subgoals is actually solved by the concealed step. In the schematic
example below, the function \th.NAMED_REWRITE_TAC[th] is used in place of
NAMED_SUBST1_TAC so that one of the subgoals can be solved. (P is some
property true of lo.)

This is the proof of the conjecture
>> example?2:
“(v = hi) \/ P v"

>>>> We consider the two cases suggested by the fact
|- (v = hi) \/ (v = 1o),
namely
v =hi |- v =hi
and
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v =10 |- v =10 . )
It is thus sufficient to prove the following:

>> "(lo = hi) \/ P lo"
Assuming implicitly
The hypothesis of the equality: "v = lo"

This establishes

|- (1o = hi) \/ P lo
This establishes

|- (v =hi) \/ P v

This completes the proof of the conjecture
>> example?2:
"(v = hi) \/ P v"

In this account, the v = hi subgoal is solved internally (by rewriting) without
ever having been displayed; so as well as the unexplained function (rewriting),
the missing case and the the way in which the function solved the missing
case would also have to be guessed. The point also applies where both cases
are generated and solved internally by the combined tactic. A trivial example
illustrates this:

This is the proof of the conjecture
>> example3:

"(v = hi) \/ (v = 1o)"

>>>> This follows by considering the two cases suggested by the fact
|- (v = hi) \/ (v = 1o),

namely

v =hi |- v =hi
and

v =1 |- v = 1o

This establishes
|- (v = hi) \/ (v = lo)

This completes the proof of the conjecture
>> example3:
"(v = hi) \/ (v = 1o)"

To give a clear account of a tactic of the form NAMED_DISJ_CASES_THEN f
th, it is therefore necessary to generate more than one node of the subgoal-
proof tree. The disjunctive split is accorded a node of its own, and this
branches into a node for each application of the second tactic. Thus an
account attaches to the disjunction node, as well as to each of the daughter
nodes; so all steps are explained.
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In the framework of proof accounts, a node represents the application of
a tactic to a goal to produce subgoals and a justification. Without altering
the basic framework, this means that the disjunctive split has to be regarded
as the application of a tactic. One possibility is to use the existing named
tactic NAMED_DISJ_CASES_TAC th to implement the split.

The effect of applying the straightforward disjunction tactic is simply to
create two subgoals with the respective disjuncts as explicit assumptions.
To produce the same end result as the tactic NAMED_DISJ_CASES_THEN f th,
the tactic NAMED_DISJ_CASES_TAC th must be sequenced with a tactic which
in each case removes the new explicit assumption term from each subgoal,
assumes it, passes the resulting theorem as paramaters to f, and applies the
resulting tactic to the subgoal.

This suggests a popping operation. Furthermore, it suggests a popping
operation which necessarily keeps the popped term as an implicit assumption,
since, by its implementation, an application of the tactic DISJ_CASES_THEN
f th to a goal always adds the respective disjunct terms of the conclusion
of th as implicit assumptions to its two resulting subgoals. (Insisting on
keeping the popped term only makes a difference where f has the property
of throwing away its theorem parameter, e.g. where f is K NAMED_ALL_TAC.
For the purpose of succinct printing of accounts in this chapter, we will not
insist on keeping the popped term — the issue of lost assumptions does not
arise in any of the examples.)

If we define NAMED_DISJ_CASES_THEN f th to be NAMED_DISJ_CASES_TAC th
THEN NAMED_POP_TRACE f (see Section ...), then the account produced in the
example case is as shown below. (Since NAMED_DISJ_CASES_TAC th produces
two subgoals, the sequencer THEN causes NAMED_POP_TRACE f to be applied to
each.)

This is the proof of the conjecture
>> examplel:
"v AND v = v"

>>>> We consider the two cases suggested by the fact
|- (v = hi) \/ (v = 1lo)

>> left disjunct case:

"v AND v = v"
Assuming

The left disjunct: "v = hi"

>> right disjunct case:
"v AND v = v"
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Assuming
The right disjunct: "v = lo"

The proof of the
>> left disjunct case:

"v AND v = v"
Assuming

The left disjunct: "v = hi"

is as follows: . . .
>>>> We substitute according to the following equality:

v = hi |- v = hi,
Thus, it is sufficient to prove:
>> "hi AND hi =_hi"
Assuming implicitly
The hypothesis of the equality: "v = hi"
The left disjunct: "v = hi"

This establishes
[- hi AND hi = hi
This establishes
v=hi|-vAND v =y

The proof of the
>> right disjunct case:

"v AND v = v"
Assuming

The right disjunct: "v = lo"

is as follows: . . .
>>>> We substitute according to the following equality:

v =10 |- v = lo. |
Thus, it is sufficient to prove:

>> "lo AND 1lo =_1o0"
Assuming implicitly
The hypothesis of the equality: "v = lo"
The right disjunct: "v = lo"

This establishes

[- 1o AND lo = lo
This establishes
v=1o |-v AND v =v
This establishes

|- v AND v = v

This completes the proof of the conjecture
>> examplel:
"v AND v = v"
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This seems a reasonable account.

When the function f is NAMED_ASSUME_TAC, the mechanism internal to the
named popping functions, described in Section ..., automatically assures that
there is no unnecessary accounting; the account of NAMED_DISJ_CASES_THEN

NAMED_ASSUME_TAC th.On.ngi&

This is the proof of the conjecture
>> examplel:
"v. AND v = v"

>>>> We consider the two cases suggested by the fact
|- (v = hi) \/ (v = 1lo)

>> left disjunct case:
"v. AND v = v"
Assuming
The left disjunct: "v = hi"

>> right disjunct case:

"v AND v = v"
Assuming

The right disjunct: "v = lo"

The proof of the
>> left disjunct case:

"v. AND v = v"
Assuming

The left disjunct: "v = hi"

is as follows:

This establishes
v=hi|-vAND Vv =v

The proof of the
>> right disjunct case:
"v AND v = v"
Assuming
The right disjunct: "v = lo"

is as follows:

This establishes
v=1o |-v AND v =v
This establishes

|- v AND v = v

This completes the proof of the conjecture
>> examplel:
"v. AND v = v"
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8.2 Implementation Issues

The only real fault of the scheme described above is its inefficiency. This re-
sults from the fact that, in HOL, transformers such as DISJ_CASES_THEN are
taken as primitives, and tactics such as DISJ_CASES_TAC th are elaborations

of the primitives. Thus, DISJ_CASES_TAC is implemented as DISJ_CASES_THEN
applied to ASSUME_TAC. The implementation of the named functions, as de-
scribed in Section 8.1, reverses HOL’s order of dependency. Thus, unfortu-
nately, the computation of NAMED_DISJ_CASES_THEN requires NAMED_DISJ_CASES_TAC
to be computed, which requires DISJ_CASES_TAC, which requires DISJ_CASES_THEN;
two translations are made, internally, to produce the desired account.

HOL’s particular choice of primitive functions is useful for implementa-
tion purposes, and it also provides the user of the system with tactic-building
tools rather than with specific tactics; variations of DISJ_CASES_TAC are de-
fined easily via DISJ_CASES_THEN. However, the HOL system is not generally
presented or learned in the implementation’s order of dependency; simple tac-
tics usually are presented first and ‘advanced’ functions later. Thus, for many
users, it probably seems natural to regard DISJ_CASES_TAC as the primitive
function and DISJ_CASES_THEN as the elaboration, as is done for producing
accounts.

In any case, functions such as NAMED_DISJ_CASES_TAC could be imple-
mented directly, rather than in terms of DISJ_CASES_TAC (and hence of DISJ_CASES_THEN
and ASSUME_TAC). This option involves more work to implement, but the main
objection to it is that it makes it less clear that the same proof is being per-
formed as in the ordinary system. Confidence would require an argument
that the same inference chains were generated either way.

8.3 Other Transformers which Introduce Assumptions

The method for implementing NAMED_DISJ_CASES_THEN can be applied to sev-
eral other tactic transformers in HOL which similarly cause implicit assump-
tions to be generated.

8.3.1 The Discharging Transformer

By implemenating NAMED_DISCH_THEN f as NAMED_DISCH_TAC THEN NAMED_POP_TRACE
f, a comprehensible two-step account is produced for a one-step tactic.

93



The effect of the transformer DISCH_THEN is illustrated below. For exam-
ple, for the goal

g = ([1, "(v ="hi) ==> (v AND v = v)")

we have, in one step,

#let gl,p = DISCH_THEN SUBST1_TAC g;;
gl = [([], "hi AND hi = hi")] : goal list

p = - : proof
where:
thi [- hi AND hi = hi

th2 v. = hi |- hi AND hi = hi
#p[thil;;

|- (v = hi) ==> (v AND v = v)
#p[th2];;

|- (v = hi) ==> (v AND v = v)

Under the implementation suggested, the two-step account of the one-step
tactic (which introduces an implicit assumption) is as follows:

This is the proof of the conjecture
>> example4:

"(v = hi) ==> (v AND v = v)"
>>>> It is sufficient to prove:

>> "y AND v = v"
Assuming
The antecedent: "v = hi"

>>>> We substitute according to the following equality:
v =hi |- v =hi,
Thus, it is sufficient to prove:
>> "hi AND hi =_hi"
Assuming implicitly
The hypothesis of the equality: "v = hi"
The antecedent: "v = hi"

This establishes

|- hi AND hi = hi
This establishes
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v=hi|-vAND Vv =v
This establishes
|- (v = hi) ==> (v AND v = v)

This completes the proof of the conjecture
>> example4:
"(v = hi) ==> (v AND v = v)"

8.3.2 The Choice Transformer

Analogously, by implemenating NAMED_CHOOSE_THEN f as NAMED_CHOOSE_TAC THEN NAMED_POP_TRA
f, a comprehensible two-step account is produced for a one-step tactic.
The following schematic example illustrates the use of CHOOSE_THEN, using
the fact that (for all y) |- ?x. y = PRE x). (Q is some property true of all
numbers.)

th = |- ?x. y = PRE x

#let g = [1, "(Q:num -> bool) y";;

g =0, "Qy") : (x list # term)

#let gl,p = CHOOSE_THEN SUBST1_TAC th g;;
gl = [([1, "Q(PRE x)")] : goal list

p = - : proof

thm = |- Q(PRE x)
thm’ = y = PRE x |- Q(PRE x)
#p[thm];;

I-Qy

#p[thm’];;

I-Qy

Like DISJ_CASES_THEN, CHOOSE_THEN f introduces an implicit assumption; in
this case, y = PRE x, the assumption about the witness constant.

The implementation of NAMED_CHOOSE_THEN f as NAMED_CHOOSE_TAC THEN NAMED_POP_TRACE
f gives the following two-step account for the example:

This is the proof of the conjecture
>> exampleb:

IIQ yII

>>>> Using the term "x"
as a witness to the fact
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|- ?x. y = PRE x
it is sufficient to prove:

>> IIQ yII
Assuming
The witness hypothesis: "y = PRE x"

>>>> We substitute according to the following equality:
y = PRE x |- y = PRE x.
Thus, it is sufficient to prove:

>> "Q(PRE x)"
Assuming implicitly
The hypothesis of the equality: "y = PRE x"
The witness hypothesis: "y = PRE x"

This establishes
|- Q(PRE x)

This establishes
y=PRE x |- Qy
This establishes
I-Qy

This completes the proof of the conjecture
>> exampleb:

IIQ yII

This again seems a reasonable explanation.

8.4 Transformers which do not Introduce Assumptions

The transformers that do not introduce implicit assumptions are CONJUNCTS_THEN
and the resolution functions IMP_RES_THEN and RES_THEN. A different ap-
proach is used for these than for the others.

8.4.1 The Conjunction Transformer

The transformer CONJUNCTS_THEN is different from those described thus far
in that it does not introduce implicit assumptions. Given a conjunctive
theorem, it is possible to infer the two conjuncts immediately. Hence, neither
of the two conjunct terms (nor the conjunctive term itself) has to be assumed
implicitly during the decomposition of the goal (and hence dismissed later
when the justification of the conjunctive split is applied). The inference could
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be deferred in this way, but there is a small economy of inference steps in
not doing so.
The effect of CONJUNCTS_THEN is illustrated by the following example, using
a consequence of the fact |- (!n. 0 + n =n) /\ (!mn. (SUC m) + n = SUC(m + n)):

th=|-((O+n=mn)/\ ((SUCm) +n SUC(m + n))

#let g = [1,"(SUC m) + n = SUC(m + (0O + n))";;
g = ([0, "(SUC m) +n =SUC(m + (0 +n))") : (* list # term)

#let gl,p = CONJUNCTS_THEN SUBST1_TAC th g;;
gl = [([1, "SUC(m + n) = SUC(m + n)")] : goal list

p = - : proof

thm = |- SUC(m + n) = SUC(m + n)
thm’ =0 +m=m, (SUCm) + n = SUC(m + n) |- SUC(m + n) = SUC(m + n)
thm’’ = (0 +n=mn) /\ ((SUCm) +n =S8UC(m + n)) |- SUC(m + n) = SUC(m + n)
#p[thm] ;;

|- (SUC m) + n = SUC(m + (0O + n))
#print_all_thm(p[thm’]);;
O+m=m, (SUCm) +n=S80C(m+mn) |- (SUCm) +n =S8UC(m + (0O + n))

#print_all_thm(p[thm’’]);;
(0O+n=mn) /\ ((SUCm) + n=S8U0C(m + n))
|- (SUCm) + n =SUC(m + (O + n))

As illustrated, neither of the the conjuncts nor the conjunction is an implicit
assumption of the subgoal.
As it happens, there is no function ‘CONJUNCTS_TAC’, analogous to DISJ_CASES_TAC,
provided in HOL. CONJUNCTS_TAC th, by analogy, would be defined as CONJUNCTS_THEN ASSUME_TA
in the above example, this would return, in one step, the subgoal

["(SUC m) + n = SUC(m + n)"; "O + m = m"],
"(SUC(0O + m)) + n = SUC(m + n)"

It might seem useful to define the function NAMED_CONJUNCTS_TAC so that
NAMED_CONJUNCTS_THEN could be defined in terms of it, by analogy with NAMED_DISJ_CASES_THEN
and the others. However, no fuction NAMED_CONJUNCTS_TAC that introduces

assumptions can support a NAMED_CONJUNCTS_THEN that satisfactorily models
CONJUNCTS_THEN, since CONJUNCTS_THEN does not introduce any (explicit or

implicit) assumptions.
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To illustrate this point, it is easy to implement a NAMED_CONJUNCTS_TAC
which adds the conjuncts (and justifies the additions). The account of that
much, in the example case, is:

This is the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

>>>> We use the two separate theorems implied by the fact

|- (0+n=mn) /\ ((SUCm) +n=S50C(m + n)).
It is thus sufficient to prove:

>> "(SUC m) + n = SUC(m + (0O + n))"
Assuming

The second conjunct: "(SUC m) + n = SUC(m + n)"
The first conjunct: "0 + n = n"

This establishes

(SUCm) +n=S80C(m+mn), 0O+n=n/|-(SUCm) +n=2S80C(m+ (0 + n))
This establishes

[- (SUC m) + n = SUC(m + (0 + n))

This completes the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

If the function NAMED_CONJUNCTS_THEN were now defined as NAMED_CONJUNCTS_TAC
followed by two popping operations in sequence, the account of

NAMED_CONJUNCTS_THEN NAMED_SUBST1_TAC th ng

in the example case, is:

This is the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

>>>> We use the two separate theorems implied by the fact
|- (0+n=mn) /\ ((SUCm) +n=S50C(m +mn)).
It is thus sufficient to prove:
>> "(SUC m) + n = SUC(m + (0O + n))"
Assuming
The second conjunct: "(SUC m) + n = SUC(m + n)"
The first conjunct: "0 + n = n"

>>>> We substitute according to the following equality:

(SUC m) + n = SUC(m + n) |- (SUC m) +n =SUC(m + n).
Thus, it is sufficient to prove:
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>> "SUC(m + n) = SUC(m + (0O + n))"
Assuming
The first conjunct: "0 + n = n"
Assuming implicitly
The hypothesis of the equality: "(SUC m) + n = SUC(m + n)"
The second conjunct: "(SUC m) + n = SUC(m + n)"

>>>> We substitute according to the following equality:

0O+n=nl-0+n=n.
Thus, it is sufficient to prove:

>> "SUC(m + n) = SUC(m + n)"
Assuming implicitly
The hypothesis of the equality: "O + n = n"
The first conjunct: "0 + n = n"
The hypothesis of the equality: "(SUC m) + n = SUC(m + n)"
The second conjunct: "(SUC m) + n = SUC(m + n)"

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

O+n=mn|-S0C(m+ n) = SUC(m + (0O + n))

This establishes

O+n=mn, (SUCm) +n=S80C(m+mn) |- (SUCm) +n =2S80C(m + (0O + n))
This establishes

[- (SUC m) + n = SUC(m + (0O + n))

This completes the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

This is a good account in that it is in three steps: the conjunctive split and the
two sequential substitutions. The accounts of the substitutions are produced
directly via the function NAMED_SUBST1_TAC. The inference chain generated is
arguably the same as that generated by CONJUNCTS_THEN SUBST1_TAC th g,
with the addition of the inferences in which the added assumptions are in-
troduced and dismissed. However, the subgoal thus carries 0 + n = n and
(SUC m) + n = SUC(m + n) as implicit assumptions, which is not satisfactory.
In the account of

CONJUNCTS_THEN NAMED_ASSUME_TAC th ng
implicit asusmptions are not an issue; and the account produced in the same
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way as the above is therefore satisfactory. It is also concise because, inter-
nally, the popping function notices and omits the pop and re-assume steps:

This is the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

>>>> We use the two separate theorems implied by the fact

|- (0+n=mn) /\ ((SUCm) +n=S50C(m + n)).
It is thus sufficient to prove:

>> "(SUC m) + n = SUC(m + (0O + n))"
Assuming

The second conjunct: "(SUC m) + n = SUC(m + n)"
The first conjunct: "0 + n = n"

This establishes

(SUCm) +n=S80C(m+mn), 0O+n=n/|-(SUCm) +n=2S80Cm+ (0 + n))
This establishes

[- (SUC m) + n = SUC(m + (0O + n))

This completes the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

However, a more serious defect of this implementation of NAMED_CONJUNCTS _THEN
is that the sequential popping operations produce the wrong effect in con-
texts in which the assumption stack is disturbed by the first popping opera-
tion (which may itself involve further transformers) before the second takes
place. (This sort of disturbance is a general problem in the stack approach,
and was a factor motivating the development

of the transformer functions.)

The defect can be repaired by taking NAMED_CONJUNCTS_TAC simply to be
NAMED_ASSUME_TAC,and_NAMED_CONJUNCTS_THENLfth,U)NAMED_CUNJUNCTS_TAC
th followed by the popping of the whole added conjunction — to a function
that infers the two separate theorems, and then applies f to the two theorems
in sequence. The account of the example, under this interpretation, is:

This is the proof of the conjecture
>> exampleT7:

"(SUC m) + n =SUC(m + (0O + n))"
>>>> We use the fact

that
|- (0 +n=mn) /\ ((SUCm) + n=S0UC(m + n)).
It is sufficient to prove:
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>> "(SUC m) + n = SUC(m + (0O + n))"
Assuming

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We substitute according to the following equality:
(0O+n=mn) /\ ((SUCm) +n=2S80C(m +n)) |[-0+n=n.
Thus, it is sufficient to prove:
>> "(SUC m) + n_= SUC(m + n)"
Assuming implicitly
The hypothesis of the equality: "(0 + n = n) /\
((SUC m) + n = SUC(m + n))"
The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We substitute according to the following equality:
(0+n=mn) /\ ((SUCm) +n=2S5UC(m + n))
|- (SUC m) + n = SUC(m + n).
Thus, it is sufficient to prove:

>> "SUC(m + n) = SUC(m + n)"
Assuming implicitly
The hypothesis of the equality: "(0 + n = n) /\

((SUC m) + n = SUC(m + n))"
The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

This establishes

|- SUC(m + n) = SUC(m + n)
This establishes
(0O+n=mn) /\ ((SUCm) +n
This establishes

(O+n=mn) /\ ((SUCm) +n
|- (SUC m) + n = SUC(m + (O

This establishes
|- (SUC m) + n = SUC(m + (O + n))

This completes the proof of the conjecture
>> exampleT7:

"(SUC m) + n = SUC(m + (O + n))"

SUC(m + n)) |- (SUC m) + n = SUC(m + n)

SUC(m + n))
n))

+

Here, the conjunction is mentioned, if not split, in one step, and the sub-
stitutions have adequate accounts of their own. This avoids the defect of the
previous method, but it still, likewise, generates a undesired implicit assump-
tion. In addition, the account of NAMED_CONJUNCTS_THEN NAMED_ASSUME_TAC
is now more awkward, since there is no pop and re-assume step to omit:

This is the proof of the conjecture
>> exampleT7:
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"(SUC m) + n = SUC(m + (0O + n))"

>>>> We uyse the fact that
|- (0 +n =mn) /\ ((SUCm) +n =SUC(m + n)).
It is sufficient to prove:

>> "(SUC m) + n = SUC(m + (0O + n))"
Assuming
The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We use the fact that
O+n=mn) /\ ((SUCm) +n=S0C(m +mn)) |-0+n=n.
It is sufficient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"
Assuming
The added hypothesis: "O + n = n"
Assuming implicitly
The hypothesis of the theorem used: "(0 + n = n) /\
((SUC m) + n = SUC(m + n))"
The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"
>>>> We use the fact that
(0 +n=mn) /\ ((SUCm) +n =SUC(m + n))
|- (SUC m) + n = SUC(m + n).
It is sufficient to prove:
>> "(SUC m) + n = SUC(m + (0 + n))"
Assuming
The added hypothesis: "(SUC m) + n = SUC(m + n)"
The added hypothesis: "0 + n = n"
Assuming implicitly
The hypothesis of the theorem used: "(0 + n = n) /\
((SUC m) + n = SUC(m + n))"
The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

This establishes
(SUCm) +n=SUC(m+mn), 0+n=n|-(SUCm) +n=280Cm+ (0 + n))
This establishes

O+n=mn, (0O+n=mn) /\ ((SUCm) + n=S80C(m + n))
|- (SUC m) + n =SUC(m + (0O + n))

This establishes

(O+n=mn) /\ ((SUCm) +n =
|- (SUC m) + n = SUC(m + (O +

This establishes
|- (SUC m) + n =SUC(m + (O + n))

This completes the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

SUC(m + n))
n))
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In both interpretations discussed so far, undesired implicit assumptions
are added to the subgoal. Omitting the NAMED_CONJUNCTS_TAC step, which
causes this problem, is still not a good solution; this time, because it obscures
the origin of the conjuncts:

This is the proof of the conjecture
>> exampleT7:

"(SUC m) + n = SUC(m + (O + n))"
>>>> We substitute according to the following equality:
|-0+n=n
Thus, it is
>> "(SUC m) + n = SUC(m + n)"

>>>> We substitute according to the following equality:

|- (SUC m) + n = SUC(m + n).
Thus, it is sufficient to prove:

>> "SUC(m + n) = SUC(m + n)"

sufficient to prove:

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

|- (SUC m) + n = SUC(m + n)

This establishes

[- (SUC m) + n = SUC(m + (0 + n))

This completes the proof of the conjecture
>> exampleT7:

"(SUC m) + n = SUC(m + (0O + n))"

The only remaining solution would seem to be to include a step in which
the conjunction is at least mentioned, but in which no assumptions are added.
In the current framework, this requires that the account of the first step
include a subgoal, albeit unchanged from the previous subgoal. The account
by this method is not therefore perfectly tidy, but does at least model HOL’s
CONJUNCTS_THEN function:

This is the proof of the conjecture

>> exampleT7:
"(SUC m) + n = SUC(m + (0O + n))"

>>>> We use the two separate theorems implied by the fact

|- (0 +n=mn) /\ ((SUCm) +n=SUC(m + n)). .
The two theorems are used in sequence. We are showing:
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>> "(SUCm) +n = SUC(m + (0 + n))"

>>>> We substitute according to the following equality:
|- 0 + n = n.
Thus, it is sufficient to prove:

>> "(SUC m) + n = SUC(m + n)"

>>>> We substitute according to the following equality:

|- (SUC m) + n = SUC(m + n).
Thus, it is sufficient to prove:

>> "SUC(m + n) = SUC(m + n)"

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

|- (SUC m) + n = SUC(m + n)

This establishes

[- (SUC m) + n = SUC(m + (0O + n))
This establishes

[- (SUC m) + n = SUC(m + (0O + n))

This completes the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

In the event of f being NAMED_ASSUME_TAC, the account is now

This is the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

>>>> We use the two separate theorems implied by the fact
|- (0 +n=mn) /\ ((SUCm) +n=SU0C(m+ n)). .
The two theorems are used in sequence. We are showing:
>> "(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the fact that
- 0+n=mn,
It is sufficient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"
Assuming

The added hypothesis: "0 + n = n"
>>>> We use the fact that
|- (SUC m) + n =SUC(m + n).
It is sufficient to prove:

>> "(SUCm) +n = SUC(m + (0 + n))"
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Assuming
The added hypothesis: "(SUC m) + n = SUC(m + n)"
The added hypothesis: "O + n = n"

This establishes

(SUCm) +n=SUC(m+mn), 0+n=n|-(SUCm) +n=S80Cm+ (0 + n))
This establishes

O+n=mn|-(SUCm) +n=2S80C(m+ (0 + n))

This establishes

[- (SUC m) + n = SUC(m + (O + n))

This establishes

[- (SUC m) + n = SUC(m + (0O + n))

This completes the proof of the conjecture
>> example7:

"(SUC m) + n =SUC(m + (0O + n))"

A minor refinement of this solution is to implement NAMED_CONJUNCTS_THEN
to notice when f is effectively the same as NAMED_ASSUME_TAC, and where it
is, to use instead a trivial variant of NAMED_ASSUME_TAC which labels the new
assumptions as conjuncts. (The point of this refinement is made clear in
Section ...). The previous account is now:

This is the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

>>>> We use the two separate theorems implied by the fact

|- (0 +n=mn) /\ ((SUCm) +n=SUC(m + n)). .
The two theorems are used in sequence. We are showing:

>> "(SUCm) +n = SUC(m + (0 + n))"

>>>> We use the fact that
|_Q+n=.n:
It is sufficient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"
Assuming

The left conjunct: "O + n = n"

>>>> We use the fact that
- (SUC m) + n =SUC(m + n).
It is sufficient to prove:

>> "(SUC m) + n = SUC(m + (0O + n))"
Assuming
The right conjunct: "(SUC m) + n = SUC(m + n)"
The left conjunct: "O + n = n"
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This establishes

(SUCm) +n=SUC(m+mn), 0+n=n|-(SUCm) +n=S80Cm+ (0 + n))
This establishes

O+n=mn|-(SUCm) +n=2S80C(m+ (0 + n))

This establishes

[- (SUC m) + n = SUC(m + (0O + n))

This establishes

[- (SUC m) + n = SUC(m + (0O + n))

This completes the proof of the conjecture
>> exampleT7:
"(SUC m) + n = SUC(m + (O + n))"

8.4.2 The Resolution Transformers

The resolution functions IMP_RES_THEN and RES_THEN, like the function CONJUNCTS_THEN,
are implemented in such a way that the application of the tactics of the form
IMP_RES_THEN f th and RES_THEN f th to a goal do not introduce any assump-

tions, explicit or implicit, into the resulting subgoal. For example:

th = |- !1x. x <1 ==> (x=0)

#let g = ["x < 1";"y < 1"],"(x = 0) /\ (
g = ([llx < 1"; lly < 1“] s ||(x = O) /\ (y
#let gl,p = IMP_RES_THEN SUBST1_TAC th g;;

gl = [(["x < 1"; "y < 1"], "(0 =0) /\ (0 =0)")] : goal list
p = - : proof

<

= 0)";;
0)") : goal

thm = |- (O

=0) /\ (0 =0)
thm’ = y=0,x=01]-(=0)/\ (0=0)
thm’? = Ix. x <1 ==>(x=0) |- (0 =0) /\ (0 =0)

#print_all_thm(p[thm]);;

y<1,x<1 |- (x=0)/\ (y =0)
#print_all_thm(p[thm’]);;
y=0,x=0,y<1,x<1|-(x=0 /\(y

#print_all_thm(p[thm’’]);;
x. x <1==>(x=0),y<1,x<1|-&=0)/\(y=0)

0)

Therefore, the implementations of NAMED_IMP_RES_THEN and NAMED_RES_THEN
should have the same behaviour as IMP_RES_THEN and RES_THEN with respect
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to assumptions. The technique used to implement CONJUNCTS_THEN can be
adapted here; a whole proof step, in which the subgoal does not change, is
devoted to displaying the resolvents, and the applications of the function
f are described in subsequent steps. Care must be taken in implementing
NAMED_IMP_RES_THEN and RES_THEN that the resolvents are used singly by f
in the same order as in the corresponding ordinary functions.

This is the proof of the conjecture
>> examplelO:

"(x = 0) /\ (y = 0)"

Assuming

The factl: "x < 1"
The fact2: "y < 1"

>>>> We ?se the theorem

Ix. x <1 ==> (x=0)
to derive the following consequences from the assumptions made thus far:
x<1|-x=0

y<1ll-y=0
These theorems are used in sequence. We are showing:

> "(x=0) /\ (y =0)"
Assuming

The factl: "x < 1"
The fact2: "y < 1"

>>>> We substitute according to the following equality:

x<1|-x=0._
Thus, 1t is sufficient to prove:

> "(0=0) /\ (y =0)"
Assuming

The factl: "x < 1"
The fact2: "y < 1"

Assuming implicitly
The hypothesis of the equality: "x < 1"
>>>> We substitute according to the following equality:
y<1|-y=0.
Thus, it is sufficient to prove:
>> "(0 =0) /\ (0 =0)"
Assuming

The factl: "x < 1"
The fact2: "y < 1"

Assuming implicitly
The hypothesis of the equality: "y < 1"
The hypothesis of the equality: "x < 1"

This establishes
[- (0=0) /\ (0 =0)
This establishes
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y<11-(=0) /\ (y=0)
This establishes

y<i,x<1]-(x=0) /\ (y =0
This establishes
y<i,x<1]-(x=0) /\ (y =0

This completes the proof of the conjecture
>> examplelO:

"(x=0) /\ (y =0)"

Assuming

The factl: :

< 1II
The fact2: < 1"

X
y
This seems a reasonably clear account. The fact that an implicit as-
sumption is generated for each resolvent (i.e. for each theorem passed to
the substitution function — x < 1, for example, is generated for the resolvent
x = 0) is a no more minor imperfection, as these terms must be hypotheses
of the final theorem in any case. That is, these terms are implicit assump-
tions in the sense that whether of not they are hypotheses of the theorem
achieving the final subgoal, they will be hypotheses of the theorem achieving
the original goal.
To devote a separate step to the use of each resolvent might seem tedious,
but this is in fact the unseen effect of applying the ordinary IMP_RES_THEN f
th. Tt is not in general the case that the sequence of uses of the resolvent-
based theorems can be expressed as a single use of a list of theorems. For
example, while a sequence of substitutions (via SUBST1_TAC) can be expressed
as a single use of substitution (via SUBST_TAC), the same is not true of the
functions \th. REWRITE_TAC [th] and REWRITE_TAC.
The function NAMED_RES_THEN is handled in a similar way to NAMED_IMP_RES_THEN.

9 Strip Functions

The strip functions are examples of HOL tactics that do not correspond
to single ‘natural’ proof steps; they are convenient tactics that do one of
several simple steps, and are often repeated to do at once all such simple
steps that possibly can be done. They are also examples of tactic whose
implementations makes clever use of higher order functions (namely, the
functions described in Chapter ...), and as a result are difficult to understand

108



immediately. Some of the issues raised by the effort to give an account of an
application of the strip functions are:

e To what extent to decompose the complex step into primitive (natural)
steps;

e To what extent to give the account in terms of the implementation;

e How to identify the subgoals produced (and their assumptions) so that
no mystery remains about their origin or parts.

9.1 The Strip Transformer in HOL

The basic stripping tool in HOL is the strip function STRIP_THM_THEN. Given a
function ttac from theorems to tactics, a theorem th, and a goal g, STRIP_THM_THEN
inspects the top level structure the conclusion of th and chooses amongst
the tactic transformers CONJUNCTS_THEN, DISJ_CASES_THEN and CHOOSE_THEN,

for conclusions which are conjunctions, disjunctions or existential terms, re-
spectively, at the top level (and it fails for other terms). (The three tactic
transformers are explained in Chapter ... )

STRIP_THM_THEN = FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN]

where

FIRST_TCL [ttcll;...;ttcln] = ttcll ORELSE_TCL ... ORELSE_TCL ttcln

where

(ttcll: thm_tactical) ORELSE_TCL (ttcl2: thm_tactical) ttac th =
(ttcll ttac th) ? (ttcl2 ttac th)

(meaning: the value of the ttcll ttac th unless that evaluation fails, in
which case the value of ttcl2 ttac th). The appropriate tactic transformer
is then applied to ttac; then the resulting function to th; and finally, the
resulting tactic to g. This is illustated by the following schematic examples:
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g = ([1, "t

thl = |- p1 /\ p2
th2 = |- p1 \/ p2
th3 = |- ?x. P x

#STRIP_THM_THEN ASSUME_TAC thl g;;

(CC"p2"; "pi"1, "t")1, -) : subgoals
#STRIP_THM_THEN ASSUME_TAC th2 g;;

([(["pl"], "t"); ([up2u], "t")], _) . S'I.lbgO&lS

#STRIP_THM_THEN ASSUME_TAC th3 g;;
(LCC'p x"1, "t")]1, -) : subgoals

STRIP_THM_THEN underlies the first of the two main strip tactics in HOL:
STRIP_ASSUME_TAC th.

9.2 Stripping and Assuming a Theorem in HOL

The tactic STRIP_ASSUME_TAC th, applied to a goal g, maps the theorem th to
one or more sets of clauses (terms), and assumes each set of terms (in the fash-
ion of ASSUME_TAC) in a separate subgoal. The term part of each of the sub-
goals is unchanged. Each set of clauses is a subset of the basic (lowest level)
disjuncts, conjuncts and witness subterms of the original term (with sepa-
rate subgoals being formed for disjuncts). The effect of STRIP_ASSUME_TAC is
illustrated with schematic theorems and goal:

#let g = [1,"t:bool";;
g = ([0, "t") : (x list # term)

thl

= |- pl /\ p2
th2 = |- (p1 \/ p2) /\ (3 \/ pd)
th3 = |- (p1 \/ T) /\ 2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

#STRIP_ASSUME_TAC thi g;;
([([“p2“; llp1ll] s lltll)] s _) : S'I.lbgoa.ls

#STRIP_ASSUME_TAC th2 g;;

([([Ilpsll; llp1ll] s "t");
([llp4ll; llp1ll] s "t") ;
([llpsll; llp2ll] s "t") ;
([llp4ll; llp2ll] s lltll)] s

: subgoals
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#STRIP_ASSUME_TAC th3 g;;
([([IIX < 2"; Ilpsll; llp2ll; llp1ll], lltll); ([IIX < 2[1; llpsll; llp2ll], lltll)], _)
: subgoals

In each case, the clauses added to each subgoal are not themselves con-
junctions, disjunctions or existential terms. The first theorem is mapped to a
single subgoal, with the two conjuncts as separate assumptions. The second
theorem induces a four-way disjunctive split, where the four subgoals have
two clauses (disjuncts) each. The third would have eight subgoals, but two
of these of these are solved internally because they are inconsistent, and two
more because they are trivially true (i.e. they include the term t itself as an
assumption). The two internal solutions preclude further case analysis, so
that only six cases are actually generated. Of the two remaining subgoals,
the second can be simplified to omit mention of the tautologous clause (T)
and so includes only three clauses as assumptions. Both subgoals include the
witness term p2.

STRIP_ASSUME_TAC is implemented by repeated use of STRIP_ASSUME_THEN
and a version of ASSUME_TAC:

STRIP_ASSUME_TAC = (REPEAT_TCL STRIP_THM_THEN) CHECK_ASSUME_TAC

where

REPEAT_TCL (ttcl: thm_tactical) ttac th =
((ttcl THEN_TCL (REPEAT_TCL ttcl)) ORELSE_TCL 1I) ttac th

and

(ttcll: thm_tactical) THEN_TCL (ttcl2: thm_tactical) ttac = ttcll (ttcl2 ttac)
Rather than assuming the final clauses via ASSUME_TAC, STRIP_ASSUME_TAC

uses the more selective function (CHECK_ASSUME_TAC) which notices and solves

contradictions (via CONTR_TAC), and solutions (via ACCEPT_TAC). This intro-

duces the possibility, therefore, of STRIP_ASSUME_TAC solving a goal. (CHECK_ASSUME_TAC

also declines to add tautologous clauses as assumptions.)
To summarize:

STRIP_ASSUME_TAC th g
is

111



(REPEAT_TCL STRIP_THM_THEN) CHECK_ASSUME_TAC th g

which is

(REPEAT_TCL (FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN]))
CHECK_ASSUME_TAC th g

which in turn is

(((FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN]) THEN_TCL
(REPEAT_TCL ((FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN])))) ORELSE_’
I) CHECK_ASSUME_TAC th g

In the case of th2 and g, above, for example, the ultimate ‘chain’ of theorem
transformers contains two elements: CONJUNCTS_THEN THEN_TCL DISJ_CASES_THEN:

#CONJUNCTS_THEN (DISJ_CASES_THEN CHECK_ASSUME_TAC);;
- : thm_tactic

# (CONJUNCTS_THEN THEN_TCL DISJ_CASES_THEN) CHECK_ASSUME_TAC th2 g;;
([([Ilpsll; llplll] s lltll);

([llp4ll; llplll] s lltll) ;

([llpsll; llp2ll] s lltll) ;

)([llp4ll; llp2ll] s lltll)] s

In general, REPEAT_TCL STRIP_THM_THEN results in a chain of functions
f1ye-yfn of type thm_tactical such that then STRIP_ASSUME_TAC is equal to
fi(f2(....(fn CHECK_ASSUME_TAC)...)).

STRIP_ASSUME_TAC supports the two second of the two main strip tactics
in HOL: STRIP_TAC th.

9.3 The Strip Tactic in HOL

The other main stripping tactic in HOL is STRIP_TAC, which performs one
syntactic layer of stripping on a given goal. On goals whose terms are uni-
versally quantified, STRIP_TAC specifies to a variant of the quantified vari-
able. On goals whose terms are conjunctions, it produces a pair of separate
subgoals. The other possibility, aside from failure, is that the term is an
implication, in which case the antecedent is taken apart into sets of clauses
(by STRIP_ASSUME_TAC), and each set is assumed in a separate subgoal (whose
term is the consequent of the implication). That is,
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STRIP_TAC = STRIP_GOAL_THEN STRIP_ASSUME_TAC

where

STRIP_GOAL_THEN ttac = FIRST [GEN_TAC; CONJ_TAC; DISCH_THEN ttac]

STRIP_TAC inherits from STRIP_ASSUME_TAC the ability to solve certain
goals. Also, as is usual in HOL, a term of the form ~t is regarded as being
t ==> F so that STRIP_TAC approaches the proof of ~t as a proof by contra-
diction.

STRIP_TAC is illustrated by adapting the theorems used above to illustrate
STRIP_ASSUME_TAC — the antecedents are decomposed into disjuncts, conjuncts
and witness terms:

gl = ([1, "p1 /\ p2 ==> t")
g2 = (L1, "(p1 \/ p2) /\ (p3 \/ pd) ==>t")
gd = (0, "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==>t")

#STRIP_TAC gi;;
(LC"p2"; "p1"1, "t")1, -) : subgoals
#STRIP_TAC g2;;
([([npsn; le"]’ Ht");
( [llp4ll ; llplll] s lltll) ;
([npsn; Hp2"]’ Ht");
([Hp4ﬂ; Hp2"]’ Ht")]’

: subgoals

#STRIP_TAC g3;;
([([IIX < 2"; Ilpsll; llp2ll; llplll]’ lltll); ([IIX < 2”; llp3ll; llp2ll]’ lltll)]’ _)
: subgoals

Because of the inner repeat construct, an indefinite number of subgoals
can result from an application of STRIP_TAC. That is, there may be any num-
ber of disjunctive splits, and of the subgoals generated, some may be solved.

9.4 Accounting for The Strip Tactic

One method of implementing NAMED_STRIP_TAC, to supply an account of
the stripping process applied to a named goal, is to regard stripping as
a compound proof step not to be accounted for as a single proof step.
This is achieved by implementing NAMED_STRIP_TAC in parallel with HOL’s
STRIP_TAC, based on (likewise parallel) implementations of NAMED_STRIP_GOAL_THEN,
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NAMED_STRIP_ASSUME_TAC, NAMED_STRIP_THM_THEN, NAMED_REPEAT_TCL, and so
on. By this method, the job of constructing the account of the stripping tac-
tic is handed over to the functions NAMED_CONJUNCTS_THEN and so on, giving,
in the end, a full account of the processing of the goal, with each step in the
process explained as a separate proof step.

A second method of implementing NAMED_STRIP_TAC is to gather and pro-
cess the results of applying NAMED_STRIP_TAC. This gives an account of strip-
ping as a single proof step. (The results of applying HOL’s STRIP_TAC, to
the corresponding ordinary goal — in the style of many other named tactics’
implementations — does not give enough information to construct a useful
account.)

We explain both methods, and leave the choice to be decided according
to particular needs.

9.4.1 The Implementation-Based Account

Once all of the basic function are implemented for named goals, the tactic
NAMED_STRIP_TAC is easy to implement in parallel with the HOL implemen-
tation. We consider three corresponding named goals:

ngl = mk_named_goal(‘examplel‘, [1, "pl /\ p2 ==> t")

ng2 = mk_named_goal(‘example2‘, [1, "(pl \/ p2) /\ (p3 \/ pd) ==> t")
ng3 =

mk_named_goal (‘example3‘,

(1,
"(p1 \/ T) /\ (2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t")

To these we apply the version of NAMED_STRIP_TAC implemented in parallel
with HOL’s STRIP_TAC. In the first example, applying NAMED_STRIP_TAC to ngl
gives one subgoal:

>> lltll

Assuming

The right conjunct: "p2"

The left conjunct: "pl"

Assuming implicitly

The antecedent: "pl /\ p2"
The justification is constructed, as for HOL’s STRIP_TAC, from the justifi-
cations of the constituent functions when the tactic is applied. Given an
account of the subgoal, the justification returns an account of the whole

stripping step:
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This is the proof of the conjecture
>> examplel:

"pl /\ p2 ==> t"
>>>> It is sufficient to prove:

>> lltll
Assuming
The antecedent: "pl /\ p2"

>>>> We use the two separate theorems implied by the assumption

pl /\ p2 |- p1 /\ p2.
The two theorems are used in sequence. We are showing:

>> lltll
Assuming implicitly
The antecedent: "pl /\ p2"

>>>> We use the fact that
pl /\ p2 [- pl.

It is sufficient to prove:

>> lltll
Assuming
The left conjunct: "pl"
Assuming implicitly
The antecedent: "pl /\ p2"
>>>> We use the fact that
pl /\ p2 [- p2.
It is sufficient to prove:

>> "t"
Assuming
The right conjunct: "p2"
The left conjunct: "pl"
Assuming implicitly
The antecedent: "pl /\ p2"

This establishes
pl, p2 |-t

This establishes
pl, p1 /\ p2 |-t
This establishes
pl /\p2 |-t
This establishes
pl /\p2 |-t
This establishes
[- pl /\ p2 ==> t
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This completes the proof of the conjecture
>> examplel:

"pl /\ p2 ==> t"

The account is straightforward; its second proof step is the one devoted
by CONJUNCTS_THEN to explaining the conjunctive split of the antecedent as-
sumption. The subgoal produced by this step is unchanged from the previous
subgoal except for ‘disappearance’ of the (no longer needed) antecedent as-
sumption at that point. The last subgoal shown has the antecedent of the
original implication entirely taken apart, as a result of the steps determined
by applying NAMED_STRIP_TAC to ngl.

When the chain of functions determined by applying NAMED_STRIP_TAC
to a given goal is longer, and especially when it involves case splits (as it
would in the second example), the account in the present style becomes
more tedious and confusing. It is confusing, in particular, because there is
a sequence of binary case splits to be presented, and the resulting cases are
repeatedly labelled as the left disjunct case or the right disjunct case.
The actual subgoal being considered at certain points in the presentation can
be identified only via the convention that in printing a subgoal-proof tree in
depth-first fashion, the next (awaiting) subgoal is re-printed immediately
after a leaf has been printed.

Despite the inconveniences, it still sometimes the case that the account
desired is the one that lays out all the stages of the stripping process. For ex-
ample, the clearest explanation is produced for the third case by this method.
Here, as mentioned earlier, there are two subgoals produced out of the six
generated internally. These are:

>> left disjunct case:
lltll
Assuming
The witness hypothesis: "x < 2"
The left disjunct: "p3"
The left disjunct: "p2"
The left disjunct: "pl"
Assuming implicitly
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

and

>> left disjunct case:
"t"
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Assuming

The witness hypothesis: "x < 2"

The left disjunct: "p3"

The left disjunct: "p2"

Assuming implicitly

The right disjunct: "T"

The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (3 \/ t) /\ (?x. x < 2)"

In the lengthy account produced by applying the justification, however, all six
cases are displayed, and it is explained clearly how the four internal cases are
solved (this information being provided by the named tactics that ultimately
solve the internal goals). In contrast, it is not clear in HOL itself (see ...)
how many cases were actually generated, nor of these, which were solved,
and how.

This is the proof of the conjecture
>> example3:

"(p1 \/ T) /\ (2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> "
>>>> It is sufficient to prove:
>> lltll

Assuming
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We use the two separate theorems implied by the assumption
(Pt \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)
|- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequence. We are showing:

> Xg;uming implicitly
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We consider the two cases suggested by the fact

(Pt \/ ) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p1l \/

>> left disjunct case:
"t"
Assuming
The left disjunct: "pl"
Assuming implicitly
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (3 \/ t) /\ (?x. x < 2)"

>> right disjunct case:
lltll
Assuming
The right disjunct: "T"
Assuming implicitly
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the
>> left disjunct case:

—
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lltll

Assuming

The left disjunct: "pl"

Assuming implicitly

The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x.

is as follows: . .
>>>> We use the two separate theorems implied by the fact

(pt \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)
|- (P2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).
The two theorems are used in sequence. We are showing:
>> lltll
Assuming
The left disjunct: "pl"
Assuming implicitly
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x.

>>>> We consider the two cases suggested by the fact

x < 2)"

x < 2)"

(L \/ ) /N 2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) [-p2 \/F

>> left disjunct case:
lltll
Assuming
The left disjunct: "p2"
The left disjunct: "pl"
Assuming implicitly
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

>> right disjunct case:
"t"
Assuming
The right disjunct: "F"
The left disjunct: "pl"
Assuming implicitly
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x.

The proof of the
>> left disjunct case:
lltll
Assuming
The left disjunct: "p2"
The left disjunct: "pl"
Assuming implicitly
The antecedent: "(pl \/ T) /\ (p2 \/ F) /\ (3 \/ t) /\ (7x.

is as follows: . .
>>>> We use the two separate theorems implied by the fact

(pt \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)
[- (p3 \/ t) /\ (7x. x < 2).
The two theorems are used in sequence. We are showing:
>> lltll
Assuming
The left disjunct: "p2"
The left disjunct: "pl"
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Assuming implicitly
The antecedent: "(pl \/ T)

>>>> We consider the two cases

(Pt \/ ) /\ (p2 \/ F) /\

>> left disjunct case:

lltll
Assuming
The left disjunct: "p3"
The left disjunct: "p2"
The left disjunct: "pl"
Assuming implicitly
The antecedent: "(pl1 \/ T)
>> right disjunct case:
"t"
Assuming
The right disjunct: "t"
The left disjunct: "p2"
The left disjunct: "pl"
Assuming implicitly
The antecedent: "(pl \/ T)
The proof of the
>> left disjunct case:
lltll
Assuming
The left disjunct: "p3"
The left disjunct: "p2"
The left disjunct: "pl"
Assuming implicitly
The antecedent: "(pl \/ T)

is as_follows:
>>>> Using the term "x"
as a witness to_the fact

(p1t \/ T) /\ (p2 7 E A

it is sufficient to prove:

>> lltll

Assuming

The witness hypothesis: "x
The left disjunct: "p3"
The left disjunct: "p2"
The left disjunct: "pl"
Assuming implicitly

The antecedent: "(pl \/ T)

This establishes
x <2, pl, p2, p3 |- ¢t
This establishes

/\ (p2 \/

suggested
(p3 \/ t)

/\ (p2 \/

/\ (p2 \/

/\ (p2 \/

(p3 \/ t)

< 2"

/\ (p2 \/
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p3, (p1 \/ T) /\ (2 \/ F) /\ (3 \/ t) /\ (7x. x < 2), pl, p2 |- ¢

The proof of the

>> right disjunct case:
lltll
Assuming
The right disjunct: "t"
The left disjunct: "p2"
The left disjunct: "pl"
Assuming implicitly

The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

is as follows:
>>>> Eh? t%eorem
is proposed to satisfy this.

This establishes

t -t

This establishes

(p1 \/ T) /\ (2 \/ F) /\ (p3 \/ t) /\ (7x. x < 2), p1, p2 |- ¢t
This establishes

p2, (Pt \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), pl |-t

The proof of the

>> right disjunct case:
lltll
Assuming
The right disjunct: "F"
The left disjunct: "pl"
Assuming implicitly

The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

is as follows: o
>>>> This follows vacuously (by contradiction) from the theorem

F |-F
This establishes
F |-t

This establishes
(Pt \/ T) /\ (2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), pl |-t
This establishes
pl, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |-t

The proof of the
>> right disjunct case:
"t"
Assuming
The right disjunct: "T"
Assuming implicitly
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o]

The antecedent: "(pl1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

is as_follows:
>>>> It is sufficient to prove:

>> lltll
Assuming implicitly
The right disjunct: "T"
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (3 \/ t) /\ (7x.

>>>> We use the two separate theorems implied by the fact
(P \/ T /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)
|- (P2 \/ F) /\ (3 \/ t) /\ (7x. x < 2).

The two theorems are used in sequence. We are showing:

>> lltll
Assuming implicitly
The right disjunct: "T"
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

>>>> We consider the two cases suggested by the fact
(1 \/ T) /\ (p2 \/ F) /\ (p3 \/ ) /\ (?x. x < 2) |-p2 \/F

>> left disjunct case:
lltll
Assuming
The left disjunct: "p2"
Assuming implicitly
The right disjunct: "T"
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

>> right disjunct case:
"t"
Assuming
The right disjunct: "F"
Assuming implicitly
The right disjunct: "T"
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x.

The proof of the
>> left disjunct case:
nyn
Agsuming
The left disjunct: "p2"
Assuming implicitly
The right disjunct: "T"
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x.
is as follows:
>>>> We use the two separate theorems implied by the fact
(p1 \/ T) /\ (2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)
[- (p3 \/ t) /\ (?x. x < 2).
The two theorems are used in sequence. We are showing:
>> llt n
Assuming
The left disjunct: "p2"

o]
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Assuming implicitly
The right disjunct: "T"
The antecedent: "(pl \/ T)

>>>> We consider the two cases

(Pt \/ ) /\ (p2 \/ F) /\

>> left disjunct case:

lltll
Assuming
The left disjunct: "p3"
The left disjunct: "p2"
Assuming implicitly
The right disjunct: "T"
The antecedent: "(pl1 \/ T)
>> right disjunct case:
"t"
Assuming
The right disjunct: "t"
The left disjunct: "p2"
Assuming implicitly
The right disjunct: "T"
The antecedent: "(pl1 \/ T)
The proof of the
>> left disjunct case:
lltll
Assuming
The left disjunct: "p3"
The left disjunct: "p2"
Assuming implicitly
The right disjunct: "T"
The antecedent: "(pl \/ T)
is as_follows:
>>>> Using the term "x"
as a witness to the fact

(pt \/' T) /\ (p2 7 E A

it is sufficient to prove:

>> lltll

Assuming

The witness hypothesis: "x
The left disjunct: "p3"
The left disjunct: "p2"
Assuming implicitly

The right disjunct: "T"
The antecedent: "(pl \/ T)

This establishes
x <2, p2, p3 |-t
This establishes

/\ (p2 \/

suggested
(p3 \/ t)

/\ (p2 \/

/\ (p2 \/

/\ (p2 \/

(3 \/ t)

< 2"

/\ (p2 \/
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F) /\ (p3 \/ t) /\ (7x.

F) /\ (p3 \/ t) /\ (7x.

F) /\ (p3 \/ t) /\ (x.
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p3, (p1 \/ T) /\ (p2 \/ F) /\ (P8 \/ t) /\ (?x. x < 2), p2 |-t

The proof of the

>> right disjunct case:
lltll
Assuming
The right disjunct: "t"
The left disjunct: "p2"
Assuming implicitly
The right disjunct: "T"

The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

is as follows:
>>>> Eh? t%eorem

is proposed to satisfy this.
This establishes
t -t
This establishes
(Pt \/ T) /\ (2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p2 |-t
This establishes
p2, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |-t

The proof of the
>> right disjunct case:
"t"
Assuming
The right disjunct: "F"
Assuming implicitly
The right disjunct: "T"

The antecedent: "(pl1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

is as follows: o
>>>> This follows vacuously (by contradiction) from the theorem

F |-F
This establishes
F |-t

This establishes
1 \/T) /\ (P2 \/ F) /\ (3 \/ t) /\ (?x. x < 2) |-t

This establishes
[- (1 \/ ) /\ (P2 \/ F) /\ (3 \/ t) /\ (7x. x < 2) ==> ¢t

This completes the proof of the conjecture
>> example3:

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"
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9.4.2 The Primitive Account

It may be the case that the explanation of the stripping process is not wanted,
as above, in terms of the entire chain of steps, including the subgoals solved
internally and the methods used — but simply in one unit strip step. If so,
the strip function could not be implemented as above, in parallel with HOL’s
implementation.

Neither can it be implemented directly in an analogous way to many
other tactics — by gathering and organizing the results of applying HOL’s
STRIP_TAC to the corresponding ordinary goal; this method does not give an
adequate account because the results of STRIP_TAC in themselves afford no
means of identifying the subgoals (and parts of subgoals) resulting from the
stripping process.

Instead, the one-step function (NAMED_PRIM_STRIP_TAC, for ‘primitive strip
tactic’) is implemented indirectly by applying the full-account version (NAMED_STRIP_TAC)
to the goal and then processing those results into a single account. NAMED_STRIP_TAC
gives enough information — via its constituent functions NAMED_CONJUNCTS_THEN
and so on — to be able to identify the results in a meaningful way for account-
ing purposes.

The processing that is required on the results of applying NAMED_STRIP_TAC
is quite elaborate. First, some simple processing greatly improve the account:

e Provision has to be made for the goal being completely solved, as that
outcome is presented differently than a set of subgoals;

e It has to be noticed if the original goal is a negated term, so that the
proof can be presented as a proof by contradiction;

e The term parameters of any applications of NAMED_GEN_TAC should be
recorded; even though an individual generalization step is not going to
be reported, this information may be required.

The more complex processing relates to the fact, observed earlier, that
a single application of STRIP_TAC to an implicative goal can give rise to an
indefinite number of subgoals, through a sequence of disjunctive splits of
the antecedent, and through internal solutions. Subgoals arising in this way
will always be identified (via NAMED_STRIP_TAC) as left disjunct case or
right disjunct case. The final set of subgoals arising in this way can be
recast by NAMED_PRIM_STRIP_TAC as a numbered sequence of disjunctive cases.
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Withing each subgoal produced by NAMED_STRIP_TAC on an implicative
goal, there may be various clauses (arising from the antecedent) which are
identified as wintness hypotheses, left or right disjuncts, or left or right con-
juncts. From these labels, the conjuncts’ and disjuncts’ names can be reor-
ganized in numbered sequences.

For example, in the third case, it was mentioned earlier that the two
visible subgoals (to be solved) were

>> left disjunct case:
"t"
Assuming
The witness hypothesis: "x < 2"
The left disjunct: "p3"
The left disjunct: "p2"
The left disjunct: "pl"
Assuming implicitly
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

and

>> left disjunct case:
"t"
Assuming
The witness hypothesis: "x < 2"
The left disjunct: "p3"
The left disjunct: "p2"
Assuming implicitly
The right disjunct: "T"
The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

These can be recast and printed, respectively, as

>> disjunctive case 1 of 2:

lltll
Assuming

The witness hypothesis: "x < 2"

The disjunct 3: "p3"

The disjunct 2: "p2"

The disjunct 1: "p1"

Assuming implicitly

The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (3 \/ t) /\ (?x. x < 2)"

and
>> disjunctive case 2 of 2:
llt n

Assuming
The witness hypothesis: "x < 2"
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The disjunct 2: "p3"
The disjunct 1: "p2"
Assuming implicitly

The right disjunct: "T"

The antecedent: "(pl1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

The primitive account of the stripping step is then:

This is the proof of the conjecture
>> example3:

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x. x < 2) ==> "
>>>> It is sufficient to prove the following:

>> disjunctive case 1 of 2:
lltll
Assuming
The witness hypothesis: "x < 2"
The disjunct 3: "p3"
The disjunct 2: "p2"
The disjunct 1: "p1"
Assuming implicitly

The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

>> disjunctive case 2 of 2:
"t"
Assuming
The witness hypothesis: "x < 2"
The disjunct 2: "p3"
The disjunct 1: "p2"
Assuming implicitly
The right disjunct: "T"

The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

The proof of the
>> disjunctive case 1 of 2:
lltll
Assuming
The witness hypothesis: "x < 2"
The disjunct 3: "p3"
The disjunct 2: "p2"
The disjunct 1: "p1"
Assuming implicitly

The antecedent: "(pl1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (7x.

is as follows:

This establishes
Pi, P2, P3, x <2 |_t

The proof of the
>> disjunctive case 2 of 2:
"t"
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Assuming

The witness hypothesis: "x < 2"

The disjunct 2: "p3"

The disjunct 1: "p2"

Assuming implicitly

The right disjunct: "T"

The antecedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

This establishes

P2, p3, x <2 |-t

This establishes

I- (et \/ T) /\ (2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> ¢t

This completes the proof of the conjecture
>> example3:

"(p1 \/ T) /\ (P2 \/ F) /\ (P38 \/ t) /\ (?x. x < 2) ==> "

This account of applying NAMED_PRIM_STRIP_TAC does not explain the gen-
eration and solution of the four internal subgoals, but it does mirror the tactic
STRIP_TAC, which takes apart the antecedent of an implicative goal and deals
with the resulting clauses in a single proof step.

NAMED_PRIM_STRIP_TAC is implemented as an elaboration of the more basic
NAMED_STRIP_TAC; it gives similar subgoals (the same with some renaming),
but a different account. That is, NAMED_PRIM_STRIP_TAC computes the sub-
goals and justification (p, say) given by NAMED_STRIP_TAC, but then uses p to
construct is own account. Its own account simply maps a given list of sub-
accounts to an account (i.e. a node) with a name of its own, containing the
given list of sub-accounts, the list of (processed) subgoals, and the theorem
component of the account got by applying p to the list of sub-accounts. In
this way, the theorem achieved is the only component of the long account
(the account of NAMED_STRIP_TAC) that appears explicitly in the new account
(the account of NAMED_PRIM_STRIP_TAC), although the same actual inferences
are generated in both cases.

In a similar way, other patterns of inference also could be implemented
to give one-step accounts. One simple instance of this would be a tactic to
apply and account for NAMED_PRIM_STRIP_TAC repeatedly, in one step; this
would be useful since REPEAT STRIP_TAC is a very commonly used beginning
to proofs.
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This idea forms the basis of a method for compacting long and excessively
detailed accounts. Deciding which further patterns of inference could be
presented coherently by being compacted into unit steps is a matter for future
research.

10 Transforming Proof Accounts

Once the subgoal-proof tree has been extracted from the performance of a
HOL proof, it can, in theory, be presented in a variety of ways — though just
one style of presentation has been implemented to date. A further extension,
however, is to transform the subgoal-proof tree itself before it is printed.
This would be done in the interest of producing a clearer or more elegant
proof, removing unnecessary proof steps, and so on. Such transformations
would be based on a belief that the proof — in the sense of the sequence of
inference steps corresponding to the subgoal-roof tree — were either preserved
or were transformed in a validity-preserving way by the transformation of
the tree'®. This belief would be supported by a ‘meta-argument’ about the
transformation rather than a re-derivation of the proof in the logic; that is,
the correspondence of the new tree to a proof would be informal.

To date, two particular kinds of transformations have been implemented,
to test this idea. Under the first transformation, uninterrupted sequences of
generalization steps are compacted into a single, multiple generalization step
(and the subgoal-proof tree reassembled accordingly). Under the second,
steps which have no effect on a goal are removed and the remaining tree
spliced together appropriately.

The following printed account results from a repeated application of
NAMED_STRIP_TAC to the goal shown:

This is the proof of the conjecture
>> example:
"x yz.x <y /\Ny<z=>x<Kz"

>>>> Consider an arbitrary "x":
We show:

18The subgoal-proof tree as defined does not include the inference sequence, but just
the subset consisting of the theorems achieving the subgoals. These are produced, when
the proof is performed, by computing the inference sequences in full; that is the sense in
which there is a correspondence.
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> "Mly z. x <y /\Ny<z=>x<2z"

>>>> Consider an arbitrary "y":
We show:

> Mz, x <y /\Ny<z==>x<Kz"

>>>> Consider an arbitrary "z":
We show:

> "x <y /\Ny<z==>x<z"

When the subgoal-proof tree which underlies this account is transformed
in the first way, a new tree is produced. The new tree is printed as follows:

This is the proof of the conjecture
>> example:
"Ix yz. x <y /\y<z==>x<2z"

>>>> Considering arbitrary "x", "y", "z",
we show:

> "x <y /\Ny<z==>x<z"

This transformation is achieved by collecting from the original tree all
uninterrupted sequences of steps which are equivalent in effect to general-
izations and then representing each sequence as a single node in a new tree.
The single node is conceived as representing a multiple generalization tactic
— a tactic equivalent in its effect to an application of REPEAT GEN_TAC but
considered as a single proof step. Steps equivalent in effect to generalizations
might have been generated by application of GEN_TAC, or might have been
generated indirectly, e.g. via application of STRIP_TAC, provided that indi-
rect generalizations manage to record the variable in question in the same
way that GEN_TAC does.

That is, an account of the form

mk_node ((‘NAMED_GEN_TAC‘, ["x"1, [1),
[mk_node ((‘NAMED_GEN_TAC®, ["y"1, [1),
[mk_node ( (‘NAMED_GEN_TAC¢, ["z"1, [1),

tﬁk_ﬁamed_goal(‘example‘,
X<y /Ny <z==>x<z],

[-'z. x <y /\Ny<z==>x<2)],
[mk_named_goal(‘example‘,
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1,
"z, x <y /\Ny<z==>x<z"],
- 'y z. x<y /\Ny<z==>zx<2z)],
[mk_named_goal(‘example‘, [1, "!ly z. x <y /\y <z ==>x < z")],
[-'xyz. x<y/\Ny<z==>x<2z)

becomes an account of the form
mk_node ((‘MULTI_NAMED_GEN_TAC‘, ["x"; "y"; vz"1, 1,

tﬁk_ﬁamed_goal(‘example‘, 0, "s<y /\Ny<z==>x<2z"],
[-'xyz. x<y/\y<z==>x<K2z)

where MULTI_NAMED_GEN_TAC is a new kind of node (suggesting a hypothetical
new tactic) with its own printing convention. (The node and its printing
format must of course be known to the printing functions in advance.)

Redundant proof steps arise for a variety of reasons; for example, the use
of tactics which never fail (e.g. rewriting), or linear tactics which advance one
branch of a proof but which neither fail nor have any effect on the another
branch. For example, if the goal of the previous example is attacked by
applying to it the (rather odd) tactic

NAMED_REWRITE_TAC [] THEN
NAMED_STRIP_TAC THE

NAMED_REWRITE_TAC []

so that only the STRIP_TAC advances the proof, the following account is
printed:

This is the proof of the conjecture
>> example:
"Ix yz. x <y /\Ny<z==>x<z"

>>>> Using basic tautologies, it is sufficient to prove:
> "lxyz. x<y /\Ny<z==>x<z"

>>>> Consider an arbitrary "x":
We show:

> "ly z, x <y /\Ny<z==x<2z"
>>>> Using basic tautologies, it is sufficient to prove:
> "Mly z. x <y /\Ny<z==>x<2z"

Under the second transformation, the redundant steps are removed from the
tree, and the resulting tree is printed as follows:
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This is the proof of the conjecture
>> example:
"xyz.x <y /\Ny<z=>x<Kz"
>>>> Consider an arbitrary "x":
We show:

> "ly z, x <y /\Ny<z==x<2z"

This transformation is achieved by searching for nodes which have ex-
actly one direct descendent node, and for which the subgoal is the same as
the goal'®. Where there is a single unchanged subgoal, the transformation
involves removing the subgoal node from the tree and splicing up the rest
of the tree accordingly. The transformation applies recursively throughout
tree.

In the example above, the original account has the form

mk_node ((‘NAMED_REWRITE_TAC‘, [1, [1),
[mk_node ( (‘NAMED_GEN_TAC‘, ["x"1, [1),
[mk_node ( (‘NAMED_REWRITE_TAC®, [1, [1),

tﬁk_ﬁamed_goal(‘example‘,
1,
"ly z. x <y /\Ny<z==zx<2z"],
- 'y z. x<y /\y<z==>x<2)],
[mk_named_goal(‘example‘,
1,
"ly z. x <y /\y<z==>x<2z"],
[-!'xyz. x<y/\y<z==>x<2)],
[mk_named_goal (‘example°,
(1,
"lx yz. x <y /\Ny<z==>zx<2z"],
[-'xyz. x<y/\y<z==>x<K2z)

while the transformed tree has the form

mk_node ((‘NAMED_GEN_TAC¢, ["x"1, [1),

[mk_named_goal(‘example‘, [1, "'y z. x <y /\ y < z ==> x < z")],
[-'xyz. x<y/\y<z==>%x<K2z)

Both of the transformations can be done in a single combined transfor-
mation which applies repeatedly until neither tranformation can assist.

19The same’ is taken in the first instance to mean identical except for the goals’ names,
though more subtlety may be called for in treating implicit assumptions, etc.
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Another use of such transformations might be to print implicit assumption
more selectively (e.g. where they are duplicated), or not at all (in contexts
where they are not of interest).

Some elaborations along these lines are mentioned in Chapter ... on future
research ideas. The two described here are very simple transformations, but
the idea could be extended to more sophisticated transformations which re-
sulted in accounts which are preferred for some purpose. It is worth stressing
again, however, that transforming and re-printing the internal respresenta-
tion of a proof does not entail re-proving anything. The transformed trees
may indeed fail to represent valid proofs — despite any informal arguments
that they do, the trees may no longer correspond to valid proofs.

To achieve a direct correspondence, it might be possible, as a side effect of
transforming the tree, in some cases, to derive automatically the new tactic
that corresponds to the transformed tree, and then to try to apply that tactic
to the original goal. If this worked, it would produce the new (genuine) tree
directly. Clearly, this makes no sense where a hypothetical tactic is suggested
(such as MULTI_NAMED_GEN_TAC, mentioned earlier), but it should be possible,
for example, for the second kind of transformation. However, this idea is
mere speculation at present.

11 Future Research

We mention briefly in this Chapter some extensions of the account facility
which we hope to make in future work. These are grouped as practical and
theoretical extensions.

Some theoretical extensions are as follows:

e The idea of transforming trees before printing (Chapter ...) could be
extended to more sophisticated transformations. One sort of transfor-
mation which might be helpful would be the selective presentation of
proof steps, with the ellipsis or omission of other steps. For example, it
might be desired, particularly in long proofs, to produce accounts con-
sisting only of the major or important proof steps. The full accounts
shown in this paper are probably too long and detailed for some pur-
poses. Part of the research would be to decide which steps in which
contexts are ‘important’.
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e We also mentioned (in Chapter ...) the idea of extracting from the
transformation process enough information to be able to construct the
transformed tactic, at least in certain cases. A particular application
of this would be to rephrase HOL tactics in some desired style. For
example, once the subgoal-proof tree is known, the compound tactic
which produced the tree might could be rephrased to be more linear (so
that separate branches are generated by one flat sequence of tactics) or
less linear (so that selective sequencing — THENL, for instance — were used
where branching occurs). This would be useful where such uniformity
of style is desired.

e At present, it is required that a proof be successfully completed in HOL
before an account can be generated — by re-performing the proof in a
different mode. It might also be useful to be able to work piecewise and
interactively; that is, to generate an account of one step within a proof.
This would be useful, for example, for understanding mysterious single
steps in completed proofs, or for assessing the effect of difficult steps
in a proof in progress. An interactive facility would involve changing
the new ML types (Chapter ...) to some extent, since an account,
as things stand, includes the achieving theorem associated with each
node. However, the basic concepts should make some sort of interactive
facility possible.

e In connection with the above point, another role of the account facil-
ity might be as a proof debugging aid. That is, where a proof fails,
or proceeds on an unexpected course, the explanation of certain steps
may be valuable in tracing the cause of the problem. Having access to
the subgoal and its purported achieving theorem at a problem point
may provide the key to understanding the failure. Here, any implicit
assumptions (which will be accessible) may also shed light on the prob-
lem. Accounts seem particularly useful where a tactic implemented by
a user directly in ML fails in some way.

e [t would also be useful if the account facility could be integrated with
another facility for explaining segments of forward proof. (A facility
for explaining forward proofs is part of a currently proposed research
grant.) If explanations of the interludes of forward proof which some-
times occur in goal-oriented proofs could be generated, it would be
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possible to give more information within accounts as presented so far.
For example, where a rewrite rule is derived by a sequence of forward
inferences, the existing account facility would just report a rewriting
event based on the theorem resulting from the forward inference. If the
inference could itself be explained, the new theorem would not appear
as if by magic, but would be accounted for meaningfully.

In relation to the above point, one slightly unsatisfactory feature of the
accounts produced currently for rewiting steps is that a rewriting step
of a proof is reported based on all of the (potential) rewrites provided.
In fact, it would be more informative to be told which rewrites were ac-
tually engaged and which were not, in each case. There appeared to be
no simple, accurate way to do this within the accounting scheme pre-
sented. ‘Named’ tactics were generally implemented by elaborating on
the results of the original tactics; original tactics were taken as ‘black
boxes’. Rewriting, in particular, has a complex and sensitive imple-
mentation in HOL, it seemed sensible to avoid trying to re-implement
it accurately. It also seemed within the spirit to the current account
package not to re-implement it. However, if there were already a way
of tracing the actual steps of the rewriting process as part of a system
for explaining forward proofs, this would make a valuable addition to
the existing proof account facility for rewriting.

It might be worth making a wider study of textbook-style proof presen-
tations with the aim of improving the style of proof account printouts.

The HOL package for introducing recursive data types and automati-
cally generating induction rules for them was designed and implemented
by Tom Melham (...). Derivation of induction rules follows from the
definitions that characterize the new recursive data type. We have dis-
cussed numerical induction only in this paper (...), but it would be very
desirable if, from any new recursive type definition, one could automat-
ically generate the ‘named’ tactic which would produce the appropriate
account. This seems in principle to be possible, but has not yet been
studied carefully.

It seems possible that the naming of assumptions in the new system of
ML types needed for generating accounts may have other applications.
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One obvious application is the accessing of assumptions by name rather
than by position in the (arbitrary) order imposed by a particular HOL
implementation. That is, if an induction hypothesis is identified by
the string ‘induction hypothesis‘, then one ought to be able to say
something like ‘rewrite using the induction hypothesis as a rewrite rule’
rather than ‘rewrite using the third assumption (which T happen to
believe is the induction hypothesis, at the moment)’. This would be
a great convenience to the user, and moreover would produce much
clearer accounts.

e It would be desirable to test many more examples of ML constructs
which users employ in generating proofs in HOL, particularly the more
complex ones. There is probably too much bias in examples constructed
for the purpose.

Some practical extensions are as follows:

e The first project is to prepare a cleaner and more efficient implemen-
tation suitable for being released with the HOL system (along with
suitable documentation). The facility should also be better interfaced
to the HOL system, and easier to use. For example, one would like
to switch into a mode in which accounts were generated (and switch
out again, perhaps) without having to use new names for tactics (e.g.
NAMED_STRIP_TAC for STRIP_TAC, etc).

e The existing accounts facility applies, of course, only to standard HOL
tactics. For users who implement their own tactics (in ML rather than
as combinations of standard functions), there is no way to produce
accounts except by implementing directly the original tactics as named
tactics. It might be possible to provide an interface for allowing users
to accomplish this more easily. The interface could, for example, ask
the user what to call the subgoals and any new assumptions, and so
on, and then implement the original tactic in a uniform way.

e New printing styles should be tried; the one used in this paper is only
a first attempt.

e A new package for managing goal-oriented proofs (i.e. a new subgoal
package) has recently been implemented by Sara Kalvala (...). (This is
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a standard part of the HOL 12 implementation.) This package involves
an internal respresentation of the proof tree, and includes a means
of extracting the text of a tactic from the interaction during which a
proof is developed. It would be interesting to explore the relation of
that package to the account facility, and any ways in which the two
could be combined, or could benefit from each others’ techniques and
ideas.

e It was mentioned (Chapter ...) that the standard function POP_ASSUM
causes a slight anomaly in that its justification does not ‘replace’ the
lost assumption in a given achieving theorem. This was particularly
apparent in tactics such as POP_ASSUM(K ALL_TAC). One small future
experiment would be to re-implement POP_ASSUM so that its justifica-
tion did add the popped assumption to the incoming theorem, and to
establish that this repair worked correctly with other functions. If so,
the idea of implicit assumptions would become simpler. (This point
relates to the discussion on pages ...).

12 Conclusions

The main purpose of the work described here has been to test the feasi-
bility of extracting a conventional or ‘natural’ explanation of a proof from
the process of performing the proof in HOL (in goal-oriented fashion). Tt
was intended that this explanation be free of concepts specific to HOL or
to mechanized theorem-proving, even where the HOL tactics used were spe-
cialized or obscure. The main questions were: could enough information be
extracted from the application fo tactics to a goal to compose an explanation
oif the proof? What was is the essential information? What is involved in
presenting it in readable form?

So far, the ideas for assembling explanations seem to have worked well,
and the explanations produced, at least for the basic tactics and tactic con-
structions seem reasonable. However, a great deal more experimentation
with real proofs (and in particular with other users’ proofs) is still required.
We plan to pursue this in future. As mentioned in Chapter ..., the accounts
produced at the moment are probably too detailed and exhaustive for some
purposes, and it is planned also in future to experiment with ideas for con-
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densing them. The particular style and layout used in this paper are only
preliminary, and these may change with experience. At prsent, what we
have is a basis for explaining proofs, and a framework in which to introduce
refinements.

The main obstacle thus far to producing accounts was dealing with tactics
formed by applying ‘continuation’ functionals to tactics. Though this is a
flexible and convenient method for the HOL user, such constructs have the
effect of performing some of the proof steps behind the scenes, and doing
more than one major proof step at a time. The resulting leap is therefore
difficult to explain. We have proposed one way of spelling out such steps (in
Chapter ...) which seems to produce a comprehensible story. The method
proposed may appear slightly unsatisfactory in that it reverses the direction
of the HOL implementation, in which the higher order functionals (e.g. the
continuations) are primary and the ordinary tactics are defined in their terms;
the method for producing accounts in these cases takes the tactics as primary
and the higher-order constructs defined in terms of them. However, there
is no real reason to insist that the concepts and tools of the HOL user be
determined by what happens to be the implementation of HOL. For example,
the HOL system is normally taught by presenting simple tactics first, and
tactic constructions later on (if at all).

A second, related obstacle (see Chapter ...) was the use of the set of cur-
rent assumptions as a stack or array, in which the position of an assumption
— which is again just an artefact of the HOL implementation — provides a
means of accessing assumptions. This approach occasionally also involves the
apparent ‘dropping’ of assumptions once they are ‘used’, partly as a means
of controlling the size of the assumption set. Our analysis points to various
conceptual problems in this style of proof, but as the method is now popular
in the HOL community, it seemed necessary to provide a way of accounting
for proof steps based on a stack or array of assumptions. We think that the
method proposed in Chapter ... is quite satisfactory.

The means of overcoming both of the above obstacles, and to the prob-
lem of invalid proof steps as well (see Chapter ...), suggested the notion of
implicit assumptions. That concept is introduced in Chapter ... . By making
accessible all the assumptions which hold at a given stage in a goal-oriented
proof, but which are not normally made explicit, several mysteries about
HOL proofs can be cleared up. At the same time, always printing implicit
assumptions creates a certain amount of clutter. Further work is planned on
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how to decide exactly when printing implicit assumptions is useful.
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14 Appendix

This appendix lists (i) the ML functions which work as they are under the
new system of ML types (described in Chapter ...); (ii) the ML functions
which have been re-implemented for the new system of types; and (iii) new
functions which have been implemented for the new system of types. Each
function is listed with its main appearance in the text.

The functions which do not require modification for HOL (Version 11) are:

THEN
THENL
MAP_EVERY
EVERY
FIRST
MAP_FIRST
NO_TAC
ORELSE

REPEAT
THENC

The functions which have been re-implemented are:

NAMED_GEN_TAC
NAMED_X_GEN_TAC
NAMED_INDUCT_TAC
NAMED_SUBST_TAC

SUBSTI_TAC
NAMED_BOOL_CASES_TAC
NAMED_COND_CASES_TAC
NAM PEC_TAC

=
=
=
x|
(=]

52|
(=]

==
==
==
[
(wlw]

ACCEPT_TAC
ASM_CASES_TAC
NAMED_CONJ_TAC
NAMED_LIST_INDUCT_TAC
NAMED_ALL_TAC
NAMED_EQ_TAC
NAMED_CONV_TAC
NAMED_EXISTS_TAC
NAMED_MP_TAC
NAMED_UNDISCH_TAC
NAMED_CONTR_TAC
NAMED_DISCARD_TAC
NAMED_MATCH_MP_TAC
NAMED_MATCH_ACCEPT_TAC
NAMED_SUBST_0CCS_TAC
NAMED_BETA_TAC

NAMED

WRITE _TAC
MED_ASM_REWRITE_TAC

NAMED_PURE_ASM_REWRITE_TAC
NAMED_PURE_ONCE_REWRITE_TAC
NAMED_ONCE_ASM_REWRITE_TAC
NAMED_PURE_ONCE_ASM_REWRITE_TAC
NAMED_DISCH_TAC
NAMED_DISCH_THEN
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NAMED CASES_TAC
8ASES _THEN2
0SE

ASES_THEN

=Z===
=
ey
M EE
[wlwlwlw]
lalalwlwlw]
o HHH
oQQn2

NAMED
NAMED
NAMED
NAMED

CHOOSE_THEN
CONJ_ASSUME _TAC2
CONJUNCTS_THEN2
CONJUNCTS_THEN
MP_RES_TAC

=
=
==
2]
(=]

N
NAMED

NAMED
IMP_RES_THE

NAMED_RES_ASSUME_ TAC
NAMED_RES_THEN
$MY_THEN_TCL

$MY ORELSE_TCL
MY_REPEAT_TCL

TALL _THEN
MY_NO_THEN
MY_EVERY_TCL
MY_FIRST_TCL
NAMED_CHECK_ASSUME_TAC
NAMED_STRIP_THM_ THEN
NAMED_STRIP_ASSUME_TAC
NAMED_STRIP_GOAL_THEN
NAMED_STRIP_TAC
NAMED_SUBST_ALL_TAC
NAMED_ASSUME_ LIST TAC
ASSUM_ LIS

A
IMP_RES ASSUME TAC

=
=
=
x|
(=]

NAMED_REFL_
NAMED_THEN_TCL
NAMED_ORELSE_TCL
NAMED_REPEAT_TCL
NAMED_EVERY_TCL
NAMED_FIRST_TCL
NAMED_ALL_THEN
NAMED_NO_THEN

The new functions which have been implemented are:

C_NAMED_ASSUME_TAC1
C_NAMED_ASSUME_TAC2
NAMED_POP_TRACE
NAMED_POP_TRACE’
NAMED_POP_TRACE’’
NAMED_POP_TRACE’’’
NAMED_POP_ASSUM

ﬁA

=
52|
(=]
)

el
'U'do
[]en]en]
U'o

=

==
==
[
(wlw]

NAMED
NAMED
NAMED
NAMED

POP_TRACE_LIST’’

PRIM_STRIP_TAC
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