
Revised version of an invited paper to be published in the proceedings of the Tenth Annual IEEE Symposium onLogic in Computer Science (LICS'95), June 26-29, 1995, San Diego, California.The Semantic Challenge of Verilog HDLMike GordonComputer LaboratoryUniversity of CambridgeCambridge, CB2 3QG, U.K.April 11, 1996AbstractThe Verilog hardware description language (HDL)is widely used to model the structure and behaviourof digital systems ranging from simple hardware build-ing blocks to complete systems. Its semantics is basedon the scheduling of events and the propagation ofchanges. Di�erent Verilog models of the same deviceare used during the design process and it is importantthat these be `equivalent'; formal methods for ensuringthis could be commercially signi�cant. Unfortunately,there is very little theory available to help.This self-contained tutorial paper explains the se-mantics of Verilog informally and poses a number oflogical and semantic problems that are intended to pro-voke further research. Any theory developed to supportVerilog is likely to be useful for the analysis of the sim-ilar (but more complex) language VHDL.Contents1 Introduction 12 Overview of Verilog 22.1 Simple combinational examples : : : : : 22.2 Feedback and memory : : : : : : : : : : 32.3 Inertial and transport delay : : : : : : : 52.4 Blocking & non-blocking assignments : : 52.5 Datatypes : : : : : : : : : : : : : : : : : 62.6 Imperative programming constructs : : 62.7 Concurrent threads : : : : : : : : : : : : 73 V: a simple version of Verilog 73.1 Modules : : : : : : : : : : : : : : : : : : 83.2 Expressions : : : : : : : : : : : : : : : : 83.3 Timing controls : : : : : : : : : : : : : : 83.4 Statements : : : : : : : : : : : : : : : : 8

4 Semantics of V 84.1 The global state : : : : : : : : : : : : : 94.2 The simulation cycle : : : : : : : : : : : 94.2.1 Stepping along a thread : : : : : 94.2.2 Setting up a delay or guard : : : 104.3 Warning! : : : : : : : : : : : : : : : : : 105 Semantic challenges 105.1 Formal semantics of Verilog : : : : : : : 105.2 Validity of simpli�ed semantics : : : : : 105.3 A minimal simulation calculus : : : : : : 115.4 Correctness of synthesisers : : : : : : : : 115.5 De�nition of equivalences : : : : : : : : 115.6 Conditions for equivalence : : : : : : : : 115.7 Relation to timed process calculi : : : : 115.8 Programming logic : : : : : : : : : : : : 115.9 Checkable properties : : : : : : : : : : : 116 Summary and conclusions 111 IntroductionModern hardware description languages enable the de-signer to mix di�erent levels of design abstraction.The lowest level is a connection of gates (netlists),which may be generated manually or automatically asthe output of synthesisers. The next level containsstructures such as counters, multipliers etc. The high-est level is `behavioural' and uses programming con-structs such as assignments, conditionals and while-loops. A common approach is to �rst build and testa prototype using behavioural constructs. As the de-sign matures, modules which were �rst speci�ed be-haviourally are recoded in a subset of the HDL fromwhich hardware can be synthesised automatically.VHDL and Verilog are the two most widely usedlanguages in industry. In the academic formal meth-ods community VHDL is much better known andmany people (e.g. me until quite recently) have barely

heard of Verilog, even though it has been estimatedthat there are 25,000 Verilog designers today, with5,000 additional students trained in Verilog graduat-ing each year [4]. Verilog is employed by designers innumerous companies including Sun Microsystems, Ap-ple and Hewlett-Packard. An industry survey recentlyfound that in 1995 Verilog was getting 66 per cent ofbusiness and VHDL 34 per cent [3]. As a languageVerilog has much in common with VHDL, however itsprogramming constructs are based on C, whilst thoseof VHDL are based on Ada.Verilog is taught to second year computer scienceundergraduates studying at Cambridge University aspart of their hardware laboratory work. It is hoped(suitable theory permitting) that it will eventuallycome to underlie a third year course on the speci�-cation and formal veri�cation of hardware.I have chosen to work with Verilog primarily be-cause of its role in teaching at Cambridge, but alsobecause it is simpler (though less general) than VHDL.The structure of the rest of the paper is as follows.Section 2 is an introduction to Verilog aimed at readerswith a logical and semantic background. Some of thebehavioural subtleties of the language that would needto be handled by a formal semantics are discussed.Section 3 speci�es a subset of Verilog intended as avehicle for semantic experiments. Section 4 is an infor-mal semantics of the selected subset. This is intendedto provide a self-contained reference for future formal-ization. Finally, Section 5 describes some problemsthat are of theoretical interest and practical utility.2 Overview of VerilogA speci�cation in Verilog consists of one or more mod-ules . The top level module speci�es a closed systemcontaining both test data and hardware models. It iswhat is executed by Verilog simulators. Componentmodules will normally have input and output ports .Events on the input ports cause events on the outputs.Events can either be changes in the values of wiresor registers , or can be explicitly generated abstractevents. Modules can represent bits of hardware rang-ing from simple gates to complete systems (e.g. micro-processors), they can either be speci�ed behaviourallyor structurally (or a combination of the two). A be-havioural speci�cation de�nes the behaviour of a mod-ule using programming language constructs. A struc-tural speci�cation expresses a module as a hierarchicalinterconnection of submodules. At the bottom of thehierarchy the components must either be primitives orspeci�ed behaviourally. Verilog's library of prede�nedprimitives will not be discussed here.

2.1 Simple combinational examplesHere is a behavioural speci�cation of a module NAND:the value output on port o is the negation of the con-junction of the value input on ports i1 and i2.module NAND (i1,i2,o);input i1, i2; output o;assign o = ~(i1 & i2);endmoduleThe ports i1, i2 and o are wires. The symbols ~and & denote negation and conjunction, respectively.The continuous assignment assign o = ~(i1 & i2) con-tinuously watches for changes to variables in its righthand side (i1 and i2 in this example) and whenevera change happens the right hand side is re-evaluatedand the result immediately propagated to the left handside (o in the example).Here is the structural speci�cation of a moduleAND IMP obtained by connecting the output of one NANDto both inputs of another one.module AND_IMP (i1,i2,o);input i1,i2; output o; wire w;NAND NAND1(i1,i2,w);NAND NAND2(w,w,o);endmoduleThis structure has two instances of NAND (calledNAND1, and NAND2), connected together by an internalwire w. The behaviour implied by this structure isexpressed directly in the de�nition of the module AND:module AND (i1,i2,o);input i1, i2; output o;assign o = i1 & i2;endmoduleVerilog is used not only to specify hardware devicesbut also to specify test data. The module AND TEST DATAgenerates the inputs i1=0 and i2=0, i1=0 and i2=1, i1=1and i2=0, i1=1 and i2=1 at successive times.module AND_TEST_DATA (i1,i2);output i1,i2; reg i1,i2;initial begin i1 = 0; i2 = 0;#1 i2 = 1;#1 i1 = 1; i2 = 0;#1 i2 = 1;endendmoduleThe module AND TEST DATA has no inputs and two out-puts i1 and i2. Inside the module de�nition, the out-puts are declared to be registers. Registers are vari-ables that `remember' the last value that was proce-durally assigned to them (just like variables in imper-ative programming languages). Wires are the defaultkind of variable; they have no storage capacity. Theycan be continuously driven (e.g. with a continuous as-signment or by the output of a module) or left un-connected, in which case they get a special value x2

that represents `unknown'. Continuous assignmentsuse the keyword assign, whereas procedural assign-ments just have the form v = e, where v is a registerand e an expression.The body of AND TEST DATA has the form initial s,where s is a statement . This means that statement sis to be executed once at the start of the simulation.In the example here, the statement to be executed is asequential block consisting of a sequence of proceduralassignments, some of which are delayed . When con-trol reaches a statement of the form #n s, there is adelay of n units of simulation time before execution iscontinued at s. The e�ect of executing AND TEST DATA isthus to immediately assign 0 to both i1 and i2, thento delay one unit of time, then to assign 1 to i2, thento delay another unit of time, then to assign 1 to i1and 0 to i2, then to delay another unit of time and�nally to assign 1 to i1.To apply the test data speci�ed in AND TEST DATA tothe modules AND and AND IMP the following module isde�ned.module AND_TEST ();wire i1,i2,o1,o2;AND_TEST_DATA M1(i1,i2);AND M2(i1,i2,o1);AND_IMP M3(i1,i2,o2);initial$monitor("Time = %0d, i1 = %b, i2 = %b, o1 = %b, o2 = %b",$time, i1, i2, o1, o2);endmoduleAND TEST connects the outputs of AND TEST DATA to theinputs of AND and AND IMP using wires. Separate outputwires o1 and o2 are used for AND and AND IMP, so thatthe outputs can be compared. It is a rule of Verilogthat wires must be used to connect modules. Thusalthough inside the de�nition of AND TEST DATA the twooutputs are registers, when the module is instantiatedin AND TEST the outputs are wires.The statement $monitor(� � �) is a directive to the sim-ulator to print out the values on the wires wheneverthey change. Such extra-language constructs (whichinclude statements pre�xed by $, macros and embed-ded comments) are historically not part of the Ver-ilog language, though the IEEE 1364 Draft documentincludes some of them. With real hardware proto-typing, a device is built and then connected to oscil-loscopes, logic analysers etc to observe its operation.Using Verilog, a model can be programmed and thencontrolled and observed using `software probes'. Thesimulator and compiler directives provide a kind ofmetalanguage for manipulating the execution of theVerilog object language. This is di�erent from VHDL,which contains both modelling and monitoring con-structs within a single language.

Simulating the module AND TEST results in the fol-lowing output.Time = 0, i1 = 0, i2 = 0, o1 = 0, o2 = 0Time = 1, i1 = 0, i2 = 1, o1 = 0, o2 = 0Time = 2, i1 = 1, i2 = 0, o1 = 0, o2 = 0Time = 3, i1 = 1, i2 = 1, o1 = 1, o2 = 1This veri�es that for all possible inputs, AND andAND IMP produce the same output.2.2 Feedback and memoryAn SR ipop is device with memory. It is builtusing two NAND gates: NANDNAND qbarqsr � �This has two stable states. The value 1 can be storedby simultaneously driving s=0 and r=1, which will causeq=1 and qbar=0. The value 0 can be stored by drivings=1 and r=0, which will cause q=0 and qbar=1. If both sand r are then driven with 1, the stored value will bemaintained in the feedback loops and is available onoutput q. Driving both s and r with 0 is illegal (thesubsequent behaviour will be unpredictable).An SR ipop is represented in Verilog by:module SRFF (s,r,q,qbar);input s,r; output q,qbar;NAND NAND1(s,qbar,q);NAND NAND2(q,r,qbar);endmoduleThe operation of this can be tested with the module:module TEST ();reg s,r; wire q,qbar;initial begin s = 0; r = 1;#5 s = 1;#5 r = 0;#5 r = 1;#5 s = 0;#5 r = 0;#5 s = 1; r = 1;endSRFF M(s,r,q,qbar);initial$monitor("Time = %0d, s = %b, r = %b, q = %b, qbar = %b",$time, s, r, q, qbar);endmodulewhich generates the following output:Time = 0, s = 0, r = 1, q = 1, qbar = 0Time = 1, s = 1, r = 1, q = 1, qbar = 0Time = 5, s = 1, r = 0, q = 0, qbar = 1Time = 6, s = 1, r = 1, q = 0, qbar = 1Time = 10, s = 0, r = 0, q = 1, qbar = 1Time = 15, s = 1, r = 1, q = 0, qbar = 1This shows that 1 is loaded at time 0 and then storedin the ipop until time 5 when 0 is loaded and thenstored. At time 10 the ipop is driven with the ille-gal input s=0 and r=0 causing both q and qbar to hold3

the value 1. At time 15, s is driven with 1 causing qto be 0 and then r is driven with 1 causing in qbar tobe 1. If s and r had been driven in the reverse order(i.e. r = 1; s = 1) at time 15 then �rst qbar would be-come 0 and then q would become 1. Another possiblebehaviour at time 15 would be oscillation with both qand qbar switching between 1 and 0.. This e�ect canbe obtained by subtly changing the behaviour of theNAND by using a procedural assignment rather than acontinuous assignment.Consider the module NANDP (\P" for procedural):module NANDP (i1,i2,o);input i1, i2; output o; reg o;always @(i1 or i2) o = ~(i1 & i2);endmoduleThe body of NANDP is of the form always s, which meansthat s should be repeated forever. In this example sis the procedural assignment o = ~(i1 & i2), with thetiming control @(i1 or i2) that waits for a change ofvalue to either i1 or i2. Whenever i1 or i2 changes,the NAND of their values is scheduled to be assignedto o `at the end of the current time slot' (technicallyafter a `zero delay' { see Section 2.7). This meansthat if NANDP is used instead of NAND in the SR ipop,the simulation will go into an in�nite loop at time 15(which represents an oscillation).The explanation is that when, at time 15, s is drivenwith 1 then q is scheduled to get value 0, but it doesnot get this value immediately. First r is driven with1 which, in turn, schedules qbar to get 0. Only afterthe values of s and r have been changed to 1 are thevalues of q and qbar changed to 0. Since q and qbar arefed back into the NANDs, the @(s or qbar) and @(q or r)�re and q and qbar are then both scheduled to changeback to 1 again. An in�nite loop ensues.Another standard memory element is an edge-triggered Dtype register.DTYPEdck qWhenever there is a positive edge on the input ck (i.e. achange from 0 to 1) the value being input on d is storedand then output on q. A behavioural speci�cation is:module DTYPE (ck,d,q);input ck,d; output q; reg q;always @(posedge ck) q = d;endmoduleThe body of DTYPE is of the form always @(posedge ck) s,where s is the procedural assignment q = d. The tim-ing control @(posedge ck) waits for a positive edge onck. The behaviour this module is that whenever ck

changes to 1 (i.e. a positive edge) the value being in-put on d is assigned to the register q.A standard implementation of a Dtype is the circuitbelow. This will not be explained here, but can beunderstood from either a physical [11, Chapter 7] orlogical [7] perspective.
NANDNAND3NANDNAND

NANDNAND
dck w1w2w3

w4 w5 q
��� � �

The three-input NAND-gate NAND3 is speci�ed by:module NAND3 (i1,i2,i3,o);input i1, i2, i3; output o;assign o = ~(i1 & i2 & i3);endmoduleThe Dtype implementation above is represented bythe Verilog module:module DTYPE_IMP (ck,d,q);input ck,d; output q; wire w1,w2,w3,w4,w5;NAND M1(w2,d,w1);NAND3 M2(w3,ck,w1,w2);NAND M3(w4,ck,w3);NAND M4(w1,w3,w4);NAND M5(w3,w5,q);NAND M6(q,w2,w5);endmoduleThe module DTYPE TEST DATA speci�es some test sig-nals (everything following // on a line is a comment):module DTYPE_TEST_DATA (ck,d);output ck,d; reg ck,d;initial begin ck = 0; // time 0#5 d = 1; // time 5#5 ck = 1; // posedge ck at time 10#10 ck = 0; // negedge ck at time 20#5 d = 0; // time 25#5 ck = 1; // posedge ck at time 30#5 d = 1; // time 35endendmoduleA test harness to compare the behavioural speci�-cation and implementation with this test data is themodule DTYPE TESTmodule DTYPE_TEST ();wire ck,d,q1,q2;DTYPE_TEST_DATA M1(ck,d);DTYPE M2(ck,d,q1);DTYPE_IMP M3(ck,d,q2);initial$monitor("Time = %0d, ck = %b, d = %b, q1 = %b, q2 = %b",$time, ck, d, q1, q2);endmodule4

Running this results in:Time = 0, ck = 0, d = x, q1 = x, q2 = xTime = 5, ck = 0, d = 1, q1 = x, q2 = xTime = 10, ck = 1, d = 1, q1 = 1, q2 = 1Time = 20, ck = 0, d = 1, q1 = 1, q2 = 1Time = 25, ck = 0, d = 0, q1 = 1, q2 = 1Time = 30, ck = 1, d = 0, q1 = 0, q2 = 0Time = 35, ck = 1, d = 1, q1 = 0, q2 = 0Only times at which ck, d, q1 or q2 change are shown.The value x, representing `unknown', is assigned to allvariables (wires and registers) at the beginning of thesimulation. This output shows that at time 10 thereis the �rst positive edge of ck and at that time thevalue 1 being input on d is `latched' by both DTYPE andDTYPE IMP. The values on the outputs q1 and q2 remainstable at 1 until the next positive edge, which is attime 30, when the input 0 on d is latched.This test shows that DTYPE and DTYPE IMP are equiv-alent for the test data in DTYPE TEST DATA, however onewould like to be able to formally prove from the se-mantics of Verilog that they are equivalent for all pos-sible inputs (if indeed they are). This is a semanticchallenge (see 5.6). Some models used for veri�cationby formal proof (e.g. the relational model { see 5.2)cannot predict that feedback loops in zero-delay com-binational circuits will exhibit memory; however, theway Verilog's simulation semantics propagates signalchanges enables this to be predicted.2.3 Inertial and transport delayThe examples in the previous section are unrealisticbecause the components have no delay.Verilog supports continuous assignments with de-lay. These have the form assign #n w = e and specifythat whenever the value of e changes, w is scheduledto be driven with its new value after a delay of n timeunits. Verilog's semantics speci�es that at most onechange to a given wire can be scheduled at any onetime, so if a change is scheduled before a previouslyscheduled one has been carried out, then the earlierone is cancelled . This rather subtle behaviour is calledinertial delay . It has the e�ect that if two changes toe's value happen within n time units, then the e�ectof the �rst change is cancelled. To illustrate this, con-sider a simple unit-delay element.module DEL (i,o);input i; output o;assign #1 o = i;endmoduleTwo unit-delays in series is:module DEL_DEL (i,o);input i; output o; wire w;DEL M1(i,w);DEL M2(w,o);endmodule

This can be compared with an inertial delay of 2.module DEL2 (i,o);input i; output o;assign #2 o = i;endmoduleThe following trace shows an example of DEL DEL'sand DEL2's outputs for a particular sequence of inputs.Time Input Output from DEL_DEL Output from DEL20 x x x1 x x x2 x x x3 x x x4 x x x5 0 x x6 0 x x7 0 0 08 0 0 09 0 0 010 1 0 011 0 0 012 0 1 013 0 0 014 0 0 015 1 0 016 1 0 017 0 1 118 0 1 119 0 0 0When input i changed to 1 at time 10 the change w=1is scheduled inside DEL DEL for time 11, and the changeo=1 is scheduled by DEL2 at time 12. At time 11 thechange w=1 happens inside DEL DEL, which causes o=1 tobe scheduled at time 12. When i changes to 0 at time11, the continuous assignment in DEL2 schedules o=0 attime 13, which cancels the o=1 scheduled for time 12.Thus at time 12, the change to o in DEL DEL happens,but the change to o in DEL2 has been cancelled. At time13, o in DEL2 is 0 so the previously scheduled o=0 hasno e�ect. When i changes from 0 to 1 at time 15, DEL2schedules o=1 for time 17. Since i doesn't change attime 16, o=1 is not cancelled and DEL2's output changesat time 17.DEL DEL exhibits transport delay : all changes to itsinput are propagated to its output with a delay of 2.DEL2 exhibits inertial delay: only changes that persistfor at least two time units are propagated. Note thatDEL DEL implements transport delay only because its in-ternal delays are unit delays. Two DEL2s in series wouldexhibit a mixture of transport and inertial delay.2.4 Blocking & non-blocking assignmentsVerilog's non-blocking assignment enables transportdelays to be expressed behaviourally. A non-blockingassignment has the form v <= #n e, where v is a register.Such an assignment causes no delay in the executionof the current module, but schedules the current valueof e to be assigned to v after a delay of n. In con-trast to continuous assignments, non-blocking assign-ment allows multiple changes to be scheduled to the5

same variable: no cancelling happens. Thus the fol-lowing module has the same transport delay behaviouras DEL DEL.module TRANS_DEL2 (i,o);input i; output o; reg o;always @(i) o <= #2 i;endmoduleThis generates an in�nite loop (always) with the be-haviour that whenever i changes (@(i)) the new valueof i is scheduled to be assigned to o after a delay of 2.Blocking assignments have the form v = #n e. Whensuch an assignment is reached, the value of e is com-puted, execution is delayed (`blocked') for n time unitsand then the previously computed value of e is as-signed to v. For example, consider:begin x = 1; y = 2; x = #5 y; y = #5 x; endWhen control reaches x = #5 y, the variable x has value1 and y value 2. The computation is delayed for 5 timeunits and then x is assigned the value 2. The compu-tation is then delayed another 5 time units and then ygets the value 2 that x had just been assigned. Thusexecuting this sequential block takes 10 time units andresults in x and y both having the value 2.Consider now:begin x = 1; y = 2; x <= #5 y; y <= #5 x; endWhen control reaches x <= #5 y, the variable x hasvalue 1 and y the value 2, as before. The e�ect ofx <= #5 y is to schedule x=2 for 5 time units in the fu-ture; x is not changed until then. The non-blockingassignment itself takes no time and control immedi-ately proceeds to y <= #5 x which itself takes no time,but schedules y=1 also for 5 units of time in the future.The execution of the sequential block is now �nished.5 time units later x gets value 2 and y gets value 1.Thus executing this sequential block takes zero timeand results in x being scheduled to have the value 2and y the value 1 after 5 time units have passed.A blocking assignment v = #n e di�ers from a de-layed assignment #n v = e because the former evalu-ates e before the delay occurs, but the latter evaluatesit after the delay has taken place.2.5 DatatypesVerilog allows variables to be declared to carry arbi-trary bitstrings (called vectors), signed integers, times(which are unsigned) and reals. For example, the dec-laration reg[3:0] v declares v to be a 4-bit vector reg-ister (reg is a reserved word). Its components are ac-cessed by expressions (from most to least signi�cant)v[3], v[2], v[1] and v[0].Vectors of vectors, called memories , can also bedeclared. For example reg[7:0] mem[0:255] declares amemory mem consisting of 256 eight-bit registers. Thedetails of Verilog's datatypes are not considered here.

2.6 Imperative programming constructsVerilog provides a selection of familiar programmingconstructs including conditionals, case switches, while-statements, for-statements, sequential and parallelblocks. For simplicity, only a subset of these will beconsidered.In the example that follows, the programming con-structs are used to specify a behavioural model of adivider (DIVIDE) and also provide some test data for it(DIVIDE TEST DATA).Whenever either x or y changes (always @(x or y)),the module DIVIDE computes, by repeated subtraction,the quotient q and remainder r of dividing x by y (thearithmetic operators + and - apply to vectors inter-preted as natural numbers using modular arithmetic).module DIVIDE(x,y,q,r);input [1:0] x,y; output q,r; reg [1:0] q,r;always @(x or y)beginq = 0;r = x;while (y<=r) beginr = #1 r-y;q = #1 q+1;end$display("Time = %0d, x = %0d, y = %0d, q = %0d, r = %0d",$time, x, y, q, r);endendmoduleThe initialisation assignments of q and r are modelledas taking zero delay, but each assignment in the bodyof the while-loop is given unit delay.The statement $display(� � �) prints out the time andthe values of x, y, q and r (in decimal notation) whencontrol reaches it (which is just after the while-loophas terminated).The module DIVIDE TEST DATA generates all non-zerocombinations of x and y in sequence, changing the val-ues each 10 time units.module DIVIDE_TEST_DATA (x,y);output x,y; reg [1:0] x,y;initialbegin x=1; y=1;while (x<=3) beginwhile (y<3) #10 y=y+1;#10 x = x+1; y=1;endendendmoduleNotice that the outer while-statement is an in�niteloop because addition on values of size [1:0] is modulofour.The test harness DIVIDE TEST feeds the data gener-ated by DIVIDE TEST DATA to DIVIDE. It also sets up aseparate thread that waits for 100 time units and thenhalts the simulation ($finish). The in�nite loop (andthe need for the separate thread) could be avoided byreplacing x<=3 by x>0 in DIVIDE TEST DATA.6

module DIVIDE_TEST ();wire [1:0] x,y,q,r;DIVIDE_TEST_DATA M1(x,y);DIVIDE M2(x,y,q,r);initial #100 $finish;endmoduleSimulating this example results in the following(printed by the $display statement in DIVIDE).Time = 2, x = 1, y = 1, q = 1, r = 0Time = 10, x = 1, y = 2, q = 0, r = 1Time = 20, x = 1, y = 3, q = 0, r = 1Time = 34, x = 2, y = 1, q = 2, r = 0Time = 42, x = 2, y = 2, q = 1, r = 0Time = 50, x = 2, y = 3, q = 0, r = 2Time = 66, x = 3, y = 1, q = 3, r = 0Time = 72, x = 3, y = 2, q = 1, r = 1Time = 82, x = 3, y = 3, q = 1, r = 0Time = 90, x = 0, y = 1, q = 0, r = 0At the start of the simulation x and y are initialisedto the `unknown' value. At time 0 they are bothassigned value 1 by DIVIDE TEST DATA, which triggers@(x or y) in DIVIDE causing the while-loop to be exe-cuted to compute q and r. This only takes one itera-tion, which takes two time units (one for each assign-ment in the body of the while), thus the $display(� � �)is �rst reached at time 2 generating the �rst line ofoutput. The next change to x and y happens at time10, when DIVIDE TEST DATA increments y. This triggers@(x or y) in DIVIDE again, but this time the test ofthe while-loop is false, so no iterations are done and$display(� � �) is reached for the second time at time 10.2.7 Concurrent threadsThe general form of a module speci�cation is:module name (port1; : : : ; portm);declarations;item1...itemnendmoduleEach item is executed in parallel in a separatethread of computation. The main module items arecontinuous assignments, instances of other modules,initial-statements and always-statements. Sharedvariables can lead to non-determinism. For example,consider:module INTERLEAVE ();integer x;initial begin x=0; x=x+2; endinitial x=1;endmoduleThis is an example of a race condition: the seman-tics does non uniquely determine the result. If the�rst initial-statement is completed before the secondone is started, then x is set to 1. This behaviour canbe forced by putting a zero delay before the secondinitial-statement:

initial #0 x=1If the �rst initial-statement is started after the sec-ond one is completed, then x is set to 2. This can beforced by putting a zero delay before the �rst initial-statement:initial #0 begin x=0; x=x+2; endIf the second initial-statement is executed after thex=0 in the �rst initial-statement, but before the x=x+2,then x is set to 3. This can be forced by:initial begin x=0; #0 #0 x=x+2; endinitial #0 x=1;The use of explicit zero delays to force determinacyis considered a bad programming style by some. Theexact semantics of delays is explained in section 4.The use of non-blocking assignment can lead to fur-ther subtlety. For example, consider:module NONBLOCK_INTERLEAVE ();integer x;initial begin x=0; x<=x+2; endinitial x=1;endmoduleWith the Viper/free simulator from interHDL [16] theresult is that x is set to 1, but with the Veriwell simu-lator from Wellspring Solutions Inc. [15], x is set to 2.According to my reading of the o�cial IEEE schedul-ing semantics [8], x should never end up set to 1 sincenon-blocking assign update events are scheduled forthe very end of the simulation cycle, and the only wayx could end up with 1 is if the assignment x=1 is sched-uled after the update created by x<=x+2. However, Imay have misread the IEEE document!Concurrent threads can also be generated usingparallel blocks (fork{join), but these will not be con-sidered here.3 V: a simple version of VerilogThis section speci�es a language called V that is pro-posed as a vehicle for experiments in contructing andusing a formal semantics of Verilog.V is close to being a subset of Verilog, but containstwo constructs not in it. The �rst of these are assign-ments of the form v �- #n e that are like delayed non-blocking assignments, but with inertial delay. Havingthese simpli�es the description of the simulation cycle,by enabling continuous assignments to be translatedinto always-statements. The second construct in V, butnot Verilog, is a timing control � that is very similarto @, but without the zero-delay discussed in connec-tion with NANDP in Section 2.2. This timing control isalso used for modelling continuous assignments.The syntax of V will be speci�ed in a BNF style, us-ing metavariables to range over the various constructs.7

Occurrences of metavariables may be distinguishedby decorating them with subscripts, superscripts orprimes.3.1 ModulesA speci�cation in V consists of a set of modules , oneof which is singled out as the top level module.Modules in V have a name, port list (which maybe empty), set of declarations and a set of moduleitems. Each item is either a continuous assignment, aninitial-statement, an always-statement or an instanceof another module. Details of datatypes and declara-tions are avoided here, as the main goal is to describethe simulation cycle.3.2 ExpressionsExpressions are composed out of variables, constants(ranged over by n), unary operators (ranged over byu) and binary operators (ranged over by b). For sim-plicity, V assumes expressions are evaluated to yieldeither a non-negative number (which can be thoughtof as a bitstring), or the special value x.The syntax of expressions is speci�ed by:e ::= v | n | u e | e1 b e2 | e ? e1 : e2 | (e)Thus an expression e is either a variable v, or a con-stant n, or a unary operator u applied to an expressione, or an in�xed binary operator b applied to two ex-pressions e1 and e2, or a conditional e ? e1 : e2 meaning\if e then e1 else e2", or parenthesised.The value of an expression in V is a natural numberor x (the unknown value). Unary and binary operatorsare assumed `strict' (i.e. if an argument is x then theresult is x). Conditionals are strict in their �rst argu-ment. In the test expressions occurring in conditionalsand while-statements, a non-zero result represents trueand zero represents false.Verilog supports various automatic coercions onbitwidths, which can make it tricky to handle arith-metic overows. However, the details of these areorthogonal to the simulation semantics and are nottreated here.3.3 Timing controlsTiming controls (ranged over by c) are used forscheduling. They are sequences of atomic timing con-trols (ranged over by �), which are either delays (#e)or guards (ranged over by g). Guards are either edgesensitive (�(�) or @(�)) or level sensitive (wait e).� ::= v | posedge v | negedge v | �1 or � � � or �ng ::= �(�) | @(�) | wait e� ::= #e | gc ::= � | � c

3.4 StatementsThe syntax of statements is given by:s ::= v = e (assignment)| v = c e (delayed assignment)| v <= c e (non-blocking assignment)| v �- #n e (inertial assignment)| c s (timing controlled statement)| if (e) s (one-armed conditional)| if (e) s1 else s2 (two-armed conditional)| begin s1; � � � ;sn end (sequential block)| while (e) s (while-statement)| forever s (forever-statement)4 Semantics of VThe semantics of V is described by explaining howthe top-level module is simulated. The �rst stage isto extract a collection of statements to be executedconcurrently.The top level module is `attened' by (i) renam-ing all local variables in instances of modules to avoidclashes, (ii) replacing module instances by the appro-priately instantiated sequence of items they containand (iii) declaring all local variables at top level. Theresult of this is a module that only contains contin-uous assignments and statements (i.e. no module in-stances).After this attening, the only way that a wirecan be driven is by a continuous assignment (in un-attened modules they can be driven by module in-stances). For simplicity, it is assumed that each wireis driven by at most one continuous assignment (inVerilog, wires can be multiply driven and rules aregiven for computing the resultant value).After attening, the top-level module is furthertransformed so that the only module items it containsare initial-statements.Let v1, : : : , vn be the variables occurring in e,then all continuous assignments assign v = e are re-placed by always �(v1 or � � � or vn) v = e and all de-layed continuous assignments assign #n v = e are re-placed by always �(v1 or � � � or vn) v �- #n e. Notethat the wires driven by continuous assignments be-come registers.All always-statements always s are replaced byinitial forever s.The resulting attened and transformed modulehas the form:module name (port1; : : : ; portm);declarations;initial s1...initial snendmodule8

The statements s1, : : :, sn are executed concurrrently.Each si gives rise to a separate thread of execution.This attening and transforming process is callednormalisation. A more formal account will not begiven here, but the following example of the result ofnormalising AND TEST (see above) should illustrate theprocess (the $monitor statement is omitted).module FLAT_AND_TEST ();reg i1,i2,o1,o2,w;initial begin i1 = 0; i2 = 0;#1 i2 = 1;#1 i1 = 1; i2 = 0;#1 i2 = 1;endinitial forever �(i1 or i2) o1 = i1 & i2;initial forever �(i1 or i2) w = ~(i1 & i2);initial forever �(w) o2 = ~(w & w);endmoduleObserve how normalisation has converted all wires toregisters.4.1 The global stateThe global state of a simulation consists of the simula-tion time, the values of registers and the set of threads.Each thread consists of a statement (the code beingexecuted) and a local state specifying:1. an execution point , which indicates where to con-tinue from the next time the thread is executed;2. a status , which can be(a) enabled : the thread can be executed imme-diately;(b) delayed until t: execution is scheduled for alater simulation time t;(c) guarded by g: the thread is waiting to betriggered by a change to a variable in g;(d) �nished : a thread is �nished when there areno more statements to execute;3. a possible pending assignment (only present if thethread was delayed within n past time units by ablocking assignment v = c e).Threads are classi�ed into (i) statement threads , whichare the executions of statements extracted from thenormalised module and (ii) updates , which are gener-ated by non-blocking assignments.4.2 The simulation cycleThe execution of a program is initialized by settingthe simulation time to 0, setting the values of all vari-ables to x, creating an enabled statement thread (withno pending assignments) for each statement extracted

from the normalised top-level module with the execu-tion points at the beginning of each statement.Thereafter, the following simulation cycle is re-peated. Let t denote the current simulation time.1 If there are any enabled statement threads thenchoose one and go to 2 , else if there are anythreads delayed to t (the current simulation time),then enable all such threads and go to 1 , else ifthere are any enabled updates, then choose one,perform it, delete it and go to 3 , else if there areany threads delayed to t0, where t0 > t, then goto 4 .2 If there is a pending assignment then perform it,delete it from the state. Go to 3 .If the thread has no pending assignment, thenmake one step along it (see 4.2.1). Go to 3 .3 If the value of a register has changed, then enableall guarded threads whose guards �re (see 4.2.2).Go to 1 .4 Advance simulation time the minimum amount(which must be non-zero) needed to reach a timeat which at least one thread is scheduled torestart. Enable all threads scheduled to restartat this time. Go to 1 .The simulation terminates when all threads are �n-ished.4.2.1 Stepping along a threadIf the execution point is at the end of a thread, thenstepping along the thread causes it to �nish. If thereis a statement following the execution point, then foreach kind of statement the e�ect of taking a step isdescribed below.v = e The expression e is evaluated and the resultingvalue assigned to the register v in the global state. Ifthere is a next statement in the thread it is enabled,otherwise the thread is �nished.v = c e The expression e is evaluated to get a number,n say, and then the status of the thread is set accordingto c (see 4.2.2), the assignment v = n is made pendingand the execution point is moved to the end of theassignment.v <= c e The expression e is evaluated to get a num-ber, n say, and then a new update thread is createdconsisting of just the assignment v = n with the execu-tion point at the beginning, the status of the thread9

is set according to c (see 4.2.2) and no pending as-signment. If there is a next statement in the originalthread it is enabled, otherwise the thread is �nished.v �- #n e The expression e is evaluated to get a num-ber, m say, and then a new statement thread is cre-ated consisting of just the assignment v = m with theexecution point at the beginning, the status delayedaccording to #n (see 4.2.2) and no pending assignment.All other delayed threads of the form v = m0 which arescheduled earlier than the one just created are deleted.If there is a next statement in the original thread it isenabled, otherwise the thread is �nished.c s The execution point is moved to just before s andthe status of the thread is set according to c (see 4.2.2).if (e) s The expression e is evaluated. If the resultis true then the execution point moves to s and thethread remains enabled. If e is false and there is a nextstatement in the thread, then it is enabled, otherwisethe thread is �nished.if (e) s1 else s2 The expression e is evaluated. If theresult is true then the execution point moves to s1,otherwise it moves to s2. In both cases the threadremains enabled.begin s1; � � � ;sn end Control moves to the �rst state-ment s1 and the thread remains enabled.while (e) s The thread is replaced by the statementif (e) begin s; while (e) s end with the execution pointat the beginning and the thread enabled.forever s This is equivalent to while (1) s.4.2.2 Setting up a delay or guardIn general, a timing control is a non-empty sequence�1 �2 � � � �n of atomic timing controls. Such a sequenceis evaluated by considering �1 as below and pre�xing�2 � � � �n (which might be empty) to the statementfollowing the execution point of the thread.#e The value of e is added to the current simulationtime to get a future time, t0 say, and the status of thethread becomes delayed until t0. Note that a delayedthread is not enabled, so the e�ect of a zero delay #0 isto schedule the rest of the thread for the current time,but after all currently enabled statement threads andbefore all currently enabled updates (see 1 above).@(�) This is equivalent to the sequence �(�) #0.�(v) The thread becomes guarded with a guard thatwill �re whenever v is changed.

�(posedge v) The thread becomes guarded with aguard that will �re whenever v changes to 1.�(negedge v) The thread becomes guarded with aguard that will �re whenever v changes to 0.�(�1 or � � � or �n) A guard is created that �res whenany of �1, : : : , �n �re.wait e If e is true then the thread remains enabled; ifit is false then a guard is created that will �re whenevere becomes true.4.3 Warning!The semantics of V is intended to be a prototype for asemantics of Verilog. It is based on a careful reading ofvarious sources [8, 12, 13, 14] and experiments with theVeriwell [15] and Viper/free [16] simulators. I hope tovalidate the semantics with a combination of reviewby Verilog experts (I am not one) and formalisationexperiments, but until this is done the reader is warnednot to place too much trust in the details. Alreadyseveral errors in an earlier version of the simulationsemantics have been corrected.5 Semantic challengesThe semantic challenges in this section are intendedto combine theoretical interest with practical utility.Many of them are instantiations to the world of Ver-ilog of general topics in logic and semantics for whichconsiderable abstract theory already exists.5.1 Formal semantics of VerilogThe �rst challenge is just to get a formal semanticsof Verilog, starting with the subset V, that is bothaccurate to the spirit of the language and mathemat-ically tractable. Many attempts to give a formal se-mantics of VHDL [9, 5, 10] are in progress. Theseuse a variety of techniques including stream processing(Fuchs & Mendler), functional programming (Breueret al), labelled transition systems (Van Tassel), evolv-ing algebras (B�orger et al.), Petri nets (Olcoz), �nitestate automata (D�ohmen & Herrmann), ow graphs(Reetz & Kropf), denotational semantics (Davis) andthe state-delta temporal logic formalism (Filippenko).The semantics of other kinds of event simulation lan-guages are also being studied [1, 2].5.2 Validity of simpli�ed semanticsAny semantics that reects the spirit of the language(i.e. formalises the simulation cycle) is likely to behard to work with and may well not be syntax di-rected (compositional). A second challenge is to de-velop simpler and more tractable semantics for subsetsof the language and to prove that these agree with thegeneral semantics on the subset.10

One standard approach is to model hardware de-vices as a relation between sequences of values (thesequences representing successive values on a wire) [6].There is considerable experience in using this modeland it would be particularly useful if it could be re-lated to Verilog's semantics.5.3 A minimal simulation calculusV is a �rst attempt to distill the essence of the Verilogsimulation semantics into a simple setting. However,it is still relatively large, ad hoc and redundant. Achallenge is to devise a minimal discrete event simu-lation calculus that would form a canonical basis fortheoretical analysis. This calculus would be to Ver-ilog/VHDL roughly as the �-calculus is to functionalprogramming.5.4 Correctness of synthesisersCurrent synthesisers can generate hardware imple-mentations from substantial subsets of Verilog. Forexample, the CV Verilog Compiler implemented byDavid Greaves and used at Cambridge University cansynthesise hardware implementations of modules thatcontain continuous assignments (without delays) andbehavioural statements with @(posedge v) timing con-trols, non-blocking assignments, conditionals and se-quential blocks.A challenge is to formalise real-world synthesis al-gorithms and show that the hardware structures gen-erated are equivalent to the behavioural source. Therehas been quite a lot of work on verifying synthesisersin the past, but none (that I know of) for synthesisfrom modern event-based HDLs.5.5 De�nition of equivalencesFor many purposes it is important to ensure thatpairs of speci�cations are `equivalent'. However, ex-actly what equivalence means is subtle. The strongestequivalence would be that two speci�cations were in-distinguishable by the simulator. However, in prac-tice this is likely to be too strong: one may onlyneed equivalence with respect to certain classes of testdata. For example, an implementation using inertialdelay might be equivalent to a behavioural speci�ca-tion with transport delay, under the condition thatsignals change slowly.A challenge is to develop a general theory of be-havioural equivalence for Verilog, together with `laws'for using the theory.5.6 Conditions for equivalenceEnsuring that behavioural speci�cations are equiva-lent to structural implementations is an importantpractical problem. Hardware components are often

given several di�erent models at di�erent levels of ab-straction and much time and expense can be wasted ifthere are undocumented di�erences. A challenge (thatwe hope to address at Cambridge) is to develop `ver-i�cation conditions' that are su�cient to ensure thattwo speci�cations are equivalent.5.7 Relation to timed process calculiTimed process calculi (e.g. timed CCS, and timedCSP) provide a standard compositional paradigm forrepresenting timed behaviour. Is it possible to trans-late Verilog into such a calculus and prove the trans-lation sound? The various theories of equivalence andre�nement for process algebra might suggest useful no-tions for Verilog (e.g. kinds of equivalence).5.8 Programming logicVerilog's imperative programming constructs (assign-ment, sequencing, conditionals, while-loops etc.)should satisfy proof rules like those for Hoare logic,with suitable restrictions. Under what conditions canexisting methods for reasoning about sequential andparallel programs be applied to subsets of Verilog?How can these methods be proved sound with respectto simulation semantics?5.9 Checkable propertiesThe most successful applications of formal methods tohardware design have been the use of decision proce-dures and model checkers (usually based on binary de-cision diagrams { BDDs) to automatically verify prop-erties. A challenge is to discover classes of propertiesof Verilog programs that can be automatically checkedusing such existing methods. To do this properly re-quires that metatheorems be proved establishing thatthe properties are equivalent to standard decision ormodel checking problems.6 Summary and conclusionsVerilog is a relatively simple real-world language inneed of theoretical support. It poses a variety of in-teresting semantic and logical challenges ranging fromroutine applications of standard techniques (e.g. for-malizing the simulation cycle) to hard theoreticalproblems (e.g. developing a theory of behavioural con-gruence).AcknowledgementsI became interested in Verilog through conversationswith David Greaves. He helped me learn the language,supplied some of the examples and text used hereand answered numerous questions concerning Verilog'ssemantics. At Cambridge, Richard Boulton, DavidGreaves and John Herbert read a �rst draft of this11

paper and made many suggestions for its improve-ment. Following a post to comp.lang.verilog I re-ceived further helpful suggestions from Henry G. Cox,Peet James and John Sanguinetti. Also, Yatin Trivediemailed me the section on \Scheduling semantics"from the the IEEE 1364 Draft document (Draft Stan-dard Verilog HDL), which showed that my originaltreatment of non-blocking assignment was wrong.References[1] G. Birtwistle and C. Tofts. \Operational Seman-tics for Process-Based Simulation Languages. Part1: �Demos", Transactions of The Society for Com-puter Simulation, Vol. 10(4), pp. 299{333, 1993.[2] G. Birtwistle and C. Tofts. \Operational Seman-tics for Process-Based Simulation Languages. Part2: �Demos", Transactions of The Society for Com-puter Simulation, Vol. 11(4), pp. 303{336, 1994.[3] Newsgroup posting by John Cooley, see:http://www.cl.cam.ac.uk/users/mjcg/Verilog/VHDL-Verilog.html.[4] Corporate Background Information on Design Ac-celeration, Inc; available on the WWW at the URLhttp://www.designacc.com/.[5] K.C. Davis, \A Denotational De�nition of theVHDL Simulation Kernel", Electrical and Com-puter Engineering Department, University ofCincinnati, Cincinnata, OH 45221-0030, email:karen.davis@uc.edu.[6] M.J.C. Gordon, \Why Higher-Order Logic is aGood Formalism for Specifying and VerifyingHardware", Formal Aspects of VLSI Design, G.Milne and P.A. Subrahmanyam (Eds.), North Hol-land, 153{177, 1986.[7] F.K. Hanna & N. Daeche, \Speci�cation and Veri-�cation using Higher-Order Logic: A Case Study",Formal Aspects of VLSI Design, G. Milne and P.A.Subrahmanyam (Eds.), North Holland, pp. 179{213, 1986.[8] \Scheduling semantics", Section 5 of IEEE 1364Draft document Draft Standard Verilog HDL,Draft 3.1, March 1995.[9] C. Delgado Kloos & P.T. Breuer (editors), FormalSemantics for VHDL, Kluwer Academic Publish-ers, March 1995.

[10] I.V. Filippenko, \VHDL Veri�cation in the StateDelta Veri�cation System (SDVS)", 1991 Interna-tional Workshop on Formal Methods in VLSI De-sign, Miami, Florida, 1991.[11] C. Mead & L. Conway, Introduction to VLSI Sys-tems, Addison-Wesley, 1980.[12] Open Verilog International (OVI), Verilog Hard-ware Description Language Reference Manual ,Version 1.0, Open Verilog International, 15466 LosGatos Blvd., Suite 109-071 Los Gatos, CA 95032,email: ovi@netcom.com.[13] E. Sternheim, R. Singh, Y. Trivedi, R. Mad-havan & W. Stapleton, Digital Design And Syn-thesis with Verilog HDL, Automata PublishingCompany, 1072 S. Saratoga-Sunnyvale Rd., SanJose, CA 95129, ISBN 0-9627488-2-X, email:help@apco.com.[14] D.E. Thomas & P.R. Moorby, The VerilogHardware Description Language (second edition),Kluwer Academic Publishers, 1995.[15] The Veriwell simulator is available for down-loading from Wellspring Solutions via ftp:ftp://iii.net:/pub/pub-site/wellspring/.[16] The Viper/free simulator is available freefrom interHDL, Inc., 4984 El Camino Real,Suite 210, Los Altos, CA. 94022-1433, email:info@interhdl.com.

12

