
Assertion-Based Verification (ABV)

◮ It has been claimed that assertion based verification:

“is likely to be the next revolution in hardware design

verification”

◮ Basic idea:

◮ document designs with formal properties
◮ use simulation (dynamic) and model checking (static)

◮ Problem: too many languages

◮ academic logics: LTL, CTL
◮ tool-specific industrial versions:

Intel, Cadence, Motorola, IBM, Synopsys

◮ What to do? Solution: a competition!

◮ run by Accellera organisation
◮ results standardised by IEEE
◮ lots of politics

Mike Gordon 96 / 128

IBM’s Sugar and Accellera’s PSL

◮ Sugar 1: property language of IBM RuleBase checker

◮ CTL plus Sugar Extended Regular Expressions (SEREs)

◮ Competition finalists: IBM’s Sugar 2 and Motorola’s CBV

◮ Intel/Synopsys ForSpec eliminated earlier

(apparently industry politics involved)

◮ Sugar 2 is based on LTL rather than CTL

◮ has CTL constructs: “Optional Branching Extension” (OBE)
◮ has clocking constructs for temporal abstraction

◮ Accellera purged “Sugar” from it property language

◮ the word “Sugar” was too associated with IBM
◮ language renamed to PSL
◮ SEREs now Sequential Extended Regular Expressions

◮ Lobbying to make PSL more like ForSpec (align with SVA)

Mike Gordon 97 / 128

SEREs: Sequential Extended Regular Expressions
◮ SEREs are from the industrial PSL (more on PSL later)

◮ Syntax :

r ::= p (Atomic formula p ∈ AP)
| !p (Negated atomic formula p ∈ AP)
| r1 | r2 (Disjunction)
| r1 && r2 (Conjunction)
| r1 ; r2 (Concatenation)
| r1 : r2 (Fusion)
| r [∗] (Repeat)

◮ Semantics:
(w ranges over finite lists of states s; |w | is length of w ;
w1.w2 is concatenation; head w is head; 〈〉 is empty word)

[[p]](w) = p ∈ L(head w) ∧ |w | = 1

[[!p]](w) = ¬(p ∈ L(head w)) ∧ |w | = 1

[[r1|r2]](w) = [[r1]](w) ∨ [[r2]](w)
[[r1&&r2]](w) = [[r1]](w) ∧ [[r2]](w)
[[r1;r2]](w) = ∃w1 w2. w = w1.w2 ∧ [[r1]](w1) ∧ [[r2]](w2)
[[r1:r2]](w) = ∃w1 s w2. w = w1.s.w2 ∧ [[r1]](w1.s) ∧ [[r2]](s.w2)
[[r [∗]]](w) = w=〈〉 ∨ ∃w1 · · ·wl . w=w1. · · · .wl∧[[r]](w1)∧ · · · ∧[[r]](wl)

Mike Gordon 94 / 128

Example SERE
◮ Example

A sequence in which req is asserted, followed

four cycles later by an assertion of grant,

followed by a cycle in which abortin is not

asserted.

◮ Define p[*3] = p;p;p

◮ Then the example above can be represented by the SERE:

req;T[*3];grant;!abortin

◮ In PSL this could be written as:

req;[*3];grant;!abortin

◮ where [*3] abbreviates T[*3]

◮ more ‘syntactic sugar’ later

◮ e.g. true, false for T, F

Mike Gordon 95 / 128

PSL Foundation Language (FL is LTL + SEREs)
◮ Syntax:

f ::= p (Atomic formula - p ∈ AP)
| !f (Negation)
| f1 or f2 (Disjunction)
| next f (Successor)
| {r}(f) (Suffix implication: r a SERE)
| {r1} |-> {r2} (Suffix next implication: r1, r2 SEREs)
| [f1 until f2] (Until)

◮ Semantics (omits clocking, weak/strong distinction)
[[p]]M(π) = p ∈ L(π(0))
[[!f]]M(π) = ¬([[f]]M(π))
[[f1 or f2]]M(π) = [[f1]]M(π) ∨ [[f2]]M(π)
[[next f]]M(π) = [[f]]M(π↓1)
[[{r}(f)]]M(π) = ∀π′ w . (π = w .π′ ∧ [[r]]M(w)) ⇒ [[f]]M(π′)
[[{r1}|->{r2}]]M(π) = ∀π′ w1 s. (π = w1.s.π

′ ∧ [[r1]]M(w1.s))
⇒ ∃π′′ w2. π

′ = w2.π
′′ ∧ [[r2]]M(s.w2)

[[[f1 until f2]]]M(π)= ∃i . [[f2]]M(π↓i) ∧ ∀j . j<i ⇒ [[f1]]M(π↓j)

◮ There is also an Optional Branching Extension (OBE)
◮ completely standard CTL: EX, E[−− U −−], EG etc.

Mike Gordon 98 / 128

Combining SEREs with LTL formulae
◮ Formula {r}f means LTL formula f true after SERE r

◮ Example

After a sequence in which req is asserted,

followed four cycles later by an assertion of

grant, followed by a cycle in which abortin is

not asserted, we expect to see an assertion of

ack some time in the future.

◮ Can represent by

always {req;[*3];grant;!abortin}(eventually ack)

◮ where eventually and always are defined by:

eventually f = [true until f]

always f = !(eventually !f)

◮ N.B. Ignoring strong/weak distinction
◮ strong/weak distinction important for dynamic checking
◮ semantics when simulator halts before expected event
◮ strictly should write until!, eventually!

Mike Gordon 99 / 128

SERE examples

◮ How can we modify

always reqin;ackout;!abortin |-> ackin;ackin

so that the two cycles of ackin start the cycle after

!abortin

◮ Two ways of doing this

always{reqin;ackout;!abortin}|->{true;ackin;ackin}

always{reqin;ackout;!abortin}|=>{ackin;ackin}

◮ |=> is a defined operator

{r1}|=>{r2} = {r1}|->{true;r2}

◮ Note: true and T are synonyms

Mike Gordon 100 / 128

Examples of defined notations: consecutive repetition
◮ Define

r[+] = r;r[*]__
| false[*] if i=0

r[*i] = |

| r;...;r otherwise (i repetitions)
__

r[*i..j] = r[*i] | r[*(i+1)] | ... | r[*j]

[+] = true[+]

[*] = true[*]

◮ Example

Whenever we have a sequence of req followed by

ack, we should see a full transaction starting the

following cycle. A full transaction starts with an

assertion of the signal start_trans, followed by one

to eight consecutive data transfers, followed by the

assertion of signal end_trans. A data transfer is

indicated by the assertion of signal data

always{req;ack}|=>{start_trans;data[*1..8];end_trans}

Mike Gordon 101 / 128

Fixed number of non-consecutive repetitions
◮ Example

Whenever we have a sequence of req followed by

ack, we should see a full transaction starting the

following cycle. A full transaction starts with an

assertion of the signal start_trans, followed by

eight not necessarily consecutive data transfers,

followed by the assertion of signal end_trans. A data

transfer is indicated by the assertion of signal data

◮ Can represent by

always

{req;ack} |=>

{start_trans;

{{!data[*];data}[*8];!data[*]};

end_trans}

◮ Define: b[= i] = {!b[*];b}[*i];!b[*]

◮ Then have a nicer representation

always{req;ack}|=>{start_trans;data[= 8];end_trans}

Mike Gordon 102 / 128

Variable number of non-consecutive repetitions
◮ Example

Whenever we have a sequence ofreq followed by

ack, we should see a full transaction starting the

following cycle. A full transaction starts with an

assertion of the signal start_trans, followed by

one to eight not necessarily consecutive data

transfers, followed by the assertion of signal

end_trans. A data transfer is indicated by the

assertion of signal data

◮ Define

b[= i..j] = {b[= i]} | {b[= (i+1)]} | ... | {b[= j]}

◮ Then

always {req;ack} |=>

{start_trans;data[= 1..8];end_trans}

◮ These examples are meant to illustrate how PSL/Sugar is

much more readable than raw CTL or LTL

Mike Gordon 103 / 128

Clocking

◮ Basic idea: b@clk samples b on rising edges of clk

◮ Can clock SEREs (r@clk) and formulae (f@clk)

◮ Can have several clocks

◮ Official semantics messy due to clocking

◮ Can ‘translate away’ clocks by pushing @clk inwards

◮ rules given in PSL manual

◮ roughly: b@clk {!clk[*];clk & b}

Mike Gordon 104 / 128

Model checking PSL (outline)

◮ SEREs checked by generating a finite automaton

◮ recognise regular expressions
◮ these automata are called “satellites”

◮ FL checked using standard LTL methods

◮ OBE checked by standard CTL methods

◮ Can also check formula for runs of a simulator

◮ this is dynamic verification
◮ semantics handles possibility of finite paths – messy!

◮ Commercial checkers only handle a subset of PSL

Mike Gordon 105 / 128

PSL layer structure

◮ Boolean layer has atomic predicates

◮ Temporal layer has LTL (FL) and CTL (OBE) properties

◮ Verification layer has commands for how to use properties

◮ e.g. assert, assume

assert always (!en1 & en2))
| | |

| | |--- Boolean layer

| |

| |-------------- temporal layer

|

|-------------------- verification layer

◮ Modelling layer: HDL specification of e.g. inputs, checkers

◮ e.g. augment always(Req -> eventually! Ack)
◮ add counter to keep track of numbers of Req and Ack

Mike Gordon 106 / 128

PSL/Sugar summary

◮ Combines together LTL and CTL

◮ Regular expressions – SEREs

◮ LTL – Foundation Language formulae

◮ CTL – Optional Branching Extension

◮ Relatively simple set of primitives + definitional extension

◮ Boolean, temporal, verification, modelling layers

◮ Semantics for static and dynamic verification

(needs strong/weak distinction)

Mike Gordon 107 / 128

