A property not expressible in LTL

» Let AP = {P} and consider models M and M’ below

R -

M e M/

So Sq So

M = ({so,s1},{S0},{(S0; %0); (S0, $1), (51, 81)}, L)
M = ({so},{so},{(s0:50)}. L)

where: L = As. if s = sy then {} else {P}

Every M'-path is also an M-path
So if ¢ true on every M-path then ¢ true on every M'-path
Hence in LTL forany ¢ if M = ¢ then M’ |= ¢
Consider ¢ < “can always reach a state satisfying p”

» ¢» holds in M but not in M’

» butin LTL can’t have M = ¢, and not M’ = ¢;

» hence ¢ not expressible in LTL

Mike Gordon (acknowledgement: Logic in Computer Science, Huth & Ryan (2nd Ed.) page 219, ISBN 0 521 54310 X) 57 /128

vV VvYyys.y

CTL model checking

» For LTL path formulae ¢ recall that M = ¢ is defined by:
(M=o < Vrs.scSyAPath Rst = [¢]u(r)]

» For CTL state formulae v the definition of M |= ¢ is:
’M 1Y & Vs.se Sy = [[@“;]]M(s)‘

» M common; LTL, CTL formulae and semantics [|, differ

» CTL model checking algorithm:
» compute {s | [+']u(s) = true} bottom up
» check Sy C {s| [¢]m(s) = true}

» symbolic model checking represents these sets as BDDs

Mike Gordon 75/128

CTL model checking: p, AXvy, EXy)
» For CTL formula ¢ let {4}y = {s | [¢¥']m(s) = true}
» When unambiguous will write {¢/} instead of {'} i
{p} ={slpeLis)}

» scan through set of states S marking states labelled with p
» {p} is set of marked states

v

v

To compute {AX}

» recursively compute {}
» marks those states all of whose successors are in {¢}
» {AXy} is the set of marked states

v

To compute {EXv}

» recursively compute {y}
» marks those states with at least one successor in {}
» {EX¢} is the set of marked states

Mike Gordon 76/128

CTL model checking: {E[¢1 U v2]ft, {A[v1 U 2]t

» To compute {E[¢4 U 5]}

recursively compute {1} and {¢»}

mark all states in {¢»}

mark all states in {1} with a successor state that is marked
repeat previous line until no change

» {E[¢1 U]} is set of marked states

vV vy vVvyYy

» More formally: {E[v U 2]} = U, Zo{E[¢1 U ¢2]}» where:

{E[v1 Udolbo = {v2}
{E[v1 Uval}nyr = {E[v1 Uel}n
U

{s € {1} | 38’ € {E[v)1 U ¢o]}n. Rs S}
» {A[y1 U o]} similar, but with a more complicated iteration
» details omitted (see Huth and Ryan)

Mike Gordon 77/128

Example: checking EF p

» EFp=E[T U p]
» holds if 1) holds along some path

» Note {T} =S
» Let S, = {E[T U p]}, then:
So = {E[TUp]}o
= {r}
= {slpeL(s)}

Spp1 = Sp U {se {1} |3 e {E[TUp]}s. RsS'}
Sp U {s|3s S, Rss'}

» mark all the states labelled with p

» mark all with at least one marked successor
» repeat until no change

» {EF p} is set of marked states

Mike Gordon 78/128

Example: RCV

» Recall the handshake circuit:

dreq J— dack

or0

qObar

» State represented by a triple of Booleans (dreq, q0, dack)

» A model of RCV is M., Where:
M = (SRC\h SORCVv Rrev, LRCV)

and
Recv (dreq, 0, dack) (dreq’, q0’, dack’) =
(q0’ = dreq) A (dack’ = (dreq A (g0 Vv dack)))

Mike Gordon 79/128

RCV state transition diagram

» Possible states for RCV:
{000,001,010,011,100,101,110,111}
where bobiby denotes state
dreg=bo A g0 = by A dack = by

» Graph of the transition relation:

()

100 110 111

N

011

Mike Gordon 80/128

Computing Reachable Mz,

Q\ S Q\
NN

011

» Define:
So = {b2b1b0 ‘ b2b1 bo S {111}}
= {111}
S,’+1 - Sj U {S/ ‘ HS S S/‘. RRCV S S/ }
=S U {bybby |
dbobibg € Si. (b = b)) A (b6 =bo A (b1 V b))}

Mike Gordon 24/128

Computing {EF at111} Where ac111 e Lacy(s) & s = 111

OV
i\

011

» Define:
So ={s|atlll € Lrev(9)}
={s|s=111}
= {111}
Snii Sh U {s|3s €S, R(s,8)}

Sp U {b2b1bo|

3L, b € Sp. (B, = ba) A (b} = bz A (by V b))}

Mike Gordon

81/128

Computing {EF at111} (continued)

AV

011

» Compute:
So ={111}
S 111} U {101,110}

{111,101,110}
{111,101,110} U {100}
={111,101,110,100}

S; ={111,101,110,100} U {000,001,010,011}
= {111,101,110, 100,000,001, 010,011}

S =8;3 (n>3)
» [EFAt111} = B® = Spy
» Miev EEFAL111 & Sprey €S

So

Mike Gordon

82/128

Symbolic model checking

v

Represent sets of states with BDDs

v

Represent Transition relation with a BDD

v

If BDDs of {¢'}, {11}, {2} are known, then:

» BDDs of {—}, {t1 A o}, {1 V b}, {1 = o}
computed using standard BDD algorithms

» BDDs of {AXv}, {EX¢}, {A[v1 U o]}, {E[v1 U ¥2]}
computed using straightforward algorithms (see textbooks)

v

Model checking CTL generalises reachable states iteration

Mike Gordon 83/128

History of Model checking

v

CTL model checking due to Emerson, Clarke & Sifakis
Symbolic model checking due to several people:

» Clarke & McMillan (idea usually credited to McMillan’s PhD)
» Coudert, Berthet & Madre

v

» Pixley
» SMV (McMillan) is a popular symbolic model checker:
http://www.cs.cmu.edu/~modelcheck/smv.html (original)
http://www.kenmcmil.com/smv.html (Cadence extension by McMillan)
http://nusmv.irst.itc.it/ (new implementation)

v

Other temporal logics

» CTL*: combines CTL and LTL
» Engineer friendly industrial languages: PSL, SVA

Mike Gordon 84/128

http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
http://nusmv.irst.itc.it/

Expressibility of CTL
» Consider the property

“on every path there is a point after which p is
always true on that path ”

» Consider ~ ~

((*) non-deterministically chooses T or F)
0: P:=1; " - ”

© 1: WHILE (x) DO SKIP;

st 2: P =O; o

s2 3: P:= /7 \ ,
4: WHILE T DO SKIP; /SO\ Sl sr T sr e sr e s
5. s0 S1—> 52 —> 52 —» 52 —» 52 e

/ N\

s0 S1—> S2 —> S2 —> S2 —> S2-reenn

S1 = S2 —> S2 —» S2 —p S2 wweeee

» Property true, but cannot be expressed in CTL

would need something like AFi)

where ¢ is something like “property p true from now on”
but in CTL ¢) must start with a path quantifier A or E

cannot talk about current path, only about all or some paths
AF(AG p) is false (consider path s0 s0s0---)

v

vV vy VvVYyy

Mike Gordon 85/128

LTL can express things CTL can'’t

» Recall:
[Felm(m) = 3i. [plm(mli)
[Golm(m) = Vi. [¢]m(mli)

» FGo is true if there is a point after which ¢ is always true
[FGolm(m) = [F(G(¢))Im(7)
= 3dmy. [G(¢)m(mmy)
= dmy. Vmo. ﬂgb]]M((ﬂin’H)ng)
= 3my. Vmy. [¢]m(ml(my+m2))
» LTL can express things that CTL can’t express

» Note: it’s tricky to prove CTL can’t express FG¢

Mike Gordon

86/128

CTL can express things that LTL can’t express

» AG(EF p) says:

“from every state it is possible to get to a state for
which p holds”

v

Can'’t say this in LTL (easy proof given earlier - slide 57)

v

Consider disjunction:

“on every path there is a point after which p is
always true on that path

or

from every state it is possible to get to a state for
which p holds”

v

Can’t say this in either CTL or LTL!

v

CTL* combines CTL and LTL and can express this property

Mike Gordon 87/128

CTL*

» Both state formulae (') and path formulae (¢)

» state formulae +) are true of a state s like CTL
» path formulae ¢ are true of a path = like LTL

» Defined mutually recursively

Y

p Il
=)
Y1 V2
Ao
E¢

)

Y
o1V P2
Xo

Fo

Go

[#1 U 2]

(Atomic formula)
(Negation)
(Disjunction)
(All paths)
(Some paths)

(Every state formula is a path formula)
(Negation)

(Disjunction)

(Successor)

(Sometimes)

(Always)

(Until)

» CTLis CTL* with X, F, G, [-U—] preceded by A or E

» LTL consists of CTL* formulae of form Ag,
where the only state formulae in ¢ are atomic

Mike Gordon

88/128

CTL* semantics

» Combines CTL state semantics with LTL path semantics:

[PIm(s) = peL(s)

[—¥1m(s) = ([¥1m(s))

[¥1 V olm(s) = [¥1lm(s) Vv [¥2lm(s)
[Aolm(s) = Vr.PathRsn = ¢(n)
[Eo]u(s) — Sr. PathRsr A [o]u(r)
[¥1m(m) = [¥]um(7(0))

[—¢lm(m) = ([olm(7))

[¢1V ¢olm(m) = [é1lm(m) vV [P2]m(r)
[XeIm () = [oIm(x1)

[Folm(r) = 3m. [¢]m(mlm)
[Golm(T) = Ym. [¢]m(mlm)

[[¢1 U d2]lm(r) Ji. [p2lm(mli) AV). j<i = [p1]m(7l))
» Note [¢]y : S—B and [¢]y : (N—S)—B

Mike Gordon 89/128

LTL and CTL as CTL*

Asusual: M = (S, Sy, R, L)
If 1 is a CTL* state formula: M = < Vs e Sy. [¢]m(s)
If ¢ is an LTL path formula then: M |=;, ¢ < M =cr- Ag
If Ris total (Vs. 3s’. R s s’) then (exercise):
Vss'.Rss < dr.PathRsn A(r(1)=¢)
The meanings of CTL formulae are the same in CTL*
[AX¥)m(s)
= Vr.Path R s 7 = [X¢]u(r)
= Vr. Path R s 7 = [¢]m(w1) (v as path formula)
= Vr.Path Rs 7= [¢]m((71)(0)) (1 as state formula)
= Vr. Path R s 7 = [¢]m(7(1))

[AXy]m(s)

= Vs.Rss = [yJu(s)

= V8. (3n.Path Rsw A (r(1) = &)) = [¥]m(s)
= vs.Vr.PathRstA(r(1)=8) = [¢]u(s)
= Vr.PathRsnt = [¢]u(x(1))

Exercise: do similar proofs for other CTL formulae
Mike Gordon 90/128

vVvyVYyywy

v

Fairness

» May want to assume system or environment is ‘fair’

» Example 1: fair arbiter
the arbiter doesn’t ignore one of its requests forever

» not every request need be granted
» want to exclude infinite number of requests and no grant

» Example 2: reliable channel
no message continuously transmitted but never received

» not every message need be received
» want to exclude an infinite number of sends and no receive

Mike Gordon 91/128

Handling fairness in CTL and LTL

» Consider:
p holds infinitely often along a path then so does g

» In LTL is expressible as G(F p) = G(F q)

» Can’t say this in CTL

» why not — what’s wrong with AG(AF p) = AG(AF q)?

» in CTL* expressible as A(G(F p) = G(F q))

» fair CTL model checking implemented in checking algorithm
» fair LTL just a fairness assumption like G(F p) = ---

» Fairness is a tricky and subtle subject
» many kinds of fairness:
‘weak fairness’, ‘strong fairness’ etc

» exist whole books on fairness

Mike Gordon 92/128

Propositional modal y-calculus

» You may learn this in Topics in Concurrency

» p-calculus is an even more powerful property language

has fixed-point operators

both maximal and minimal fixed points

model checking consists of calculating fixed points

many logics (e.g. CTL*) can be translated into p-calculus

vV vy vVvyy

» Strictly stronger than CTL*
» expressibility strictly increases as allowed nesting increases
» need fixed point operators nested 2 deep for CTL*

» The p-calculus is very non-intuitive to use!

» intermediate code rather than a practical property language
» nice meta-theory and algorithms, but terrible usability!

Mike Gordon 93/128

