
A property not expressible in LTL
◮ Let AP = {P} and consider models M and M ′ below

¬P P ¬P

s0 s1 s0

M M ′

M = ({s0, s1}, {s0}, {(s0, s0), (s0, s1), (s1, s1)}, L)
M ′ = ({s0}, {s0}, {(s0, s0)}, L)

where: L = λs. if s = s0 then {} else {P}

◮ Every M ′-path is also an M-path
◮ So if φ true on every M-path then φ true on every M ′-path
◮ Hence in LTL for any φ if M |= φ then M ′ |= φ
◮ Consider φP ⇔ “can always reach a state satisfying P”

◮ φP holds in M but not in M ′

◮ but in LTL can’t have M |= φP and not M ′ |= φP

◮ hence φP not expressible in LTL
(acknowledgement: Logic in Computer Science, Huth & Ryan (2nd Ed.) page 219, ISBN 0 521 54310 X)Mike Gordon 57 / 128

CTL model checking

◮ For LTL path formulae φ recall that M |= φ is defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

◮ For CTL state formulae ψ the definition of M |= ψ is:

M |= ψ ⇔ ∀s. s ∈ S0 ⇒ [[ψ]]M(s)

◮ M common; LTL, CTL formulae and semantics [[]]M differ

◮ CTL model checking algorithm:

◮ compute {s | [[ψ]]M(s) = true} bottom up

◮ check S0 ⊆ {s | [[ψ]]M(s) = true}

◮ symbolic model checking represents these sets as BDDs

Mike Gordon 75 / 128

CTL model checking: p, AXψ, EXψ

◮ For CTL formula ψ let {[ψ]}M = {s | [[ψ]]M(s) = true}

◮ When unambiguous will write {[ψ]} instead of {[ψ]}M

◮ {[p]} = {s | p ∈ L(s)}

◮ scan through set of states S marking states labelled with p
◮ {[p]} is set of marked states

◮ To compute {[AXψ]}

◮ recursively compute {[ψ]}
◮ marks those states all of whose successors are in {[ψ]}
◮ {[AXψ]} is the set of marked states

◮ To compute {[EXψ]}

◮ recursively compute {[ψ]}
◮ marks those states with at least one successor in {[ψ]}
◮ {[EXψ]} is the set of marked states

Mike Gordon 76 / 128

CTL model checking: {[E[ψ1 U ψ2]]}, {[A[ψ1 U ψ2]]}

◮ To compute {[E[ψ1 U ψ2]]}

◮ recursively compute {[ψ1]} and {[ψ2]}
◮ mark all states in {[ψ2]}
◮ mark all states in {[ψ1]} with a successor state that is marked
◮ repeat previous line until no change
◮ {[E[ψ1 U ψ2]]} is set of marked states

◮ More formally: {[E[ψ1 U ψ2]]} =
⋃∞

n=0{[E[ψ1 U ψ2]]}n where:

{[E[ψ1 U ψ2]]}0 = {[ψ2]}
{[E[ψ1 U ψ2]]}n+1 = {[E[ψ1 U ψ2]]}n

∪
{s ∈ {[ψ1]} | ∃s′ ∈ {[E[ψ1 U ψ2]]}n. R s s′}

◮ {[A[ψ1 U ψ2]]} similar, but with a more complicated iteration

◮ details omitted (see Huth and Ryan)

Mike Gordon 77 / 128

Example: checking EF p

◮ EFp = E[T U p]

◮ holds if ψ holds along some path

◮ Note {[T]} = S

◮ Let Sn = {[E[T U p]]}n then:

S0 = {[E[T U p]]}0

= {[p]}
= {s | p ∈ L(s)}

Sn+1 = Sn ∪ {s ∈ {[T]} | ∃s′ ∈ {[E[T U p]]}n. R s s′}
= Sn ∪ {s | ∃s′ ∈ Sn. R s s′}

◮ mark all the states labelled with p
◮ mark all with at least one marked successor
◮ repeat until no change
◮ {[EF p]} is set of marked states

Mike Gordon 78 / 128

Example: RCV

◮ Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq,q0,dack)

◮ A model of RCV is MRCV where:

M = (SRCV,S0RCV,RRCV,LRCV)

and
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

Mike Gordon 79 / 128

RCV state transition diagram

◮ Possible states for RCV:

{000, 001, 010, 011, 100, 101, 110, 111}

where b2b1b0 denotes state

dreq = b2 ∧ q0 = b1 ∧ dack = b0

◮ Graph of the transition relation:

000 100 110 111

101

011

001

010

Mike Gordon 80 / 128

Computing Reachable MRCV

000 100 110 111

101

011

001

010

◮ Define:

S0 = {b2b1b0 | b2b1b0 ∈ {111}}

= {111}

Si+1 = Si ∪ {s′ | ∃s ∈ Si . RRCV s s′ }

= Si ∪ {b′

2b′

1b′

0 |
∃b2b1b0 ∈ Si . (b

′

1 = b2) ∧ (b′

0 = b2 ∧ (b1 ∨ b0))}

Mike Gordon 24 / 128

Computing {[EF At111]} where At111 ∈ LRCV(s) ⇔ s = 111

000 100 110 111

101

011

001

010

◮ Define:

S0 = {s | At111 ∈ LRCV(s)}
= {s | s = 111}
= {111}

Sn+1 = Sn ∪ {s | ∃s′ ∈ Sn. R(s, s′)}
= Sn ∪ {b2b1b0 |

∃b′

2b′

1b′

0 ∈ Sn. (b
′

1 = b2) ∧ (b′

0 = b2 ∧ (b1 ∨ b0))}

Mike Gordon 81 / 128

Computing {[EF At111]} (continued)

000 100 110 111

101

011

001

010

0

1

123

3

3

3

◮ Compute:

S0 = {111}
S1 = {111} ∪ {101,110}

= {111,101,110}
S2 = {111,101,110} ∪ {100}

= {111,101,110,100}
S3 = {111,101,110,100} ∪ {000,001,010,011}

= {111,101,110,100,000,001,010,011}
Sn = S3 (n > 3)

◮ {[EF At111]} = B
3 = SRCV

◮ MRCV |= EF At111 ⇔ S0RCV ⊆ S

Mike Gordon 82 / 128

Symbolic model checking

◮ Represent sets of states with BDDs

◮ Represent Transition relation with a BDD

◮ If BDDs of {[ψ]}, {[ψ1]}, {[ψ2]} are known, then:

◮ BDDs of {[¬ψ]}, {[ψ1 ∧ ψ2]}, {[ψ1 ∨ ψ2]}, {[ψ1 ⇒ ψ2]}
computed using standard BDD algorithms

◮ BDDs of {[AXψ]}, {[EXψ]}, {[A[ψ1 U ψ2]]}, {[E[ψ1 U ψ2]]]}
computed using straightforward algorithms (see textbooks)

◮ Model checking CTL generalises reachable states iteration

Mike Gordon 83 / 128

History of Model checking

◮ CTL model checking due to Emerson, Clarke & Sifakis

◮ Symbolic model checking due to several people:

◮ Clarke & McMillan (idea usually credited to McMillan’s PhD)
◮ Coudert, Berthet & Madre
◮ Pixley

◮ SMV (McMillan) is a popular symbolic model checker:
http://www.cs.cmu.edu/~modelcheck/smv.html (original)

http://www.kenmcmil.com/smv.html (Cadence extension by McMillan)

http://nusmv.irst.itc.it/ (new implementation)

◮ Other temporal logics

◮ CTL*: combines CTL and LTL
◮ Engineer friendly industrial languages: PSL, SVA

Mike Gordon 84 / 128

http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
http://nusmv.irst.itc.it/

Expressibility of CTL
◮ Consider the property

“on every path there is a point after which p is

always true on that path ”

◮ Consider

((⋆) non-deterministically chooses T or F)

0: P:=1;
s0 1: WHILE (⋆) DO SKIP;
s1 2: P:=0;
s2 3: P:=1;

4: WHILE T DO SKIP;
5:

p ~p p

s0 s1 s2

s0

s0

s0

s0

s1

s1

s1

s1

s2

s2

s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2

◮ Property true, but cannot be expressed in CTL
◮ would need something like AFψ
◮ where ψ is something like “property p true from now on”
◮ but in CTL ψ must start with a path quantifier A or E
◮ cannot talk about current path, only about all or some paths
◮ AF(AG p) is false (consider path s0s0s0 · · ·)

Mike Gordon 85 / 128

LTL can express things CTL can’t

◮ Recall:

[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)
[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)

◮ FGφ is true if there is a point after which φ is always true

[[FGφ]]M(π) = [[F(G(φ))]]M(π)
= ∃m1. [[G(φ)]]M(π↓m1)
= ∃m1. ∀m2. [[φ]]M((π↓m1)↓m2)
= ∃m1. ∀m2. [[φ]]M(π↓(m1+m2))

◮ LTL can express things that CTL can’t express

◮ Note: it’s tricky to prove CTL can’t express FGφ

Mike Gordon 86 / 128

CTL can express things that LTL can’t express

◮ AG(EF p) says:

“from every state it is possible to get to a state for

which p holds”

◮ Can’t say this in LTL (easy proof given earlier - slide 57)

◮ Consider disjunction:

“on every path there is a point after which p is

always true on that path

or

from every state it is possible to get to a state for

which p holds”

◮ Can’t say this in either CTL or LTL!

◮ CTL* combines CTL and LTL and can express this property

Mike Gordon 87 / 128

CTL*
◮ Both state formulae (ψ) and path formulae (φ)

◮ state formulae ψ are true of a state s like CTL
◮ path formulae φ are true of a path π like LTL

◮ Defined mutually recursively
ψ ::= p (Atomic formula)

| ¬ψ (Negation)
| ψ1 ∨ ψ2 (Disjunction)
| Aφ (All paths)
| Eφ (Some paths)

φ ::= ψ (Every state formula is a path formula)
| ¬φ (Negation)
| φ1 ∨ φ2 (Disjunction)
| Xφ (Successor)
| Fφ (Sometimes)
| Gφ (Always)
| [φ1 U φ2] (Until)

◮ CTL is CTL* with X, F, G, [−U−] preceded by A or E

◮ LTL consists of CTL* formulae of form Aφ,

where the only state formulae in φ are atomic
Mike Gordon 88 / 128

CTL* semantics

◮ Combines CTL state semantics with LTL path semantics:

[[p]]M(s) = p ∈ L(s)
[[¬ψ]]M(s) = ¬([[ψ]]M(s))
[[ψ1 ∨ ψ2]]M(s) = [[ψ1]]M(s) ∨ [[ψ2]]M(s)
[[Aφ]]M(s) = ∀π. Path R s π ⇒ φ(π)
[[Eφ]]M(s) = ∃π. Path R s π ∧ [[φ]]M(π)

[[ψ]]M(π) = [[ψ]]M(π(0))
[[¬φ]]M(π) = ¬([[φ]]M(π))
[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)
[[Xφ]]M(π) = [[φ]]M(π↓1)
[[Fφ]]M(π) = ∃m. [[φ]]M(π↓m)
[[Gφ]]M(π) = ∀m. [[φ]]M(π↓m)
[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ Note [[ψ]]M : S→B and [[φ]]M : (N→S)→B

Mike Gordon 89 / 128

LTL and CTL as CTL*
◮ As usual: M = (S,S0,R, L)
◮ If ψ is a CTL* state formula: M |= ψ ⇔ ∀s ∈ S0. [[ψ]]M(s)
◮ If φ is an LTL path formula then: M |=LTL φ ⇔ M |=CTL* Aφ
◮ If R is total (∀s. ∃s′. R s s′) then (exercise):

∀s s′. R s s′ ⇔ ∃π. Path R s π ∧ (π(1) = s′)
◮ The meanings of CTL formulae are the same in CTL*

[[A(Xψ)]]M(s)
= ∀π. Path R s π ⇒ [[Xψ]]M(π)
= ∀π. Path R s π ⇒ [[ψ]]M(π↓1) (ψ as path formula)

= ∀π. Path R s π ⇒ [[ψ]]M((π↓1)(0)) (ψ as state formula)

= ∀π. Path R s π ⇒ [[ψ]]M(π(1))

[[AXψ]]M(s)
= ∀s′. R s s′ ⇒ [[ψ]]M(s′)
= ∀s′. (∃π. Path R s π ∧ (π(1) = s′)) ⇒ [[ψ]]M(s′)
= ∀s′. ∀π. Path R s π ∧ (π(1) = s′) ⇒ [[ψ]]M(s′)
= ∀π. Path R s π ⇒ [[ψ]]M(π(1))

Exercise: do similar proofs for other CTL formulae
Mike Gordon 90 / 128

Fairness

◮ May want to assume system or environment is ‘fair’

◮ Example 1: fair arbiter

the arbiter doesn’t ignore one of its requests forever

◮ not every request need be granted
◮ want to exclude infinite number of requests and no grant

◮ Example 2: reliable channel

no message continuously transmitted but never received

◮ not every message need be received
◮ want to exclude an infinite number of sends and no receive

Mike Gordon 91 / 128

Handling fairness in CTL and LTL
◮ Consider:

p holds infinitely often along a path then so does q

◮ In LTL is expressible as G(F p) ⇒ G(F q)

◮ Can’t say this in CTL
◮ why not – what’s wrong with AG(AF p) ⇒ AG(AF q)?
◮ in CTL* expressible as A(G(F p) ⇒ G(F q))
◮ fair CTL model checking implemented in checking algorithm
◮ fair LTL just a fairness assumption like G(F p) ⇒ · · ·

◮ Fairness is a tricky and subtle subject
◮ many kinds of fairness:

‘weak fairness’, ‘strong fairness’ etc

◮ exist whole books on fairness

Mike Gordon 92 / 128

Propositional modal µ-calculus

◮ You may learn this in Topics in Concurrency

◮ µ-calculus is an even more powerful property language

◮ has fixed-point operators
◮ both maximal and minimal fixed points
◮ model checking consists of calculating fixed points
◮ many logics (e.g. CTL*) can be translated into µ-calculus

◮ Strictly stronger than CTL*

◮ expressibility strictly increases as allowed nesting increases
◮ need fixed point operators nested 2 deep for CTL*

◮ The µ-calculus is very non-intuitive to use!

◮ intermediate code rather than a practical property language
◮ nice meta-theory and algorithms, but terrible usability!

Mike Gordon 93 / 128

