Linear Temporal Logic (LTL)

» Grammar of well formed formulae (wff) ¢

o = p (Atomic formula: p € AP)
| ¢ (Negation)
| &1V o (Disjunction)
| Xo (successor)
| Fo (sometimes)
| Go (always)
|

[¢1 Udz] (Until)
» Details differ from Prior’s tense logic — but similar ideas

» Semantics define when ¢ true in model M
» where M = (S, Sy, R, L) — a Kripke structure
» notation: M = ¢ means ¢ true in model M
» model checking algorithms compute this (when decidable)

Mike Gordon 46/128

M & ¢ means “wff ¢ is true in model M”

> If M = (S, Sy, R, L) then
|7 is an M-path starting from s iff Path R s 7|

» If M= (S, Sy, R, L) then we define M = ¢ to mean:
’ ¢ is true on all M-paths starting from a member of Sy \

» We will define [¢] () to mean

| ¢ is true on the M-path r |

» Thus M |= ¢ will be formally defined by:
’M\zgf) & Vrs. se SOAPathRS7r:[[¢]]M(7r)\

» It remains to actually define [¢] for all wffs ¢

Mike Gordon 47/128

Definition of [o]u(m)

> [#]m() is the application of function [¢] to path =
» thus [¢]n: (N— S) = B
» Let M = (S, Sy, R, L)
[¢]m is defined by structural induction on ¢

[Plm(T) = peL(n0)

[—¢lm(m) = ([¢lm(7))

[$1V g2lm(m) = [¢1lm(m) vV [P2lm(r)
[XoIm(r) = [elm(m1)

[Felm(m) = 3i. [¢]m(mli)
[Golm(m) = Vi [¢]m(7li)

[i¢1 U ellm(m) = 3i [o2m(wli) A V). j<i = [¢1]m()

» We look at each of these semantic equations in turn

Mike Gordon 48/128

[Plm(r) = p(7 0)

v

Assume M = (S, Sy, R, L)

v

We have: [p]y(7) =p € L(7 0)
» pis an atomic property, i.e. p € AP
» 7:N—>Sson0e S
» 7 0 is the first state in path =
» p e L(m 0)is true iff atomic property p holds of state = 0

v

[plm(7) means p holds of the first state in path =

v

T,Fe APwithT € L(s)andr ¢ L(s)forallse S
> [T]m(r) is always true

» [E]m(r) is always false

Mike Gordon

49/128

[-6lm(m) = —([¢]m(7))
[1 v g2lm(m) = [d1lm(r) V [d2]m(r)

> [=o]m(m) = ~([¢lm())

> [¢lm(r) true iff [¢]m(w) is not true

> [¢1V d2lm(m) = [P1lm(7) vV [d2lm()

> [p1 V da]lm(m) true iff [o1]m(7) is true or [pa] () is true

Mike Gordon 50/128

[XSlm(r) = [#lm(ml1)

> [X¢lm(m) = [¢lm(m1)
» 7|1 is 7 with the first state chopped off

w1(0) = 7(1 +0) = (1)
A1(1) = (1 +1) = n(2)
A1(2) = 7(1 +2) = =(3)

> [Xo]m(m) trueiff [¢] m true starting at the second state of

Mike Gordon 51/128

[Folm(m) = Fi. [¢]m(mli)

> [Folm(m) = 3i. [o]m (i)
» 7li is 7 with the first / states chopped off
i(0) = w(i + 0) = =(i)
ali(1) = 7(i+1)
mi(2) = w(i + 2)

> [lm(wli) true iff [¢]m true starting i states along

> [Folm(m) true iff [¢]um true starting somewhere along

» “F¢” is read as “sometimes ¢~

Mike Gordon

52/128

[Golm(m) = Vi. [Plm(mli)
> [Golm(m) = Vi. [olm(mli)

» x|/ is 7 with the first / states chopped off

> [lm(wi) true iff [¢]m true starting i states along

v

[Golm(n) true iff [¢] true starting anywhere along =

v

“G¢” is read as “always ¢” or “globally ¢”

v

M = AG p defined earlier: M |= AGp < M = G(p)

v

G is definable in terms of F and —: G¢ = —=(F(—¢))
[=(F(=o)Im(m) = ~([F(=¢)Ium())

~(3i. [~Im(mi))

=31 ~([elm(wli)))

Vi. [¢]m(mli)

[Gom()

Mike Gordon 53/128

[[p1 U @2]lm(m) = 3i. [2lm(mli) A V). j<i = [o1]m(l))

> [[o1 U @2]lm(m) = 3i. [dlm (i) AV). j<i = [o1]m(7l)
> [p2lm(nli) true iff [¢2]m true starting i states along

> [&1]m (7)) true iff [¢1] v true starting j states along

> [[¢1 U do]]p() is true iff
[¢2]m istrue somewhere along 7 and up to then [¢1] is true

> “[p1 U ¢o]” is read as “¢1 until ¢»”

» Fis definable interms of [~ U —]: Fo = [T U ¢]

[[T U o]lm(n)
3i. [@]m(m
Fi. [Alm(w
3i. [¢Im(m
3i. [Alm(w
[Folm(m)

Mike Gordon 54/128

N AY). j<i = [TIm(nd))
) AVj. j<i = true
i) A true
i)

<—<—<—<—

Review of Linear Temporal Logic (LTL)

» Grammar of well formed formulae (wff) ¢

o = p (Atomic formula: p € AP)
| - (Negation)
| &1V d2 (Disjunction)
| Xo¢ (successor)
| Fo¢ (sometimes)
| Go (always)
|

[¢1 U d2] (Until)

» M = ¢ means ¢ holds on all M-paths
» M=(S,S,R,L)
> [¢]m(7) means ¢ is true on the M-path =
» Mg & Vrs.se Sy APath Rs = [¢]m(r)

Mike Gordon 55/128

LTL examples

» “DeviceEnabled holds infinitely often along every path”
‘ G(F DeviceEnabled) ‘

» “Eventually the state becomes permanently bone”
F(G Done)

» “Every Req is followed by an Ack”
G(Req = F Ack) |
Number of Req and Ack may differ - no counting

» “If Enabled infinitely often then Running infinitely often”
G(F Enabled) = G(F Running) |

» “An upward going lift at the second floor keeps going up if
a passenger requests the fifth floor”
G(AtFloor2 A DirectionUp A RequestFloor5
= [DirectionUp U AtFloor5])

Mike Gordon (acknowledgement: http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf) 56/128

http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf

A property not expressible in LTL

» Let AP = {P} and consider models M and M’ below

R -

M e M/

So Sq So

M = ({so,s1},{S0},{(S0; %0); (S0, $1), (51, 81)}, L)
M = ({so},{so},{(s0:50)}. L)

where: L = As. if s = sy then {} else {P}

Every M'-path is also an M-path
So if ¢ true on every M-path then ¢ true on every M'-path
Hence in LTL forany ¢ if M = ¢ then M’ |= ¢
Consider ¢ < “can always reach a state satisfying p”

» ¢» holds in M but not in M’

» butin LTL can’t have M = ¢, and not M’ = ¢;

» hence ¢ not expressible in LTL

Mike Gordon (acknowledgement: Logic in Computer Science, Huth & Ryan (2nd Ed.) page 219, ISBN 0 521 54310 X) 57 /128

vV VvYyys.y

LTL expressibility

“can always reach a state satisfying p”

v

In LTL M = ¢ says ¢ holds of all paths of M

v

LTL formulae ¢ are evaluated on paths path formulae

v

Want to say that from any state there exists a path to
some state satisfying p

» Vs.dr. Path Rsw A Ji. p e L(x(i))
» but this isn’t expressible in LTL (see slide 57)

v

CTL properties are evaluated at a state ... state formulae

» they can talk about both some or all paths

» starting from the state they are evaluated at

Mike Gordon 58/128

Computation Tree Logic (CTL)

» LTL formulae ¢ are evaluated on paths path formulae

» CTL formulae 1) are evaluated on states .. state formulae

» Syntax of CTL well-formed formulae:

Mike Gordon

Y

p

—)

1 A2
1V o
1 = P2
AXzy)

EX4)

A1 U o]
E[’l/11 U Ug]

(Atomic formula p € AP)
(Negation)

(Conjunction)
(Disjunction)
(Implication)

(All successors)

(Some successors)

(Until — along all paths)
(Until — along some path)

59/128

Semantics of CTL
» Assume M = (S, Sy, R, L) and then define:

[PIm(s) = peL(s)

[-¢1m(s) = ([¥Im(s))

[v1 Aelm(s) = [v1lm(s) A [v2]m(s)
[¥1 Vdolm(s) = [walm(s) vV [w2lm(s)
[¥1 = dom(s) = [¥1lm(s) = [¥2lm(s)
[AX]m(s) =Vs. Rss = [¢Y]mu(s)
[EXy]m(s) = 3. Rss A [Y]u(s)

Vr.PathRsn
= 3.)[\wQ]]M(ﬂ'(i))
vj.j<i = [1lm(r()
[E[v1 U ¥o]lm(s) = In.PathRs
A 3. |/[\1,/J2]]M(7r(i))

Vji-j<io = [$1lm(r()))

Mike Gordon 60/128

[A[1 U v2]lm(s)

The defined operator AF

» Define AFy = A[T U ¢

» AFi true at siff ¢ true somewhere on every R-path from s
[AFYIm(s) = [A[T U ¢]lm(s)

= Vr.PathRsnr
=

3. [WIm(x(i)) A Y. j<i = [Tlu())

= Vr.PathRs«
=
i [lm(m() AN V). j<i = true

= Vr.Path Rsn = 3i. [{]m(n())

Mike Gordon 61/128

The defined operator EF
» Define EFy) = E[T U]

» EF¢ true at siff ¢ true somewhere on some R-path from s

[EFIm(s) = [E[T U ¥]lm(s)

= dr.PathRsn«
AN

3i. [WIm(x() A VY. j<i = [T]u(x())

= dr.Path Rs~
A
3i. [Im(n(i)) A V). j<i = true

= dr.Path Rs 7w A 3i. [¥]m(x(i))

» “can reach a state satisfying p” is EF p

Mike Gordon 62/128

The defined operator AG
» Define AGy) = —EF(—v)

» AGv true at siff ¢ true everywhere on every R-path from s

[AGYIm(s) = [-EF(—¢)lm(s)
~(EF(~0)u(9))

—(37. Path R s 7w A 3i. [-¢]m(7(i)))
—(3r. Path R s 7 A Ji. —||[1/J]]M(7T(I
V. =(Path R s A 3i. =[¢]m(m

Vr. =Path R s m Vv —=(3i. =[¢]m(
V. —=Path R s 7V Vi. == ¢ m(m(i
Vr. =Path R s & Vv Vi. [{]m(7 (1))
Vr. Path R s m = Vi. [{]m(7(i))

» AGvy means) true at all reachable states
» [AG(p)|m(s) = Vs'. R*ss = pelL(s)

» “can always reach a state satisfying p” is AG(EF p)

Mike Gordon 63/128

The defined operator EG

> Define EGy = —AF(—))

» EGuy true at siff) true everywhere on some R-path from s

[EGYm(s) = [-AF(—)]m(s)
—([AF(=¢)um(s))

—(Vr. Path R s m = 3i. [-¢]m(r(i

~(Vr. Path R s 7 = 3i. =[] m(r(
Ir. —(Path R s 7 = 3i. =[¢]m(n(
3. Path R s m A —(3i. ~[¢]m(r(
dr. Path R s © A VI, ==Y m (7 (i
dr. Path R s m A VI [¢]m(7(i))

)
M)
)
)

)
)

)
1
)

Mike Gordon 64/128

The defined operator A[y1 W 1]

» Ay W o)o] is a ‘partial correctness’ version of A[y U 1]
» ltis true at s if along all R-paths from s:
» <) always holds on the path, or

» 1o holds sometime on the path, and until it does)1 holds

» Define
[A[v1 W ep2]m(s)
= ["E[(1A—p2) U (mip1 A—2)]m(S)
= ~[E[(1A—2) U (1 A—ep2)]]m(S)
_ (3r.PathRsr
A\
3/ I[ﬁl/h /\ﬁ1/)2]]M(7r(/'))
A
Vj. j<i = [Y1A—~]m(7())))

» Exercise: understand the next two slides!

Mike Gordon 65/128

A1 W 9] continued (1)

» Continuing:

—(3r. Path Rsn
A\

Fi. [~ A—belm(n (i) A V). j<i = [P1Am(7())))
= Vr.~(PathRsn
A

3i. [~ 1 A=l m(m (7)) A V). j<i = [1 A—de]m(n())))

= Vr.PathRs
=

(31 [~ A (e (1)) A V). j<i = [p1Ap]m(7())))

= Vr.PathRs
=

Vi A1 A—elm(m (1) v ~(V). j<i' = [o1A—Pe]m(7(/)))

Mike Gordon 66/128

A1 W 15] continued (2)

» Continuing:

= Vr.PathRs~r
=

Vi. 2[=p1 Aol m(m (1) v ~(V). j<i' = [1A=d2]m(7())))

= Vr.PathRsn
=

Vi —\(Vj. j<i = |[¢1/\“¢2]]M(7T(j))) V _||[_|1/J1/_'¢2]]M(7T(I'))

= Vr.PathRs
=

Vi. (V). j<i = [1Alm(n()) = [W1Vibalm(n(i))

» Exercise: explain why this is [A[¢1 W o] m(s)?
» this exercise illustrates the subtlety of writing CTL!

Mike Gordon 67 /128

Sanity check: A[yy WF] = AG ¢
» From last slide:
[A[1 W 2]]m(s)
= Vr.PathRs~
= Vi. (V). j<i = [v1iA"2]m(m())) = [¥1Vibelm(m (i)
Set ¢ to ¥ and v, to F:
[A[» W F]]m(s)
= Vr.PathRs~
= Vi. (V). j<i = [VA-F]u(=()))) = [YVEIm(x(i))
Simplify:
[A[> W E]]m(s)
= Vr. Path R s = Vi (V). j<i = [YIm(7()))) = [¥Im(x())
By induction on /:
[A[v WE]Jm(s) = Vr. Path Rs 7w = Vi [¢]u(=(i))

Exercises
1. Describe the property: A[T W ¢] .
2. Describe the property: —E[—1)o U = (1)1 Vabo)] .
3. Define E[¢1 W 1)2] = E[¢)1 U 2] V EGt)y.
Describe the property: E[¢1 W v5]?

Mike Gordon 68/128

v

v

v

v

Recall model behaviour computation tree

» Atomic properties are true or false of individual states
» General properties are true or false of whole behaviour
» Behaviour of (S, R) starting from s € S as a tree:

initial state States after states after
onesiep twosteps

» A path is shownin red
» Properties may look at all paths, or just a single path

» CTL: Computation Tree Logic (all paths from a state)
» LTL: Linear Temporal Logic (a single path)

Mike Gordon 69/128

Summary of CTL operators (primitive + defined)

» CTL formulae:

Mike Gordon

p

-

1 N b2
1 Vb2

1 = P2
AXy)

EXvy

AF)

EFy

AGy)

EGy

Af1 U 9]
E[1 U 9]
Alp1 W o)o]
E[1 W 5]

(Atomic formula - p € AP)
(Negation)

(Conjunction)

(Disjunction)

(Implication)

(All successors)

(Some successors)

(Somewhere — along all paths)
(Somewhere — along some path)
(Everywhere — along all paths)
(Everywhere — along some path)
(Until — along all paths)

(Until — along some path)
(Unless — along all paths)
(Unless — along some path)

70/128

Example CTL formulae

» EF(Started N\ —Ready)

It is possible to get to a state where Started holds
but Ready does not hold

» AG(Req = AFACck)

If a request Req occurs, then it will eventually be
acknowledged by Ack

» AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along
every path starting anywhere: i.e. DeviceEnabled
holds infinitely often along every path

» AG(EFRestart)

From any state it is possible to get to a state for
which Restart holds

Can'’t be expressed in LTL!

Mike Gordon

71/128

More CTL examples (1)

» AG(Req = A[Req U Ack])
If a request Req occurs, then it continues to hold,
until it is eventually acknowledged

» AG(Req = AX(A[—Req U Ack]))
Whenever Req is true either it must become false
on the next cycle and remains false until Ack, or
Ack must become true on the next cycle

Exercise: is the AX necessary?

» AG(Req = (—Ack = AX(A[Req U Ack])))
Whenever Req is true and Ack is false then Ack
will eventually become true and until it does Req
will remain true

Exercise: is the AX necessary?

Mike Gordon 72/128

More CTL examples (2)

» AG(Enabled = AG(Start = A[—Waiting U Ack]))

If Enabled is ever true then if Start is true in any
subsequent state then Ack will eventually become
true, and until it does Waiting will be false

» AG(—Regi \—Req.=A[—~Req;\—Req, U (StartA\—~Req,)])
Whenever Reqy and Req. are false, they remain
false until Start becomes true with Req, still false

» AG(Req = AX(Ack = AF —Req))

If Req is true and Ack becomes true one cycle
later, then eventually Req will become false

Mike Gordon 73/128

Some abbreviations
> AX;) = AX(AX(--- (AX ¥)---))

i instances of AX
1 Is true on all paths i units of time later

» ABF; ;¢ = AX; (v VAX(v V --- AX(v V AX9)---))

j — i instances of AX

1 Is true on all paths sometime between i units of
time later and | units of time later

» AG(Req = AX(Ack; A ABF; g(Ack, A A[Wait U Reply])))

One cycle after Req, Acky should become true,
and then Ack, becomes true 1 to 6 cycles later
and then eventually Reply becomes true, but until
it does Wait holds from the time of Acks

» More abbreviations in ‘Industry Standard’ language PSL

Mike Gordon 74/128

