
Linear Temporal Logic (LTL)

◮ Grammar of well formed formulae (wff) φ

φ ::= p (Atomic formula: p ∈ AP)

| ¬φ (Negation)

| φ1 ∨ φ2 (Disjunction)

| Xφ (successor)

| Fφ (sometimes)

| Gφ (always)

| [φ1 U φ2] (Until)

◮ Details differ from Prior’s tense logic – but similar ideas

◮ Semantics define when φ true in model M

◮ where M = (S,S0,R,L) – a Kripke structure

◮ notation: M |= φ means φ true in model M

◮ model checking algorithms compute this (when decidable)

Mike Gordon 46 / 128

M |= φ means “wff φ is true in model M”

◮ If M = (S,S0,R, L) then

π is an M-path starting from s iff Path R s π

◮ If M = (S,S0,R, L) then we define M |= φ to mean:

φ is true on all M-paths starting from a member of S0

◮ We will define [[φ]]M(π) to mean

φ is true on the M-path π

◮ Thus M |= φ will be formally defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

◮ It remains to actually define [[φ]]M for all wffs φ

Mike Gordon 47 / 128

Definition of [[φ]]M(π)

◮ [[φ]]M(π) is the application of function [[φ]]M to path π

◮ thus [[φ]]M : (N → S) → B

◮ Let M = (S,S0,R, L)

[[φ]]M is defined by structural induction on φ

[[p]]M(π) = p ∈ L(π 0)
[[¬φ]]M(π) = ¬([[φ]]M(π))
[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)
[[Xφ]]M(π) = [[φ]]M(π↓1)
[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)
[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)
[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ We look at each of these semantic equations in turn

Mike Gordon 48 / 128

[[p]]M(π) = p(π 0)

◮ Assume M = (S,S0,R, L)

◮ We have: [[p]]M(π) = p ∈ L(π 0)
◮ p is an atomic property, i.e. p ∈ AP
◮ π : N → S so π 0 ∈ S
◮ π 0 is the first state in path π
◮ p ∈ L(π 0) is true iff atomic property p holds of state π 0

◮ [[p]]M(π) means p holds of the first state in path π

◮ T,F ∈ AP with T ∈ L(s) and F /∈ L(s) for all s ∈ S

◮ [[T]]M(π) is always true

◮ [[F]]M(π) is always false

Mike Gordon 49 / 128

[[¬φ]]M(π) = ¬([[φ]]M(π))

[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)

◮ [[¬φ]]M(π) = ¬([[φ]]M(π))

◮ [[¬φ]]M(π) true iff [[φ]]M(π) is not true

◮ [[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)

◮ [[φ1 ∨ φ2]]M(π) true iff [[φ1]]M(π) is true or [[φ2]]M(π) is true

Mike Gordon 50 / 128

[[Xφ]]M(π) = [[φ]]M(π↓1)

◮ [[Xφ]]M(π) = [[φ]]M(π↓1)

◮ π↓1 is π with the first state chopped off

π↓1(0) = π(1 + 0) = π(1)
π↓1(1) = π(1 + 1) = π(2)
π↓1(2) = π(1 + 2) = π(3)

...

◮ [[Xφ]]M(π) true iff [[φ]]M true starting at the second state of π

Mike Gordon 51 / 128

[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)

◮ [[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)

◮ π↓i is π with the first i states chopped off

π↓i(0) = π(i + 0) = π(i)
π↓i(1) = π(i + 1)
π↓i(2) = π(i + 2)

...
◮ [[φ]]M(π↓i) true iff [[φ]]M true starting i states along π

◮ [[Fφ]]M(π) true iff [[φ]]M true starting somewhere along π

◮ “Fφ” is read as “sometimes φ”

Mike Gordon 52 / 128

[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)
◮ [[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)

◮ π↓i is π with the first i states chopped off

◮ [[φ]]M(π↓i) true iff [[φ]]M true starting i states along π

◮ [[Gφ]]M(π) true iff [[φ]]M true starting anywhere along π

◮ “Gφ” is read as “always φ” or “globally φ”

◮ M |= AGp defined earlier: M |= AGp ⇔ M |= G(p)

◮ G is definable in terms of F and ¬: Gφ = ¬(F(¬φ))

[[¬(F(¬φ))]]M(π) = ¬([[F(¬φ)]]M(π))
= ¬(∃i . [[¬φ]]M(π↓i))
= ¬(∃i . ¬([[φ]]M(π↓i)))
= ∀i . [[φ]]M(π↓i)
= [[Gφ]]M(π)

Mike Gordon 53 / 128

[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ [[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ [[φ2]]M(π↓i) true iff [[φ2]]M true starting i states along π

◮ [[φ1]]M(π↓j) true iff [[φ1]]M true starting j states along π

◮ [[[φ1 U φ2]]]M(π) is true iff

[[φ2]]M is true somewhere along π and up to then [[φ1]]M is true

◮ “[φ1 U φ2]” is read as “φ1 until φ2”

◮ F is definable in terms of [− U −]: Fφ = [T U φ]

[[[T U φ]]]M(π)
= ∃i . [[φ]]M(π↓i) ∧ ∀j . j<i ⇒ [[T]]M(π↓j)
= ∃i . [[φ]]M(π↓i) ∧ ∀j . j<i ⇒ true

= ∃i . [[φ]]M(π↓i) ∧ true

= ∃i . [[φ]]M(π↓i)
= [[Fφ]]M(π)

Mike Gordon 54 / 128

Review of Linear Temporal Logic (LTL)

◮ Grammar of well formed formulae (wff) φ

φ ::= p (Atomic formula: p ∈ AP)

| ¬φ (Negation)

| φ1 ∨ φ2 (Disjunction)

| Xφ (successor)

| Fφ (sometimes)

| Gφ (always)

| [φ1 U φ2] (Until)

◮ M |= φ means φ holds on all M-paths

◮ M = (S,S0,R,L)

◮ [[φ]]M(π) means φ is true on the M-path π

◮ M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

Mike Gordon 55 / 128

LTL examples

◮ “DeviceEnabled holds infinitely often along every path”

G(F DeviceEnabled)

◮ “Eventually the state becomes permanently Done“

F(G Done)

◮ “Every Req is followed by an Ack”

G(Req⇒ F Ack)
Number of Req and Ack may differ - no counting

◮ “If Enabled infinitely often then Running infinitely often”

G(F Enabled) ⇒ G(F Running)

◮ “An upward going lift at the second floor keeps going up if

a passenger requests the fifth floor”

G(AtFloor2 ∧ DirectionUp ∧ RequestFloor5

⇒ [DirectionUp U AtFloor5])

(acknowledgement: http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf)Mike Gordon 56 / 128

http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf

A property not expressible in LTL
◮ Let AP = {P} and consider models M and M ′ below

¬P P ¬P

s0 s1 s0

M M ′

M = ({s0, s1}, {s0}, {(s0, s0), (s0, s1), (s1, s1)}, L)
M ′ = ({s0}, {s0}, {(s0, s0)}, L)

where: L = λs. if s = s0 then {} else {P}

◮ Every M ′-path is also an M-path
◮ So if φ true on every M-path then φ true on every M ′-path
◮ Hence in LTL for any φ if M |= φ then M ′ |= φ
◮ Consider φP ⇔ “can always reach a state satisfying P”

◮ φP holds in M but not in M ′

◮ but in LTL can’t have M |= φP and not M ′ |= φP

◮ hence φP not expressible in LTL
(acknowledgement: Logic in Computer Science, Huth & Ryan (2nd Ed.) page 219, ISBN 0 521 54310 X)Mike Gordon 57 / 128

LTL expressibility

“can always reach a state satisfying P”

◮ In LTL M |= φ says φ holds of all paths of M

◮ LTL formulae φ are evaluated on paths path formulae

◮ Want to say that from any state there exists a path to

some state satisfying p

◮ ∀s. ∃π. Path R s π ∧ ∃i . p ∈ L(π(i))

◮ but this isn’t expressible in LTL (see slide 57)

◮ CTL properties are evaluated at a state . . . state formulae

◮ they can talk about both some or all paths

◮ starting from the state they are evaluated at

Mike Gordon 58 / 128

Computation Tree Logic (CTL)

◮ LTL formulae φ are evaluated on paths path formulae

◮ CTL formulae ψ are evaluated on states . . state formulae

◮ Syntax of CTL well-formed formulae:

ψ ::= p (Atomic formula p ∈ AP)

| ¬ψ (Negation)

| ψ1 ∧ ψ2 (Conjunction)

| ψ1 ∨ ψ2 (Disjunction)

| ψ1 ⇒ ψ2 (Implication)

| AXψ (All successors)

| EXψ (Some successors)

| A[ψ1 U ψ2] (Until – along all paths)

| E[ψ1 U ψ2] (Until – along some path)

Mike Gordon 59 / 128

Semantics of CTL
◮ Assume M = (S,S0,R, L) and then define:

[[p]]M(s) = p ∈ L(s)

[[¬ψ]]M(s) = ¬([[ψ]]M(s))

[[ψ1 ∧ ψ2]]M(s) = [[ψ1]]M(s) ∧ [[ψ2]]M(s)

[[ψ1 ∨ ψ2]]M(s) = [[ψ1]]M(s) ∨ [[ψ2]]M(s)

[[ψ1 ⇒ ψ2]]M(s) = [[ψ1]]M(s) ⇒ [[ψ2]]M(s)

[[AXψ]]M(s) = ∀s′. R s s′ ⇒ [[ψ]]M(s′)

[[EXψ]]M(s) = ∃s′. R s s′ ∧ [[ψ]]M(s′)

[[A[ψ1 U ψ2]]]M(s) = ∀π. Path R s π
⇒ ∃i . [[ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1]]M(π(j))

[[E[ψ1 U ψ2]]]M(s) = ∃π. Path R s π
∧ ∃i . [[ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1]]M(π(j))

Mike Gordon 60 / 128

The defined operator AF

◮ Define AFψ = A[T U ψ]

◮ AFψ true at s iffψ true somewhere on every R-path from s

[[AFψ]]M(s) = [[A[T U ψ]]]M(s)

= ∀π. Path R s π
⇒
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∀π. Path R s π
⇒
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ true

= ∀π. Path R s π ⇒ ∃i . [[ψ]]M(π(i))

Mike Gordon 61 / 128

The defined operator EF

◮ Define EFψ = E[T U ψ]

◮ EFψ true at s iffψ true somewhere on some R-path from s

[[EFψ]]M(s) = [[E[T U ψ]]]M(s)

= ∃π. Path R s π
∧
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∃π. Path R s π
∧
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ true

= ∃π. Path R s π ∧ ∃i . [[ψ]]M(π(i))

◮ “can reach a state satisfying p” is EF p

Mike Gordon 62 / 128

The defined operator AG
◮ Define AGψ = ¬EF(¬ψ)

◮ AGψ true at s iffψ true everywhere on every R-path from s

[[AGψ]]M(s) = [[¬EF(¬ψ)]]M(s)
= ¬([[EF(¬ψ)]]M(s))
= ¬(∃π. Path R s π ∧ ∃i . [[¬ψ]]M(π(i)))
= ¬(∃π. Path R s π ∧ ∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬(Path R s π ∧ ∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ¬(∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ∀i . ¬¬[[ψ]]M(π(i))
= ∀π. ¬Path R s π ∨ ∀i . [[ψ]]M(π(i))
= ∀π. Path R s π ⇒ ∀i . [[ψ]]M(π(i))

◮ AGψ means ψ true at all reachable states

◮ [[AG(p)]]M(s) ≡ ∀s′. R∗ s s′ ⇒ p ∈ L(s′)

◮ “can always reach a state satisfying p” is AG(EF p)

Mike Gordon 63 / 128

The defined operator EG

◮ Define EGψ = ¬AF(¬ψ)

◮ EGψ true at s iffψ true everywhere on some R-path from s

[[EGψ]]M(s) = [[¬AF(¬ψ)]]M(s)
= ¬([[AF(¬ψ)]]M(s))
= ¬(∀π. Path R s π ⇒ ∃i . [[¬ψ]]M(π(i)))
= ¬(∀π. Path R s π ⇒ ∃i . ¬[[ψ]]M(π(i)))
= ∃π. ¬(Path R s π ⇒ ∃i . ¬[[ψ]]M(π(i)))
= ∃π. Path R s π ∧ ¬(∃i . ¬[[ψ]]M(π(i)))
= ∃π. Path R s π ∧ ∀i . ¬¬[[ψ]]M(π(i))
= ∃π. Path R s π ∧ ∀i . [[ψ]]M(π(i))

Mike Gordon 64 / 128

The defined operator A[ψ1 W ψ2]

◮ A[ψ1 W ψ2] is a ‘partial correctness’ version of A[ψ1 U ψ2]

◮ It is true at s if along all R-paths from s:

◮ ψ1 always holds on the path, or

◮ ψ2 holds sometime on the path, and until it does ψ1 holds

◮ Define

[[A[ψ1 W ψ2]]]M(s)
= [[¬E[(ψ1∧¬ψ2) U (¬ψ1∧¬ψ2)]]]M(s)
= ¬[[E[(ψ1∧¬ψ2) U (¬ψ1∧¬ψ2)]]]M(s)
= ¬(∃π. Path R s π

∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

◮ Exercise: understand the next two slides!

Mike Gordon 65 / 128

A[ψ1 W ψ2] continued (1)

◮ Continuing:

¬(∃π. Path R s π
∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. ¬(Path R s π
∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
¬(∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬[[¬ψ1∧¬ψ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

Mike Gordon 66 / 128

A[ψ1 W ψ2] continued (2)

◮ Continuing:

= ∀π. Path R s π
⇒
∀i . ¬[[¬ψ1∧¬ψ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ∨ ¬[[¬ψ1∧¬ψ2]]M(π(i))

= ∀π. Path R s π
⇒
∀i . (∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ⇒ [[ψ1∨ψ2]]M(π(i))

◮ Exercise: explain why this is [[A[ψ1 W ψ2]]]M(s)?

◮ this exercise illustrates the subtlety of writing CTL!

Mike Gordon 67 / 128

Sanity check: A[ψ W F] = AG ψ
◮ From last slide:

[[A[ψ1 W ψ2]]]M(s)
= ∀π. Path R s π

⇒ ∀i . (∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ⇒ [[ψ1∨ψ2]]M(π(i))

◮ Set ψ1 to ψ and ψ2 to F:
[[A[ψ W F]]]M(s)
= ∀π. Path R s π

⇒ ∀i . (∀j . j<i ⇒ [[ψ∧¬F]]M(π(j))) ⇒ [[ψ∨F]]M(π(i))

◮ Simplify:
[[A[ψ W F]]]M(s)
= ∀π. Path R s π ⇒ ∀i . (∀j . j<i ⇒ [[ψ]]M(π(j))) ⇒ [[ψ]]M(π(i))

◮ By induction on i :

[[A[ψ W F]]]M(s) = ∀π. Path R s π ⇒ ∀i . [[ψ]]M(π(i))

◮ Exercises
1. Describe the property: A[T W ψ] .

2. Describe the property: ¬E[¬ψ2 U ¬(ψ1∨ψ2)] .

3. Define E[ψ1 W ψ2] = E[ψ1 U ψ2] ∨ EGψ1.
Describe the property: E[ψ1 W ψ2]?

Mike Gordon 68 / 128

Recall model behaviour computation tree

◮ Atomic properties are true or false of individual states

◮ General properties are true or false of whole behaviour

◮ Behaviour of (S,R) starting from s ∈ S as a tree:

s

initial state states after
one step

states after
two steps

◮ A path is shown in red

◮ Properties may look at all paths, or just a single path

◮ CTL: Computation Tree Logic (all paths from a state)
◮ LTL: Linear Temporal Logic (a single path)

Mike Gordon 69 / 128

Summary of CTL operators (primitive + defined)

◮ CTL formulae:

p (Atomic formula - p ∈ AP)

¬ψ (Negation)

ψ1 ∧ ψ2 (Conjunction)

ψ1 ∨ ψ2 (Disjunction)

ψ1 ⇒ ψ2 (Implication)

AXψ (All successors)

EXψ (Some successors)

AFψ (Somewhere – along all paths)

EFψ (Somewhere – along some path)

AGψ (Everywhere – along all paths)

EGψ (Everywhere – along some path)

A[ψ1 U ψ2] (Until – along all paths)

E[ψ1 U ψ2] (Until – along some path)

A[ψ1 W ψ2] (Unless – along all paths)

E[ψ1 W ψ2] (Unless – along some path)

Mike Gordon 70 / 128

Example CTL formulae

◮ EF(Started ∧ ¬Ready)

It is possible to get to a state where Started holds

but Ready does not hold

◮ AG(Req ⇒ AFAck)

If a request Req occurs, then it will eventually be

acknowledged by Ack

◮ AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along

every path starting anywhere: i.e. DeviceEnabled

holds infinitely often along every path

◮ AG(EFRestart)

From any state it is possible to get to a state for

which Restart holds

Can’t be expressed in LTL!

Mike Gordon 71 / 128

More CTL examples (1)

◮ AG(Req ⇒ A[Req U Ack])

If a request Req occurs, then it continues to hold,

until it is eventually acknowledged

◮ AG(Req ⇒ AX(A[¬Req U Ack]))

Whenever Req is true either it must become false

on the next cycle and remains false until Ack, or

Ack must become true on the next cycle

Exercise: is the AX necessary?

◮ AG(Req ⇒ (¬Ack ⇒ AX(A[Req U Ack])))

Whenever Req is true and Ack is false then Ack

will eventually become true and until it does Req

will remain true

Exercise: is the AX necessary?

Mike Gordon 72 / 128

More CTL examples (2)

◮ AG(Enabled ⇒ AG(Start ⇒ A[¬Waiting U Ack]))

If Enabled is ever true then if Start is true in any

subsequent state then Ack will eventually become

true, and until it does Waiting will be false

◮ AG(¬Req1∧¬Req2⇒A[¬Req1∧¬Req2 U (Start∧¬Req2)])

Whenever Req1 and Req2 are false, they remain

false until Start becomes true with Req2 still false

◮ AG(Req ⇒ AX(Ack ⇒ AF ¬Req))

If Req is true and Ack becomes true one cycle

later, then eventually Req will become false

Mike Gordon 73 / 128

Some abbreviations

◮ AXi ψ ≡ AX(AX(· · · (AX ψ) · · ·))
︸ ︷︷ ︸

i instances of AX

ψ is true on all paths i units of time later

◮ ABFi..j ψ ≡ AXi (ψ ∨ AX(ψ ∨ · · · AX(ψ ∨ AX ψ) · · ·))
︸ ︷︷ ︸

j − i instances of AX

ψ is true on all paths sometime between i units of

time later and j units of time later

◮ AG(Req ⇒ AX(Ack1 ∧ ABF1..6(Ack2 ∧ A[Wait U Reply])))

One cycle after Req, Ack1 should become true,

and then Ack2 becomes true 1 to 6 cycles later

and then eventually Reply becomes true, but until

it does Wait holds from the time of Ack2

◮ More abbreviations in ‘Industry Standard’ language PSL

Mike Gordon 74 / 128

