Linear Temporal Logic (LTL)

• Grammar of well formed formulae (wff) ϕ

ϕ	::=	p	(Atomic formula: $p \in AP$)
		$\neg \phi$	(Negation)
	i i	$\phi_1 \lor \phi_2$	(Disjunction)
	i i	${f X}\phi$	(successor)
	i i	$F\phi$	(sometimes)
	i i	${f G}\phi$	(always)
	i i	$[\phi_1 \ \mathbf{U} \ \phi_2]$	(Until)

- Details differ from Prior's tense logic but similar ideas
- Semantics define when \u03c6 true in model M
 - where $M = (S, S_0, R, L) a$ Kripke structure
 - notation: $M \models \phi$ means ϕ true in model M
 - model checking algorithms compute this (when decidable)

 $M \models \phi$ means "wff ϕ is true in model M"

• If $M = (S, S_0, R, L)$ then

 π is an *M*-path starting from *s* iff Path *R s* π

• If $M = (S, S_0, R, L)$ then we define $M \models \phi$ to mean:

 ϕ is true on all *M*-paths starting from a member of S_0

• We will define $[\![\phi]\!]_M(\pi)$ to mean

 ϕ is true on the *M*-path π

• Thus $M \models \phi$ will be formally defined by:

 $\boldsymbol{M} \models \phi \iff \forall \pi \ \boldsymbol{s}. \ \boldsymbol{s} \in \boldsymbol{S}_0 \land \mathsf{Path} \ \boldsymbol{R} \ \boldsymbol{s} \ \pi \Rightarrow \llbracket \phi \rrbracket_{\boldsymbol{M}}(\pi)$

• It remains to actually define $[\![\phi]\!]_M$ for all wffs ϕ

Definition of $[\![\phi]\!]_M(\pi)$

- $\llbracket \phi \rrbracket_M(\pi)$ is the application of function $\llbracket \phi \rrbracket_M$ to path π
 - thus $\llbracket \phi \rrbracket_M : (\mathbb{N} \to S) \to \mathbb{B}$
- Let $M = (S, S_0, R, L)$

 $\llbracket \phi \rrbracket_M$ is defined by structural induction on ϕ

$$\begin{split} & \llbracket \rho \rrbracket_{M}(\pi) &= \rho \in L(\pi \ 0) \\ & \llbracket \neg \phi \rrbracket_{M}(\pi) &= \neg (\llbracket \phi \rrbracket_{M}(\pi)) \\ & \llbracket \phi_{1} \lor \phi_{2} \rrbracket_{M}(\pi) &= \llbracket \phi_{1} \rrbracket_{M}(\pi) \lor \llbracket \phi_{2} \rrbracket_{M}(\pi) \\ & \llbracket X \phi \rrbracket_{M}(\pi) &= \llbracket \phi \rrbracket_{M}(\pi \downarrow 1) \\ & \llbracket F \phi \rrbracket_{M}(\pi) &= \exists i. \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \\ & \llbracket G \phi \rrbracket_{M}(\pi) &= \forall i. \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \\ & \llbracket [\Phi_{1} \ \mathbf{U} \ \phi_{2}]\rrbracket_{M}(\pi) &= \exists i. \llbracket \phi_{2} \rrbracket_{M}(\pi \downarrow i) \land \forall j. j < i \Rightarrow \llbracket \phi_{1} \rrbracket_{M}(\pi \downarrow j) \end{aligned}$$

We look at each of these semantic equations in turn

$[\![p]\!]_M(\pi) = p(\pi \ 0)$

- Assume $M = (S, S_0, R, L)$
- We have: $[\![p]\!]_M(\pi) = p \in L(\pi \ 0)$
 - *p* is an atomic property, i.e. $p \in AP$
 - $\pi: \mathbb{N} \to S$ so $\pi \ \mathbf{0} \in S$
 - π **0** is the first state in path π
 - ▶ $p \in L(\pi \ 0)$ is *true* iff atomic property *p* holds of state $\pi \ 0$
- $[p]_M(\pi)$ means p holds of the first state in path π
- ▶ $T, F \in AP$ with $T \in L(s)$ and $F \notin L(s)$ for all $s \in S$
 - $[T]_M(\pi)$ is always true
 - $[F]_M(\pi)$ is always false

 $\llbracket \neg \phi \rrbracket_{M}(\pi) = \neg (\llbracket \phi \rrbracket_{M}(\pi))$ $\llbracket \phi_{1} \lor \phi_{2} \rrbracket_{M}(\pi) = \llbracket \phi_{1} \rrbracket_{M}(\pi) \lor \llbracket \phi_{2} \rrbracket_{M}(\pi)$

 $\blacktriangleright \ \llbracket \neg \phi \rrbracket_M(\pi) = \neg (\llbracket \phi \rrbracket_M(\pi))$

• $\llbracket \neg \phi \rrbracket_M(\pi)$ true iff $\llbracket \phi \rrbracket_M(\pi)$ is not true

• $[\![\phi_1 \lor \phi_2]\!]_M(\pi) = [\![\phi_1]\!]_M(\pi) \lor [\![\phi_2]\!]_M(\pi)$

• $\llbracket \phi_1 \lor \phi_2 \rrbracket_M(\pi)$ true iff $\llbracket \phi_1 \rrbracket_M(\pi)$ is true or $\llbracket \phi_2 \rrbracket_M(\pi)$ is true

$\llbracket \mathbf{X}\phi \rrbracket_{M}(\pi) = \llbracket \phi \rrbracket_{M}(\pi \downarrow \mathbf{1})$

 $[X\phi]_{M}(\pi) = [\phi]_{M}(\pi\downarrow 1)$ $\pi \downarrow 1 \text{ is } \pi \text{ with the first state chopped off}$ $\pi \downarrow 1(0) = \pi(1+0) = \pi(1)$ $\pi \downarrow 1(1) = \pi(1+1) = \pi(2)$ $\pi \downarrow 1(2) = \pi(1+2) = \pi(3)$ \vdots

• $[X\phi]_M(\pi)$ true iff $[\phi]_M$ true starting at the second state of π

$\llbracket \mathbf{F}\phi \rrbracket_{M}(\pi) = \exists i. \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$

 $\blacktriangleright \ \llbracket \mathsf{F}\phi \rrbracket_{M}(\pi) = \exists i. \ \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$

• $\pi \downarrow i$ is π with the first *i* states chopped off

 $\pi \downarrow i(0) = \pi(i+0) = \pi(i)$ $\pi \downarrow i(1) = \pi(i+1)$ $\pi \downarrow i(2) = \pi(i+2)$

- $\llbracket \phi \rrbracket_M(\pi \downarrow i)$ true iff $\llbracket \phi \rrbracket_M$ true starting i states along π
- ► $[\mathbf{F}\phi]_M(\pi)$ true iff $[\phi]_M$ true starting somewhere along π

• "**F**
$$\phi$$
" is read as "sometimes ϕ "

$\llbracket \mathbf{G}\phi \rrbracket_{M}(\pi) = \forall i. \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$

- $\blacksquare \ \llbracket \mathbf{G}\phi \rrbracket_{M}(\pi) = \forall i. \ \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$
 - $\pi \downarrow i$ is π with the first *i* states chopped off
 - $\llbracket \phi \rrbracket_M(\pi \downarrow i)$ true iff $\llbracket \phi \rrbracket_M$ true starting i states along π
- $[\mathbf{G}\phi]_{M}(\pi)$ true iff $[\phi]_{M}$ true starting anywhere along π
- " $\mathbf{G}\phi$ " is read as "always ϕ " or "globally ϕ "
- $M \models \operatorname{AG} p$ defined earlier: $M \models \operatorname{AG} p \Leftrightarrow M \models \operatorname{G}(p)$
- ► **G** is definable in terms of **F** and \neg : $\mathbf{G}\phi = \neg(\mathbf{F}(\neg\phi))$ $\begin{bmatrix} \neg(\mathbf{F}(\neg\phi)) \end{bmatrix}_{M}(\pi) = \neg(\llbracket \mathbf{F}(\neg\phi) \rrbracket_{M}(\pi))$ $= \neg(\exists i. \llbracket \neg \phi \rrbracket_{M}(\pi \downarrow i))$ $= \neg(\exists i. \neg(\llbracket \phi \rrbracket_{M}(\pi \downarrow i)))$ $= \forall i. \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$ $= \llbracket \mathbf{G}\phi \rrbracket_{M}(\pi)$

$\llbracket [\phi_1 \ \mathbf{U} \ \phi_2] \rrbracket_{\mathcal{M}}(\pi) = \exists i. \ \llbracket \phi_2 \rrbracket_{\mathcal{M}}(\pi \downarrow i) \land \forall j. \ j < i \Rightarrow \llbracket \phi_1 \rrbracket_{\mathcal{M}}(\pi \downarrow j)$

- $\bullet \llbracket [\phi_1 \cup \phi_2] \rrbracket_M(\pi) = \exists i. \llbracket \phi_2 \rrbracket_M(\pi \downarrow i) \land \forall j. j < i \Rightarrow \llbracket \phi_1 \rrbracket_M(\pi \downarrow j)$
 - $[\phi_2]_M(\pi \downarrow i)$ true iff $[\phi_2]_M$ true starting *i* states along π
 - $[\phi_1]_M(\pi \downarrow j)$ true iff $[\phi_1]_M$ true starting j states along π
- $\llbracket [\phi_1 \ \mathbf{U} \ \phi_2] \rrbracket_M(\pi)$ is true iff $\llbracket \phi_2 \rrbracket_M$ is true somewhere along π and up to then $\llbracket \phi_1 \rrbracket_M$ is true
- " $[\phi_1 \cup \phi_2]$ " is read as " ϕ_1 until ϕ_2 "
- F is definable in terms of [-U -]: $F\phi = [T U \phi]$
 - $\llbracket [\mathsf{T} \ \mathbf{U} \ \phi] \rrbracket_{M}(\pi)$
 - $= \exists i. \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \land \forall j. j < i \Rightarrow \llbracket \mathbb{T} \rrbracket_{M}(\pi \downarrow j)$
 - $= \exists i. \llbracket \phi \rrbracket_M(\pi \downarrow i) \land \forall j. j < i \Rightarrow true$
 - $= \exists i. \llbracket \phi \rrbracket_M(\pi \downarrow i) \land true$
 - $= \exists i. \llbracket \phi \rrbracket_M(\pi \downarrow i)$
 - $= \llbracket \mathbf{F} \phi \rrbracket_{M}(\pi)$

Review of Linear Temporal Logic (LTL)

• Grammar of well formed formulae (wff) ϕ

ϕ	::=	p	(Atomic formula: $p \in AP$)
		$ eg \phi$	(Negation)
		$\phi_1 \lor \phi_2$	(Disjunction)
		${f X}\phi$	(successor)
		$F\phi$	(sometimes)
		$\mathbf{G}\phi$	(always)
		$[\phi_1 \ \mathbf{U} \ \phi_2]$	(Until)

- $M \models \phi$ means ϕ holds on all *M*-paths
 - $\bullet M = (S, S_0, R, L)$
 - $\llbracket \phi \rrbracket_M(\pi)$ means ϕ is true on the *M*-path π
 - $M \models \phi \Leftrightarrow \forall \pi \ s. \ s \in S_0 \land \text{Path } R \ s \ \pi \Rightarrow \llbracket \phi \rrbracket_M(\pi)$

LTL examples

- "DeviceEnabled holds infinitely often along every path"

 G(F DeviceEnabled)
- "Eventually the state becomes permanently Done"
 F(G Done)
- "Every Req is followed by an Ack"
 G(Req ⇒ F Ack)
 Number of Req and Ack may differ no counting
- "If Enabled infinitely often then Running infinitely often"
 G(F Enabled) ⇒ G(F Running)

An upward going lift at the second floor keeps going up if a passenger requests the fifth floor"

G(AtFloor2 ∧ DirectionUp ∧ RequestFloor5 ⇒ [DirectionUp U AtFloor5])

A property not expressible in LTL

• Let $AP = \{P\}$ and consider models M and M' below

 $\begin{array}{ll} M & = & (\{s_0, s_1\}, \{s_0\}, \{(s_0, s_0), (s_0, s_1), (s_1, s_1)\}, L) \\ M' & = & (\{s_0\}, \{s_0\}, \{(s_0, s_0)\}, L) \end{array}$

where: $L = \lambda s$. if $s = s_0$ then {} else {P}

- Every M'-path is also an M-path
- So if ϕ true on every *M*-path then ϕ true on every *M*'-path
- Hence in LTL for any ϕ if $M \models \phi$ then $M' \models \phi$
- Consider $\phi_{\mathbb{P}} \Leftrightarrow$ "can always reach a state satisfying \mathbb{P} "
 - $\phi_{\mathbb{P}}$ holds in *M* but not in *M'*
 - ▶ but in LTL can't have $M \models \phi_{P}$ and not $M' \models \phi_{P}$
- hence $\phi_{\mathbb{P}}$ not expressible in LTL

Mike Gordon (acknowledgement: Logic in Computer Science, Huth & Ryan (2nd Ed.) page 219, ISBN 0 521 54310 X) 57 / 128

LTL expressibility

"can always reach a state satisfying P"

- ▶ In LTL $M \models \phi$ says ϕ holds of all paths of M
- LTL formulae ϕ are evaluated on paths path formulae
- Want to say that from any state there exists a path to some state satisfying p
 - ► $\forall s. \exists \pi$. Path *R* $s \pi \land \exists i. p \in L(\pi(i))$
 - but this isn't expressible in LTL (see slide 57)
- CTL properties are evaluated at a state ... state formulae
 - they can talk about both some or all paths
 - starting from the state they are evaluated at

Computation Tree Logic (CTL)

- LTL formulae ϕ are evaluated on paths path formulae
- CTL formulae ψ are evaluated on states ... state formulae

Syntax of CTL well-formed formulae:

$$\psi ::= \mathbf{p}$$

$$| \neg \psi$$

$$| \psi_1 \land \psi_2$$

$$| \psi_1 \lor \psi_2$$

$$| \psi_1 \Rightarrow \psi_2$$

$$| \mathbf{AX}\psi$$

$$| \mathbf{EX}\psi$$

$$| \mathbf{A}[\psi_1 \mathbf{U} \psi_2]$$

$$| \mathbf{E}[\psi_1 \mathbf{U} \psi_2]$$

(Atomic formula $p \in AP$) (Negation) (Conjunction) (Disjunction) (Implication) (All successors) (Some successors) (Until – along all paths) (Until – along some path)

Semantics of CTL

- Assume $M = (S, S_0, R, L)$ and then define:
 - $[p]_M(s)$ $= p \in L(s)$ $\llbracket \neg \psi \rrbracket_M(s) \qquad = \neg (\llbracket \psi \rrbracket_M(s))$ $\llbracket \psi_1 \wedge \psi_2 \rrbracket_M(s) = \llbracket \psi_1 \rrbracket_M(s) \wedge \llbracket \psi_2 \rrbracket_M(s)$ $\llbracket \psi_1 \lor \psi_2 \rrbracket_M(s) = \llbracket \psi_1 \rrbracket_M(s) \lor \llbracket \psi_2 \rrbracket_M(s)$ $\llbracket \psi_1 \Rightarrow \psi_2 \rrbracket_M(s) = \llbracket \psi_1 \rrbracket_M(s) \Rightarrow \llbracket \psi_2 \rrbracket_M(s)$ $[\![\mathbf{AX}\psi]\!]_M(s) = \forall s'. R s s' \Rightarrow [\![\psi]\!]_M(s')$ $[\mathbf{EX}\psi]_{M}(s) = \exists s'. R s s' \land [\psi]_{M}(s')$ $[\mathbf{A}[\psi_1 \mathbf{U} \psi_2]]_{\mathcal{M}}(s) = \forall \pi. \text{ Path } R s \pi$ $\Rightarrow \exists i. \llbracket \psi_2 \rrbracket_M(\pi(i))$ $\forall j. j < i \Rightarrow \llbracket \psi_1 \rrbracket_M(\pi(j))$ $[\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]]_M(s) = \exists \pi. \text{ Path } R \ s \ \pi$ $\wedge \exists i. [\psi_2]_M(\pi(i))$ $\forall i. i < i \Rightarrow \llbracket \psi_1 \rrbracket_M(\pi(i))$

The defined operator AF

• Define $\mathbf{AF}\psi = \mathbf{A}[\mathbf{T} \mathbf{U} \psi]$

• **AF** ψ true at *s* iff ψ true somewhere on every *R*-path from *s* $[\![\mathbf{AF}\psi]\!]_{M}(s) = [\![\mathbf{A}[\mathsf{T} \mathbf{U} \psi]]\!]_{M}(s)$ $= \forall \pi$. Path *B* s π \Rightarrow $\exists i. \llbracket \psi \rrbracket_{M}(\pi(i)) \land \forall j. j < i \implies \llbracket \mathbb{T} \rrbracket_{M}(\pi(j))$ $= \forall \pi$. Path *R* s π \Rightarrow $\exists i. \llbracket \psi \rrbracket_{M}(\pi(i)) \land \forall j. j < i \Rightarrow true$ $= \forall \pi$. Path $R \ s \ \pi \Rightarrow \exists i$. $\llbracket \psi \rrbracket_M(\pi(i))$

The defined operator **EF**

- Define $\mathbf{EF}\psi = \mathbf{E}[\mathbf{T} \ \mathbf{U} \ \psi]$
- **EF** ψ true at *s* iff ψ true somewhere on some *R*-path from *s*

 $\llbracket \mathbf{EF}\psi \rrbracket_{M}(s) = \llbracket \mathbf{E}[\mathsf{T} \ \mathbf{U} \ \psi] \rrbracket_{M}(s)$ $= \exists \pi$. Path *R* s π Λ $\exists i. \llbracket \psi \rrbracket_{M}(\pi(i)) \land \forall j. j < i \implies \llbracket \mathbb{T} \rrbracket_{M}(\pi(j))$ $= \exists \pi$. Path *B* s π Λ $\exists i. \llbracket \psi \rrbracket_M(\pi(i)) \land \forall j. j < i \Rightarrow true$ $= \exists \pi$. Path $R \ s \ \pi \ \land \ \exists i. \llbracket \psi \rrbracket_M(\pi(i))$

"can reach a state satisfying p" is EF p

The defined operator AG

- Define $\mathbf{AG}\psi = \neg \mathbf{EF}(\neg \psi)$
- **AG** ψ true at *s* iff ψ true everywhere on every *R*-path from *s*

$$\begin{bmatrix} \mathbf{A}\mathbf{G}\psi \end{bmatrix}_{M}(s) = \llbracket \neg \mathbf{E}\mathbf{F}(\neg\psi) \rrbracket_{M}(s) \\ = \neg(\llbracket \mathbf{E}\mathbf{F}(\neg\psi) \rrbracket_{M}(s)) \\ = \neg(\exists \pi. \operatorname{Path} R \ s \ \pi \land \exists i. \ \llbracket \neg \psi \rrbracket_{M}(\pi(i))) \\ = \neg(\exists \pi. \operatorname{Path} R \ s \ \pi \land \exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \forall \pi. \ \neg (\operatorname{Path} R \ s \ \pi \land \exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \forall \pi. \ \neg \operatorname{Path} R \ s \ \pi \lor \neg (\exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \forall \pi. \ \neg \operatorname{Path} R \ s \ \pi \lor \forall i. \ \neg \neg \llbracket \psi \rrbracket_{M}(\pi(i)) \\ = \forall \pi. \ \neg \operatorname{Path} R \ s \ \pi \lor \forall i. \ \llbracket \psi \rrbracket_{M}(\pi(i)) \\ = \forall \pi. \ \neg \operatorname{Path} R \ s \ \pi \lor \forall i. \ \llbracket \psi \rrbracket_{M}(\pi(i)) \\ = \forall \pi. \ \operatorname{Path} R \ s \ \pi \lor \forall i. \ \llbracket \psi \rrbracket_{M}(\pi(i)) \\ = \forall \pi. \ \operatorname{Path} R \ s \ \pi \Rightarrow \forall i. \ \llbracket \psi \rrbracket_{M}(\pi(i)) \end{aligned}$$

- $AG\psi$ means ψ true at all reachable states
- $\blacksquare \ \llbracket \mathbf{AG}(p) \rrbracket_M(s) \ \equiv \ \forall s'. \ R^* \ s \ s' \ \Rightarrow \ p \in L(s')$
- "can always reach a state satisfying p" is AG(EF p)

The defined operator EG

• Define $\mathbf{EG}\psi = \neg \mathbf{AF}(\neg \psi)$

EG ψ true at *s* iff ψ true everywhere on some *R*-path from *s*

 $\begin{bmatrix} \mathbf{E}\mathbf{G}\psi \end{bmatrix}_{M}(s) = \llbracket \neg \mathbf{A}\mathbf{F}(\neg\psi) \rrbracket_{M}(s) \\ = \neg(\llbracket \mathbf{A}\mathbf{F}(\neg\psi) \rrbracket_{M}(s)) \\ = \neg(\forall \pi. \operatorname{Path} R \ s \ \pi \Rightarrow \exists i. \ \llbracket \neg \psi \rrbracket_{M}(\pi(i))) \\ = \neg(\forall \pi. \operatorname{Path} R \ s \ \pi \Rightarrow \exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \exists \pi. \ \neg(\operatorname{Path} R \ s \ \pi \Rightarrow \exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \exists \pi. \operatorname{Path} R \ s \ \pi \land \neg (\exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \exists \pi. \operatorname{Path} R \ s \ \pi \land \forall i. \ \neg \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \exists \pi. \operatorname{Path} R \ s \ \pi \land \forall i. \ \neg \neg \llbracket \psi \rrbracket_{M}(\pi(i))$

The defined operator $\mathbf{A}[\psi_1 \ \mathbf{W} \ \psi_2]$

- ► $A[\psi_1 | W | \psi_2]$ is a 'partial correctness' version of $A[\psi_1 | U | \psi_2]$
- It is true at s if along all R-paths from s:
 - ψ_1 always holds on the path, or
 - ψ_2 holds sometime on the path, and until it does ψ_1 holds
- Define

$$\begin{split} \begin{bmatrix} \mathbf{A}[\psi_1 \ \mathbf{W} \ \psi_2] \end{bmatrix}_{M}(s) \\ &= \begin{bmatrix} \neg \mathbf{E}[(\psi_1 \land \neg \psi_2) \ \mathbf{U} \ (\neg \psi_1 \land \neg \psi_2)] \end{bmatrix}_{M}(s) \\ &= \neg \begin{bmatrix} \mathbf{E}[(\psi_1 \land \neg \psi_2) \ \mathbf{U} \ (\neg \psi_1 \land \neg \psi_2)] \end{bmatrix}_{M}(s) \\ &= \neg [\exists \pi. \text{ Path } R \ s \ \pi \\ & \land \\ & \exists i. \ [\![\neg \psi_1 \land \neg \psi_2]\!]_{M}(\pi(i)) \\ & \land \\ & \forall j. \ j < i \ \Rightarrow \ [\![\psi_1 \land \neg \psi_2]\!]_{M}(\pi(j)) \end{split}$$

Exercise: understand the next two slides!

A[ψ_1 **W** ψ_2] continued (1)

- Continuing:
 - $\neg(\exists \pi. \text{ Path } R \ s \ \pi)$ Λ $\exists i. [\neg \psi_1 \land \neg \psi_2]_M(\pi(i)) \land \forall j. j < i \Rightarrow [\psi_1 \land \neg \psi_2]_M(\pi(j)))$ $= \forall \pi. \neg$ (Path *R s* π Λ $\exists i. [\neg \psi_1 \land \neg \psi_2]_M(\pi(i)) \land \forall j. j < i \Rightarrow [\psi_1 \land \neg \psi_2]_M(\pi(j)))$ $= \forall \pi$. Path *R* s π \Rightarrow $\neg(\exists i. \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i)) \land \forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j)))$ $= \forall \pi$. Path *B* s π \Rightarrow $\forall i. \neg \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i)) \lor \neg (\forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j)))$

$A[\psi_1 W \psi_2]$ continued (2)

Continuing:

- $= \forall \pi. \text{ Path } R \ s \ \pi$ $\Rightarrow \qquad \forall i. \neg \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i)) \lor \neg (\forall j. \ j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j)))$ $= \forall \pi. \text{ Path } R \ s \ \pi$ $\Rightarrow \qquad \forall i. \neg (\forall j. \ j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j))) \lor \neg \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i))$ $= \forall \pi. \text{ Path } R \ s \ \pi$ $\Rightarrow \qquad \forall i. (\forall j. \ j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j))) \Rightarrow \llbracket \psi_1 \lor \psi_2 \rrbracket_M(\pi(i))$
- Exercise: explain why this is $[A[\psi_1 | W | \psi_2]]_M(s)$?
 - this exercise illustrates the subtlety of writing CTL!

Sanity check: $A[\psi W F] = AG \psi$

- ► From last slide: $\begin{bmatrix} \mathbf{A}[\psi_1 \ \mathbf{W} \ \psi_2] \end{bmatrix}_{M}(s)$ $= \forall \pi. \text{ Path } R \ s \ \pi$ $\Rightarrow \forall i. (\forall j. \ j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_{M}(\pi(j))) \Rightarrow \llbracket \psi_1 \lor \psi_2 \rrbracket_{M}(\pi(i))$
- ► Set ψ_1 to ψ and ψ_2 to F: $\begin{bmatrix} \mathbf{A}[\psi \ \mathbf{W} \ \mathbf{F}] \end{bmatrix}_M(s)$ $= \forall \pi. \text{ Path } R \ s \ \pi$ $\Rightarrow \forall i. (\forall j. j < i \Rightarrow \llbracket \psi \land \neg \mathbf{F} \rrbracket_M(\pi(j))) \Rightarrow \llbracket \psi \lor \mathbf{F} \rrbracket_M(\pi(i))$
- ► Simplify: $\begin{bmatrix} \mathbf{A}[\psi \ \mathbf{W} \ \mathbf{F}] \end{bmatrix}_{M}(s)$ $= \forall \pi. \text{ Path } R \ s \ \pi \Rightarrow \forall i. \ (\forall j. \ j < i \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(j))) \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(i))$
- ► By induction on *i*: $\llbracket \mathbf{A}[\psi \ \mathbf{W} \ \mathbf{F}] \rrbracket_{\mathcal{M}}(s) = \forall \pi$. Path $R \ s \ \pi \Rightarrow \forall i$. $\llbracket \psi \rrbracket_{\mathcal{M}}(\pi(i))$
- Exercises
 - 1. Describe the property: $\mathbf{A}[\mathbf{T} \ \mathbf{W} \ \psi]$.
 - 2. Describe the property: $\neg \mathbf{E}[\neg \psi_2 \mathbf{U} \neg (\psi_1 \lor \psi_2)]$.
 - 3. Define $\mathbf{E}[\psi_1 \ \mathbf{W} \ \psi_2] = \mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2] \lor \mathbf{E}\mathbf{G}\psi_1$. Describe the property: $\mathbf{E}[\psi_1 \ \mathbf{W} \ \psi_2]$?

Mike Gordon

Recall model behaviour computation tree

- Atomic properties are true or false of individual states
- General properties are true or false of whole behaviour
- Behaviour of (S, R) starting from $s \in S$ as a tree:

- A path is shown in red
- Properties may look at all paths, or just a single path
 - CTL: Computation Tree Logic (all paths from a state)
 - LTL: Linear Temporal Logic (a single path)

Summary of CTL operators (primitive + defined)

CTL formulae:

p	(Atomic formula - $p \in AP$)
$\neg\psi$	(Negation)
$\psi_1 \wedge \psi_2$	(Conjunction)
$\psi_1 \lor \psi_2$	(Disjunction)
$\psi_1 \Rightarrow \psi_2$	(Implication)
$\mathbf{AX}\psi$	(All successors)
$\mathbf{EX}\psi$	(Some successors)
$AF\psi$	(Somewhere – along all paths)
$EF\psi$	(Somewhere – along some path)
$\mathbf{AG}\psi$	(Everywhere – along all paths)
$\mathbf{EG}\psi$	(Everywhere – along some path)
$\mathbf{A}[\psi_1 \mathbf{U} \psi_2]$	(Until – along all paths)
$\mathbf{E}[\psi_1 \mathbf{U} \psi_2]$	(Until – along some path)
$\mathbf{A}[\psi_1 \mathbf{W} \psi_2]$	(Unless – along all paths)
$\mathbf{E}[\psi_1 \mathbf{W} \psi_2]$	(Unless – along some path)

Example CTL formulae

• **EF**(*Started* $\land \neg$ *Ready*)

It is possible to get to a state where Started holds but Ready does not hold

• $AG(Req \Rightarrow AFAck)$

If a request Req occurs, then it will eventually be acknowledged by Ack

AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along every path starting anywhere: i.e. DeviceEnabled holds infinitely often along every path

AG(EFRestart)

From any state it is possible to get to a state for which Restart holds

Can't be expressed in LTL!

More CTL examples (1)

► AG(Req ⇒ A[Req U Ack]) If a request Req occurs, then it continues to hold, until it is eventually acknowledged

• $AG(Req \Rightarrow AX(A[\neg Req U Ack]))$

Whenever Req is true either it must become false on the next cycle and remains false until Ack, or Ack must become true on the next cycle Exercise: is the **AX** necessary?

► AG(Req ⇒ (¬Ack ⇒ AX(A[Req U Ack]))) Whenever Req is true and Ack is false then Ack will eventually become true and until it does Req will remain true Exercise: is the AX necessary?

More CTL examples (2)

► AG(Enabled ⇒ AG(Start ⇒ A[¬Waiting U Ack])) If Enabled is ever true then if Start is true in any subsequent state then Ack will eventually become true, and until it does Waiting will be false

► AG(¬Req₁∧¬Req₂⇒A[¬Req₁∧¬Req₂ U (Start∧¬Req₂)]) Whenever Req₁ and Req₂ are false, they remain false until Start becomes true with Req₂ still false

► AG(Req ⇒ AX(Ack ⇒ AF ¬Req)) If Req is true and Ack becomes true one cycle later, then eventually Req will become false Some abbreviations

$$\blacktriangleright \mathbf{AX}_{i} \psi \equiv \mathbf{AX}(\mathbf{AX}(\cdots(\mathbf{AX} \psi)\cdots))$$

i instances of **AX** ψ is true on all paths *i* units of time later

► ABF_{*i.j*}
$$\psi \equiv AX_i (\psi \lor AX(\psi \lor \cdots AX(\psi \lor AX \psi) \cdots))$$

j - *i* instances of AX

 ψ is true on all paths sometime between *i* units of time later and *j* units of time later

► AG(Req ⇒ AX(Ack₁ ∧ ABF_{1..6}(Ack₂ ∧ A[Wait U Reply]))) One cycle after Req, Ack₁ should become true, and then Ack₂ becomes true 1 to 6 cycles later and then eventually Reply becomes true, but until it does Wait holds from the time of Ack₂

More abbreviations in 'Industry Standard' language PSL