Linear Temporal Logic (LTL)

- Grammar of well formed formulae (wff) ϕ

- Details differ from Prior's tense logic - but similar ideas
- Semantics define when ϕ true in model M
- where $M=\left(S, S_{0}, R, L\right)$ - a Kripke structure
- notation: $M \models \phi$ means ϕ true in model M
- model checking algorithms compute this (when decidable)
$M \models \phi$ means "wff ϕ is true in model $M "$
- If $M=\left(S, S_{0}, R, L\right)$ then
π is an M-path starting from s iff Path $R s \pi$
- If $M=\left(S, S_{0}, R, L\right)$ then we define $M \models \phi$ to mean:
ϕ is true on all M-paths starting from a member of S_{0}
- We will define $\llbracket \phi \rrbracket_{M}(\pi)$ to mean
ϕ is true on the M-path π
- Thus $M \models \phi$ will be formally defined by:

$$
M \models \phi \Leftrightarrow \forall \pi s . s \in S_{0} \wedge \text { Path } R s \pi \Rightarrow \llbracket \phi \rrbracket_{M}(\pi)
$$

- It remains to actually define $\llbracket \phi \rrbracket_{M}$ for all wffs ϕ

Definition of $\llbracket \phi \rrbracket_{M}(\pi)$

- $\llbracket \phi \rrbracket_{M}(\pi)$ is the application of function $\llbracket \phi \rrbracket_{M}$ to path π
- thus $\llbracket \phi \rrbracket_{M}:(\mathbb{N} \rightarrow S) \rightarrow \mathbb{B}$
- Let $M=\left(S, S_{0}, R, L\right)$
$\llbracket \phi \rrbracket_{M}$ is defined by structural induction on ϕ

$$
\begin{array}{ll}
\llbracket p \rrbracket_{M}(\pi) & =p \in L(\pi 0) \\
\llbracket \neg \phi \rrbracket_{M}(\pi) & =\neg\left(\llbracket \phi \rrbracket_{M}(\pi)\right) \\
\llbracket \phi_{1} \vee \phi_{2} \rrbracket_{M}(\pi) & =\llbracket \phi_{1} \rrbracket_{M}(\pi) \vee \llbracket \phi_{2} \rrbracket_{M}(\pi) \\
\llbracket \mathbf{X} \phi \rrbracket_{M}(\pi) & =\llbracket \phi \rrbracket_{M}(\pi \downarrow 1) \\
\llbracket \mathbf{F} \phi \rrbracket_{M}(\pi) & =\exists i \cdot \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \\
\llbracket \mathbf{G} \phi \rrbracket_{M}(\pi) & =\forall i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \\
\llbracket\left[\phi_{1} \mathbf{U} \phi_{2}\right] \rrbracket_{M}(\pi) & =\exists i . \llbracket \phi_{2} \rrbracket_{M}(\pi \downarrow i) \wedge \forall j . j<i \Rightarrow \llbracket \phi_{1} \rrbracket_{M}(\pi \downarrow j)
\end{array}
$$

- We look at each of these semantic equations in turn

$$
\llbracket p \rrbracket_{M}(\pi)=p(\pi 0)
$$

- Assume $M=\left(S, S_{0}, R, L\right)$
- We have: $\llbracket p \rrbracket_{M}(\pi)=p \in L(\pi 0)$
- p is an atomic property, i.e. $p \in A P$
- $\pi: \mathbb{N} \rightarrow S$ so $\pi 0 \in S$
- $\pi 0$ is the first state in path π
- $p \in L(\pi 0)$ is true iff atomic property p holds of state $\pi 0$
- $\llbracket p \rrbracket_{M}(\pi)$ means p holds of the first state in path π
- $T, F \in A P$ with $T \in L(s)$ and $F \notin L(s)$ for all $s \in S$
- 【I $\rrbracket_{M}(\pi)$ is always true
- $\llbracket F \rrbracket_{M}(\pi)$ is always false

$$
\begin{aligned}
& \llbracket \neg \phi \rrbracket_{M}(\pi)=\neg\left(\llbracket \phi \rrbracket_{M}(\pi)\right) \\
& \llbracket \phi_{1} \vee \phi_{2} \rrbracket_{M}(\pi)=\llbracket \phi_{1} \rrbracket_{M}(\pi) \vee \llbracket \phi_{2} \rrbracket_{M}(\pi)
\end{aligned}
$$

- $\llbracket \neg \phi \rrbracket_{M}(\pi)=\neg\left(\llbracket \phi \rrbracket_{M}(\pi)\right)$
- $\llbracket \neg \phi \rrbracket_{M}(\pi)$ true iff $\llbracket \phi \rrbracket_{M}(\pi)$ is not true
- $\llbracket \phi_{1} \vee \phi_{2} \rrbracket_{M}(\pi)=\llbracket \phi_{1} \rrbracket_{M}(\pi) \vee \llbracket \phi_{2} \rrbracket_{M}(\pi)$
- $\llbracket \phi_{1} \vee \phi_{2} \rrbracket_{M}(\pi)$ true iff $\llbracket \phi_{1} \rrbracket_{M}(\pi)$ is true or $\llbracket \phi_{2} \rrbracket_{M}(\pi)$ is true
- $\llbracket \mathbf{X} \phi \rrbracket_{M}(\pi)=\llbracket \phi \rrbracket_{M}(\pi \downarrow 1)$
- $\pi \downarrow 1$ is π with the first state chopped off

$$
\begin{aligned}
& \pi \downarrow 1(0)=\pi(1+0)=\pi(1) \\
& \pi \downarrow 1(1)=\pi(1+1)=\pi(2) \\
& \pi \downarrow 1(2)=\pi(1+2)=\pi(3)
\end{aligned}
$$

- $\llbracket \mathbf{X} \phi \rrbracket_{M}(\pi)$ true iff $\llbracket \phi \rrbracket_{M}$ true starting at the second state of π

$$
\llbracket \mathbf{F} \phi \rrbracket_{M}(\pi)=\exists i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i)
$$

- $\llbracket \mathbf{F} \phi \rrbracket M(\pi)=\exists i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$
- $\pi \downarrow i$ is π with the first i states chopped off

$$
\begin{aligned}
& \pi \downarrow \downarrow i(0)=\pi(i+0)=\pi(i) \\
& \pi \downarrow i(1)=\pi(i+1) \\
& \pi \downarrow i(2)=\pi(i+2)
\end{aligned}
$$

- $\llbracket \phi \rrbracket_{M}(\pi \downarrow i)$ true iff $\llbracket \phi \rrbracket_{M}$ true starting i states along π
- $\llbracket \mathbf{F} \phi \rrbracket_{M}(\pi)$ true iff $\llbracket \phi \rrbracket_{M}$ true starting somewhere along π
- "F ϕ " is read as "sometimes ϕ "

$$
\llbracket \mathbf{G} \phi \rrbracket_{M}(\pi)=\forall i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i)
$$

- $\llbracket \mathbf{G} \phi \rrbracket_{M}(\pi)=\forall i . \llbracket \not \rrbracket_{M}(\pi \downarrow i)$
- $\pi \downarrow i$ is π with the first i states chopped off
- $\llbracket \phi \rrbracket_{M}(\pi \downarrow i)$ true iff $\llbracket \phi \rrbracket_{M}$ true starting i states along π
- $\llbracket \mathbf{G} \phi \rrbracket_{M}(\pi)$ true iff $\llbracket \nmid \rrbracket_{M}$ true starting anywhere along π
- "G ϕ " is read as "always ϕ " or "globally ϕ "
- $M \models \mathbf{A G} p$ defined earlier: $M \models \mathbf{A G} p \Leftrightarrow M \models \mathbf{G}(p)$
- \mathbf{G} is definable in terms of \mathbf{F} and $\neg: \mathbf{G} \phi=\neg(\mathbf{F}(\neg \phi))$

$$
\begin{aligned}
\llbracket \neg(\mathbf{F}(\neg \phi)) \rrbracket_{M}(\pi) & =\neg\left(\llbracket \mathbf{F}(\neg \phi) \rrbracket_{M}(\pi)\right) \\
& =\neg\left(\exists i . \llbracket \neg \phi \rrbracket_{M}(\pi \downarrow i)\right) \\
& =\neg\left(\exists i . \neg\left(\llbracket \phi \rrbracket_{M}(\pi \downarrow i)\right)\right) \\
& =\forall i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \\
& =\llbracket \mathbf{G} \phi \rrbracket_{M}(\pi)
\end{aligned}
$$

$\llbracket\left[\phi_{1} \cup \phi_{2}\right] \rrbracket_{M}(\pi)=\exists i . \llbracket \phi_{2} \rrbracket_{M}(\pi \downarrow i) \wedge \forall j . j<i \Rightarrow \llbracket \phi_{1} \rrbracket_{M}(\pi \downarrow j)$

- $\llbracket\left[\phi_{1} \mathbf{U} \phi_{2}\right]_{M}(\pi)=\exists i . \llbracket \phi_{2} \rrbracket_{M}(\pi \downarrow i) \wedge \forall j . j<i \Rightarrow \llbracket \phi_{1} \rrbracket_{M}(\pi \downarrow j)$
- $\llbracket \phi_{2} \rrbracket_{M}(\pi \downarrow i)$ true iff $\llbracket \phi_{2} \rrbracket_{M}$ true starting i states along π
- $\llbracket \phi_{1} \rrbracket_{M}(\pi / j)$ true iff $\llbracket \phi_{1} \rrbracket_{M}$ true starting j states along π
- $\llbracket\left[\phi_{1} \mathbf{U} \phi_{2}\right] \rrbracket_{M}(\pi)$ is true iff
$\llbracket \phi_{2} \rrbracket_{M}$ is true somewhere along π and up to then $\llbracket \phi_{1} \rrbracket_{M}$ is true
- " $\left[\phi_{1} \mathbf{U} \phi_{2}\right]$ " is read as " ϕ_{1} until ϕ_{2} "
- \mathbf{F} is definable in terms of $[-\mathbf{U}-]$: $\mathbf{F} \phi=[\mathrm{T} \quad \phi]$

$$
\begin{aligned}
& \llbracket\left[\mathrm{T} \mathbf{U} \phi \rrbracket_{M}(\pi)\right. \\
& =\exists i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \wedge \forall j . j<i \Rightarrow \llbracket T \rrbracket_{M}(\pi \mid j) \\
& =\exists i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \wedge \forall j . j<i \Rightarrow \text { true } \\
& =\exists i . \llbracket \downarrow \rrbracket_{M}(\pi \downarrow i) \wedge \text { true } \\
& =\exists i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \\
& =\llbracket \mathbf{F} \phi \rrbracket_{M}(\pi)
\end{aligned}
$$

Review of Linear Temporal Logic (LTL)

- Grammar of well formed formulae (wff) ϕ

$\phi::=$| p | (Atomic formu |
| :--- | :--- |
| | $\neg \phi$ |
| $\phi_{1} \vee \phi_{2}$ | (Negation) |
| $\mathbf{X} \phi$ | (Disjunction) |
| | $\mathbf{F} \phi$ |
| $\mathbf{G} \phi$ | (successor) |
| | $\left[\phi_{1} \mathbf{U} \phi_{2}\right]$ |

- $M \models \phi$ means ϕ holds on all M-paths
- $M=\left(S, S_{0}, R, L\right)$
- $\llbracket \phi \rrbracket_{M}(\pi)$ means ϕ is true on the M-path π
- $M \models \phi \Leftrightarrow \forall \pi s . s \in S_{0} \wedge$ Path $R s \pi \Rightarrow \llbracket \phi \rrbracket_{M}(\pi)$

LTL examples

- "DeviceEnabled holds infinitely often along every path" G(F DeviceEnabled)
- "Eventually the state becomes permanently Done" F(G Done)
- "Every Req is followed by an Ack"
$\mathbf{G}($ Req $\Rightarrow \mathbf{F}$ Ack)
Number of Req and Ack may differ - no counting
- "If Enabled infinitely often then Running infinitely often" $\mathbf{G}(\mathbf{F}$ Enabled $) \Rightarrow \mathbf{G}(\mathbf{F}$ Running $)$
- "An upward going lift at the second floor keeps going up if a passenger requests the fifth floor"

```
G(AtFloor2 ^ DirectionUp ^ RequestFloor5
    => [DirectionUp U AtFloor5])
```


A property not expressible in LTL

- Let $A P=\{\mathrm{P}\}$ and consider models M and M^{\prime} below

$$
\begin{aligned}
& M=\left(\left\{s_{0}, s_{1}\right\},\left\{s_{0}\right\},\left\{\left(s_{0}, s_{0}\right),\left(s_{0}, s_{1}\right),\left(s_{1}, s_{1}\right)\right\}, L\right) \\
& M^{\prime}=\left(\left\{s_{0}\right\},\left\{s_{0}\right\},\left\{\left(s_{0}, s_{0}\right)\right\}, L\right) \\
& \text { where: } L=\lambda s . \text { if } s=s_{0} \text { then }\} \text { else }\{\mathrm{P}\}
\end{aligned}
$$

- Every M^{\prime}-path is also an M-path
- So if ϕ true on every M-path then ϕ true on every M^{\prime}-path
- Hence in LTL for any ϕ if $M \models \phi$ then $M^{\prime} \models \phi$
- Consider $\phi_{\mathrm{P}} \Leftrightarrow$ "can always reach a state satisfying P"
- ϕ_{P} holds in M but not in M^{\prime}
- but in LTL can't have $M \models \phi_{\mathrm{P}}$ and not $M^{\prime} \models \phi_{\mathrm{P}}$
- hence ϕ_{P} not expressible in LTL

LTL expressibility

"can always reach a state satisfying P"

- In LTL $M \models \phi$ says ϕ holds of all paths of M
- LTL formulae ϕ are evaluated on paths path formulae
- Want to say that from any state there exists a path to some state satisfying p
- $\forall s$. $\exists \pi$. Path $R s \pi \wedge \exists i . p \in L(\pi(i))$
- but this isn't expressible in LTL (see slide 57)
- CTL properties are evaluated at a state ... state formulae
- they can talk about both some or all paths
- starting from the state they are evaluated at

Computation Tree Logic (CTL)

- LTL formulae ϕ are evaluated on paths path formulae
- CTL formulae ψ are evaluated on states .. state formulae
- Syntax of CTL well-formed formulae:

ψ :	p	(Atomic formula $p \in A P$)
	$\neg \psi$	(Negation)
	$\psi_{1} \wedge \psi_{2}$	(Conjunction)
	$\psi_{1} \vee \psi_{2}$	(Disjunction)
	$\psi_{1} \Rightarrow \psi_{2}$	(Implication)
	$\mathbf{A X} \psi$	(All successors)
	$\mathbf{E X} \psi$	(Some successors)
	$\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$	(Until - along all paths)
	$\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$	(Until - along some path)

Semantics of CTL

- Assume $M=\left(S, S_{0}, R, L\right)$ and then define:

$$
\begin{array}{ll}
\llbracket p \rrbracket_{M}(s) & =p \in L(s) \\
\llbracket \neg \psi \rrbracket_{M}(s) & =\neg\left(\llbracket \psi \rrbracket_{M}(s)\right) \\
\llbracket \psi_{1} \wedge \psi_{2} \rrbracket_{M}(s) & =\llbracket \psi_{1} \rrbracket_{M}(s) \wedge \llbracket \psi_{2} \rrbracket_{M}(s) \\
\llbracket \psi_{1} \vee \psi_{2} \rrbracket_{M}(s) & =\llbracket \psi_{1} \rrbracket_{M}(s) \vee \llbracket \psi_{2} \rrbracket_{M}(s) \\
\llbracket \psi_{1} \Rightarrow \psi_{2} \rrbracket_{M}(s) & =\llbracket \psi_{1} \rrbracket_{M}(s) \Rightarrow \llbracket \psi_{2} \rrbracket_{M}(s) \\
\llbracket \mathbf{A X} \psi \rrbracket_{M}(s) & =\forall s^{\prime} . R s s^{\prime} \Rightarrow \llbracket \psi \rrbracket_{M}\left(s^{\prime}\right) \\
\llbracket \mathbf{E X} \psi \rrbracket_{M}(s) & =\exists s^{\prime} . R s s^{\prime} \wedge \llbracket \psi \rrbracket_{M}\left(s^{\prime}\right) \\
\llbracket \mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2} \rrbracket_{M}(s)=\forall \pi .\right. & \text { Path } R s \pi \\
& \quad \Rightarrow \exists i . \llbracket \psi_{2} \rrbracket_{M}(\pi(i)) \\
& \quad \widehat{u} . j<i \Rightarrow \llbracket \psi_{1} \rrbracket_{M}(\pi(j))
\end{array}
$$

$\llbracket \mathbf{E}\left[\psi_{1} \quad \mathbf{U} \psi_{2}\right] \rrbracket_{M}(s)=\exists \pi$. Path $R s \pi$

$$
\begin{aligned}
& \wedge \exists i . \llbracket \psi_{2} \rrbracket_{M}(\pi(i)) \\
& \quad \hat{\forall j . j} \times i \Rightarrow \llbracket \psi_{1} \rrbracket_{M}(\pi(j))
\end{aligned}
$$

The defined operator AF

- Define AF $\psi=\mathbf{A}[\mathbf{T} \mathbf{U} \psi]$
- AF ψ true at s iff ψ true somewhere on every R-path from s

$$
\begin{aligned}
\llbracket \mathbf{A F} \psi \rrbracket_{M}(s)= & \llbracket \mathbf{A}[\mathrm{T} \mathbf{U} \psi] \rrbracket_{M}(s) \\
= & \forall \pi . \text { Path } R s \pi \\
& \Rightarrow \\
& \exists i . \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \mathrm{~T} \rrbracket_{M}(\pi(j)) \\
= & \forall \pi . \\
& \Rightarrow \\
& \exists i . \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \text { true } \\
= & \forall \pi . \text { Path } R s \pi \Rightarrow \exists i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

The defined operator EF

- Define $\mathbf{E F} \psi=\mathbf{E}[\mathrm{T} \mathbf{U} \psi]$
- EF ψ true at s iff ψ true somewhere on some R-path from s

$$
\begin{aligned}
\llbracket \mathbf{E F} \psi \rrbracket_{M}(s)= & \llbracket \mathrm{E}[\mathrm{~T} \mathbf{U} \psi] \rrbracket_{M}(s) \\
= & \exists \pi . \text { Path } R s \pi \\
& \wedge \\
& \exists i . \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket T \rrbracket_{M}(\pi(j)) \\
= & \exists \pi . \\
& \wedge \\
& \exists i . \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \text { true } \\
= & \exists \pi . \text { Path } R s \pi \wedge \exists i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

- "can reach a state satisfying p " is EF p

The defined operator AG

- Define AG $\psi=\neg \mathbf{E F}(\neg \psi)$
- AG ψ true at s iff ψ true everywhere on every R-path from s

$$
\begin{aligned}
\llbracket \mathbf{A G} \psi \rrbracket_{M}(s) & =\llbracket \neg \mathbf{E F}(\neg \psi) \rrbracket_{M}(s) \\
& =\neg\left(\llbracket \mathbf{E F}(\neg \psi) \rrbracket_{M}(s)\right) \\
& =\neg\left(\exists \pi . \text { Path } R s \pi \wedge \exists i . \llbracket \neg \psi \rrbracket_{M}(\pi(i))\right) \\
& =\neg\left(\exists \pi . \text { Path } R s \pi \wedge \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\forall \pi . \neg\left(\text { Path } R s \pi \wedge \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\forall \pi . \neg \text { Path } R s \pi \vee \neg\left(\exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\forall \pi . \neg \text { Path } R s \pi \vee \forall i . \neg \neg \llbracket \psi \rrbracket_{M}(\pi(i)) \\
& =\forall \pi . \neg \text { Path } R s \pi \vee \forall i . \llbracket \psi \rrbracket_{M}(\pi(i)) \\
& =\forall \pi . \text { Path } R s \pi \Rightarrow \forall i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

- AG ψ means ψ true at all reachable states
- $\llbracket \mathrm{AG}(p) \rrbracket_{M}(s) \equiv \forall s^{\prime} . R^{*} s s^{\prime} \Rightarrow p \in L\left(s^{\prime}\right)$
- "can always reach a state satisfying p" is $A G(E F p)$

The defined operator EG

- Define $\mathbf{E G} \psi=\neg \mathbf{A F}(\neg \psi)$
- EG ψ true at s iff ψ true everywhere on some R-path from s

$$
\begin{aligned}
\llbracket \mathbf{E G} \psi \rrbracket_{M}(s) & =\llbracket \neg \mathbf{A F}(\neg \psi) \rrbracket_{M}(s) \\
& =\neg\left(\llbracket \mathbf{A F}(\neg \psi) \rrbracket_{M}(s)\right) \\
& =\neg\left(\forall \pi . \text { Path } R s \pi \Rightarrow \exists i . \llbracket \neg \psi \rrbracket_{M}(\pi(i))\right) \\
& =\neg\left(\forall \pi . \text { Path } R s \pi \Rightarrow \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\exists \pi . \neg\left(\text { Path } R s \pi \Rightarrow \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\exists \pi . \text { Path } R s \pi \wedge \neg\left(\exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\exists \pi . \text { Path } R s \pi \wedge \forall i . \neg \neg \llbracket \psi \rrbracket_{M}(\pi(i)) \\
& =\exists \pi . \text { Path } R s \pi \wedge \forall i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

The defined operator $\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$

- A $\left[\psi_{1} \mathbf{W} \psi_{2}\right]$ is a 'partial correctness' version of $\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$
- It is true at s if along all R-paths from s :
- ψ_{1} always holds on the path, or
- ψ_{2} holds sometime on the path, and until it does ψ_{1} holds
- Define

$$
\begin{aligned}
& \llbracket \mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right] \rrbracket_{M}(s) \\
& =\llbracket \neg \mathbf{E}\left[\left(\psi_{1} \wedge \neg \psi_{2}\right) \mathbf{U}\left(\neg \psi_{1} \wedge \neg \psi_{2}\right)\right] \rrbracket_{M}(s) \\
& =\neg \llbracket \mathbb{E}\left[\left(\psi_{1} \wedge \neg \psi_{2}\right) \mathbf{U}\left(\neg \psi_{1} \wedge \neg \psi_{2}\right)\right] \rrbracket_{M}(s) \\
& =\neg(\exists \pi \text {. Path } R s \pi
\end{aligned}
$$

$$
\begin{aligned}
\exists i . & \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \\
& \wedge \\
& \left.\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
\end{aligned}
$$

- Exercise: understand the next two slides!

$\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$ continued (1)

- Continuing:
$\neg(\exists \pi$. Path $R s \pi$
\wedge
$\left.\exists i . \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)$
$=\forall \pi$. \neg (Path R s π

$$
\left.\exists i . \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket M(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket M(\pi(j))\right)
$$

$=\forall \pi$. Path $R s \pi$

$$
\neg\left(\exists i . \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
$$

$=\forall \pi$. Path $R s \pi$

$$
\begin{aligned}
& \Rightarrow \\
& \forall i . \neg \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \vee \neg\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
\end{aligned}
$$

$\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$ continued (2)

- Continuing:
$=\forall \pi$. Path $R s \pi$

$$
\begin{aligned}
& \Rightarrow \text { i. } \neg \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \vee \neg\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
\end{aligned}
$$

$=\forall \pi$. Path $R s \pi$

$$
\begin{aligned}
& \Rightarrow \\
& \forall i . \neg\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right) \vee \neg \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i))
\end{aligned}
$$

$=\forall \pi$. Path $R s \pi$

$$
\begin{aligned}
& \Rightarrow \\
& \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi_{1} \vee \psi_{2} \rrbracket_{M}(\pi(i))
\end{aligned}
$$

- Exercise: explain why this is $\llbracket \mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right] \rrbracket_{M}(s)$?
- this exercise illustrates the subtlety of writing CTL!

Sanity check: $\mathbf{A}\left[\psi \mathbf{W}_{F}\right]=\mathbf{A G} \psi$

- From last slide:
$\llbracket \mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right] \rrbracket_{M}(s)$
$=\forall \pi$. Path $R s \pi$

$$
\Rightarrow \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi_{1} \vee \psi_{2} \rrbracket_{M}(\pi(i))
$$

- Set ψ_{1} to ψ and ψ_{2} to F :
$\llbracket \mathbf{A}[\psi \mathbf{W} \mathrm{F}] \rrbracket_{M}(\boldsymbol{s})$
$=\forall \pi$. Path Rs π

$$
\Rightarrow \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi \wedge \neg F \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi \vee F \rrbracket_{M}(\pi(i))
$$

- Simplify:

$$
\llbracket \mathbf{A}[\psi \mathbf{W} \mathrm{F}] \rrbracket_{M}(\mathbf{s})
$$

$=\forall \pi$. Path R s $\pi \Rightarrow \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(i))$

- By induction on i :

$$
\llbracket \mathbf{A}[\psi \mathbf{W} \mathrm{F}] \rrbracket_{M}(s)=\forall \pi \text {. Path } R s \pi \Rightarrow \forall i . \llbracket \psi \rrbracket_{M}(\pi(i))
$$

- Exercises

1. Describe the property: A[T W ψ].
2. Describe the property: $\neg \mathbf{E}\left[\neg \psi_{2} \mathbf{U} \neg\left(\psi_{1} \vee \psi_{2}\right)\right]$.
3. Define $\mathbf{E}\left[\psi_{1} \mathbf{W} \psi_{2}\right]=\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right] \vee E \mathbf{G} \psi_{1}$. Describe the property: $\mathbf{E}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$?

Recall model behaviour computation tree

- Atomic properties are true or false of individual states
- General properties are true or false of whole behaviour
- Behaviour of (S, R) starting from $s \in S$ as a tree:

- A path is shown in red
- Properties may look at all paths, or just a single path
- CTL: Computation Tree Logic (all paths from a state)
- LTL: Linear Temporal Logic (a single path)

Summary of CTL operators (primitive + defined)

- CTL formulae:

p	(Atomic formula - $p \in A P$)
$\neg \psi$	(Negation)
$\psi_{1} \wedge \psi_{2}$	(Conjunction)
$\psi_{1} \vee \psi_{2}$	(Disjunction)
$\psi_{1} \Rightarrow \psi_{2}$	(Implication)
$\mathbf{A X} \psi$	(All successors)
$\mathbf{E X} \psi$	(Some successors)
$\mathbf{A F} \psi$	(Somewhere - along all paths)
$\mathbf{E F} \psi$	(Somewhere - along some path)
$\mathbf{A G} \psi$	(Everywhere - along all paths)
$\mathbf{E G} \psi$	(Everywhere - along some path)
$\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$	(Until - along all paths)
$\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$	(Until - along some path)
$\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$	(Unless - along all paths)
$\mathbf{E}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$	(Unless - along some path)

Example CTL formulae

- EF(Started $\wedge \neg$ Ready)

It is possible to get to a state where Started holds but Ready does not hold

- AG(Req \Rightarrow AFAck)

If a request Req occurs, then it will eventually be acknowledged by Ack

- AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along every path starting anywhere: i.e. DeviceEnabled holds infinitely often along every path

- AG(EFRestart)

From any state it is possible to get to a state for which Restart holds
Can't be expressed in LTL!

More CTL examples (1)

- $\mathbf{A G}(R e q \Rightarrow \mathbf{A}[R e q \mathbf{U} A c k)$

If a request Req occurs, then it continues to hold, until it is eventually acknowledged

- $\mathbf{A G}(R e q \Rightarrow \mathbf{A X}(\mathbf{A}[\neg R e q \mathrm{U} A c k]))$

Whenever Req is true either it must become false on the next cycle and remains false until Ack, or Ack must become true on the next cycle
Exercise: is the AX necessary?

- $\mathbf{A G}($ Req $\Rightarrow(\neg$ Ack $\Rightarrow \mathbf{A X}(\mathbf{A}[$ Req \mathbf{U} Ack $])))$

Whenever Req is true and Ack is false then Ack will eventually become true and until it does Req will remain true
Exercise: is the AX necessary?

More CTL examples (2)

- $\mathbf{A G}($ Enabled $\Rightarrow \mathbf{A G}($ Start $\Rightarrow \mathbf{A}[\neg$ Waiting \mathbf{U} Ack $]))$ If Enabled is ever true then if Start is true in any subsequent state then Ack will eventually become true, and until it does Waiting will be false
- $\mathbf{A G}\left(\neg\right.$ Req $_{1} \wedge \neg$ Req $_{2} \Rightarrow \mathbf{A}\left[\neg R_{1}\right.$ q $_{1} \wedge \neg R_{2} \mathbf{~ U ~}\left(\right.$ Start $\left.\left.\left.\wedge \neg R e q_{2}\right)\right]\right)$ Whenever $R e q_{1}$ and $R e q_{2}$ are false, they remain false until Start becomes true with Req2 still false
- $\mathbf{A G}(R e q \Rightarrow \mathbf{A X}($ Ack $\Rightarrow \mathbf{A F} \neg R e q))$

If Req is true and Ack becomes true one cycle later, then eventually Req will become false

Some abbreviations

- $\mathbf{A X}_{i} \psi \equiv \underbrace{\boldsymbol{A X}(\mathbf{A X}(\cdots(\mathbf{A X} \psi) \cdots))}_{i \text { instances of } \mathbf{A X}}$
ψ is true on all paths i units of time later
- $\mathbf{A B F}_{i . . j} \psi \equiv \mathbf{A} \mathbf{X}_{i} \underbrace{(\psi \vee \mathbf{A X}(\psi \vee \cdots \mathbf{A X}(\psi \vee \mathbf{A X} \psi) \cdots))}_{j-i \text { instances of } \mathbf{A X}}$
ψ is true on all paths sometime between i units of time later and j units of time later
- $\mathbf{A G}\left(R e q \Rightarrow \mathbf{A X}\left(\right.\right.$ Ack $_{1} \wedge \mathbf{A B F}_{1 . .6}\left(\right.$ Ack $_{2} \wedge \mathbf{A}[$ Wait U Reply] $\left.\left.)\right)\right)$

One cycle after Req, Ack ${ }_{1}$ should become true, and then Ack ${ }_{2}$ becomes true 1 to 6 cycles later and then eventually Reply becomes true, but until it does Wait holds from the time of Ack $_{2}$

- More abbreviations in 'Industry Standard' language PSL

