Temporal Logic and Model Checking

Model
» mathematical structure extracted from hardware or software

v

v

Temporal logic

» provides a language for specifying functional properties

v

Model checking

» checks whether a given property holds of a model

v

Model checking is a kind of static verification
» dynamic verification is simulation (HW) or testing (SW)

Mike Gordon 1/128

Models

» A model is (for now) specified by a pair (S, R)
» Sis a set of states
» R is a transition relation

» Models will get more components later
» (S, R) also called a transition system

» R s s’ means s’ can be reached from s in one step
» here R: S — (S—B) (whereB = {irue, false})
» more conventional to have R C S x S, which is equivalent
> i.e. Riniscourse) S S’ < (5,8") € Risome textbooks)

Mike Gordon

2/128

A simple example model

» A simple model: ({0,1,2,3},A\n . ' = n+1(mod 4))
S R

» where “Ax. --- x---”is the function mapping xto --- x - --
» so Rnn =(n =n+1(mod 4))
»eg. R01AR12ANR23AR30

» Might be extracted from:

cnt — - (/:m:ﬂ cm;i
Clk { Cnt=1 |
¥ el \, N
H -

[N FF2 |
==D——=D—7 S N
\ 1 e 10 /
\)
' Cnt=0 ¢ Cnt=0

[Acknowledgement: http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm]

Mike Gordon 3/128

http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm

DIV: a software example
» Perhaps a familiar program:

0: R:=X;

1: Q:=0;

2 WHILE Y<R DO
3: (R:=R-Y;

4. Q:=0+1)

5:

» State (pc, x,y,r,9)
» pc € {0,1,2,3,4,5} program counter
» X, Y, r, q€ Zare the values of X, Y, R, 0
» Model (S,.,, Ry:v) where:
Sprv=[0.5]XZXZXxZxZ (where[m.n|={m,m+1,...,n})
Vnyq RDIV (O X, yar q) (17X7anaCI)
RDIV (1 X, yar q) (27X7y7r70)
Rorv (2,x,y,r,q) ((if y<rthen3 else5),x,y,r,q)
()(47X7Y7(r7y)7q)
RDIV (4 X yar q) (27X7yar7(q+1)

» [Above changed from lecture to make Ry partiall]

> > > >

Mike Gordon 4/128

Deriving a transition relation from a state machine

» State machine transition function : § : Inp x Mem—Mem

» Inpis a set of inputs
» Memis a memory (set of storable values)

» Model: (S;, Rs) where:

S5 = Inp x Mem
Rs (i,m) (iI',m') = (m = o(i,m))
and

» /" arbitrary: determined by environment not by machine
» m' determined by input and current state of machine

» Deterministic machine, non-deterministic transition relation

» inputs unspecified (determined by environment)
» so called “input non-determinism”

Mike Gordon 5/128

RCV: a state machine specification of a circuit
» Part of a handshake circuit:

dreg AAL,

or0

gObar

» Input: dreq, Memory: (g0, dack)
» Relationships between Boolean values on wires:

qObar = —q0

ao = qObar A dack
orQ = q0Vv a0

at = dreq A or0

» State machine: dzcy : B x (BxB)—(BxB)

dack

drev (dreq, (q0, dack)) = (dreq, dreq A (qQ0 Vv (—q0 A dack)))
N~ N———

Inp Mem

» RTL model — could have lower level model with clock edges

Mike Gordon

6/128

RCV: a model of the circuit

» Circuit from previous slide:

dreg L

qObar

or0

dack

» State represented by a triple of Booleans (dreq, q0, dack)

» By De Morgan Law: g0 Vv (—q0 A dack) = q0 Vv dack

» Hence dzcy corresponds to model (S:c, Rxcv) where:

SRCV =BxBxB
Rxcv (dreq, qO0, dack) (dreq’, q0’, dack’)

(g0’ = dreq) A (dack” = (dreq A (0 Vv dack)))
[Note: we are identifying B x B x B with B x (B x B)]

Mike Gordon

7/128

Some comments

» Rx-y is non-deterministic and total
» Reey (1,1,1) (0,1,1) and Ry (1,1,1) (1,1,1)
(where 1 = true and 0 = false)
» Recv (dreq, 0, dack) (dreq’, dreq, (dreq A (QO V dack)))
» Ry is deterministic and partial

» at most one successor state
» no successor when pc =5

» Non-deterministic models are very common, e.g. from:

» asynchronous hardware
» parallel software (more than one thread)

» Can extend any transition relation R to be total:
Riotas 8 = if (3s”". Rss")then Rs s else (s’ = s)
= Rss' v (-(3s".Rss") A (s =5))

» sometimes totality required
(e.g. in the book Model Checking by Clarke et. al)

Mike Gordon 8/128

JM1: a non-deterministic software example

» From Jhala and Majumdar’s tutorial:

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; O: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

» Two program counters, state:
San = [0.3] x[0.3] xZ x Z

—

pCcy, pcz, lock, x)

Vpcy pce lock x. Ry (0, pc2,0,x) (1,pco, 1, X) A
Ran (1, pcs, lock, x) (2, pcz, lock, 1) A
R (2,pC2,1,x) (8,pc2,0,x) A
R (pcy,0,0,x) (pci,1,1,x) A
Ry (pcy, 1, lock, x) (pet, 2, lock,2) A
Ran (pct,2,1,x) (pcy, 3,0, x)

» Not-deterministic:
RJMl (0,0,0,X) (170713)()
HJMl (Oa 07 O,X) (07 17 1 vX)

» Not so obvious that R, is a correct model

Mike Gordon 9/128

Atomic properties (properties of states)

» Atomic properties are true or false of individual states

» an atomic property pis a functionp: S — B
» can also be regarded as a subset of state: p C S

» Example atomic properties of RCV
(where 1 = frue and 0 = false)
Dregq(dreq, qQO0, dack) = (dreg=1)
NotQO0(dreq, g0, dack) = (q0=0)
Dack(dreq, qQO0, dack) = (dack = 1)
NotDregAndQO(dreq, q0,dack) = (dreq=0) A (q0=1)
» Example atomic properties of DIV
AtStart (pc,X,y,r,q) = (
AtEnd (pc, X, y,r,q) = (
InLoop (pc, X,y,r,q) = (
(
(

pc € {3,4})
YleqR(pCaxayarvq) = ygr)
Invariant (pc,X,y,r,q) = (x=r+(y xq))

Mike Gordon 10/128

Model behaviour viewed as a computation tree

» Atomic properties are true or false of individual states
» General properties are true or false of whole behaviour
» Behaviour of (S, R) starting from s € S as a tree:

initial state States after states after
onesiep twosteps

» A path is shownin red
» Properties may look at all paths, or just a single path

» CTL: Computation Tree Logic (all paths from a state)
» LTL: Linear Temporal Logic (a single path)

Mike Gordon 11/128

