
Temporal Logic and Model Checking

◮ Model

◮ mathematical structure extracted from hardware or software

◮ Temporal logic

◮ provides a language for specifying functional properties

◮ Model checking

◮ checks whether a given property holds of a model

◮ Model checking is a kind of static verification

◮ dynamic verification is simulation (HW) or testing (SW)

Mike Gordon 1 / 128



Models

◮ A model is (for now) specified by a pair (S,R)

◮ S is a set of states

◮ R is a transition relation

◮ Models will get more components later

◮ (S,R) also called a transition system

◮ R s s′ means s′ can be reached from s in one step

◮ here R : S → (S → B) (where B = {true, false})

◮ more conventional to have R ⊆ S × S, which is equivalent

◮ i.e. R(this course) s s′ ⇔ (s, s′) ∈ R(some textbooks)

Mike Gordon 2 / 128



A simple example model

◮ A simple model: ({0, 1, 2, 3}
︸ ︷︷ ︸

S

, λn n′. n′ = n+1(mod 4)
︸ ︷︷ ︸

R

)

◮ where “λx . · · · x · · · ” is the function mapping x to · · · x · · ·

◮ so R n n′ = (n′ = n+1(mod 4))

◮ e.g. R 0 1 ∧ R 1 2 ∧ R 2 3 ∧ R 3 0

0 1 2 3

◮ Might be extracted from:

[Acknowledgement: http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm]

Mike Gordon 3 / 128

http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm


DIV: a software example

◮ Perhaps a familiar program:
0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

◮ State (pc, x , y , r ,q)
◮ pc ∈ {0,1,2,3,4,5} program counter
◮ x , y , r , q ∈ Z are the values of X, Y, R, Q

◮ Model (SDIV,RDIV) where:

SDIV = [0..5]× Z× Z× Z× Z (where [m..n] = {m,m+1, . . . ,n})

∀x y r q.RDIV (0, x , y , r ,q) (1, x , y , x ,q) ∧
RDIV (1, x , y , r ,q) (2, x , y , r ,0) ∧
RDIV (2, x , y , r ,q) ((if y≤r then 3 else 5), x , y , r ,q) ∧
RDIV (3, x , y , r ,q) (4, x , y , (r−y),q) ∧
RDIV (4, x , y , r ,q) (2, x , y , r , (q+1)

◮ [Above changed from lecture to make RDIV partial!]

Mike Gordon 4 / 128



Deriving a transition relation from a state machine

◮ State machine transition function : δ : Inp × Mem→Mem

◮ Inp is a set of inputs
◮ Mem is a memory (set of storable values)

◮ Model: (Sδ,Rδ) where:

Sδ = Inp × Mem

Rδ (i ,m) (i ′,m′) = (m′ = δ(i ,m))

and

◮ i ′ arbitrary: determined by environment not by machine

◮ m′ determined by input and current state of machine

◮ Deterministic machine, non-deterministic transition relation

◮ inputs unspecified (determined by environment)

◮ so called “input non-determinism”

Mike Gordon 5 / 128



RCV: a state machine specification of a circuit
◮ Part of a handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ Input: dreq, Memory: (q0,dack)

◮ Relationships between Boolean values on wires:
q0bar = ¬q0
a0 = q0bar ∧ dack
or0 = q0 ∨ a0
a1 = dreq ∧ or0

◮ State machine: δRCV : B× (B×B)→(B×B)

δRCV (dreq
︸︷︷︸

Inp

, (q0,dack)
︸ ︷︷ ︸

Mem

) = (dreq, dreq ∧ (q0 ∨ (¬q0 ∧ dack)))

◮ RTL model – could have lower level model with clock edges

Mike Gordon 6 / 128



RCV: a model of the circuit

◮ Circuit from previous slide:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq,q0,dack)

◮ By De Morgan Law: q0 ∨ (¬q0 ∧ dack) = q0 ∨ dack

◮ Hence δRCV corresponds to model (SRCV,RRCV) where:

SRCV = B× B× B

RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =
(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

[Note: we are identifying B× B× B with B× (B× B)]

Mike Gordon 7 / 128



Some comments

◮ RRCV is non-deterministic and total

◮ RRCV (1,1,1) (0,1,1) and RRCV (1,1,1) (1,1,1)
(where 1 = true and 0 = false)

◮ RRCV (dreq,q0,dack) (dreq′,dreq, (dreq ∧ (q0 ∨ dack)))

◮ RDIV is deterministic and partial

◮ at most one successor state
◮ no successor when pc = 5

◮ Non-deterministic models are very common, e.g. from:

◮ asynchronous hardware
◮ parallel software (more than one thread)

◮ Can extend any transition relation R to be total:

Rtotal s s′ = if (∃s′′. R s s′′) then R s s′ else (s′ = s)

= R s s′ ∨ (¬(∃s′′. R s s′′) ∧ (s′ = s))

◮ sometimes totality required

(e.g. in the book Model Checking by Clarke et. al)

Mike Gordon 8 / 128



JM1: a non-deterministic software example

◮ From Jhala and Majumdar’s tutorial:
Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

◮ Two program counters, state: (pc1,pc2, lock , x)

SJM1 = [0..3]× [0..3]× Z× Z

∀pc1 pc2 lock x .RJM1 (0,pc2,0, x) (1,pc2,1, x) ∧
RJM1 (1,pc2, lock , x) (2,pc2, lock ,1) ∧
RJM1 (2,pc2,1, x) (3,pc2,0, x) ∧
RJM1 (pc1,0,0, x) (pc1,1,1, x) ∧
RJM1 (pc1,1, lock , x) (pc1,2, lock ,2) ∧
RJM1 (pc1,2,1, x) (pc1,3,0, x)

◮ Not-deterministic:
RJM1 (0,0,0, x) (1,0,1, x)
RJM1 (0,0,0, x) (0,1,1, x)

◮ Not so obvious that RJM1 is a correct model

Mike Gordon 9 / 128



Atomic properties (properties of states)

◮ Atomic properties are true or false of individual states

◮ an atomic property p is a function p : S → B

◮ can also be regarded as a subset of state: p ⊆ S

◮ Example atomic properties of RCV

(where 1 = true and 0 = false)

Dreq(dreq, q0, dack) = (dreq = 1)
NotQ0(dreq, q0, dack) = (q0 = 0)
Dack(dreq, q0, dack) = (dack = 1)
NotDreqAndQ0(dreq, q0, dack) = (dreq=0) ∧ (q0=1)

◮ Example atomic properties of DIV

AtStart (pc, x , y , r , q) = (pc = 0)
AtEnd (pc, x , y , r , q) = (pc = 5)
InLoop (pc, x , y , r , q) = (pc ∈ {3, 4})
YleqR (pc, x , y , r , q) = (y ≤ r)
Invariant (pc, x , y , r , q) = (x = r + (y × q))

Mike Gordon 10 / 128



Model behaviour viewed as a computation tree

◮ Atomic properties are true or false of individual states

◮ General properties are true or false of whole behaviour

◮ Behaviour of (S,R) starting from s ∈ S as a tree:

s

initial state states after
one step

states after
two steps

◮ A path is shown in red

◮ Properties may look at all paths, or just a single path

◮ CTL: Computation Tree Logic (all paths from a state)
◮ LTL: Linear Temporal Logic (a single path)

Mike Gordon 11 / 128


