
Applying theorem proving to formal property languages

Mike Gordon Cambridge mjcg@cl.cam.ac.uk

It has been said that assertion-based methodologies offer the same leap in productivity for verifica-
tion that logic synthesis did for design entry1. Assertions are written in a property language and
there are currently three competing languages: PSL/Sugar, SystemVerilog Assertions (SVA), both
from the Accellera organisation, and the proprietary e language from Verisity.

We have been looking at various ways of using theorem proving to debug and execute the formal
semantics of PSL/Sugar2. In the talk I will review this work and then discuss progress on further
applications of theorem proving that are being explored.

A problem that besets the current use of assertions is that different tools use different property
languages, and it is unclear whether only one language will survive, or if there will be several, each
supported by different tools. We are investigating formally verifying translation mappings between
languages, and then creating automated translators that execute the mappings. This will enable
properties to be ‘ported’ between languages with a formal guarantee that meaning is preserved.

Another problem is difficulty in being sure that requirements have been accurately captured by
sets of properties. The standard property languages are low level and there is a large gap between
natural language descriptions of behaviour (e.g. as found in bus architecture manuals) and property
language syntax. We are investigating sequential constructs that are higher level and more natural
to use than those in the current industrial languages. The hope is that more powerful semantic
frameworks can provide more ‘engineer friendly’ specification methods that can be supported
by theorem proving tools. Initially we are experimenting with Interval Temporal Logic (ITL,
Moskowski3) and Event Sequence Language (Fisler4). ITL provides predicates on intervals that go
beyond regular expressions and Event Sequence Languages formalise concepts derived from timing
diagrams. So far we have made a very preliminary foray into replacing the regular expressions of
PSL with ITL formulas, and the results suggest potential for power and elegance. We also plan
to add richer data modelling capabilities, including user defined data-types as found in modern
specification notations such as Z, HOL and PVS. Our goal is to use theorem proving to automate
the translation of properties captured using higher level constructs into standard formats like PSL.

We are planning to adapt methods from program verification (e.g. verification conditions) for
statically checking, by theorem proving, that high level properties hold of models. Current property
languages only contain boolean variables, and consequently support decision algorithms. Our
extensions immediately take us into undecidable territory, but as we plan to use theorem proving,
we hope that significant bespoke automation can be developed for common idioms.

We envisage our theorem proving ‘point tools’ being combined into an integrated environment, or
Property Studio, to aid specifiers create properties and to provide facilities for converting them
into the forms and notations they need (e.g. factoring complex properties into equivalents sets of
simpler ones, then expressing them in a specific property language). A methodological question
our research will address is whether a theorem prover can be an effective platform for implementing
such an environment.

Summary: brief review of achievements in applying theorem proving to PSL/Sugar, followed by
a report on ongoing research (much of it not started when this abstract was written).

1http://www.eetimes.com/story/OEG20021112S0031
2http://www.cl.cam.ac.uk/users/mjcg/Sugar/
3http://www.cse.dmu.ac.uk/~cau/itlhomepage/
4ftp://ftp.cs.wpi.edu/pub/techreports/pdf/03-24.pdf

1


