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Temporal Logic and Model Checking

» Model

» mathematical structure extracted from hardware or software
» Temporal logic

» provides a language for specifying functional properties
» Model checking

» checks whether a given property holds of a model

» Model checking is a kind of static verification
» dynamic verification is simulation (HW) or testing (SW)
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Models

» A model is (for now) specified by a pair (S,R)
» S is a set of states
» R is a transition relation

» Models will get more components later

» (S,R)is a transition system

» R s s’ means s’ can be reached from s in one step

» hereR:S — (S —B) (where B = {true, false})
» more conventional to have R C S x S, which is equivalent
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A simple example model

» A simple model: ({0,1,2,3}, Ann’. n' = n+1(mod 4))

» where “)\x. --

Ve

S

Ve

R

-X ---"is the function mapping x to - - - X - - -

» sSoRnn =(n" =n+1(mod 4))
» eg.RO1IAR12AR23AR30

» Might be extracted from:
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Dl V: a software example
» Perhaps a familiar program:

0: R =X

1:  Q =0;

2:  VH LE Y<R DO
3: (R=RY,

4 Q=0

» State (pc,x,y,r,q)

» pc € {0,1,2,3,4,5} program counter

» X,Y,I,q¢€ Zarethe values of X, Y, R, Q
» Model (SD| v, Rp \/) where:

Soiv=[0.5]|XZXZXZ XZ

) r.q :( 7yaxvq)) A
(pC — ) = ((pC’,X’,y’,r’,q’) — ( X5 Y, r,O)) A
(pc =2) = ((pc’, X", y', 1", q") =
if y<r then (3,x,y,r,q) else (5,x,y.r,q)) A
(pC — ) = ((pclaxlvyla rlaq/) — (47X7y7 (r_y)vq)) A
(pc =4) = ((pc’,x",y",r",q") = (3,x,y, 1, (q+1))
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Deriving a transition relation from a state machine

» State machine transition function: § : | x S—l

» | is a set of inputs

» State transition relation : R (i,s) (i’,s') = (s’ = 4(s,i))

» i’ arbitrary: determined by environment not machine

» Deterministic machine, non-deterministic transition relation

» inputs unspecified (determined by environment)

» so called “input non-determinism”
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RCV: a hardware model

» Part of a handshake circuit:

dreq

q0

gObar

B

or0

T

dack

» State represented by a triple of Booleans (dreq, g0, dack)

» Relationships between Boolean values on wires:
gObar A dack
go v a0

dreq v or0

gObar
a0
orO
al

» A model of RCV is (Sgev, Rrev) Where:

SRCV:BXBXB

Rrev (dreq, q0, dack) (dreq’,q0’, dack’) =
(q0’ = dreq) A (dack’ = (dreq A (g0 Vv (—g0 A dack))))

Mike Gordon
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Some comments

» Rrev IS non-deterministic and total

» Rrev(1,1,1) (0,1,1) and Rrev (1,1,1) (1,1,1)
(where 1 = true and 0 = false)

» Rrev (dreq, q0,dack) (dreq’, dreq, (dreq A (g0 Vv dack)))
» Rp v Iis deterministic and partial

» at most one successor state
> No successor when pc =5

» Non-deterministic models are very common, e.g. from:

» asynchronous hardware
» parallel software (more than one thread)

» Can extend any transition relation R to be total:
Riotal SS' =R ss’A(=(3s".Rss") = (s'=59))

» sometimes totality required
(e.g. in the book Model Checking by Clarke et. al)

Mike Gordon
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JML: a non-deterministic software example

» From Jhala and Majumdar’s tutorial:

Thread 1 Thread 2

0: |IF LOCK=0 THEN LOCK: =1; O | F LOCK=0 THEN LOCK: =1;
1. X =1; 1. X =2

2. | F LOCK=1 THEN LOCK: =0; 2: |IF LOCK=1 THEN LOCK: =0;
3. 3.

» Two program counters, state: (pcy, pcs, lock, x)
SJ|\/[]_ = [03] X [03] X 1 X 1

RJN[]_ (O, pCz,O,X) (1,pC2,1,X)
Rym (1, pcg,lock,x) (2,pc,,lock, 1)
RJN[]_ (2,pC2,1,X) (3,pC2,0,X)
Rym (pc1,0,0,x) (pc1,1,1,x)
Rym (pc1,1,lock,x) (pcy,2,lock,2)
RJN[]_ (pCl,Z,l,X) (pC1,3,0,X)
» Not-deterministic:

RJN[L(0,0,0,X)(].,O,].,X)
RJNU_(0,0,0,X)(O,l,l,X)

» Not so obvious that Rj IS a correct model
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Atomic properties (properties of states)

» Atomic properties are true or false of individual states

» an atomic property Pis afunctionP:S — B
» can also be regarded as a subset of state: P C S

» Example atomic properties of RCV
(where 1 =true and 0 = F)

Dr eq(dreq, q0, dack)
Not QO0(dreq, q0, dack)
Dack(dreq, q0, dack)
Not Dr eqANdQO(dreq, q0,dack) =

» Example atomic properties of DI V

(dreq = 1)

(90 =0)

(dack = 1)
(dreq=0) A (q0=1)

At Start (pc,x,y,r,q) = (pc =0)

At End (pc,Xx,y,r,q) = (pc =5)

| nLoop (pc,X,y,r,q) = (pc € {3,4})
Yl eqR(pc,x,y,r,q) = (y <r)

| nvari ant (pc,x,y,r,q) = (x=r+(y xq))
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Model behaviour viewed as a computation tree

» Atomic properties are true or false of individual states
» General properties are true or false of whole behaviour
» Behaviour of (S, R) starting from s € S as a tree:

initial state Statesafter states after
onestep  two steps

» A path is showninred
» Properties may look at all paths, or just a single path

» CTL: Computation Tree Logic (all paths from a state)
» LTL: Linear Temporal Logic (a single path)
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Paths

» A path of (S,R) is represented by a function 7 : N — S

» (i) is the ith element of = (first element is 7(0))
might sometimes write 7 i instead of 7 (i)

7|l is the i-th tail of = so «|i(n) = 7 (i 4+ n)
successive states in a path must be related by R

vV vy

» Path R s 7w is true if and only if 7 is a path starting at s:
PathRs 7 = (n(0)=s) A Vi.R (n(i)) (7(i+1))
where:

Path: (S—S—B)— S —(N—-S)—B
tra|1n§ition Isr;gltil path
relation
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RCV: example hardware properties

» Consider this timing diagram:

-
-t -- -

-

» Two handshake properties representing the diagram:

» following a rising edge on dr eq, the value of dr eq

remains 1 (i.e. true) until it is acknowledged by a rising
edge on dack

' ' N — NS
‘ ‘ AN
! ! g [

o e

» following a falling edge on dr eq, the value on dr eq
remains O (i.e. false) until the value of dack is O

» A property language is used to formalise such properties
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Dl V: example program properties

(])_ 5 f?)( At St ar(t (pc,x,y,r),q) = gpc :0;
. g At End (pc, x,y,r1,(Q = (pc =5
: <
2 TRLRYSRDOL inloop(pe,xy.ra) = (pc € (3,4))
4 Q‘ :Q-I-l) Yl eqR(pC,X,y,r,Q) - (y < r)
5: I nvariant (pc,x,y,r,q) = (x=r+(y xq))

» Example properties of the program DI V.

» on every execution if At End is true then | nvari ant is true
and Yl eqRis not true

» 0N every execution there is a state where At End it true

» on any execution if there exists a state where Yl eqRis true
then there is also a state where | nLoop is true

» Compare these with what is expressible in Hoare logic

» execution: a path starting from a state satisfying At St ar t
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JML: a non-deterministic program example

Thread 1

3:

0: | F LOCK=0 THEN LOCK: =1: O:
1. X =1; 1:

2: | F LOCK=1 THEN LOCK: =0; 2:
3:

X =2;

Thread 2
| F LOCK=0 THEN LOCK: =1;

| F LOCK=1 THEN LOCK: =0;

RJI\/[I. (Oapc2707X)
RJM]. (17pC27IOCk7X)
RJI\/I]. (27p02717X)
Riwm (pc1,0,0,x)
Rim (pc1,1,lock, x)
Riow (pc1,2,1,x)

» An atomic property:
» Not At 11(pcy, pca,lock,x) = =((pc1 = 1) A (pc2 = 1))
» A non-atomic property:
» all states reachable from (0,0, 0, 0) satisfy Not At 11

(1, pco,1,X)
(2,pcy,lock, 1)
(3,pcC2,0,x)
(pc1,1,1,x)
(pcy, 2,lock, 2)
(pc1,3,0,x)

» this is an example of a reachability property

Mike Gordon
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Reachability

» R s s’ means s’ reachable from s in one step

» R" s s’ means s’ reachable from s in n steps
Riss = (s=¢/)
R'"tlss’ = 3s” Rss"AR"s"¢

» R* s s’ means s’ reachable from s in finite steps
R*ss’'=3dn.R"s ¢’

» Note: R*s s’ & Jxn. PathR s 7 A (s’ = 7(n))
» The set of states reachable from s is {s’ | R* s s’}

» Verification problem: all states reachable from s satisfy p
» verify truth of Vs’. R* s s’ = p(s’)
» e.g. all states reachable from (0,0, 0, 0) satisfy Not At 11
> i.e.Vs'. R%y (0,0,0,0) s’ = Not At 11(s’)
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Model checking reachability properties

» Assume a model (S,R)
» Assume also a set Sy C S of Initial states

» Assume also a set AP of atomic properties

» ifpe AP thenp:S — B
» T.F € AP where Vs € S.T(s)=true and Vs € S.F(s)=false

» A Kripke structure is a tuple (S, Sg, R, AP)
» often the term “model” is used for a Kripke structure

» i.e. amodelis (S, Sp, R, AP) rather than just (S, R)
» sometimes AP omitted: one says “Kripke structure over AP”

» Model checking computes whether (S, Sp, R,AP) = ¢

> ¢ IS a property expressed in a property language
» informally M = ¢ means “wff ¢ is true in model M”
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Aside on models and Kripke structures

» Definition of “model” and “Kripke structure” varies

» Initially we defined a model to be (S, R)

» On previous slide a model was (S, R, Sg, AP)

» (S,R) or (S,R,Sp) sometimes called transition systems

» We called (S, R, S, AP) a Kripke structure

» Clarke et al. define a Kripke structure as (S, Sp, R, L)
» AP a given set of “atomic propositions” interpreted by L

» L:S — P(AP)
> AP (this course) = 1(AS- P € L(S)) | P € AP(Clarke et al.) }
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Minimal property language: ¢ is GAp where p € AP
» Assume M = (S, Sp, R, AP)

» Reachable states of M are {s’ | 9s € Sg. R* s s’}

» |.e. the set of states reachable from an initial state
» define Reachable M = {s’ | ds € Sp. R* s s’}

» Consider properties ¢ of form GAp where p € AP
» “GA” stands for “Globally Always”

» M = GAp means p true of all reachable states of M

» IfM = (S, S, R,AP) then M = ¢ formally defined by:

M = GAp < Vs'. s’ € Reachable M = p(s’)

Mike Gordon 18/118
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Model checking M = GAp

» M = GAp & Vs'. s’ € Reachable M = p(s’)

< Reachable M C {s’ | p(s’)}
SO:
» compute Reachable M i.e. compute {s’ | 3s € Sp. R* s s’}

» check p true of all its members
> LetS ={s’|ds € Sp. R*s s’}

» Compute S iteratively: § = SopUS1U---USpU - -

» where: 5o = Sp (set of initial states)
» and inductively: S, =S, U{s’ |ds € Sy AR s s’}

> Clearly So €S C -+ €85 C -+
» Hence if S;y= Sp1 then § = Sy

» Algorithm: compute Sy, S1, ..., until no change;
check p holds of all members of computed set
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compute Sp, 51, ..., until no change;
check p holds of all members of computed set

» Does the algorithm terminate?

» yes, if set of states is finite, because then no infinite chains:
SoCSC---CSC---

» How to represent Sp, Sq, ... 7

» explicitly (e.g. lists or something more clever)
» symbolic expression

» Huge literature on calculating set of reachable states

Mike Gordon 20/118
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Example: RCV

» Recall the handshake circuit:

dr dack
T or0

» State represented by a triple of Booleans (dreq, g0, dack)

» A model of RCV is Mgoy Where:

M = (Srev; {(1,1,1)}, Rrov, AP)

and
Rrev (dreq, q0, dack) (dreq’, q0’, dack’) =
(q0’ = dreq) A (dack’ = (dreq A (g0 Vv dack)))

Mike Gordon 21/118
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RCV state transition diagram

» Possible states for RCV:
{000,001,010,011,100,101,110,111}
where b,b, by denotes state
dreqg=Dby A g0 =Db; A dack =bg

» Graph of the transition relation:

()

» 100 111

AN

011

1

Mike Gordon
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Computing Reachable Mgey

()

» 100 111

NN

011

» Define:
So = {bzblbo ’ bgblbo c {111}}
Siin =6 U {S/‘HSESi.RRC\/SS/}

=& U {bsbiby |
Jb,obibg € Si. (b] =bz) A (by =ba A (b1 V b))}

Mike Gordon 23/118
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Computing Reachable Mgey (continued)

()

2 3
» 100 » 110 » 111

AN

/

1
011

» Compute:
So = {111}
Sy = {111} U {011}
= {111,011}

S, ={111,011} U {000,100}
— {111,011, 000, 100}

Ss = {111,011,000,100} U {010,110}
= {111,011,000, 100, 010, 110}

S =83 (I > 3)
» Hence Reachable Mrey = {111,011, 000, 100,010, 110}
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Model checking Mgev = GAp

» M = (Srov, {111}, Rrey, AP)
» if p € AP then p : Sgey—B

» To check Mroy = GAp
» compute Reachable Mgcy = {111,011,000, 100,010,110}
» check Reachable Mgcy C {s | p(s)}, i.e. check:

p(111) = true
p(011) = true
p(000) = true
p(100) = true
p(010) = true
p(110) = true

Mike Gordon 25/118
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Symbolic Boolean model checking of reachability

» Assume states are n-tuples of Booleans (b, ..., by)
» b; € B = {true, false}
» S =B", so S is finite: 2" states

» Assume n distinct Boolean variables: vq,. . .,v,
» e.g.ifn=3thencould have vi = x,vo =y,v3 =12

» Boolean formula f(vy,...,v,) represents a subset of S
» f(vq,...,vn) only contains variables vi,. . .,v,
» f(by,...,b,) denotes result of substituting b; for v;

» f(vi,...,vn)determines {(by,...,b,)[f(by,...,bn) < true}
» Example —(x = y) represents {(true, false), (false, true)}

» Transition relations also represented by Boolean formulae
» e.9. Rrev represented by:
(q0’ = dreq) A (dack’ = (dreq A (90 Vv (—q0 A dack))))
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Symbolically represent Boolean formulae as BDDs

» Key features of Binary Decision Diagrams (BDDs):

» canonical (given a variable ordering)
» efficient to manipulate

» Variables:
\Y; = |If vthen 1 else O
-v = |f vthen 0 else 1

» Example: BDDs of variable v and —v
o] o
» Example: BDDs of vl Av2 andvl Vv2

Mike Gordon 271118
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More BDD examples

» BDD ofvl =v?2

» BDD of vl £v2

Mike Gordon 28/118
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BDD of a transition relation

» BDDs of
(vl = (vl =v2)) A (v2' = (V1 #Vv2))

with two different variable orderings

» Exercise: draw BDD of Rrey

Mike Gordon 29/118
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Standard BDD operations

>

Mike Gordon

If formulae f;, f> represents sets S, S,, respectively
then f; ATy, f1 VT, represent S; NSy, S1 U S, respectively

Standard algorithms compute Boolean operation on BDDs
Abbreviate (v{,...,vy)toV

If f(V) represents S
and g(v,V’) represents {(V,V') | RV V')}
then 3u. f(U) Ag(u,V) represents {v | du. U e SAR UV}

Can compute BDD of Ju. h(u, V) from BDD of h(u, V)
» e.g. BDD of 3v;. h(vy,Vv,) is BDD of h(T,v2) vV h(F,v>)

From BDD of formula f(vq,...,v,) can compute by, ..., b,
such thatif vy = Dby, ..., vy = by thenf(by,... by) < true

» b4, ..., b, is a satisfying assignment (SAT problem)
» used for counterexample generation (see later)

30/118

30



Reachable States via BDDs
» Assume M = (S,Sp,R,AP)and S = B"
» Represent R by Boolean formulae g(V,Vv/)
» Iteratively define formula f,(V) representing S,

fo(V) = formula representing Sy

—

farr (V) =f (V) V (3d. fo(U) A g(u,v))
» Let 53y, Br be BDDs representing fo(V), g(V,V’)
» Iteratively compute BDDs 5, representing f,
Bay1=Bn vV (3U. Bnlu/V] A Br)[U,V/V,V']

» efficient using (blue underlined) standard BDD algorithms
(renaming, conjunction, disjunction, quantification)

» BDD B, only contains variables v: represents S, C S

» At each iteration check 5, 1 = B, efficient using BDDs

» when 5,.1 = B, can conclude B, represents Reachable M

» we call this BDD By, in a later slide (i.e. By = 5,)
Mike Gordon 31/118

31



Example BDD optimisation: disjunctive partitioning

Three state machines in parallel

> " 6,0y,0; B x B x B—B

» Transition relation (asynchronous interleaving semantics):

R (X,y,z) (x,y',z") =

(X' =d(x,y,2) AN Yy' =y A zZ )V
x'=x Ay =d(X,y,z) N Z ) V
X'=x ANy =y A Z =05(XY,2))

/

Y4
Y4

Mike Gordon 32/118
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Avoiding building big BDDs

» Transition relation for three machines in parallel
R(x,y,z) (X",y",2') =
(X' =d(x,y,2) Ny =y AN Z/=2)V
X'=x AN Yy =d(X,y,2) N 2/=2)V
X'=x Ay =y A Z=65(XY,2))

» Recall symbolic iteration:
fara(V) = (V) v (3U. fn(U) A g(u,v))

» For the 3-machine example this is (see next slide):

fn+l(X7y7Z)
=fa(X,y,2) V(XY Z. fo(X,¥,Z) AR (X,VY,2Z) (X,Y,2))
= fn(X,y,2) V

IX. fh(X,y,2) A X =0(X,Y,2)) V

Jy. fa(X,Y,z) Ay =0dy(X,Y,2Z)) V

3z.fa(X,Y,Z) A Z =0,(X,y,Z

» Don’'t need to calculate BDD of R!

Mike Gordon 33/118
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Disjunctive partitioning

ny Z'fn(y7y7z) /\ R (Y,y,Z) (X,y,Z)

S I

11l
X X X

<<

ININ N

i
X X X

<<

N N |IN
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Verification and counterexamples

» Typical safety question:

> is property p true in all reachable states?
» i.e. check M = GAp
» i.e.isVs.s € Reachable M = p s

» Check using BDDs

» compute BDD B,, of Reachable M
» compute BDD 53, of p(V)

» check if BDD of By = B, is the single node |1

» Valid because true represented by a unique BDD
(canonical property)

» IfBDDis not|1

Mike Gordon
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Generating counterexamples

BDD algorithms can find satisfying assignments (SAT)

>

vV v v . vY

v

M = (S,Sp,R,AP) and By, B, ..., Bu, Br, By as earlier
Suppose By = By is not |1
Must exist a state s € Reachable M such that —(p s)

Let 5, be the BDD representing —(p V)
Iterate to find first n such that B, A B-p

Using SAT find by, such that (B, A B-p)[bn/V]

—

Use SAT to find b,_ such that (B,_1 A Br[bn/V/])[bn_1/V]
For 0 <i < n find b; such that (5B;_1 A Br[bi /V'])[bi_1/V]

—

» bg,...,bj,...,b, Is a counterexample trace

» Sometimes can use partitioning to avoid constructing Br

Mike Gordon
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Example (from an exam)

Consider a 3x3 array of 9 switches

Suppose each switch 1,2,...,9 can either be on or off, and that toggling any switch will
automatically toggle all its immediate neighbours. For example, toggling switch 5 will
also toggle switches 2, 4, 6 and 8, and toggling switch 6 will also toggle switches 3, 5
and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the
behavior of the array of switches

You are given the problem of getting from an initial state in which even numbered
switches are on and odd numbered switches are off, to a final state in which all the
switches are off.

(b) Write down predicates on your state space that characterises the initial [2 marks]
and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of switches to
toggle to get from the initial to final state. [6 marks]

You are not expected to actually solve the problem, but only to explain how to represent
it in terms of model checking.
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Solution

A state is a vector (vo, vi, v2, v3, v4, v5, v6, v7, v8), wWhere vi € B
(vi true iff switch numberi +1 is on)

A transition relation Tr ans is then defined by:

Trans(vO, v1,v2,v3,v4,v5,v6,v7,v8)(v0' ,vl ,v2 ,v3 ,v4 ,v5 ,v6 ,v7 ,v8" )
= ((vO ==v0) A(VvY ==v1) A(Vv2 =v2) A(V3 ==v3) A(V4 =v4) A
(v5 =vb) A(v6’' =v6) A(V7’ =v7) A(v8 =v8)) (toggle switch )
V ((v0 ==v0) A(v1 ==v1) A(V2 ==Vv2) A(V3’ =v3) A(V4 ==v4) A
(v5 =v5) A(v6’ =v6) A(V7 =v7) A(v8 =v8)) (toggle switch 2
V ((v0 =v0) A(Vv1 ==v1) A(Vv2 ==v2) A(V3’ =v3) A(V4 =v4) A
(v5 ==v5) A(v6’ =v6) A(V7 =v7) A(v8 =v8)) (toggle switch 3
V ((v0 ==v0) A(v1 =v1) A(Vv2 =v2) A(V3 =—v3) A(V4 =—v4) A
(v5' =vb) A(v6' =—v6) A(V7' =v7) A(Vv8 =v8)) (toggle switch 4
V ((v0 =v0) A(V]1 =—=v1) A(V2 =v2) A(V3 ==Vv3) A(V4 =—v4) A
(v5' ==v5) A(v6’ =vB) A(V7 ==v7) A(Vv8 =v8)) (toggle switch 5
V ((v0 =v0) A(v1 =v1) A(V2' ==v2) A(v3’ =v3) A(V4 =—v4) A
(v5' ==v5) A(v6’ =v6) A(V7 =v7) A(Vv8 =—v8)) (toggle switch §
V ((v0 =v0) A(v1 =v1) A(Vv2 =v2) A(V3 =—v3) A(V4 =v4) A
(v5' =vb) A(Vv6 ==v6B) A(V7 ==v7) A(v8 =v8)) (toggle switch ¥
V ((v0 =v0) A(Vv1 =v1) A(v2 =v2) A(Vv3 =v3) A(V4’ ==v4) A
(v5" =vB) A(v6 ==vB) A(V7 ==v7) A(v8 =-v8)) (toggle switch §
V ((v0 =v0) A(Vv1 =v1) A(Vv2 =v2) A(V3 =v3) A(V4' =v4) A
(v5" ==v5) A(v6’ =v6) A(V7 ==v7) A(v8 =-v8)) (toggle switch 9
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Solution (continued)

Predicates 1 ni t, Fi nal characterising the initial and final states,
respectively, are defined by:

Init(v0,vl,v2,v3,v4,v5,v6,v7,v8) =
-vO A vl AN =v2 AN V3 A -v4 AN VE A =v6 A V7 A V8

Final (vO,vl,v2,v3,v4,v5 v6,v7,v8) =
-vO A vl A -v2 A -vV3 A -v4 A =-vb A =v6 A V7 A —Vv8

Model checkers can find counter-examples to properties, and
sequences of transitions from an initial state to a
counter-example state. Thus we could use a model checker to
find a trace to a counter-example to the property that

—Fi nal (vO,v1,v2,v3,v4,v5 v6,v7, v8)
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Properties
» Vs € Sg. R"s = p s means p true in all reachable states

» Might want to verify other properties
1. Devi ceEnabl ed holds infinitely often along every path

2. From any state it is possible to get to a state where
Rest art holds

3. After a three or more consecutive occurrences of Req there
will eventually be an Ack

» Temporal logic can express such properties

» There are several temporal logics in use
» LTL is good for the first example above
» CTL is good for the second example
» PSL is good for the third example

» Model checking:
» Emerson, Clarke & Sifakis: Turing Award 2008

» widely used in industry: first hardware, later software
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Temporal logic (originally called “tense logic”)

Originally devised for investigating: “the relationship
between tense and modality attributed to the Megarian
philosopher Diodorus Cronus (ca. 340-280 BCE)".

Mary Prior, his wife, recalls “I remember his waking me
one night [in 1953], coming and sitting on my bed, ... and
saying he thought one could make a formalised tense logic”.

A N Prlor
1914-1969

» Temporal logic: deductive system for reasoning about time
» temporal formulae for expressing temporal statements
» deductive system for proving theorems

» Temporal logic model checking
» uses semantics to check truth of temporal formulae in models

» Temporal logic proof systems also importantin CS
» use pioneered by Amir Pnueli (1996 Turing Award)
» not considered in this course

Recommended: htt p: // pl at 0. st anford. edu/ entri es/pri or/
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Temporal logic formulae (statements)

» Many different languages of temporal statements

» linear time (LTL)

» branching time (CTL)

» finite intervals (SERES)

» industrial languages (PSL, SVA)

» Prior used linear time, Kripke suggested branching time:

... we perhaps should not regard time as a linear series ... there are
several possibilities for what the next moment may be like - and for
each possible next moment, there are several possibilities for the
moment after that. Thus the situation takes the form, not of a linear
sequence, but of a 'tree’.

[Saul Kripke, 1958 (aged 17, still at school)]

» CS issues different from philosophical issues

» Moshe Vardi: “Branching vs. Linear Time: Final Showdown”
http://www.computer.org/portal/web/awards/Vardi

Moshe Vardi (aged 56, still at school)
Www.computer.org

"For fundamental and lasting contributions to the development
of logic as a unifying foundational framework and a tool for
modeling computational systems"

2011 Harry H. Goode Memorial Award Recipient
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Linear Temporal Logic (LTL)

» Grammar of well formed formulae (wff) ¢

o =P (Atomic formula:p € AP)
o) (Negation)
1V ¢ (Disjunction)
Xo (successor)
| Fo (sometimes)
Go (always)
[p1 U @] (Until)

» Details differ from Prior’s tense logic — but similar ideas

» Semantics define when ¢ true in model M

» where M = (S, R, Sg, AP) — a Kripke structure
» notation: M = ¢ means ¢ true in model M
» model checking algorithms compute this (when decidable)
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M &= ¢ means “wff ¢ is true in model M”

» IfM = (S, Sp, R, AP) then
7w is an M-path starting from s iff Path R s =

» If M = (S, Sp,R,AP) then we define M |= ¢ to mean:
¢ is true on all M-paths starting from a member of Sy

» We will define [¢]v (7) to mean

¢ is true on the M-path =

» Thus M = ¢ will be formally defined by:
ME® & Vrs.se SpAPathR s 7= [¢]m(7)

» It remains to actually define [¢]y for all wifs ¢
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Definition of [¢]w ()

> [¢]m () is the application of function [¢]y to path 7
» thus [¢]m : (N—S) — B
» LetM = (S, Sg, R, AP)
[¢]m is defined by structural induction on ¢

[Plm(7) = p(7 0)

[—é]m () = ([¢lm (7))

[61V golm(m) = [e1lm(m) V [p2]m(m)

[Xo]m () = [olm(7l1)

[Folm(m) = dJi. [¢]m (i)

[Golm () = Vi. [¢]m(7li)

[[¢1 U go]lm(m) = 3i. [¢2]m(wli) A V. j<i = [é1]m(7l))

» We look at each of these semantic equations in turn
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[p]m(7) = p(7 O)

» Assume M = (S, Sp, R, AP)

» We have: [p]y(7) = p(x 0)
> P IS an atomic property, i.e. p € AP
» T:N—-Ssonr0eS
» 7 0 is the first state in path =
» p(7 0) is true iff atomic property p holds of state 7 O

» [p]m(7) means p holds of the first state in path =

» Assume T,F € AP with T(s) = true and F(s) = false
> [T]wm () is always true

» [F]m () is always false
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[-élm(m) = —([¢]m())
[61 v @o]m(m) = [P1lm(7) V [d2]m(7)

> [=0lm(m) = ~([¢Im (7))

> [—o]m(7) true iff [¢]w () is not true

> [¢1 V po]m(m) = [d1]m(7) V [p2]m(7)

> [o1 V ¢2]m(m) true iff [¢1]m(7) is true or [op2]m () is true
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[XoIm(r) = [¢Im(7l1)

> [XoIm(m) = [¢lm(nl1)
» m|1is m with the first state chopped off
m1(0) =7(1+0) = 7(1)
m1(l) =n(1+1) ==n(2)
m1(2) = 7(1+ 2) = n(3)

> [Xo]m(m) true iff [¢] true starting at the next state of =
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[Folm(m) = 3i. [¢lm(7li)

> [Folm(m) = 3i. [o]m (i)

» mm is w with the first i states chopped off

mi(0) = 7(i +0) = =(i)
nli(1) = (i + 1)
W(Z) = (i +2)

> [o]m (mi) true iff [¢]y true starting i states along 7

> [Folm(m) true iff [¢]m true starting somewhere along =

» “Fo¢” is read as “sometimes ¢”
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[Golm(r) = Vi. [¢]m(mli)
> [Golm(m) = Vi. [P]m(mli)

» 7l is 7 with the first i states chopped off
> [¢]m (i) true iff [¢]w true starting | states along 7

> [Go]m () true iff [¢] true starting anywhere along =
» “Go” is read as “always ¢” or “globally ¢”
» M |= GAp defined earlier: M = GAp < M = G(p)

» G is definable in terms of F and —: G¢ = —(F(—¢))

[=(F(—¢))Im(m) ~([F(—¢)Im(m))
=(3i. [~o]m(7li))
=31 ~([@lm(li)))
Vi. [¢]m (wli)
[Golm(m)
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[[¢1 U @2]lm(m) = Fi. [@2]m(wli) AV j<i = [o1]m (7))

> [[¢1 U @2]lm(m) = 3i. [@2]m(wli) A V). j<i = [o1]m(7l])
> [p2]m(mli) true iff [¢,]m true starting i states along =

> [o1]m(nl]) true iff [¢1]m true starting j states along 7

> |I[¢1 U ¢2]]]M (7T) IS true iff
[¢2]m istrue somewhere along = and uptothen [¢1]w is true

> “[p1 U py]o” is read as “¢1 until ¢,”

» F is definable in terms of [—- U —|: F¢ = [T U ¢]

[[[T U é]]m ()

= Ji. [¢]m (i) AV]. j<i = [T]m (7))
Ji. [¢]m (wli) A V). j<i = true
)
)

Ji. [¢]m (wli) A true
i [¢]m (7l
[Félm ()
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Computation Tree Logic (CTL)

» Syntax of CTL well-formed formulae:

Alp1 U ¢y] (Until — along all paths)
El¢p1 U @]  (Until —along some path)

o =P (Atomic formulap € AP)
| o (Negation)
| 1 A\ @2 (Conjunction)
| P11V oo (Disjunction)
| 01 = 92 (Implication)
| AX¢ (All successors)
| EX¢ (Some successors)

» LTL formulae ¢ are evaluated on paths — path formulae

» CTL formulae ¢ are evaluated on states — state formulae
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Semantics of CTL
» Assume M = (S, Sp, R, AP) and then define:

Mike Gordon

[Plm(s)
[—lm(s)

[61 A p2]m(s)
[61V d2]m(s)
[¢1 = d2]m(s)
[AX¢]Im(s)
[EX¢lm(s)

[Alé1 U ¢2]lm(s)

[E[¢1 U ¢2]Im(s)

p(s)
~([¢lm(s))
[p1lm(s) A [@2lm(s)
[1lm(s) Vv [@2lm(s)
[p1lm(s) = [d2lm(s)
Vs Rss" = [o]u(s)
s’ Rs s’ A [¢]u(s)
Vr. PathR s 7
= i )[\QbZ]]M(W(i))
vi-i<i = [o1]m(x(i))
— dr.PathR s«
=P LLCbz]]M(W(i))
vi.j<i = [é1]m(7()))
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The defined operator AF

» Define AF¢ = A[T U ¢]

» AF¢true atsiff o true somewhere on every R-pathfroms

[AF¢Im(s) = [A[T U ¢]lm(s)

= Vm.PathR s«
=

3. [olm(7(i)) A Vi.j<i = [TIu(=())

= Vm.PathR s«
=
Ji. [olm(7(i)) A Vj.j<i = true

= Vr.PathR s = di. [¢]m(x(i))
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The defined operator EF

» Define EF¢ = E[T U ¢]

» EF¢true atsiff o true somewhere on some R-path froms

Mike Gordon

[EFo]m(S)

[E[T U ¢]lm(s)

dr. PathR s 7
AN

3. [olm(7(i)) A Vi.j<i = [TIu(=())

dr. PathR s«
A
Ji. [olm(7(i)) A V). ] <i = true

dr. PathR s A di. [¢]m (7 (i))

25
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The defined operator AG
» Define AG¢ = =EF(—¢)

» AGotrue atsiff o true everywhere onevery R-pathfroms

[AGoIm(s) = [EF(—=¢)Im(s)
~([EF(~6)Iu(s))

—(dr. PathR s 7 A Ji. [—¢]m(7(i)))
—(dmr. PathR s 7 A Ji. =[o]m(7(i)))
V. ﬂ(Path RsxmAAd. —I[[¢]]M(7T(I)))
Vr. =Path R s w vV =(3i. =[¢]m (7 (1))
V. =Path R s 7 vV Vi. ==[¢]m (7 (i))
V. —Path R s 7 Vv Vi. [¢]m (7 (i))

Vr. Path R s m = Vi. [¢]m (7 (i)

» AG¢ means ¢ true at all reachable states

» [AG(p)]u(s) = Vs'.R*ss’ = p(s)
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The defined operator EG

» Define EGp = —=AF(—¢)

» EGotrue atsiff o true everywhere on some R-path froms

[EGoIm(s) = [-AF(—¢)Im(s)

—([AF(=¢)Im(s))

—(Vr. Path R s m = 3i. [-¢]m(r(i)))
—(Vr. PathR s 7 = Ji. =[¢]m(7(i)))
Jr. =(Path R s m = Ji. =[¢]m (= (i)))
dr. Path R s A =(Ji. =[¢]m(7(i)))
dr. Path R s m AVi. == [¢]m (7 (i))
dr. Path R s m A Vi. [¢]m (7 (1))
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The defined operator A[d1Wes]

> Alp1Weo] is a ‘partial correctness’ version of A ¢, Ugs]
» Itis true at s if along all R-paths from s:
» ¢, always holds on the path, or

» ¢, holds sometime on the path, and until it does ¢, holds

» Define

[Alp1Weo]lm(s)
= ["E[(¢1A—¢2)U(—d1A—¢2)]Im(S)
= —[E[(¢1A7¢2)U(—p1A=2)][m(S)
= —(dr. PathR s 7
AN
Ji. [=p1A=@2]m (7 (1))
VAN

Vi.j<i = [¢1A2]m(7())))
» Exercise: understand the next three slides!
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Alp1We,] continued (1)

» Continuing:

—(dr. PathR s 7
A

Ji. [mo1A=2]m(7(i)) A Vi i<i = [prAnd2]m(7())))

= Vr. ~(PathR s 7
A\

Ji. [-o1A=@2]m(m(i)) A V). j<i = [¢1Ad2]m(7())))

= Vr.PathR s 7
=

—(3i [~¢1A=g2m(n (i) A VL j<i = [¢rAd2]m(7(i)))

= Vr.PathR s 7
=

Vi. =1 A=go]m(w(i)) V (V). j<i = [é1A—¢2]m(7())),
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Alp1We»] continued (2)

» Continuing:

= Vm.PathR s«
-

Vi. 2[=p1Am@2]m(w(i)) V (V). j<i = [o1A—d2]m(7())))

= Vr.PathR s 7
=

Vi. (V). j<i = [¢1A=d2lm(7()))) V [ A7g2]m (7 (i)

= Vr.PathR s
=

Vi. (ij<| = [[d)l/\_@z]]m(ﬁ(j))) — [[¢1\/§b2]]|\/|(71'(i))

» Exercise: explain why this is [A[¢p1Wao5][w(S)?

» this exercise illustrates the subtlety of writing CTL!
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A[pWF] = AG ¢
» From last slide:

[Alp1Wo2]lm(s)
= Vr.Path R s«
=

Vi. (V. j<i = [o1A—g2]m (7)) = [P1Vo2]m(n(i))
» Set ¢ to ¢ and ¢, to F:

[A[pWF]]m(s)
= Vm.PathR s«
=

Vi. (V). j<i = [oA=FIu(())) = [oVFIm(x())
» Simplify:

[A[oWF]]m(s)
— V. PathR s 7 = Vi. (V). j<i = [¢]m(7(i))) = [¢]m (= (i)

» By induction on i:
[A[¢WF]|]m(s) = Vr. PathR s 7 = Vi. [¢]m (7 (1))

» Exercise: describe the property specified by A[TW¢]
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Summary of CTL operators (primitive + defined)

» CTL formulae:

Mike Gordon

P

¢
1\ @2
o1V @2

O1 = ¢2
AX

EXo
AFo¢
EFo
AG ¢
EGo
Alp1 U ¢;]
E[¢1 U ¢7]
Alpr W ¢,]
E[¢1 W ¢7]

(Atomic formula -p : states—bool)
(Negation)

(Conjunction)

(Disjunction)

(Implication)

(All successors)

(Some successors)

(Somewhere — along all paths)
(Somewhere — along some path)
(Everywhere — along all paths)
(Everywhere — along some path)
(Until — along all paths)

(Until — along some path)
(Unless — along all paths)
(Unless — along some path)

62/118

62



Example CTL formulae

» EF(Started A\ —Ready)

It is possible to get to a state where Started holds
but Ready does not hold

» AG(Req = AFACck)

If a request Req occurs, then it will eventually be
acknowledged by Ack

» AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along
every path starting anywhere: i.e. DeviceEnabled
holds infinitely often along every path

» AG(EFRestart)

From any state it is possible to get to a state for
which Restart holds
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More CTL examples (1)

» AG(Req = A[Req U Ack])
If a request Req occurs, then it continues to hold,
until it is eventually acknowledged

» AG(Req = AX(A[—Req U Ack]))
Whenever Req is true either it must become false

on the next cycle and remains false until Ack, or
Ack must become true on the next cycle

Exercise: is the AX necessary?

» AG(Req = (—Ack = AX(A[Req U Ack])))

Whenever Req is true and Ack is false then Ack
will eventually become true and until it does Req
will remain true

Exercise: is the AX necessary?
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More CTL examples (2)

» AG[Enabled = AG|[Start = A[—Waiting U Ack]]]

If Enabled is ever true then if Start is true in any
subsequent state then Ack will eventually become
true, and until it does Waiting will be false

» AG[-ReqgiA—Req,=A[-ReqiA—Req,U(Start A—Reqy)]]
Whenever Req; and Req, are false, they remain
false until Start becomes true with Req, still false

» AG[Req = AX(Ack = AF —Req)]

If Req is true and Ack becomes true one cycle
later, then eventually Req will become false
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Some abbreviations
> AXj ¢ = AX(AX(--- (AX ¢)---))

| instances of AX
¢ is true on all paths i units of time later

> ABFij ¢ = AX (6 VAX(¢ V - AX(¢ V AX ¢)---))

] —1 instaFlrces of AX

¢ Is true on all paths sometime between i units of
time later and j units of time later

» AG[Req = AX[Ack; N ABF 1 g(Ack, A A[Wait U Reply])]]

One cycle after Req, Ack; should become true,
and then Ack, becomes true 1 to 6 cycles later
and then eventually Reply becomes true, but until
it does Wait holds from the time of Acks

» More abbreviations in ‘Industry Standard’ language PSL
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CTL model checking

» For LTL path formulae ¢ recall that M = ¢ is defined by:
ME® & Vrs.seSgAPathR s 7= [¢]u(n)

» For CTL state formulae ¢ the definition of M = ¢ is:
ME® < Vs.seSg= [¢]u(s)

» M common; LTL, CTL formulae ¢ and semantics [ [, differ

» CTL model checking algorithm:
» compute {s | [¢]u(s) = true} bottom up
» check Sg C {s | [¢]m(s) = true}

» symbolic model checking represents these sets as BDDs
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CTL model checking: p, AX¢, EX¢®

» For CTL formula ¢ let {¢} = {s | [¢]u(S) = true}

> {p} = {s | p(s) =true}
» scan through set of states S marking states that satisfy p
» {p} is set of marked states

» To compute {AX¢}

» recursively compute {¢}
» marks those states all of whose successors are in {¢}
» {AX¢} is the set of marked states

» To compute {EX¢}

» recursively compute {¢}
» marks those states with at least one successor in {¢}
» {AX¢} is the set of marked states
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CTL model checking: {E[¢1 U ¢2]], {Alo1 U ¢2]]}

» To compute {E[¢1 U o]}

recursively compute {¢1} and {¢»}

mark all states in {¢,}

mark all states in {¢1} with a successor state that is marked
repeat previous line until no change

» {E[¢1 U ¢,]} is set of marked states

vV vVv.v Y

» More formally: {E[¢1 U 2]} = Up—o{E[¢1 U ¢2]}n where:

{Elp1 U ¢2]}o = {#2}
{El¢1 U ¢2]}nt1 iE[ﬁbl U ¢2]}n

{s € {p1} | 38’ € {E[¢1 U ¢»|}n. R s '}

> {A[p1 U @]} similar, but with a more complicated iteration
» details omitted
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Example: checking EF p

» EF¢p = E[T U ¢]
» holds if ¢ holds along some path

» Note {T} =S

» Let S, = {E[T U p]}n:
So = {p}
= 18| p(s);

Sni1 = Sh U {s|3s".Rss'As' €5y}

» mark all the states satisfying p
» mark all with at least one marked successor

» repeat until no change
» {EF p} is set of marked states

Mike Gordon
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Example: RCV

» Recall the handshake circuit:

dr dack
T or0

» State represented by a triple of Booleans (dreq, g0, dack)

» A model of RCV is Mgoy Where:

M = (Srev; {(1,1,1)}, Rrov, AP)

and
Rrev (dreq, q0, dack) (dreq’, q0’, dack’) =
(q0’ = dreq) A (dack’ = (dreq A (g0 Vv dack)))
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RCV state transition diagram

» Possible states for RCV:
{000,001,010,011,100,101,110,111}
where b,b, by denotes state
dreqg=Dby A g0 =Db; A dack =bg

» Graph of the transition relation:

()

» 100 111

AN

011

1

Mike Gordon
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MOdeI CheCklng Mgreov ): ()\bzblbo. b, A by A bo)

()

» 100 111

NN

011

» Define:

80 = {bzblbo ’ ()\bgblbo. b2 VAN bl VAN bo)bzblbo)}
= {bzblbo ‘ b, A by A bo}

Siy1 =8 U {s|3s €S R(s,s)}
=& U {bybibg |
Jbsbib] € Si. (b] =b2) A (b =ba A (b1 Vv bg))}
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Model checking I\/IRCV = (Abab1bg. by A by Abg) (CONtinued)

1 0
» 1oo » 110 > 111

AON)

011

» Compute:
So = {111}
S1 = {111} U {101,110}
= {111,101, 110}

S, ={111,101,110} U {100}
— {111,101,110, 100}

S; = {111,101,110,100} U {000,001,010,011}
— {111,101, 110, 100,000, 001,010, 011}
S =8 (i>3)

» Vs. [EF (A(dreq,q0,dack).dreq A g0 A dack)]w(s)
» Mrgrev E EF (A(dreq,q0,dack). dreq A qO0 A dack)
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Symbolic model checking

» Represent sets of states with BDDs
» Represent Transition relation with a BDD

» If BDDs of {¢}, {#1}, {¢2} are known, then:
» BDDs of {-¢}, {¢1 A @2} {1 V d2}, {é1 = é2}

computed using standard BDD algorithms

> BDDs of {AX¢}, {EXo}, {Al¢1 U @]}, {E[P U QJ}
computed using straightforward algorithms (see textbooks)

» Model checking CTL generalises reachable states Iteration
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History of Model checking

» CTL model checking due to Emerson, Clarke & Sifakis
» Symbolic model checking due to several people:

» Clarke & McMillan (idea usually credited to McMillan’s PhD)
» Coudert, Berthet & Madre
» Pixley

» SMV (McMillan) is a popular symbolic model checker:

http://ww. cs. crmu. edu/ ~nodel check/ smv. ht m (original)
http://ww. kenncm | . com snv. ht m (Cadence extension by McMillan)
http://nusnv.irst.itc.it/ (new implementation)

» Other temporal logics

» CTL*: combines CTL and LTL
» Engineer friendly industrial languages: PSL, SVA
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Expressibility of CTL
» Consider the property

“on every path there is a point after which p is
always true on that path”

» Consider
_/
s0 sl s2
SO'.‘.
4 \\1 2 2 2 —> 52 weeeen
/fO\‘l S 2 2 2 2 e
/fO\\l 2 2 2 2 weeen
SO\ S S2 —» S2 —» S2 —» S
Sl —» S2 —» S2 — % S2 —p S2 -eeue-
» Property true, but cannot be expressed in CTL

Mike Gordon

» would need something like AF¢

vV v.v Y

where ¢ is something like “property p true from now on”

but in CTL ¢ must start with a path quantifier A or E

cannot talk about current path, only about all or some paths
AF(AG p) is false (consider path sOs0s0---)
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LTL can express things CTL can't

» Recall:
[Folm(r) = 3i. [@lm(mli)
[Golm(m) = Vi. [¢]m(mli)

» FGo is true if there is a point after which ¢ is always true

[FGoIm(m) = [F(G(¢))Im(7)
= 3dmy. [G(¢)Im(mlmy)
= Imy. Vmy. [¢]m ((mlmy)lmy)
= E|m1. sz. [[gb]]M (wl(m1+m2))

» LTL can express things that CTL can’t express

Mike Gordon 78 /118

78



CTL can express things that LTL can’t express

» AG(EF ¢) says:

“from every state it is possible to get to a state for
which ¢ holds”

» Can't say this in LTL (proof omitted)

» Consider disjunction:

“along every path there is a state from which ¢
will hold forever

or

from every state it is possible to get to a state for
which ¢ holds”

» Can’t say this in either CTL or LTL! (proof omitted)

» CTL* combines CTL and LTL and can express this property
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CTL*

» Both state formulae (i)) and path formulae (¢)

» state formulae ) are true of a state s like CTL
» path formulae ¢ are true of a path 7 like LTL

» Defined mutually recursively

Y =P (Atomic formula)
| (Negation)
| Y1 Vo (Disjunction)
| Ao (All paths)
| Eo¢ (Some paths)
¢ = (Every state formula is a path formula)
—1¢ (Negation)
01 V P (Disjunction)
| Xo (Successor)
Fo (Sometimes)
G (Always)

¢
| (91 U] (Until)
» CTLis CTL*with X, F, G, [-U—] preceded by A or E

» LTL consists of CTL* formulae of form A¢,

where the only state formulae in ¢ are atomic
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CTL* semantics

» Combines CTL state semantics with LTL path semantics:

[plm(s) = p(s)

[—¢]wm(s) = ~([¥Im(s))

[V1 V ¥olm(s) = [¥alm(s) vV [¥2lm(s)

[AdIm(S) = Vr.PathRs7m = ¢(m)

[Eo]m(S) = dr.PathRs 7 A [¢]m(m)

[¥1m () = [¥Im(7(0))

[—¢lm () = ([¢]m(7))

[61 V é2lm(m) = [o1lm(m) V [P2]m(7)

[Xé]m () = [olm(7]1)

[Folm(m) = dm. [¢]m(mlm)

[Golm () = vm. [¢]m(7lm) |
[[¢1 U @2llm(m) = dFi. [o2dm (i) AV).j<i = [o1]m (7))

» Note [¢]y : S—B and [¢]y : (N—S)—B
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LTL and CTL as CTL*

» Asusual: M = (S,Sg, R, AP)

» If ¢ is a CTL* state formula: M = ¢ < Vs € Sq. [¢]m(S)
» If ¢ is an LTL path formula then: M = ¢ < M = A
>

If R is total (Vs. ds’. R s s’) then (exercise):
Vss'.Rss" & dr.PathRswA(n(l) =9

» The meanings of CTL formulae are the same in CTL*

[A(X¥)Im(s)
— V. Path R s 7 = [X¢]u(r)

= Vr.PathR s 7 = [¢¥]m(71) (v as path formula)
= Vr. PathR s 7 = [¥]m((71)(0)) (v as state formula)
= Vr.PathR s 7 = [¢]m(7(1))

[AX4]m(S)

= Vs Rss’" = [¢]u(s)

= Vs (Inr. PathRs 7 A (n(1) =5")) = [¢]m(s)
= Vs . Vr.PathRs 7 A(n(1) =5") = [¢]m(s)
= Vr.PathRs 7 = [¢Y]u(w(1))

Exercise: do similar proofs for other CTL formulae
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Fairness

» May want to assume system or environment is ‘fair’

» Example 1: fair arbiter
the arbiter doesn’t ignore one of its requests forever

» not every request need be granted
» want to exclude infinite number of requests and no grant

» Example 2: reliable channel
Nno message continuously transmitted but never received

» not every message need be received
» want to exclude an infinite number of sends and no receive
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Handling fairness in CTL and LTL

» Consider:
P holds infinitely often along a path then so does Q

» In LTL is expressible as G(F P) = G(F Q)

» Can’t say this in CTL

why not — what's wrong with AG(AF P) = AG(AF Q)?

in CTL* expressible as A(G(F P) = G(F Q))

fair CTL model checking implemented in checking algorithm

>
>
| 2
» fair LTL just a fairness assumption like G(FP) = ---

» Fairness is a tricky and subtle subject

» many kinds of fairness:
‘weak fairness’, ‘strong fairness’ etc

» exist whole books on fairness
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Propositional modal ;-calculus

» You may learn this in Topics in Concurrency

» p-calculus is an even more powerful property language

» has fixed-point operators

» both maximal and minimal fixed points

» model checking consists of calculating fixed points

» many logics (e.g. CTL*) can be translated into p-calculus

» Strictly stronger than CTL*

» expressibility strictly increases as allowed nesting increases
» need fixed point operators nested 2 deep for CTL*

» The p-calculus is very non-intuitive to use!

» intermediate code rather than a practical property language
» nice meta-theory and algorithms, but terrible usability!
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SEREs: Sequential Extended Regular Expressions
» SERESs are from the industrial PSL (more on PSL later)

» Syntax :
ro = p (Atomic formulap € AP)

I p (Negated atomic formula € AP)
ra| r (Disjunction)
r{; o (Concatenation)
ry: ro (Fusion)
rh &&r, (Length matching conjunction)

| r[¥] (Repeat)

» Semantics:
(w ranges over finite lists of states s; |w| is length of w;
W1.W> IS concatenation of w; and wo; () is empty word)

[P1(w) — p(head w) A [w| =1

[' pl(w) = —(p(head w)) A [w| =1

[raf r2](w) = [ra(w) v [rz](w)

[re; r2l(w) = 3wy wo. w =wp.wy A [ri(wi) A [ra](wz)

[re: r2](w) = 3wy swo.w =wi.S.Wo A [re](wi.s) A [ra](s.wo)
[ri&&raf(w) = [ra(w) A [r2](w)

[r[+]J(w) =w=( V 3wy ---w. w=wy. -+ WA[rJ(wi)A - Afr](w)
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Example SERE

» Example

A sequence in which r eq is asserted, followed
four cycles later by an assertion of gr ant ,
followed by a cycle in which abor ti nis not
asserted.

» Can this represent by the SERE:

req;[*3];grant;!abortin
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Assertion-based verification (ABV)

» Claimed that assertion based verification:

“Is likely to be the next revolution in hardware design
verification”

» Basic idea:

» document designs with formal properties
» use simulation (dynamic) and model checking (static)

» Problem: too many languages

» academic logics: LTL, CTL
» tool-specific industrial versions:
Intel, Cadence, Motorola, IBM, Synopsys

» What to do? Solution: a competition!

» run by Accellera organisation
» results standardised by IEEE
» lots of politics
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IBM’s Sugar and Accellera’s PSL

» Sugar 1: property language of IBM RuleBase checker
» CTL plus Sugar Extended Regular Expressions (SERES)
» Competition finalists: IBM’s Sugar 2 and Motorola’s CBV

» Intel/Synopsys ForSpec eliminated earlier
(apparently industry politics involved)

» Sugar 2 is based on LTL rather than CTL

» has CTL constructs: “Optional Branching Extension” (OBE)
» has clocking constructs for temporal abstraction

» Accellera purged “Sugar” from it property language

» the word “Sugar” was too associated with IBM
» language renamed to PSL
» SEREs now Sequential Extended Regular Expressions

» Lobbying to make PSL more like ForSpec (align with SVA)
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PSL Foundation Language (FL)

> Syntax:
f == p (Atomic formula)

I f (Negation)
fy or f, (Disjunction)
next f (successor)
{r }(f) (Suffix implication:r a SERE)
{ri} | ->A4r} (Suffix next implication:r;, r, SERES)
[fl unti | f2] (Untll)

» Semantics (omits clocking, weak/strong distinction)

[P]m () = p(7(0))

[' flm(m) = ~([fIm (7))

[f or f2m(m) = [film(7) Vv [f2lm(7)

[next f]m(m) = [fm (1)

[{r }()]m () =dwa.mt=w.ax’ A [r]mw) A [fu(7")

[[{r1}| - >{r2}]]|\/|(ﬂ') = dw, m.m = W1.7T/ N\ {rl}(Wl)
= Aw, . 7 =wo. " A {rz}(Wz)

[[[fl unt i | fz]]]M(ﬂ') = di. [[fz]]M(ﬂ'll) N \V/j ]<| = [[fl]]M(ﬂ'lj)
» There is also an Optional Branching Extension (OBE)
» completely standard CTL: EX, E[-U—-], EG etc.
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Combining SEREs with LTL formulae

» Formula {r }f means LTL formula f true after SERE r
» Example

After a sequence in which r eq is asserted,
followed four cycles later by an assertion of

gr ant , followed by a cycle in which abortinis
not asserted, we expect to see an assertion of
ack some time in the future.

» Can represent by
al ways {req;[*3];grant;!abortin}(eventually ack)
» where event ual | y is LTL future operator, so:
eventually f = [true until f]

» N.B. Ignhoring strong/weak distinction

» strong/weak distinction important for dynamic checking
» semantics when simulator halts before expected event
» strictly should write unti | !, eventual | y!
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SERE examples

» How can we modify
al ways reqin; ackout;!abortin |-> ackin;ackin

so that the two cycles of acki n start the cycle after
labortin

» Two ways of doing this
al ways{reqi n; ackout ;!abortin}|->{true; acki n; acki n}
al ways{reqi n; ackout ;! aborti n}| =>{acki n; acki n}

» | =>is a defined operator
{r1}|=>{r2} = {r1}|->{true;r2}

» Note: t r ue and T are synonyms
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Examples of defined notations: consecutive repetition

» Define
r[+] = r;r[+]
| false[*x] if i=0
ikl = o .
| r;...;r otherwise (i repetitions)
ri=io.p] == ] | r[+xCi+)] [ ..o | rl*]]
[ +] = true[ +]
[*] = true[+]
» Example

Whenever we have a sequence of r eq followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal st art _t r ans, followed by one
to eight consecutive data transfers, followed by the
assertion of signal end_t r ans. A data transfer is
indicated by the assertion of signal dat a

al ways{req; ack}| =>{start _trans;data[*1..8];end _trans}
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Fixed number of non-consecutive repetitions

» Example
Whenever we have a sequence of r eq followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal st art _t r ans, followed by
eight not necessarily consecutive data transfers,
followed by the assertion of signal end_tr ans. A data
transfer is indicated by the assertion of signal dat a

» Can represent by

al ways

{req; ack} |=>

{start_trans;
{{!data[+];data}[*8];!data[*]};
end _trans}

» Define:b[= 1] = {!b[*];b}[*1];!Db[~*]
» Then have a nicer representation

al ways{req; ack} | =>{start _trans; data]= 8];end _trans}

Mike Gordon
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Variable number of non-consecutive repetitions
» Example

Whenever we have a sequence ofr eq followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal st art _t r ans, followed by

one to eight| not necessarily consecutive data

transfers, followed by the assertion of signal
end _trans. A data transfer is indicated by the
assertion of signal dat a

» Define
b[=1..]] ={b[=1]} | {b[=(Ci+1)]} | ... | {b[=]]}
» Then

al ways {req; ack} |=>
{start _trans;data[= 1..8];end trans}

» These examples are meant to illustrate how PSL/Sugar is
much more readable than raw CTL or LTL
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Clocking

» Basic idea: b@| k samples b on rising edges of cl k
» Can clock SEREs (r @1 k) and formulae (f @ k)

» Can have several clocks

» Official semantics messy due to clocking

» Can ‘translate away’ clocks by pushing @1 k inwards

» rules given in PSL manual
» roughly: b@l k ~ {!cl k[ *];clk & b}

Mike Gordon 96/118

96



Model checking PSL (outline)

» SERESs checked by generating a finite automaton

» recognise regular expressions
» these automata are called “satellites”

» FL checked using standard LTL methods
» OBE checked by standard CTL methods

» Can also check formula for runs of a simulator

» this is dynamic verification
» semantics handles possibility of finite paths — messy!

» Commercial checkers only handle a subset of PSL
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PSL layer structure

» Boolean layer has atomic predicates
» Temporal layer has LTL (FL) and CTL (OBE) properties
» Verification layer has commands for how to use properties

» e.g.assert,assune

assert always (!enl & en2))

|

|

| | | --- Bool ean | ayer
|

| |- mmme e - t emporal |ayer
|

I — verification | ayer

» Modelling layer has HDL constructs
for specifying inputs and auxiliary hardware
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PSL/Sugar summary

Mike Gordon

Combines together LTL, ITL and CTL

Regular expressions — SERES

LTL — Foundation Language formulae

CTL — Optional Branching Extension

Relatively simple set of primitives + definitional extension
Boolean, temporal, verification, modelling layers

Semantics for static and dynamic verification
(needs strong/weak distinction)
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Simulation or Event semantics

» HDLSs use discrete event simulation

» changes to variables = threads enabled
» enabled threads executed non-deterministically
» execution of threads = more events

» Combinational thread:
al ways @v, or --- or vy V:=E
» enabled by any change to vy, ..., v,
» Positive edge triggered sequential threads:
al ways @ posedge clk) v:=E
» enabled by clk changingto T
» Negative edge triggered sequential threads:
al ways @ negedge clk) v: =E
» enabled by clk changing to F
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Simulation

» Given

» a set of threads
» initial values for variables read or written by threads

» a sequence of input values
(inputs are variables not in LHS of assignments)

» simulation algorithm =- a sequence of states

v
Choose an enabled thread

Execute
until
quiescent M
then Execute the chosen thread
advance
simulation v

time Fire event controls to enable new threads

» Simulation is non-deterministic

Mike Gordon
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Combinational threads in series

) |
in— f Bl g Iz,h—>out

» HDL-like specification:

always @in) Iy := f(in)  ............. thread T1
always @l) b :=9g(ly) ..ol thread T2
always @ly) out := h(lp) ............. thread T3

» Suppose in changes to v at simulation time t

» T1 will become enabled and assign f(v) to |,

» if |;’s value changes then T2 will become enabled
(still simulation time t)

» T2 will assign g(f(v)) to I,

if |,’s value changes then T will become enabled

(still simulation time t)

» T3 will assign h(g(f(v))) to out

simulation quiesces
(still simulation time t)

» Steps at same simulation time happen in ¢-time
(VHDL jargon)

Mike Gordon

v

v
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Semantic gap

» Designers use HDLs and verify via simulation

» event semantics

» Formal verifiers use logic and verify via proof

» trace semantics

» Problem: do trace and simulation semantics agree?

» Would like:
traces = sequences of quiescent simulation states

initial state Statesafter states after
onestep  two steps
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Sequential threads — event semantics
I

in —- > —— Out

clk T> D

» Consider two Dtypes in series:

al ways posedge clk) | :=in
al ways gposedge clkg out : = |

» If posedge cl k:
» both threads become enabled
» race condition

» Right thread executed first:

» out gets previous value of |
» then left thread executed
» so | gets value input at in

» Left thread executed first:

» | gets input value at in
» then right thread executed

» SO out gets input value at in
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Sequential threads — trace semantics

: I
in out

ck D I—'>

» Trace semantics:

in  aaaaaaaaaaabbbbbb:cccccddddddddd. ... ..
clk 00000111110000011111000001111100......
I eeeeeaaaaaaaaaabbbbbbbbbbddddddd. ... ..
out fffffeeeeeeeeecaaaaaaaaaabbbbbbb. ... ..

» Corresponds to right thread executed first
» How to ensure event and trace semantics agree?
» Method 1: use non-blocking assignments:

al ways @ posedge clk) | <= in;
al ways @ posedge clk) out <= I;

» non-blocking assignments (<=) in Verilog
» RHS of all non-blocking assignments first computed
» assignments done at end of simulation cycle

» Method 2: make simulation cycle VHDL-like
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Verilog versus VHDL simulation cycles

» Verilog-like simulation cycle:

Execute
until
quiescent
then
advance
simulation
time

v

Choose an enabled thread

A\
Execute the chosen thread

A\
Fire event controls to enable new threads

» VHDL-like simulation cycle:

Execute
until
quiescent
then
advance
simulation
time

Mike Gordon

v

Execute all enabled threads in parallel

v

Fire event controls to enable new threads
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VHDL event semantics

in out

ck D I—'>

» Recall HDL:
al ways @ posedge clk) | :=in
al ways @ posedge clk) out := |

» If posedge clk:
» both threads become enabled
» VHDL semantics:

» both threads executed in parallel
» out gets previous value of |
» in parallel | gets value input at in

» Now no race
» Event semantics matches trace semantics
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Summary of dynamic versus static semantics

» Simulation (event) semantics different from trace semantics
» No standard event semantics (Verilog versus VHDL)

» Verilog: need non-blocking assignments

» VHDL semantics closer trace semantics

» Simulations are finite traces: better fit with LTL than CTL
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Bisimulation equivalence: general idea

» M, M’ bisimilar if they have ‘corresponding executions’

» to each step of M there is a corresponding step of M’
» to each step of M’ there is a corresponding step of M

» Bisimilar models satisfy same CTL* properties

» Application: discard irrelevant parts of M to get smaller M’

» reduce an infinite state space to a finite one
» cone-of-influence circuit reduction

» Bisimilar: same truth/falsity of model properties

» Simulation gives property-truth preserving abstraction
(see later)
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Bisimulation relations

» LletR: S—=S—Band R’ : S'—-S’—B be transition relations

» B is a A bisimulation relation between R and R’ if:
» B:S—S'>B

» Vss'.Bss'=Vs; € S.Rss; =3s].R's"s] ABs; s]
(to each step of R there is a corresponding step of R’)

» Vss'.Bss'=Vs; €S.R's’"s] =3s;.R"ss; ABs1s]
(to each step of R’ there is a corresponding step of R)
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Bisimulation equivalence: definition and theorem

> LetM = (S,So,R,AP) and M’ = (S’,S[,R’,AP’)

» M = M’ if:
» there is a bisimulation B between R and R’
> VSp € Sp. IS € Sp. B s S
> Vs, € S|. IS0 € Sp. B sp S
» there is a bijection 6 : AP —AP’
» Vss'.Bss' = VpeAP.p(s) < 4(p)(s)

» (1) is the result of applying ¢ to all atomic formulae in

» Theorem: if M = M’ then for any CTL* state formula :

M E6(p) & M E ¢
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Recall JML

Thread 1

X=1; 1. X =2;

0: | F LOCK=0 THEN LOCK: =1; O:

| F LOCK=1 THEN LOCK: =0; 2:

Thread 2
| F LOCK=0 THEN LOCK:

| F LOCK=1 THEN LOCK:

1
2:
3: 3
>

Two program counters, state: (pci,pc,, lock, x)
Sim = [0.3] x[0.3] XZ x Z

Rim (0, pco, 0, %)
Ram 1,pC2,|OCk,X)
RJM]— (27p02717X)

1,pcz,1,X)
2,pcy, lock, 1)
(37 pC27 07 X)

RJM]. pCl,0,0,X)
Rom PC1, 17 lOCk7X)
RJM]— (pC17 27 17X)

Not At 11(pcy, pcy,lock,x) = =((pcy = 1) A (pco = 1))

syw Not finite, but actually lock € {0,1}, x € {0, 1,2}

>
» Model Myw = (Ssm, {(0,0,0,0)}, Ry, {Not At 11})
>
>

Clear by inspection that M = ™M}, where:
I\/Ijl\/ll — (SSI\/HJ {(07 07 07 0)}7 le\/l].? {NOt At 1T })
» Siy = [0..3] x[0..3] x [0..1] x [0..3]
» R),, IS Ryw restricted to s},, +S’,, —B
> Not At 11’ IS Not At 11 restricted to s/, —B

Mike Gordon
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Simulation and abstraction

» Bisimulation can eliminate irrelevant parts of a model

» Abstraction creates a simplification of a model

» Separate states get merged
» an abstract path can represent several concrete paths

» M < M’ means M’ simulates M or M’ is an abstraction of M

» to each step of M there is a corresponding step pf M’
» atomic properties of M correspond to atomic properties of M’

» ACTL is the subset of CTL without E-properties

» e.g. AG AFp — from anywhere can always reach a p-state

» If M < M’ then any ACTL property of M’ also holds of M
» can reduce model checking M to model checking M’
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Example (Grumberg)

M = ({r,y,g}, {r}.R, {Atr}), M’ = ({h,d}, {h},R’, {Ath})
simulation relation: r — h, y + h, g — d

atomic property correspondence: At:r — At:h

AG AFAtr — AG AFAt:h, AG AF (—At:r) — AG AF (—At:h)
M’ = AG AFAt:h hence M = AG AFAtr

AG AF (—At:h) false, but AG AF (—At:r) true
(counter-example: sssssss. . .)

vV v. v v vy
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Simulation relations

» LetR: S—S—Band R’ : S"—S’'—B be transition relations

» H is a simulation relation between R and R’ if:
» H:S—S'>B

» Vss' " Hss'=Vs; € S Rss; =3s].R's"s; ABs; s}
(to each step of R there is a corresponding step of R’)
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Simulation preorder: definition and theorem

» LetM = (S,Sp,R,AP) and M’ = (S’, S}, R’, AP')

» M < M’ if:
» there is a simulation H between R and R’
> Vsg € Sp. Is; € S(. B sp S|,
» there is a subset AP C AP and a bijection ¢ : AP—AP’
» Vss'.Hss = VpeAP.p(s) = 6(p)s)

» (1) is the result of applying ¢ to all atomic formulae in

» Theorem: if M < M’ then for any ACTL* state formula :

M’ 0() = M ¢

» If M’ = 0(v) fails then cannot conclude M = ¢ false
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CEGAR

» Counter Example Guided Abstraction Refinement

Goal: M

v

Generate initial abstraction

v

Model checkGoal: M’ F 6()

SUCCESS

v

fall
\ v

IRefine abstractig Generate counter examplg Done

A a

-

no A es

. Y/
Is counterexample is reaII.i_

» Lots of details to fill out (several different solutions)

» how to generate abstraction
» how to check counterexamples
» how to refine abstractions

» Microsoft SLAM driver verifier is a CEGAR system
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Temporal Logic and Mode Checking — Summary

» Various property languages: LTL, CTL, PSL (Prior, Pnueli)
» Models abstracted from hardware or software designs

» Model checking checks M = ¢ (Clarke et al.)

» Symbolic model checking uses BDDs (McMillan)

» Avoid state explosion via simulation and abstraction

» CEGAR refines abstractions by analysing counterexamples

» Triumph of application of computer science theory

» two Turing awards, McMillan gets 2010 CAV award etc.
» widespread applications in industry
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