IMPORTANT! NOTE LECTURE RESCHEDULING

Title:
Lecturer:
Class:
Term:

Lecture 1:
Lecture 2:
Lecture 3:

Lectures 4-8:

Location:

Duration:

Temporal Logic and Model Checking
Mike Gordon

Computer Science Tripos, Part 11

Easter Term 2011

12:00 on Thursday, 28 April, 2011
10:00 on Friday, 29 April, 2011
11:00 on Friday, 6 May, 2011
12:00 on Tuesdays and Thursdays

Lecture Theatre 2, WGB

Eight lectures

Mike Gordon

1/126

Temporal Logic and Model Checking

Model
» mathematical structure extracted from hardware or software

v

v

Temporal logic

» provides a language for specifying functional properties

v

Model checking

» checks whether a given property holds of a model

v

Model checking is a kind of static verification
» dynamic verification is simulation (HW) or testing (SW)

Mike Gordon 2/126

Models

» A model is (for now) specified by a pair (S, R)
» S is a set of states
» R is a transition relation

» Models will get more components later
» (S,R) also called a transition system

» R s s’ means s’ can be reached from s in one step

» hereR:S — (S —B) (whereB = {true, false})
» more conventional to have R C S x S, which is equivalent
> |e R(this course) S Sl Aad (573/) S R(Some textbooks)

Mike Gordon 3/126

A simple example model
» A simple model: ({0,1,2,3}, Ann’. n" = n+1(mod 4))

S R

» where “Ax. ---x---"is the function mapping x to ---x - - -
» soRnn =(n"=n+1(mod 4))
» g RO1IAR12AR23AR30

» Might be extracted from:

— . =0 Cnt
o

o @ -
e
£ (anz1 (o
he = N -

=1 lome=1
FF2 | |
> ~
o (@()
D owed o=t e

[Acknowledgement: htt p: / / eel ab. usyd. edu. au/ di gi tal _tutorial/part3/t-diag.htn}

e

[

Mike Gordon 4/126

http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm

Dl V: a software example
» Perhaps a familiar program:

0: R =X

1. Q =0,

2: WH LE Y<R DO
3: (R=RY;

& Q=0

» State (pc,x,y,r,q)

» pc € {0,1,2,3,4,5} program counter

» X,y,r,q € Zare the values of X, Y, R, Q
» Model (Sp v, Rp v) Where:

Spoiv=[0.5]xZxZ xZx7Z (where [m..n] ={m,m+1,...,n})

. T =
(pC = 0) = ((pclaxlayla rlaq/) = (17X7yaxaq)) A
(pc = 1) = ((pc’,x",y",r",q") = (2,x,y,r,0)) A
(pC - 2) = ((pC/7X/7y/ r/vq/ -
if y<r then (3,x,y,r,q)else (5,x,y,r,q)) A
(pc =3) = ((pc’,x",y’,r’,q") = (4,x,y,(r-y),q)) A
(pc =4) = ((pc’,x",y",r',q") = (2,x,y,r,(q+1))

Mike Gordon 5/126

Deriving a transition relation from a state machine

» State machine transition function: § : Inp x Mem—Mem

» Inp is a set of inputs
» Mem is a memory (set of storable values)

» Model: (S5, Rs) where:
Ss; = Inp x Mem
Rs (i,m) (i",m’) = (m" = 4(i,m))
and

» i’ arbitrary: determined by environment not by machine
» m’ determined by input and current state of machine

» Deterministic machine, non-deterministic transition relation

» inputs unspecified (determined by environment)
» so called “input non-determinism”

Mike Gordon 6/126

RCV: a state machine specification of a circuit
» Part of a handshake circuit:

dreq L

or0

qObar

» Input: dreq, Memory: (g0, dack)
» Relationships between Boolean values on wires:

gObar = —qO0

a0 = qObar A dack
or0 = gO0va0

al = dreq AorQ

» State machine: ogcy : B x (BxB)—(BxB)

dack

drev (dreq, (qO,dack)) = (dreq, dreq A (g0 V (—q0 A dack)))
~N Y——

Inp Mem

» RTL model — could have lower level model with clock edges

Mike Gordon

71126

RCV: a model of the circuit

» Circuit from previous slide:

dreq L

qObar

or0

dack

» State represented by a triple of Booleans (dreq, q0, dack)

» By De Morgan Law: q0 VvV (—q0 A dack) = g0 Vv dack

» Hence drey corresponds to model (Sgrey, Rroy) Where:

Srev =B x B x B
Rrev (dreq, g0, dack) (dreq’, q0’, dack’)
(q0" = dreq) A (dack’ = (dreq A (q0 Vv dack)))

[Note: we are identifying B x B x B with B x (B x B)]

Mike Gordon

8/126

Some comments

» RRpov iS non-deterministic and total
» Rrov (1,1,1) (0,1,1) and Rrey (1,1,1) (1,1,1)
(where 1 = true and 0 = false)
» Rrev (dreq, qO, dack) (dreq’, dreq, (dreq A (q0 Vv dack)))
» Rp v is deterministic and partial

» at most one successor state
» no successor when pc = 5

» Non-deterministic models are very common, e.g. from:

» asynchronous hardware
» parallel software (more than one thread)

» Can extend any transition relation R to be total:
Riotar SS' = if (3s”. R ss’)thenR s s’ else (s’ =s)
= Rss'V(=(3s".Rss")A(s' =5))

» sometimes totality required
(e.g. in the book Model Checking by Clarke et. al)

Mike Gordon 9/126

JML: a non-deterministic software example

» From Jhala and Majumdar’s tutorial:

Thread 1 Thread 2

0: |F LOCK=0 THEN LOCK:=1; 0: |F LOCK=0 THEN LOCK: =1;
1. X =1 1. X =2

2: | F LOCK=1 THEN LOCK: =0; 2: |F LOCK=1 THEN LOCK: =0;
3: 3:

» Two program counters, state: (pc;, pcy, lock, x)
Sim = [0.3] x[0.3]|XZXZ

Rim (0~ pC2707X) (lapCZ'/laX)
Rom (1, pc2, lock, x) (2, pc, lock, 1)
Rim (Zapcblvx) (3~ pCZ',OaX)
Rim (pCl707O7X) (pCl7l717X)
Rim (pCl: 17 lOCk7X) (pC1727 IOCk72)
Rim (pclvzalvx) (pclasvoax)

» Not-deterministic:
RJM]. (07 07 07 X) (l/ 07 17 X)
RJM]. (07 07 07X) (O/ 17 17X)

» Not so obvious that R\ is a correct model

Mike Gordon

10/126

Atomic properties (properties of states)

» Atomic properties are true or false of individual states
» an atomic property p is a functionp : S — B
» can also be regarded as a subset of state: p C S
» Example atomic properties of RCV
(where 1 = true and 0 = false)

Dr eq(dreq, q0, dack) (dreq = 1)
Not Q0(dreq, q0, dack) = (g0 =0)
(
(

Dack(dreq, q0, dack) dack = 1)

Not Dr eqAndQ0(dreq, g0, dack) dreq=0) A (q0=1)
» Example atomic properties of DI V

At Start (pc,x,y,r,q) = (pc =0)

At End (pc, x,y,r,q) = (pc =5)

I nLoop (pc,x,y,r,q) = (pc € {3,4})

Yl eqR(pc,x,y,r,q) = (y<r)

I nvari ant (pc,x,y,r,q) = (x—r+(y><q))

Mike Gordon 11/126

Model behaviour viewed as a computation tree

» Atomic properties are true or false of individual states
» General properties are true or false of whole behaviour
» Behaviour of (S, R) starting from s € S as a tree:

- R

initial state. Siatesafter Statesafter
onestep twoSteps

» A path is shownin red
» Properties may look at all paths, or just a single path

» CTL: Computation Tree Logic (all paths from a state)
» LTL: Linear Temporal Logic (a single path)

Mike Gordon 12 /126

Paths

» A path of (S,R) is represented by a function 7 : N — S

7(i) is the ith element of = (first element is 7(0))
might sometimes write 7 i instead of 7 (i)

wli is the i-th tail of = so «]i(n) = 7(i +n)
successive states in a path must be related by R

vV vy vYyy

» Path R s 7 is true if and only if 7 is a path starting at s:
PathRs 7 = (n(0)=5s) A Vi.R (n(i)) (#(i4+1))
where:

Path:(S—-S—-B)— S —-(N—-S)—B
| ~~ ~——

initial
state

transition
relation

path

Mike Gordon 13/126

RCV: example hardware properties

» Consider this timing diagram:

dack -*\—
» Two handshake properties representing the diagram:

» following a rising edge on dr eq, the value of dr eq
remains 1 (i.e. true) until it is acknowledged by a rising
edge on dack

» following a falling edge on dr eq, the value on dr eq
remains O (i.e. false) until the value of dack is 0

» A property language is used to formalise such properties

Mike Gordon 14 /126

Dl V: example program properties

8 5 f?)(At St ar(t (pc,x,y,r),q) = Epc :O;
: A At End (pc, X,y,r,q = (pc =5
5 RERYVRDO| inloop(pexyra) = (pee{3.4))
4 Q =Q+1 Yl eqR(pc, x,y,r1,q) =(y<n
5: Invariant (pc,x,y,r,q) = (x=r+(y xa))

» Example properties of the program DI V.

» on every execution if At End is true then | nvar i ant is true
and Yl eqRis not true

» on every execution there is a state where At End it true

» on any execution if there exists a state where Yl eqRis true
then there is also a state where | nLoop is true

» Compare these with what is expressible in Hoare logic
» execution: a path starting from a state satisfying At St ar t

Mike Gordon 15/126

JML: a non-deterministic program example

Thread 1 Thread 2
0: | F LOCK=0 THEN LOCK: =1; 0: |IF LOCK=0 THEN LOCK: =1;
1. X=1 1. X=2
2: |F LOCK=1 THEN LOCK: =0; 2: |F LOCK=1 THEN LOCK: =0;
3: 3:

Ram (OvpCZ'/OaX) (lapC2717X)

Rim (l7pC27IOCk7X) (27p027|00k71)

Rim (27pC2717X) (37 pCZ7O7X)

Rim (pcl70707x) (pC171717X)

Rom (pc1,1,lock,x) (pcy, 2, lock, 2)

Riwm (pclazvlax) (pC1.,3,0.,X)

» An atomic property:

» Not At 11(pcy, pcy,lock, x) = =((pcy = 1) A (pcz = 1))
» A non-atomic property:

» all states reachable from (0, 0,0, 0) satisfy Not At 11

» this is an example of a reachability property

Mike Gordon 16 /126

Reachability
» R s s’ means s’ reachable from s in one step
» R" s s’ means s’ reachable from s in n steps

R0ss’ = (s=¢/)
R'™lss’ = 3s”. Rss”AR"s"”s/

» R* s s’ means s’ reachable from s in finite steps
R*ss’=3n.R"s s’

v

Note: R*s s’ & Jr n. Path R s 7w A (s’ = w(n))

v

The set of states reachable from sis {s’ | R* s s’}

v

Verification problem: all states reachable from s satisfy p
» verify truth of Vs’. R* s s’ = p(s/)
» e.g. all states reachable from (0,0, 0, 0) satisfy Not At 11
» i.e.Vs'. R%y (0,0,0,0) s’ = Not At 11(s’)

Mike Gordon

171126

Model checking reachability properties

» Assume a model (S,R)

» Assume also a set So C S of initial states

» Assume also a set AP of atomic properties

>

| 4

ifpe AP thenp:S — B
T,F € AP where Vs € S.T(s)=true and Vs € S.F(s)=false

» A Kripke structure is a tuple (S, Sp,R,AP)

| 4

| 4

>

>

often the term “model” is used for a Kripke structure

i.e. amodelis (S, So, R, AP) rather than just (S,R)
sometimes AP omitted: instead “Kripke structure over AP”
see next slide for alternative definition of Kripke structure

» Model checking computes whether (S, Sp, R, AP) |= ¢

>

>

Mike Gordon

¢ is a property expressed in a property language
informally M = ¢ means “wff ¢ is true in model M”

18/126

Aside on models and Kripke structures

v

Definition of “model” and “Kripke structure” varies

v

Initially we defined a model to be (S,R)

» On previous slide a model was (S, R, Sg, AP)

v

(S,R) or (S,R,Sp) sometimes called transition systems

v

We called (S, R, Sp, AP) a Kripke structure

Clarke et al. define a Kripke structure as (S, Sp, R, L)
» AP a given set of “atomic propositions” interpreted by L
» L:S — P(AP)
> AP (s course) = {(AS. P € L(S)) | P € AP (clarke etaiy }

v

Mike Gordon 19/126

Minimal property language: ¢ is GAp where p € AP

» Consider properties ¢ of form GAp where p € AP
» “GA” stands for “Globally Always”

» Assume M = (S,Sp,R,AP)

» Reachable states of M are {s’ | 3s € Sp. R* s s’}

» i.e. the set of states reachable from an initial state
» define Reachable M = {s’ | 3s € Sp. R* s s’}

» M = GAp means p true of all reachable states of M

» If M = (S,Sp,R,AP) then M = ¢ formally defined by:
M = GAp < Vs'. s’ € Reachable M = p(s’)

Mike Gordon 20/126

Model checking M &= GAp

» M = GAp < Vs'. s’ € Reachable M = p(s’)
< Reachable M C {s’ | p(s’)}
So:
» compute Reachable M i.e. compute {s’ | 3s € Sp. R* s s’}

» check p true of all its members
LetS = {s’|Is € Sp. R* s s’}

Compute S iteratively: S =SpUS U USpU---
» i.e. S =UpoSn
» where: So = Sy (set of initial states)
» and inductively: Sp1 =S, U{s’'|Is € Si AR s s’}

v

v

v

Clearly So € 8 C - € 5, C -

v

Hence if Sy = Spe1 then § = Sy

v

Algorithm: compute Sy, S, ..., until no change;
check p holds of all members of computed set

Mike Gordon 21/126

compute Sp, S, ..., until no change;
check p holds of all members of computed set

» Does the algorithm terminate?

» yes, if set of states is finite, because then no infinite chains:
S C&SHC---CS T

» How to represent Sp, S1, ... 72

» explicitly (e.g. lists or something more clever)
» symbolic expression

» Huge literature on calculating set of reachable states

Mike Gordon 22/126

Example: RCV

» Recall the handshake circuit:

dreq J— dack

or0

qObar

» State represented by a triple of Booleans (dreq, q0, dack)

» A model of RCV is Mgcy Where:
M= (SRC\/~ {(1/ 1 1)}/ Rrov, AP)

and
Rrev (dreq, g0, dack) (dreq’,q0’,dack’) =
(q0" = dreq) A (dack” = (dreq A (q0 Vv dack)))

Mike Gordon 23/126

RCV state transition diagram

» Possible states for RCV:
{000,001,010,011,100, 101,110,111}
where b,b,bg denotes state
dreqg=by A g0 =b; A dack =bg

» Graph of the transition relation:

()

100 110 111

N

011

Mike Gordon 241126

Computing Reachable Mgcy

Q\ SO Q\
NN

011

» Define:
So = {bzblbo | b,bibg € {111}}
— {111}
Sy1 =S U{s|Ise€S. Rrevss'}
=8 U {bybyby |
dbobibg € §;. (bi = b2) A (b(/) =by A (bl V bo))}

Mike Gordon 25/126

Computing Reachable Mgqy (continued)

» Compute:
So = {111}
S = {111} u {011}
= {111,011}

» Hence Reachable Mgey = {111,011, 000, 100, 010, 110}

Mike Gordon

S, = {111,011} U {000,100}
= {111,011, 000, 100}

S; = {111,011,000,100} U {010,110}
= {111,011, 000, 100,010, 110}

S =8 (i>3)

26/126

Model checking Mrcy = GAp

» M = (Srov, {111}, Rrev, AP)
» ifp € AP then p : Sgey—B

» To check Mgey = GAp
» compute Reachable Mgey = {111,011, 000, 100,010, 110}
» check Reachable Mgcy C {s | p(s)}, i.e. check:
p(111) = true

p(011) = true
p(000) = true
p(100) = true
p(010) = true
p(110) = true

Mike Gordon 271126

Symbolic Boolean model checking of reachability

» Assume states are n-tuples of Booleans (b1, ..., bp)
» b € B = {true,false}
» S =B", so S is finite: 2" states

» Assume n distinct Boolean variables: vq,...,vq
» e.g.ifn=23thencould havevi =x,v, =y,v3 =2

» Boolean formula f(vq,...,v,) represents a subset of S
» f(vi,...,Vvn) only contains variables v1,. . .,v,
» f(byg,...,by) denotes result of substituting b; for v;

» Example —(x =y) represents {(true, false), (false, true)}

» Transition relations also represented by Boolean formulae

» e.g. Rrey represented by:
(q0" = dreq) A (dack’ = (dreg A (q0 Vv (—g0 A dack))))

Mike Gordon 28/126

Symbolically represent Boolean formulae as BDDs
» Key features of Binary Decision Diagrams (BDDs):

» canonical (given a variable ordering)
» efficient to manipulate

» Variables:
Y, = jf vthen 1 else 0
-v = if vthen O else 1

» Example: BDDs of variable v and —v

B 0

» Example: BDDs of vl Av2and vl vVvv2

Mike Gordon 29/126

More BDD examples

» BDDofvl =v2

» BDD of vl # v2

Mike Gordon 30/126

BDD of a transition relation

» BDDs of
(vl = (vl =v2)) A (v2' = (vl #v2))

with two different variable orderings

» Exercise: draw BDD of Rrey

Mike Gordon 31/126

Standard BDD operations

>

Mike Gordon

If formulae f1, f, represents sets Sq, S, respectively
then f; Afy, f1 V o represent S; NSy, S; U S, respectively

Standard algorithms compute Boolean operation on BDDs

Abbreviate (vq,...,vy) toV

If (V) represents S
and g(v,V’) represents {(V,V') | RV V')}
then 4. f(U) A g(U,V) represents {V | JU. U € SAR UV}

Can compute BDD of Ju. h(u, V) from BDD of h(U, V)
» e.g. BDD of Jv;. h(vy,vz) is BDD of h(T,vz) v h(F,vz)

From BDD of formula f(vy,...,vy) can compute by, ..., by
such that if v = by, ..., vy, = b, then f(by, ..., by) < true

» by, ..., by is a satisfying assignment (SAT problem)
» used for counterexample generation (see later)

32/126

Reachable States via BDDs

» Assume M = (S,Sp,R,AP) and S = B"

» Represent R by Boolean formulae g(V,v/)

» lteratively define formula f, (V) representing S,
fo(V) = formula representing Sg
far1 (V) =fo(V) Vv (3U. f,(U) A g(T, V)

> Let By, Bg be BDDs representing fo(V), g(V,Vv’)

» lteratively compute BDDs B, representing f,
Bhy1=Bn v (3U. Bp[u/V] A Br)[U,V/V,V']

» efficient using (blue underlined) standard BDD algorithms
(renaming, conjunction, disjunction, quantification)

» BDD 13, only contains variables V: represents S, C S

» At each iteration check 5,,.1 = B, efficient using BDDs

» when B,.1 = B, can conclude 3, represents Reachable M

» we call this BDD By, in a later slide (i.e. By = By)
Mike Gordon 33/126

Example BDD optimisation: disjunctive partitioning

Three state transition functions in parallel

i ' 0x,0y,0; 1 B x B x BB

» Transition relation (asynchronous interleaving semantics):
R(xy,z) (xy",2) =
(X' =6d(x,y,2) A Yy'=y N Z'=
(X'=x Ay =0dy(x,y,2) N Z'=
X'=x A Yy'=y A Z =0(xy,2))

Mike Gordon 34/126

Avoiding building big BDDs

» Transition relation for three transition functions in parallel
R(x,y,z) (x",y',2') =
(X' =&(x,y,2) Ny =y A Z=2)V
xX'=x A Yy =dy(x,y,2) N Z=2)V
X'=x Ay =y AN 2 =05(XYy,2))

» Recall symbolic iteration:
fraa (V) =fa(V) V (30, o (0) A g (0, V)

» For this particular R (see next slide):

fn+l(X7yvz)
:fn(X,y,Z) (YVZ fn(f,)_/,Z)/\R (Y,)_/,Z) (vazz))
=f(X,y,2) Y

(EIX fn(x y Z) X = X(vazz)) \
(Y- fa(x,¥,2) Ay =6dy(x,¥,2)) v
(EIZ fn(x y Z) z :5Z(X7yzz))

» Don't need to calculate BDD of R!

Mike Gordon 35/126

) (X,y,2)

)

)

,Z) A R(

n

Disjunctive partitioning

NG
_yyy
X <<
ZFx X

(1
X X X

<< <

~~
ININ N
[>NI>N1>
X |X |x
N N’ e’

[=
Y Y Y

IN IN IN
[>NI>N 1>
[< [X [x

M I m
— N —

IN IN IN
[>N > 1>
[X X |x
[T T Im
N N N

J

L Z) Ny
) A (3zZ. fa(

X,y

ox(X,y,2)) A

fn(
y.y=y

y.

) A (3
) A (3

X
X

fn(i,y,Z) A X

X.
((3x. x
((3x. x

((3

> >

NN A~
—~~—~
N NN
>I> >
XX x

X >N
Ll

(1
X >N

36/126

Mike Gordon

Verification and counterexamples

» Typical safety question:

» is property p true in all reachable states?
» i.e. check M = GAp
» i.e.isVs.s € ReachableM = p s

» Check using BDDs

» compute BDD By, of Reachable M
» compute BDD B, of p(V)
» check if BDD of By = B; is the single node

» Valid because true represented by a unique BDD
(canonical property)

» If BDD is not |1 | can get counterexample

Mike Gordon 37/126

Generating counterexamples (general idea)
BDD algorithms can find satisfying assignments (SAT)

Suppose not all reachable states satisfy p

i.e.3s € S. =(p(s))

Set of reachable state S given by: S = (77, Sh

Iterate to find least n such that 3s € S,. =(p(s))

Use SAT to find s, such that s, € Sy A —=(p(sn))

Use SAT to find s,_; such that s,_; € S,_1 AR Sh_1 Sn
Use SAT to find s,_» such thats,_, € S,_» AR Sh_» Sh_1

vV v vV vV V. VY

» lterate to find sg, S1, ..., Sh—1, Sh where s; € §§ AR Sj_1 S
» Thensys; - - Sh_1 Sp IS a path to a counterexample

Mike Gordon 38/126

Use SAT to find s,_; such that s,_1 € Sh_-1 AR Sh_1 Spy

Mike Gordon

Suppose states s, s’ symbolically represented by V, v/
Suppose BDD 5; represents vV € S; (1 <i <n)
Suppose BDD Bg represents R V v/

Then BDD o
(Bn—1 A Br[bn/V'])
represents .
\7 6 Sn,l /\ R \7 bn

Use SAT to find a valuation b, _; for vV

Then BDD . .

(Bn—1 A Br[bn/V'])[bn_1/V]
represents -

b1 €Sn-1 AR D1 by =

39/126

Generating counterexamples with BDDs

BDD algorithms can find satisfying assignments (SAT)

>

vV v v Y

v

v

M = (S,So,R,AP) and By, Bi, ..., Bu, Br, By as earlier

Suppose By = B, is not[1]

Must exist a state s € Reachable M such that —(p s)
Let 5, be the BDD representing —(p V)

Iterate to find first n such that B, A B,

Using SAT find by, such that (B, A B-p)[bn/V]
Use SAT to find b,,_; such that (B,_1 A Br[bn/V])[bn_1/V]
For 0 < i < n find b; such that (Bi_1 A BR[Bi/v7])[6i_1/\7]

—

> 60,. R o T .,Bn is a counterexample trace
» Sometimes can use partitioning to avoid constructing Br

Mike Gordon

40/126

Example (from an exam)

Consider a 3x3 array of 9 switches

Suppose each switch 1,2,...,9 can either be on or off, and that toggling any switch will
automatically toggle all its immediate neighbours. For example, toggling switch 5 will
also toggle switches 2, 4, 6 and 8, and toggling switch 6 will also toggle switches 3, 5
and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the
behavior of the array of switches

You are given the problem of getting from an initial state in which even numbered
switches are on and odd numbered switches are off, to a final state in which all the
switches are off.

(b) Write down predicates on your state space that characterises the initial [2 marks]
and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of switches to
toggle to get from the initial to final state. [6 marks]

You are not expected to actually solve the problem, but only to explain how to represent
it in terms of model checking.

Mike Gordon 41/126

Solution

A state is a vector (v1, v2, v3, v4, v5, v6, v7, v8, v9), Where vi € B
A transition relation Tr ans is then defined by:

Trans(v1,v2,v3,v4,v5,v6,v7,v8,v9) (vl ,v2' ,v3 ,6v4 ,v5 v6' ,v7 ,v8 ,v9)
= ((vl' ==wvl1) A(v2 ==v2) A(Vv3 =v3) A(v4’ =—v4) A(V5’ =v5) A
(v6’' =v6) A(V7' =v7) A(V8 =v8) A(VI' =Vv9)) (toggle switch 3}
V (vl ==v1) A(v2 ==v2) A(Vv3 ==v3) A(v4’ =v4) A(VE’ ==Vv5) A
(v6’ =v6) A(V7' =v7) A(V8 =v8) A(VI' =V9)) (toggle switch 2
((vl' =v1) A(v2' ==v2) A(v3 ==v3) A(v4' =v4) A(VE' =v5) A
(v6’' ==v6) A(V7' =v7) A(V8 =v8) A(VI' =Vv9)) (toggle switch 3
((vl' ==wv1) A(v2 =v2) A(Vv3 =v3) A(V4 =—v4) A(VE ==Vv5) A
(v6’ =v6) A(V7' ==vT7) A(Vv8 =v8) A(VI =v9)) (toggle switch 4
((vl' =v1) A(v2' ==v2) A(V3 =v3) A(v4' =—v4) A(VE ==Vv5) A
(v6 ==vB) A(V7' =v7) A(v8 ==v8) A(V9' =v9)) (toggle switch §
((vl' =v1) A(v2' =v2) A(V3 =—v3) A(v4' =v4) A(V5' =—v5) A
(v6 ==vB) A(V7' =v7) A(v8 =v8) A(V9' =—v9)) (toggle switch §
((vl' =v1) A(v2' =v2) A(Vv3 =v3) A(Vv4' =—v4) A(V5' =v5) A
(v6’ =v6) A(V7' ==v7) A(v8 ==v8) A(V9' =v9)) (toggle switch 7
((vl' =v1) A(v2' =v2) A(V3 =v3) A(v4' =v4) A(V5 ==Vv5) A
(v6 =v6) A(V7' ==v7) A(v8 ==v8) A(V9' =—v9)) (toggle switch §
((vl' =v1) A(v2' =v2) A(v3 =v3) A(v4' =v4) A(VE =v5) A
(v6' ==vB) A(V7' =v7) A(v8 ==v8) A(V9' =-v9)) (toggle switch 9

<

<

<

<

<

<

<

Mike Gordon 421126

Solution (continued)

Predicates I nit, Fi nal characterising the initial and final states,
respectively, are defined by:

Init(vl, v2,v3,v4,v5 v6,v7,v8,v9) =
vl AN v2 A -v3 A vd A -v5 A V6 A =v7 A v8 A —Vv9

Final (v1,v2,v3,v4,v5 v6,Vv7,v8,v9) =
vl A -v2 AN =v3 A -v4 A -v5 A -v6 A =-v7 A —-v8 A —Vv9

Model checkers can find counter-examples to properties, and
sequences of transitions from an initial state to a
counter-example state. Thus we could use a model checker to
find a trace to a counter-example to the property that

—Final (v1,v2,v3,v4,v5,v6,v7,v8,Vv9)

Mike Gordon 43/126

Properties
> Vs € Sg. R*s = p s means p true in all reachable states
» Might want to verify other properties
1. Devi ceEnabl ed holds infinitely often along every path

2. From any state it is possible to get to a state where
Rest art holds

3. After a three or more consecutive occurrences of Req there
will eventually be an Ack

» Temporal logic can express such properties
» There are several temporal logics in use
» LTL is good for the first example above

» CTL is good for the second example
» PSL is good for the third example

» Model checking:
» Emerson, Clarke & Sifakis: Turing Award 2008
» widely used in industry: first hardware, later software

Mike Gordon 441126

Temporal logic (originally called “tense logic”)

Originally devised for investigating: “the relationship
between tense and modality attributed to the Megarian
philosopher Diodorus Cronus (ca. 340-280 BCE)".

Mary Prior, his wife, recalls “I remember his waking me
one night [in 1953], coming and sitting on my bed, ... and
saying he thought one could make a formalised tense logic”.

A. N. Prior
1914-1969
» Temporal logic: deductive system for reasoning about time
» temporal formulae for expressing temporal statements
» deductive system for proving theorems
» Temporal logic model checking
» uses semantics to check truth of temporal formulae in models
» Temporal logic proof systems also importantin CS
» use pioneered by Amir Pnueli (1996 Turing Award)
» not considered in this course

Recommended: htt p: // pl at o. st anf ord. edu/ entri es/ pri or/

Mike Gordon 45/126

http://plato.stanford.edu/entries/prior/

Temporal logic formulae (statements)

» Many different languages of temporal statements

linear time (LTL)

branching time (CTL)

finite intervals (SERES)
industrial languages (PSL, SVA)

» Prior used linear time, Kripke suggested branching time:
... we perhaps should not regard time as a linear series ... there are
several possibilities for what the next moment may be like - and for
each possible next moment, there are several possibilities for the
moment after that. Thus the situation takes the form, not of a linear
sequence, but of a 'tree’.

[Saul Kripke, 1958 (aged 17, still at school)]

v

vYyy

» CS issues different from philosophical issues

» Moshe Vardi: “Branching vs. Linear Time: Final Showdown”
http://www.computer.org/portal/web/awards/Vardi
Moshe Vardi (aged 56, still at school)
Www.computer.org

"For fundamental and lasting contributions to the development
of logic as a unifying foundational framework and a tool for
modeling computational systems"

2011 Harry H. Goode Memorial Award Recipient

Mike Gordon 46 /126

Linear Temporal Logic (LTL)

» Grammar of well formed formulae (wff) ¢

o = p (Atomic formula:p € AP)
| - (Negation)
| ¢1V ¢ (Disjunction)
| Xo¢ (successor)
| Fo (sometimes)
| Go (always)
|

[p1 U o] (Until)
» Details differ from Prior’s tense logic — but similar ideas

» Semantics define when ¢ true in model M
» where M = (S, R, Sp, AP) — a Kripke structure
» notation: M = ¢ means ¢ true in model M
» model checking algorithms compute this (when decidable)

Mike Gordon 471126

M = ¢ means “wff ¢ is true in model M”

» If M = (S,Sp,R,AP) then
‘w is an M-path starting from s iff Path R s w‘

» If M = (S, Sp, R, AP) then we define M = ¢ to mean:
‘gb is true on all M-paths starting from a member of Sy ‘

» We will define [¢]y (7) to mean

| ¢ is true on the M-path |

» Thus M |= ¢ will be formally defined by:
‘M E¢ & Vrs.seSpAPathRs 7= [[gb]]M(w)‘

» It remains to actually define [¢]y for all wffs ¢

Mike Gordon

481126

Definition of [¢]m(7)

> [¢]m () is the application of function [¢]y to path =
» thus [¢]m : (N—S) — B
» LetM = (S, So,R,AP)
[¢]m is defined by structural induction on ¢

[pIm(7) = p(r 0)

[—¢Im(m) = ([¢Im(m))

[61V d2lm(m) = [o1lm(m) V [d2lm(7)
[Xé]m () = [élm(ml1)

[Folm(m) = Ji. [¢lm(li)

[Golm () = Vi. [¢]m (i)

[[¢1 U ¢2]lm () Ji. [@2lm(7li) A Vi j<i = [o1lm(nl))

» We look at each of these semantic equations in turn

Mike Gordon 49/126

[plm(7) = p(7 0)

» Assume M = (S,Sp,R,AP)

» We have: [p]u(7) = p(r 0)
» pis an atomic property, i.e. p € AP
mT:N—=Ssonr0eS
m 0 is the first state in path =
p(w 0) is true iff atomic property p holds of state = 0

vV vYyy

» [plm(7) means p holds of the first state in path =

» Assume T,F € AP with T(s) = true and F(s) = false
> [T]u(x) is always true

» [Flm(n) is always false

Mike Gordon 50/126

[-élm(m) = —([¢Im(7))
[¢1 v @2lm(7) = [1lm(m) V [d2]m(7)

> [6lm(m) = ~([¢m (7))

» [—¢]m(n) true iff [¢]w(7) is not true

> [¢1 V d2lm(7m) = [¢1lm(m) V [g2]m(7)

> o1 V @2]m () trueiff [pr]m () is true or [¢2]m(7) is true

Mike Gordon 51/126

[Xélm(m) = [plm(7]1)

> [Xolm () = [¢lm (1)
» 7|1 is 7 with the first state chopped off
m1(0) = n(1 4 0) = (1)
mM1(1) =n(1+1) =n(2)
mM1(2) =n(1+2) =n(3)

> [Xo]m () trueiff [¢]m true starting at the next state of

Mike Gordon 52 /126

[Folm(m) = Fi. [¢]m(mli)

> [Folm(m) = 3i. [o]m(wli)
» 7li is 7 with the first i states chopped off

mi(0) = w(i + 0) = 7(i)
(1) = w(i + 1)
i(2) = w(i + 2)

> [¢]m(nli) true iff [¢]w true starting i states along 7

> [Folm(m) true iff [¢]y true starting somewhere along 7

» “F¢” is read as “sometimes ¢”

Mike Gordon 53/126

[Golm(r) = Vi. [¢lm(rli)
> [Gom(m) = Vi. [¢]m(7li)

» 7l is 7 with the first i states chopped off
> [¢]m(nli) true iff [¢]w true starting i states along 7

> [Go]wm () true iff [¢]w true starting anywhere along 7
> “Go¢" is read as “always ¢” or “globally ¢”
» M = GAp defined earlier: M = GAp < M = G(p)

» G is definable in terms of F and —: G¢ = —(F(—¢))
[~(F(=o)Im(m) = ~([F(=d)Im(7))

—(3i. [~¢lwm (i)

~(31. ~([¢lm(7li)))

vi. [¢Im (i)

[Golm(m)

Mike Gordon 54 /126

[[$2 U ¢2llm(n) = 3i. [d2lm(xli) AYj. j<i = [pa]m(nlj))

> [[#1 U @2]lm(m) = 3i. [¢2]m(7li) AV j<i = [¢1]m(7l])
> [p2lm (i) true iff [¢,]m true starting i states along 7

> [p1]m(mlj) true iff [¢1]m true starting j states along =

> [[¢1 U ¢2o]lm () is true iff
[¢2]m istrue somewhere along w and upto then [¢;]w is true

> ‘(01 U ¢,]"is read as “¢1 until ¢,”

» Fis definable in terms of [U —]: Fo = [T U ¢]

[[T U ¢llm(m)
Ji. [¢]m (i
Ji. [¢lm (i
Ji. [¢lm (i
Ji. ﬂgb]]M alll
[Félm ()

Mike Gordon 55/126

AV j<i = [Tlm(lj)
AVY].j<i = true
A true

~— — N N

Review of Linear Temporal Logic (LTL)

» Grammar of well formed formulae (wff) ¢

¢ = p (Atomic formula:p € AP)
| - (Negation)
| 1V ¢ (Disjunction)
| X¢ (successor)
| Fo (sometimes)
| Go (always)
|

[¢1 U d2] (Until)

» M [= ¢ means ¢ holds on all M-paths
» M = (S,So,R,AP)
> [¢]m(7) means ¢ is true on the M-path 7
» ME¢ & Vrs.seSoAPathR s 7= [¢]u(n)

Mike Gordon

56 /126

LTL examples

» “Devi ceEnabl ed holds infinitely often along every path”
| G(F Devi ceEnabl ed) |
From an earlier slide

» “Eventually the state becomes permanently Done*
F(G Done)

» “Every Req is followed by an Ack”
| G(Req = F Ack) |
Number of Req and Ack may differ - no counting

» “If Enabl ed infinitely often then Runni ng infinitely often”
| G(F Enabl ed) = G(F Runni ng) |

» “An upward going lift at the second floor keeps going up if
a passenger requests the fifth floor”
G(At Fl oor2 A DirectionUp A Request Fl oor 5
= [Di recti onUp U At Fl oor 5])

Mike Gordon (acknowledgement: ht t p: / / pswl ab. kai st . ac. kr/ cour ses/ cs402- 2011/ t enpor al - | ogi c2. pdf) 57 /126

http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf

A property not expressible in LTL
» Consider models M and M’ below

A A -

M M/

So S1 So

M = ({so,s1},{So}: {(So.S0). (So0:S1)}, {As. S # So})
M’ = ({so},{So},{(S0,%0)},{As. s # so})

» Every M’-path is also an M-path
» Hence Vo.M = ¢ = M’ = ¢

» Consider property “can always reach a state satisfying P”

» true: M = “can always reach a state satisfying P”
» false: M’ |= “can always reach a state satisfying P’
» “can always reach a state satisfying P” notexpressible in LTL

Mike Gordon (acknowledgement: ht t p: // psw ab. kai st . ac. kr/ cour ses/ cs402- 2011/ t enpor al - | ogi c2. pdf) 58/126

http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf

LTL expressibility

“can always reach a state satisfying P”

» InLTL M |= ¢ says ¢ holds of all paths of M

» LTL formulae ¢ are evaluated on paths path formulae

» Want to say there exists a pathto P
» Jr.PathR s 7 A Ji. P(n(i))

» from any reachable state s (the “always” in the property)

» CTL properties are evaluated at a state ... state formulae

» they can talk about both some or all paths

» starting from the state they are evaluated at

Mike Gordon 59/126

Computation Tree Logic (CTL)

» LTL formulae ¢ are evaluated on paths path formulae

» CTL formulae 1) are evaluated on states .. state formulae

» Syntax of CTL well-formed formulae:

Mike Gordon

p

-

VY1 N\
1 Vo
Y1 = P2
AX1)

EX1

Al U 1]
Efv1 U 9]

(Atomic formulap € AP)
(Negation)

(Conjunction)
(Disjunction)
(Implication)

(All successors)

(Some successors)

(Until — along all paths)
(Until — along some path)

60/126

Semantics of CTL
» Assume M = (S, Sp, R, AP) and then define:

[PIm(s) = p(s)

[—¢1m(s) = ~([¥Im(s))

[V1 A dbelm(s) = [¥alm(s) A [¥2lm(s)
[v1 V ¥2]m(s) = [¥alm(s) Vv [¥2lm(s)
[V1 = olm(s) = [¥ilm(s) = [W2lm(s)
[AXY]m(S) = Vs . Rss'" = [¢]u(s)
[EX¥]m(S) = 3" Rss’" A [¥]mu(s)
[A[1 U o]lm(s) = Vr.PathR s«

= Ji. [Y2]m (7 (i))
A

vi.i<i = [va]m(n(i))
[E[¢1 U ¢2llu(s) = 3r.PathRsx
A 3'&1/}2]]!\/1(77('))

Vi i<i = [valm(x(i))

Mike Gordon 61/126

The defined operator AF

» Define AFy) = A[T U /]

» AF true atsiff b true somewhere on every R-path from s

[AFLIM(s) = [A[T U ¥]lm(s)

= Vr.PathR s«
=

3i. [WIw(x(@) A Vi.j<i = [TIu(x())

= Vr.PathRs 7
=
Ji. [¥lm(w(i)) A Vj.j<i = true

= Vr.PathR s 7 = di. [¢]u(x(i))

Mike Gordon 62 /126

The defined operator EF

» Define EFy = E[T U 1]

» EF true atsiff) true somewhere on some R-path from s

[EFYTm(s)

= [E[T U ¢]lm(s)

dr.PathR s«
AN

3. [LIw(x() A Vi.j<i = [TIw())

dr. PathR s«
A
Ji. [YIm(w(i)) A V).j<i = true

dr. PathR s 7w A Ji. [¢]m(7(i))

» “can reach a state satisfying P" is EF P

Mike Gordon

63/126

The defined operator AG
» Define AGy) = —EF(—v)

» AGq true atsiff ¢ true everywhere on every R-path from s

[AGYIm(s) = [EF(=¢)Im(s)
(EF=0)I(S))

—(3r. PathR s 7 A 3i. []m(n (i
—(3r. PathR s m A Ji. =[¢p]m (7 (i
Vr. =(Path R s 7 A Ji. =[¢]m(n (i
Vr. =Path R s 7wV =(3i. =[¢]m (7 (i
Vr. —Path R s 7 vV Vi. == [¢]m (7 (i
V. —=Path R s 7 V Vi. [{]m (7 (1))
Vr. PathR s m = Vi. [¢]m(7(i))

» AGt means 1 true at all reachable states
» [AG(p)]m(s) = Vs'.R*ss’ = p(s')
» “can always reach a state satisfying P” is AG(EF P)

Mike Gordon 64 /126

The defined operator EG

» Define EGy = ~AF(—))

» EGy true atsiffvy true everywhere onsome R-pathfroms

[EGYIm(s) = [FAF(=)lu(s)

~([AF (=¢)m(s))

—(Vr. Path R s 7w = Ji. [-¢]m(7(i)))

=(Vr. Path R s 7 = Ji. =[¢]m((i)))
dr. =(Path R s 7 = Ji. =[¢]m(7(i)))
dr. Path R s 7 A =(3i. =[¢]m (= (i)))
dr. Path R s 7 AVi. == [¢]m (7 (1))
dr. Path R s 7 AVi. [¢]m(7(i))

Mike Gordon 65/126

The defined operator Afy; W 1]

» Al W 1),] is a ‘partial correctness’ version of A1 U ;]
» Itis true at s if along all R-paths from s:
» 11 always holds on the path, or

» 1, holds sometime on the path, and until it does ¢, holds

» Define
[Al1 W b2]Tm(s)
= [FE[(¢1A"12) U (mp1 A=2)]Im(S)
= —[El(v2A—2) U (1 A=) T (S)
= —(3r. PathR s 7
A
3i. [~ A—ba]lm (7 (i)
A
Vi.j<i = [vaA—v2]m(7(i)))

» Exercise: understand the next three slides!

Mike Gordon 66 /126

Al1 W 1),] continued (1)

» Continuing:

—(3r. PathR s 7
A

i [A—e]u(w(i)) AV j<i = [aA—da]m(())))

= Vr. ~(PathR s 7
A

Ji. [haA—e]m(w(i)) A V. j<i = [aA—de]m(n ()

= Vr.PathR s«
=

=3I [AYom(m (i) A ViLj<io = [YiA]m(7(i)))
= Vr.PathR s«
=

Vi. = Abo]m (7 (i) V =Y. j<i = [viA-ba]m(7())))

Mike Gordon 67 /126

Al1 W 1),] continued (2)

» Continuing:

= Vr.PathR s«
=

Vi. = Abo]m (i) vV =Y. j<i = [vaA—a]m(n(i)))

= Vr.PathR s«
=

Vi. =Y. j<i = [Y1iA"2lm(7()))) V = [-v1A-Ye]m (7 (1))

= Vr.PathR s«
=

Vi. (V. j<i = [viA-adm(7()) = [¥1Velm(x(i))

» Exercise: explain why this is [A[1 W 2]]m(s)?
» this exercise illustrates the subtlety of writing CTL!

Mike Gordon 68 /126

Al WF] = AG ¢
» From last slide:
[A[to1 W 4b2]m(s)
= Vr.PathR s«
=
Vi (V). j<i = [viA2lm(7()))) = [¥1Viba]m(n(i))
» Set), to ¢ and v, to F:
[Al> W F]]m(s)
= Vr.PathR s«
=
Vi. (V. j<i = [YA-FIu(r()) = [¥VFIm(r(i))
» Simplify:

[Al W FIm(s)
= Vr.PathR s 7 = Vi. (Vj. j<i = [¢¥]m(7(}))) = [¢]Im (7 (i)

» By induction on i:
[A[WF]m(s) = Vr.PathR s 7 = Vi. [¢]m(n(i))
» Exercise: describe the property specified by A[T W]

Mike Gordon 69 /126

Summary of CTL operators (primitive + defined)

» CTL formulae:

Mike Gordon

p

)

Y1 A 12
Y1V ihy

Y1 = P2
AX1)

EX4)

AF)

EFy

AGy

EGy

Altp1 U 1]
E[1 U 2]
Al W 1]
E[1 W 1]

(Atomic formula -p : states—bool)
(Negation)

(Conjunction)

(Disjunction)

(Implication)

(All successors)

(Some successors)
(Somewhere — along all paths)
(Somewhere — along some path)
(Everywhere — along all paths)
(Everywhere — along some path)
(Until — along all paths)

(Until — along some path)
(Unless — along all paths)
(Unless — along some path)

70/126

Example CTL formulae

» EF(Started A —Ready)

It is possible to get to a state where Started holds
but Ready does not hold

» AG(Req = AFAck)

If a request Req occurs, then it will eventually be
acknowledged by Ack

» AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along
every path starting anywhere: i.e. DeviceEnabled
holds infinitely often along every path

» AG(EFRestart)

From any state it is possible to get to a state for
which Restart holds

Mike Gordon 71/126

More CTL examples (1)

» AG(Req = A[Req U Ack])
If a request Req occurs, then it continues to hold,
until it is eventually acknowledged

» AG(Req = AX(A[-Req U Ack]))
Whenever Req is true either it must become false
on the next cycle and remains false until Ack, or
Ack must become true on the next cycle

Exercise: is the AX necessary?

» AG(Req = (—Ack = AX(A[Req U Ack])))

Whenever Req is true and Ack is false then Ack
will eventually become true and until it does Req
will remain true

Exercise: is the AX necessary?

Mike Gordon 721126

More CTL examples (2)

» AG(Enabled = AG(Start = A[-Waiting U Ack]))

If Enabled is ever true then if Start is true in any
subsequent state then Ack will eventually become
true, and until it does Waiting will be false

» AG(—Reqi;A—Req,=A[-Req;A—Req, U (StartA—Req;)])
Whenever Req; and Req, are false, they remain
false until Start becomes true with Req, still false

» AG(Req = AX(Ack = AF —Req))

If Req is true and Ack becomes true one cycle
later, then eventually Req will become false

Mike Gordon 731126

Some abbreviations
> AXj = AX(AX(--- (AX) --+))

i instances of AX
1 is true on all paths i units of time later

> ABF; ;¢ = AX; (b VAX() V -+ AX(¢) V AX) ---))

j — i instances of AX

¢ is true on all paths sometime between i units of
time later and j units of time later

» AG(Req = AX(Acky A ABF1 g(Acky A A[Wait U Reply])))

One cycle after Req, Ack; should become true,
and then Ack, becomes true 1 to 6 cycles later
and then eventually Reply becomes true, but until
it does Wait holds from the time of Ack,

» More abbreviations in ‘Industry Standard’ language PSL

Mike Gordon 741126

CTL model checking

» For LTL path formulae ¢ recall that M = ¢ is defined by:
ME¢ & Vrs.seSgAPathR s 7= [¢p]u(n)

» For CTL state formulae) the definition of M |= ¢ is:
MEY < Vs.seSy= [¢]u(s)

» M common; LTL, CTL formulae ¢» and semantics [| differ

» CTL model checking algorithm:
» compute {s | [¢]m(s) = true} bottom up
» check Sp C {s | [¥]m(s) = true}

» symbolic model checking represents these sets as BDDs

Mike Gordon 751126

CTL model checking: p, AXvy, EXY

» For CTL formula ¢ let {4} = {s | [¢]m(s) = true}

> {p} ={s [p(s) = true}
» scan through set of states S marking states that satisfy p
» {p} is set of marked states

» To compute {AX}

» recursively compute {}
» marks those states all of whose successors are in {1}
» {AX%} is the set of marked states

» To compute {EX¢}

» recursively compute {4}
» marks those states with at least one successor in {¢'}
» {AX%} is the set of marked states

Mike Gordon 76 /126

CTL model checking: {E[¢1 U ¢2][}, {Alv1 U 2]}

» To compute {E[i1 U]}

recursively compute {1} and {2}

mark all states in {»}

mark all states in {¢);} with a successor state that is marked
repeat previous line until no change

{E[¥1 U]} is set of marked states

vV vy vy VvYyy

» More formally: {E[1 U 4]} = UpZ o{E[¢1 U 2]} where:

{Elv1U¢2llo = {2}
{E[Y1 Uollnyr = EJE[% U ¢2]kn

{s € {1} | 38’ € {E[¢)1 U ¥]}n. R s S’}

» {A[1 U 9]} similar, but with a more complicated iteration
» details omitted

Mike Gordon 771126

Example: checking EF p

» EFp = E[T U p]
» holds if ¢» holds along some path

» Note {T} =S

» Let Sp = {E[T U p]}n:

So = {p}
= {s|p(s)}
Snt1 = Sn U {s|3s"."Rss'As" €S}
mark all the states satisfying p
mark all with at least one marked successor

repeat until no change
{EF p} is set of marked states

vV vy vy

Mike Gordon

781126

Example: RCV

» Recall the handshake circuit:

dreq J— dack

or0

qObar

» State represented by a triple of Booleans (dreq, q0, dack)

» A model of RCV is Mgcy Where:
M= (SRC\/~ {(1/ 1 1)}/ Rrov, AP)

and
Rrev (dreq, g0, dack) (dreq’,q0’,dack’) =
(q0" = dreq) A (dack” = (dreq A (q0 Vv dack)))

Mike Gordon 791126

RCV state transition diagram

» Possible states for RCV:
{000,001,010,011,100, 101,110,111}
where b,b,bg denotes state
dreqg=by A g0 =b; A dack =bg

» Graph of the transition relation:

()

100 110 111

N

011

Mike Gordon 80/126

MOdel CheCklng Mpgev IZ ()\bzblbo. b, Aby A bo)

)

110 111

N>

011

» Define:

So = {b2bibg | (Abzbibg. by Aby A bg)babibo)}
= {bob1bg | by Aby Ao}

Sy1 =8 U {s|3seS. R(s,s)}
=8 U {bab;by |
Hbébibé €S. (bi = b2) A (b6 =by A (b]_ \Y bo))}

Mike Gordon 81/126

Model checking Mqe, = (Absbibo. by A by A by) (CONtinued)

0

2 1 0
100 11 111

NON)

010 /

3
011

» Compute:
So = {111}
Sy = {111} U {101,110}
={111,101,110}
{111,101,110} U {100}
{111,101, 110,100}
S; ={111,101,110,100} U {000,001,010,011}
= {111,101,110, 100,000, 001,010,011}
S =8 (i>3)

» Vs. [EF (\(dreq,q0,dack).dreq A q0 A dack)]u(s)
» Mgrev = EF (A(dreq,q0,dack). dreq A g0 A dack)

Sy

Mike Gordon 82/126

Symbolic model checking

v

Represent sets of states with BDDs

v

Represent Transition relation with a BDD

v

If BDDs of {¢'}, {1}, {2} are known, then:

» BDDs of {—¢}, {1 A o}, {1 V b} {1 = b2}
computed using standard BDD algorithms

» BDDs of {AX¢}, {EX9¥}, {A1 U]}, {E[1 U ¥]]}
computed using straightforward algorithms (see textbooks)

v

Model checking CTL generalises reachable states Iteration

Mike Gordon 83/126

History of Model checking

» CTL model checking due to Emerson, Clarke & Sifakis
» Symbolic model checking due to several people:

» Clarke & McMillan (idea usually credited to McMillan’s PhD)
» Coudert, Berthet & Madre
» Pixley

» SMV (McMillan) is a popular symbolic model checker:

http://ww. cs. cnu, edu/ ~nodel check/ snv. ht m (original)
http://ww. kenncmi | . conl smv. ht (Cadence extension by McMillan)
http://nusmv.irst.itc.it/ (new implementation)

» Other temporal logics

» CTL*: combines CTL and LTL
» Engineer friendly industrial languages: PSL, SVA

Mike Gordon 84 /126

http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
http://nusmv.irst.itc.it/

Expressibility of CTL
» Consider the property

“on every path there is a point after which p is
always true on that path ”

s0 sl s2

» Consider

/SO\

s0 S1—> S2 —> 52 —> 52 —> 52 e
S0 51— 52 —» 52 —» 52 —> 52 e
s0 S1 —> S2 —» S2 —> S2 —> S2eweeee

S1 —+ S2 —> S2 —» S2 —» 52 wweerr

» Property true, but cannot be expressed in CTL

» would need something like AF
where 1) is something like “property p true from now on”
but in CTL ¢ must start with a path quantifier A or E
cannot talk about current path, only about all or some paths
AF(AG p) is false (consider path s0s0s0---)

Mike Gordon 85/126

vV vy VvYyy

LTL can express things CTL can'’t

» Recall:
[Folm(m) = i [¢lm(li)
[Golm(m) = Vi. [¢lm(nli)

» FGo is true if there is a point after which ¢ is always true
[FGoIm(m) = [F(G(¢))Im()
= 3my. [G(¢)Im(rlmy)
= amy. Vma. [¢]m((7lmq)im2)
= Hml. sz. H¢HM(Wl(m1+m2))

» LTL can express things that CTL can't express

Mike Gordon

86/126

CTL can express things that LTL can’t express

» AG(EF p) says:
“from every state it is possible to get to a state for
which p holds”

» Can’t say this in LTL (proof omitted)

» Consider disjunction:

“along every path there is a state from which p
will hold forever

or

from every state it is possible to get to a state for
which p holds”

» Can't say this in either CTL or LTL! (proof omitted)

» CTL* combines CTL and LTL and can express this property

Mike Gordon 871126

CTL*

» Both state formulae (i) and path formulae (¢)

» state formulae ¢ are true of a state s like CTL
» path formulae ¢ are true of a path = like LTL

» Defined mutually recursively

)

p

U1 Vo
Ag
Eo¢

P

-9
o1V P2
X

Fo

Go

[¢1 U @]

(Atomic formula)
(Negation)
(Disjunction)

(All paths)
(Some paths)

(Every state formula is a path formula)
(Negation)

(Disjunction)

(Successor)

(Sometimes)

(Always)

(Until)

» CTLis CTL* with X, F, G, [-U—] preceded by A or E

» LTL consists of CTL* formulae of form A¢,
where the only state formulae in ¢ are atomic

Mike Gordon

88/126

CTL* semantics

» Combines CTL state semantics with LTL path semantics:

[PIm(s) = p(s)

—m(s) = 2([¥Im(s))

Y1 Vipelu(s) = [[wl]]lvl() V [¥2lm(s)
Adlm(s) = Vr.PathRs7m = ¢(n)
Eolm(s) = dr.PathR sz A [¢]m(n)
[¥]m () = [¢]m(=(0))

—¢]m(m) = ([¢lm (7))

o1V golm(m) = [é1]m(m) V [¢2]m(7)
[Xé]m () = [¢lm(ml1)

Folm(m) = am. [¢]m(mlm)

Go]m () = vym. [¢]m(7lm)

[[¢1 U ¢2]lm(m) Ji. [p2lm(li) AV).j<i = [o1]m(mli)
» Note [¢]y : S—B and [¢]y : (N—S)—B

Mike Gordon 89/126

LTL and CTL as CTL*

» Asusual: M = (S,Sp,R,AP)
» If ¢y is a CTL* state formula: M |= ¢ < Vs € So. [¢]m(s)
» If ¢ is an LTL path formula then: M = ¢ < M Eq- Ag
» If R is total (Vs. 3s’. R s ') then (exercise):
Vss'.Rss’ & dr.PathRswA(n(l) =5
» The meanings of CTL formulae are the same in CTL*
[A(X¢)Im(s)
= Vr.PathR s m = [X¢]u(7)
= Vr.PathR s 7 = [¢]m(7l1) (v as path formula)

= Vr.PathR s 7 = [¢]m((71)(0)) (v as state formula)
= Vr. PathR s 7 = [¢]m(7(1))

[AX]m(s)
= Vs.Rss" = [¢]u(s)
= Vs (Gr.PathRs 7 A (7(1) =9)) = [¢]Im(s)
= Vs . Vr.PathRs 7 A (n(1) =9") = [¢]m(s)
= Vr.PathRs 7 = [¢]u(7(1))

Exercise: do similar proofs for other CTL formulae

Mike Gordon 90/126

Fairness

» May want to assume system or environment is ‘fair’

» Example 1: fair arbiter
the arbiter doesn’t ignore one of its requests forever

» not every request need be granted
» want to exclude infinite number of requests and no grant

» Example 2: reliable channel
no message continuously transmitted but never received

» not every message need be received
» want to exclude an infinite number of sends and no receive

Mike Gordon 91/126

Handling fairness in CTL and LTL

» Consider:
P holds infinitely often along a path then so does Q

» In LTL is expressible as G(F P) = G(F Q)

» Can't say thisin CTL
» why not — what's wrong with AG(AF P) = AG(AF Q)?
in CTL* expressible as A(G(F P) = G(F Q))
fair CTL model checking implemented in checking algorithm
fair LTL just a fairness assumption like G(FP) = ---

v vy

» Fairness is a tricky and subtle subjeci

» many kinds of fairness:
‘weak fairness’, ‘strong fairness’ etc

» exist whole books on fairness

Mike Gordon 92/126

Propositional modal p-calculus

» You may learn this in Topics in Concurrency

» p~-calculus is an even more powerful property language

has fixed-point operators

both maximal and minimal fixed points

model checking consists of calculating fixed points

many logics (e.g. CTL*) can be translated into ;.-calculus

vV vy VvYyYy

» Strictly stronger than CTL*

» expressibility strictly increases as allowed nesting increases
» need fixed point operators nested 2 deep for CTL*

» The p-calculus is very non-intuitive to use!

» intermediate code rather than a practical property language
» nice meta-theory and algorithms, but terrible usability!

Mike Gordon 93/126

SERESs: Sequential Extended Regular Expressions
» SEREs are from the industrial PSL (more on PSL later)

» Syntax :
r == p (Atomic formulap € AP)

| !'p (Negated atomic formula € AP)
| ri|nr (Disjunction)
| ri;n (Concatenation)
| ri:n (Fusion)
| r&&r; (Length matching conjunction)
| r[x] (Repeat)

» Semantics:

(w ranges over finite lists of states s; |w/| is length of w;
W1.W5 is concatenation of wy and ws,; () is empty word)

[pl(w) =p(head w) A jw| =1
[' pl(w) = —(p(head w)) A |w|=1
[ral r2J(w) = [ral(w) v [ral(w)

(w
[ri; r2l(w) = 3wy wo. w =wy.wy A [ra(we) A [ra](we)
[ri: r2l(w) =3wgswa.w =wp.s.wy A [ri(wi.s) A [rz2](s.wy)
[r1&&r](w) = [[rlﬂ() A [r2](w)
Irilw) =w={) V 3wy ---wj. w=wy. -+ WA[rJ(wi)A - A[r](w)

Mike Gordon 94 /126

Example SERE

» Example

A sequence in which r eq is asserted, followed
four cycles later by an assertion of gr ant ,
followed by a cycle in which abor ti nis not
asserted.

» Can this represent by the SERE:

req;[*3];grant;!abortin

Mike Gordon 95/126

Assertion-based verification (ABV)

» Claimed that assertion based verification:

“is likely to be the next revolution in hardware design
verification”

» Basic idea:

» document designs with formal properties
» use simulation (dynamic) and model checking (static)

» Problem: too many languages

» academic logics: LTL, CTL
» tool-specific industrial versions:
Intel, Cadence, Motorola, IBM, Synopsys

» What to do? Solution: a competition!

» run by Accellera organisation
» results standardised by IEEE
» lots of politics

Mike Gordon 96 /126

IBM’s Sugar and Accellera’s PSL

v

Sugar 1: property language of IBM RuleBase checker
» CTL plus Sugar Extended Regular Expressions (SERES)

v

Competition finalists: IBM’s Sugar 2 and Motorola’s CBV

» Intel/Synopsys ForSpec eliminated earlier
(apparently industry politics involved)

Sugar 2 is based on LTL rather than CTL

» has CTL constructs: “Optional Branching Extension” (OBE)
» has clocking constructs for temporal abstraction

v

v

Accellera purged “Sugar” from it property language

» the word “Sugar” was too associated with IBM
» language renamed to PSL
» SEREs now Sequential Extended Regular Expressions

v

Lobbying to make PSL more like ForSpec (align with SVA)

Mike Gordon 97 /126

PSL Foundation Language (FL)

r(f (Suffix implication:r a SERE)
{rn}|->{r} (Suffix next implicationiry, r, SERES)
| [fruntil fy] (Until)

» Semantics (omits clocking, weak/strong distinction)

» Syntax:
f == p (Atomic formula)
| I!f (Negation)
| fiorf; (Disjunction)
| next f (successor)
|
|

[p]wm () = p(7(0))

[' flm(r) = =([fIm (7))

[f1 or f2]m(m) = [film(m) v [folm(7)

next flu(m) = [flm(xl)

()] (7) —Gw o = wor A [rlew) A ()

[[{I’]_}l - >{r2}]]M(7r) =3dwy 7. T = wi.m A {rl}(wl)
= Awo”. ' = wo. " A {I’z}(Wz)

[[fy until f]lm(w) = 3i. [f2Im (i) A Vj.j<i = [film(7lj)
» There is also an Optional Branching Extension (OBE)
» completely standard CTL: EX, E[-U-], EG etc.

Mike Gordon 98 /126

Combining SEREs with LTL formulae

» Formula {r}f means LTL formula f true after SERE r
» Example

After a sequence in which r eq is asserted,
followed four cycles later by an assertion of

gr ant, followed by a cycle in which aborti nis
not asserted, we expect to see an assertion of
ack some time in the future.

» Can represent by
al ways {req;[*3];grant;!abortin}(eventually ack)
» where event ual | y is LTL future operator, so:
eventually f = J[true until f]

» N.B. Ignoring strong/weak distinction

» strong/weak distinction important for dynamic checking
» semantics when simulator halts before expected event
» strictly should write unti | !, eventual | y!

Mike Gordon 99 /126

SERE examples

» How can we modify
al ways reqin; ackout;!abortin |-> ackin;ackin
so that the two cycles of acki n start the cycle after
labortin

» Two ways of doing this

al ways{reqi n; ackout ;! abortin}|->{true; acki n; acki n}
al ways{regi n; ackout ;! abortin}| =>{acki n; acki n}

» | =>is a defined operator
{ri}y|=>{r2} = {ri1}|->{true;r2}

» Note: t rue and T are synonyms

Mike Gordon 100/126

Examples of defined notations: consecutive repetition

» Define
r[+] =10+
| false[*] if i=0
rixi] = _ _ o
| r;...;r otherwise (i repetitions)
rixicj] =[xl | e[+ [..o | r[*j]
[+] = true[+]
[+] = true[+]
» Example

Whenever we have a sequence of r eq followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal st art _t r ans, followed by one
to eight consecutive data transfers, followed by the
assertion of signal end_t r ans. A data transfer is
indicated by the assertion of signal dat a

al ways{req; ack}| =>{start_trans;data[+1..8];end_trans}

Mike Gordon 101/126

Fixed number of non-consecutive repetitions

» Example
Whenever we have a sequence of r eq followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal st art _t r ans, followed by
eight not necessarily consecutive data transfers,
followed by the assertion of signal end_t r ans. A data
transfer is indicated by the assertion of signal dat a

» Can represent by

al ways

{req; ack} |=>

{start_trans;
{{'data[*];data}[*8];!data]*]};
end_trans}

» Define: b[=i] = {!b[*];b}[*i];!b[*]
» Then have a nicer representation

al ways{req; ack}| =>{start_trans; data[= 8]; end_trans}

Mike Gordon

102/126

Variable number of non-consecutive repetitions
» Example
Whenever we have a sequence ofr eq followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal st art _t r ans, followed by
one to eight | not necessarily consecutive data
transfers, followed by the assertion of signal
end_t rans. A data transfer is indicated by the
assertion of signal dat a
» Define
bl=1i..j] ={b[=1i]} | {b[=(i+1)]} | ... | {b[=]]}
» Then
al ways {req;ack} |=>
{start _trans;data[= 1..8];end_trans}
» These examples are meant to illustrate how PSL/Sugar is
much more readable than raw CTL or LTL

Mike Gordon 103/126

Clocking

v

Basic idea: b@| k samples b on rising edges of cl k

v

Can clock SEREs (r @! k) and formulae (f @ k)

Can have several clocks

v

v

Official semantics messy due to clocking

v

Can ‘translate away’ clocks by pushing @ k inwards

» rules given in PSL manual
» roughly: b@l k ~ {!cl k[*];clk & b}

Mike Gordon 104 /126

Model checking PSL (outline)

v

SERESs checked by generating a finite automaton

» recognise regular expressions
» these automata are called “satellites”

v

FL checked using standard LTL methods

v

OBE checked by standard CTL methods

Can also check formula for runs of a simulator

v

» this is dynamic verification
» semantics handles possibility of finite paths — messy!

v

Commercial checkers only handle a subset of PSL

Mike Gordon

105/126

PSL layer structure

» Boolean layer has atomic predicates

» Temporal layer has LTL (FL) and CTL (OBE) properties

» Verification layer has commands for how to use properties
» e.g.assert, assune

assert always (!enl & en2))

|

|

| | | --- Bool ean | ayer
|

| [=-cmmmmeaaaa temporal |ayer
|

R verification | ayer

» Modelling layer has HDL constructs
for specifying inputs and auxiliary hardware

Mike Gordon 106 /126

PSL/Sugar summary

v

Combines together LTL, ITL and CTL

v

Regular expressions — SERES

v

LTL — Foundation Language formulae

v

CTL — Optional Branching Extension

v

Relatively simple set of primitives + definitional extension

v

Boolean, temporal, verification, modelling layers

v

Semantics for static and dynamic verification
(needs strong/weak distinction)

Mike Gordon 107 /126

Simulation or Event semantics

» HDLSs use discrete event simulation

» changes to variables = threads enabled

» enabled threads executed non-deterministically

» execution of threads = more events
» Combinational thread:
al ways @v; or --- or vy) v:=E
» enabled by any change to vy, ..., vy
» Positive edge triggered sequential threads:
al ways @ posedge clk) v:=E
» enabled by clk changingto T

» Negative edge triggered sequential threads:

al ways @ negedge clk) v:=E
» enabled by clk changing to F

Mike Gordon

108/126

Simulation

» Given

» a set of threads
» initial values for variables read or written by threads

» a sequence of input values
(inputs are variables not in LHS of assignments)

» simulation algorithm = a sequence of states

Execute
until
quiescent
then
advance
simulation
time

— ¥

Choose an enabled thread

|

Execute the chosen thread

|

Fire event controls to enable new threads

]

» Simulation is non-deterministic

Mike Gordon

109/126

Combinational threads in series
in—-If IL-Ig |£.I hl—»out

» HDL-like specification:

always @in) Iy :=f(in) thread T1
always @li) I 1= g(lh) oo, thread T2
always @ly) out := h(l;) thread T3

» Suppose in changes to v at simulation time t

» T1 will become enabled and assign f(v) to I;

» if I;’s value changes then T2 will become enabled
(still simulation time t)

T2 will assign g(f(v)) to I,

if 1,’s value changes then T will become enabled
(still simulation time t)

T3 will assign h(g(f(v))) to out

simulation quiesces
(still simulation time t)

» Steps at same simulation time happen in J-time
(VHDL jargon)

v

v

v

v

Mike Gordon

110/126

Semantic gap

» Designers use HDLs and verify via simulation
» event semantics
» Formal verifiers use logic and verify via proof
» trace semantics
» Problem: do trace and simulation semantics agree?

» Would like:
traces = sequences of quiescent simulation states

initial sate Slatesafter States after
onestep twosteps

Mike Gordon 111/126

Sequential threads — event semantics
|

in — — out

CIKU

» Consider two Dtypes in series:
al ways osedge clk) | :=in
al vvags %Bosedge clkg out : =1

» If posedge cl k:

» both threads become enabled
» race condition

» Right thread executed first:

» out gets previous value of |
» then left thread executed
» so | gets value input at in

» Left thread executed first:

» | gets input value at in
» then right thread executed

» SO out gets input value at in
Mike Gordon 112/126

Sequential threads — trace semantics

in — — out

clku

» Trace semantics:

in aaaaaaaaaaabbbbbb ddddddddd.
clk 00000111110000011111000001111100......
| eeeeeaaaaaaaaaabbbbbbbbbbddddddd.
out fffffeeeeeeeeecaaaaaaaaaabbbbbbb.

» Corresponds to right thread executed first
» How to ensure event and trace semantics agree?
» Method 1: use non-blocking assignments:

al ways @ posedge clk) | <= in;
al ways @ posedge clk) out <= I;

» non-blocking assignments (<=) in Verilog
» RHS of all non-blocking assignments first computed
» assignments done at end of simulation cycle

» Method 2: make simulation cycle VHDL-like

Mike Gordon 113/126

Verilog versus VHDL simulation cycles

» Verilog-like simulation cycle:

Execute
until
quiescent
then
advance
simulation
time

» VHDL-like simulation

Execute
until
quiescent
then
advance
simulation
time

Mike Gordon

—_———
\

Choose an enabled thread

l

Execute the chosen thread

|

Fire event controls to enable new threads

1

cycle:

]

Execute all enabled threads in parallel

A\
Fire event controls to enable new threads

B

114/126

VHDL event semantics

in — — out

Clku

» Recall HDL:
al ways @ posedge clk) | :=in
al ways @ posedge clk) out := |
» If posedge clk:
» both threads become enabled
» VHDL semantics:

» both threads executed in parallel
» out gets previous value of |
» in parallel | gets value input at in

» Now no race
» Event semantics matches trace semantics

Mike Gordon 115/126

Summary of dynamic versus static semantics

v

Simulation (event) semantics different from trace semantics

v

No standard event semantics (Verilog versus VHDL)

v

Verilog: need non-blocking assignments

VHDL semantics closer trace semantics

v

Simulations are finite traces: better fit with LTL than CTL

v

Mike Gordon 116 /126

Bisimulation equivalence: general idea

» M, M’" bisimilar if they have ‘corresponding executions’

» to each step of M there is a corresponding step of M’
» to each step of M’ there is a corresponding step of M

» Bisimilar models satisfy same CTL* properties

» Application: discard irrelevant parts of M to get smaller M’

» reduce an infinite state space to a finite one
» cone-of-influence circuit reduction

» Bisimilar: same truth/falsity of model properties

» Simulation gives property-truth preserving abstraction
(see later)

Mike Gordon 117/126

Bisimulation relations

» LetR: S—S—Band R’ : S'—=S’'—B be transition relations

» B is a bisimulation relation between R and R’ if:
» B:S—S'—B

» Vss'.Bss'=Vs;€S.Rss; =3s].R's"s] ABs;s;
(to each step of R there is a corresponding step of R’)

» Vss'.Bss'=Vs;]€S.R's"s] =3s;.R"ss; ABs; s
(to each step of R’ there is a corresponding step of R)

Mike Gordon 118/126

Bisimulation equivalence: definition and theorem

> LetM = (S,Sg,R,AP) and M’ = (S/, S/, R/, AP’)

» M = M if:

» there is a bisimulation B between R and R’
Vs € Sp. Js; € Sp. B s 8§
Vs, € S§. 3sp € Sp. B sp s,
there is a bijection 6 : AP —AP’
Vss'.Bss' = VpeAP.p(s) < 0(p)(s’)

v

v

v

v

» 0(v)) is the result of applying 6 to all atomic formulae in ¢

» Theorem: if M = M’ then for any CTL* state formula :
M E0(y) & MEY

Mike Gordon 119/126

Recall IML

Thread 1 Thread 2

0: |F LOCK=0 THEN LOCK:=1; 0: |F LOCK=0 THEN LOCK: =1;

1: X =1; 1: X =2;

2 | F LOCK=1 THEN LOCK: =0; 2: |F LOCK=1 THEN LOCK: =0;

3: 3:

» Two program counters, state: (pc,, pc,, lock, x)
S = [0.3] x[0.3]XZXZ
Rym (0, pc, 0,x) 1,pcy, 1,x) Ram épCbO,O,X) épCul,l:X)
Rom (1,pcz,lock,x) (2,pcy,lock,1) | Ram (pcq, 1,lock,x) (pcy, 2,lock,
Ram (2, pc2,1,X) (3,pc2,0,x) Riym (pc1,2,1,X) (pc1,3,0,x)

Not At ll(pC17 pca, IOCk,X) = _‘((pcl = 1) A (pC2 = 1))
Model My = (Ssm, {(0,0,0,0)}, Ry, {Not At 11})
s;w hot finite, but actually lock € {0,1}, x € {0,1,2}

Clear by inspection that mw = m},, where:
Mive = (Siw-{(0,0,0,0)}, Rypg, {Not At 11" })
» Siu = [0..3] x [0..3] x [0..1] x [0..3]
> Rj,. IS Ryw restricted to sj,, —S}, —B
» Not At 11’ iS Not At 11 restricted to s, —B

Mike Gordon

2)

120/126

Simulation and abstraction

» Bisimulation can eliminate irrelevant parts of a model

» Abstraction creates a simplification of a model

» separate states get merged
» an abstract path can represent several concrete paths

» M < M’ means M’ simulates M or M’ is an abstraction of M

» to each step of M there is a corresponding step pf M’
» atomic properties of M correspond to atomic properties of M’

» ACTL is the subset of CTL without E-properties
» e.g. AG AFp — from anywhere can always reach a p-state

» If M < M’ then any ACTL property of M’ also holds of M
» can reduce model checking M to model checking M’

Mike Gordon 121/126

Example (Grumberg)

M = ({r,y,g}.{r}.R. {Atr}), M’ = ({h,d}, {h},R’, {Ath})
simulation relation: r — h,y —h, g —d

atomic property correspondence: Atrr — At:h

AG AFAtr — AG AFAt:h, AG AF (—Atrr) — AG AF (-At:h)
M’ = AG AFAt:h hence M = AG AFAtr

AG AF (—At:h) false, but AG AF (—At:r) true
(counter-example: sssssss...)

vV Vv vVVYYy

Mike Gordon 122 /126

Simulation relations

» LetR : S—S—Band R’ : S’—=S’—B be transition relations

» H is a simulation relation between R and R’ if:
» H:S—S'—B

» Vss'".Hss'=Vs; €S.Rss;=3s].R's"s] ABs;s]
(to each step of R there is a corresponding step of R’)

Mike Gordon 123/126

Simulation preorder: definition and theorem

v

LetM = (S,So,R,AP) and M’ = (S/, S}, R/, AP')

» M < Mif:
» there is a simulation H between R and R’
» Vsp € Sp. 3s € S{. B sp s
» there is a subset AP C AP and a bijection ¢ : AP—AP’
» Vss'.Hss = VpeAP.p(s) = 0(p)(s')

v

0(v) is the result of applying ¢ to all atomic formulae in ¢

v

Theorem: if M < M’ then for any ACTL* state formula ¢:
M EO)=MEY

v

If M’ |= 6(¢)) fails then cannot conclude M = ¢ false

Mike Gordon

124 /126

CEGAR
» Counter Example Guided Abstraction Refinement

| Generate initial abstractionl

—olModeI checkGoal: M’ F 8(Y) Success

fail

|Refineabstracti41| Generate counterexamplei | Done |

no - yes
—I Is counterexample is reaIP_

» Lots of details to fill out (several different solutions)

» how to generate abstraction
» how to check counterexamples
» how to refine abstractions

» Microsoft SLAM driver verifier is a CEGAR system

Mike Gordon 125/126

Temporal Logic and Mode Checking — Summary

v

Various property languages: LTL, CTL, PSL (Prior, Pnueli)

v

Models abstracted from hardware or software designs

v

Model checking checks M = ¢ (Clarke et al.)

v

Symbolic model checking uses BDDs (McMillan)

v

Avoid state explosion via simulation and abstraction

v

CEGAR refines abstractions by analysing counterexamples

v

Triumph of application of computer science theory

» two Turing awards, McMillan gets 2010 CAV award etc.
» widespread applications in industry

Mike Gordon 126 /126

