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Chapter 1

Introduction and overview

Temporal Logic and Model Checking

◮ Model
◮ mathematical structure extracted from hardware or software

◮ Temporal logic

◮ provides a language for specifying functional properties

◮ Model checking

◮ checks whether a given property holds of a model

◮ Model checking is a kind of static verification
◮ dynamic verification is simulation (HW) or testing (SW)
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This course is entitled Temporal Logic

and Model Checking , so we must explain
what a model is, what temporal logic is
and then what model checking is.

A model, as used here, is a particu-
lar kind of mathematical structure rep-
resenting the functional behaviour of
hardware or software. Models are ex-
tracted from programs or hardware de-
signs and are intended to capture as-
pects of their functional behaviour.

Temporal logic is a formal logic for reasoning about temporal behaviour – i.e. be-
haviour that varies over time. It was originally devised by philosophers to help
elucidate logical problems relating to time, but is now used in computer science to
express and verify properties of models. Temporal logic consists of a specification
language – the sentences of the logic – and a deductive system for proving theorems
(i.e. sentences that are true).

Model checking is the process of checking whether properties hold of models. Model
checking algorithms (there are many) take as input a property and a model and either
confirm that the property holds of the model or, usually, output a counterexample
to show that it doesn’t.

There are various kinds of model and several different property specification lan-
guages. Here we will look mostly at properties specified as sentences in temporal
logic, and models represented using a next-state relation. However, we will also
look at the verification field more generally and try to locate temporal logic model
checking within it.
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2 CHAPTER 1. INTRODUCTION AND OVERVIEW

1.1 Models

The word ”model” has many meanings, but for us it is a pair (S, R) consisting of
a set S of states and a binary relation R on S, called the transition relation. I will
write R s s′ to mean that s and s′ are related by R.1

Models are used to represent the behaviour of hardware and software. We illustrate
this informally with two examples which we will return to later.

1.1.1 A hardware example: RCV

This circuit in Fig 1.1 below was (I think) designed in the Computer Lab many
years ago, possibly as part of the old Cambridge Ring. It implements some kind of
handshake and the name RCV is a shortening of “RECEIVER”, which maybe suggests
what it did . . . however, for our purposes, it is just a random example. The wires
dreq, q0, q0bar, a0, or0, a1 are 1-bit wide.

dackdreq
q0

q0bar
a0

or0
a1

Figure 1.1: RCV

We want to construct a model representing the behaviour of RCV. This immediately
raises some modelling issues: how accurately should we represent the behaviour. A
really accurate model might represent the values on the wires as, say, continuously
varying voltages and the behaviour of the components as analogue devices, maybe
with temperature dependent transfer functions. We, however, will take a crude
clocked digital view of behaviour. The state of the wires at any time will be 1 or
0. We assume that when the clock ticks the outputs of the two registers (i.e. q0
and dack) are updated with the values being input (i.e. dreq and a1, respectively).
Also the two outputs of the leftmost register are always complements of each other.
The little unlabelled inputs to the two registers are clock lines, but these will not
feature in our model. The combinational and-gate and two or-gates are assumed to

1This notation is a bit non standard: normally a relation R on S would be represented as a set
of ordered pairs R ⊆ S × S, and then one would write (s, s′) ∈ R to mean s and s′ are related by
R. We are treating relations as functions: R : S → (S → B), where B = {true, false}. When we
write R s s′ we mean that this equals true, i.e. R s s′ = true. This way of regarding relations is
just a matter of style aimed at minimising brackets.
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have zero delay so, using the italicised names of wires as variables that range over
the wire values, we have the Boolean equations below, which show that values of
q0bar, a0, or0 and a1 are determined by the values of q0 and dack (this should also
be obvious from the circuit diagram).

q0bar = ¬q0
a0 = q0bar ∧ dack

or0 = q0 ∨ a0
a1 = dreq ∨ or0

A state of RCV can thus be modelled by a triple of Booleans (dreq, q0, dack), thus
we can define a model (SRCV, RRCV) by defining the set of states by:

SRCV = B × B × B

and the transition relation by:

RRCV (dreq, q0, dack) (dreq′, q0′, dack′) =
(q0′ = dreq) ∧ (dack′ = (dreq ∧ (q0 ∨ (¬q0 ∧ dack))))

The use, as above, of primed variables for the next-state values of the unprimed
variables with the same name is a common convention.

Notice that the transition relation RRCV is not a function because the value of dreq

is not determined. This is called input non-determinism, because dreq is an input
whose value is determined by ‘the environment’, not the state of the registers. For
any state, there are different successor states corresponding to different values input
on dreq.

1.1.2 A software example: DIV

You might recognise the little program DIV in Fig. 1.2 below.

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

Figure 1.2: DIV

A model (SDIV, RDIV) corresponding to DIV is obtained by taking a state to be
(pc, x, y, r, q) where pc ∈ {0, 1, 2, 3, 4, 5} is the program counter , which indicates



4 CHAPTER 1. INTRODUCTION AND OVERVIEW

the line of the program that is about to be executed, and x, y, r and q are the
values of the program variables X, Y, R and Q, respectively.

Assuming program variables range over the integers Z (Z = {. . . ,−2,−1, 0, 1, 2, . . .})
and [m..n] = {m, m+1, . . . , n}, then:

SDIV = [0..5] × Z × Z × Z × Z

and the transition relation RDIV is characterised by:

RDIV (0, x, y, r, q) (1, x, y, x, q)
RDIV (1, x, y, r, q) (2, x, y, r, 0)
RDIV (2, x, y, r, q) ((if y≤r then 3 else 5), x, y, r, q)
RDIV (3, x, y, r, q) (4, x, y, (r−y), q)
RDIV (4, x, y, r, q) (3, x, y, r, (q+1))

which is just a compact way of writing:

(∀x y r q. RDIV (0, x, y, r, q) (1, x, y, x, q))
∧
(∀x y r q. RDIV (1, x, y, r, q) (2, x, y, r, 0))
∧
(∀x y r q. RDIV (2, x, y, r, q) ((if y≤r then 3 else 5), x, y, r, q))
∧
(∀x y r q. RDIV (3, x, y, r, q) (4, x, y, (r−y), q))
∧
(∀x y r q. RDIV (4, x, y, r, q) (3, x, y, r, (q+1)))

This doesn’t specify any transitions from the last line (5) of the program. What to
do for the last line is mainly a matter of technical convenience. Possibilities are to
have no transitions:

∀pc′ x′ y′ r′ q′. ¬(RDIV (5, x, y, r, q) (pc′, x′, y′, r′, q′))

or, if we want the transition relation to be total, to loop:

∀x y r q. RDIV (5, x, y, r, q) (5, x, y, r, q)

We will discuss later how to automatically derive a model of a program – i.e. a
transition relation – from a formal semantics of the programming language (this is
quite straightforward given the right kind of semantics).
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Note that RDIV is deterministic in that for any state s there is at most one state s′

such that RDIV s s′. Deterministic models normally arise from sequential programs.
Programs with concurrency can give rise to non-deterministic models (reflecting
different interleavings). An example with concurrency is the simple program be-
low, called JM1, which is adapted from Jhala and Majumdar’s highly recommended
tutorial “Software Model Checking” [1, Fig. 1].

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

Figure 1.3: JM1 (from Fig. 1 in Jhala & Majumdar’s tutorial)

This has two threads executing in parallel and has behaviour represented by a non-
deterministic model with state (pc1, pc2, lock, x), where pci is the value of the pro-
gram counter of thread i (where i = 1 or i = 2). Thus:

SJM1 = [0..3] × [0..3] × Z × Z

For an example this simple one can specify the transition relation ‘by inspection’.

RJM1 (0, pc2, 0, x) (1, pc2, 1, x) RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (1, pc2, lock, x) (2, pc2, lock, 1) RJM1 (pc1, 1, lock, x) (pc1, 2, lock, 2)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x) RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

For more complex examples the model needs to be extracted using the semantics of
the programming language. This will be discussed later.

Another source of non-determinism in models is abstraction: a model derived by
abstraction be might be non-deterministic, even if the original program is purely
sequential. This is discussed later.

1.2 Properties

Atomic properties are properties of states: if P is an atomic property of a model
(S, R) then P : S → B. Atomic properties do not depend on the transition relation.

For example, for the model RCV we can define atomic properties Dreq, Q0 and Dack

that are true if the corresponding components of the state are true. For hardware
examples like RCV we will write 1, 0 for true, false, respectively and say that a wire
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is high if it has value 1 (i.e. true) and is low if it has value 0 (i.e. false). We will use
capitalised names in teletype font for properties. Thus:

Dreq(dreq, q0, dack) = (dreq = 1)

Q0(dreq, q0, dack) = (q0 = 1)

Dack(dreq, q0, dack) = (dack = 1)

Examples of atomic properties for the model DIV are:

AtEnd (pc, x, y, r, q) = (pc = 5)

InLoop (pc, x, y, r, q) = (pc ∈ {3, 4})

YleqR (pc, x, y, r, q) = (y ≤ r)

Invariant (pc, x, y, r, q) = (x = r + (y × q))

AtEnd is true of states at the end of the program, InLoop is true if the program
counter is inside the body of the While-loop, YleqR is true of states where y ≤ r

and Invariant is true of states where x = r + (y × q).

Atomic properties are true or false of individual states. General properties depend
on the whole behaviour specified by the transition relation. The behaviour of a
model (S, R) starting from an initial state s ∈ S can be visualised as a tree:

initial state states after
one step

states after
two steps

This is called a computation tree. If the model is deterministic, then the tree will
be linear – i.e. will just be a path, where a path is defined to be a sequence of states
s0s1s2 · · · such that for all i: r si si+1. Paths are also called traces.

Properties can be defined on paths (examples soon) and thus paths are a key concept
for temporal logic and model checking. Sometimes paths are allowed to be finite
and sometimes they are required to be infinite. We will require paths to be infinite
because it makes some technical details nicer for us (but for other purposes the
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details can be nicer if finite paths are allowed and, furthermore, finite paths are
important in some practical applications). We generally use π to range over paths,
which we represent as functions from the natural numbers N to states. Thus a path
of a model (S, R) is a function π : N → S, and hence we write π(i) for the ith
element of π.

We define a predicate Path so that Path R s π is true if and only if π is a path
starting at s:

Path R s π = (π(0) = s) ∧ ∀i. R (π(i)) (π(i+1))

Mathematically Path is a function:

Path : (S → S → B)
︸ ︷︷ ︸

transition relation

→ S → (N → S)
︸ ︷︷ ︸

path

→ B

Many properties of the behaviour of models can be expressed in terms of paths. For
example, consider the following timing diagram for the hardware model RCV:

dreq

dack

Here are two possible properties, roughly expressing a fragment of handshake be-
haviour. The first property below corresponds to the left dotted arrow in the diagram
and the second property corresponds to the right dotted arrow.

• If dreq rises, then it continues high, until it is acknowledged by a rise on dack.

• If dreq falls, then it will continue low until dack false.

To formalise these properties we need a property language such as temporal logic.
We shall cover several different temporal logics in this course.

Here are some example properties for the software model DIV.

• On every path if AtEnd is true then Invariant is true and YleqR is not true.



8 CHAPTER 1. INTRODUCTION AND OVERVIEW

• On every path there is a state where AtEnd it true.

For those of you familiar with the DIV example from the course on Hoare logic,
note that these properties correspond to partial and total correctness, respectively.
However, one can have properties than do not correspond to anything expressible
in Hoare logic, for example:

• On any path if there exists a state where YleqR is true then there is also a
state where InLoop is true.

An example property of the JM1 example is:

• If initially LOCK = 0 and X = 0 then the model can never get into a state in
which pc1 = 1 and pc2 = 1.

1.3 Model checking

Model checking is checking that a model has a given property. The model is de-
rived from a circuit or program, as informally illustrated above, and the property
is supplied by a verification engineer, usually in a property language like temporal
logic (though there are other ways of capturing properties, e.g. using in graphical
interface).

Model checking was initially applied to hardware and then later to software. Al-
though the general description above doesn’t say so, model checking is normally
understood to be an automatic method. The inventors of both the concept and
the first automatic algorithms for model checking are Edmund M. Clarke, E. Allen
Emerson and Joseph Sifakis, who jointly won the 2007 Turing Award. Clarke’s
student Ken McMillan made a major advance by showing how to represent sets of
states ‘symbolically’ using Binary Decision Diagrams (discussed later). For this he
won the 2010 CAV (Computer-Aided Verification) Award, with the citation ”for a
series of fundamental contributions resulting in significant advances in scalability of
model checking tools”.

In keeping with the title of this course, we discuss in most detail model checking of
properties stated in temporal logic. However, we shall also compare model checking
with some other verification methods, including theorem proving (which can verify
properties of models that cannot be expressed in standard temporal logics) and
simulation (which is the normal verification method used by engineers).
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Temporal logic

The philosopher A. N. Prior originally devised temporal logic – he called it “Tense
Logic” – to study “the relationship between tense and modality attributed to the
Megarian philosopher Diodorus Cronus (ca. 340-280 BCE)”.1 The use of temporal
logic in Computer Science is normally credited to the late Amir Pnueli, who won the
1996 Turing Award “For seminal work introducing temporal logic into computing
science and for outstanding contributions to program and systems verification.” In
fact others, including Vaughan Pratt and Rod Burstall, had used ideas related to
temporal logic in computer science earlier, but it was Pnueli who really launched
the area and who developed the principles underlying current applications.

As the name suggests, temporal logic is a kind of logic consisting of a language
defining temporal formulas and a deductive system for proving true formulas. In
this course, we will mainly concentrate on the language(s) of temporal logic, since
rather than prove formulas deductively, we will check their truth in models. However,
the deductive systems of temporal logic have important applications in Computer
Science – indeed such applications were what Pnueli originally pioneered [2].

There is not just one temporal logic: both philosophers and computer scientists
have devised, and continue to devise, new temporal logics. However, we will con-
centrate on the two most widely used in computer science: linear temporal logic

(LTL) and computation true logic (CTL). Model checking was originally developed
for CTL, but LTL (which is what Pnueli mainly worked with) is now perhaps more
widely used. Model checking algorithms from CTL are simpler and more efficient
than those for LTL, however LTL provides a more natural property language form
many applications. Both LTL and CTL are still widely used and understanding the
tradeoffs between them is one topic in this course [3].

1http://plato.stanford.edu/entries/logic-temporal/

9
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Appendix: slides

Temporal Logic and Model Checking

◮ Model
◮ mathematical structure extracted from hardware or software

◮ Temporal logic

◮ provides a language for specifying functional properties

◮ Model checking

◮ checks whether a given property holds of a model

◮ Model checking is a kind of static verification
◮ dynamic verification is simulation (HW) or testing (SW)
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Models

◮ A model is (for now) specified by a pair (S,R)

◮ S is a set of states
◮ R is a transition relation

◮ Models will get more components later
◮ (S,R) could be called a pre-model ... but we won’t bother

◮ R s s′ means s′ can be reached from s in one step
◮ here R : S → (S → B) (where B = {true,F})
◮ more conventional to have R ⊆ S × S, which is equivalent

Mike Gordon 2 / 118

A simple example model
◮ A simple model: ({0,1,2,3}

︸ ︷︷ ︸

S

, λn n′. n′ = n+1(mod 4)
︸ ︷︷ ︸

R

)

◮ where “λx . · · · x · · · ” is the function mapping x to · · · x · · ·

◮ so R n n′ = (n′ = n+1(mod 4))

◮ e.g. R 0 1 ∧ R 1 2 ∧ R 2 3 ∧ R 3 0

0 1 2 3

◮ Might be extracted from:

[Acknowledgement: http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm]
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DIV: a software example
◮ Perhaps a familiar program:

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

◮ State (pc, x , y , r , q)
◮ pc ∈ {0, 1, 2, 3, 4, 5} program counter
◮ x , y , r , q ∈ Z are the values of X, Y, R, Q

◮ Model (SDIV,RDIV) where:
SDIV = [0..5] × Z × Z × Z × Z

RDIV (pc, x , y , r , q) (pc′, x ′, y ′, r ′, q′) =

(pc = 0) ⇒ ((pc′, x ′, y ′, r ′, q′) = (1, x , y , x , q)) ∧
(pc = 1) ⇒ ((pc′, x ′, y ′, r ′, q′) = (2, x , y , r , 0)) ∧
(pc = 2) ⇒ ((pc′, x ′, y ′, r ′, q′) =

if y≤r then (3, x , y , r , q) else (5, x , y , r , q)) ∧
(pc = 3) ⇒ ((pc′, x ′, y ′, r ′, q′) = (4, x , y , (r−y), q)) ∧
(pc = 4) ⇒ ((pc′, x ′, y ′, r ′, q′) = (3, x , y , r , (q+1))

Mike Gordon 4 / 118
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Deriving a transition relation from a state machine

◮ State machine transition function : δ : I × S→I
◮ I is a set of inputs

◮ State transition relation : R (i , s) (i ′, s′) = (s′ = δ(s, i))

◮ i ′ arbitrary: determined by environment not machine

◮ Deterministic machine, non-deterministic transition relation

◮ inputs unspecified (determined by environment)

◮ so called “input non-determinism”
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RCV: a hardware model
◮ Part of a handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq, q0, dack)

◮ Relationships between Boolean values on wires:
q0bar = ¬q0
a0 = q0bar ∧ dack
or0 = q0 ∨ a0
a1 = dreq ∨ or0

◮ A model of RCV is (SRCV,RRCV) where:
SRCV = B × B × B

RRCV (dreq, q0, dack) (dreq′, q0′, dack ′) =
(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ (¬q0 ∧ dack))))

Mike Gordon 6 / 118

Some comments

◮ RRCV is non-deterministic and total
◮ RRCV (1, 1, 1) (0, 1, 1) and RRCV (1, 1, 1) (1, 1, 1)

(where 1 = true and 0 = F)
◮ RRCV (dreq, q0, dack) (dreq′, dreq, (dreq ∧ (q0 ∨ dack)))

◮ RDIV is deterministic and partial

◮ at most one successor state
◮ no successor when pc = 5

◮ Non-deterministic models are very common, e.g. from:
◮ asynchronous hardware
◮ parallel software (more than one thread)

◮ Can extend any transition relation R to be total:

Rtotal s s′ = R s s′ ∧ (¬(∃s′′. R s s′′) ⇒ (s′ = s))

◮ sometimes totality required
(e.g. in the book Model Checking by Clarke et. al)
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JM1: a non-deterministic software example
◮ From Jhala and Majumdar’s tutorial:

Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

◮ Two program counters, state: (pc1, pc2, lock , x)

SJM1 = [0..3] × [0..3] × Z × Z

RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (1, pc2, lock , x) (2, pc2, lock , 1)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x)
RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (pc1, 1, lock , x) (pc1, 2, lock , 2)
RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

◮ Not-deterministic:
RJM1(0, 0, 0, x)(1, 0, 1, x)
RJM1(0, 0, 0, x)(0, 1, 1, x)

◮ Not so obvious that RJM1 is a correct model

Mike Gordon 8 / 118

Atomic properties (properties of states)

◮ Atomic properties are true or false of individual states
◮ an atomic property P is a function P : S → B

◮ can also be regarded as a subset of state: P ⊆ S

◮ Example atomic properties of RCV
(where 1 = true and 0 = F)
Dreq(dreq,q0,dack) = (dreq = 1)
NotQ0(dreq,q0,dack) = (q0 = 0)
Dack(dreq,q0,dack) = (dack = 1)
NotDreqAndQ0(dreq,q0,dack) = (dreq=0) ∧ (q0=1)

◮ Example atomic properties of DIV
AtStart (pc, x , y , r ,q) = (pc = 0)
AtEnd (pc, x , y , r ,q) = (pc = 5)
InLoop (pc, x , y , r ,q) = (pc ∈ {3,4})
YleqR (pc, x , y , r ,q) = (y ≤ r)
Invariant (pc, x , y , r ,q) = (x = r + (y × q))

Mike Gordon 9 / 118

Model behaviour viewed as a computation tree

◮ Atomic properties are true or false of individual states
◮ General properties are true or false of whole behaviour
◮ Behaviour of (S,R) starting from s ∈ S as a tree:

s

initial state states after
one step

states after
two steps

◮ A path is shown in red
◮ Properties may look at all paths, or just a single path

◮ CTL: Computation Tree Logic (all paths from a state)
◮ LTL: Linear Temporal Logic (a single path)

Mike Gordon 10 / 118
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Paths

◮ A path of (S,R) is represented by a function π : N → S
◮ π(i) is the i th element of π (first element is π(0))
◮ might sometimes write π i instead of π(i)
◮ π↓i is the i-th tail of π so π↓i(n) = π(i + n)
◮ successive states in a path must be related by R

◮ Path R s π is true if and only if π is a path starting at s:

Path R s π = (π(0) = s) ∧ ∀i . R (π(i)) (π(i+1))

where:

Path : (S → S → B)
︸ ︷︷ ︸

transition
relation

→ S
︸︷︷︸

initial
state

→ (N → S)
︸ ︷︷ ︸

path

→ B

Mike Gordon 11 / 118

RCV: example hardware properties

◮ Consider this timing diagram:

dreq

dack

◮ Two handshake properties representing the diagram:
◮ following a rising edge on dreq, the value of dreq

remains 1 (i.e. true) until it is acknowledged by a rising
edge on dack

◮ following a falling edge on dreq, the value on dreq
remains 0 (i.e. F) until the value of dack is 0

◮ A property language is used to formalise such properties
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DIV: example program properties

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

AtStart (pc, x, y , r , q) = (pc = 0)
AtEnd (pc, x, y , r , q) = (pc = 5)
InLoop (pc, x, y , r , q) = (pc ∈ {3, 4})
YleqR (pc, x, y , r , q) = (y ≤ r)
Invariant (pc, x, y , r , q) = (x = r + (y × q))

◮ Example properties of the program DIV.
◮ on every execution if AtEnd is true then Invariant is true

and YleqR is not true

◮ on every execution there is a state where AtEnd it true

◮ on any execution if there exists a state where YleqR is true
then there is also a state where InLoop is true

◮ Compare these with what is expressible in Hoare logic
◮ execution: a path starting from a state satisfying AtStart

Mike Gordon 13 / 118

JM1: a non-deterministic program example
Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (1, pc2, lock , x) (2, pc2, lock , 1)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x)
RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (pc1, 1, lock , x) (pc1, 2, lock , 2)
RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

◮ An atomic property:
◮ NotAt11(pc1, pc2, lock , x) = ¬((pc1 = 1) ∧ (pc2 = 1))

◮ A non-atomic property:
◮ all states reachable from (0, 0, 0, 0) satisfy NotAt11

◮ this is an example of a reachability property
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Reachability
◮ R s s′ means s′ reachable from s in one step

◮ Rn s s′ means s′ reachable from s in n steps
R0 s s′ = (s = s′)

Rn+1 s s′ = ∃s′′. R s s′′ ∧ Rn s′′ s′

◮ R∗ s s′ means s′ reachable from s in finite steps

R∗ s s′ = ∃n. Rn s s′

◮ Note: R∗ s s′ ⇔ ∃π n. Path R s π ∧ (s′ = π(n))

◮ The set of states reachable from s is {s′ | R∗ s s′}

◮ Verification problem: all states reachable from s satisfy p
◮ verify truth of ∀s′. R∗ s s′ ⇒ p(s′)

◮ e.g. all states reachable from (0, 0, 0, 0) satisfy NotAt11

◮ i.e. ∀s′. R∗

JM1 (0, 0, 0, 0) s′ ⇒ NotAt11(s′)
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Model checking reachability properties

◮ Assume a model (S,R)

◮ Assume also a set S0 ⊆ S of initial states

◮ Assume also a set AP of atomic properties
◮ if p ∈ AP then p : S → B

◮ T,F ∈ AP where ∀s ∈ S.T(s)=true and ∀s ∈ S.F(s)=false

◮ A Kripke structure is a tuple (S,S0,R,AP)
◮ often the term “model” is used for a Kripke structure
◮ i.e. a model is (S,S0,R,AP) rather than just (S,R)

◮ sometimes AP omitted: one says “Kripke structure over AP”

◮ Model checking computes whether (S,S0,R,AP) |= φ

◮ φ is a property expressed in a property language
◮ informally M |= φ means “wff φ is true in model M”
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Aside on models and Kripke structures

◮ Definition of “model” and “Kripke structure” varies

◮ Initially we defined a model to be (S,R)

◮ On previous slide a model was (S,R,S0,AP)

◮ (S,R) or (S,R,S0) sometimes called transition systems

◮ We called (S,R,S0,AP) a Kripke structure

◮ Clarke et al. define a Kripke structure as (S,S0,R,L)
◮ AP a given set of “atomic propositions” interpreted by L
◮ L : S → P(AP)

◮ AP(this course) = {(λs. p ∈ L(s)) | p ∈ AP(Clarke et al.)}
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Minimal property language: φ is GA p where p ∈ AP

◮ Assume M = (S,S0,R,AP)

◮ Reachable states of M are {s′ | ∃s ∈ S0. R∗ s s′}

◮ i.e. the set of states reachable from an initial state
◮ define Reachable M = {s′ | ∃s ∈ S0. R∗ s s′}

◮ Consider properties φ of form GA p where p ∈ AP
◮ “GA ” stands for “Globally Always”

◮ M |= GA p means p true of all reachable states of M

◮ If M = (S,S0,R,AP) then M |= φ formally defined by:

M |= GA p ⇔ ∀s′. s′ ∈ Reachable M ⇒ p(s′)
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Model checking M |= GA p
◮ M |= GA p ⇔ ∀s′. s′ ∈ Reachable M ⇒ p(s′)

⇔ Reachable M ⊆ {s′ | p(s′)}
so:

◮ compute Reachable M i.e. compute {s′ | ∃s ∈ S0. R∗ s s′}

◮ check p true of all its members

◮ Let S = {s′ | ∃s ∈ S0. R∗ s s′}

◮ Compute S iteratively: S = S0 ∪ S1 ∪ · · · ∪ Sn ∪ · · ·
◮ i.e. S =

⋃
∞

n=0 Sn

◮ where: S0 = S0 (set of initial states)
◮ and inductively: Sn+1 = Sn ∪ {s′ | ∃s ∈ Sn ∧ R s s′}

◮ Clearly S0 ⊆ S1 ⊆ · · · ⊆ Sn ⊆ · · ·

◮ Hence if Sm = Sm+1 then S = Sm

◮ Algorithm: compute S0, S1, . . . , until no change;
check p holds of all members of computed set
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compute S0, S1, . . . , until no change;
check p holds of all members of computed set

◮ Does the algorithm terminate?
◮ yes, if set of states is finite, because then no infinite chains:

S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ · · ·

◮ How to represent S0, S1, . . . ?
◮ explicitly (e.g. lists or something more clever)
◮ symbolic expression

◮ Huge literature on calculating set of reachable states
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Example: RCV

◮ Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq, q0, dack)

◮ A model of RCV is MRCV where:

M = (SRCV, {(1, 1, 1)},RRCV,AP)

and
RRCV (dreq, q0, dack) (dreq′, q0′, dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))
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RCV state transition diagram

◮ Possible states for RCV:

{000,001,010,011,100,101,110,111}

where b2b1b0 denotes state

dreq = b2 ∧ q0 = b1 ∧ dack = b0

◮ Graph of the transition relation:

000 100 110 111

101

011

001

010

Mike Gordon 22 / 118



17

Computing Reachable MRCV

000 100 110 111

101

011

001

010

◮ Define:
S0 = {b2b1b0 | b2b1b0 ∈ {111}}

Si+1 = Si ∪ {s′ | ∃s ∈ Si . RRCV s s′ }

= Si ∪ {b′

2b′

1b′

0 |
∃b2b1b0 ∈ Si . (b′

1 = b2) ∧ (b′

0 = b2 ∧ (b1 ∨ b0))}
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Computing Reachable MRCV (continued)

000 100 110 111

101

011

001

010

0322

3

1

◮ Compute:

S0 = {111}

S1 = {111} ∪ {011}
= {111, 011}

S2 = {111, 011} ∪ {000, 100}
= {111, 011, 000, 100}

S3 = {111, 011, 000, 100} ∪ {010, 110}
= {111, 011, 000, 100, 010, 110}

Si = S3 (i > 3)

◮ Hence Reachable MRCV = {111, 011, 000, 100, 010, 110}
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Model checking MRCV |= GAp

◮ M = (SRCV, {111},RRCV,AP)

◮ if p ∈ AP then p : SRCV→B

◮ To check MRCV |= GAp

◮ compute Reachable MRCV = {111, 011, 000, 100, 010, 110}

◮ check Reachable MRCV ⊆ {s | p(s)}, i.e. check:

p(111) = true
p(011) = true
p(000) = true
p(100) = true
p(010) = true
p(110) = true
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Symbolic Boolean model checking of reachability

◮ Assume states are n-tuples of Booleans (b1, . . . ,bn)
◮ bi ∈ B = {true, false}
◮ S = B

n, so S is finite: 2n states

◮ Assume n distinct Boolean variables: v1,. . .,vn
◮ e.g. if n = 3 then could have v1 = x, v2 = y, v3 = z

◮ Boolean formula f (v1, . . . , vn) represents a subset of S
◮ f (v1, . . . , vn) only contains variables v1,. . .,vn

◮ f (b1, . . . ,bn) denotes result of substituting bi for vi

◮ f (v1, . . . , vn)determines{(b1, . . . ,bn)|f (b1, . . . ,bn) ⇔ true}

◮ Example ¬(x = y) represents {(true, false), (false, true)}

◮ Transition relations also represented by Boolean formulae
◮ e.g. RRCV represented by:

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ (¬q0 ∧ dack))))
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Symbolically represent Boolean formulae as BDDs
◮ Key features of Binary Decision Diagrams (BDDs):

◮ canonical (given a variable ordering)
◮ efficient to manipulate

◮ Variables:
v = if v then 1 else 0
¬v = if v then 0 else 1

◮ Example: BDDs of variable v and ¬v

0 1

v

0 1

v

◮ Example: BDDs of v1 ∧ v2 and v1 ∨ v2

0 1

v1

v2

01

v1

v2
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More BDD examples

◮ BDD of v1 = v2

0 1

v1

v2 v2

◮ BDD of v1 6= v2

0 1

v1

v2 v2
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BDD of a transition relation

◮ BDDs of

(v1′ = (v1 = v2)) ∧ (v2′ = (v1 6= v2))

with two different variable orderings

0 1

v1

v2 v2

v1’ v1’

v2’ v2’

01

v1’

v1 v1

v2v2 v2 v2

v2’ v2’

◮ Exercise: draw BDD of RRCV
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Standard BDD operations

◮ If formulae f1, f2 represents sets S1, S2, respectively
then f1 ∧ f2, f1 ∨ f2 represent S1 ∩ S2, S1 ∪ S2 respectively

◮ Standard algorithms compute boolean operation on BDDs

◮ Abbreviate (v1, . . . , vn) to ~v

◮ If f (~v) represents S
and g(~v , ~v ′) represents {(~v , ~v ′) | R ~v ~v ′)}
then ∃~u. f (~u) ∧ g(~u, ~v) represents {~v | ∃~u. ~u ∈ S ∧ R ~u ~v}

◮ Can compute BDD of ∃~u. h(~u, ~v) from BDD of h(~u, ~v)
◮ e.g. BDD of ∃v1. h(v1, v2) is BDD of h(T, v2) ∨ h(F, v2)

◮ From BDD of formula f (v1, . . . , vn) can compute b1, . . ., bn
such that if v1 = b1, . . ., vn = bn then f (b1, . . . ,bn) ⇔ true

◮ b1, . . ., bn is a satisfying assignment (SAT problem)
◮ used for counterexample generation (see later)
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Reachable States via BDDs
◮ Assume M = (S,S0,R,AP) and S = B

n

◮ Represent R by Boolean formulae g(~v , ~v ′)

◮ Iteratively define formula fn(~v) representing Sn

f0(~v) = formula representing S0

fn+1(~v) = fn(~v) ∨ (∃~u. fn(~u) ∧ g(~u, ~v))

◮ Let B0, BR be BDDs representing f0(~v), g(~v , ~v ′)

◮ Iteratively compute BDDs Bn representing fn

Bn+1 = Bn ∨ (∃~u. Bn[~u/~v ] ∧ BR)[~u, ~v/~v , ~v ′]

◮ efficient using (blue underlined) standard BDD algorithms
(renaming, conjuction, disjunction, existential quantification)

◮ BDD Bn only contains variables ~v : represents Sn ⊆ S

◮ At each iteration check Bn+1 = Bn efficient using BDDs
◮ when Bn+1 = Bn can conclude Bn represents Reachable M
◮ we call this BDD BM in a later slide (i.e. BM = Bn)
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Example BDD optimisation: disjunctive partitioning

δ

δ

δ

x

y

z

x

y

z

Three state machines in parallel

δx , δy , δz : B × B × B→B

◮ Transition relation (asynchronous interleaving semantics):

R (x , y , z) (x ′, y ′, z′) =
(x ′ = δx (x , y , z) ∧ y ′ = y ∧ z′ = z) ∨
(x ′ = x ∧ y ′ = δy (x , y , z) ∧ z′ = z) ∨
(x ′ = x ∧ y ′ = y ∧ z′ = δz(x , y , z))
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Avoiding building big BDDs

◮ Transition relation for three machines in parallel
R(x , y , z) (x ′, y ′, z′) =
(x ′ = δx (x , y , z) ∧ y ′ = y ∧ z′ = z) ∨
(x ′ = x ∧ y ′ = δy (x , y , z) ∧ z′ = z) ∨
(x ′ = x ∧ y ′ = y ∧ z′ = δz(x , y , z))

◮ Recall symbolic iteration:
fn+1(~v) = fn(~v) ∨ (∃~u. fn(~u) ∧ g(~u, ~v))

◮ For the 3-machine example this is (see next slide):
fn+1(x , y , z)

= fn(x , y , z) ∨ (∃x y z. fn(x , y , z) ∧ R (x , y , z) (x , y , z))

= fn(x , y , z) ∨
(∃x . fn(x , y , z) ∧ x = δx (x , y , z)) ∨
(∃y . fn(x , y , z) ∧ y = δy (x , y , z)) ∨
(∃z. fn(x , y , z) ∧ z = δz(x , y , z))

◮ Don’t need to calculate BDD of R!
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Disjunctive partitioning

∃x y z. fn(x , y , z) ∧ R (x , y , z) (x , y , z)

= ∃x y z. fn(x , y , z) ∧ ((x = δx (x , y , z) ∧ y = y ∧ z = z) ∨
(x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(x = x ∧ y = y ∧ z = δz(x , y , z)))

= (∃x y z. fn(x , y , z) ∧ x = δx (x , y , z) ∧ y = y ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = y ∧ z = δz(x , y , z))

= (∃x y z. fn(x , y , z) ∧ x = δx (x , y , z) ∧ y = y ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = y ∧ z = δz(x , y , z))

= ((∃x . fn(x , y , z) ∧ x=δx (x , y , z)) ∧ (∃y . y=y) ∧ (∃z. z=z)) ∨
((∃x . x=x) ∧ (∃y . fn(x , y , z) ∧ y=δy (x , y , z)) ∧ (∃z. z=z)) ∨
((∃x . x=x) ∧ (∃y . y=y) ∧ (∃z. fn(x , y , z) ∧ z=δz(x , y , z)))

= (∃x . fn(x , y , z) ∧ x = δx (x , y , z)) ∨
(∃y . fn(x , y , z) ∧ y = δy (x , y , z)) ∨
(∃z. fn(x , y , z) ∧ z = δz(x , y , z))
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Verification and counterexamples

◮ Typical safety question:
◮ is property p true in all reachable states?
◮ i.e. check M |= GAp
◮ i.e. is ∀s. s ∈ Reachable M ⇒ p s

◮ Check using BDDs
◮ compute BDD BM of Reachable M
◮ compute BDD Bp of p(~v)

◮ check if BDD of BM ⇒ Bp is the single node 1

◮ Valid because true represented by a unique BDD
(canonical property)

◮ If BDD is not 1 can get counterexample
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Generating counterexamples

BDD algorithms can find satisfying assignments (SAT)

◮ M = (S,S0,R,AP) and B0, B1, . . . , BM , BR, Bp as earlier

◮ Suppose BM ⇒ Bp is not 1

◮ Must exist a state s ∈ Reachable M such that ¬(p s)

◮ Let B¬p be the BDD representing ¬(p ~v)

◮ Iterate to find first n such that Bn ∧ B¬p

◮ Using SAT find ~bn such that (Bn ∧ B¬p)[~bn/~v ]

◮ Use SAT to find ~bn−1 such that (Bn−1 ∧ BR[~bn/~v ′])[~bn−1/~v ]

◮ For 0 ≤ i ≤ n find ~bi such that (Bi−1 ∧ BR[~bi/~v ′])[~bi−1/~v ]

◮ ~b0,. . .,~bi ,. . .,~bn is a counterexample trace
◮ Sometimes can use partitioning to avoid constructing BR
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Example (from an exam)
Consider a 3x3 array of 9 switches

1 2 3

4 5 6

7 8 9

Suppose each switch 1,2,...,9 can either be on or off, and that toggling any switch will
automatically toggle all its immediate neighbours. For example, toggling switch 5 will
also toggle switches 2, 4, 6 and 8, and toggling switch 6 will also toggle switches 3, 5
and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the
behavior of the array of switches

You are given the problem of getting from an initial state in which even numbered
switches are on and odd numbered switches are off, to a final state in which all the
switches are off.

(b) Write down predicates on your state space that characterises the initial [2 marks]
and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of switches to
toggle to get from the initial to final state. [6 marks]

You are not expected to actually solve the problem, but only to explain how to represent
it in terms of model checking.
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Solution
A state is a vector (v0,v1,v2,v3,v4,v5,v6,v7,v8), where vi ∈ B

(vi true iff switch number i+1 is on)

A transition relation Trans is then defined by:
Trans(v0,v1,v2,v3,v4,v5,v6,v7,v8)(v0’,v1’,v2’,v3’,v4’,v5’,v6’,v7’,v8’)
= ((v0’=¬v0)∧(v1’=¬v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=v4)∧

(v5’=v5)∧(v6’=v6)∧(v7’=v7)∧(v8’=v8)) (toggle switch 1)
∨ ((v0’=¬v0)∧(v1’=¬v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧

(v5’=v5)∧(v6’=v6)∧(v7’=v7)∧(v8’=v8)) (toggle switch 2)
∨ ((v0’=v0)∧(v1’=¬v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=v4)∧

(v5’=¬v5)∧(v6’=v6)∧(v7’=v7)∧(v8’=v8)) (toggle switch 3)
∨ ((v0’=¬v0)∧(v1’=v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=¬v4)∧

(v5’=v5)∧(v6’=¬v6)∧(v7’=v7)∧(v8’=v8)) (toggle switch 4)
∨ ((v0’=v0)∧(v1’=¬v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=¬v4)∧

(v5’=¬v5)∧(v6’=v6)∧(v7’=¬v7)∧(v8’=v8)) (toggle switch 5)
∨ ((v0’=v0)∧(v1’=v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧

(v5’=¬v5)∧(v6’=v6)∧(v7’=v7)∧(v8’=¬v8)) (toggle switch 6)
∨ ((v0’=v0)∧(v1’=v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=v4)∧

(v5’=v5)∧(v6’=¬v6)∧(v7’=¬v7)∧(v8’=v8)) (toggle switch 7)
∨ ((v0’=v0)∧(v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=¬v4)∧

(v5’=v5)∧(v6’=¬v6)∧(v7’=¬v7)∧(v8’=¬v8)) (toggle switch 8)
∨ ((v0’=v0)∧(v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=v4)∧

(v5’=¬v5)∧(v6’=v6)∧(v7’=¬v7)∧(v8’=¬v8)) (toggle switch 9)
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Solution (continued)

Predicates Init, Final characterising the initial and final states,
respectively, are defined by:

Init(v0,v1,v2,v3,v4,v5,v6,v7,v8) =
¬v0 ∧ v1 ∧ ¬v2 ∧ v3 ∧ ¬v4 ∧ v5 ∧ ¬v6 ∧ v7 ∧ ¬v8

Final(v0,v1,v2,v3,v4,v5,v6,v7,v8) =
¬v0 ∧ ¬v1 ∧ ¬v2 ∧ ¬v3 ∧ ¬v4 ∧ ¬v5 ∧ ¬v6 ∧ ¬v7 ∧ ¬v8

Model checkers can find counter-examples to properties, and
sequences of transitions from an initial state to a
counter-example state. Thus we could use a model checker to
find a trace to a counter-example to the property that
¬Final(v0,v1,v2,v3,v4,v5,v6,v7,v8)
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Properties
◮ ∀s ∈ S0. R∗ s ⇒ p s means p true in all reachable states

◮ Might want to verify other properties
1. DeviceEnabled holds infinitely often along every path

2. From any state it is possible to get to a state where
Restart holds

3. After a three or more consecutive occurrences of Req there
will eventually be an Ack

◮ Temporal logic can express such properties

◮ There are several temporal logics in use
◮ LTL is good for the first example above
◮ CTL is good for the second example
◮ PSL is good for the third example

◮ Model checking:
◮ Emerson, Clarke & Sifakis: Turing Award 2008
◮ widely used in industry: first hardware, later software
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Temporal logic (originally called “tense logic”)
Originally devised for investigating: “the relationship
between tense and modality attributed to the Megarian
philosopher Diodorus Cronus (ca. 340-280 BCE)”.

Mary Prior, his wife, recalls “I remember his waking me
one night [in 1953], coming and sitting on my bed, ... and
saying he thought one could make a formalised tense logic”.

A. N. Prior
1914-1969

◮ Temporal logic: deductive system for reasoning about time
◮ temporal formulae for expressing temporal statements
◮ deductive system for proving theorems

◮ Temporal logic model checking
◮ uses semantics to check truth of temporal formulae in models

◮ Temporal logic proof systems also important in CS
◮ use pioneered by Amir Pnueli (1996 Turing Award)
◮ not considered in this course

Recommended: http://plato.stanford.edu/entries/prior/
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Temporal logic formulae (statements)
◮ Many different languages of temporal statements

◮ linear time (LTL)
◮ branching time (CTL)
◮ finite intervals (SEREs)
◮ industrial languages (PSL, SVA)

◮ Prior used linear time, Kripke suggested branching time:
... we perhaps should not regard time as a linear series ... there are
several possibilities for what the next moment may be like - and for
each possible next moment, there are several possibilities for the
moment after that. Thus the situation takes the form, not of a linear
sequence, but of a ’tree’.
[Saul Kripke, 1958 (aged 17, still at school)]

◮ CS issues different from philosophical issues
◮ Moshe Vardi: “Branching vs. Linear Time: Final Showdown”

2011 Harry H. Goode Memorial Award Recipient

(aged 56, still at school)
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Linear Temporal Logic (LTL)

◮ Grammar of well formed formulae (wff) φ
φ ::= p (Atomic formula:p ∈ AP)

| ¬φ (Negation)
| φ1 ∨ φ2 (Disjunction)
| Xφ (successor)
| Fφ (sometimes)
| Gφ (always)
| [φ1 U φ2] (Until)

◮ Details differ from Prior’s tense logic – but similar ideas

◮ Semantics define when φ true in model M
◮ where M = (S,R,S0,AP) – a Kripke structure
◮ notation: M |= φ means φ true in model M
◮ model checking algorithms compute this (when decidable)
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M |= φ means “wff φ is true in model M”

◮ If M = (S,S0,R,AP) then

π is an M-path starting from s iff Path R s π

◮ If M = (S,S0,R,AP) then we define M |= φ to mean:

φ is true on all M-paths starting from a member of S0

◮ We will define [[φ]]M (π) to mean

φ is true on the M-path π

◮ Thus M |= φ will be formally defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M (π)

◮ It remains to actually define [[φ]]M for all wffs φ
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Definition of [[φ]]M(π)

◮ [[φ]]M (π) is the application of function [[φ]]M to path π
◮ thus [[φ]]M : (N → S) → B

◮ Let M = (S,S0,R,AP)

[[φ]]M is defined by structural induction on φ

[[p]]M(π) = p(π 0)
[[¬φ]]M(π) = ¬([[φ]]M (π))
[[φ1 ∨ φ2]]M (π) = [[φ1]]M(π) ∨ [[φ2]]M(π)
[[Xφ]]M(π) = [[φ]]M (π↓1)
[[Fφ]]M(π) = ∃i . [[φ]]M (π↓i)
[[Gφ]]M(π) = ∀i . [[φ]]M (π↓i)
[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ We look at each of these semantic equations in turn
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[[p]]M(π) = p(π 0)

◮ Assume M = (S,S0,R,AP)

◮ We have: [[p]]M(π) = p(π 0)
◮ p is an atomic property, i.e. p ∈ AP
◮ π : N → S so π 0 ∈ S
◮ π 0 is the first state in path π
◮ p(π 0) is true iff atomic property p holds of state π 0

◮ [[p]]M(π) means p holds of the first state in path π

◮ Assumed T,F ∈ AP with T(s) = true and F(s) = false
◮ [[T]]M(π) is always true

◮ [[(F]]M(π) is always false
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[[¬φ]]M(π) = ¬([[φ]]M(π))

[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)

◮ [[¬φ]]M(π) = ¬([[φ]]M (π))

◮ [[¬φ]]M(π) true iff [[φ]]M(π) is not true

◮ [[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)

◮ [[φ1 ∨ φ2]]M(π) true iff [[φ1]]M(π) is true or [[φ2]]M(π) is true
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[[Xφ]]M(π) = [[φ]]M(π↓1)

◮ [[Xφ]]M(π) = [[φ]]M (π↓1)

◮ π↓1 is π with the first state chopped off

π↓1(0) = π(1 + 0) = π(1)
π↓1(1) = π(1 + 1) = π(2)
π↓1(2) = π(1 + 2) = π(3)

...

◮ [[Xφ]]M(π) true iff [[φ]]M true starting at the next state of π
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[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)

◮ [[Fφ]]M(π) = ∃i . [[φ]]M (π↓i)
◮ π↓m is π with the first i states chopped off

π↓i(0) = π(i + 0) = π(i)
π↓i(1) = π(i + 1)
π↓i(2) = π(i + 2)

...
◮ [[φ]]M(π↓i) true iff [[φ]]M true starting i states along π

◮ [[Fφ]]M(π) true iff [[φ]]M true starting somewhere along π

◮ “Fφ” is read as “sometimes φ”
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[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)
◮ [[Gφ]]M (π) = ∀i . [[φ]]M(π↓i)

◮ π↓i is π with the first i states chopped off
◮ [[φ]]M(π↓i) true iff [[φ]]M true starting i states along π

◮ [[Gφ]]M (π) true iff [[φ]]M true starting anywhere along π

◮ “Gφ” is read as “always φ” or “globally φ”

◮ M |= GA p defined earlier: M |= GA p ⇔ M |= G(p)

◮ G is definable in terms of F and ¬: Gφ = ¬(F(¬φ))

[[¬(F(¬φ))]]M(π) = ¬([[F(¬φ)]]M (π))
= ¬(∃i . [[¬φ]]M(π↓i))
= ¬(∃i . ¬([[φ]]M (π↓i)))
= ∀i . [[φ]]M (π↓i)
= [[Gφ]]M (π)
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[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ [[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M (π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ [[φ2]]M(π↓i) true iff [[φ2]]M true starting i states along π

◮ [[φ1]]M(π↓j) true iff [[φ1]]M true starting j states along π

◮ [[[φ1 U φ2]]]M(π) is true iff

[[φ2]]M is true somewhere along π and up to then [[φ1]]M is true

◮ “[φ1 U φ2]φ” is read as “φ1 until φ2”

◮ F is definable in terms of [− U −]: Fφ = [T U φ]

[[[T U φ]]]M (π)
= ∃i . [[φ]]M (π↓i) ∧ ∀j . j<i ⇒ [[T]]M(π↓j)
= ∃i . [[φ]]M (π↓i) ∧ ∀j . j<i ⇒ true
= ∃i . [[φ]]M (π↓i) ∧ true
= ∃i . [[φ]]M (π↓i)
= [[Fφ]]M(π)
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Computation Tree Logic (CTL)

◮ Syntax of CTL well-formed formulae:

φ ::= p (Atomic formulap ∈ AP)
| ¬φ (Negation)
| φ1 ∧ φ2 (Conjunction)
| φ1 ∨ φ2 (Disjunction)
| φ1 ⇒ φ2 (Implication)
| AXφ (All successors)
| EXφ (Some successors)
| A[φ1 U φ2] (Until – along all paths)
| E[φ1 U φ2] (Until – along some path)

◮ Sometimes just write “p” rather than “p”

◮ LTL formulae φ are evaluated on paths – path formulae

◮ CTL formulae φ are evaluated on states – state formulae
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Semantics of CTL
◮ Assume M = (S,S0,R,AP) and then define:

[[p]]M(s) = p(s)

[[¬φ]]M(s) = ¬([[φ]]M (s))

[[φ1 ∧ φ2]]M (s) = [[φ1]]M(s) ∧ [[φ2]]M(s)

[[φ1 ∨ φ2]]M (s) = [[φ1]]M(s) ∨ [[φ2]]M(s)

[[φ1 ⇒ φ2]]M(s) = [[φ1]]M(s) ⇒ [[φ2]]M(s)

[[AXφ]]M (s) = ∀s′. R s s′ ⇒ [[φ]]M(s′)

[[EXφ]]M (s) = ∃s′. R s s′ ∧ [[φ]]M (s′)

[[A[φ1 U φ2]]]M(s) = ∀π. Path R s π
⇒ ∃i . [[φ2]]M(π(i))

∧
∀j . j<i ⇒ [[φ1]]M(π(j))

[[E[φ1 U φ2]]]M(s) = ∃π. Path R s π
∧ ∃i . [[φ2]]M(π(i))

∧
∀j . j<i ⇒ [[φ1]]M(π(j))
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The defined operator AF

◮ Define AFφ = A[T U φ]

◮ AFφ true at s iff φ true somewhere on every R-path from s

[[AFφ]]M (s) = [[A[T U φ]]]M(s)

= ∀π. Path R s π
⇒
∃i . [[φ]]M (π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∀π. Path R s π
⇒
∃i . [[φ]]M (π(i)) ∧ ∀j . j < i ⇒ true

= ∀π. Path R s π ⇒ ∃i . [[φ]]M (π(i))
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The defined operator EF

◮ Define EFφ = E[T U φ]

◮ EFφ true at s iff φ true somewhere on some R-path from s

[[EFφ]]M (s) = [[E[T U φ]]]M(s)

= ∃π. Path R s π
∧
∃i . [[φ]]M (π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∃π. Path R s π
∧
∃i . [[φ]]M (π(i)) ∧ ∀j . j < i ⇒ true

= ∃π. Path R s π ∧ ∃i . [[φ]]M (π(i))
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The defined operator AG

◮ Define AGφ = ¬EF(¬φ)

◮ AGφ true at s iff φ true everywhere on every R-path from s

[[AGφ]]M(s) = [[¬EF(¬φ)]]M (s)
= ¬([[EF(¬φ)]]M(s))
= ¬(∃π. Path R s π ∧ ∃i . [[¬φ]]M (π(i)))
= ¬(∃π. Path R s π ∧ ∃i . ¬[[φ]]M (π(i)))
= ∀π. ¬(Path R s π ∧ ∃i . ¬[[φ]]M (π(i)))
= ∀π. ¬Path R s π ∨ ¬(∃i . ¬[[φ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ∀i . ¬¬[[φ]]M(π(i))
= ∀π. ¬Path R s π ∨ ∀i . [[φ]]M (π(i))
= ∀π. Path R s π ⇒ ∀i . [[φ]]M (π(i))

◮ AGφ means φ true at all reachable states

◮ [[AG(p)]]M(s) ≡ ∀s′. R∗ s s′ ⇒ p(s′)
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The defined operator EG

◮ Define EGφ = ¬AF(¬φ)

◮ EGφ true at s iff φ true everywhere on some R-path from s

[[EGφ]]M(s) = [[¬AF(¬φ)]]M(s)
= ¬([[AF(¬φ)]]M(s))
= ¬(∀π. Path R s π ⇒ ∃i . [[¬φ]]M (π(i)))
= ¬(∀π. Path R s π ⇒ ∃i . ¬[[φ]]M (π(i)))
= ∃π. ¬(Path R s π ⇒ ∃i . ¬[[φ]]M (π(i)))
= ∃π. Path R s π ∧ ¬(∃i . ¬[[φ]]M(π(i)))
= ∃π. Path R s π ∧ ∀i . ¬¬[[φ]]M(π(i))
= ∃π. Path R s π ∧ ∀i . [[φ]]M (π(i))
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The defined operator A[φ1Wφ2]

◮ A[φ1Wφ2] is a ‘partial correctness’ version of A[φ1Uφ2]

◮ It is true at s if along all R-paths from s:
◮ φ1 always holds on the path

◮ φ2 holds sometime on the path, and until it does φ1 holds

◮ Define

[[A[φ1Wφ2]]]M (s)
= [[¬E[(φ1∧¬φ2)U(¬φ1∧¬φ2)]]]M(s)
= ¬[[E[(φ1∧¬φ2)U(¬φ1∧¬φ2)]]]M (s)
= ¬(∃π. Path R s π

∧
∃i . [[¬φ1∧¬φ2]]M(π(i))

∧
∀j . j<i ⇒ [[φ1∧¬φ2]]M(π(j)))

◮ Exercise: understand the next three slides!
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A[φ1Wφ2] continued (1)

◮ Continuing:

¬(∃π. Path R s π
∧
∃i . [[¬φ1∧¬φ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[φ1∧¬φ2]]M(π(j)))

= ∀π. ¬(Path R s π
∧
∃i . [[¬φ1∧¬φ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[φ1∧¬φ2]]M(π(j)))

= ∀π. Path R s π
⇒
¬(∃i . [[¬φ1∧¬φ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[φ1∧¬φ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬[[¬φ1∧¬φ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[φ1∧¬φ2]]M (π(j)))
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A[φ1Wφ2] continued (2)

◮ Continuing:

= ∀π. Path R s π
⇒
∀i . ¬[[¬φ1∧¬φ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[φ1∧¬φ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬(∀j . j<i ⇒ [[φ1∧¬φ2]]M (π(j))) ∨ ¬[[¬φ1∧¬φ2]]M(π(i))

= ∀π. Path R s π
⇒
∀i . (∀j . j<i ⇒ [[φ1∧¬φ2]]M(π(j))) ⇒ [[φ1∨φ2]]M (π(i))

◮ Exercise: explain why this is [[A[φ1Wφ2]]]M(s)?
◮ this exercise illustrates the subtlety of writing CTL!
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A[φWF] = AG φ
◮ From last slide:

[[A[φ1Wφ2]]]M (s)
= ∀π. Path R s π

⇒
∀i . (∀j . j<i ⇒ [[φ1∧¬φ2]]M (π(j))) ⇒ [[φ1∨φ2]]M(π(i))

◮ Set φ1 to φ and φ2 to F:
[[A[φWF]]]M(s)
= ∀π. Path R s π

⇒
∀i . (∀j . j<i ⇒ [[φ∧¬F]]M(π(j))) ⇒ [[φ∨F]]M(π(i))

◮ Simplify:
[[A[φWF]]]M(s)
= ∀π. Path R s π ⇒ ∀i . (∀j . j<i ⇒ [[φ]]M(π(j))) ⇒ [[φ]]M(π(i))

◮ By induction on i :

[[A[φWF]]]M(s) = ∀π. Path R s π ⇒ ∀i . [[φ]]M (π(i))

◮ Exercise: describe the property specified by A[TWφ]
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Summary of CTL operators (primitive + defined)
◮ CTL formulas:

p (Atomic formula -p : states→bool)
¬φ (Negation)
φ1 ∧ φ2 (Conjunction)
φ1 ∨ φ2 (Disjunction)
φ1 ⇒ φ2 (Implication)
AXφ (All successors)
EXφ (Some successors)
AFφ (Somewhere – along all paths)
EFφ (Somewhere – along some path)
AGφ (Everywhere – along all paths)
EGφ (Everywhere – along some path)
A[φ1 U φ2] (Until – along all paths)
E[φ1 U φ2] (Until – along some path)
A[φ1 W φ2] (Unless – along all paths)
E[φ1 W φ2] (Unless – along some path)
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Example CTL formulas

◮ EF(Started ∧ ¬Ready)

It is possible to get to a state where Started holds
but Ready does not hold

◮ AG(Req ⇒ AFAck)

If a request Req occurs, then it will eventually be
acknowledged by Ack

◮ AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along
every path starting anywhere: i.e. DeviceEnabled
holds infinitely often along every path

◮ AG(EFRestart)
From any state it is possible to get to a state for
which Restart holds
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More CTL examples (1)

◮ AG(Req ⇒ A[Req U Ack ])

If a request Req occurs, then it continues to hold,
until it is eventually acknowledged

◮ AG(Req ⇒ AX(A[¬Req U Ack ]))

Whenever Req is true either it must become false
on the next cycle and remains false until Ack, or
Ack must become true on the next cycle

Exercise: is the AX necessary?

◮ AG(Req ⇒ (¬Ack ⇒ AX(A[Req U Ack ])))

Whenever Req is true and Ack is false then Ack
will eventually become true and until it does Req
will remain true

Exercise: is the AX necessary?
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More CTL examples (2)

◮ AG[Enabled ⇒ AG[Start ⇒ A[¬Waiting U Ack ]]]

If Enabled is ever true then if Start is true in any
subsequent state then Ack will eventually become
true, and until it does Waiting will be false

◮ AG[¬Req1∧¬Req2⇒A[¬Req1∧¬Req2U(Start∧¬Req2)]]

Whenever Req1 and Req2 are false, they remain
false until Start becomes true with Req2 still false

◮ AG[Req ⇒ AX(Ack ⇒ AF ¬Req)]

If Req is true and Ack becomes true one cycle
later, then eventually Req will become false
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Some abbreviations
◮ AXi φ ≡ AX(AX(· · · (AX φ) · · · ))

︸ ︷︷ ︸

i instances of AX
φ is true on all paths i units of time later

◮ ABF i ..j φ ≡ AX i (φ ∨ AX(φ ∨ · · · AX(φ ∨ AX φ) · · · ))
︸ ︷︷ ︸

j − i instances of AX
φ is true on all paths sometime between i units of
time later and j units of time later

◮ AG[Req ⇒ AX[Ack1 ∧ ABF1..6(Ack2 ∧ A[Wait U Reply ])]]

One cycle after Req, Ack1 should become true,
and then Ack2 becomes true 1 to 6 cycles later
and then eventually Reply becomes true, but until
it does Wait holds from the time of Ack2

◮ More abbreviations in ‘Industry Standard’ language PSL
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CTL model checking

◮ For LTL path formulae φ recall that M |= φ is defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M (π)

◮ For CTL state formulae φ the definition of M |= φ is:

M |= φ ⇔ ∀s. s ∈ S0 ⇒ [[φ]]M (s)

◮ M common; LTL, CTL formulae φ and semantics [[ ]]M differ

◮ CTL model checking algorithm:
◮ compute {s | [[φ]]M(s) = true} bottom up

◮ check S0 ⊆ {s | [[φ]]M(s) = true}

◮ symbolic model checking represents these sets as BDDs
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CTL model checking: p, AXφ, EXφ

◮ For CTL formula φ let {[φ]} = {s | [[φ]]M (s) = true}

◮ {[p]} = {s | p(s) = true}
◮ scan through set of states S marking states that satisfy p
◮ {[p]} is set of marked states

◮ To compute {[AXφ]}

◮ recursively compute {[φ]}
◮ marks those states all of whose successors are in {[φ]}
◮ {[AXφ]} is the set of marked states

◮ To compute {[EXφ]}

◮ recursively compute {[φ]}
◮ marks those states with at least one successor in {[φ]}
◮ {[AXφ]} is the set of marked states
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CTL model checking: {[E[φ1 U φ2]]}, {[A[φ1 U φ2]]}

◮ To compute {[E[φ1 U φ2]]}

◮ recursively compute {[φ1]} and {[φ2]}
◮ mark all states in {[φ2]}
◮ mark all states in {[φ1]} with a successor state that is marked
◮ repeat previous line until no change
◮ {[E[φ1 U φ2]]} is set of marked states

◮ More formally: {[E[φ1 U φ2]]} =
⋃∞

n=0{[E[φ1 U φ2]]}n where:

{[E[φ1 U φ2]]}0 = {[φ2]}
{[E[φ1 U φ2]]}n+1 = {[E[φ1 U φ2]]}n

∪
{s ∈ Sφ1 | ∃s′ ∈ {[E[φ1 U φ2]]}n. R s s′}

◮ {[A[φ1 U φ2]]} similar, but with a more complicated iteration
◮ details omitted
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Example: checking EF p

◮ EFφ = E[T U φ]

◮ holds if φ holds along some path

◮ Let Sn = {[E[T U p]]}n:

S0 = {[p]}
= {s | p(s)}

Sn+1 = Sn ∪ {s | ∃s′. R s s′ ∧ s′ ∈ Sn}

◮ mark all the states satisfying p
◮ mark all with at least one marked successor
◮ repeat until no change
◮ {[EF p]} is set of marked states
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Example: RCV

◮ Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq, q0, dack)

◮ A model of RCV is MRCV where:

M = (SRCV, {(1, 1, 1)},RRCV,AP)

and
RRCV (dreq, q0, dack) (dreq′, q0′, dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))
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RCV state transition diagram

◮ Possible states for RCV:

{000,001,010,011,100,101,110,111}

where b2b1b0 denotes state

dreq = b2 ∧ q0 = b1 ∧ dack = b0

◮ Graph of the transition relation:

000 100 110 111

101

011

001

010
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Model checking MRCV |= (λb2b1b0. b2 ∧ b1 ∧ b0)

000 100 110 111

101

011

001

010

◮ Define:
S0 = {b2b1b0 | (λb2b1b0. b2 ∧ b1 ∧ b0)b2b1b0)}

= {b2b1b0 | b2 ∧ b1 ∧ b0}

Si+1 = Si ∪ {s | ∃s′ ∈ Si . R(s, s′)}
= Si ∪ {b2b1b0 |

∃b′

2b′

1b′

0 ∈ Si . (b′

1 = b2) ∧ (b′

0 = b2 ∧ (b1 ∨ b0))}
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Model checking MRCV |= (λb2b1b0. b2 ∧ b1 ∧ b0) (continued)

000 100 110 111

101

011

001

010

0

1

123

3

3

3

◮ Compute:
S0 = {111}
S1 = {111} ∪ {101, 110}

= {111, 101, 110}
S2 = {111, 101, 110} ∪ {100}

= {111, 101, 110, 100}
S3 = {111, 101, 110, 100} ∪ {000, 001, 010, 011}

= {111, 101, 110, 100, 000, 001, 010, 011}
Si = S3 (i > 3)

◮ ∀s. [[EF (λ(dreq,q0,dack). dreq ∧ q0 ∧ dack)]]M(s)

◮ MRCV |= EF (λ(dreq,q0,dack). dreq ∧ q0 ∧ dack)
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Symbolic model checking

◮ Represent sets of states with BDDs

◮ Represent Transition relation with a BDD

◮ If BDDs of {[φ]}, {[φ1]}, {[φ2]} are known, then:
◮ BDDs of {[¬φ]}, {[φ1 ∧ φ2]}, {[φ1 ∨ φ2]}, {[φ1 ⇒ φ2]}

computed using standard BDD algorithms

◮ BDDs of {[AXφ]}, {[EXφ]}, {[A[φ1 U φ2]]}, {[E[P U Q]]}
computed using straightforward algorithms (see textbooks)

◮ Model checking CTL generalises reachable states Iteration
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History of Model checking

◮ CTL model checking due to Emerson, Clarke & Sifakis
◮ Symbolic model checking due to several people:

◮ Clarke & McMillan (idea usually credited to McMillan’s PhD)
◮ Coudert, Berthet & Madre
◮ Pixley

◮ SMV (McMillan) is a popular symbolic model checker:
http://www.cs.cmu.edu/~modelcheck/smv.html (original)
http://www.kenmcmil.com/smv.html (Cadence extension by McMillan)
http://nusmv.irst.itc.it/ (new implementation)

◮ Other temporal logics
◮ CTL*: combines CTL and LTL
◮ Engineer friendly industrial languages: PSL, SVA
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Expressibility of CTL
◮ Consider the property

“on every path there is a point after which p is
always true on that path ”

◮ Consider

p ~p p

s0 s1 s2

s0

s0

s0

s0

s1

s1

s1

s1

s2

s2

s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2

◮ Property true, but cannot be expressed in CTL
◮ would need something like AFφ
◮ where φ is something like “property p true from now on”
◮ but in CTL φ must start with a path quantifier A or E
◮ cannot talk about current path, only about all or some paths
◮ AF(AG p) is false (consider path s0s0s0 · · · )
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LTL can express things CTL can’t

◮ Recall:
[[Fφ]]M(π) = ∃i . [[φ]]M (π↓i)
[[Gφ]]M(π) = ∀i . [[φ]]M (π↓i)

◮ FGφ is true if there is a point after which φ is always true
[[FGφ]]M (π) = [[F(G(φ))]]M(π)

= ∃m1. [[G(φ)]]M (π↓m1)
= ∃m1. ∀m2. [[φ]]M ((π↓m1)↓m2)
= ∃m1. ∀m2. [[φ]]M (π↓(m1+m2))

◮ LTL can express things that CTL can’t express
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CTL can express things that LTL can’t express

◮ AG(EF φ) says:

“from every state it is possible to get to a state for
which φ holds”

◮ Can’t say this in LTL (proof omitted)

◮ Consider disjunction:

“along every path there is a state from which φ
will hold forever
or
from every state it is possible to get to a state for
which φ holds”

◮ Can’t say this in either CTL or LTL! (proof omitted)

◮ CTL* combines CTL and LTL and can express this property
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CTL*
◮ Both state formulas (ψ) and path formulas (φ)

◮ state formulas are true of a state s like CTL
◮ path formulas are true of a path π like LTL

◮ Defined mutually recursively
ψ ::= p (Atomic formula)

| ¬ψ (Negation)
| ψ1 ∨ ψ2 (Disjunction)
| Aφ (All paths)
| Eφ (Some paths)

φ ::= ψ (Every state formula is a path formula)
| ¬φ (Negation)
| φ1 ∨ φ2 (Disjunction)
| Xφ (Successor)
| Fφ (Sometimes)
| Gφ (Always)
| [φ1 U φ2] (Until)

◮ CTL is CTL* with X, F, G, [−U−] preceded by A or E
◮ LTL consists of CTL* formulas of form Aφ,

where the only state formulas in φ are atomic
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CTL* semantics

◮ Combines CTL state semantics with LTL path semantics:

[[p]]M(s) = p(s)
[[¬ψ]]M(s) = ¬([[ψ]]M (s))
[[ψ1 ∨ ψ2]]M (s) = [[ψ1]]M(s) ∨ [[ψ2]]M (s)
[[Aφ]]M(s) = ∀π. Path R s π ⇒ φ(π)
[[Eφ]]M(s) = ∃π. Path R s π ∧ [[φ]]M(π)

[[ψ]]M (π) = [[ψ]]M (π(0))
[[¬φ]]M(π) = ¬([[φ]]M (π))
[[φ1 ∨ φ2]]M (π) = [[φ1]]M(π) ∨ [[φ2]]M(π)
[[Xφ]]M(π) = [[φ]]M (π↓1)
[[Fφ]]M(π) = ∃m. [[φ]]M (π↓m)
[[Gφ]]M(π) = ∀m. [[φ]]M (π↓m)
[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ Note [[ψ]]M : S→B and [[φ]]M : (N→S)→B
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LTL and CTL as CTL*
◮ As usual: M = (S,S0,R,AP)
◮ If ψ is a CTL* state formula: M |= ψ ⇔ ∀s ∈ S0. [[ψ]]M (s)
◮ If φ is an LTL path formula then: M |=LTL φ ⇔ M |=CTL* Aφ
◮ If R is total (∀s. ∃s′. R s s′) then (exercise):

∀s s′. R s s′ ⇔ ∃π. Path R s π ∧ (π(1) = s′)
◮ The meanings of CTL formulae are the same in CTL*

[[A(Xψ)]]M (s)
= ∀π. Path R s π ⇒ [[Xψ]]M(π)
= ∀π. Path R s π ⇒ [[ψ]]M (π↓1) (ψ as path formula)
= ∀π. Path R s π ⇒ [[ψ]]M ((π↓1)(0)) (ψ as state formula)
= ∀π. Path R s π ⇒ [[ψ]]M (π(1))

[[AXψ]]M(s)
= ∀s′. R s s′ ⇒ [[ψ]]M (s′)
= ∀s′. (∃π. Path R s π ∧ (π(1) = s′)) ⇒ [[ψ]]M (s′)
= ∀s′. ∀π. Path R s π ∧ (π(1) = s′) ⇒ [[ψ]]M (s′)
= ∀π. Path R s π ⇒ [[ψ]]M (π(1))

Exercise: do similar proofs for other CTL formulae
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Fairness

◮ May want to assume system or environment is ‘fair’

◮ Example 1: fair arbiter
the arbiter doesn’t ignore one of its requests forever

◮ not every request need be granted
◮ want to exclude infinite number of requests and no grant

◮ Example 2: reliable channel
no message continuously transmitted but never received

◮ not every message need be received
◮ want to exclude an infinite number of sends and no receive

Mike Gordon 83 / 118

Handling fairness in CTL and LTL
◮ Consider:

P holds infinitely often along a path then so does Q

◮ In LTL is expressible as G(F P) ⇒ G(F Q)

◮ Can’t say this in CTL
◮ why not – what’s wrong with AG(AF P) ⇒ AG(AF Q)?
◮ in CTL* expressible as A(G(F P) ⇒ G(F Q))
◮ fair CTL model checking implemented in checking algorithm
◮ fair LTL just a fairness assumption like G(F P) ⇒ · · ·

◮ Fairness is a tricky and subtle subject
◮ many kinds of fairness:

‘weak fairness’, ‘strong fairness’ etc

◮ exist whole books on fairness
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Propositional modal µ-calculus

◮ You may learn this in Topics in Concurrency
◮ µ-calculus is an even more powerful property language

◮ has fixed-point operators
◮ both maximal and minimal fixed points
◮ model checking consists of calculating fixed points
◮ many logics (e.g. CTL*) can be translated into µ-calculus

◮ Strictly stronger than CTL*
◮ expressibility strictly increases as allowed nesting increases
◮ need fixed point operators nested 2 deep for CTL*

◮ The µ-calculus is very non-intuitive to use!

◮ intermediate code rather than a practical property language
◮ nice meta-theory and algorithms, but terrible usability!
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SEREs: Sequential Extended Regular Expressions
◮ SEREs are from the industrial PSL (more on PSL later)
◮ Syntax :

r ::= p (Atomic formulap ∈ AP)
| !p (Negated atomic formulap ∈ AP)
| r1 | r2 (Disjunction)
| r1 ; r2 (Concatenation)
| r1 : r2 (Fusion)
| r1 && r2 (Length matching conjunction)
| r [∗] (Repeat)

◮ Semantics:
(w ranges over finite lists of states s; |w | is length of w ;
w1.w2 is concatenation of w1 and w2; 〈〉 is empty word)
[[p]](w) = p(head w) ∧ |w | = 1
[[!p]](w) = ¬(p(head w)) ∧ |w | = 1
[[r1|r2]](w) = [[r1]](w) ∨ [[r2]](w)
[[r1;r2]](w) = ∃w1 w2. w = w1.w2 ∧ [[r1]](w1) ∧ [[r2]](w2)
[[r1:r2]](w) = ∃w1 s w2. w = w1.s.w2 ∧ [[r1]](w1.s) ∧ [[r2]](s.w2)
[[r1&&r2]](w) = [[r1]](w) ∧ [[r2]](w)
[[r [∗]]](w) = w=〈〉 ∨ ∃w1 · · ·wl . w=w1. · · · .wl∧[[r ]](w1)∧ · · · ∧[[r ]](wl)
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Example SERE

◮ Example

A sequence in which req is asserted, followed
four cycles later by an assertion of grant,
followed by a cycle in which abortin is not
asserted.

◮ Can this represent by the SERE:

req;[*3];grant;!abortin
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Assertion-based verification (ABV)

◮ Claimed that assertion based verification:

“is likely to be the next revolution in hardware design
verification”

◮ Basic idea:
◮ document designs with formal properties
◮ use simulation (dynamic) and model checking (static)

◮ Problem: too many languages
◮ academic logics: LTL, CTL
◮ tool-specific industrial versions:

Intel, Cadence, Motorola, IBM, Synopsys

◮ What to do? Solution: a competition!
◮ run by Accellera organisation
◮ results standardised by IEEE
◮ lots of politics

Mike Gordon 88 / 118



28 CHAPTER 3. APPENDIX: SLIDES

IBM’s Sugar and Accellera’s PSL

◮ Sugar 1: property language of IBM RuleBase checker
◮ CTL plus Sugar Extended Regular Expressions (SEREs)

◮ Competition finalists: IBM’s Sugar 2 and Motorola’s CBV
◮ Intel/Synopsys ForSpec eliminated earlier

(apparently industry politics involved)

◮ Sugar 2 is based on LTL rather than CTL
◮ has CTL constructs: “Optional Branching Extension” (OBE)
◮ has clocking constructs for temporal abstraction

◮ Accellera purged “Sugar” from it property language
◮ the word “Sugar” was too associated with IBM
◮ language renamed to PSL
◮ SEREs now Sequential Extended Regular Expressions

◮ Lobbying to make PSL more like ForSpec (align with SVA)
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PSL Foundation Language (FL)
◮ Syntax:

f ::= p (Atomic formula)
| !f (Negation)
| f1 or f2 (Disjunction)
| next f (successor)
| {r}(f ) (Suffix implication:r a SERE)
| {r1} |-> {r2} (Suffix next implication:r1, r2 SEREs)
| [f1 until f2] (Until)

◮ Semantics (omits clocking, weak/strong distinction)
[[p]]M(π) = p(π(0))
[[!f ]]M(π) = ¬([[f ]]M (π))
[[f1 or f2]]M(π) = [[f1]]M(π) ∨ [[f2]]M(π)
[[next f ]]M(π) = [[f ]]M(π↓1)
[[{r}(f )]]M(π) = ∃w π′. π = w .π′ ∧ [[r ]]M(w) ∧ [[f ]]M(π′)
[[{r1}|->{r2}]]M(π) = ∃w1 π

′. π = w1.π
′ ∧ {[r1]}(w1)

⇒ ∃w2π
′′. π′ = w2.π

′′ ∧ {[r2]}(w2)
[[[f1 until f2]]]M(π) = ∃i. [[f2]]M(π↓i) ∧ ∀j. j<i ⇒ [[f1]]M(π↓j)

◮ There is also an Optional Branching Extension (OBE)
◮ completely standard CTL: EX, E[–U–] , EG etc.
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Combining SEREs with LTL formulas
◮ Formula {r}f means LTL formula f true after SERE r

◮ Example

After a sequence in which req is asserted,
followed four cycles later by an assertion of
grant, followed by a cycle in which abortin is
not asserted, we expect to see an assertion of
ack some time in the future.

◮ Can represent by

always {req;[*3];grant;!abortin}(eventually ack)

◮ where eventually is LTL future operator, so:

eventually f = [true until f]

◮ N.B. Ignoring strong/weak distinction
◮ strong/weak distinction important for dynamic checking
◮ semantics when simulator halts before expected event
◮ strictly should write until!, eventually!
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SERE examples

◮ How can we modify

always reqin;ackout;!abortin |-> ackin;ackin

so that the two cycles of ackin start the cycle after
!abortin

◮ Two ways of doing this

always{reqin;ackout;!abortin}|->{true;ackin;ackin}
always{reqin;ackout;!abortin}|=>{ackin;ackin}

◮ |=> is a defined operator

{r1}|=>{r2} = {r1}|->{true;r2}

◮ Note: true and T are synonyms
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Examples of defined notations: consecutive repetition
◮ Define

r[+] = r;r[*]__
| false[*] if i=0

r[*i] = |
| r;...;r otherwise (i repetitions)
__

r[*i..j] = r[*i] | r[*(i+1)] | ... | r[*j]

[+] = true[+]

[*] = true[*]

◮ Example
Whenever we have a sequence of req followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal start_trans, followed by one
to eight consecutive data transfers, followed by the
assertion of signal end_trans. A data transfer is
indicated by the assertion of signal data

always{req;ack}|=>{start_trans;data[*1..8];end_trans}

Mike Gordon 93 / 118

Fixed number of non-consecutive repetitions
◮ Example

Whenever we have a sequence of req followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal start_trans, followed by
eight not necessarily consecutive data transfers,
followed by the assertion of signal end_trans. A data
transfer is indicated by the assertion of signal data

◮ Can represent by
always
{req;ack} |=>
{start_trans;
{{!data[*];data}[*8];!data[*]};
end_trans}

◮ Define: b[= i] = {!b[*];b}[*i];!b[*]

◮ Then have a nicer representation
always{req;ack}|=>{start_trans;data[= 8];end_trans}
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Variable number of non-consecutive repetitions
◮ Example

Whenever we have a sequence ofreq followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal start_trans, followed by
one to eight not necessarily consecutive data

transfers, followed by the assertion of signal
end_trans. A data transfer is indicated by the
assertion of signal data

◮ Define
b[= i..j] = {b[= i]} | {b[= (i+1)]} | ... | {b[= j]}

◮ Then
always {req;ack} |=>

{start_trans;data[= 1..8];end_trans}

◮ These examples are meant to illustrate how PSL/Sugar is
much more readable than raw CTL or LTL
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Clocking

◮ Basic idea: b@clk samples b on rising edges of clk

◮ Can clock SEREs (r@clk) and formulas (f@clk)

◮ Can have several clocks

◮ Official semantics messy due to clocking

◮ Can ‘translate away’ clocks by pushing @clk inwards
◮ rules given in PSL manual
◮ roughly: b@clk {!clk[*];clk & b}
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Model checking PSL (outline)

◮ SEREs checked by generating a finite automaton
◮ recognise regular expressions
◮ these automata are called “satellites”

◮ FL checked using standard LTL methods

◮ OBE checked by standard CTL methods

◮ Can also check formula for runs of a simulator
◮ this is dynamic verification
◮ semantics handles possibility of finite paths – messy!

◮ Commercial checkers only handle a subset of PSL
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PSL layer structure

◮ Boolean layer has atomic predicates
◮ Temporal layer has LTL (FL) and CTL (OBE) properties
◮ Verification layer has commands for how to use properties

◮ e.g. assert, assume

assert always (!en1 & en2))
| | |
| | |
| | |--- Boolean layer
| |
| |-------------- temporal layer
|
|-------------------- verification layer

◮ Modelling layer has HDL constructs
for specifying inputs and auxiliary hardware
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PSL/Sugar summary

◮ Combines together LTL, ITL and CTL

◮ Regular expressions – SEREs

◮ LTL – Foundation Language formulas

◮ CTL – Optional Branching Extension

◮ Relatively simple set of primitives + definitional extension

◮ Boolean, temporal, verification, modelling layers

◮ Semantics for static and dynamic verification
(needs strong/weak distinction)
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Simulation or Event semantics

◮ HDLs use discrete event simulation
◮ changes to variables ⇒ threads enabled
◮ enabled threads executed non-deterministically
◮ execution of threads ⇒ more events

◮ Combinational thread:

always @(v1 or · · · or vn) v:=E
◮ enabled by any change to v1, . . ., vn

◮ Positive edge triggered sequential threads:

always @(posedge clk) v:=E
◮ enabled by clk changing to T

◮ Negative edge triggered sequential threads:

always @(negedge clk) v:=E
◮ enabled by clk changing to F
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Simulation

◮ Given
◮ a set of threads
◮ initial values for variables read or written by threads
◮ a sequence of input values

(inputs are variables not in LHS of assignments)

◮ simulation algorithm ⇒ a sequence of states

Choose  an  enabled  thread

Execute  the  chosen  thread

 Fire  event  controls  to  enable  new  threads

  Execute
    until
 quiescent
    then
  advance
simulation
     time

 

◮ Simulation is non-deterministic

Mike Gordon 101 / 118

Combinational threads in series
f g hin out

l l1 2

◮ HDL-like specification:
always @(in) l1 := f(in) . . . . . . . . . . . . . thread T1
always @(l1) l2 := g(l1) . . . . . . . . . . . . . thread T2
always @(l2) out := h(l2) . . . . . . . . . . . . . thread T3

◮ Suppose in changes to v at simulation time t
◮ T1 will become enabled and assign f(v) to l1
◮ if l1’s value changes then T2 will become enabled

(still simulation time t)
◮ T2 will assign g(f(v)) to l2
◮ if l2’s value changes then T will become enabled

(still simulation time t)
◮ T3 will assign h(g(f(v))) to out
◮ simulation quiesces

(still simulation time t)
◮ Steps at same simulation time happen in δ-time

(VHDL jargon)
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Semantic gap
◮ Designers use HDLs and verify via simulation

◮ event semantics

◮ Formal verifiers use logic and verify via proof
◮ trace semantics

◮ Problem: do trace and simulation semantics agree?
◮ Would like:

traces = sequences of quiescent simulation states

initial state states after
one step

states after
two steps
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Sequential threads – event semantics
in

clk

l
out

◮ Consider two Dtypes in series:
always @(posedge clk) l := in
always @(posedge clk) out := l

◮ If posedge clk:
◮ both threads become enabled
◮ race condition

◮ Right thread executed first:
◮ out gets previous value of l
◮ then left thread executed
◮ so l gets value input at in

◮ Left thread executed first:
◮ l gets input value at in
◮ then right thread executed
◮ so out gets input value at in
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Sequential threads – trace semantics
in

clk

l
out

◮ Trace semantics:
(∀t . l(t+1) = (Rise clk t → in t | l t)) ∧
(∀t . out(t+1) = (Rise clk t → l t | out t))

◮ Corresponds to right thread executed first
◮ How to ensure event and trace semantics agree?
◮ Method 1: use non-blocking assignments:

always @(posedge clk) l <= in;
always @(posedge clk) out <= l;

◮ non-blocking assignments (<=) in Verilog
◮ RHS of all non-blocking assignments first computed
◮ assignments done at end of simulation cycle

◮ Method 2: make simulation cycle VHDL-like
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Verilog versus VHDL simulation cycles

◮ Verilog-like simulation cycle:

Choose  an  enabled  thread

Execute  the  chosen  thread

 Fire  event  controls  to  enable  new  threads

  Execute
    until
 quiescent
    then
  advance
simulation
     time

 

◮ VHDL-like simulation cycle:

Execute  all  enabled  threads  in  parallel

 Fire  event  controls  to  enable  new  threads

  Execute
    until
 quiescent
    then
  advance
simulation
     time
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VHDL event semantics
in

clk

l
out

◮ Recall HDL:
always @(posedge clk) l := in
always @(posedge clk) out := l

◮ If posedge clk :
◮ both threads become enabled

◮ VHDL semantics:
◮ both threads executed in parallel
◮ out gets previous value of l
◮ in parallel l gets value input at in

◮ Now no race
◮ Event semantics matches trace semantics
◮ What about combinational threads?
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