Title: Temporal Logic and Model Checking

Lecturer: Mike Gordon
Class: Computer Science Tripos, Part 11

Duration: Eight lectures

Document created March 3, 2015

Temporal Logic and Model Checking

Model

» mathematical structure extracted from hardware or software

v

v

Temporal logic

» provides a language for specifying functional properties

v

Model checking

» checks whether a given property holds of a model

v

Model checking is a kind of static verification
» dynamic verification is simulation (HW) or testing (SW)

Mike Gordon 1/128

Models

» A model is (for now) specified by a pair (S, R)
» Sis a set of states
» R is a transition relation

» Models will get more components later
» (S, R) also called a transition system

» R s s’ means s’ can be reached from s in one step
» here R: S— (S—B) (whereB = {true, false})
» more conventional to have R C S x S, which is equivalent
> i.e. Riniscourse) S S’ < (5,8") € Risome textbooks)

Mike Gordon 2/128

A simple example model

» A simple model: ({0,1,2,3},A\n . ' = n+1(mod 4))
S R

» where “Ax. --- x---"is the function mapping x to - - - x
» so Rnn =(n =n+1(mod 4))
»eg. R01TAR12ANR23AR30

» Might be extracted from:
cnt >—‘) - gm:n Ct
¥ altn) }\U =l o)

FF2 |
D—=D—7) e N
O ((e (=)

....

[Acknowledgement: http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm]

Mike Gordon 3/128

DIV: a software example

» Perhaps a familiar program:

R:=X;

Q:=0;

WHILE Y<R DO
(R:=R-Y;
Q:=0+1)

b wWNhRFRO

» State (pc, x,y,r,9)
» pc € {0,1,2,3,4,5} program counter
> X, VY, r, qé€Zarethe values of X, Y, R, 0
» Model (S,.,, Ry:v) where:
Sorv =[0.5] XxZXxZxZx7Z (where[m.n={mm+1,...,

vxyquDIV(OXy?rQ)(17X7y7X7Q)
F?DIV(1 Xy,fQ)(Q,X,y,I’,O)

() (

(3, :q) (

3

1)

Rorv (2,x,y,r,q) ((if y<rthen3 else5),x,y,r,q)
47X3Y7(r7y)7q)
RDIV (4 X yar Q) (27X7yarﬂ(q+1)

» [Above changed from lecture to make Ry partiall]

> > > >

Mike Gordon 4/128

http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm

Deriving a transition relation from a state machine

» State machine transition function : § : Inp x Mem—Mem

» Inpis a set of inputs
» Mem is a memory (set of storable values)

» Model: (Ss, Rs) where:

Ss = Inp x Mem
Rs (i,m) (iI',m') = (m = o(i,m))
and

» /" arbitrary: determined by environment not by machine
» m' determined by input and current state of machine

» Deterministic machine, non-deterministic transition relation

» inputs unspecified (determined by environment)
» so called “input non-determinism”

Mike Gordon

RCV: a state machine specification of a circuit
» Part of a handshake circuit:

dreq J— dack

qObar

» Input: dreq, Memory: (g0, dack)
» Relationships between Boolean values on wires:

qObar = —q0

ao = qObar A dack
orQ = q0Vv a0

at = dreqg A or0

» State machine: jzcy : B x (BxB)—(BxB)
drev (dreq, (q0, dack)) = (dreq, dreq A (qQ0 Vv (—q0 A dack)))

Inp Mem
» RTL model — could have lower level model with clock edges

Mike Gordon

RCV: a model of the circuit

» Circuit from previous slide:

dreq J— dack

qObar

» State represented by a triple of Booleans (dreq, q0, dack)
» By De Morgan Law: g0 v (—q0 A dack) = g0 Vv dack

» Hence dzcy corresponds to model (S:c, Rxcy) Where:
SRCV =BxBxB

Rxcv (dreq, qO0, dack) (dreq’, q0’, dack’) =
(q0’ = dreq) A (dack’ = (dreg A (g0 V dack)))

[Note: we are identifying B x B x B with B x (B x B)]

Mike Gordon

7/128

Some comments

» R:cv is non-deterministic and total

» Reev (1,1,1) (0,1,1) and Reey (1,1,1) (1,1, 1)
(where 1 = true and 0 = false)

» Recv (dreq, 0, dack) (dreq’, dreq, (dreq A (QO V dack)))
» Ry is deterministic and partial

» at most one successor state
> no successor when pc = 5

» Non-deterministic models are very common, e.g. from:

» asynchronous hardware
» parallel software (more than one thread)

» Can extend any transition relation R to be total:
Riotas 8 = if (3s”". Rss’")then Rs s else (s’ = s)
= Rss' v (-(3s".Rss") A (s =5))

» sometimes totality required
(e.g. in the book Model Checking by Clarke et. al)

Mike Gordon

8/128

JM1: a non-deterministic software example

» From Jhala and Majumdar’s tutorial:

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; O: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;

2 IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

» Two program counters, state:
SJMl = [03] X [03] X 2L X 7

—~~

pCci, pcz, lock, x)

Vpcy pce lock x. Ry (0, pc2,0,x) (1,pco, 1, X) A
R (1,pco, lock, x) (2, pco, lock, 1) A
RJMl (2-,,002’1-,)() (3apc2aoax) A
RJMl (pC1-,OaO:X) (pc17171ax) A
R (pcy, 1, lock, x) (pet, 2, lock,2) A
Ran (pct,2,1,x) (pcy, 3,0, x)
» Not-deterministic:
R (0,0,0,x) (1,0,1,x)
R (0,0,0,x) (0,1,1,x)
» Not so obvious that R, is a correct model
Mike Gordon 9/128

Atomic properties (properties of states)

» Atomic properties are true or false of individual states

» an atomic property pis a functionp: S — B
» can also be regarded as a subset of state: p C S

» Example atomic properties of RCV
(where 1 = frue and 0 = false)
Dreg(dreq, qQO0, dack) = (dreg=1)
NotQO0(dreq, g0, dack) = (q0=0)
Dack(dreq, qQO0, dack) = (dack =1)
NotDregAndQO(dreq, q0,dack) = (dreq=0) A (q0=1)
» Example atomic properties of DIV

AtStart (pc,X,y,r,q) = (pc=0)

AtEnd (pc, X, y,r, Q) = (pc =5)
InLoop (pcC, X,y,r,q) = (pc € {3,4})
YleqgR (pcC, X,y,r,q) = (y<r)
Invariant (pc, X,y,r,q) (x=r+(y xQq))

Mike Gordon 10/128

Model behaviour viewed as a computation tree

» Atomic properties are true or false of individual states
» General properties are true or false of whole behaviour
» Behaviour of (S, R) starting from s € S as a tree:

initial state States after states after
onesiep twosteps

» A path is shownin red
» Properties may look at all paths, or just a single path

» CTL: Computation Tree Logic (all paths from a state)
» LTL: Linear Temporal Logic (a single path)

Mike Gordon 11/128

Paths

» A path of (S, R) is represented by a function 7 : N — S

7(i) is the ith element of = (first element is 7(0))
might sometimes write 7 / instead of 7 (/)
7ili is the i-th tail of 7 so nli(n) = (i + n)
successive states in a path must be related by R

vV vy vy

» Path R s 7 is true if and only if 7 is a path starting at s:
Path Rst = (x(0) =8) A Vi. R (xw(i)) (n(i+1))
where:
Path: (S— S —B) — \S,‘./ - (N—=85) —B

transition initial path
relation state

Mike Gordon 12/128

RCV: example hardware properties

» Consider this timing diagram:

dack

=

» Two handshake properties representing the diagram:

» following a rising edge on dregq, the value of dreqg
remains 1 (i.e. true) until it is acknowledged by a rising
edge on dack

» following a falling edge on dreg, the value on dreqg
remains O (i.e. false) until the value of dack is 0

» A property language is used to formalise such properties

Mike Gordon 13/128

DIV: example program properties

g gfé, AtStar(t (pc, x,y,r,q) = (pc =0)
: A AtEnd (pc, X, y,r, q) = (pc=15)
: <
2: WHILE TSR DO tntoop(pe.x.y.r.q) = (po€ {3,4))
4: Qi=0+1) YleqR (pC, X, Y, r,q) = (<)
5: Invariant (p¢,X,y,r,q) = (x=r+(y xq))

» Example properties of the program DIV.

» on every execution if AtEnd is true then Tnvariant is true
and YlegR is not true

» on every execution there is a state where AtEnd is true

» on any execution if there exists a state where YlegRr is true
then there is also a state where InLoop is true

» Compare these with what is expressible in Hoare logic
» execution: a path starting from a state satisfying AtStart

Mike Gordon 14/128

Recall JM1: a non-deterministic program example

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; O: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;

2 IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

SJM:L - [03] X [03] X Z X Z

Vpcy pco lock x. Ra (0, pco,0,x) (1,pc2,1, %) A
Ran (1,pco, lock, x) (2, pco, lock, 1) A

Ran (2,pc0,1,x) (8,pc2,0, x) A

Ran (pc1,0,0,x) (pci,1,1,x) A

R (pcy, 1, lock, x) (pet, 2, lock,2) A

(

RJMl (,00172717)() pC113701X)

» An atomic property:

» NotAtll(pcy,pcs,lock,x) = —((pci =1) A (pce = 1))
» A non-atomic property:

» all states reachable from (0,0, 0, 0) satisfy NotAt11

» this is an example of a reachability property

Mike Gordon 15/128

State satisfying NotAt 11 unreachable from (0,0,0,0)

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; O: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

RJMl (o7p02~,07x) (17pc2~,17x) |RJM1 PC1,O,0,X) %PCMLLX)
Ry (1, pc, lock, x) (2,pca, lock,1) | Ran (pcy, 1, lock, x) (pcy, 2, lock, 2)
R %ZPCQ,‘I,X) ES,pCQ,O,X) R (pt,2,1,x) pci, 3,0, x)

> NotAtll(pcy,pcs,lock,x) = =((pci = 1) A (pco = 1))

» Can only reach pc; =1 A pc, =1 via:

Ran (0, pco, 0, x 1,pC, 1, x i.e.astep Ran EO,LO,X; E1,1,1,X;
R (pcy, 0,0, x pci,1,1,x) ie.astep Rui (1,0,0,x 1,1,1,x
» But:

Raa1 (pey, pez, lock, x) (pcy, pch, lock’, x’) A pci=0 A pchb=1 = lock’=1
/I;Jm (pct, pez, lock, x) (pc;, pch, lock’, x") A pci=1 A pc,=0 = lock’=1
» So can never reach (0,1,0,x) Or (1,0,0,x)
» So can’t reach (1,1,1,x), hence never (pc; = 1) A (pc. = 1)
» Hence all states reachable from (0,0,0,0) satisfy notat11

Mike Gordon 16/128

Reachability
» R s s’ means s’ reachable from s in one step
» R" s s’ means s’ reachable from s in n steps

R0ss = (s=¢)
R"1'ss = 3s".Rss'"AR"s"s

» R* s s’ means s’ reachable from s in finite steps
R*ss'=3n.R"ss

v

Note: R* s s’ & Jm n. Path R s« A (s’ = ©(n))

v

The set of states reachable from sis {s' | R* s s’}

v

Verification problem: all states reachable from s satisfy p
» verify truth of Vs'. R* s s’ = p(s’)
» e.g. all states reachable from (0,0, 0, 0) satisfy NotAt11
» i.e.Vs'. R%,; (0,0,0,0) 8’ = Notat11(s')

Mike Gordon

17/128

Models and model checking
» Assume a model (S, R)
» Assume also a set Sy C S of initial states
» Assume also a set AP of atomic properties
» allows different models to have same atomic properties
» Assume a labelling function L: S — P(AP)
» p € L(s) means “s labelled with p” or “p true of s”
» previously properties were functions p: S — B
now p € AP is distinguished from \s. p € L(s)
» assume T,F € AP with forall s: T € L(s) and F ¢ L(s)
A Kripke structure is a tuple (S, Sp, R, L)
» often the term “model” is used for a Kripke structure
» i.e.amodelis (S, Sy, R, L) rather than just (S, R)

v

v

v

Model checking computes whether (S, Sp, R, L) = ¢
» ¢ is a property expressed in a property language

» informally M = ¢ means “wff ¢ is true in model M”
Mike Gordon

18/128

Minimal property language: ¢ is AGp where p € AP

» Consider properties ¢ of form AG p where p € AP

» “AG” stands for “Always Globally”
» from CTL (same meaning, more elaborately expressed)

v

Assume M = (S, Sy, R, L)

v

Reachable states of M are {s' | 9s € Sy. R* s §'}
» i.e. the set of states reachable from an initial state

v

Define Reachable M = {s' | s € Sy. R* s §'}

v

M = AG p means p true of all reachable states of V

v

If M= (S, Sy, R,L)then M = ¢ formally defined by:
’ ME= AGp < Vs'. s € Reachable M = p € L(¢)

Mike Gordon 19/128

Model checking M = AGp
» M= AGp < Vs'. s’ € Reachable M = p € L(¢)
< Reachable M C {s' | p € L(§')}
checked by:
» first computing Reachable M
» then checking p true of all its members

v

Let S abbreviate {s' | 3s € Sy. R* s §'} (i.e. Reachable M)
Compute S iteratively: S =S USiU---US U~ -+

> ie. S =2, Sh

» where: S = Sy (set of initial states)

» and inductively: S, =S, U{s' |Ise S, AR s s}
Clearly S c S C---CS,C -+
Henceif S, = S,..1 then § = S,

Algorithm: compute Sy, Sy, - .., until no change;
check all members of computed set labelled with p

v

v

v

v

Mike Gordon 20/128

compute Sy, S, ..., until no change;
check p holds of all members of computed set

» Does the algorithm terminate?
» yes, if set of states is finite, because then no infinite chains:
SHCSC---CSp -

» How to represent Sy, Sq, ... 7

» explicitly (e.g. lists or something more clever)
» symbolic expression

» Huge literature on calculating set of reachable states

Mike Gordon 21/128

Example: RCV

» Recall the handshake circuit:

dreq L

dack

» State represented by a triple of Booleans (dreq, q0, dack)

» A model of RCV is Mg, Where:
M = (SRC\N {(1 5 1: 1)}: RRCVa LRCV)

and
Rxcv (dreq, 0, dack) (dreq’, q0’, dack’) =
(q0" = dreq) A (dack’ = (dreq A (q0 Vv dack)))

» AP and labelling function Lz discussed later

Mike Gordon 22/128

RCV state transition diagram

» Possible states for RCV:
{000,001,010,011,100,101,110,111}
where bo by by denotes state
dreg=bo A g0 = by A dack = by

» Graph of the transition relation:

)

100 110 111

N>

011

Mike Gordon 23/128

Computing Reachable Mz,

Q\ S Q\
NN

011

» Define:
So = {b2b1b0 ‘ b2b1bo € {111}}
= {111}
Sj+1 — Sj U {S/ ‘ HS S S/. RRCV S S/ }
=S U {bybb |
Ibobibg € Si. (b = b)) A (b6 =bo A (b1 V b))}

Mike Gordon 24 /128

Computing Reachable M. (continued)

()

111

NN

011

» Compute:
S ={111}
S ={111} u {011}
= {111,011}

S, ={111,011} U {000,100}
= {111,011,000, 100}

Sy ={111,011,000,100} U {010,110}
= {111,011,000, 100,010,110}

Si =8 (I>3)
» Hence Reachable Mg, = {111,011,000, 100,010,110}

Mike Gordon 25/128

Model checking My = AGp
> M= (SRC\h {1 11 }7 Rrev, LRCV)

» To check M., = AGp
» compute Reachable My, = {111,011,000,100,010,110}

» check Reachable Micy C {s| p € Lacv(8)}

» i.e. check if s € Reachable Mz, then p € Liy(S), i.e.:

p € Lrey(111) A
p € Leev() A
p € Lxev(000) A

p € Lrev(100) A
p € Lzev(010) A
p € Lrev(110)
» Example

» if AP ={a,B}

» and Lxcy(s) = if s € {001,101} then {7} else {B}

» then My = AGA is not true, but My = AGB is true

Mike Gordon 26/128

Symbolic Boolean model checking of reachability

» Assume states are n-tuples of Booleans (by., ..., by)
» b € B = {true, false} (= {1,0})
» S=1DB" so Sis finite: 2" states

v

Assume n distinct Boolean variables: vq,...,v,
» e.g.if n=3thencouldhave vi = x, vo =y, 3 = z

» Boolean formula f(v4, ..., v,) represents a subset of S
» f(wy,...,V,) only contains variables vy,...,v,
» f(by,...,bp) denotes result of substituting b; for v;

» f(wy,...,v,)determines{(b,..., bn) | f(b1,...,bn) & true}

Example —(x = v) represents {(true, false), (false, true)}

v

v

Transition relations also represented by Boolean formulae

» e.g. Rxcy represented by:
(90" = dreq) A (dack’ = (dreg A (g0 Vv (—g0 A dack))))

Mike Gordon 27/128

Symbolically represent Boolean formulae as BDDs
» Key features of Binary Decision Diagrams (BDDs):

» canonical (given a variable ordering)
» efficient to manipulate

» Variables:
v = 1f v then 1 else 0
v = 1f v then 0 else 1

» Example: BDDs of variable v and —v

9 J j f
» Example: BDDs of v1 Av2 and v1 V v2

Mike Gordon 28/128

More BDD examples

» BDD of vl = v2

» BDD of v1 # v2

Mike Gordon 29/128

BDD of a transition relation
» BDDs of
(vl = (v1=v2)) A (v2' = (v1 £ v2))
with two different variable orderings

» Exercise: draw BDD of Rgcy

Mike Gordon 30/128

Standard BDD operations

» If formulae fi, > represents sets S, Sy, respectively
then i A fo, f; V > represent Sy N So, Sy U S, respectively

» Standard algorithms compute Boolean operation on BDDs
» Abbreviate (vy,...,v,)to vV
» If (V) represents S

and g(v, V') represents {(v,V') | Rv V')}

then Ju. f(uU) A g(u, V) represents {V | Ju. i€ SAR UV}

» Can compute BDD of Ju. h(u, v) from BDD of h(u, v)
» e.g. BDD of 3vy. h(vq, v2) is BDD of h(T, v2) V h(F, v2)

» From BDD of formula f(v4, ..., v,) can compute by, ..., b,
such thatif vi = by, ..., v, = by then f(by, ..., by) < true

» b, ..., byis a satisfying assignment (SAT problem)
» used for counterexample generation (see later)

Mike Gordon 31/128

Reachable States via BDDs
Assume M = (S, Sy, R, L) and S = B"

Represent R by Boolean formulae g(V, v/)

v

v

v

lteratively define formula f,(V) representing S,

fo(v) = formula representing Sy
fra(V) = fa(V) v (30. fa(D) A 9(8, 7))

v

Let Bo, Bz be BDDs representing f,(V/), g(V, v/)

v

Iteratively compute BDDs 5, representing f,
Bny1=Bn v (3d. Bn[u/V] A Bgld,v/V, V1)

» efficient using (blue underlined) standard BDD algorithms
(renaming, conjunction, disjunction, quantification)

» BDD B, only contains variables v: represents S, C S

v

At each iteration check 5,1 = BB, efficient using BDDs

» when 5,1 = B, can conclude 5, represents Reachable M

» we call this BDD By, in a later slide (i.e. By = 5,)
Mike Gordon 32/128

Example BDD optimisation: disjunctive partitioning

Three state transition functions in parallel

— > ' 0x, 0,02 - B x B x B—B

» Transition relation (asynchronous interleaving semantics):

R(X,y,Z) (X/,y/,Z/) =

(X' =X, y,2) N y'=y N Z=2)V
X' =x N Yy =(x,y,2) N Z=2)V
(xX'=x Ny =y AN Z=0(xy,2))
Mike Gordon 33/128

Avoiding building big BDDs

» Transition relation for three transition functions in parallel
R(vaﬂ Z) (X/v y/’ Z/) =

(X' =dx(x,y,2) Ny :y N Z=2)V
X' =x N y=(x,y,2) N Z=2)V
(X'=x Ny =y AN Z=05(xYy,2)

» Recall symbolic iteration:
far1 (V) = (V) v (3U. (1) A 9(d, V)

» For this particular R (see next slide):

fn+1 (Xayv Z)
— h(X,y,2)V(3X 7 Z. 1o(X,7,2) A R (X.7.2) (x.¥. 2))
= fo(X,y,2) \Y
(3x. fa(X,y,2) N x =0x(X,y,2)) V
(Y- fa(x,¥,2) Ny =26y(X.¥,2))V
(3z. fa(x,¥,2) N Z=10z(X,y,2))

» Don’t need to calculate BDD of R!

Mike Gordon 34/128

Disjunctive partitioning — Exercise: understand this
XY Z (X,V,2) A R(X,¥,2) (X,y,2)

= WYZLXV,Z) A (X=XV,Z) AN y=Y A z=2Z)V
(X=X ANy=0,Xy,2) N z=2)V
(X=XANy=y N zZ=06:(X,Y,2)))
= (XYZ X V.2) AX=0x(X.V.Z) ANYy=Y A 2=2Z)V
(IXyz. fa(X,y,2) N X=X Ny=06,X,y,Z2) N Z=2)V
(IXYZ X V.Z) AX=XAy=y A z2=0,(X,V,Z))
= (Ixyz.fa(X,y,2) N x=0x(X,y,2) NYy=yY N z=2Z)V
(Ixyz. fo(x,¥,2) N X=X Ny=0y(X,y,2) N Z=2Z)V
(Ixyz. (X, ¥, Z) N X=X NYy=y N Z=0(X,y,2))
= ((Ix. fa(X,y,2) AN x=x(X,y,2)) N (Fy.y=Y) A (32. z=2)) V
((Fx. x=x) A (Ty. fa(x,¥,2) Ny=6y(X,¥,2)) N (IZ.z=2)) V
(3x. x=x) A (Fy.y=y) N (FZ. fa(X,y,2) N 2=0,(X,y,Z)))
= (IX. fo(X,y,2) N X =0x(X,y,2))V
(Fy. fa(x,¥,2) Ny =6y(x,¥,2))V
(3z. fa(x,y,2) N Z=10z(X,y,2))

Mike Gordon

35/128

Verification and counterexamples

» Typical safety question:

» is property p true in all reachable states?
» i.e. check M = AGp
» i.e. isVs. s € Reachable M = p s

» Check using BDDs

» compute BDD /5y, of Reachable M
» compute BDD 5, of p(V)

» check if BDD of By = B3, is the single node

» Valid because true represented by a unique BDD
(canonical property)

» If BDD is not| 1 | can get counterexample

Mike Gordon

36/128

Generating counterexamples (general idea)
BDD algorithms can find satisfying assignments (SAT)

» Suppose not all reachable states of model M satisfy p

» i.e. 3s € Reachable M. —(p(s))

» Set of reachable state S given by: S = [, Sh

» lterate to find least n such that 9s € S,. =(p(s))

» Use SAT to find b, such that b, € Sy A —=(p(bn))

» Use SAT to find b,_4 such that b,_1 € S,_1 AR by_1 by
» Use SAT to find b,,_» such that b,,_> € S,,_o A R by_5 b_1

» lterate to find by, by, ..., by_1, by Where bj € S; AN R bj_1 b;
» Then by by --- b,_q by is a path to a counterexample

Mike Gordon 37/128

Use SAT to find s,,_¢ such that s,_1 € S,_1 A R Sh_1 S)

» Suppose states s, s’ symbolically represented by v, v/
» Suppose BDD 3, represents v € S; (1 < i < n)
» Suppose BDD 35 represents R v v/

» Then BDD
(Bn—1 A Brl[bn/Vv'])
represents B
\7 € Sn7‘| VAN R ‘7 bn

» Use SAT to find a valuation b, 1 for v

» Then BDD L
(Bn—1 A Bglbn/V'])[bn-1/V]
represents o
bnf1 S Snf1 ANR bnf1 bn

Mike Gordon 38/128

Generating counterexamples with BDDs
BDD algorithms can find satisfying assignments (SAT)

» M =(S,Sy,R,L)and By, By, ..., Bu, Br, By as earlier
> Suppose By = B, is not

» Must exist a state s € Reachable M such that —(p s)

» Let 5, be the BDD representing —(p V)

» lterate to find first n such that B, A B-p

» Use SAT to find b, such that (Bn A Bﬁp)[Bn/V]
» Use SAT to find b, 1 such that (B,_1 A Bg[bn/V'])[bn_1/V]
» For 0 < i < nfind b;_{ such that (Bi_1 A Bg[b;/V'])[bi_1/V]

> by,...,bj,...,by is a counterexample trace

» Sometimes can use partitioning to avoid constructing g

Mike Gordon 39/128

Example (from an exam)

Consider a 3x3 array of 9 switches

Suppose each switch 1,2,...,9 can either be on or off, and that toggling any switch will
automatically toggle all its immediate neighbours. For example, toggling switch 5 will
also toggle switches 2, 4, 6 and 8, and toggling switch 6 will also toggle switches 3, 5
and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the
behavior of the array of switches

You are given the problem of getting from an initial state in which even numbered
switches are on and odd numbered switches are off, to a final state in which all the
switches are off.

(b) Write down predicates on your state space that characterises the initial [2 marks]
and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of switches to
toggle to get from the initial to final state. [6 marks]

You are not expected to actually solve the problem, but only to explain how to represent
it in terms of model checking.

Mike Gordon 40/128

Solution

A state is a vector (v1,v2,v3,v4,vs,ve,v7,v8,v9), where vi € B
A transition relation Trans is then defined by:

Trans(vl,v2,v3,v4,v5,v6,v7,v8,v9) (v1’,v2" ,v3",v4’ ,v5" ,ve’ ,v7',v8’ ,v9")
= ((V1'==v1)A(v2'==v2) A (v3'=v3)A(v4 =—v4) A (V5 =V5)A

(v6'=v6) A (v1'=vT)A(v8'=v8) A (VI =v9)) (toggle switch 1)
V ((v1'==2v1)A(v2'==v2) A (V3 ==v3) A (V4 =v4) N\ (V5 =—Vv5) A

(V6" =v6) A (VT =vT)A(v8'=v8)A (VI =v9)) (toggle switch 2)
V ((v1'=vI)A(v2 ' ==v2) AN (v3'=v3) A (VA =v4) N (V5 =V5)A

(V6" ==v6) A (V7 =vT) A (v8"=v8) A (v9’=v9)) (toggle switch 3)
V ((v1'==vI)A(v2'=v2) AN (v3'=v3) A (V4 ' =—v4) A (v5'=—v5) A

(V6" =v6) A (v =—vT)A(v8'=v8)A (VI =v9)) (toggle switch 4)
V ((v1'=v1)A(v2'==v2) A (v3'=v3) A (V4 ' =—v4) A (v5 ' =—v5) A

(V6" ==v6) A (VT =vT)A(v8'==v8) A (v9' =v9)) (toggle switch 5)
Vo ((v17"=v1)A(v2'=v2) AN (v3'==v3) A (v4 ' =v4) A (v5'==v5)A

(V6" ==v6) A (VT =vT)A(v8'=v8) A (v9'==v9)) (toggle switch 6)
V o ((v17=v1)A(v2'=v2) N (v3'=v3) A (V4 ==v4) AN (V5 =Vv5)A

(V6" =v6) A (VT ==vT)A(v8'==v8) A (v9' =v9)) (toggle switch 7)

Vo ((v17=v1) A (v2' =v2) A (v3'=v3) A (V4’=v4) A (V5 ==v5) A

(V6 =v6) A (v1'==vT)A(v8'==v8) A (v9'=-v9)) (toggle switch 8)
Vo ((v17=v1) A (v2'=v2) A (v3' =v3) A (v4'=v4) A (V5'=v5) A

(V6 ==v6) A (VT =vT)A(v8'==v8) A (v9'=-v9)) (toggle switch 9)

Mike Gordon 41/128

Solution (continued)

Predicates 1nit, rina1 characterising the initial and final states,
respectively, are defined by:

Init(vl,v2,v3,v4,v5,v6,v7,v8,v9) =
vl A v2 AN =v3 A vd AN =v5 A ve AN =v7T A v8 A —v9

Final (vl,v2,v3,v4,v5,v6,v7,v8,v9) =
vl A w2 AN =v3 A =vd AN =v5 A =ve A =v7T A =v8 A —v9

Model checkers can find counter-examples to properties, and
sequences of transitions from an initial state to a
counter-example state. Thus we could use a model checker to
find a trace to a counter-example to the property that

—Final (vl,v2,v3,v4,v5,v6,v7,v8,v9)

Mike Gordon 42/128

Properties
VseSy.Vs'.R* s s’ = p s’ says p true in all reachable states

v

v

Might want to verify other properties
1. DeviceEnabled holds infinitely often along every path
2. From any state it is possible to get to a state where
Restart holds
3. After a three or more consecutive occurrences of Req there
will eventually be an Ack

v

Temporal logic can express such properties
There are several temporal logics in use

» LTL is good for the first example above

» CTL is good for the second example

» PSL is good for the third example

v

» Model checking:
» Emerson, Clarke & Sifakis: Turing Award 2008
» widely used in industry: first hardware, later software
Mike Gordon 43/128

Temporal logic (originally called “tense logic”)

Originally devised for investigating: “the relationship
between tense and modality attributed to the Megarian
philosopher Diodorus Cronus (ca. 340-280 BCE)".

Mary Prior, his wife, recalls “I remember his waking me
one night [in 1953], coming and sitting on my bed, ... and
saying he thought one could make a formalised tense logic”.

]
A. N. Prior
1914-1969
» Temporal logic: deductive system for reasoning about time
» temporal formulae for expressing temporal statements
» deductive system for proving theorems
» Temporal logic model checking
» uses semantics to check truth of temporal formulae in models
» Temporal logic proof systems also important in CS
» use pioneered by Amir Pnueli (1996 Turing Award)
» not considered in this course

Recommended: http://plato.stanford.edu/entries/prior/

Mike Gordon 44 /128

http://plato.stanford.edu/entries/prior/

Temporal logic formulae (statements)

» Many different languages of temporal statements

» linear time (LTL)

» branching time (CTL)

» finite intervals (SERESs)

» industrial languages (PSL, SVA)

» Prior used linear time, Kripke suggested branching time:
... we perhaps should not regard time as a linear series ... there are
several possibilities for what the next moment may be like - and for
each possible next moment, there are several possibilities for the
moment after that. Thus the situation takes the form, not of a linear
sequence, but of a ‘tree’.

[Saul Kripke, 1958 (aged 17, still at school)]

» CS issues different from philosophical issues
» Moshe Vardi: “Branching vs. Linear Time: Final Showdown”

http://Awww.computer.org/portal/web/awards/Vardi

Moshe Vardi

WWww.computer.org

"For fundamental and lasting contributions to the development
of logic as a unifying foundational framework and a tool for
modeling computational systems"

2011 Harry H. Goode Memorial Award Recipient

Mike Gordon 45/128

Linear Temporal Logic (LTL)

» Grammar of well formed formulae (wff) ¢

o = p (Atomic formula: p € AP)
| - (Negation)
| &1V b2 (Disjunction)
| Xo (successor)
| Fo (sometimes)
| Go (always)
|

[¢1 Udz] (Until)
» Details differ from Prior’s tense logic — but similar ideas

» Semantics define when ¢ true in model M

» where M = (S, Sy, R, L) — a Kripke structure
» notation: M = ¢ means ¢ true in model M
» model checking algorithms compute this (when decidable)

Mike Gordon 46/128

M & ¢ means “wff ¢ is true in model M”

» If M = (S, Sy, R, L) then
|7 is an M-path starting from s iff Path R s 7|

» If M= (S, Sy, R, L) then we define M = ¢ to mean:
’qb is true on all M-paths starting from a member of S, \

» We will define [¢]y(7) to mean

’gb is true on the M-path 77‘

» Thus M |= ¢ will be formally defined by:
(M=o & ¥rs.scSyAPath Rst = [¢]u(r)]

» It remains to actually define [¢] for all wffs ¢

Mike Gordon 47/128

Definition of [¢]um(7)

> [#]m(7) is the application of function [¢] to path =
» thus [¢]u: (N— S) = B
» Let M = (S, Sy, R, L)
[¢]m is defined by structural induction on ¢

[Plm(m) = peL(n0)

[—¢lm(m) = ([olm(T))

[$1V g2lm(m) = [¢1lm(m) vV [P2lm(r)
[Xem(T) = [¢lm(n1)

[Folm () = Ji. [¢lm(7li)
[Golm(r) = Vi [¢]m(mli)

[ié1 U dollu(r) = 3i. [ealm(mbi) A V). j<i = [d1lm(ri)

» We look at each of these semantic equations in turn

Mike Gordon 48/128

[Plm(r) = p(7 0)

v

Assume M = (S, Sy, R, L)

v

We have: [p]u(r) = p e L(7 0)
» pis an atomic property, i.e. p € AP
» 7:N—>Sson0e S
» 7w 0 is the first state in path =
» p e L(x 0)is true iff atomic property p holds of state 7 0

v

[plm () means p holds of the first state in path =

v

T,Fe APwithT e L(s)andF ¢ L(s)forallse S
» [T]m(r) is always true

» [E]m(r) is always false

Mike Gordon 49/128

[-6lm(m) = —([9Im(7))
[¢1 v g2lm(m) = [d1lm(r) V [d2]m(T)

> [=o]m(m) = ~([¢lm())

» [—o]m(r) true iff [¢]m(r) is not true

> [o1 V d2lm(7) = [o1lm(7) Vv [@2lm(T)

> [p1 V ga]m(m) true iff [o1]m(7) is true or [pa] () is true

Mike Gordon 50/128

[XSlm(r) = [#lm(ml1)

> [Xolm(r) = [¢]m(ml1)
» 7l1 is m with the first state chopped off
m1(0) =7(1+0) =n(1)
A1) ==(1+1)=n(2)
m1(2) =7(1+2) =n(3)

> [Xo]m(m) trueiff [¢] m true starting at the second state of

Mike Gordon 51/128

[Folm(m) = Fi. [¢]m(mli)

> [Folm(m) = 3i. [o]m (i)
» 7li is 7 with the first / states chopped off
li(0) = w(i + 0) = =(i)
ali(1) = 7(i+1)
li(2) = w(i + 2)

> [lm(mli) true iff [¢]m true starting i states along

> [Fo]um(m) true iff [¢] s true starting somewhere along

» “F¢” is read as “sometimes ¢”

Mike Gordon 52/128

[Golm(m) = Vi. [Plm(mli)
> [Golm(m) = Vi. [¢plm(mli)

» 7|/ is 7 with the first / states chopped off

> [lm(mli) true iff [¢]m true starting i states along

v

[Go]m(r) true iff [¢]m true starting anywhere along

v

“G¢” is read as “always ¢” or “globally ¢”

v

M = AG p defined earlier: M |= AGp < M = G(p)

v

G is definable in terms of F and —: G¢ = —(F(—¢))
[=(F(=o)Im(m) = ~([F(=¢)Im(m))

(@i [~lm (i)

@i, ~([élm (i)

Vi. [¢]m(mli)

[Gelu(r)

Mike Gordon 53/128

[[¢1 U go]lm(m) = 3i. [d2]m(mli) AV). j<i = [d1]m(m)

> [lo1 U dollm(m) = i [P m(mli) A V). j<i = [d1]m(w))
> [p2lm(nli) true iff [¢2]m true starting i states along

> [d1]m (7)) true iff [¢1]um true starting j states along

> [[#1 U d2]]m(r)is true iff
[¢2]m istrue somewhere along wand up to then [¢+]y is true

> “[p1 U ¢o]”is read as “¢¢ until ¢o”

» Fis definable interms of [~ U —]: Fo = [T U ¢]
[T U ¢]lu(x)

3i. [olm (i) AV j<i = [T]m(7))

Ji. [om(nli) AV j<i = true

3i. [¢]m (i) A true

3. [¢]m(mi)

[Folm()

Mike Gordon 54 /128

Review of Linear Temporal Logic (LTL)

» Grammar of well formed formulae (wff) ¢

¢ = p (Atomic formula: p € AP)
| - (Negation)
| &1V ¢2 (Disjunction)
| Xo¢ (successor)
| F¢ (sometimes)
| Go (always)
|

[¢1 U d2] (Until)

» M = ¢ means ¢ holds on all M-paths
» M=(S,S,R,L)
> [¢]m(7) means ¢ is true on the M-path =
» Ml=E¢ & Vrs.se Sy APath Rsw = [¢]m(r)

Mike Gordon 55/128

LTL examples

» “DeviceEnabled holds infinitely often along every path”
‘ G(F DeviceEnabled) ‘

» “Eventually the state becomes permanently bone”
F(G Done)

» “Every Req is followed by an Ack”
| G(Req = F Ack) |
Number of Req and Ack may differ - no counting

» “If Enabled infinitely often then Running infinitely often”
| G(F Enabled) = G(F Running) |

» “An upward going lift at the second floor keeps going up if
a passenger requests the fifth floor”
G(AtFloor2 A DirectionUp A RequestFloor5
= [DirectionUp U AtFloor5])

Mike Gordon (acknowledgement: http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf) 56/128

http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf

A property not expressible in LTL
» Let AP = {P} and consider models M and M’ below

R -

M e M/

So Sq So

M = ({so,s1},{S0},{(S0; %0), (S0, $1), (51, 81)}, L)
M = ({so},{so},{(S0,%0)},L)

where: L = \s. if s =5y then {} else {P}

Every M'-path is also an M-path
So if ¢ true on every M-path then ¢ true on every M’'-path
Hence in LTL for any ¢ if M |= ¢ then M’ = ¢
Consider ¢ < “can always reach a state satisfying p”

» ¢ holds in M but not in M’

» butin LTL can’t have M = ¢, and not M’ = ¢;

» hence ¢: not expressible in LTL

Mike Gordon (acknowledgement: Logic in Computer Science, Huth & Ryan (2nd Ed.) page 219, ISBN 0 521 54310 X) 57/128

vV VvYyye.y

LTL expressibility

“can always reach a state satisfying p”

v

In LTL M = ¢ says ¢ holds of all paths of M

v

LTL formulae ¢ are evaluated on paths path formulae

v

Want to say that from any state there exists a path to
some state satisfying p

» Vs. Ir. Path Rsw A Ji. p € L(n(i))

» but this isn’t expressible in LTL (see slide 57)

v

CTL properties are evaluated at a state ... state formulae
» they can talk about both some or all paths

» starting from the state they are evaluated at

Mike Gordon 58/128

Computation Tree Logic (CTL)

» LTL formulae ¢ are evaluated on paths path formulae

» CTL formulae v are evaluated on states .. state formulae

» Syntax of CTL well-formed formulae:

A1 U o] (Until — along all paths)
E[1 U 9] (Until — along some path)

Yo o= p (Atomic formula p € AP)
| — (Negation)
| 1 Ao (Conjunction)
| 1 Vs (Disjunction)
| 1 = Yo (Implication)
| AXy (All successors)
| EXy (Some successors)
|
|

Mike Gordon 59/128

Semantics of CTL
» Assume M = (S, Sy, R, L) and then define:

[PIm(s) = peL(s)

[-¢1m(s) = ~([¥1m(s))

[v1 Abelm(s) = [ilm(s) A [¥2]m(s)
[¥1 V dolm(s) = [walm(s) Vv [W2lm(s)
[¥1 = velm(s) = [¥1lm(s) = [Yalm(s)
[AXY]m(S) = Vs.Rss = [¢]u(s)
[EXy]m(s) = 3. Rss A [Y]u(s)

[A[v1 U o]]m(s) = Vr.PathRs
= 3i. szﬂm(w(i))
vj. j<i = [1lm(r())
dr. Path Rsn
A 3i. &wz]]/\//(ﬂ(/))
vj. j<i = [1lm(r())

Mike Gordon 60/128

[E[1 U ¥2]lm(s)

The defined operator AF

» Define AFy = A[T U ¢

» AFiy true at siff ¢» true somewhere on every R-path from s

Mike Gordon

I[AF’(/J]] M(S)

[A[T U 4]lm(s)

Vr. Path R s«
=

3. [WIm(x(i)) A Y. j<i = [Tlu())

Vr.Path Rs
=
i [lm(w () AN Vj.j<i = true

Vr.Path Rs7 = 3i. [Y]m(x(i))

61/128

The defined operator EF

» Define EFy = E[T U /]

» EF¢ true at siff ¢ true somewhere on some R-path from s

I[EF?/J]]M(S)

[E[T U ¥]]m(s)

dr. Path Rsw
AN

3i. [WIm(r()) A V). j<i = [TIu(x())

dr. Path Rs
A
3i. [Im(n(i)) A V). j<i = true

dr. Path Rsm A 3i. [¥]m(7(1))

» “can reach a state satisfying p” is EF p

Mike Gordon

62/128

The defined operator AG
» Define AGy) = —EF(—v)

» AGy true at siff ¢ true everywhere on every R-path from s

[AG]m(s) [—EF(—=¢)m(s)
—([EF(—¢)Im(s))

—(3r. Path R s 7 A 3i. [-¢]u(x(i)))
—(3r. Path R s 7 A Ji. =[Y]m(m(i
vr. ~(Path R s 7 A\ 3i. <[] w((7))
V. =Path R s 7 v =(3i. =[] m(
V. ~Path R s w \V Vi. =[] m(x(i
Vr. —Path R s 7 Vv Vi. [¢]m(=(i))
Vr. Path R s m = Vi. [¢]u(x(i))

» AGvy means) true at all reachable states
» [AG(p)]m(s) = V. R*ss = pelL(s)

» “can always reach a state satisfying p” is AG(EF p)

Mike Gordon 63/128

The defined operator EG

» Define EGy) = -AF(—v))

» EGy true at siff ¢ true everywhere on some R-path from s

[EGulu(s) = [-AF(—)Iu(s)
~([AF(=)]u(s)

—(Vr. Path R s © = 3i. [~Y]m(n(i)))
—-(Vr. Path R s m = 3i. =[¢]m(=(i)))
dr. —~(Path R s 7 = 3i. =[¢|m(n(f)))
dr. Path R s 7 A =(3i. =[Y]m(w(i)))
dr. Path R s AVi. ==Y m(7(i))
Jr. Path R s AVi. [¢]m(7(i))

Mike Gordon 64/128

The defined operator A[y1 W)]

» Ay W i)o] is a ‘partial correctness’ version of Afy U 1]
» ltis true at s if along all R-paths from s:
» 1)1 always holds on the path, or

» 1 holds sometime on the path, and until it does /4 holds

» Define

[A[y1 W o]l m(s)
[-E[(v1 Ap2) U (m1 A—2)]m(S)
[E[(¥1A—1b2) U (=1 A=)]Tm(S)
—(3r.Path Rs
A
Fi. [~ Abe]m(m (1))
A

Vi j<i = [1A~]m(7())))

» Exercise: understand the next two slides!

Mike Gordon 65/128

A1 W 15] continued (1)

» Continuing:
—(3r. Path Rs
A
. [A elm(m (i) A V). j<i = [b1A"Pe]m(w())))
= Vr.~(Path Rs~
A\
i [=p1 A—olm(m (i) A V). j<i = [b1A=P2]m(m())))

= Vr.PathRsn
=

—(3i. [~o1 A=belm(m (i) A V). j<i = [b1AbIm(x(i)))

= Vr.PathRsn
=

Vi. [=p1 A=l m(m (i) V (V). j<i = [1A—]m(7())))

Mike Gordon 66 /128

A1 W 15] continued (2)

» Continuing:

= Vr.PathRs~
=

Vi. =[—p1 A=ba]m(m(1)) Vv =(9). j<i = [v1 A—2]m(n())))
= Vr.PathRs
=

Vi. (V). j<i- = [1i A m(7 () V =1 A=l m(r (i)
= Vr.PathR s
=

Vi (V). j<i = [1A—2dm(7()) = [¥1Vibelm(n(i))

» Exercise: explain why this is [A[¢1 W ¢o]]w(s)?
» this exercise illustrates the subtlety of writing CTL!

Mike Gordon 67 /128

Sanity check: A[y WFr] = AG ¢
» From last slide:
[A[1 W 2] lm(s)
= Vr.PathRs~
= Vi. (V]. j<i = [v1Ae]m(m()))) = [v1 Vb m(m (D))
Set ¢ to ¥ and v to F:
[A[W E]]m(s)
= Vr.PathRsnr
= Vi. (Vj. j<i = [WA=Flu(x()))) = [¥VFIm(r(i))
Simplify:
[A[y W E]lu(s)
= Vr. Path R s = Vi. (V). j<i = [¢]Im(7()))) = [¥Im(x (i)
By induction on /:
[A[Y WE]Jm(s) = Vr. Path Rs 7w = Vi [¢]u(=(i))

Exercises
1. Describe the property: A[T W ¢] .
2. Describe the property: —E[—1)o U = (1)1 Vabo)] .
3. Define E[w1 w ’(/12] = E[w1 U 1/)2] V EG’L/)1.
Describe the property: E[v1 W 1)5]?

Mike Gordon 68/128

v

v

v

v

Recall model behaviour computation tree

» Atomic properties are true or false of individual states
» General properties are true or false of whole behaviour
» Behaviour of (S, R) starting from s € S as a tree:

initial state Satesafter statesafter
onestep twosieps

» A path is shownin red
» Properties may look at all paths, or just a single path

» CTL: Computation Tree Logic (all paths from a state)
» LTL: Linear Temporal Logic (a single path)

Mike Gordon 69/128

Summary of CTL operators (primitive + defined)

» CTL formulae:

p (Atomic formula - p € AP)

- (Negation)

Py A o (Conjunction)

Py Vo (Disjunction)

Py = Yo (Implication)

AXy) (All successors)

EXvy (Some successors)

AF) (Somewhere — along all paths)
EFy (Somewhere — along some path)
AGy (Everywhere — along all paths)
EGvy (Everywhere — along some path)

A1 U o] (Until - along all paths)
E[/1 U o] (Until — along some path)
A1 W 1ho] (Unless — along all paths)
E[/y W)o] (Unless — along some path)

Mike Gordon 70/128

Example CTL formulae

» EF(Started N\ —Ready)

It is possible to get to a state where Started holds
but Ready does not hold

» AG(Req = AFACck)

If a request Req occurs, then it will eventually be
acknowledged by Ack

» AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along
every path starting anywhere: i.e. DeviceEnabled
holds infinitely often along every path

» AG(EFRestart)

From any state it is possible to get to a state for
which Restart holds

Can'’t be expressed in LTL!

Mike Gordon 71/128

More CTL examples (1)

» AG(Req = A[Req U Ack])
If a request Req occurs, then it continues to hold,
until it is eventually acknowledged

» AG(Req = AX(A[—Req U Ack]))
Whenever Req is true either it must become false
on the next cycle and remains false until Ack, or
Ack must become true on the next cycle

Exercise: is the AX necessary?

» AG(Req = (—Ack = AX(A[Req U Ack])))
Whenever Req is true and Ack is false then Ack
will eventually become true and until it does Req
will remain true

Exercise: is the AX necessary?

Mike Gordon 72/128

More CTL examples (2)

» AG(Enabled = AG(Start = A[—Waiting U Ack]))

If Enabled is ever true then if Start is true in any
subsequent state then Ack will eventually become
true, and until it does Waiting will be false

» AG(—Regi \—Req.=A[—~Req;\—Req, U (StartA\—Req,)])
Whenever Reqy and Req. are false, they remain
false until Start becomes true with Req, still false

» AG(Req = AX(Ack = AF —Req))

If Req is true and Ack becomes true one cycle
later, then eventually Req will become false

Mike Gordon 73/128

Some abbreviations
> AX;) = AX(AX(--- (AX ¥)---))

i instances of AX
1 IS true on all paths i units of time later

» ABF; ;¢ = AX;(¢v VAX(v V --- AX(v V AX9)---))

j — i instances of AX

1 Is true on all paths sometime between i units of
time later and | units of time later

» AG(Req = AX(Ack; A ABF; g(Ack, A A[Wait U Reply])))

One cycle after Req, Acky should become true,
and then Ack, becomes true 1 to 6 cycles later
and then eventually Reply becomes true, but until
it does Wait holds from the time of Acks

» More abbreviations in ‘Industry Standard’ language PSL

Mike Gordon 74/128

CTL model checking

» For LTL path formulae ¢ recall that M = ¢ is defined by:
(M=o & ¥rs.scSyAPath Rst = [¢]u(r)]

» For CTL state formulae ¢ the definition of M |= ¢ is:
’M 1Y & Vs.se Sy = [[@“;]]M(s)‘

» M common; LTL, CTL formulae and semantics [|, differ

» CTL model checking algorithm:
» compute {s | [+']u(s) = true} bottom up
» check Sy C {s| [¢]m(s) = true}

» symbolic model checking represents these sets as BDDs

Mike Gordon 75/128

CTL model checking: p, AXvy, EXY)
» For CTL formula ¢ let {}y = {s | [V]m(s) = true}

v

When unambiguous will write {¢} instead of {4}

{p} ={s|peLis)}
» scan through set of states S marking states labelled with p
» {p} is set of marked states

v

v

To compute {AX}

» recursively compute {¢}
» marks those states all of whose successors are in {i}
» {AXy} is the set of marked states

v

To compute {EX}

» recursively compute {y}
» marks those states with at least one successor in {}
» {EXv} is the set of marked states

Mike Gordon 76/128

CTL model checking: {E[v1 U 2]}, {A[v1 U o]}

» To compute {E[v U 4]}

recursively compute {11} and {»}

mark all states in {i»}

mark all states in {1} with a successor state that is marked
repeat previous line until no change

» {E[¢1 U ¢»]} is set of marked states

vV vy vy

» More formally: {E[1 U 2]} = (U~ o{E[¢1 U ¢2]}» where:

{E[v1 Uyollo = {2}
{E[¥1 U]} ni1 = {E[¥1 Uin]}n
U

{se {1} | 3¢’ € {E[¢1 U ¢o]}n. Rs S’}

» {A[1 U]} similar, but with a more complicated iteration
» details omitted (see Huth and Ryan)

Mike Gordon 77/128

Example: checking EF p

» EFp=E[T U p]
» holds if v holds along some path

» Note {T} =S
» Let S, = {E[T U p]}, then:
So = {E[TUp]}o
= {p}
= {s|peL(s)}

Sni1 = Sh U {se{T} |3 €{E[TUp|}r. Rs '}
=S, U {s|3Ig S, Rss'}

mark all the states labelled with p

mark all with at least one marked successor

repeat until no change
{EF p} is set of marked states

vV vy vy

Mike Gordon 78/128

Example: RCV

» Recall the handshake circuit:

dregq J— dack

gObar

» State represented by a triple of Booleans (dreq, q0, dack)

» A model of RCV is Ms., Where:
M = (SRCVv SORCVs Rrev, LRCV)

and
Recv (dreq, 0, dack) (dreq’, q0’, dack’) =
(q0’ = dreq) A (dack’ = (dreq A (g0 Vv dack)))

Mike Gordon 79/128

RCV state transition diagram

» Possible states for RCV:
{000,001,010,011,100,101,110,111}
where bo by by denotes state
dreg=bo A g0 = by A dack = by

» Graph of the transition relation:

100 11 111

() 0O
N>

011

Mike Gordon 80/128

Computing {EF at111} wWhere ac111 e Lacy(s) & s = 111

NN
Y

011

» Define:
So ={s|At1ll € Lgcv(S)}
={s|s=111}
= {111}
Snr1 =8p U {s|3s' € Sp. R(s,9')}
=85, U {b2b1 bo |
3b,biby € Sp. (b = b2) N (by = b2 A (by V b))}
Mike Gordon 81/128

Computing {EF at111} (continued)

2
100

N

011

» Compute:

So = {111}

S ={111} u {101,110}
={111,101,110}

S, ={111,101,110} U {100}
={111,101,110, 100}

S; ={111,101,110,100} U {000,001,010,011}
={111,101,110,100,000,001,010,011}

S, =8 (n>23)

» [EFAt111} = B® = Spy
» Miev EEFAL111 & Sprey © S

Mike Gordon 82/128

Symbolic model checking

v

Represent sets of states with BDDs

v

Represent Transition relation with a BDD

v

If BDDs of {¢'}, {1}, {2} are known, then:

» BDDs of {—¢}, {1 A o}, {1 V o}, {1 = o}
computed using standard BDD algorithms

> BDDs of {AXv}, {EX¢}, {A[¢1 U vz}, {E[v1 U 2]}
computed using straightforward algorithms (see textbooks)

v

Model checking CTL generalises reachable states iteration

Mike Gordon 83/128

History of Model checking

v

CTL model checking due to Emerson, Clarke & Sifakis
Symbolic model checking due to several people:

» Clarke & McMillan (idea usually credited to McMillan’s PhD)
» Coudert, Berthet & Madre
» Pixley

v

v

SMV (McMillan) is a popular symbolic model checker:

http://www.cs.cmu.edu/~modelcheck/smv.html (original)
http://www.kenmcmil.com/smv.html (Cadence extension by McMillan)
http://nusmv.irst.itc.it/ (new implementation)

v

Other temporal logics

» CTL*: combines CTL and LTL
» Engineer friendly industrial languages: PSL, SVA

Mike Gordon 84/128

http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
http://nusmv.irst.itc.it/

Expressibility of CTL
» Consider the property

“on every path there is a point after which p is
always true on that path ”

» Consider

((x) non-deterministically chooses T or F) ° 6 G
: P:=1; o

WHILE (x) DO SKIP; b

s0

0:
1:
st 2: P:=0; o
s2 3: P:=1; N
4: WHILE T DO SKIP; AN S1—s 2 —> 52— 52— 52
5: so\ 51— S2 —» S2 —» S2 ——p 52 creee
50< S1 =+ S2 —> S2 =+ S2 —> S2ewue

S1 =—> S2 —> S2 —» S2 —p S2 wweeen

» Property true, but cannot be expressed in CTL

» would need something like AFy

» where v is something like “property p true from now on”
but in CTL ¢) must start with a path quantifier A or E
cannot talk about current path, only about all or some paths
AF(AG p) is false (consider path s0 s0s0---)

v vyy

Mike Gordon 85/128

LTL can express things CTL can'’t

» Recall:
[Fe]m(m) 3i. [¢]m(7li)
[Golm(m) = Vi. [¢]m(mli)

» FGo is true if there is a point after which ¢ is always true
[FGolm(w) = [F(G(¢))]Im(r)
= 3my. [G(¢)]m(mlm)
= dmy. Vmo. IICD]]M((Td,m1)ng)
= 3my. Ymy. [¢]m(ml(my+ms))
» LTL can express things that CTL can’t express

» Note: it’s tricky to prove CTL can’t express FG¢

Mike Gordon 86/128

CTL can express things that LTL can’t express

» AG(EF p) says:

“from every state it is possible to get to a state for
which p holds”

» Can’t say this in LTL (easy proof given earlier - slide 57)

» Consider disjunction:

“on every path there is a point after which p is
always true on that path

or

from every state it is possible to get to a state for
which p holds”

» Can’t say this in either CTL or LTL!
» CTL* combines CTL and LTL and can express this property

Mike Gordon 87/128

CTL*

» Both state formulae (') and path formulae (¢)

» state formulae +) are true of a state s like CTL
» path formulae ¢ are true of a path = like LTL

» Defined mutually recursively

Vo= p (Atomic formula)
=) (Negation)
V1V o (Disjunction)
Ao (All paths)
Eo¢ (Some paths)
o = (Every state formula is a path formula)
o) (Negation)
D1V ¢o (Disjunction)
X¢ (Successor)
Fo (Sometimes)
Go (Always)
[(/)1 U (/)2] (Until)

» CTLis CTL* with X, F, G, [-U—] preceded by A or E

» LTL consists of CTL* formulae of form Ag,

where the only state formulae in ¢ are atomic
Mike Gordon 88/128

CTL* semantics

» Combines CTL state semantics with LTL path semantics:

[PIm(s) = pE L(s)

[—¥1m(s) = =([+1m(s))

[V1 V bolm(s) = [ilm(s) Vv [¥2]lm(s)
[Aolm(s) = Vr.PathRsn = ¢(n)
[Eolm(s) = dr.PathRs7 A [¢]m(n)
[¥1m(r) = [¥]m(7(0))

[—¢lm(m) = ([¢lm(7))

[¢1V ¢olm(m) = [é1lm(7) vV [P2lm(r)
[XeIm () = [olm(x1)

[Folm(r) = am. [¢]m(mlm)

[Golm () = Ym. [¢]m(mlm)

[[¢1 U d2]lm(r) Ji. [S2dm(mli) AV). j<i = [¢1]m(7f)
» Note [¢]y : S—B and [¢]y : (N—S)—B

Mike Gordon 89/128

LTL and CTL as CTL*
» Asusual: M = (S, Sy, R. L)
» If ¢y is a CTL* state formula: M |= ¢ < Vs e Sy. [¢]m(s)
» If ¢ is an LTL path formula then: M =1, ¢ < M e Ag
» If Ris total (Vs. ds’. R s §’) then (exercise):
Vss.Rss < dr.PathRsn A (r(1)=¢)
» The meanings of CTL formulae are the same in CTL*
[AX)Im(s)
Vr. Path R s m = [X¢]u(r)
Vr. Path R s 7 = [¢]m(w1) (v as path formula)
Vr. Path R s m = [¢]m((71)(0)) (v as state formula)
vVr. Path R s m = [¢]m(7(1))

[AX]m(s)

= Vs.Rss = [¢]u(s)

vs'. (3r. Path Rsw A (7(1) = &) = [¥]m(s)
vs.Vr.Path Rsn A (n(1) =8) = [¥]m(s)
Vr.Path Rs7m = [¢]u(r(1))

Exercise: do similar proofs for other CTL formulae
Mike Gordon 90/128

Fairness

» May want to assume system or environment is ‘fair’

» Example 1: fair arbiter
the arbiter doesn’t ignore one of its requests forever

» not every request need be granted
» want to exclude infinite number of requests and no grant

» Example 2: reliable channel
no message continuously transmitted but never received

» not every message need be received
» want to exclude an infinite number of sends and no receive

Mike Gordon 91/128

Handling fairness in CTL and LTL

» Consider:
p holds infinitely often along a path then so does g

» In LTL is expressible as G(F p) = G(F q)

» Can’t say this in CTL

why not — what’s wrong with AG(AF p) = AG(AF q)?

in CTL* expressible as A(G(F p) = G(F q))

fair CTL model checking implemented in checking algorithm
fair LTL just a fairness assumption like G(F p) = ---

vV vy vy

» Fairness is a tricky and subtle subject

» many kinds of fairness:
‘weak fairness’, ‘strong fairness’ etc

» exist whole books on fairness

Mike Gordon 92/128

Propositional modal p-calculus

» You may learn this in Topics in Concurrency

» p-calculus is an even more powerful property language

has fixed-point operators

both maximal and minimal fixed points

model checking consists of calculating fixed points

many logics (e.g. CTL*) can be translated into u-calculus

vV vy vVvYyYy

» Strictly stronger than CTL*
» expressibility strictly increases as allowed nesting increases
» need fixed point operators nested 2 deep for CTL*

» The p-calculus is very non-intuitive to use!

» intermediate code rather than a practical property language
» nice meta-theory and algorithms, but terrible usability!

Mike Gordon 93/128

SEREs: Sequential Extended Regular Expressions
» SEREs are from the industrial PSL (more on PSL later)

» Syntax :
r = p (Atomic formula p € AP)

| 'p (Negated atomic formula p € AP)
| ninr (Disjunction)
| r&&hn (Conjunction)
| rn;n (Concatenation)
| r:r (Fusion)
|l (Repeat)

» Semantics:

(w ranges over finite lists of states s; |w| is length of w;

wq.W» is concatenation; head w is head; () is empty word)

[Pl (w) =pe L(head w) A |w| =1

['pl(w) = —(pe L(head w)) A [w| =1

[ri 1r2d(w) = [r](w) v [r](w)

[ri&sr](w) = [rl(w) A [r2](w)

[ri; el(w) =3ws wo. w=wi.we A [H](w) A [r](we)

[r1:r](w) =3ws swe. w=wy.s.wo A [r](wi.8) A [r2](s.w2)

Iril(w) =w={ V Iwg - wp. w=wq. - WA[r](wi)A - AL (w))
Mike Gordon 94/128

Example SERE

» Example

A sequence in which req is asserted, followed
four cycles later by an assertion of grant,
followed by a cycle in which abortin is not
asserted.

» Define p[«3]1 =p;p;p
» Then the example above can be represented by the SERE:
req; T[+«3];grant; !abortin
» In PSL this could be written as:
req; [*3];grant; 'abortin
» where [+3] abbreviates T[+3]
» more ‘syntactic sugar’ later

» e.g. true, falseforT, F

Mike Gordon 95/128

Assertion-Based Verification (ABV)

» It has been claimed that assertion based verification:
“Is likely to be the next revolution in hardware design
verification’

» Basic idea:

» document designs with formal properties
» use simulation (dynamic) and model checking (static)

» Problem: too many languages

» academic logics: LTL, CTL
» tool-specific industrial versions:
Intel, Cadence, Motorola, IBM, Synopsys

» What to do? Solution: a competition!

» run by Accellera organisation
» results standardised by IEEE
» lots of politics

Mike Gordon 96 /128

IBM’s Sugar and Accellera’s PSL

v

Sugar 1: property language of IBM RuleBase checker
» CTL plus Sugar Extended Regular Expressions (SERES)

v

Competition finalists: IBM’s Sugar 2 and Motorola’s CBV

» Intel/Synopsys ForSpec eliminated earlier
(apparently industry politics involved)

Sugar 2 is based on LTL rather than CTL

» has CTL constructs: “Optional Branching Extension” (OBE)
» has clocking constructs for temporal abstraction

v

v

Accellera purged “Sugar” from it property language

» the word “Sugar” was too associated with IBM
» language renamed to PSL
» SEREs now Sequential Extended Regular Expressions

» Lobbying to make PSL more like ForSpec (align with SVA)

Mike Gordon 97 /128

PSL Foundation Language (FL is LTL + SERES)

» Syntax:
f == p (Atomic formula - p € AP)
| 'f (Negation)
| fiorf (Disjunction)
| next f (Successor)
| {r}(f) (Suffix implication: r a SERE)
| {n} 1= {r} (Suffix next implication: ry, r» SEREs)
[f1 until f2] (Until)
» Semantics (omits clocking, weak/strong distinction)
[Plm() =p € L(w(0))
[! lm(r) = ~([fJm())
[fi or fo]m(r) = [Alm(r) v [Rlum(x)
[next fm() = [flm(=1)
[{r}(H)m(r) =vr'w. (r=wr" A [rlu(w)) = [flm(x’)

[{r}1=>{rp}mn(r) =7 wy s. (m = wy.s.7’ A[r]m(ws.s))
= In" wo. 7’ = wo.” A [rR]m(s.we)

[[f until &]lm(x) = 3i. [Llu(xi) A V). j<i = [fH]m()
» There is also an Optional Branching Extension (OBE)
» completely standard CTL: EX, E[- — U — —|, EG etc.

Mike Gordon 98/128

Combining SEREs with LTL formulae

>

>

v

Mike Gordon

Formula {r}f means LTL formula f true after SERE r
Example
After a sequence in which req is asserted,
followed four cycles later by an assertion of
grant, followed by a cycle in which abortin is
not asserted, we expect to see an assertion of
ack some time in the future.

Can represent by

always {req; [*3];grant; !abortin} (eventually ack)
where eventually and always are defined by:
eventually £ = [true until f]

always £ = ! (eventually !'f)

N.B. Ignoring strong/weak distinction

» strong/weak distinction important for dynamic checking
» semantics when simulator halts before expected event
» strictly should write until!, eventually!

99/128

SERE examples

Mike Gordon

How can we modify
always reqginj;ackout; !'abortin |-> ackinj;ackin

so that the two cycles of ackin start the cycle after
'abortin

Two ways of doing this

always{reqgin;ackout; 'abortin} |->{true;ackin;ackin}
always{reqgin;ackout; 'abortin} |=>{ackin;ackin}

| => is a defined operator

{rl}|=>{r2} = {rl}|->{true;r2}

Note: t rue and T are synonyms

100/128

Examples of defined notations: consecutive repetition

» Define
r[+] = r;r[*]
| false[#] if i=0
r*i] = |
| r;...;r otherwise (i repetitions)
rixi..j] = r[*i] | rl[x((i+1)] | ... | r[*]]
[+] = true[+]
[*] = true[x]
» Example

Whenever we have a sequence of req followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal start_trans, followed by one
to eight consecutive data transfers, followed by the
assertion of signal end_trans. A data transfer is
indicated by the assertion of signal data

always{reqg;ack} |=>{start_trans;datal[*1l..8];end _trans}

Mike Gordon 101/128

Fixed number of non-consecutive repetitions

» Example
Whenever we have a sequence of req followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal start_trans, followed by
eight not necessarily consecutive data transfers,
followed by the assertion of signal end_trans. A data
transfer is indicated by the assertion of signal data

» Can represent by

always
{reqg;ack} |=>
{start_trans;
{{!datal[«x];data} [%8]; !datal*]};
end_trans}

» Define: b= i] = {!'b[*];b}[*i]; !b[*]
» Then have a nicer representation
always{reqg;ack} |=>{start_trans;data[= 8];end_trans}

Mike Gordon 102/128

Variable number of non-consecutive repetitions
» Example

Whenever we have a sequence ofreq followed by
ack, we should see a full transaction starting the
following cycle. A full transaction starts with an
assertion of the signal start_trans, followed by
not necessarily consecutive data
transfers, followed by the assertion of signal
end_trans. A data transfer is indicated by the
assertion of signal data

» Define

b= 1..3] = {b[= 11} | {b[= (i+1)1} | ... | {bl= J1}
» Then

always {req;ack} |[|=>

{start_trans;datal[= 1..8];end_trans}
» These examples are meant to illustrate how PSL/Sugar is
much more readable than raw CTL or LTL

Mike Gordon 103/128

Clocking

v

Basic idea: bec1k samples b on rising edges of c1k

v

Can clock SEREs (r@c1k) and formulae (f@c1k)

Can have several clocks

v

v

Official semantics messy due to clocking

v

Can ‘translate away’ clocks by pushing @c1k inwards

» rules given in PSL manual
» roughly: b@clk ~» {!clk[*];clk & b}

Mike Gordon 104/128

Model checking PSL (outline)

v

SEREs checked by generating a finite automaton

» recognise regular expressions
» these automata are called “satellites”

v

FL checked using standard LTL methods
OBE checked by standard CTL methods

v

v

Can also check formula for runs of a simulator

» this is dynamic verification
» semantics handles possibility of finite paths — messy!

v

Commercial checkers only handle a subset of PSL

Mike Gordon 105/128

PSL layer structure

» Boolean layer has atomic predicates

» Temporal layer has LTL (FL) and CTL (OBE) properties

» Verification layer has commands for how to use properties
» e.J. assert, assume

assert always (!enl & en2))
| \ \

| \ | -——— Boolean layer
|

| | ————————————— temporal layer
|

|- verification layer

» Modelling layer: HDL specification of e.g. inputs, checkers

» e.g.augment always (Req -> eventually! Ack)
» add counter to keep track of numbers of Req and Ack

Mike Gordon 106/128

PSL/Sugar summary

v

Combines together LTL and CTL

v

Regular expressions — SEREs

v

LTL — Foundation Language formulae

v

CTL — Optional Branching Extension

v

Relatively simple set of primitives + definitional extension

v

Boolean, temporal, verification, modelling layers

v

Semantics for static and dynamic verification
(needs strong/weak distinction)

Mike Gordon 107 /128

Simulation semantics (a.k.a. event semantics)

» HDLs use discrete event simulation

» changes to variables = threads enabled
» enabled threads executed non-deterministically
» execution of threads = more events

» Combinational thread:
always @(V4 or --- or Vp) V:=E
» enabled by any change to vq, ..., v,
» Positive edge triggered sequential threads:
always @ (posedge clk) v:=E
» enabled by clk changing to T
» Negative edge triggered sequential threads:
always @ (negedge clk) v:=E
» enabled by clk changing to

Mike Gordon 108/128

Simulation

» Given

» a set of threads
» initial values for variables read or written by threads

» a sequence of input values
(inputs are variables not in LHS of assignments)

» simulation algorithm = a sequence of states

¥
Choose an enabled thread
Execute
until |
quiescent v
then Execute the chosen thread
advance |
simulation
time Fire event controls to enable new threads

» Simulation is non-deterministic

Mike Gordon 109/128

Combinational threads in series

in f : g LIh out

» HDL-like specification:

always @(in) h := f(in) thread T1
always @(h) b = g(h) oo, thread T2
always @(h) out := h(hb) thread T3

» Suppose in changes to x at simulation time t

» T1 will become enabled and assign £(x) to /

» if /;’s value changes then T2 will become enabled

(still simulation time)

T2 will assign g(£(x)) to

if k’s value changes then T3 will become enabled

(still simulation time 1)

T3 will assign h(g(£(x))) to out

simulation quiesces

(still simulation time t)

» Steps at same simulation time happen in “0-time”
(VHDL jargon)

Mike Gordon 110/128

v

v

v

v

Semantic gap

» Designers use HDLs and verify via simulation
» event semantics

» Formal verifiers use logic and verify via proof
» path semantics

» Problem: do path and simulation semantics agree?

» Would like:
paths = sequences of quiescent simulation states

NN

initial state Statesafter states after
onestep twosteps

Mike Gordon 111/128

Sequential threads: alternative simulation semantics
. |

n — — out

clku

Consider two Dtypes in series:

always Q@ (posedge clk) | in
always @ (posedge clk) out := |

v

v

If posedge clk:

» both threads become enabled

» race condition
Right thread executed first:

» out gets previous value of /

» then left thread executed

» s0 / gets value input at in
Left thread executed first:

» | gets input value at in

» then right thread executed

» SO out gets input value at in
Mike Gordon 112/128

v

v

Sequential threads: aligning semantics
|

in —

Clku

If right thread executed first get formal model semantics
R(in, I, out)(in',I',out’) = (I'=in) A (out’ = 1)

If left thread executed first get weird semantics
R(in, I, out)(in', ', out’) = (I' = in) A (out’ = in)

How to ensure formal model semantics?

Method 1: use non-blocking assignments:

always @ (posedge clk)
always Q@ (posedge clk)

— out

v

v

v

| <= in;

out <= I[;
» non-blocking assignments (<=) in Verilog
» RHS of all non-blocking assignments first computed
» assignments done at end of simulation cycle

>

Method 2: make simulation cycle VHDL-like

Mike Gordon 113/128

Verilog versus VHDL simulation cycles

» Verilog-like simulation cycle:

—_——
\

Choose an enabled thread
Execute
until |

quiescent
then
advance
simulation
time

» VHDL-like simulation

Execute
until
quiescent
then
advance
simulation
time

v
Execute the chosen thread

\
Fire event controls to enable new threads

1

cycle:

]

\
Execute all enabled threads in parallel

|

Fire event controls to enable new threads

Mike Gordon

B

114/128

VHDL event semantics

in — — out

clku

Recall HDL:
always @ (posedge clk) | := in
always @ (posedge clk) out := |

v

v

If posedge clk:
» both threads become enabled

VHDL semantics:

v

» both threads executed in parallel
» out gets previous value of /
» in parallel / gets value input at in

Now no race
Event semantics matches path semantics

v

v

Mike Gordon 115/128
Another example: combinational + sequential
in XOR ! out
clk
» Exercise: Do VHDL and Verilog event semantics agree?
» Ignoring race if input does change at clock edge
» in real world might get meta-stability problems
» also in previous example
» need analogue simulation (e.g. using SPICE)
Mike Gordon (Circuit from: http://en.wikipedia.org/wiki/File:Edge_triggered _D_flip_flop.svq) 116/128

http://en.wikipedia.org/wiki/File:Edge_triggered_D_flip_flop.svg

Summary of dynamic versus static semantics

v

v

v

v

v

Mike Gordon

Simulation (event) semantics different from path semantics

No standard event semantics (Verilog versus VHDL)
Verilog: need non-blocking assignments
VHDL semantics closer path semantics

Simulation runs generate finite sequences
» better fit with LTL than CTL

117/128

Bisimulation equivalence: general idea

» M, M" bisimilar if they have ‘corresponding executions’

>

>

» Simulation gives property-truth preserving abstraction

Mike Gordon

» to each step of M there is a corresponding step of M’
» to each step of M’ there is a corresponding step of \/

Bisimilar models satisfy same CTL* properties

Bisimilar: same truth/falsity of model properties

(see later)

118/128

Bisimulation relations

» Let R: S—+S—Band R’ : S—S'—B be transition relations

» Bis a bisimulation relation between R and R’ if:
» B: S-S =B

» Vss'.Bss =Vs;€S. Rss;=3s]. Rs' s ABs; s
(to each step of R there is a corresponding step of R’)

» Vss'.Bss =Vs| €S R s s|=3s. R ssiNBs; s
(to each step of R’ there is a corresponding step of R)

Mike Gordon 119/128

Bisimulation equivalence: definition and theorem

v

Let M = (S, Sg, R.L)and M' = (S, S, R, L)
» M= M if:

there is a bisimulation B between R and R’
Vsg € Sp. 3s; € S B sp 8,

Vsy € Sy. 350 € Sp. B sp s,

there is a bijection ¢ : AP— AP’

Vss'.Bss = L(s)=L'(s)

v

v

v

v

v

v

Theorem: if M = M’ then for any CTL* state formula ¢:
MEYy & M Eqy

» See Q14 in the Exercises

Mike Gordon 120/128

Abstraction

» Abstraction creates a simplification of a model

» separate states may get merged
» an abstract path can represent several concrete paths

» M < M means M is an abstraction of \/

» to each step of M there is a corresponding step of M -
» atomic properties of M correspond to atomic properties of M

» Special case is when M is a subset of M such that:
» M= (5,5, R L)and M = (S, S, R, L)
ScS
So =50
Vss'€S.Rss' < Rség
VseS.Ls=Ls
» S contain all reachable states of M
Vse S.V§'e€ S.Rss'=5¢S
» All paths of M from initial states are M-paths
» hence for all CTL formulas ¢: M = = M =

Mike Gordon 121/128
Recall M1

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; O: IF LOCK=0 THEN LOCK:=1;

1 X:=1; 1: X:=2;

2 IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

» Two program counters, state: (pc;, pcs, lock, x)

Somw = [0.3] x [0.3] X Z X Z

R (0, pcs, 0, X) 1,p0,1,X) R (pcy, 0,0, x) (pci, 1,1, x)
(1, pco, lock, x) (2, pco, lock,1) | R épchtlock,x) Epc1727/ock,2)
Raa (2,pC2,1,X) 3,pCz, 0, x) Ran (pct,2,1,x) pci,3,0,x)

v

Assume notat1l € Lo (pey, pep, lock, x) < —~((pey = 1) A (pca = 1))
Model M., = (Sm1,{(0,0,0,0)}, Rya1, Low)
Sxn not finite, but actually jock € {0,1}, x € {0,1,2}
Clear by inspection that m,., <M., where:
W\,M'\ = (EJMI 5 {(Oa 07 O‘, O)}aﬁwﬂ 7ZK,MW)
San = [0..3] x [0..3] x [0..1] x [0..3]
R IS Ry restricted to arguments from S,
NotAt11 € Ly (pcy, pcs, lock, x) < —=((pcy = 1) A (pce = 1))
Lo, iS Ly restricted to arguments from S,
Mike Gordon 122/128

v Vv

v

vV vy VvVyy

Simulation relations

» Let R: S—»S—Band R: S—S—B be transition relations

» His a simulation relation between R and R if:
» His a relation between Sand S—i.e. H: S—S—B

» to each step of R there is a corresponding step of R- i.e.:
VsS.Hss=Vs €S Rss =3¢ € S RSssAHSs' &

» Also need to consider abstraction of atomic properties

» Hap : AP—AP—B

» details glossed over here

Mike Gordon 123/128

Simulation preorder: definition and theorem

v
%]

Let M = (S, Sy, R, L) and M = (,go,ﬁ,f)
M < M if:
» there is a simulation H between R and R

> VSo€So.3§o€§0.HSQ§o
» Vs5. Hss= L(s) = L(3)

v

v

ACTL is the subset of CTL without E-properties
» e.g. AG AFp — from anywhere can always reach a p-state

v

Theorem: if M < M then for any ACTL state formula «:
ME=y=MEY

v

If M |= 1+ fails then cannot conclude M |= ¢ false

Mike Gordon 124/128

Example (Grumberg)

@ H a simulation

B HRED STOP A
H YELLOW GO A
H GREEN GO

Hap i {r,y,9}—{r,yg}—=B

HApff/\

@ - Hap y ya N
Hap g yg

» M = AG AF —r hence M |= AG AF —r
» but (M |= AG AF r) doesn't entail ~(M = AG AF r)
» [AG AF r];(sTop) is false
(consider M-path 7/ where 7/ = STOP.G0O.GO.GO. - - -)

» [AG AF r]u(RED) is true
(abstract path 7' doesn’t correspond to a real path in M)

Mike Gordon 125/128
» Counter Example Guided Abstraction Refinement
Model check Goal: M* E ¥
fail
IReﬁne abs(ruc&ionl I Generate counter example I I Done
= I Isc mple is real? 1
- 1
» Lots of details to fill out (several different solutions)
» how to generate abstraction
» how to check counterexamples
» how to refine abstractions
» Microsoft SLAM driver verifier is a CEGAR system
Mike Gordon 126/128

Temporal Logic and Model Checking — Summary

v

Various property languages: LTL, CTL, PSL (Prior, Pnueli)

v

Models abstracted from hardware or software designs

v

Model checking checks M |= ¢ (Clarke et al.)

v

Symbolic model checking uses BDDs (McMillan)

v

Avoid state explosion via simulation and abstraction

v

CEGAR refines abstractions by analysing counterexamples

v

Triumph of application of computer science theory

» two Turing awards, McMillan gets 2010 CAV award
» widespread applications in industry

Mike Gordon 127/128

THE END

Mike Gordon 128/128

