
Exercises Algorithms for Model Checking

1 CTL∗
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Figure 1:

1. For each of the CTL∗ formulae below, indicate whether it is (syntactically) a formula in LTL
and/or CTL. Determine for each formula in which states of the Kripke Structure of Fig. 1
it holds.

(a) p,

(b) E [q R p],

(c) E F G p,

(d) A G F p,

(e) A G E F p,

(f) A G F (p ∧ X q),

(g) A G (¬q ∨ F p),

(h) A ((G p) ∨ (F q))

2. For each pair of CTL∗ formulae below, if possible, give a Kripke Structure in which both are
valid, a Kripke Structure in which both are not valid, and a Kripke Structure in which only
one of them is valid.

(a) p and A F p

(b) A F A G p and A G A F p

(c) A F A X p and A F X p

(d) A X E X p and A X X p

(e) A X A X p and A X X p

(f) A [p U q] and A [¬q R ¬p]

3. Consider LTL, CTL and CTL∗. State for each of the claims below whether they hold or not.
Motivate your answer by providing counterexamples or a formal justification.
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(a) Every CTL∗ formula is equivalent to either an LTL formula or a CTL formula.

(b) The language LTL is more expressive than CTL.

(c) The language CTL is more expressive than LTL.

(d) On deterministic Kripke Structures (i.e., Kripke Structures with a single initial state in
which each state has exactly one successor), LTL and CTL are equally expressive; that
is, every LTL formula has an equivalent CTL formula and vice versa.

4. Express that along all paths, proposition p holds infinitely often and ¬p holds infinitely
often.

5. Express that along all paths, proposition p holds infinitely often and ¬p only holds finitely
often.

6. Prove using the semantics of CTL∗, or disprove using a Kripke Structure, the following
equivalences:

(a) A [φ U ψ] ≡ ¬(E [¬ψ U ¬(φ ∨ ψ)] ∨ E G ¬ψ)

(b) A G A F p ≡ A G F p
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2 Model Checking CTL and Fair CTL
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Figure 2:

1. For each of the CTL formulae below, draw a Kripke Structure in which the formula holds,
a Kripke Structure in which it does not hold, but in which it does hold fairly with an
appropriate fairness constraint. Also provide this fairness constraint.

(a) A G A F (¬p ∨ q)
(b) q ∧ A F q ∧ ¬(E [¬q R ¬p])
(c) ¬AF p ∨ E G (¬p ∨ q)
(d) (p ∨ A F p) ∧ ¬E G p

2. Determine for each of the following CTL formulae in which states of the Kripke Structure of
Fig. 1 it holds using the labelling algorithm. Repeat the exercise using the symbolic model
checking algorithm for CTL, using explicit set notation to represent sets of states, rather
than BDDs.

(a) p,

(b) E [q R p],

(c) A G E F p,

(d) A G p ∨ A F q

(e) A F q

(f) A [q R p]

3. Extend the Kripke Structure of Fig. 1 with the Fairness constraints F = { {s1}, {s2} }. In
which states do the formulae of exercise 2 fairly hold? Repeat the exercise using fairness
constraint F = { {s3} }.

4. Answer Exercises 2 and 3 for the Kripke Structure in Fig. 2 instead of the Kripke Structure
of Fig. 1.

5. Prove that A F f = µZ.f ∪ A X Z.

3



3 Counterexamples and Witnesses
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Figure 3:

1. Consider the Kripke Structure in Fig. 3.

(a) Fairness constraint: ¬r and q. Check that s1 |=F E G (p ∨ q).
(b) Construct a witness for s1 |=F E G (p ∨ q), using the techniques for symbolic model

checking.
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4 Equivalences and Pre-Orders
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Figure 4:

1. Let K1 and K2 be arbitrary Kripke Structures. Let f be an arbitrary ACTL∗ formula such
that K1 |= f and K2 6|= f . Prove that there must be a formula g in positive form such that
K1 6|= g and K2 |= g, and all path quantifiers in g are existential path quantifiers.

2. For each pair of Kripke Structures Ki,Kj in Fig. 4, prove or disprove Ki v Kj , either
by providing a simulation relation, or by providing a distinguishing ACTL-formula f (i.e.,
Ki |= f and Kj 6|= f).

3. For each pair of Kripke Structures Ki,Kj in Fig. 4, prove or disprove Ki ≡ Kj , either
by computing a bisimulation relation, or by providing a distinguishing CTL-formula f (i.e.,
Ki |= f ⇔ Kj 6|= f).
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5 Model Checking the Modal µ-Calculus
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Figure 5:

1. Prove, for arbitrary environment θ, arbitrary labelled transition system L with action set
Act ⊇ {a} that [[[a]νX.[a]X]]θ = [[true]]θ.

2. Prove, for arbitrary environment θ and arbitrary labelled transition system L that [[¬µX.φ]]θ =
[[ν.¬φ[X := ¬X]]]θ for all formulae φ. Hint: Expand [[ ]] as much as possible and perform in-
duction over the number of fixpoint-iterations.

3. Consider the following µ-calculus formula φ and the labelled transition system L in Fig. 5.

φ := νX.

(
[a]X ∧ νY.µZ.(〈b〉Y ∨ 〈a〉Z)

)
(a) Explain in natural language the meaning of formula φ.

(b) Compute the set of states of L where φ holds with the naive algorithm (give all inter-
mediate approximations).

(c) Compute the set of states of L where φ holds with the Emerson-Lei’s algorithm (give
all intermediate approximations).

4. Consider the following µ-calculus formula and the labelled transition system L in Fig. 6.

νX. νY.
((
〈b〉X

)
∧
(
〈a〉(Y ∧ 〈a〉X)

))
(a) Explain in natural language the meaning of formula φ.

(b) Compute the set of states of L where φ holds with the naive algorithm (give all inter-
mediate approximations).

(c) Compute the set of states of L where φ holds with the Emerson-Lei’s algorithm (give
all intermediate approximations).
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Figure 6:
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