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Abstract

The story of how a project to formally verify an ARM processor
evolved and changed focus over fifteen years is told here. I have tried
to make the story accessible to a general audience: no detailed knowl-
edge of formal verification or theorem proving is assumed. I hope to
illustrate by example how long it can take for research to have any
impact and the difficulty of predicting what the impact will be.

The Leeds-Cambridge ARM6 verification project took place be-
tween 2000 and 2004. Leeds’ goal was to specify the ARM instruc-
tion set and the ARM6 microprocessor implementation. Cambridge’s
goal was to use automated theorem proving to verify that the proces-
sor correctly implemented ARM instructions. The experience gained
from this project resulted in changed priorities for subsequent research,
which was possible as a result of continuing funding from the USA.
New methods for coupling processor specifications to theorem proving
tools emerged and the goals expanded to include software verifica-
tion. Eventually the work started to find applications at Cambridge
and elsewhere. These applications range from proving properties of
operating system machine code to exploring new security enhanced
processor designs.

This document was prepared partly as background for a talk given at Swansea University and
partly as a report for some of the funders of the research. It is not intended for publication.
The scientific contributions are due to Anthony Fox, Magnus Myreen and others who de-
vised and worked on the applications. My role has mainly been administrative. I retire on
September 30, 2015, but the research continues as part of the EPSRC REMS project.
If I mention your work (e.g. by including material from online papers or web pages) and if
you are unhappy and would like me to change, add or delete anything, then please accept
my apologies and email me with the changes that you’d like me to make.
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1 Background

Since the 1980s I’ve had an incredibly productive collaboration on hardware
modelling and verification with Graham Birtwistle. We exchanged ideas,
PhD students and postdocs, and jointly developed theorem proving software
(early versions of the HOL system [1, 2]). At the start of our collabora-
tion Graham was a professor at the University of Calgary in Canada. In the
1990s Graham moved to Leeds University and became interested in modelling
ARM1 processors. He invited me to join in research that he was discussing
with ARM. This resulted in an EPSRC project proposal with Leeds, Cam-
bridge and ARM as partners. The box below contains the project summary
from the application form.

We propose to help develop a methodology for the production of executable
specifications of microprocessors cores at both the instruction set and pipelined
architectural levels and to use formal verification to establish equivalence or
refinement relationships between these specifications. The key technical chal-
lenge is to show that academic verification techniques developed in the 1980’s
for microprocessor subsystems scale to realistic complete architectures. The
project is a partnership between specifiers and verifiers at Leeds and Cam-
bridge, and designers and engineers from ARM who will actively participate
by providing understanding and insights, and reading and critiquing specifi-
cations as they emerge. We concentrate upon the ARM6 microprocessor to
give the project a concrete focus, but the results and methods will be generally
applicable.

The ARM6 microprocessor was chosen because ARM determined that it did
not to contain sensitive ARM IP.2 The initial EPSRC proposal was turned
down on the grounds that verifying an ARM6 was uninteresting research
because the processor was obsolete and we were invited to resubmit a similar
project based around a current ARM processor.

1Here and elsewhere “ARM” refers to the company ARM Holdings plc. Terms like
“ARM6” and “ARMv3”, which refer to particular ARM products, will be explained as
needed.

2The ARM610 implementation (a member of the ARM6 family) was used in the Apple
Newton “personal digital assistant” (PDA). The phrase “personal digital assistant” was
coined during the Newton’s $100M development by Apple’s then CEO John Sculley [3]. A
recent article in Wired Magazine [4] describes the Apple Newton as a “prophetic failure” .
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For the resubmission ARM provided us with a letter explaining why the
designs of their current processors were too sensitive to pass to us. I don’t
have the original source text, but here is an image of an extract from the
letter.

This refers to various implementations of the ARM instruction set archi-
tecture (ISA). ARM has a somewhat confusing naming conversion for the
various versions of ISA and the various hardware implementations. The
ISA executed by the ARM6 implementation is called ARMv3. Later ARM
processors were, for example ARM7 and ARM8 (as mentioned in the letter
extract above). Later instruction sets are, for example, ARMv5, ARMv6,
ARMv7. Implementations like ARM6 are subdivided into cores, which are
intended for different applications. The ARM6 implementation family was
implemented by three cores: ARM60, ARM600, ARM610 which all execute
instructions specified by ARMv3, but have some different hardware details
(e.g. ARM60 has no cache). A Wikipedia article gives the full list of ARM
instruction architectures, implementations families and cores [5].

ARM’s letter did the trick. The proposal was resubmitted and became funded
in the year 2000 [6].

I what follows §2 to §4 tell what happened in the next fifteen years, starting
with the EPSRC project; §5 then reviews and reflects on how the project
evolved.
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2 The first EPSRC project

The first EPSRC project had the title “Formal Specification and Verification
of ARM6” and was a collaboration between ARM and the universities of
Leeds and Cambridge. ARM’s role was advisory: they would help in under-
standing the available documentation and provide details that might not be
documented. Leeds had the goal of developing executable functional speci-
fications of both the instruction set architecture (ISA) – i.e. the semantics
of machine instructions – and the ARM6 processor implementation which
executed instructions. Cambridge’s task was to formalise the specifications
being developed at Leeds and then to use the HOL4 proof assistant to prove
theorems establishing the correctness of the ARM6 implementation.

The research at Leeds was undertaken by two PhD talented students super-
vised by Graham Birtwistle: Dominic Pajak and Daniel Schostak. Dominic
worked on creating a model of the ARMv3 ISA and Daniel on a model of
an ARM6 implementation. These models consisted of function definitions in
the Standard ML programming language [7, 8] and were thus executable so
both could be validated on test data. Both Leeds students spent summers
working at ARM in Cambridge where they could do ‘field work’ to discover
information that wasn’t available in public documents. This was particularly
important for building a model of the ARM6 processor as few detail of this
were in the public domain (though ARM had agreed for its design to be used
in the project). Although the meaning of machine instruction was available
in natural language documentation for the ARMv3 ISA [9] there were details
and ambiguities that needed to be clarified by talking to experts.

The EPSRC grant provided funds for a research associate to assist with the
work at Cambridge. Finding a suitable person might have been a challenge,
but fortunately I’d recently been the external PhD examiner for Anthony
Fox who had written an outstanding thesis on processor verification and I
managed to hire him. Fox’s processor proofs were formulated in an algebraic
framework that had been developed by John Tucker and Neil Harman over
many years [10] (Harman was Fox’s supervisor). Here is an extract from a

5



paper by Harman and Tucker [11] outlining their approach.

...

Although the Harman-Tucker theory “supports formal methods and software
tools”, it had not been adapted for use with the HOL4 theorem prover that
was to be used for the ARM6 proofs in the EPSRC project. The micro-
processor verifications that Fox carried out during his PhD research were
manually generated pencil-and-paper proofs, but they provided an excellent
foundation for mechanisation.

Fox’s first task after taking up the research associate position at Cambridge
was to learn how to mechanise proofs similar to those in his PhD. This
resulted in a tutorial technical report [12] which established the method that
would be used to prove theorems about the ARM processors using the HOL4
system. Whilst mechanising his hand proofs, Fox found a few minor errors.
This provided reassuring motivation for mechanization. However, the main
motivation is the impracticability of scaling up pencil-and-paper proof to
real-world examples, even for relatively simple processors like ARM6.

2.1 What does it mean to formally verify a processor

Proving a processor correct consists in three steps:

1. making a mathematical model of the execution of machine instructions,

2. making a mathematical model of the implementation,

3. proving the implementation correctly executes instructions.

These steps are sketched in the following three subsections. For technical
details see Fox’s report on the ARM6 verification [13].

2.1.1 Modelling the execution of machine instructions

The machine instructions for ARM processors are described in a document
entitled ARM Architecture Reference Manual (AARM) which is available
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both as a printed book and online [9]. This uses a mixture of English and
pseudo-code to describe the effect of executing machine instructions. Here is
a picture of the AARM book:

An early task in the project was to create a representation of the meaning of
instructions – their semantics – in a formal logical notation. Fox created a
such a representation in the logic supported by the HOL4 theorem-proving
system, which will be abbreviated to just “HOL”. He collaborated with Pajak
who was building an executable model of ARMv3 instructions in Standard
ML, a functional programming language whose programs were similar to
HOL terms. Semantic brackets J · · · K around a picture of the AARM will
denote Fox’s formalisation of machine instruction semantics in HOL:

2.1.2 Modelling a processor implementation

There was no published description of the ARM6 processor. Daniel Schostak
put together a specification from various documents he could find and input
from current and past ARM engineers. His specification was the basis for
the implementation formalised by Fox.

The implementation combines hardware components including memory, reg-
isters and an arithmetic logic unit (ALU). The diagram below is from Fox’s
ARM6 report [13]. The details are unimportant here, but it is given to
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provide an impression of the sort of thing the ARM6 implementation is.

The behaviour of this implementation was represented in HOL using methods
Fox developed in his PhD. This representation is denoted by putting semantic
brackets around a shrunk image of the illustrative implementation diagram:

2.1.3 Proving instructions are correctly executed

Before proving the correctness of an implementation one must first formulate
what correctness means. This can be quite tricky and it is critical to have
a good formulation: proving a theorem that does not accurately represent
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what correctness means in practice could yield a misleading ‘false positive’
result.

Both the ARMv3 instruction semantics and the ARM6 implementation are
represented in HOL by state machines. Each such machine consists of a
set of states and a next-state function to represent how states change when
instructions are executed.

The kind of states needed to model the effect of executing machine instruc-
tions, as specified by the ISA, is different from the kind of states needed
to model the actual hardware implementation. There will be many regis-
ters in the implementation that are not visible in the ISA which may hold
intermediate results, control state etc.

A common way to relate ISA and implementation states is via a function
that abstracts the latter to the former. An over-simplified example is where
the implementation just has extra registers, e.g. I1, . . . , In in the diagram
below. The abstraction function might just discard these registers.

...R1 R2 Rm

...R1 R2 Rm

...I1 I2 In

Abstract

MEMORY

MEMORY

The abstraction from ARM6 states to the ARMv3 ISA states is hugely more
complex than this. In addition to registers in the implementation that are
not visible by the ISA, there are ISA registers that are split into separate
hardware components of the implementation in ways that are not apparent
at the ISA level.

As well as the implementation and ISA having different states, they also have
different next-state functions. A single step at the ISA level typically consists
of executing a single machine instruction. A single step in the implementation
will typically be a micro-step, several of which are needed for implementing
each machine instruction. Proving the implementation correct consists in
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showing that the result of the sequence of micro-steps corresponding to each
machine instruction has the correct effect on the ISA state.

The standard proof strategy is to show that for any machine instruction and
pair of states sISA, simp where sISA is a state of the ISA, simp a state of the
implementation and Abstract(simp) = sISA, then if the ISA model predicts
that executing the instruction results in state s′

ISA and the processor model
predicts that executing the instruction (which might take several micro-steps)
results in state s′

imp, then Abstract(s′

imp) = s′

ISA.

Such arguments are often illustrated with a ‘commuting diagram’, such as:

...R1 R2 Rm

...R1 R2 Rm

...I1 I2 In

Instruction semantics

Hardware implementation

Abstract AbstractA Single Step

MEMORY

MEMORY

...R1 R2 Rm

MEMORY

...R1 R2 Rm

...I1 I2 In

MEMORY

This diagram ‘commutes’ if going from the bottom left to the top right via
the two possible paths – i.e. abstract-then-execute-instruction-semantics or
execute-hardware-steps-then-abstract – results in the same state.

The proof that such a diagram commutes is by symbolic simulation along
each path for each instruction and then verifying the results agree. Symbolic
simulation consists of ‘executing’ each instruction by mechanically simplify-
ing a logic term representing the instruction applied to an arbitrary state
in which the values of memory and registers are represented symbolically by
variables. For example, a term representing state sISA may contain R1 = x

and R2 = y specifying symbolic values x, y for registers R1, R2, respectively.
One step of symbolic simulation of a instruction to add registers R1 and R2

and put the result in register R3 might result in a logical term representing
a symbolic state s′

ISA containing R3 = x + y.

A proof by symbolic simulation verifies the execution of all instructions in
all states. It is sometimes called static verification in contrast with dynamic
verification which runs the model on particular instructions in particular
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states to find bugs. The proportion of instructions executed to all instructions
is the coverage. Static verification can be thought of as giving 100% coverage.

If ≈ is a HOL relation that formalises the property that the ISA and im-
plementation are related by the diagram above commuting, then the ARM6
correctness theorem can be visualised as below (⊢ t means t is provable).

⊢ ≈

This section oversimplifies almost every detail. It merely aims to give a first
impression of what the ARM6 verification consists of. The full story is in
Fox’s report [13].

2.2 Results of the ARM6 verification project

The project was a success. It established the feasibility of verifying the cor-
rectness of ARM-sized processors by interactive theorem proving. Fox took
about a year to prove that a model of the ARM6 processor correctly im-
plemented the ARMv3 ISA, though this was spread over a longer period
as the work first needed a mechanisation of the Fox-Harman-Tucker alge-
braic method to be developed, and then lots of supporting theorem-proving
infrastructure to be implemented to. Verifying another similar processor
should be much quicker with this methodology and infrastructure in place.
A natural next step might have been to test this prediction by actually ver-
ifying another ARM processor, say ARM6, but this wasn’t possible since
for commercial reasons ARM would not be willing to provide details of the
implementation. Even if ARM had been willing to provide details of more re-
cent processor implementations, the effort of repeating a similar verification
would have been hard to justify as novel research. It was therefore decided
to cease hardware verification and focus on proving machine code programs
correct by building on the ISA modelling methods and infrastructure that
had been created.
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3 The second EPSRC project

The EPSRC supported a follow-on project entitled “Formal Specification and
Verification of ARM-Based Systems” (EPSRC project, 2004-2007). The goal
was to use the verified ARM ISA model as foundation for verifying software.

3.1 Formal verification of machine code

The initial idea was to build on earlier pioneering research by Boyer and Yu
[14] for verifying machine code programs for the MC68020 processor. This
worked by first proving an abstract specification of an algorithm corresponds
to a concrete machine code implementation on an ISA model of the processor,
and then proving the abstract specification has desired properties. The proofs
were by symbolic simulation and induction (for loops). Here is a diagram of
MC68020 taken from the Boyer-Yu paper.

MC"#$%$ User Programming Model

 ! !" !# $ % &

A%(USP,
A"
A#
A-
A 
A.
A!
A&
D%
D"
D#
D-
D 
D.
D!
D&

PC

CCR

Memory

FFFFFFFC

FFFFFFF$
FFFFFFF-

   

&&&&&&&$
&&&&&&&-
&&&&&&&&

Figure 67 The User Visible Machine State

?@ Shift and Rotate+ We have included all the shift and rotate instructions7 ASL#
ASR# LSL# LSR# ROL# ROR# ROXL# ROXR# SWAP)

D@ Bit Manipulation+ We have included all the bit manipulation instructions7
BCHG# BCLR# BSET# BTST)

"@ Bit Field+ We have included all the bit Feld instructions7 BFCHG# BFCLR#

BFEXTS# BFEXTU# BFFFO# BFINS# BFSET# BFTST)

G@ Binary coded decimal+ None of the binary coded decimal instructions has been
considered@

#@ Program Control+ We have included all the program control instructions exJ
cept a pair of instructions CALLM and RTM7 Bcc# DBcc# Scc# BRA# BSR# JMP#

JSR# NOP# RTD# RTR# RTS)

K@ System Control+ Only D of the %6 system control instructions are formalJ
ized7 ANDI to CCR# EORI to CCR# MOVE from CCR# MOVE to CCR# ORI to

CCR)

6$@ Multiprocessor+ None of the multiprocessor instructions have been considered@

We have formalized all eighteen MC"#$%$ addressing modes@ An addressing mode
can specify a constant that is the operandO a register that contains the operandO or
a location in memory where the operand is stored@ For a complete description of

Very impressive small examples were done (“Euclid’s GCD, Hoare’s Quick
Sort, binary search, and other well-known algorithms”) but the approach
was hard to scale. This is because for each example the proof that the
abstract specification corresponds to the execution of concrete machine code
on the processor involves the entire processor model, including those parts
not relevant to the code being verified. One is faced by an instance of the
‘Frame Problem’ – e.g. specifying and then proving which values of registers,
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memory locations etc. are not changed by the computation.

Fortunately, by combining ideas from Boyer and Yu with concepts from Sep-
aration Logic [15], Magnus Myreen – then a new PhD student at Cambridge
– came up with a new method based on automatic decompilation that has
turned out to scale well.

3.2 Myreen decompilation

Myreen’s idea is to precompute verified specifications of the semantics of each
machine instruction in the form of ‘machine code Hoare triples’ {P}C{Q}
[16] in which C is a machine instruction, the precondition P specifies only
the resources (registers, memory etc.) in the fragment of the state relevant
to executing C and the postcondition Q specifies the state of these resources
after executing C. Myreen’s Hoare triples are inspired by Separation Logic
[15] in that they are ‘small’: the precondition P determines the ‘footprint’
of C and doesn’t constrain the state outside this. Additional invariants are
added using the Frame Rule of Separation Logic. The idea is to split a large
monolithic ISA model into small separate behavioural specifications of each
instruction. The verification of machine code programs then only needs to
use the specifications of the instructions it uses.

To illustrate Myreen’s approach, the specification of some simplified ARM-
like machine instructions are given below. The notation

⊢
{P}
C

{Q}

means that {P} C {Q} is proved from the ARM ISA model.

The first example is the derived specification of MOV b,a. This instruction
moves the contents of register a to register b. It doesn’t change the contents
of a. The operator “∗” is separating conjunction from Separation Logic (more
on this later).

⊢
{R a x ∗R b _ ∗R pc p}
MOV b,a

{R a x ∗R b x ∗R pc (p+1)}
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In this example, the precondition {R a x ∗R b _ ∗R pc p} specifies that reg-
ister a holds the value x, register b holds some value3 and the program
counter, which in ARM is held in a register pc, has the value p. The post-
condition {R a x ∗R b x ∗R pc (p+1)} specifies the state after executing the
instruction MOV b,a, namely register b holds x (i.e. the value in a before the
instruction was executed), register a is unchanged and the program counter
is incremented to point to the next instruction.4

The instructions MUL b,a1,a2 and SUBS b,a1,a2 in the box below perform
multiplication and subtraction, respectively, on the contents of registers a1

and a2 and put the result in register b. The SUBS instruction also sets a status
flag (the Z flag) if the result of the subtraction is zero. The statement S b

asserts that the status is b (a Boolean). The instruction BNE #-n jumps back
n instructions if the status flag is not false, otherwise it does nothing.

⊢
{R a1 x1 ∗R a2 x2 ∗R b _ ∗R pc p}
MUL b,a1,a2

{R a1 x1 ∗R a2 x2 ∗R b (x1×x2) ∗R pc (p+1)}

⊢
{R a1 x1 ∗R a2 x2 ∗R b _ ∗ S _ ∗R pc p}
SUBS b,a1,a2

{R a1 x1 ∗R a2 x2 ∗R b (x1−x2) ∗ S (x1=x2) ∗R pc (p+1)}

⊢
{S b ∗R pc p}
BNE #-n

{R pc (if b then p−n else p+1)}

Using the Hoare triples for the machine instructions occurring in a program,
Myreen’s decompiler automatically extracts a mathematical function to rep-
resent the data transformations on the state and then proves a Hoare triple
giving a formal symbolic representation of the overall state change that hap-
pens when the program is executed.

3R b _ is a shorthand for an existential quantification ∃y. R b y.
4The next instruction is shown as p+1 here, but actually it would be p+4 due to the

way ARM addresses memory. The simplified view that adding one to the program counter
gives the next instruction is also used in subsequent examples.
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Here’s an example: a simple program to compute the factorial function.
The effect of the code is decompiled into the definition of the mathematical
function computed by the program: fact(n) (shown in red in the example
below). The decompiler also proves a Hoare triple verifying that the program
executed on the ARM model computes this function applied to the contents
of register a and puts the result in register b. This is indicated by the big
blue + below.

⊢

{R a n ∗R b _ ∗ S _ ∗R pc p ∗ n 6=0}
MOV b,#1
MUL b,a,b
SUBS a,a,#1
BNE #-4

{R a 0 ∗R b (fact(n)) ∗ S _ ∗R pc (p+4)}

+
⊢ fact(n) =

if n = 0
then 1
else n× fact(n−1)

The Hoare triple describing the effect of a machine code program is deduced
from the Hoare triples for each machine instruction in the program using
Myreen’s machine code Hoare Logic. For example, Hoare triples for sequences
of instructions are obtained using the Sequencing Rule:

⊢ {P} C1 {Q} ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

To apply this rule, the postcondition of the triple for C1 must equal the pre-
condition of the triple for C2 (i.e. both be Q). The Frame Rule of Separation
Logic is used to add invariants R to the ‘small’ footprints of preconditions
and postconditions when performing logical deductions to make them match.

⊢ {P} C {Q}
⊢ {P ∗ R} C {Q ∗ R}

A special mechanism generates recursive functions to represent the semantics
of code with loops (e.g. the definition of fact in the example). The details
will not be described here – they can be found in Myreen’s award winning5

PhD thesis [17].

The Hoare triple representation of the machine code behaviour that is auto-
matically generated by the decompiler is a theorem mechanically proved in
HOL4 from the formal specification of the ISA processor model. It certifies

5http://academy.bcs.org/content/distinguished-dissertations-2010
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how the function decompiled from the code (e.g. fact above) corresponds to
computations on the processor.

The decompiler can handle thousands of lines of code (e.g. the ARM binary
for the seL4 microkernel [18]). This is because it works bottom incrementally
combining the precomputed Hoare triples for the instructions in the code:
decompiling binaries does not use the full ISA model.

3.3 Accurate model of ARM ISA version ARMv4T

In the second EPSRC project Fox upgraded the ISA ARMv3 executed by the
ARM6 implementation to ARMv4, which was then still in use. He also added
features to the model that had been ignored in the ARM6 verification work
such as input/output, exceptions (e.g. interrupts) and coprocessor support. A
PhD student at the time, James Reynolds, built a detailed model of an ARM
floating point coprocessor in HOL, though alas this never got integrated with
the ARM processor model (much later Fox added floating support models to
some of his ARM models).

ARM processors are physically separate from main memory. This was not
accurately reflected in the ARM6 work, which treated the registers and mem-
ory as part of a single processor state. For ARMv4 Fox decoupled processor
and memory so that different memory models could be used with his proces-
sor model. To execute programs one needs both a processor and memory;
Fox’s approach provided a way to combine a processor model with a memory
model to get an executable machine on which machine code programs could
be symbolically executed. Such execution is a key part of generating the
Hoare triples used for decompilation.

Recently Peter Sewell’s group at Cambridge have been exploring current
multi-processor ARM memory models. Current ongoing research [19] aims
to combine this work with Fox’s processor modelling.
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3.4 Achievements of the second EPSRC project

The project summary for the second EPSRC project included the following
statement.

If successful, this project will result in possibly the first machine checked formal
verification of software running on a formally verified commercial off the-shelf
(COTS) processor.

This had not really been achieved by the end of the project, but infrastructure
had been created that supported Myreen’s decompilation method which later
used this infrastructure for impressive examples like seL4 [18]. However,
Fox’s later ISA models (ARMv4 onwards) did not run on a formally verified
processor, since an ARM processor that ran this ISA was never verified. Thus
a summary of what was achieved would be something like the following.

The project resulted in ideas and infrastructure that were subsequently used
in the machine checked formal verification of software running on formally
specified (but not verified) commercial off the-shelf (COTS) processors.

4 From 2007 to the present

During the second EPSRC project we were offered additional funding for
ARM verification research by the US DoD via a contract with GCHQ. After
the second EPSRC project ended, this new funding became the primary
support for subsequent ARM work.

The new funding explicitly supported the development of software infrastruc-
ture in a way that would be hard to justify as research to EPSRC. It sup-
ported improvements to the HOL4 system by Fox and others. Things added
to HOL4 included: bit-blasting tools, bignum and floating-point arithmetic
theories, documentation, and improving general theorem-proving efficiency
to support large examples.
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4.1 New ARM ISA models

The new funding enabled Fox to upgrade the existing ARM model to ARMv7,
the ISA supported by the latest processors at the time. It was a significantly
bigger model than ARMv4 as lots of new instruction arrived with ARMv6.

The formal specification of ARMv7 was not verified against a processor but
was tested against ARM hardware by comparing executions of thousands of
random instructions on the formal model using HOL4 theorem proving and
on ARM processor hardware. Minor bugs were found in the formal model.
Formal verification against an implementation model would have been better,
but was impractical (see the discussion in §2.2).

Fox also created ARM ISA models for many of the current ISAs in use,
including: ARMv4, ARMv4T , ARMv5T, ARMv5TE, ARMv6, ARMv6K,
ARMv6T2, ARMv7-A, ARMv7-R, ARMv8, and ARMv6/ARM-M0. ARMv8
was created for the KTH PROSPER project (see §4.2.3); ARMv6/ARM-M0
is a version of ARMv6 with additional cycle counts corresponding to ARM-
M0 implementations and was created for research at Edinburgh (see §4.7).

Fox also created a web page enabling the execution of particular instructions
on many of his models. Here are a some screenshots of the web interface. A
menu allows one first to select an architecture (e.g. ARMv7-A, left screen-
shot) and then an instruction set can be chosen (e.g. 32-bit ARM rather than
16-bit Thumb, right screenshot).
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Next a processor mode (e.g. svc, left screenshot) can be selected. Finally an
instruction to execute is chosen from the selected architecture, instruction
set and processor mode (e.g. bkpt, right screenshot). The semantics of the
selected instruction is proved for the selected ISA using the HOL4 theorem
prover and displayed on the web page.

The ARM models and supporting tools were initially just used at Cambridge
by Myreen for his PhD research. It took a long time for the work to have
any impact elsewhere, but eventually it did.

4.2 First impact of ARM models emerge

After about seven or eight years, the first applications of the ARM models
outside Cambridge appeared. These were at a US company GrammaTech,
the Australian Research Centre NICTA, and the PROSPER research project
at the Royal Institute of Technology, in Sweden (KTH).

4.2.1 GrammaTech’s static analyser

GrammaTech is “a software-development tools vendor based in Ithaca, New
York. The company was founded in 1988 as a technology spin-off of Cornell
University. They now develop CodeSonar, a static analysis tool for source
code and binaries, and perform cyber-security research” [20].
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GrammaTech learnt about Fox’s ARM models at a Government scientific
meeting and wanted to explore using them with their static analysis tools.
Keen to get users of his ARM models, Fox translated his model into a subset
of their proprietary ISA description language TSL. Although GrammaTech
ended up not using this ARM model in TSL, they later made their own
model based on a later model written in Fox’s ISA description language L3
(see §4.3 below) which they ported. Here is a diagram scraped from a talk
at a recent workshop [21].

4.2.2 NICTA’s seL4 microkernel verification

The seL4 is “the world’s first operating-system kernel with an end-to-end
proof of implementation correctness and security enforcement. It is still the
world’s most highly-assured OS” [22]. The main part of the seL4 verification
shows that a specification of the desired behaviour of the OS in the form of
functional model is correctly implemented by C language like code. Both the
functional model and C-like code were represented in Isabelle/HOL.
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The seL4 OS is intended to be run on ARM. Experiments with the CompCert
“a high-assurance compiler for almost all of the ISO C90 / ANSI C language,
generating efficient code for the PowerPC, ARM and x86 processors” [23] did
not work out so, following a visit to NICTA by Myreen, a ‘translation correct-
ness’ approach based on decompiling and verifying an ARM binary obtained
using the unverified GCC compiler was adopted. This was successfully car-
ried out by Myreen during a series of winter visits to NICTA. Here is an
image scraped from a YouTube video of a talk by Gernot Heiser [24].

←− Gernot Heiser

4.2.3 KTH PROSPER project

The box below contains an online description of the PROSPER project [25].

PROSPER (Provably Secure Execution Platforms for Embedded Systems) is
a research project that aims to build the next generation framework for fully
verified, secure hypervisors for embedded systems. The following components
constitute the core of the project:

1. A provably secure execution platform for embedded devices such as mo-
bile phones based on a virtualization core. Our hypervisor is available
as open source.

2. A prototype toolset for formal specification and verification of differ-
ent versions of the hypervisor. Within this work, ISA isolation lemmas
for user mode execution on ARM have been verified. Those proofs are
available from the HOL4 GitHub site.
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PROSPER is a collaboration between the Group for Theoretical Computer
Science at KTH and SICS Swedish ICT, a research institute for applied
information and communication technology in areas strategic for Swedish
industry.

Here is an image scraped from a YouTube video of a talk by Mads Dam,
leader of the PROSPER project entitled “Formal verification of information
flow security for a simple ARM-based separation kernel” [26].

Mads Dam −→

PROSPER has now moved on to ARMv8 from ARMv7 shown in this picture.
Mads Dam recommends the recent CCS’13 paper [27] for further reading.

4.3 The ISA specification language L3

The creation of all the various ARM models resulted in a problem of vali-
dating and maintaining them. To solve this Fox created a model authoring
languages which he called L3 (abbreviating “Low Level Language”).

L3 is a language specifically designed for writing ISA models in HOL. How-
ever, as described later, it has found other uses. Fox designed L3 with a
syntax partly inspired by the pseudo code from ARM documentation. His
emphasis was ease of capturing the content of informal documentation, not
theoretical innovation. The original goal was to make it easier to write and
maintain ISA models for use in formal verification.

Here is a slide from a recent talk by Fox showing the various models currently
available in L3.
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Here’s another slide from the same talk illustrating decompilation.
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The formal semantics of a model written in L3 is given by the HOL that is
generated from it; this is accomplished by tools Fox implemented to support
the language. Other tools are used to decompile machine code to generate
Hoare triples. The following diagram is from a currently unpublished paper
by Fox.

Here is a diagram from the same paper illustrating how the tools work.

All the current projects at Cambridge now use HOL models generated from
L3 specifications. The ISA model used in the seL4 binary verification at
NICTA has also moved to using L3. The PROSPER project originally used
a model written directly in HOL, but for future work Fox has collaborated
with the KTH researchers to create an L3-generated model of the recently
released ARMv8.

Although L3 was initially motivated by the need to specify and maintain
multiple models of ARM ISAs, it is suitable for specifying other architectures.
Projects at Cambridge are using a partial model of x86 (see §4.5) and a fairly
complete model of MIPS (see §4.6). Some other projects using L3 are outlined
below.
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4.4 The D-RisQ project

D-RisQ (logo: ) is a small company that aims to “change the way the
world develops software” by “bringing advanced automated software devel-
opment tools to safety critical, security critical and business critical systems
developers” [28]. They wanted to evaluate the Technology Readiness Level
(TRL) of L3-based decompilation for extracting the functional behaviour of
machine code. To this end they set up a small MOD-funded case study car-
ried out by Fox and Myreen to apply their methods to a simple example.
This case study consisted in first decompiling ARM machine code generated
by two different compilers from programs in different languages (C and Ada)
that were believed to perform the same function, and then verifying, using
HOL4, that the extracted functionality of the two programs was equivalent.

The project was a success and the Fox/Myreen technology now features in a
video on the company’s website [29].

Following on from the project with D-RisQ, there is now a large multi-
university and industry research proposal being considered. This aims to
extract the functionality of binary machine code using L3 models and associ-
ated decompilation tools and then transform the resulting logical representa-
tions into a form suitable for analysis by the FDR3 CSP refinement checker.
The work will be driven by applications provided by an industrial partner
from the automotive industry.
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4.5 CakeML

CakeML (logo: ) is an international collaborative project [30] to develop
and implement a dialect of Standard ML designed to support program veri-
fication. Here is part of the abstract of a recent paper [31].

We have developed and mechanically verified an ML system called CakeML,
which supports a substantial subset of Standard ML. CakeML is implemented
as an interactive read-eval-print loop (REPL) in x86-64 machine code. Our
correctness theorem ensures that this REPL implementation prints only those
results permitted by the semantics of CakeML. Our verification effort touches
on a breadth of topics including lexing, parsing, type checking, incremental
and dynamic compilation, garbage collection, arbitrary-precision arithmetic,
and compiler bootstrapping.
Our contributions are twofold. The first is simply in building a system that is
end-to-end verified, demonstrating that each piece of such a verification effort
can in practice be composed with the others, and ensuring that none of the
pieces rely on any over-simplifying assumptions. The second is developing
novel approaches to some of the more challenging aspects of the verification.

The following points are extracted from cakeml.org, the CakeML web page.

• We have written, verified, and bootstrapped a compiler (including lexing,
parsing, type inference, and code generation) from CakeML to CakeML
Bytecode. The correctness theorem covers both terminating and diverg-
ing programs, and says that the generated code behaves according to the
semantics in either case. The compiler is written in HOL; we use the
translator, mentioned below, to generate a verified CakeML implementa-
tion, and then evaluate the compiler on this implementation (bootstrap)
to generate verified bytecode.

• One of our initial target case studies is to construct a verified CakeML
version of the HOL light theorem prover. For this case study, we ex-
tended the translation tool, mentioned below, to be able to translate
into stateful CakeML code.

• We have developed a tool which translates functions from higher-order
logic into CakeML. This tool is proof producing: for each translation it
proves a theorem which states that the generated CakeML code correctly
implements the original HOL function, according to the operational se-
mantics of CakeML.
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The text in the box above has been slightly condensed (e.g. sentences deleted).
See the web page for further details, including links to papers.

The translation to machine code of CakeML bytecode, called ASM, which
the compiler produces, is verified against L3 models of ARM, x86 and MIPS
using decompilation.

Here is a diagram from one of Fox’s recent talks illustrating this:

Rockwell Collins in the USA are evaluating CakeML via a research project.
Full details are not public, but the work is funded by NASA with the goal of
demonstrating that CakeML can be used to get verified executable binaries
of interest to them from logical specifications. The CakeML compiler is also
being evaluated in relation to the possibility of using verified compilers in
certification processes.
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4.6 MIPS-based processors: BERI and CHERI

The BERI and CHERI processors are being designed and implemented (on
FPGAs) at Cambridge as part of a project entitled Clean Slate Trustworthy

Secure Research and Development (CTSRD), which is part of the DARPA
CRASH programme.

Here’s a picture of a device containing a BERI processor running FreeBSD
(from http://www.cl.cam.ac.uk/research/security/ctsrd/cheri/).

Here’s an extract from the CTSRD web page [32].

The project is revisiting the hardware-software security interface for general-
purpose CPUs to fundamentally improve security; to this end, we are integrat-
ing a hybrid capability model and continuous hardware-assisted validation of
security design principles with a commodity CPU ISA and open source operat-
ing systems. We are pursuing several new software/hardware features as part
of this research:

• BERI: a open-source hardware-software research and teaching platform:
a 64-bit RISC processor implemented in the high-level Bluespec hard-
ware description language (HDL), along with compiler, operating sys-
tem, and applications;

• CHERI: capability hardware enhanced RISC instructions : hardware-
accelerated in-process memory protection and sandboxing model based
on a hybrid capability model;

The golden reference models of BERI and CHERI are represented in L3.
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Fox’s L3 simulator is being used to generate execution traces for comparison
with the hardware and also for design space explorations of both the processor
and cache. The L3 model supports several processors with a shared memory.
The simulator is able to boot FreeBSD on BERI and CHERI.

Here’s an extract from a recent technical report [33].

We have also developed a more complete ISA model incorporating both MIPS
and CHERI instructions using Cambridge’s L3 instruction-set description lan-
guage. Although we have not yet used this for automated theorem proving,
we increasingly use the L3 description as a “gold model” of the instruction
set against which our test suite is validated, software implementations can be
tested in order to generate traces of correct processor execution, and so on.
We have used the L3 model to identify a number of bugs in multiple hardware
implementations of CHERI, as well as to discover software dependences on
undefined instruction-set behavior.

This application is remarkable in using a specification method developed
explicitly to support theorem proving, but using it for something different.
It is hoped in the future to exploit decompilation to verify properties of
CHERI formally.

The diagram below is a fragment cut out of a larger project presentation
poster that contains material on other parts of the CTSRD research. [34]:

An unexpected benefit of modelling BERI and CHERI in L3 is that for-
mal methods for generating test data for ARM models being developed at
Edinburgh turns out to be useful for generating tests for models of these
MIPS-based machines. This is briefly described in §4.7 below.
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4.7 Using HOL and L3 ARM models for testing

Brian Campbell and Ian Stark from Edinburgh University have devised a
semantics-driven random testing method based on HOL and L3 models.
Using a model of ARMv6 equipped with accurate cycle counts for several
ARM-M0 implementations, they discovered timing anomalies between stores
and fetches that affects multiple implementations. Their methods are being
applied to BERI and CHERI. Here’s an abstract from an unpublished paper.

We validate a HOL4 model of the ARM Cortex-M0 microcontroller core by
testing the model’s behaviour on randomly chosen instructions against real
chips from several manufacturers. The model and our intended application
involve precise timing information about instruction execution, but the im-
plementations are pipelined, so checking the behaviour of single instructions
would not give us sufficient confidence in the model. Thus we test the model
using sequences of randomly chosen instructions. The main challenge is to
meet the constraints on the initial and intermediate execution states: we must
ensure that memory accesses are in range and that we respect restrictions on
the instructions. By careful transformation of these constraints an off-the-shelf
SMT solver can be used to find suitable states for executing test sequences.
We also use additional constraints to test our hypotheses about the timing
anomalies encountered. The randomised test case generation has been gener-
alised to make it easier to adapt to new L3 models, starting with the simple
MIPS model. This detected issues with the modelling of branch delay slots
and a potentially security relevant bug in the BERI/CHERI processor imple-
mentation of movz instructions. Ongoing work is adapting this to the CHERI
model. The library for MIPS that provides an equational presentation of the
model’s behaviour for each instruction is not available for the CHERI model
(and was not likely to be complete because it was intended for verification), so
a more general library performing symbolic evaluation of the model for a given
instruction was constructed, taking advantage of the monadic structure of L3
generated HOL terms.

5 Reflections

Below is a timeline showing what was done in the last fifteen years, starting
from the first EPSRC grant. This is followed by a list of phases of activity
into which the work can be factored.
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2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
| | | | | | | | | | | | | | | |

... =========================================================================================== ...
| ARM6 implements ARMv3 | ARMv4 specified | ARMv5, ARMv6, ARMv6, ARMv7, ARMv8, ARM-M0 |

|
| Myreen decompiler (HL for MC)
| Verification examples: GC, arithmetic (Certicom)

|
| GrammaTech

|
| seL4
| Jitawa Lisp (x86)

|
| L3
| KTH Prosper
| CakeML (x86)

|
| D-RisQ project

|
| MIPS/BERI/CHERI
| REMS

Formal proof that ARM6 implements ARMv3

The first EPSRC project showed the Harman-Tucker algebraic mod-
elling and proof method fitted well with traditional 1980s-style mecha-
nised HOL hardware verification and scaled to at least ARM6.

Creation of many formally specified but unverified ARM models

Building on the ARMv3 specification Fox created many ARM models
up to the still-used ARMv7. Researchers needing ARM models took
an interest (e.g. GrammaTech in the USA and KTH in Sweden).

Hoare Logic for hardware and machine code decompilation

Concurrently with the creation of multiple ARM models by Fox, Myreen
invents his method of Hoare logic based decompilation and demon-
strates its surprising scalability via an increasingly impressive sequence
of examples including: machine code garbage collection, multiple pre-
cision arithmetic, a JIT-ed Lisp runtime [35], the seL4 OS. Some of
these used non-ARM processor ISAs.

L3 for authoring and maintaining HOL models

Fox designs L3, initially to organise his existing ARM models and for
writing new ones more easily (e.g. ARMv8). He then uses it to model
other ISAs including MIPS and x86. Existing users of the HOL ARM
models switch to L3-generated models (e.g. seL4 and KTH PROSPER).
New projects emerge (e.g. D-RisQ and Edinburgh/REMS).

Applications of L3 not using HOL or theorem proving

L3 ISA models start to be used without any involvement of HOL or
theorem proving. GrammaTech port an L3 ARM directly into their
TSL language. Cambridge researchers use the L3 simulator for testing
MIPS implementations against hardware traces. They adopt L3 for
their ‘golden ISA models’ and begin to use L3 specifications and tools
for design space explorations for new architecture extensions.
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The timeline shows that it took about seven years before the ARM verifica-
tion work started to have any impact. The successfully achieved original goal
of verifying an ARM6 processor implementation had virtually no impact at
the time. When the impact came it was in places unforeseen at the start of
the project.

Nobody foresaw that the research would be a part of perhaps the first formal
verification of an operating system binary or provide a formal specification
simulator capable of booting a commodity OS and being used for architecture
research exploring designs of a security enhanced MIPS processor.

The following text is edited from a response to a draft policy document about
future science funding in the UK.

It seems that immediate impact, which is likely to be incremental in nature, is
overshadowing the longer-term perspective and may lead to short-term gains
but a dearth of major advances for the future. EPSRC, for example, is concen-
trating funds into strategic areas and so squeezing the money for responsive-
mode funding, and hence the space available for curiosity-driven research.
Since this approach is meant to be all about achieving “impact” and plenty of
impact has arisen serendipitously from high quality curiosity-driven research
in the past, this could be counter-productive: even having the opposite effect
to that intended.

The story of the ARM project told here is an example of research that had
little “immediate impact” ... but eventually after many years, and thanks
to far-sighted funders, is having “plenty of impact” which indeed has “arisen
serendipitously”.
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