
Copyright © Altran Praxis

SPARKSkein – A Formal and Fast Reference

Implementation of Skein

Rod Chapman, Altran Praxis

Copyright © Altran Praxis

Agenda

• The big idea…

• What is Skein?

• Coding SPARKSkein

• Results

• The release

• Conclusions and Further Work

The big idea…

• To produce a reference implementation of the

Skein hash algorithm in SPARK

– Make if Formal - Prove at least exception freedom

(aka “type safety”).

– Make it Readable.

– Make it Portable – identical source code for all

platforms, and no dependence on libraries, so

suitable for low-level “bare machine” targets.

– Make it Fast – well…at least as fast of the existing

C reference implementation.

The big idea…

• And...Make it empirical. What does that mean?

– From Bertrand Meyer’s blog, 31st July 2010:

– “Has the empirical side of software engineering become a full

member of empirical sciences? One component of the

experimental method is still not quite there: reproducibility. It is

essential to the soundness of natural sciences; when you publish

a result there, the expectation is that others will be able to

replicate it.”

• So...publish all sources, methods, results, and stick to

freely available tools.

• Use the C implementation as a control experiment.

What is Skein?

• The US NIST is running a competition to find and

standardize a new hash algorithm that will

become “SHA-3”.

– Five candidate algorithms remain in the third and

final round of the competition.

– “Skein” (it rhymes with “rain”) is one of them.

What is SPARK?

• SPARK is…

– …a programming language – an unambiguous

subset of Ada, with contracts for specification of

partial correctness.

– A toolset for static verification, including a

VC-Generator and a theorem-prover.

– A design philosophy for high-assurance software.

– Overriding design goal: soundness of verification

shall not be compromised.

Coding SPARKSkein

• Method:

– Start with the Skein mathematical spec and the existing C

reference implementation.

– Understand both.

– Re-code in SPARK following the same structure as the C.

• Why?

– Good chance of C readers being able to understand it.

– Good chance of Skein’s designers being able to

understand it.

– Good chance of SPARK performance being close to that of

the C code to start with.

Coding SPARKSkein

• Observations on the Coding

– Pretty easy really.

– Ada’s Interfaces package is really useful.

– Lots of modular types (e.g. mod 264) and shifting, rotating, and “xor”

operations, all of which are very efficient in SPARK.

• For example, Interfaces.Shift_Left_64 is an intrinsic function call that emits

one machine instruction using GCC.

• One tricky bit – making the code endian-ness independent.

– Skein is designed to be very efficient on little-endian machines – most

notably Intel x86 and x86_64.

– BUT..the code needs to work just the same on a big-endian machine.

• SPARK isolates us from this, since the operations on types are defined

mathematically, not in terms of the representation.

Results

• Results arise from five activities:

– Static Analysis and Proof of type safety

– Testing against reference test vectors

– Portability testing

– Structural coverage

– Performance

Static Analysis and Proof

• All code is 100% SPARK and analyses with SPARK GPL 2011 Edition

toolset with no warnings or errors.

• Proof metrics

Total VCs by type:

 -----------Proved By Or Using------------

 Total Examiner Simp(U/R) Checker Review False Undiscgd

Assert or Post: 65 22 35 8 0 0 0

Precondition check: 21 0 12 9 0 0 0

Check statement: 31 0 26 5 0 0 0

Runtime check: 244 0 243(2) 1 0 0 0

Refinement VCs: 6 2 4(4) 0 0 0 0

Inheritance VCs: 0 0 0 0 0 0 0

===

Totals: 367 24 320(6) 23 0 0 0

% Totals: 7% 87%(2%) 6% 0% 0% 0%

===================== End of Semantic Analysis Summary ========================

Static Analysis and Proof

• 344 VCs proved automatically (93.7%) – not too bad given

significant usage of modular types and arithmetic.

• Remaining 23 proved in the Checker.

– These were hard...

– Integer inequalities involving “mod 264” and integer (truncating)

division all over the place.

– Finding the “just right” loop invariant was very hard for some of

the algorithms.

Prover says No – a bug is found!

• During development of the “Finalization”

algorithm, something interesting popped up.

• Skein has a configurable hash size – you initialize

the algorithm with a “hash bit length” – how many

bits of output you want.

• The Finalization algorithm converts this bit length

into a number of bytes required for output.

Prover says No – a bug is found!

• Here’s the offending bit of code:

Byte_Count := (Hash_Bit_Len + 7) / 8;

• Where the “+” operator is “mod 264” and the “/”

operator is integer division (rounding down toward

zero).

• This was basically copied direct from the C code…

• This is followed by a loop that iterates to generate

the required numbers of blocks of output.

Prover says No – a bug is found!

• This loop has to iterate at least once, otherwise

no output would be produced. In SPARK, this

came out as a later VC that tries to establish:

Hash_Bit_Len >= 0 and

Hash_Bit_Len <= 264 – 1

 ->

((Hash_Bit_Len + 7) mod 264) / 8 > 0 .

• Which the Simplifier refused to prove….

• …mainly because it isn’t True.

Prover says No – a bug is found!

• How come?

• If Hash_Bit_Len is very large (nearly 264), then

the “+ 7” overflows round to a small number near 0, which

divided by 8 is zero. Oh dear!

• Result: If you ask for nearly 264 bits of output, the C code

returns immediately, and returns a pointer to an arbitrary

block of memory…Subsequent behavious is undefined.

• Of course…. “no one would ask for that much output…”

would they?

Prover says No – a bug is found!

• Solution in SPARKSkein…

subtype Hash_Bit_Length is U64 range 0 .. U64'Last - 7;

• Subtype declarations in SPARK act like simple

type-invariants.

Results – Reference Test Vectors

• The Skein spec defined 3 test vectors for the 512-bit block

version of the algorithm – known data blocks with knows

hashes.

• Initial test failed…

• Why? One mis-typed rotation constant had value “34”

instead of “43”.

– After that corrected, all is well…

• Moral: even type-safe code isn’t necessarily correct code.

Results – Portability

• Code submitted to AdaCore for inclusion in their mighty

GCC testsuite. Runs every night on all the platforms that

they support.

• Target architectures and operating systems include

– 32-bit x86 (Windows, Linux, FreeBSD, and Solaris), x86_64

(Windows, Linux, Darwin), SPARC (32- and 64-bit Solaris), HP-PA

(HP Unix), MIPS (Irix), IA64 (HP Unix, Linux), PowerPC (AIX), Alpha

(Tru64).

• Result: it works.

Results – Coverage

• I wrote a single test program to exercise various scenarios

– short data blocks, medium blocks, long blocks,

sequences thereof etc. etc.

• Result: 99.7% statement coverage, with ONE uncovered

line of code that turned out to be a type declaration that

has no object code associated with it.

• Conclusion: false alarm in gcov. No worries.

Results – Performance

• Now the real fun started…

• Could it possibly be as fast as the C?

• Conjecture:

– “Proven type-safe” SPARK code ought to be fast.

– No aliasing, no function side-effects, aggressive inlining, turn

off all run-time checks…optimizers should be able to do

better with SPARK than C.

– Is this True?

Results – Performance

• Method

– The C reference implementation comes with a performance

testing program.

– Therefore – write exactly the same program in SPARK to test the

performance of the SPARK code in the same way, running the

same test.

– Test machine: Intel Core i7 860 @ 2.8 GHz, running 64-bit

GNU/Linux.

– Use the same compiler for both languages. Initially, we used:

• GNAT Pro 6.3.2 (GCC 4.3.5)

and

• GNAT Pro 6.4.0w (GCC 4.5) for same platform

To see if GCC 4.5 makes any difference.

Results – Performance

• Method
– Experiment with different GCC- and SPARK-specific compiler

options to see what happens.

– -O[0|1|2|3] – optimization level.

– -gnato – enable full Ada runtime checks including overflow check.

– -gnatp – disable all Ada runtime checks (like default in C).

– -gnatn – enable inlining at –O1 and above.

Results – Performance

Compiler: GNAT Pro 6.3.2 (GCC 4.3.5)

Clocks per byte hashed

(Lower numbers are better)

Options SPARK C

-O0 -gnato 213.9 N/A

-O0 -gnatp 207.9 172.3

-O1 -gnatp 27.6 37.7

-O1 -gnatp -gnatn 26.8 37.7

-O2 -gnatp -gnatn 25.5 24.7

-O3 -gnatp -gnatn 20.4 20.1

Results – Performance

Compiler: GNAT Pro 6.4.0w, built 28th July 2010

Options SPARK C

-O0 -gnato 71.1 N/A

-O0 -gnatp 69.9 96.5

-O1 -gnatp 22.2 37.0

-O1 -gnatp -gnatn 20.7 37.0

-O2 -gnatp -gnatn 20.2 19.7

-O3 -gnatp -gnatn 13.4 12.3

Results – Performance

• Bottom line – GCC 4.3.5
– At –O0 both languages are awful with SPARK trailing C owing to full runtime

checking. This is expected – GCC at –O0 is “deliberately bad”.

– At –O1, SPARK is much better than C. Better (and earlier) inlining mostly

responsible for this.

– At –O2, C leads by a little.

– At –O3, auto loop unrolling gives another performance boost to both languages,

with C still leading by a little, owing to slightly better optimization of partial

redundancies, dead-store elimination, and other nerdy optimizer stuff.

– The difference lies in the relative “optimizer friendliness” of the intermediate

language generated by the Ada and C front-ends.

Results – Performance

• Bottom line – GCC 4.5.0

– Big improvement across the board for both languages.

– Same pattern, except at –O0 where SPARK leads now.

Results – Performance

• Improving GCC 4.5

• Based on this analysis, Eric Botcazou of AdaCore improved

the Ada “middle-end” in GCC to produce more “optimizer-

friendly” intermediate language.

• These improvements are included in GNAT Pro 6.4.1 and

GCC 4.5.2 and beyond.

Results – Performance

Compiler: GNAT Pro 6.4.1 (GCC 4.5.2)

Options SPARK C

-O0 -gnato 70.6 N/A

-O0 -gnatp 69.7 96.4

-O1 -gnatp 22.2 37.0

-O1 -gnatp -gnatn 20.5 37.0

-O2 -gnatp -gnatn 20.0 19.7

-O3 -gnatp -gnatn 12.3 12.3

Results – Performance

• With GNAT Pro 6.4.1:

– At –O0 – SPARK is better

– At –O1 – SPARK is better

– At –O2 – C is (slightly) better

– At –O3 – identical performance

• This trend has been observed many times before: GCC

development tends to be driven by “the masses” (i.e. C

users!). Ada and SPARK performance catch up one or two

generations later.

The Release

• Check out www.skein-hash.info

• Download the whole thing – sources, test cases, proofs –

the lot.

• All results are reproducible using the GPL 2011 Editions of

GNAT and SPARK Toolsets.

http://www.skein-hash.info/
http://www.skein-hash.info/
http://www.skein-hash.info/

Conclusions and Further Work

• Well...it worked.

• Formal – Yes…

• Readable – Well…I think so…

• Portable – Yes…

• Fast – As good as we could have expected…

• Empirical – Yes...

Conclusions and Further Work

• Further work - SPARK:

– One procedure takes an hour to prove on the test

machine. Definite Simplifier problem here. Work

on-going to fix this.

– Several other Simplifier improvements identified.

– Several Proof Checker improvements identified.

Conclusions and Further Work

• Further work - Proof:

– Re-prove all VCs using SMT-based provers, such as

Z3 or Yices. Initial results look good.

– Z3 can prove all 23 VCs where we had to use the

Checker.

– BUT..this only works after you’ve toiled to find the

“just right” loop invariants, so not a free lunch.

– Automated help in finding (non-linear) loop-

invariants is sorely missing in SPARK right now.

Help please!

Conclusions and Further Work

• Further work – SHA-3:

– Those with C tools – please verify the C reference

implementations…

– Other SHA-3 candidates

•Repeat the experiment for the other “final five”

SHA-3 candidate algorithms.

•How many bugs will we find?

– (Student project anyone?)

Copyright © Altran Praxis

Altran Praxis Limited
20 Manvers Street

Bath BA1 1PX

United Kingdom

Telephone: +44 (0) 1225 466991

Facsimile: +44 (0) 1225 469006

Website: www.altran-praxis.com

Email: rod.chapman@altran-praxis.com

