
Proving Security Properties of C
Programs Using VCC

François Dupressoir
FMATS workshop

7-8 December 2011, Cambridge

Problem

• Given a C program that uses cryptography,
prove that it enjoys certain security properties
(authentication, confidentiality)

• We will assume security and correctness of
the cryptographic primitive implementations

• Start with symbolic models of cryptography,
and generalize to computational models

Related Work

• Model Extraction: whole-program analysis, no specification
needed
– Csur (Goubault-Larrecq & Parrennes, 2005)
– Aspier (Chaki & Datta, 2009)
– Csec-Modex (Aizatulin et al., 2011)
– Elyjah (O’Shea), FS2PV/CV (Bhargavan et al.)

• Security by Typing: local, invariant-based analysis,
specification needed
– F7 (Bhargavan et al., 2008)

• Invariants on global log encode acceptable use of cryptography
• Refinement types used to verify the program respects the invariants

– Invariants can model symbolic crypto or ideal functionalities
(Fournet et al., 2011)

General-Purpose C Verification

• Advantages:
– Benefit from the properties of existing tools:

• parsing, semantic peculiarities…
• modularity
• soundness for trace properties

– Benefit from future tool developments:
• performance improvements
• new features (relational properties, information-flow…)

• Drawbacks:
– Everything is proved by the tool (annotation cost)
– Legacy code may be difficult to deal with (understand)

SYMBOLIC SECURITY

CSF 2011, with A. Gordon, J. Jürjens and D. Naumann

Motivation

• Have automated tool support:

– TAPS, ProVerif, LySa…

• Can be introduced by developers:

– OpenSSL signature API misuse (January 2009)

• Despite tool support, bugs still appear in
recent protocol specifications (HTTPS, TPM)

Some Notes

• We prove authentication as non-injective
correspondences

– If event End happens, then event Begin has
happened in the past

• We do not use end events, we assert where
desired that a begin event has been executed

• We prove weak secrecy (full disclosure)

Cryptographic Model

• Build an inductive model of the cryptography used in the
protocol:
– Literals are given a unique usage
– Protocol events and key creation and compromise are logged in

a set of events
– Usages and log yield several predicates

• “Payload k p Log”: k can be used to protect p in state Log
• “Release k Log”: k can be released to attacker in state Log

– Payload predicate will serve as precondition to cryptographic
operations

• Security properties are theorems in this model
– We can build and prove in Coq
– Or we can try to do it in VCC

Proving Security of C Programs

• Security model and theorems as ghost code
• Formalizing symbolic assumptions:

– Symbolic cryptography works on algebraic terms
– C code manipulates bounded bytestrings
– We keep a ghost table ensuring a one-to-one mapping

• Modelling the attacker:
– All symbolic attackers should be considered
– VCC only guarantees soundness when the whole

process/environment is verified
– We convince you that any symbolic attacker can be written

as a C program and verified

• By refinement (Polikarpova & Moskal, VSTTE 2012)

Example Security Result
Attacker Shim Partial Client Code

Experimental Results

• In Dupressoir et al, CSF’11:
– HMAC-based authenticated RPC:

• ~150 LoC, ~1 LoA/LoC + model, < 10 minutes

– Otway-Rees:
• ~300 LoC, ~1 LoA/LoC + model, ~1 hour

• In Aizatulin et al, FAST’11:
– Encryption-based authenticated RPC:

• Written to be challenging (parsing is inlined, crypto is hard)
• ~300 LoC, ~1 LoA/LoC + model

– most functions: < 10 s
– request sending: ~10 min
– request parsing: runs out of memory

Remaining Problems

• Verification: performance is an issue
– we could specialize contracts, but lose modularity

• It is relatively easy for the attacker to violate the
symbolic assumptions
– for example, concrete format of pairs is known

• Weak secrecy may not be the most realistic
notion of secrecy for protocols
– partial leakage is not considered

– a more realistic notion: indistinguishability
(observational equivalence)

COMPUTATIONAL SECURITY

Work in progress,

with Ernie Cohen, Cédric Fournet, Andy Gordon and Michał Moskal

Computational Cryptography

• Adversary: polynomial-time probabilistic program

• Security properties are negative and probabilistic:
– An adversary that has access to a signing oracle can

only forge a new signature for a message with
negligible probability (INT-CMA)

– An adversary that has access to a left-right encryption
oracle can only distinguish between the left and right
implementations with negligible probability (IND-CPA)

• We need to remove all concurrency: network
send and receive become control primitives

Ideal Functionalities

• Given concrete cryptographic functions, build an
idealized version that is trivially secure

– For example, ideal encryption encrypts zeroes instead
of the plaintext (and decryption is a table lookup)

• The assumption is that the ideal functionality
cannot be distinguished from the concrete one

• Ideal functionalities can often be given types
suitable for security verification by typing

• It works in F# (Fournet et al., 2011)

But… Why?

• To get stronger security guarantees, we need
to look at indistinguishability properties

• Given ideal functionalities, the real difficulty is
in proving that the only flows from the secrets
to the adversary are through the cryptography
– this is indistinguishability

– note that this is not “absence of flows”

• If we do things properly, we still get to fall
back on symbolic cryptography if we fail

Proving Indistinguishability on C
Programs

• Ideally, relational verification:
– Assertions, post-conditions over pairs of runs

– No tool support, benefit/cost rather low for general-
purpose verifiers to implement

• The work on F# uses type parametricity:
– The return value of a function cannot depend on the

value of an argument that is abstractly typed

– Types in C?

– What happens when the memory doesn’t get wiped?

– There are more fun things going on

A Solution

• Write an abstract version of the code
– Ghost VCC code
– Operates on values, not memory
– Has abstract types (perhaps even parametricity?)

• Somehow verify indistinguishability properties on the
abstract code
– Thinking of translating between VCC and F#

• Prove that the C code is a precise refinement of its
ghost abstraction

– 𝑓𝑐 𝑖𝑛 = 𝛾 𝑓𝑎 𝛼 𝑖𝑛
– Need to capture all adversary channels (network, errors…)

A (non-ideal) Solution

• All functions in the system under study need
to be deterministic

– Probabilities don’t count

– But implementation-specific stuff gets in the spec

• All functions in the system need to be looked
at in that much detail

– Even the one that reports the chip’s capabilities?

• Reviving the flow analysis would help

A (pretty good) Solution:
A Scenario

• You are developing a specification for a new
security-critical piece of software/hardware

• Someone has been pushing for
– An executable spec to reduce ambiguities

– Some formal guarantees

• Write
– A formal spec in F#, along with a computational

security proof, intended to convince academics

– A C implementation, verified to precisely refine the F#
specification, intended to be used by developers

Conclusion

• We can prove symbolic security properties of C code
that uses cryptography
– Room for performance improvements
– Could use automated inference of memory-safety
– This is not VCC specific

• We are making progress towards proofs of
computational security properties
– Main problem lies in proving non-trace properties using a

trace property verifier

• We are looking for small pieces of real code
– http://research.microsoft.com/en-us/projects/csec-

challenge/

http://research.microsoft.com/en-us/projects/csec-challenge/
http://research.microsoft.com/en-us/projects/csec-challenge/
http://research.microsoft.com/en-us/projects/csec-challenge/
http://research.microsoft.com/en-us/projects/csec-challenge/
http://research.microsoft.com/en-us/projects/csec-challenge/

