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Problem 

• Given a C program that uses cryptography, 
prove that it enjoys certain security properties 
(authentication, confidentiality) 

• We will assume security and correctness of 
the cryptographic primitive implementations 

• Start with symbolic models of cryptography, 
and generalize to computational models 



Related Work 

• Model Extraction: whole-program analysis, no specification 
needed 
– Csur (Goubault-Larrecq & Parrennes, 2005) 
– Aspier (Chaki & Datta, 2009) 
– Csec-Modex (Aizatulin et al., 2011) 
– Elyjah (O’Shea), FS2PV/CV (Bhargavan et al.) 

• Security by Typing: local, invariant-based analysis, 
specification needed 
– F7 (Bhargavan et al., 2008) 

• Invariants on global log encode acceptable use of cryptography 
• Refinement types used to verify the program respects the invariants 

– Invariants can model symbolic crypto or ideal functionalities 
(Fournet et al., 2011) 

 



General-Purpose C Verification 

• Advantages: 
– Benefit from the properties of existing tools: 

• parsing, semantic peculiarities… 
• modularity 
• soundness for trace properties 

– Benefit from future tool developments: 
• performance improvements 
• new features (relational properties, information-flow…) 

• Drawbacks: 
– Everything is proved by the tool (annotation cost) 
– Legacy code may be difficult to deal with (understand) 



SYMBOLIC SECURITY 

CSF 2011, with A. Gordon, J. Jürjens and D. Naumann 



Motivation 

• Have automated tool support: 

– TAPS, ProVerif, LySa… 

• Can be introduced by developers: 

– OpenSSL signature API misuse (January 2009) 

• Despite tool support, bugs still appear in 
recent protocol specifications (HTTPS, TPM) 



Some Notes 

• We prove authentication as non-injective 
correspondences 

– If event End happens, then event Begin has 
happened in the past 

• We do not use end events, we assert where 
desired that a begin event has been executed 

• We prove weak secrecy (full disclosure) 



Cryptographic Model 

• Build an inductive model of the cryptography used in the 
protocol: 
– Literals are given a unique usage 
– Protocol events and key creation and compromise are logged in 

a set of events 
– Usages and log yield several predicates 

• “Payload k p Log”: k can be used to protect p in state Log 
• “Release k Log”: k can be released to attacker in state Log 

– Payload predicate will serve as precondition to cryptographic 
operations 

• Security properties are theorems in this model 
– We can build and prove in Coq 
– Or we can try to do it in VCC  



Proving Security of C Programs 

• Security model and theorems as ghost code 
• Formalizing symbolic assumptions: 

– Symbolic cryptography works on algebraic terms 
– C code manipulates bounded bytestrings 
– We keep a ghost table ensuring a one-to-one mapping 

• Modelling the attacker: 
– All symbolic attackers should be considered 
– VCC only guarantees soundness when the whole 

process/environment is verified 
– We convince you that any symbolic attacker can be written 

as a C program and verified 

• By refinement (Polikarpova & Moskal, VSTTE 2012) 
 



Example Security Result 
Attacker Shim Partial Client Code 



Experimental Results 

• In Dupressoir et al, CSF’11: 
– HMAC-based authenticated RPC: 

• ~150 LoC, ~1 LoA/LoC + model, < 10 minutes 

– Otway-Rees: 
• ~300 LoC, ~1 LoA/LoC + model, ~1 hour 

• In Aizatulin et al, FAST’11: 
– Encryption-based authenticated RPC: 

• Written to be challenging (parsing is inlined, crypto is hard) 
• ~300 LoC, ~1 LoA/LoC + model 

– most functions: < 10 s 
– request sending: ~10 min 
– request parsing: runs out of memory 



Remaining Problems 

• Verification: performance is an issue 
– we could specialize contracts, but lose modularity 

• It is relatively easy for the attacker to violate the 
symbolic assumptions 
– for example, concrete format of pairs is known 

• Weak secrecy may not be the most realistic 
notion of secrecy for protocols 
– partial leakage is not considered 

– a more realistic notion: indistinguishability 
(observational equivalence) 



COMPUTATIONAL SECURITY 

Work in progress, 

with Ernie Cohen, Cédric Fournet, Andy Gordon and Michał Moskal 



Computational Cryptography 

• Adversary: polynomial-time probabilistic program 

• Security properties are negative and probabilistic: 
– An adversary that has access to a signing oracle can 

only forge a new signature for a message with 
negligible probability (INT-CMA) 

– An adversary that has access to a left-right encryption 
oracle can only distinguish between the left and right 
implementations with negligible probability (IND-CPA) 

• We need to remove all concurrency: network 
send and receive become control primitives 



Ideal Functionalities 

• Given concrete cryptographic functions, build an 
idealized version that is trivially secure 

– For example, ideal encryption encrypts zeroes instead 
of the plaintext (and decryption is a table lookup) 

• The assumption is that the ideal functionality 
cannot be distinguished from the concrete one 

• Ideal functionalities can often be given types 
suitable for security verification by typing 

• It works in F# (Fournet et al., 2011) 



But… Why? 

• To get stronger security guarantees, we need 
to look at indistinguishability properties 

• Given ideal functionalities, the real difficulty is 
in proving that the only flows from the secrets 
to the adversary are through the cryptography 
– this is indistinguishability 

– note that this is not “absence of flows” 

• If we do things properly, we still get to fall 
back on symbolic cryptography if we fail 



Proving Indistinguishability on C 
Programs 

• Ideally, relational verification: 
– Assertions, post-conditions over pairs of runs 

– No tool support, benefit/cost rather low for general-
purpose verifiers to implement 

• The  work on F# uses type parametricity: 
– The return value of a function cannot depend on the 

value of an argument that is abstractly typed 

– Types in C? 

– What happens when the memory doesn’t get wiped? 

– There are more fun things going on 



A Solution 

• Write an abstract version of the code 
– Ghost VCC code 
– Operates on values, not memory 
– Has abstract types (perhaps even parametricity?) 

• Somehow verify indistinguishability properties on the 
abstract code 
– Thinking of translating between VCC and F# 

• Prove that the C code is a precise refinement of its 
ghost abstraction 

– 𝑓𝑐 𝑖𝑛 = 𝛾 𝑓𝑎 𝛼 𝑖𝑛  
– Need to capture all adversary channels (network, errors…) 

 



A (non-ideal) Solution 

• All functions in the system under study need 
to be deterministic 

– Probabilities don’t count 

– But implementation-specific stuff gets in the spec 

• All functions in the system need to be looked 
at in that much detail 

– Even the one that reports the chip’s capabilities? 

• Reviving the flow analysis would help 



A (pretty good) Solution: 
A Scenario 

• You are developing a specification for a new 
security-critical piece of software/hardware 

• Someone has been pushing for 
– An executable spec to reduce ambiguities 

– Some formal guarantees 

• Write 
– A formal spec in F#, along with a computational 

security proof, intended to convince academics 

– A C implementation, verified to precisely refine the F# 
specification, intended to be used by developers 

 



Conclusion 

• We can prove symbolic security properties of C code 
that uses cryptography 
– Room for performance improvements 
– Could use automated inference of memory-safety 
– This is not VCC specific 

• We are making progress towards proofs of 
computational security properties 
– Main problem lies in proving non-trace properties using a 

trace property verifier 

• We are looking for small pieces of real code 
– http://research.microsoft.com/en-us/projects/csec-

challenge/ 
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