
Formal Methods for Security

Erik Poll

Digital Security group

Radboud University Nijmegen

FMATS workshop, December 2011

Overview

• Formal methods
• in general and for security

• Case studies: formal methods for security protocols
• to illustrate the different ways in formal methods can be used

• based on our group’s formal & informal investigations

Erik Poll, FMATS 2011 2

Erik Poll, FMATS 2011 3

Formal Methods for Structural Engineering

Formal methods involve models of which properties (eg bridge won’t collapse)
can be specified and verified (modulo modelling & abstraction errors)
using some methodology/theory

 F1 + FM = 2 * sin β * F2 F1 = L * H * ρ ….

Starting point for all: specification
• which for a bridge is very simple & unchanged for ages

M

FM F1

F2F2

β

productmodel

Erik Poll, FMATS 2011 4

Formal Methods for Software Engineering??

specs
incl. functional requirements
 security requirements

product,
ie code

model??

properties??

Erik Poll, FMATS 2011 5

From specs to code

candidate formal models?

code itself is also
possible formal
model !

Erik Poll, FMATS 2011 6

Formal methods at different levels

• Formal methods for programming languages, eg

• type system to rule out buffer overflows

• static analysis to detect XSS vulnerabilities

• Formal methods for abstract algorithms & protocols, eg

• prove that your shortest path algorithm is functionally correct

• prove that HTTPS is secure

• Formal methods for programs, eg

• prove that a program never throws a NullPointerException

• prove that a program correctly implements HTTPS

security vs correctness

• A program is correct if it does what it should do

• ie. presence of the right behaviour, under normal circumstances
• A program is secure if it is does not do what it should not do

• ie. absence of insecure behaviour, under any circumstances
• easy to overlook, and hard to check (eg by testing)

• A program also has to be correct for it to be secure?

Good news: some (generic) security requirements are independent of any
detailed functional spec (eg absence of integer overflows)

Bad news: security requirements may be hard to pin down
 (what does it mean for a system to be secure?)

Erik Poll, FMATS 2011 7

Case studies:
formal methods for
(implementations of)

security protocols

Erik Poll, FMATS 2011 8

Security protocols

• Why security protocols?

• they are security-critical components in systems

• eg HTTPS, EMV (Chip & PIN), electronic passports, …
• they are small but complex

• they have clear security objectives

Note:

• forget about crypto, it’s the protocols that matter!

• we can study the abstract protocols, or their concrete implementations

• NB

Erik Poll, FMATS 2011 9

Potential problems in security protocols

1. using insecure cryptographic primitives (eg. Oyster card)

2. using default keys (eg. lots of systems)

3. using an buggy protocol. Security protocols are tricky to get right!

4. using an buggy implementation. Software bugs can break

a) correctness
Easy to detect, since the implementation won’t work

b) security, by erroneously accepting or crashing on

• incorrect (malformed) message or
• incorrect order of messages.

 This is harder to detect, since the implementation will work

Erik Poll, FMATS 2011 10

Some example formal models for security protocols

Alice-Bob notation
1. A -> B: start session

2. B -> A: ok

3. A -> B: NonceA

4. B -> A: encryptKEY(NonceA)

5. A -> B: …

6. B -> A: …

state machines / automata

Erik Poll, FMATS 2011 11

Such (partial) models capture different aspects
and hence can be used for different goals
and in different ways (see next slides)

I. Security Protocol Analysis

• Given a formal description of the abstract security protocol, eg.
 in Alice-Bob notation, we can formally analyse some of its properties

• possible using tool support

 Eg next talk by Joeri de Ruiter, and plenty of others.

Erik Poll, FMATS 2011 12

II. Model based testing

• We automatically test if implementation conforms to the model

• we feed randomly generated inputs to both model and code, and check
if they behave the same

• the model is used as test oracle
• possibly also for generating tests & measuring test coverage

• by aggressively testing many (all?) possible sequences we can test for
security as well as correctness – “state-based” fuzzing

• Eg we have done this for the electronic passport. [W.Mostowski et al, FMICS 2009]

 Erik Poll, FMATS 2011 13

TorXakis tool

III. Program verification

• A more rigorous form of checking compliance of code & model:
formal verification (with mathematical proof) that the code conforms to
the model

• Eg for a Java implementation of SSH [E.Poll and A.Schubert, WITS 2007]

A formal model can also be used, informally, by a human code reviewer

Erik Poll, FMATS 2011 14

automated
program verifier
ESC/Java2

OK

JML specs

III. Program verification

• Even without any formal model, we can use formal verification to verify
that the code meets some security property

 Problem: what do we want to verify anyway?

Erik Poll, FMATS 2011 15

automated
program verifier
eg ESC/Java2

OK
security property
eg in JML

III. Program specification: what to verify?

Typical easy properties to begin specifying:

 (i) important invariants (ii) absence of runtime exceptions

plus the additional preconditions and invariants this requires.

public class ElectronicPurse extends javacard.framework.Applet {

 private int balance; //@ invariant 0 <= balance;

 //@ requires buffer != null && 0 <= offset && offset+length <=
buffer.length;

 public static void install (byte[] buffer, short offset, byte length) {

 ….}
Erik Poll, FMATS 2011 16

IV. Model extraction

• Automated learning techniques can be used (in combination with model-
based testing) to infer an automaton for an implementation’s behaviour

Erik Poll, FMATS 2011 17

Automaton learned from a Dutch EMV bankcard
[Fides Aarts et al, ISoLA'10]

Erik Poll, FMATS 2011
18

Conclusions
• Central challenges

• does code meet the specs?

• do specs & code not overlook
 or introduce security problems?

• Formal models & methods can help in different ways

specs code

models

analyse generate

extract

compare, by
•testing
•code review
•verification

code

analyse

?

specs

	Formal Methods for Security
	Overview
	Formal Methods for Structural Engineering
	Formal Methods for Software Engineering??
	From specs to code
	Formal methods at different levels
	security vs correctness
	Case studies: formal methods for (implementations of) security protocols
	Security protocols
	Potential problems in security protocols
	Some example formal models for security protocols
	I. Security Protocol Analysis
	II. Model based testing
	III. Program verification
	Slide 15
	III. Program specification: what to verify?
	IV. Model extraction
	Conclusions

