
Lecture 9

0

�-reduction as evaluation
x If E1 �! E2u E2 got from E1 by `evaluation'u If no (�- or �-) redexes in E2 then it's `fully evaluated'x a �-expression is said to be in normal form if itcontains no �- or �-redexesu i.e. if the only conversion rule that can be applied is�-conversionu a �-expression in normal form is `fully evaluated'x Examples:u Church numerals are all in normal formu (�x: x) 0 is not in normal formx Can also de�ne `�-normal form'

1

Church Rosser Theorem
x Statement of the Church-Rosser theorem:If E1 = E2 then there exists an E such thatE1 �! E and E2 �! Ex Suppose normal forms E1 and E2 are obtainedfrom E by sequences of conversionsu hence E = E1 and E = E2u hence E1 = E2u By Church-Rosser theorem there exists an expres-sion E0u E1 �! E 0 and E2 �! E 0u the only redexes E1 and E2 can contain are �-redexesu so only way that E1 and E2 can be reduced to E0 isby �-conversionu so E1 and E2 must be the same up to renaming ofbound variables

2

Parallel evaluation
x Suppose E is `evaluated' in two di�erent waysby applying di�erent sequences of reductionsuntil normal forms E1 and E2 are obtainedx The Church-Rosser theorem shows that E1 and E2will be the sameu up to �-conversionu i.e. except for having possibly di�erent names ofbound variablesx Because the results of reductions do not dependon the order in which they are done, separateredexes can be evaluated in parallelu suggests multiprocessor achitecturesu distributing redexes to processors and collecting re-sults may cancel out theoretical advantages

3

Church numerals are not equal
x Suppose m 6= n but m = nx By the Church-Rosser theorem m �! E andn �! E for some Ex Consider de�nitions of m and nm = �f x: fm xn = �f x: fn x
x no such E can existx only conversions applicable to m and n are �-conversionsx these cannot change the number of function ap-plications in an expression(m contains m applications and n contains n ap-plications)

4

Corollaries to Church-Rosser Theorem
x De�nition: E has a normal form if E = E 0 forsome E 0 in normal formx If E has a normal form then E �! E 0 for someE 0 in normal formu If E has a normal form then E = E0 for some E0 innormal formu by Church-Rosser theorem there exists E00 such thatE �! E00 and E0 �! E00u as E0 in normal form only redexes in it are �-redexesu so reduction E0 �! E00 must consist only of of �-conversionsu thus E00 must be identical to E0 except for renamingof bound variablesu it must thus be in normal form as E 0 is

5

Corollaries to CR continued
x If E has a normal form and E = E 0 then E 0 hasa normal formu suppose E has a normal form and E = E0u As E has a normal form, E = E00 where E00 is innormal formu hence E0 = E00 by the transitivity of =u so E0 has a normal formx If E = E 0 and E and E 0 are both in normal form,then E and E 0 are identical up to �-conversionu by Church-Rosser there exists E00 such that E �! E00and E0 �! E00u if E and E0 are in normal form, then reductions toE00 must be �-reductionsu so E and E0 are convertable to each other via �-conversions

6

Exercises
x For each of the following either �nd its normalform or show that it has no normal form:(i) add 3(ii) add 3 5(iii) (�x: x x) (�x: x)(iv) (�x: x x) (�x: x x)(v) Y(vi) Y (�y: y)(vii) Y (�f x: (iszero x! 0 j f (pre x))) 7

7

Non-termination
x A �-expression E can have a normal formu even if there's an in�nite sequence E �! E1 �! E2 � � �x Example:u (�x: 1) (Y f) has a normal form 1u even though:(�x: 1) (Y f) �! (�x: 1) (f (Y f)) �! � � � (�x: 1) (fn (Y f)) �! � � �

8

Normalisation theorem
x If E has a normal form, thenu repeatedly reducing the leftmost �- or �-redex willterminate with an expression in normal formx Normalisation theorem gives an algorithm forcomputing normal forms (when they exist)x A sequence of reductions in which the leftmostredex is always reduced is called a normal orderreduction sequencex Normalization theorem says thatu if E has a normal formu then it is got by normal order reduction

9

Ine�ciencies
x Normal order reduction often ine�cientx Example: by normal order reduction:(�x:gxg xg) Eis reduced to gE gE gu suppose E is not in normal formu more e�cient to �rst reduce E to normal form E0u then reduce (�x:g xgxg) E0to gE0gE0gu avoid reducing E twiceu this is what ML does

10

Call-by-Value
x ML reduces arguments before substitutingu disastrous in cases like (�x:1) ((�x: x x) (�x: x x))x Di�cult problem to a �nd an optimal algorithmfor choosing the next redex to reducex Call-by-value is appropriate when the languagehas constructs with side e�ectsu e.g. assignments, as in MLx Normal order evaluation is not as ine�cient asone might thinku cunning implementation tricks like graph reductionx Whether functional programming languagesshould use normal order or call by value is stilla controversial issue

11

On `unde�ned' �-expressions
x E1 may not have a normal form even thoughE1 E2 does have onex Exampleu Y has no normal form,u but Y (�x: 1) �! 1x �-expressions without a normal form are not`unde�ned' functionsu Y has no normal form but it denotes a perfectly wellde�ned function

12

Head normal form
x A �-expression denotes an unde�ned functionif and only if it cannot be converted to an ex-pression in head normal formx E is in head normal form if it has the form�V1 � � � Vm: V E1 � � � Enu where V1, : : : , Vm and V are variablesu and E1, : : : , En are �-expressionsu V can either be equal to Vi, for some i, or it can bedistinct from all of them

13

De�nedness of Y
x Y is not unde�ned because it can be convertedto �f: f ((�x: f(x x)) (�x: f(x x)))u this is in head normal formx Can be shown that an expression E has a headnormal formu if and only if there exist expressions E1, : : : , Enu such that E E1 : : : En has a normal formx This supports the interpretation of expressionswithout head normal forms as denoting unde-�ned functionsu E being unde�ned means that E E1 : : : En neverterminates for any E1, : : : , En

14

Programming reduction in ML
x Recalldatatype lam = Var of string| App of (lam * lam)| Abs of (string * lam);x E[E 0=V] computed by Subst E E' Vx Normal order reduction in MLfun EvalN (e as Var _) = e| EvalN (Abs(x,e)) = Abs(x, EvalN e)| EvalN (App(e1,e2)) =case EvalN e1of (Abs(x,e3)) => EvalN(Subst e3 e2 x)| e1' => App(e1', EvalN e2);> val EvalN = fn : lam -> lam

15

Applicative (call-by-value) order
x With call-by-value, function bodies are notevaluatedfun EvalV (e as Var _) = e| EvalV (e as Abs(_,_)) = e| EvalV (App(e1,e2)) =let val e2' = EvalV e2in(case EvalV e1of (Abs(x,e3)) => EvalV(Subst e3 e2' x)| e1' => App(e1',e2'))end;> EvalV = fn : lam -> lam

16

