Lecture 9

A-reduction as evaluation

o If E,— Ey
e [got from FE; by ‘evaluation’
e If no (- or 7-) redexes in F, then it’s ‘fully evaluated’
® a)\-expression is said to be in normal form if it
contains no 3- or np-redexes

e i.e. if the only conversion rule that can be applied is
a-conversion

e a A-expression in normal form is ‘fully evaluated’

e Examples:

e¢ Church numerals are all in normal form

e (Az. x) 0 is not in normal form

e (Can also define ‘é-normal form’

Church Rosser Theorem

e Statement of the Church-Rosser theorem:

If £ = E5 then there exists an F such that
E,— F and Ey — FE

e Suppose normal forms E; and F, are obtained
from E by sequences of conversions

e hence £ = F; and E = E»
e hence F; = E)

e By Church-Rosser theorem there exists an expres-
sion F'

e i — F and Ey — F'

e the only redexes E; and E5 can contain are a-redexes

e so only way that F; and F; can be reduced to F’ is
by a-conversion

e so Iy and E; must be the same up to renaming of
bound variables

Parallel evaluation

® Suppose F is ‘evaluated’ in two different ways
by applying different sequences of reductions
until normal forms £; and F, are obtained

® The Church-Rosser theorem shows that £, and Es
will be the same

e up to a-conversion

e i.e. except for having possibly different names of
bound variables

e Because the results of reductions do not depend
on the order in which they are done, separate
redexes can be evaluated in parallel

e suggests multiprocessor achitectures

e distributing redexes to processors and collecting re-
sults may cancel out theoretical advantages

Church numerals are not equal

® Suppose m #n but m =n

e By the Church-Rosser theorem m — E and
n — F for some E

e (Consider definitions of m and n
m=Afx. f"«x
n=Az. f"x

® no such £ can exist

e only conversions applicable to m and n are o-
conversions

e these cannot change the number of function ap-
plications in an expression
(m contains m applications and n contains n ap-
plications)

Corollaries to Church-Rosser Theorem

e Definition: FE has a normal form if E = E' for
some F’ in normal form

e If £ has a normal form then £ — E’ for some
E’ in normal form

e If Y/ has a normal form then F = E’ for some £’ in
normal form

e by Church-Rosser theorem there exists £” such that
FE — E" and ' — E"

e as F' in normal form only redexes in it are a-redexes

e so reduction £/ — E” must consist only of of a-
conversions

e thus £ must be identical to £’ except for renaming
of bound variables

e it must thus be in normal form as E’ is

Corollaries to CR continued

e If £ has a normal form and E = E’ then E’ has
a normal form

e suppose F has a normal form and F = F’

e As F has a normal form, £ = E” where E" is in
normal form

e hence F' = " by the transitivity of =

e so F' has a normal form

e If ¥ = F' and F and E' are both in normal form,
then F and E’ are identical up to a-conversion

e by Church-Rosser there exists £ such that £ — E”
and £/ — E"

e if ¥ and F’ are in normal form, then reductions to
E" must be a-reductions

e so FF and E’' are convertable to each other via «-
conversions

Exercises

e For each of the following ecither find its normal
form or show that it has no normal form:

(i) add 3
(ii) add 3 5
(iii) (A\x. z =) (Az. x)
(iv) (Az. z) (A\z. = x)
(v) Y
(vi) Y (Ay.)
(vii) Y (A\f z. (iszero x — 0] f (pre z))) 7

Non-termination

® A)-expression £ can have a normal form

e even if there’s an infinite sequence £ — | — Ey - -

e Example:
e (Az. 1) (Y f) has a normal form 1

e even though:

Dz D) (Y) — Oz D) (fF (Y f)) — - (Aa. 1) (f* (Y f)) — - -

Normalisation theorem

e If £ has a normal form, then

e repeatedly reducing the leftmost (3- or n-redex will
terminate with an expression in normal form

e Normalisation theorem gives an algorithm for
computing normal forms (when they exist)

® A sequence of reductions in which the leftmost
redex is always reduced is called a normal order
reduction sequence

e Normalization theorem says that

e if /¥ has a normal form

e then it is got by normal order reduction

Inefficiencies

e Normal order reduction often inefficient

e Example: by normal order reduction:
(Ae. —x —xz) FE
is reduced to

Y D D

e suppose F is not in normal form

e more efficient to first reduce E to normal form E’

e then reduce
Az, —xz —x) F

to
Y N

e avoid reducing F twice

e this is what ML does

10

Call-by-Value

® ML reduces arguments before substituting

e disastrous in cases like (Az.1) ((Az. z z) (A\z. = 7))

e Difficult problem to a find an optimal algorithm
for choosing the next redex to reduce

e C(Call-by-value is appropriate when the language
has constructs with side effects

e e.g. assignments, as in ML

e Normal order evaluation is not as inefficient as
one might think

e cunning implementation tricks like graph reduction

® Whether functional programming languages
should use normal order or call by value is still
a controversial issue

11

On ‘undefined’ A-expressions

F1 may not have a normal form even though
FE, E> does have one

Example
e Y has no normal form,
e but Y (Az. 1) —1

A-expressions without a normal form are not
‘undefined’ functions

e Y has no normal form but it denotes a perfectly well
defined function

12

Head normal form

e A)-expression denotes an undefined function
if and only if it cannot be converted to an ex-
pression in head normal form

® [/ is in head normal form if it has the form

AV, - V. VE, - E,

e where Vi, ..., V,, and V are variables
e and F,, ..., E, are \-expressions

e I/ can either be equal to V;, for some i, or it can be
distinct from all of them

13

Definedness of Y

® Y is not undefined because it can be converted
to

M- f Q. flzz) Az f(z 2)))

e this is in head normal form

e Can be shown that an expression E has a head
normal form

e if and only if there exist expressions F1, ..., F,
e such that £ F; ... E, has a normal form
e This supports the interpretation of expressions

without head normal forms as denoting unde-
fined functions

e I/ being undefined means that £ F; ... E, never
terminates for any F1, ...,),

14

Programming reduction in ML

e Recall

datatype lam = Var of string
| App of (lam * lam)
| Abs of (string * lam);

e F[E'/V] computed by Subst E E’ V

e Normal order reduction in ML

fun EvalN (e as Var _) = e
| EvalN (Abs(x,e)) = Abs(x, EvallN e)
| EvalN (App(el,e2)) =
case EvallN el
of (Abs(x,e3)) => EvalN(Subst e3 e2 x)
| el’ => App(el’, EvallN e2);
> val EvalN = fn : lam -> lam

15

Applicative (call-by-value) order

e With call-by-value, function bodies are not
evaluated

fun EvalV (e as Var _) = e
| EvalV (e as Abs(_,_)) = e
| EvalV (App(el,e2)) =
let val e2’ = EvalV e2
in
(case EvalV el
of (Abs(x,e3)) => EvalV(Subst e3 e2’ x)
I el’ => App(el’,e2’))
end;
> EvalV = fn : lam -> lam

16

