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Executing the formal semantics
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t work with Joe Hurd & Konrad Slind —
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Executing the formal semantics
of the Accellera Property Specification Language

t work with Joe Hurd & Konrad Slind —

— join

from LRM

» Input ‘golden’ semantics
» Perform mechanised proof

» (Generate tools
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Goals and non-Goals

» Goalis to show formal semantics is not just documentation

e can run the Language Reference Manual (LRM)

» Correctness primary, efficiency secondary

e but need sufficient efficiency!

» Programming methodology, not new verification algorithms
e EDA tools with theorem prover inside (c.f. PROSPER)




Accellera’s PSL (formerly IBM’s Sugar 2.0)

» PSL is a property specification language combining

e boolean expressions (Verilog syntax)
e patterns (Sequential Extended Regular Expressions SERES)
e LTL formulas (Foundation language FL)
e CTL formulas (Optional Branching Extension OBE)

» Designed both for model checking and simulation testbenches

» Intended to be the industry standard
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Official semantics of PSL
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Generating PSL tools

Official semantics of PSL
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ompile properties to HDL checkers (idea from FoCs

» | TOOLS: check OBE properties against a model (Amjad’s PhD




Tools use standard algorithms

» TOOL1: semantic calculator
e match regexps using automata; evaluate formulas recursively
e automata constructed and executed by proof inside HOL

» TOOL2: checker compiler
e compile regexps to automata, then ‘pretty print’ to HDL (Verilog)
e treatment of formulas incomplete and ad hoc

» TOOLS: symbolic model checker
e classical McMillan-style u-calculus checker
e uses BDD representation judgements to link HOL terms to BDDs
e see Gordon (TPHOLs2001), Amjad (TPHOLs2003)

» No new algorithms, but maybe a new kind of logic programming




Our theorem proving infrastructure (HOL) =

» Standard ML infrastructure to interactively prove I ¢
e tis aterm of higher order logic

e proof is ‘fully-expansive’ — a sequence of primitive inference steps

» Logic is typed
e type system supports user-defined datatypes

e example: define types of PSL expressions, SEREs and formulas

» Contains the usual proof tools
e simplifier (rewriter)
e decision procedures for subsets of natural numbers, integers, reals

e first order reasoners (inspired by Isabelle)




Heroic proofs versus logic programming Lo,

» Theorem proving often associated with heroic proofs

e e.g. Godel’'s theorem (Shankar), relative consistency of AC (Paulson)

» We are not doing heroic proofs, but a kind of logic programming

e computation by deduction

» HOL has a relatively fast call-by-value symbolic evaluator EVAL
e by Bruno Barras using Coq technology (explicit substitutions)
e doesn’t compete with ACL2 or PVS ground evaluators (or C, C++)
e runs ARM6 microarchitecture at a few seconds per instruction

e key tool for our PSL evalutor




Parts of semantics are directly executable

» Semantics of boolean expressions (PSL in red, HOL in blue)
(sEp =pes)AN(sE=-b=(sEb)A(sEb Nby = s =biAs = bsy)

» Fragment of semantics of formulas

(wE=Db = |w|>0Awy =Db)A
(wE N2 =wE i AwE f2)A
(wEX!'f = |w>1AwEf)

» Examples of rewriting and evaluation:

E
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» Semantics of boolean expressions (PSL in red, HOL in blue)
(sEp =pes)AN(sE=-b=(sEb)A(sEb Nby = s =biAs = bsy)

» Fragment of semantics of formulas
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Parts of semantics are directly executable

» Semantics of boolean expressions (PSL in red, HOL in blue)
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Parts of semantics are directly executable

» Semantics of boolean expressions (PSL in red, HOL in blue)
(sEp =pes)AN(sE=-b=(sEb)A(sEb Nby = s =biAs = bsy)

» Fragment of semantics of formulas

(wEb = |w|>0Awy =Db)A
(wE N2 =wE i AwE f2)A
(wEX!'f = |w>1AwEf)

» Examples of rewriting and evaluation:
FwkEpAXIf = (Jw>0Awy Ep)Alw| >1Aw! = f
E [solw EpAXIf = soEpA|lw|+1>1AwEf
= 80515253545556575889 Ep A X! f = sg =D A 515253545556578889 = f
- {al{a,b}H{b} EanX!b =T




Parts of semantics require reformulation for execution

» LRM semantics of the until-operator not directly executable
whkE[fi U f] = Fkel0.. |jw]). wt = fLAVjcl0.. k). w = fi

» Standard reformulation makes it directly executable
FwEAUf] = w>0A(wkE faVwE iAw E[fi U fl)

» If fi, fo are boolean expressions and the path is arbitrary of length 5:

= 8081828384 = |01 U bs| =
so = ba V
so =bi A(s1 FEbaV sy Ebi A
(so =baVso=bi A(ss EbaVssEbi Asy=ba)))




Matching regular expressions

» Semantics of PSL SEREs is self-explanatory

(wEb = (lw] =1) Awy E b) A
(w E7ry; o = Jwiws. (W =wiws) ANwy E 11 Aws = 12) A
(w E=1ry = Jwiwsl. (w = wi|llwy) ANwi[l] =r1 A [lwe E=12) A
(wEA{ri}|{r:} = wEmrMrVwkE”) A
(w = A{r1}&&drs} = wiEr Aw Er9) A
(w = r[*] = Jwlist. (w = Concat wlist) A\Every(Aw. w |= r)wlist)

» Make executable by proving
= Yw r. w = r = amatch(sere2regexp(r))w

where:
e sere2regexp converts a SERE to a HOL regular expression
e amatch is an executable matcher for regular expressions




Suffix implication {r}(f)

» Semantics is:
wEA{r}(f) = Vje0. |w). v Er=uw [ f

» Have defined an efficient executable function acheck so that, for example:

acheck r f |xo; =15 x2; 23] =
(amatch r [zg] = flzo; T1; T2; x3]
(amatch r |zo; 1] = flx1; x2; 23]
(amatch 7 [zo; z1; 2] = flz2; @3]

> > >

(amatch r [zo; 15 225 23] = flw3]

» Then proved
= Ywr f.wE{r}(f) = acheck(sere2regexp(r))(Ax. z = flw

» Rewrite with this, then execute




Strong suffix implication {r,} — {r,}!

» Semantics is:

w={r =l = Vie[0. |w)w Eri=3kc]j.. |w])wF=r

» Reduced to suffix implication by proving

F Ywrire.wE{ri}— {re} =w = {ri1}(—={r2}(F))

» Rewrite with this, then execute




Weak suffix implication {r;} — {ry}

» Semantics is:
wEA{r1} — {rz} =
Viel0.. |w|).
wh =y = 3k elj.. |w)wt Er)V(VE .. |w]). Iw wkw =)
» Have added a special regular expression Prefix(r) to HOL (not to PSL)
= Vrw. w = Prefix(r) = Jw.ww E=r

» Execution of w = Prefix(r) uses Dijkstra’s algorithm

» Have proved:

= Ywry ro.

w = A{r1} = {r2} =
acheck(sere2regexp 1)
(Az. x = —{r2}(F) V amatch (Prefix (sere2regexp r3)) x) w

» Rewrite with this, then execute




Remaining formulas: aborts and clocking

» Semantics of abort formulas:

w = f abort b =
wkEfVwEDLYV Jjel.|w) Ju. w EbAWT I = f

e Jw’ needs a reachability algorithm
e have implemented a partial method
e awaiting new abort semantics before attempting complete solution

» Clocked formulas f@c, f@c! can be translated to unclocked formulas
e translation to unclocked formulas is by a recursive function

e can be directly executed




Clocking

» LRM defines w = r and w (= f for arbitrary clock ¢

e clocks c are arbitrary boolean expressions
e top level default clock is T

» Semantics of clocked SEREs

wEree; = Fic0.. |w]). w E-ei[+]; o Awt E

» Semantics of clocked formulas
w e foc! = Fie 0. |Jw]). w E e [x]; e Aw' ELf

» Execute by rewriting with function 7" and then the theorems:
- VYrwwEr = wkET (1)

FVfwwEf =wkE=ET (f)




Example

» PSL Reference Manual Example 2, page 45

» Define w to be this path, sow is :

{c,clk2}{clk1}{}{clkl,a,clk2}{a}t{clkl,a,b,ct{c,clk2}{clkl,b}{b}{clkl, clk2}
» Example uses weak clocking defined by: fec = —(—fac!)

» Evaluation yields
- wé = (e A X! [a U ble(clky V clks))0(clky V clky) =T
- w! (e A X! [a U ble(clky V clky))@(clky V clky) = F (if i # 6)




SML convenient for scripting combinations of evaluations

» Example: use SML map function to generate

- wl =cA X! [a Ubleclk, =F

- wlEcAX![a Ubleclk; =F
- w2 EcAX![a Ubleclk, =F
time 0 1 2 3 4 5 6 7 8 9 L W3:TC/\X!-an-©Clkle
clkt 0 1 0 1 0 1 0 1 0 1 F wiEcAX![aUbleclk, =T
a o 0 01 1 1 0 O O O 5T : :
b 0 000 010 110 F wEcANXlaUblalk, =T
k2 100100100 1 F wWHEcAX[aUbock =
- w'EcAX![a Ubleclk; =
- w8 EcA X! [a U bleclk; =
- w? EcA X! [a Ubleclk, =
» Easy to evaluate SEREs and formulas on all subpaths of a path




Uses of TOOL1 (calculating w = / from semantics)

» Teaching and learning tool for exploring semantics
» Checking one has the right property before using it in verification

» Post simulation analysis (path is generated by simulator)
e compare with “TransEDA VN-Property” property checker and analyzer
e our tools much slower — but not necessary too slow!

e guaranteed PSL compliant by construction: golden reference




TOOL2: Compile the semantics to checkers

v v v Y

ldea pinched from IBM FoCs project
A defined operator: V r. never(r) = {T[x]; r} — {F}
Example property: never(—StoB_REQ A BtoS_ACK; StoB_REQ)

Use semantics to generate a Verilog checker

module Checker (StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK);

input StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK;
reg [1:0] state;

initial state = O;

always @ (StoB_REQ or BtoS_ACK or BtoR_REQ or RtoB_ACK)
begin
$display ("Checker: state = J0d", state);
case (state)
0: if (StoB_REQ) state 1; else if (BtoS_ACK) state
1: if (StoB_REQR) state 1; else if (BtoS_ACK) state 2; else state
2: if (StoB_REQR) state 3; else if (BtoS_ACK) state 2; else state
3: begin $display ("Checker: property violated!"); $finish; end
default: begin $display ("Checker: unknown state"); $finish; end
endcase
end

2; else state

wunn
-

endmodule




Example of how the checker works and is justified

» The following theorem is first proved

= Jw| =00 = w | never(r) =Vn. -amatch (sere2regexp T[x]; r)(w"™)

» Thus there’s an error if amatch (sere2regexp T[*]; r)(w"™) is ever true
» Generate a DFA from sere2regexp T[x]; r
» So far everything is by proof, so correct by construction

» Final step is to pretty print checker into HDL (Verilog)
e this may introduce errors
e no formal semantics of Verilog : - (

» Only have ‘proof of concept’ for checkers: more work to cover all formulas
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>

>

>
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Two tools: semantic calculator and checker generator
Correct by construction
More work needed (especially for checkers)

lllustrates new kind of logic programming using a theorem prover
e prototyping standards compliant tools
e theorem proving is slow

e maybe OK for some industrial strength performance-non-critical tools

Possible application: generate OVL checkers from PSL specifications
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Conclusions

>

>

>

>

>

Two tools: semantic calculator and checker generator
Correct by construction

More work needed (especially for checkers)

lllustrates new kind of logic programming using a theorem prover

e prototyping standards compliant tools

e theorem provingisslow ................. but not necessarily too slow

e maybe OK for some industrial strength performance-non-critical tools

Possible application: generate OVL checkers from PSL specifications

THE END



ADDITIONAL SLIDES ON HOL
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The HOL system

» Versions of the HOL system:

1. HOL88 from Cambridge
2. HOL90 from Calgary and Bell Labs

3. HOL98 from Cambridge, Glasgow and Utah.

4. HOL 4 open source project at SourceForge

B Current team ...

Developer Role/Position Location
Anthony Fox Developer UK

Peter Homeier Developer USA
Hasan Amjad Developer UK

Joe Hurd Developer UK

Ken Friis Larsen Advisor/Mentor/Consultant  Denmark
Keith Wansbrough  Developer UK
Michael Norrish Project Manager Australia
Mike Gordon Developer UK
Konrad Slind Project Manager USA

» No longer managed from Cambridge

hol.sf .net



New tools (some here, some coming soon) S=2

» New theorem proving tactics
e ordered resolution and paramodulation for equality reasoning
e time-sliced combinations of resolution and model elimination
» New decision procedure for full Presburger arithmetic
e Pugh’s “Omega Test”

» Improved support for emulating predicate subtypes
e PVS is still better : - (

» Fully-expansive model checking
e CTL checking as proof in representation judgement calculus

» Tools for ‘boolification’ to encode for BDD and SAT

e automatically generate encoders/decoders from datatype definition
e automatically generate bitvector versions of function definitions




- g
Some recent or current projects =
» \erification of AES (Rijndael) and others (Serpent, MARS, Twofish, RC6)
e synergy between symbolic execution and proof
e Slind and students (Utah)

» Memory models
e general model applied to Java threads
e Slind/Gopalakrishnan and students (Utah)

» ARM processor verification
e programmers view of ARM6 equivalent to pipelined microarchitecture
e Fox (Cambridge), Birtwistle and students (Leeds) and ARM
e future work is ESL verification using ARM model

» Verification of probabilistic algorithms
e Miller-Rabin probabilistic primality test
e Hurd (Cambridge)

» Mechanised semantics of realistic networking (UDP)
e validate operational semantics of network programming protocols
e Sewell/Wansbrough & Norrish (Cambridge & Australia)




