Semantics of commands

- **Assignments**
 \[C_{\text{sem}} (V := E) s_1 s_2 = (s_2 = s_1[(E_{\text{sem}} E s_1)/V]) \]

- **Sequences**
 \[C_{\text{sem}} (C_1; C_2) s_1 s_2 = \exists s. C_{\text{sem}} C_1 s_1 s \land C_{\text{sem}} C_2 s s_2 \]

- **Conditional**
 \[
 C_{\text{sem}} (\text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2) s_1 s_2 \\
 = (S_{\text{sem}} S s_1 \land C_{\text{sem}} C_1 s_1 s_2) \lor (\neg S_{\text{sem}} S s_1 \land C_{\text{sem}} C_2 s_1 s_2) \\
 = \begin{cases}
 \text{if } S_{\text{sem}} S s_1 \text{ then } C_{\text{sem}} C_1 s_1 s_2 & \text{else } C_{\text{sem}} C_2 s_1 s_2
 \end{cases}
 \]

- **While-commands**
 \[C_{\text{sem}} (\text{WHILE } S \text{ DO } C) s_1 s_2 = \exists n. \text{Iter } n (S_{\text{sem}} S) (C_{\text{sem}} C) s_1 s_2 \]

where the function Iter is defined by recursion on \(n \) as follows:

\[
\begin{align*}
\text{Iter } 0 p c s_1 s_2 & = \neg(p s_1) \land (s_1=s_2) \\
\text{Iter } (n+1) p c s_1 s_2 & = p s_1 \land \exists s. c s_1 s \land \text{Iter } n p c s s_2
\end{align*}
\]

- argument \(n \) of Iter is the number of iterations
- argument \(p \) is a predicate on states (e.g. \(S_{\text{sem}} S \))
- argument \(c \) is a semantic function (e.g. \(C_{\text{sem}} C \))
- arguments \(s_1 \) and \(s_2 \) are the initial and final states, respectively
Soundness of Hoare Logic: summary

- **Assignment axiom:**
 \[\forall s_1 s_2. \text{Ssem} (Q[E/V]) s_1 \land \text{Csem} (V := E) s_1 s_2 \Rightarrow \text{Ssem} Q s_2 \]
 \[\models \{Q[E/V]\} V := E \{Q\} \]

- **Precondition strengthening:**
 \[(\forall s. \text{Ssem} P s \Rightarrow \text{Ssem} P' s) \land \text{Hsem} P' C Q \Rightarrow \text{Hsem} P C Q \]
 \[(\models P \Rightarrow P') \land (\models \{P\} C \{Q\} \Rightarrow (\models \{P\} C \{Q\}) \]

- **Postcondition weakening:**
 \[\text{Hsem} P C Q' \land (\forall s. \text{Ssem} Q' s \Rightarrow \text{Ssem} Q s) \Rightarrow \text{Hsem} P C Q \]
 \[\models \{P\} C \{Q'\} \land (\models Q' \Rightarrow Q) \Rightarrow (\models \{P\} C \{Q\}) \]

- **Sequencing rule:**
 \[\text{Hsem} P C_1 Q \land \text{Hsem} Q C_2 R \Rightarrow \text{Hsem} P (C_1; C_2) R \]
 \[\models \{P\} C_1 \{Q\} \land (\models Q \Rightarrow \{C_2\} \Rightarrow (\models \{P\} C_1 ; C_2 \{R\}) \]

- **Conditional rule:**
 \[\text{Hsem} (P \land S) C_1 Q \land \text{Hsem} (P \land \neg Q) C_2 Q \Rightarrow \text{Hsem} P (\text{IF S THEN } C_1 \text{ ELSE } C_2) Q \]
 \[\models \{P \land S\} C_1 \{Q\} \land (\models \{P \land \neg S\} C_2 \{Q\} \Rightarrow (\models \{P\} \text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \{Q\}) \]

- **WHILE rule:**
 \[\text{Hsem} (P \land S) C P \Rightarrow \text{Hsem} P (\text{WHILE } S \text{ DO } C) (P \land \neg S) \]
 \[\models \{P \land S\} C \{P\} \Rightarrow (\models \{P\} \text{WHILE } S \text{ DO } C) \]
Completeness and decidability of Hoare Logic

- **Soundness:** \(\vdash \{P\}C\{Q\} \Rightarrow \models \{P\}C\{Q\} \)

- **Decidability:** \(\{T\}C\{F\} \leftrightarrow C \text{ doesn’t halt} \)
 - the Halting Problem is undecidable

- **Completeness:** really want \(\models_{\text{PA}} \{P\}C\{Q\} \Rightarrow \text{PA} \vdash \{P\}C\{Q\} \)
 - to show this not possible, first observe that for any \(P \)
 - \(\models_{\text{PA}} \{T\}X:=X\{P\} \) if and only if \(\models_{\text{PA}} P \)
 - \(\text{PA} \vdash \{T\}X:=X\{P\} \) if and only if \(\text{PA} \vdash P \)

- If Hoare logic were complete, then taking \(P \) above to be \(G_T \):
 \[
 \models_{\text{PA}} G_T \Rightarrow \models_{\text{PA}} \{T\}X:=X\{G_T\} \Rightarrow \text{PA} \vdash \{T\}X:=X\{G_T\} \Rightarrow \text{PA} \vdash G_T
 \]
 contradicting Gödel’s theorem

- Must separate completeness of programming and specification logics
Relative completeness (Cook 1978) – basic idea

- $\models_{\text{IPA}} \{P\}C\{Q\}$ entails $\Gamma_{\text{PA}} \vdash \{P\}C\{Q\}$, where $\Gamma_{\text{PA}} = \{S \mid \models_{\text{IPA}} S\}$

- Proof outline:
 - define $\text{wlp}(C, Q)$ in \mathcal{L}_{PA}
 - straight line code easy - see earlier slides
 - $\text{wlp}((\text{WHILE} S \text{ DO } C), Q)$ needs tricky encoding using Gödel’s β function (see Winskel’s book *The formal semantics of programming languages: an introduction*)
 - $\models_{\text{IPA}} \{P\}C\{Q\}$ implies $\models_{\text{IPA}} P \Rightarrow \text{wlp}(C, Q)$ by induction on C and semantics
 - $\Gamma_{\text{PA}} \vdash \{\text{wlp}(C, Q)\}C\{Q\}$ by induction on C and Hoare logic
 - hence $\models_{\text{IPA}} \{P\}C\{Q\}$ implies $\Gamma_{\text{PA}} \vdash \{P\}C\{Q\}$ by precondition strengthening

- Cook’s theorem is for any *expressive* assertion language
 - i.e. any language in which $\text{wlp}(C, Q)$ is definable
Summary: soundness, decidability, completeness

- Hoare logic is sound
- Hoare logic is undecidable
 - deciding $\{T\}C\{F\}$ is halting problem
- Hoare logic for our simple language is complete relative to an oracle
 - oracle must be able to prove $P \Rightarrow \text{wlp}(C, Q)$
 - relative completeness
 - requires expressibility: $\text{wlp}(C, Q)$ expressible in assertion language

The incompleteness of the proof system for simple Hoare logic stems from the weakness of the proof system of the assertion language logic, not any weakness of the Hoare logic proof system.

- Clarke showed relative completeness fails for complex languages
Additional topics

Note: only a fragment of these additional topics will be covered!

- Blocks and local variables
- FOR-commands
- Arrays
- Correct-by-Construction (program refinement)
- Separation Logic
Blocks and local variables

- Syntax: `BEGIN VAR V_1; \cdots VAR V_n; C END`

- Semantics: command C is executed, then the values of V_1, \cdots, V_n are restored to the values they had before the block was entered
 - the initial values of V_1, \cdots, V_n inside the block are unspecified

- Example: `BEGIN VAR R; R:=X; X:=Y; Y:=R END`
 - the values of X and Y are swapped using R as a temporary variable
 - this command does not have a side effect on the variable $R`
The Block Rule

- The block rule takes care of local variables

\[
\begin{align*}
\vdash & \{P\} C \{Q\} \\
\vdash & \{P\} \text{BEGIN VAR } V_1; \ldots; \text{VAR } V_n; C \text{ END } \{Q\}
\end{align*}
\]

where none of the variables \(V_1, \ldots, V_n\) occur in \(P\) or \(Q\).

- Note that the block rule is regarded as including the case when there are no local variables (the ‘\(n = 0\)’ case)
The Side Condition

• The syntactic condition that none of the variables V_1, \ldots, V_n occur in P or Q is an example of a side condition.

• From
 \[\vdash \left\{ X=x \land Y=y \right\} \ R:=X; \ X:=Y; \ Y:=R \ \left\{ Y=x \land X=y \right\} \]
 it follows by the block rule that
 \[\vdash \left\{ X=x \land Y=y \right\} \ \text{BEGIN} \ \text{VAR} \ R; \ R:=X; \ X:=Y; \ Y:=R \ \text{END} \ \left\{ Y=x \land X=y \right\} \]
 since R does not occur in $X=x \land Y=y$ or $X=y \land Y=x$.

• However from
 \[\vdash \left\{ X=x \land Y=y \right\} \ R:=X; \ X:=Y \ \left\{ R=x \land X=y \right\} \]
 one cannot deduce
 \[\vdash \left\{ X=x \land Y=y \right\} \ \text{BEGIN} \ \text{VAR} \ R; \ R:=X; \ X:=Y \ \text{END} \ \left\{ R=x \land X=y \right\} \]
 since R occurs in $R=x \land X=y$.
FOR-commands

- **Syntax**: FOR $V := E_1$ UNTIL E_2 DO C

 - **restriction**: V must not occur in E_1 or E_2, or be the left hand side of an assignment in C (explained later)

- **Semantics**:

 - if the values of terms E_1 and E_2 are positive numbers e_1 and e_2
 - and if $e_1 \leq e_2$
 - then C is executed $(e_2 - e_1) + 1$ times with the variable V taking on the sequence of values $e_1, e_1 + 1, \ldots, e_2$ in succession
 - for any other values, the FOR-command has no effect

- **Example**: FOR $N := 1$ UNTIL M DO $X := X + N$

 - if the value of the variable M is m and $m \geq 1$, then the command $X := X + N$ is repeatedly executed with N taking the sequence of values $1, \ldots, m$
 - if $m < 1$ then the FOR-command does nothing
Subtleties of FOR-commands

- There are many subtly different versions of FOR-commands
- For example
 - the expressions E_1 and E_2 could be evaluated at each iteration
 - and the controlled variable V could be treated as global rather than local
- Early languages like Algol 60 failed to notice such subtleties
- Note that with the semantics presented here, FOR-commands cannot generate non-termination
More on the semantics of FOR-commands

- The semantics of

 $$\text{FOR } V := E_1 \text{ UNTIL } E_2 \text{ DO } C$$

 is as follows

 (i) E_1 and E_2 are evaluated once to get values e_1 and e_2, respectively.

 (ii) If either e_1 or e_2 is not a number, or if $e_1 > e_2$, then nothing is done.

 (iii) If $e_1 \leq e_2$ the FOR-command is equivalent to:

 $$\begin{align*}
 \text{BEGIN VAR } V; & \quad V := e_1; \quad C; \quad V := e_1 + 1; \quad C; \quad \ldots; \quad V := e_2; \quad C \quad \text{END}
 \end{align*}$$

 i.e. C is executed $(e_2 - e_1) + 1$ times with V taking on the sequence of values $e_1, e_1 + 1, \ldots, e_2$

- If C doesn’t modify V then FOR-command equivalent to:

 $$\begin{align*}
 \text{BEGIN VAR } V; & \quad V := e_1; \quad \ldots \quad C; \quad V := V + 1; \quad \ldots \quad V := e_2; \quad C \quad \text{END}
 \end{align*}$$

 repeated