• So far our discussion has been concerned with partial correctness
 • what about termination

• A total correctness specification $[P] C [Q]$ is true if and only if
 • whenever C is executed in a state satisfying P, then the execution of C terminates
 • after C terminates Q holds

• Except for the WHILE-rule, all the axioms and rules described so far are sound for total correctness as well as partial correctness
Termination of WHILE-Commands

- WHILE-commands are the only commands that might not terminate

- Consider now the following proof

1. \(\vdash \{ T \} \ X := \ X \ \{ T \} \) \hspace{2cm} (assignment axiom)

2. \(\vdash \{ T \land T \} \ X := \ X \ \{ T \} \) \hspace{2cm} (precondition strengthening)

3. \(\vdash \{ T \} \text{WHILE } T \text{ DO } X := \ X \ \{ T \land \neg T \} \) \hspace{2cm} (2 and the WHILE-rule)

- If the WHILE-rule worked for total correctness, then this would show:

\[\vdash [T] \text{WHILE } T \text{ DO } X := X [T \land \neg T] \]

- Thus the WHILE-rule is unsound for total correctness
• Replace \{ and \} by [and], respectively, in:
 • Assignment axiom (see next slide for discussion)
 • Consequence rules
 • Conditional rule
 • Sequencing rule

• The following is a valid derived rule

\[
\begin{align*}
\vdash \{P\} & C \{Q\} \\
\vdash [P] & C [Q]
\end{align*}
\]

if \(C \) contains no WHILE-commands
• Assignment axiom for total correctness

\[\vdash [P[E/V]] V := E [P] \]

• Note that the assignment axiom for total correctness states that assignment commands always terminate

• So all function applications in expressions must terminate

• This might not be the case if functions could be defined recursively

• Consider \(X := \text{fact}(-1) \), where \(\text{fact}(n) \) is defined recursively:

\[
\text{fact}(n) = \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n-1)
\]
• We assume erroneous expressions like $1/0$ don’t cause problems

• Most programming languages will raise an error on division by zero

• In our logic it follows that

$$\vdash [T] X := 1/0 [X = 1/0]$$

• The assignment $X := 1/0$ halts in a state in which $X = 1/0$ holds

• This assumes that $1/0$ denotes some value that X can have
Two Possibilities

- There are two possibilities
 - (i) $1/0$ denotes some number;
 - (ii) $1/0$ denotes some kind of ‘error value’.

- It seems at first sight that adopting (ii) is the most natural choice
 - this makes it tricky to see what arithmetical laws should hold
 - is $(1/0) \times 0$ equal to 0 or to some ‘error value’?
 - if the latter, then it is no longer the case that $\forall n. n \times 0 = 0$ is valid

- It is possible to make everything work with undefined and/or error values, but the resultant theory is a bit messy
WHILE-rule for Total Correctness (i)

- WHILE-commands are the only commands in our little language that can cause non-termination
 - they are thus the only kind of command with a non-trivial termination rule

- The idea behind the WHILE-rule for total correctness is
 - to prove WHILE S DO C terminates
 - show that some non-negative quantity decreases on each iteration of C
 - this decreasing quantity is called a variant
While-Rule for Total Correctness (ii)

- In the rule below, the variant is E, and the fact that it decreases is specified with an auxiliary variable n.

- The hypothesis $\vdash P \land S \Rightarrow E \geq 0$ ensures the variant is non-negative.

\[
\vdash [P \land S \land (E = n)] \ C \ [P \land (E < n)], \quad \vdash P \land S \Rightarrow E \geq 0
\]

\[
\vdash [P \land \neg S] \ \text{while } S \ \text{do } C \ [P \land \neg S]
\]

where E is an integer-valued expression and n is an identifier not occurring in P, C, S or E.

The Derived While Rule

- Derived WHILE-rule needs to handle the variant

\[
\begin{align*}
\vdash & \quad P \Rightarrow R \\
\vdash & \quad R \land S \Rightarrow E \geq 0 \\
\vdash & \quad R \land \neg S \Rightarrow Q \\
\vdash & \quad [R \land S \land (E = n)] \ C \ [R \land (E < n)] \\
\hline
\vdash & \quad [P] \text{ WHILE } S \text{ DO } C \ [Q]
\end{align*}
\]
• Verification conditions are easily extended to total correctness

• To generate total correctness verification conditions for WHILE-commands, it is necessary to **add a variant as an annotation** in addition to an invariant

• Variant added directly after the invariant, in square brackets

• No other extra annotations are needed for total correctness

• VCs for WHILE-free code same as for partial correctness
WHILE Annotation

- A correctly annotated total correctness specification of a WHILE-command thus has the form

\[
[P] \text{WHILE } S \text{ DO } \{R\}[E] \ C \ [Q]
\]

where \(R \) is the invariant and \(E \) the variant

- Note that the variant is intended to be a non-negative expression that decreases each time around the WHILE loop

- The other annotations, which are enclosed in curly brackets, are meant to be conditions that are true whenever control reaches them (as before)
WHILE VCs

• A correctly annotated specification of a WHILE-command has the form

\[[P] \text{WHILE } S \text{ DO } \{R\}[E] \text{ C } [Q] \]

WHILE-commands

The verification conditions generated from

\[[P] \text{WHILE } S \text{ DO } \{R\}[E] \text{ C } [Q] \]

are

(i) \(P \Rightarrow R \)

(ii) \(R \wedge \neg S \Rightarrow Q \)

(iii) \(R \wedge S \Rightarrow E \geq 0 \)

(iv) the verification conditions generated by

\[[R \wedge S \wedge (E = n)] \text{ C}[R \wedge (E < n)] \]

where \(n \) is a variable not occurring in \(P, R, E, C, S \) or \(Q \).
Summary

- We have given rules for total correctness
- They are similar to those for partial correctness
- The main difference is in the WHILE-rule
 - because WHILE commands are the only ones that can fail to terminate
- Must prove a non-negative expression is decreased by the loop body
- Derived rules and VC generation rules for partial correctness easily extended to total correctness
- Interesting stuff on the web
• Review of first-order logic
 • syntax: languages, function symbols, predicate symbols, terms, formulae
 • semantics: interpretations, valuations
 • soundness and completeness

• Formal semantics of Hoare triples
 • preconditions and postconditions as terms
 • semantics of commands
 • soundness of Hoare axioms and rules
 • completeness and relative completeness
Semantics: terms and formulae

- Assume: language \mathcal{L}, interpretation $\mathcal{I} = (D, I)$, valuation $s \in \text{Var} \rightarrow D$

- Define $\text{Esem} \ E s \in D$ by:
 - if $E \in \text{Var}$ then $\text{Esem} \ E s = s(E)$
 - if $E = f$, where f a function symbol of arity 0, then $\text{Esem} \ E s = I[f]$
 - if $E = f(E_1, \ldots, E_n)$, then $\text{Esem} \ E s = I[f](\text{Esem} \ E_1 s, \ldots, \text{Esem} \ E_n s)$

- Define $\text{Ssem} \ S s \in \text{Bool}$ by:
 - if $S = p$, where p a predicate symbol of arity 0, then $\text{Ssem} \ S s = I[p]$
 - if $S = p(E_1, \ldots, E_n)$, then $\text{Ssem} \ S s = I[p](\text{Esem} \ E_1 s, \ldots, \text{Esem} \ E_n s)$
 - $\text{Ssem} \ (\neg S) s = \neg(\text{Ssem} \ S s)$
 - $\text{Ssem} \ (S_1 \land S_2) s = (\text{Ssem} \ S_1 s) \land (\text{Ssem} \ S_2 s)$
 - $\text{Ssem} \ (S_1 \lor S_2) s = (\text{Ssem} \ S_1 s) \lor (\text{Ssem} \ S_2 s)$
 - $\text{Ssem} \ (S_1 \Rightarrow S_2) s = (\text{Ssem} \ S_1 s) \Rightarrow (\text{Ssem} \ S_2 s)$
 - $\text{Ssem} \ (\forall v. \ S) s = \text{if (for all } d \in D: \text{ Ssem} \ S (s[d/v]) = true) \text{ then true else false}$
 - $\text{Ssem} \ (\exists v. \ S) s = \text{if (for some } d \in D: \text{ Ssem} \ S (s[d/v]) = true) \text{ then true else false}$

- Note: will just say “$\text{Ssem} \ S s$” to mean that “$\text{Ssem} \ S s = true$”
Satisfiability, validity and completeness

- Recall that a language \mathcal{L} specifies predicate and function symbols

- S is *satisfiable* iff for some interpretation of \mathcal{L} and s: $\mathsf{Sem}(S,s) = \text{true}$

- S is *valid* iff for all interpretations of \mathcal{L} and all s: $\mathsf{Sem}(S,s) = \text{true}$

- Notation: $\models S$ means S is valid

- Deductive system for first-order logic specifies $\vdash S$ – i.e. S is provable

- Soundness: if $\vdash S$ then $\models S$ (easy induction on length of proof)

- Completeness: if $\models S$ then $\vdash S$ (Gödel 1929)
Sentences, Theories

- A **sentence** is a statement with *no free variables*
 - truth or falsity of sentences solely determined by interpretation
 - if \(S \) is a sentence then \(\text{Ssem} \ S \ s_1 = \text{Ssem} \ S \ s_2 \) for all \(s_1, s_2 \)

- A **theory** is a set of sentences
 - \(\Gamma \) will range over sets of sentences

- \(\Gamma \vdash S \) means \(S \) can be deduced from \(\Gamma \) using first-order logic

- \(\Gamma \) is **consistent** iff there is no \(S \) such that \(\Gamma \vdash S \) and \(\Gamma \vdash \neg S \)

- \(\Gamma \models_I S \) means \(S \) true if \(I \) makes all of \(\Gamma \) true

- \(\Gamma \models S \) means \(\Gamma \models_I S \) true for all \(I \)

- Soundness and Completeness: \(\Gamma \models S \) iff \(\Gamma \vdash S \)
Gödel’s incompleteness theorem

- \mathcal{L}_{PA} is the language of Peano Arithmetic

- \mathcal{I}_{PA} is the standard interpretation of arithmetic

- $\models_{\mathcal{I}_{PA}} S$ means S is true in \mathcal{I}_{PA}

- PA is the first-order theory of Peano Arithmetic

- There exists a sentence G of \mathcal{L}_{PA} and neither $\text{PA} \vdash G$ nor $\text{PA} \vdash \neg G$

 - Gödel’s first incompleteness theorem (1930)

 - as G is a sentence either $\models_{\mathcal{I}_{PA}} G$ or $\models_{\mathcal{I}_{PA}} \neg G$

 - so there is a sentences, G_T say, true in \mathcal{I}_{PA} but can’t be proved from PA

 - i.e. $\models_{\mathcal{I}_{PA}} G_T$ but not $\text{PA} \vdash G_T$
Semantics of Hoare triples

- Recall that \(\{P\} \ C \ \{Q\} \) is true if
 - whenever \(C \) is executed in a state satisfying \(P \)
 - and if the execution of \(C \) terminates
 - then \(C \) terminates in a state satisfying \(Q \)

- \(P \) and \(Q \) are first-order statements

- Will formalise semantics of \(\{P\} \ C \ \{Q\} \) to express:
 - whenever \(C \) is executed in a state \(s_1 \) such that \(\text{Ssem} \ P \ s_1 \)
 - and if the execution of \(C \) starting in \(s_1 \) terminates
 - then \(C \) terminates in a state \(s_2 \) such that \(\text{Ssem} \ Q \ s_2 = \text{true} \)

- Need to define “\(C \) starts in \(s_1 \) and terminates in \(s_2 \)”
 - this is the semantics of commands
 - will define \(\text{Csem} \ C \ s_1 s_2 \) to mean if \(C \) starts in \(s_1 \) then it can terminate in \(s_2 \)

- Semantics of \(\{P\} \ C \ \{Q\} \) is \(\text{Hsem} \ P \ C \ Q \) where:

 \[
 \text{Hsem} \ P \ C \ Q = \forall s_1 \ s_2. \ \text{Ssem} \ P \ s_1 \land \text{Csem} \ C \ s_1 s_2 \Rightarrow \text{Ssem} \ Q \ s_2
 \]

- Sometimes write \(\models \ {P} \ C \ {Q} \) to mean \(\text{Hsem} \ P \ C \ Q \)