The Assignment Axiom (Hoare)

- Syntax: \(V := E \)
- Semantics: value of \(V \) in final state is value of \(E \) in initial state
- Example: \(x := x + 1 \) (adds one to the value of the variable \(x \))

The Assignment Axiom

\[\vdash \{ Q[E/V] \} \ V := E \ \{ Q \} \]

Where \(V \) is any variable, \(E \) is any expression, \(Q \) is any statement.

- Instances of the assignment axiom are

 - \(\vdash \{ E = x \} \ V := E \ \{ V = x \} \)
 - \(\vdash \{ Y = 2 \} \ X := 2 \ \{ Y = X \} \)
 - \(\vdash \{ X + 1 = n + 1 \} \ X := X + 1 \ \{ X = n + 1 \} \)
 - \(\vdash \{ E = E \} \ X := E \ \{ X = E \} \) (if \(x \) does not occur in \(E \))
Precondition Strengthening

• Recall that

\[\vdash S_1, \ldots, \vdash S_n \]
\[\vdash S \]

means \(\vdash S \) can be deduced from \(\vdash S_1, \ldots, \vdash S_n \)

• Using this notation, the rule of precondition strengthening is

\[
\begin{align*}
\vdash P \Rightarrow P', & \quad \vdash \{P'\} C \{Q\} \\
\vdash \{P\} C \{Q\}
\end{align*}
\]

• Note the two hypotheses are different kinds of judgements
Postcondition weakening

- Just as the previous rule allows the precondition of a partial correctness specification to be strengthened, the following one allows us to weaken the postcondition

\[
\begin{align*}
\vdash \{P\} C \{Q'\}, & \quad \vdash Q' \Rightarrow Q \\
\vdash \{P\} C \{Q\}
\end{align*}
\]
• Here is a little formal proof

1. ⊢ {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom
2. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic
3. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By precondition strengthening
4. ⊢ R=X ∧ Q=0 ⇒ R=X+(Y × Q) By laws of arithmetic
5. ⊢ {R=X} Q:=0 {R=X+(Y × Q)} By postcondition weakening

• The rules precondition strengthening and postcondition weakening are sometimes called the *rules of consequence*
The sequencing rule

- Syntax: $C_1; \cdots; C_n$
- Semantics: the commands C_1, \cdots, C_n are executed in that order
- Example: $R:=X; \ X:=Y; \ Y:=R$
 - the values of X and Y are swapped using R as a temporary variable
 - note side effect: value of R changed to the old value of X

\[
\begin{align*}
\vdash \{P\} C_1 \{Q\}, \quad \vdash \{Q\} C_2 \{R\} \\
\vdash \{P\} C_1; C_2 \{R\}
\end{align*}
\]
Example: By the assignment axiom:

(i) \(\vdash \{ X=x \land Y=y \} \quad R:=X \quad \{ R=x \land Y=y \} \)

(ii) \(\vdash \{ R=x \land Y=y \} \quad X:=Y \quad \{ R=x \land X=y \} \)

(iii) \(\vdash \{ R=x \land X=y \} \quad Y:=R \quad \{ Y=x \land X=y \} \)

Hence by (i), (ii) and the sequencing rule

(iv) \(\vdash \{ X=x \land Y=y \} \quad R:=X; \quad X:=Y \quad \{ R=x \land X=y \} \)

Hence by (iv) and (iii) and the sequencing rule

(v) \(\vdash \{ X=x \land Y=y \} \quad R:=X; \quad X:=Y; \quad Y:=R \quad \{ Y=x \land X=y \} \)
Conditionals

- **Syntax:** IF S THEN C_1 ELSE C_2

- **Semantics:**
 - if the statement S is true in the current state, then C_1 is executed
 - if S is false, then C_2 is executed

- **Example:** IF $X<Y$ THEN MAX:=Y ELSE MAX:=X
 - the value of the variable MAX is set to the maximum of the values of X and Y
The conditional rule

$$\vdash \{ P \land S \} C_1 \{Q\}, \quad \vdash \{ P \land \neg S \} C_2 \{Q\}$$

$$\vdash \{ P \} \text{IF} S \text{THEN} C_1 \text{ELSE} C_2 \{Q\}$$

• From Assignment Axiom + Precondition Strengthening and

$$\vdash (X \geq Y \Rightarrow X = \max(X,Y)) \land (\neg(X \geq Y) \Rightarrow Y = \max(X,Y))$$

it follows that

$$\vdash \{ T \land X \geq Y \} \text{MAX:=}X \ \{\text{MAX}=\max(X,Y)\}$$

and

$$\vdash \{ T \land \neg(X \geq Y) \} \text{MAX:=}Y \ \{\text{MAX}=\max(X,Y)\}$$

• Then by the conditional rule it follows that

$$\vdash \{ T \} \text{IF} X \geq Y \text{THEN} \text{MAX:=}X \text{ELSE} \text{MAX:=}Y \ \{\text{MAX}=\max(X,Y)\}$$
WHILE-commands

• Syntax: WHILE S DO C

• Semantics:
 • if the statement S is true in the current state, then C is executed and the WHILE-command is repeated
 • if S is false, then nothing is done
 • thus C is repeatedly executed until the value of S becomes false
 • if S never becomes false, then the execution of the command never terminates

• Example: WHILE ¬(X=0) DO X:= X−2
 • if the value of X is non-zero, then its value is decreased by 2 and then the process is repeated

• This WHILE-command will terminate (with X having value 0) if the value of X is an even non-negative number
 • in all other states it will not terminate
Invariants

- Suppose $\vdash \{P \land S\} C \{P\}$

- P is said to be an invariant of C whenever S holds

- The WHILE-rule says that
 - if P is an invariant of the body of a WHILE-command whenever the test condition holds
 - then P is an invariant of the whole WHILE-command

- In other words
 - if executing C once preserves the truth of P
 - then executing C any number of times also preserves the truth of P

- The WHILE-rule also expresses the fact that after a WHILE-command has terminated, the test must be false
 - otherwise, it wouldn’t have terminated
The **WHILE-Rule**

The WHILE-rule

\[\vdash \{ P \land S \} \ C \ \{ P \} \]

\[\vdash \{ P \} \ \text{WHILE} \ S \ \text{DO} \ C \ \{ P \land \neg S \} \]

- **It is easy to show**
 \[\vdash \{ X=R+(Y \times Q) \land Y \leq R \} \ \text{R:=}R-Y; \ \text{Q:=}Q+1 \ \{ X=R+(Y \times Q) \} \]

- **Hence by the WHILE-rule with** \(P = 'X=R+(Y \times Q)' \) and \(S = 'Y \leq R' \)
 \[\vdash \{ X=R+(Y \times Q) \} \]
 \[\text{WHILE} \ Y \leq R \ \text{DO} \]
 \[(R:=R-Y; \ Q:=Q+1) \]
 \[\{ X=R+(Y \times Q) \land \neg(Y \leq R) \} \]
Example

• From the previous slide

\[\{ X = R + (Y \times Q) \} \]

WHILE \(Y \leq R \) DO

\((R := R - Y; \ Q := Q + 1) \)

\(\{ X = R + (Y \times Q) \land \neg (Y \leq R) \} \)

• It is easy to deduce that

\[\{ T \} \ R := X; \ Q := 0 \ \{ X = R + (Y \times Q) \} \]

• Hence by the sequencing rule and postcondition weakening

\[\{ T \} \]

\(R := X; \)

\(Q := 0; \)

WHILE \(Y \leq R \) DO

\((R := R - Y; \ Q := Q + 1) \)

\(\{ R < Y \land X = R + (Y \times Q) \} \)
Summary

- We have given:
 - a notation for specifying what a program does
 - a way of proving that it meets its specification

- Now we look at ways of finding proofs and organising them:
 - finding invariants
 - derived rules
 - backwards proofs
 - annotating programs prior to proof

- Then we see how to automate program verification
 - the automation mechanises some of these ideas
How does one find an invariant?

The WHILE-rule

\[\vdash \{P \land S\} \ C \ \{P\} \]
\[\vdash \{P\} \ \text{WHILE} \ S \ \text{DO} \ C \ \{P \land \neg S\} \]

- Look at the facts:
 - invariant \(P \) must hold initially
 - with the negated test \(\neg S \) the invariant \(P \) must establish the result
 - when the test \(S \) holds, the body must leave the invariant \(P \) unchanged

- Think about how the loop works – the invariant should say that:
 - what \textbf{has been done so far} together with what \textbf{remains to be done}
 - holds \textbf{at each iteration} of the loop
 - and gives \textbf{the desired result} when the loop terminates
Example

- Consider a factorial program

\[
\{X=n \land Y=1\}
\]

WHILE \(X \neq 0\) DO

\[
(Y:=Y \times X; \ X:=X-1)
\]

\[
\{X=0 \land Y=n!\}
\]

- Look at the facts
 - initially \(X=n\) and \(Y=1\)
 - finally \(X=0\) and \(Y=n!\)
 - on each loop \(Y\) is increased and, \(X\) is decreased

- Think how the loop works
 - \(Y\) holds the result so far
 - \(X!\) is what remains to be computed
 - \(n!\) is the desired result

- The invariant is \(X! \times Y = n!\)
 - ‘stuff to be done’ \(\times\) ‘result so far’ = ‘desired result’
 - decrease in \(X\) combines with increase in \(Y\) to make invariant
Related example

\{X=0 \land Y=1\}
WHILE X<N DO (X:=X+1; Y:=Y*X)
\{Y=N!\}

- Look at the Facts
 - initially $X=0$ and $Y=1$
 - finally $X=N$ and $Y=N!$
 - on each iteration both X an Y increase: X by 1 and Y by X

- An invariant is $Y = X!$

- At end need $Y = N!$, but WHILE-rule only gives $\neg(X<N)$

- Ah Ha! Invariant needed: $Y = X! \land X\leq N$

- At end $X \leq N \land \neg(X<N) \Rightarrow X=N$

- Often need to strenthen invariants to get them to work
 - typical to add stuff to ‘carry along’ like $X\leq N$
Conjunction and Disjunction

Specification conjunction

\[\vdash \{ P_1 \} \ C \ \{ Q_1 \} , \ \vdash \{ P_2 \} \ C \ \{ Q_2 \} \]
\[\vdash \{ P_1 \land P_2 \} \ C \ \{ Q_1 \land Q_2 \} \]

Specification disjunction

\[\vdash \{ P_1 \} \ C \ \{ Q_1 \} , \ \vdash \{ P_2 \} \ C \ \{ Q_2 \} \]
\[\vdash \{ P_1 \lor P_2 \} \ C \ \{ Q_1 \lor Q_2 \} \]

- These rules are useful for splitting a proof into independent bits
 - they enable \(\vdash \{ P \} \ C \ \{ Q_1 \land Q_2 \} \) to be proved by proving separately that both \(\vdash \{ P \} \ C \ \{ Q_1 \} \) and also that \(\vdash \{ P \} \ C \ \{ Q_2 \} \)

- Any proof with these rules could be done without using them
 - i.e. they are theoretically redundant (proof omitted)
 - however, useful in practice
• Suppose the goal is to prove \(\{\text{Precondition}\} \text{ Command} \{\text{Postcondition}\} \)

• If there were a rule of the form

\[
\vdash H_1, \ldots, \vdash H_n
\]

\[
\vdash \{P\} C \{Q\}
\]

then we could instantiate

\[
P \leftrightarrow \text{Precondition}, \ C \leftrightarrow \text{Command}, \ Q \leftrightarrow \text{Postcondition}
\]

to get instances of \(H_1, \ldots, H_n\) as subgoals

• Some of the rules are already in this form e.g. the sequencing rule

• We will derive rules of this form for all commands

• Then we use these derived rules for mechanising Hoare Logic proofs
Derived Rules

- We will establish derived rules for all commands

\[\vdash \{P\} \quad \text{V :=E} \quad \{Q\} \]

\[\vdash \{P\} \quad C_1;C_2 \quad \{Q\} \]

\[\vdash \{P\} \quad \text{IF} \quad S \quad \text{THEN} \quad C_1 \quad \text{ELSE} \quad C_2 \quad \{Q\} \]

\[\vdash \{P\} \quad \text{WHILE} \quad S \quad \text{DO} \quad C \quad \{Q\} \]

- These support ‘backwards proof’ starting from a goal \(\{P\} \quad C \quad \{Q\} \)
The Derived Assignment Rule

- An example proof
 1. \(\vdash \{R=X \land 0=0\} \ Q:=0 \ \{R=X \land Q=0\}\) By the assignment axiom.
 2. \(\vdash R=X \Rightarrow R=X \land 0=0\) By pure logic.
 3. \(\vdash \{R=X\} \ Q:=0 \ \{R=X \land Q=0\}\) By precondition strengthening.

- Can generalise this proof to a proof schema:
 1. \(\vdash \{Q[E/V]\} \ V:=E \ \{Q\}\) By the assignment axiom.
 2. \(\vdash P \Rightarrow Q[E/V]\) By assumption.
 3. \(\vdash \{P\} \ V:=E \ \{Q\}\) By precondition strengthening.

- This proof schema justifies:

\[
\begin{align*}
derived \ assignment \ rule \quad \vdash P \Rightarrow Q[E/V] \\
\vdash \{P\} \ V:=E \ \{Q\}
\end{align*}
\]

- Note: \(Q[E/V]\) is the weakest liberal precondition \(wlp(V:=E, Q)\)

- Example proof above can now be done in one less step
 1. \(\vdash R=X \Rightarrow R=X \land 0=0\) By pure logic.
 2. \(\vdash \{R=X\} \ Q:=0 \ \{R=X \land Q=0\}\) By derived assignment.
• The following rule will be useful later

\[
\begin{align*}
\vdash & \{P\} C \{Q[E/V] \} \\
\vdash & \{P\} C; V := E \{Q\}
\end{align*}
\]

• Intuitively work backwards:
 • push \(Q \) ‘through’ \(V := E \), changing it to \(Q[E/V] \)

• Example: By the assignment axiom:

\[
\vdash \{X=x \land Y=y\} R := X \{R=x \land Y=y\}
\]

• Hence by the sequenced assignment rule

\[
\vdash \{X=x \land Y=y\} R := X; X := Y \{R=x \land X=y\}
\]
The Derived Sequencing Rule

- The rule below follows from the sequencing and consequence rules

\[\vdash P \Rightarrow P_1 \]
\[\vdash \{P_1\} C_1 \{Q_1\} \vdash Q_1 \Rightarrow P_2 \]
\[\vdash \{P_2\} C_2 \{Q_2\} \vdash Q_2 \Rightarrow P_3 \]
. . .
\[\vdash \{P_n\} C_n \{Q_n\} \vdash Q_n \Rightarrow Q \]
\[\vdash \{P\} C_1; \ldots; C_n \{Q\} \]

Exercise: why no derived conditional rule?
The Derived While Rule

\[
\begin{align*}
&\vdash P \Rightarrow R & &\vdash \{R \land S\} C \{R\} & &\vdash R \land \neg S \Rightarrow Q \\
&\vdash \{P\} \ \text{WHILE} \ S \ \text{DO} \ C \ \{Q\}
\end{align*}
\]

- This follows from the While Rule and the rules of consequence

- Example: it is easy to show

\[
\begin{align*}
&\vdash R=X \land Q=0 \Rightarrow X=R+(Y\times Q) \\
&\vdash \{X=R+(Y\times Q) \land Y \leq R\} \ \text{R:=R-Y; Q:=Q+1} \ \{X=R+(Y\times Q)\} \\
&\vdash X=R+(Y\times Q) \land \neg(Y \leq R) \Rightarrow X=R+(Y\times Q) \land \neg(Y \leq R)
\end{align*}
\]

- Then, by the derived While rule

\[
\begin{align*}
&\vdash \{R=X \land Q=0\} \\
&\quad \text{WHILE} \ Y \leq R \ \text{DO} \\
&\quad \ (R:=R-Y; \ Q:=Q+1) \\
&\quad \{X=R+(Y\times Q) \land \neg(Y \leq R)\}
\end{align*}
\]
Forwards and backwards proof

- Previously it was shown how to prove \{P\}C\{Q\} by
 - proving properties of the components of \(C\)
 - and then putting these together, with the appropriate proof rule, to get the desired property of \(C\)

- For example, to prove \(\vdash \{P\}C_1;C_2\{Q\}\)

- First prove \(\vdash \{P\}C_1\{R\}\) and \(\vdash \{R\}C_2\{Q\}\)

- then deduce \(\vdash \{P\}C_1;C_2\{Q\}\) by sequencing rule

- This method is called *forward proof*
 - move forward from axioms via rules to conclusion

- The problem with forwards proof is that it is not always easy to see what you need to prove to get where you want to be

- It is more natural to work backwards
 - starting from the goal of showing \{P\}C\{Q\}
 - generate subgoals until problem solved