Hoare Logic

http://www.cl.cam.ac.uk/~mjcg/HoareLogic.html

- Program specification using Hoare notation
- Axioms and rules of Hoare Logic
- Soundness and completeness
- Mechanised program verification
- Pointers, the frame problem and separation logic
Expressions:
\[E ::= N \mid V \mid E_1 + E_2 \mid E_1 - E_2 \mid E_1 \times E_2 \mid \ldots \]

Boolean expressions:
\[B ::= T \mid F \mid E_1 = E_2 \mid E_1 \leq E_2 \mid \ldots \]

Commands:
\[C ::= V := E \\
 \mid C_1 ; C_2 \\
 \mid \text{IF } B \text{ THEN } C_1 \text{ ELSE } C_2 \\
 \mid \text{WHILE } B \text{ DO } C \]
Specification of Imperative Programs

Acceptable Initial State

“X is greater than zero”

Action of the Program

Acceptable Final State

“Y is the square root of X”
Hoare's notation

- C.A.R. Hoare introduced the following notation called a **partial correctness specification** for specifying what a program does:

 \[\{P\} \ C \ \{Q\} \]

 where:

 - \(C\) is a command
 - \(P\) and \(Q\) are conditions on the program variables used in \(C\)

- Conditions on program variables will be written using standard mathematical notations together with **logical operators** like:

 - \(\land\) (‘and’), \(\lor\) (‘or’), \(\neg\) (‘not’), \(\Rightarrow\) (‘implies’)

- Hoare’s original notation was \(P \ \{C\} \ Q \ \text{not} \ \{P\} \ C \ \{Q\}\), but the latter form is now more widely used
Meaning of Hoare’s Notation

• \(\{P\} \ C \ \{Q\} \) is true if
 • whenever \(C \) is executed in a state satisfying \(P \)
 • and if the execution of \(C \) terminates
 • then the state in which \(C \) terminates satisfies \(Q \)

• Example: \(\{X = 1\} \ X:=X+1 \ \{X = 2\} \)
 • \(P \) is the condition that the value of \(X \) is 1
 • \(Q \) is the condition that the value of \(X \) is 2
 • \(C \) is the assignment command \(X:=X+1 \)
 • i.e. ‘\(X \) becomes \(X+1 \)’

• \(\{X = 1\} \ X:=X+1 \ \{X = 2\} \) is true

• \(\{X = 1\} \ X:=X+1 \ \{X = 3\} \) is false
Hoare Logic and Verification Conditions

- Hoare Logic is a deductive proof system for Hoare triples $\{P\} \ C \ {Q}$

- Can use Hoare Logic directly to verify programs
 - original proposal by Hoare
 - tedious and error prone
 - impractical for large programs

- Can ‘compile’ proving $\{P\} \ C \ {Q}$ to verification conditions
 - more natural
 - basis for computer assisted verification

- Proof of verification conditions equivalent to proof with Hoare Logic
 - Hoare Logic can be used to explain verification conditions
Partial Correctness Specification

- An expression \(\{P\} \ C \ {Q}\) is called a partial correctness specification
 - \(P\) is called its precondition
 - \(Q\) its postcondition

- \(\{P\} \ C \ {Q}\) is true if
 - whenever \(C\) is executed in a state satisfying \(P\)
 - and if the execution of \(C\) terminates
 - then the state in which \(C\)’s execution terminates satisfies \(Q\)

- These specifications are ‘partial’ because for \(\{P\} \ C \ {Q}\) to be true it is not necessary for the execution of \(C\) to terminate when started in a state satisfying \(P\)

- It is only required that if the execution terminates, then \(Q\) holds

- \(\{X = 1\} \ \text{WHILE} \ T \ \text{DO} \ X := X \ {Y = 2}\) – this specification is true!
• A stronger kind of specification is a \textit{total correctness specification}

 • there is no standard notation for such specifications

 • we shall use $[P] \ C \ [Q]$

• A total correctness specification $[P] \ C \ [Q]$ is true if and only if

 • whenever C is executed in a state satisfying P the \textcolor{red}{execution of C terminates}

 • after C terminates Q holds

• $[X = 1] \ Y := X; \ \textbf{WHILE} \ T \ \textbf{DO} \ X := X \ [Y = 1]$

 • this says that the \textcolor{red}{execution of $Y := X; \ \textbf{WHILE} \ T \ \textbf{DO} \ X := X$ terminates when started in a state satisfying $X = 1$}

 • after which $Y = 1$ will hold

 • this is clearly false
Total Correctness

- Informally:

 \[
 \text{Total correctness} = \text{Termination} + \text{Partial correctness}
 \]

- Total correctness is the ultimate goal
 - usually easier to show partial correctness and termination separately

- Termination is usually straightforward to show, but there are examples where it is not: no one knows whether the program below terminates for all values of \(X\)

  ```plaintext
  WHILE X>1 DO
    IF ODD(X) THEN X := (3×X)+1 ELSE X := X DIV 2
  ENDWILE
  ```

 - \(X \text{ DIV 2}\) evaluates to the result of rounding down \(X/2\) to a whole number
 - the Collatz conjecture is that this terminates with \(X=1\)

- Microsoft’s T2 tool proves systems code terminates
Auxiliary Variables

- \{X=x \land Y=y\} \ R:=X; \ X:=Y; \ Y:=R \ \{X=y \land Y=x\}

 - this says that *if* the execution of

 \[R:=X; \ X:=Y; \ Y:=R \]

 terminates (which it does)

 - *then* the values of \(X\) and \(Y\) are exchanged

- The variables \(x\) and \(y\), which don’t occur in the command and are used to name the initial values of program variables \(X\) and \(Y\)

- They are called *auxiliary variables* or *ghost variables*

- Informal convention:
 - program variable are upper case
 - auxiliary variable are lower case
To construct formal proofs of partial correctness specifications, *axioms and rules of inference are needed*.

This is what Floyd-Hoare logic provides:
- The formulation of the deductive system is due to Hoare.
- Some of the underlying ideas originated with Floyd.

A proof in Floyd-Hoare logic is a sequence of lines, each of which is either an *axiom* of the logic or follows from earlier lines by a *rule of inference* of the logic.
- Proofs can also be trees, if you prefer.

A formal proof makes explicit what axioms and rules of inference are used to arrive at a conclusion.
Judgements

- Three kinds of things that could be true or false:
 - statements of mathematics, e.g. \((x + 1)^2 = x^2 + 2 \times x + 1\)
 - partial correctness specifications \(\{P\} C \{Q\}\)
 - total correctness specifications \([P] C [Q]\)

- These three kinds of things are examples of *judgements*
 - a logical system gives rules for proving judgements
 - Floyd-Hoare logic provides rules for proving partial correctness specifications
 - the laws of arithmetic provide ways of proving statements about integers

- \(\vdash S\) means statement \(S\) can be proved
 - how to prove predicate calculus statements assumed known
 - this course covers axioms and rules for proving
 program correctness statements
• The proof rules that follow constitute an axiomatic semantics of our programming language

Expressions
\[E ::= N \mid V \mid E_1 + E_2 \mid E_1 - E_2 \mid E_1 \times E_2 \mid \ldots \]

Boolean expressions
\[B ::= T \mid F \mid E_1 = E_2 \mid E_1 \leq E_2 \mid \ldots \]

Commands
\[C ::= V := E \quad \text{Assignments} \\
| C_1 \ ; \ C_2 \quad \text{Sequences} \\
| \text{IF } B \text{ THEN } C_1 \text{ ELSE } C_2 \quad \text{Conditionals} \\
| \text{WHILE } B \text{ DO } C \quad \text{WHILE-commands} \]
Substitution Notation

• $Q[E/V]$ is the result of replacing all occurrences of V in Q by E
 - read $Q[E/V]$ as ‘Q with E for V’
 - for example: $(x+1 > x)[Y+Z/X] = ((Y+Z)+1 > Y+Z)$
 - ignoring issues with bound variables for now (e.g. variable capture)

• Same notation for substituting into terms, e.g. $E_1[E_2/V]$

• Think of this notation as the ‘cancellation law’
 \[V[E/V] = E \]
 which is analogous to the cancellation property of fractions
 \[v \times (e/v) = e \]

• Note that $Q[x/V]$ doesn’t contain V (if $V \neq x$)
The Assignment Axiom (Hoare)

- Syntax: \(V := E \)
- Semantics: value of \(V \) in final state is value of \(E \) in initial state
- Example: \(X := X + 1 \) (adds one to the value of the variable \(X \))

The Assignment Axiom

\[\vdash \{ Q[E/V] \} \ V := E \ \{ Q \} \]

Where \(V \) is any variable, \(E \) is any expression, \(Q \) is any statement.

- Instances of the assignment axiom are
 - \(\vdash \{ E = x \} \ V := E \ \{ V = x \} \)
 - \(\vdash \{ Y = 2 \} \ X := 2 \ \{ Y = X \} \)
 - \(\vdash \{ X + 1 = n + 1 \} \ X := X + 1 \ \{ X = n + 1 \} \)
 - \(\vdash \{ E = E \} \ X := E \ \{ X = E \} \) (if \(X \) does not occur in \(E \))
• Many people feel the assignment axiom is ‘backwards’

• One common erroneous intuition is that it should be

\[\vdash \{ P \} \; V := E \; \{ P[V/E] \} \]

• where \(P[V/E] \) denotes the result of substituting \(V \) for \(E \) in \(P \)

• this has the false consequence \(\vdash \{ X=0 \} \; X := 1 \; \{ X=0 \} \)
 (since \((X=0)[X/1] \) is equal to \((X=0) \) as \(1 \) doesn’t occur in \((X=0) \))

• Another erroneous intuition is that it should be

\[\vdash \{ P \} \; V := E \; \{ P[E/V] \} \]

• this has the false consequence \(\vdash \{ X=0 \} \; X := 1 \; \{ 1=0 \} \)
 (which follows by taking \(P \) to be \(X=0 \), \(V \) to be \(X \) and \(E \) to be \(1 \))
Validity

• Important to establish the validity of axioms and rules

• Later will give a *formal semantics* of our little programming language
 • then *prove* axioms and rules of inference of Floyd-Hoare logic are sound
 • this will only increase our confidence in the axioms and rules to the extent that we believe the correctness of the formal semantics!

• The Assignment Axiom is not valid for ‘real’ programming languages
 • In an early PhD on Hoare Logic G. Ligler showed that the assignment axiom can fail to hold in six different ways for the language Algol 60
• The validity of the assignment axiom depends on expressions not having side effects

• Suppose that our language were extended so that it contained the ‘block expression’

\[
\text{BEGIN } Y:=1; 2 \text{ END}
\]

• this expression has value 2, but its evaluation also ‘side effects’ the variable \(Y \) by storing 1 in it

• If the assignment axiom applied to block expressions, then it could be used to deduce

\[
\vdash \{ Y=0 \} X:=\text{BEGIN } Y:=1; 2 \text{ END } \{ Y=0 \}
\]

• since \((Y=0)[E/X] = (Y=0) \) (because \(X \) does not occur in \((Y=0) \))

• this is clearly false; after the assignment \(Y \) will have the value 1
A Forwards Assignment Axiom (Floyd)

- This is the original semantics of assignment due to Floyd

\[\vdash \{ P \} V := E \{ \exists v. V = E[v/V] \land P[v/V] \} \]

- where \(v \) is a new variable (i.e. doesn’t equal \(V \) or occur in \(P \) or \(E \))

- Example instance

\[\vdash \{ X=1 \} X := X + 1 \{ \exists v. X = X + 1[v/X] \land X = 1[v/X] \} \]

- Simplifying the postcondition

\[\vdash \{ X=1 \} X := X + 1 \{ \exists v. X = X + 1[v/X] \land X = 1[v/X] \} \]
\[\vdash \{ X=1 \} X := X + 1 \{ \exists v. X = v + 1 \land v = 1 \} \]
\[\vdash \{ X=1 \} X := X + 1 \{ \exists v. X = 1 + 1 \land v = 1 \} \]
\[\vdash \{ X=1 \} X := X + 1 \{ X = 1 + 1 \land \exists v. v = 1 \} \]
\[\vdash \{ X=1 \} X := X + 1 \{ X = 2 \land T \} \]
\[\vdash \{ X=1 \} X := X + 1 \{ X = 2 \} \]

- Forwards Axiom equivalent to standard one but harder to use