Hoare Logic

http://www.cl.cam.ac.uk/~mjcg/HoareLogic.html

- Program specification using Hoare notation
- Axioms and rules of Hoare Logic
- Soundness and completeness
- Mechanised program verification
- Pointers, the frame problem and separation logic
Expressions:
\[E ::= N \mid V \mid E_1 + E_2 \mid E_1 - E_2 \mid E_1 \times E_2 \mid \ldots \]

Boolean expressions:
\[B ::= T \mid F \mid E_1 = E_2 \mid E_1 \leq E_2 \mid \ldots \]

Commands:
\[C ::= V ::= E \]
\[\mid C_1 ; C_2 \]
\[\mid \text{IF } B \text{ THEN } C_1 \text{ ELSE } C_2 \]
\[\mid \text{WHILE } B \text{ DO } C \]
Specification of Imperative Programs

Acceptable Initial State

“X is greater than zero”

Acceptable Final State

“Y is the square root of X”

Action of the Program
• C.A.R. Hoare introduced the following notation called a partial correctness specification for specifying what a program does:

\{P\} \ C \ \{Q\}

where:

• \(C\) is a command

• \(P\) and \(Q\) are conditions on the program variables used in \(C\)

• Conditions on program variables will be written using standard mathematical notations together with logical operators like:

 \(\land\) (‘and’), \(\lor\) (‘or’), \(\neg\) (‘not’), \(\Rightarrow\) (‘implies’)

• Hoare’s original notation was \(P \ {C} \ Q\) not \(\{P\} \ C \ \{Q\}\), but the latter form is now more widely used
Meaning of Hoare’s Notation

- \(\{P\} \; C \; \{Q\} \) is true if
 - whenever \(C \) is executed in a state satisfying \(P \)
 - and if the execution of \(C \) terminates
 - then the state in which \(C \) terminates satisfies \(Q \)

Example: \(\{X = 1\} \; X:=X+1 \; \{X = 2\} \)
 - \(P \) is the condition that the value of \(X \) is 1
 - \(Q \) is the condition that the value of \(X \) is 2
 - \(C \) is the assignment command \(X:=X+1 \)
 - i.e. ‘\(X \) becomes \(X+1 \)’

- \(\{X = 1\} \; X:=X+1 \; \{X = 2\} \) is true
- \(\{X = 1\} \; X:=X+1 \; \{X = 3\} \) is false
Hoare Logic is a deductive proof system for Hoare triples \(\{P\} C \{Q\} \).

Can use Hoare Logic directly to verify programs:
- original proposal by Hoare
- tedious and error prone
- impractical for large programs

Can ‘compile’ proving \(\{P\} C \{Q\} \) to verification conditions:
- more natural
- basis for computer assisted verification

Proof of verification conditions equivalent to proof with Hoare Logic:
- Hoare Logic can be used to explain verification conditions
Partial Correctness Specification

- An expression \(\{P\} \ C \ \{Q\} \) is called a *partial correctness specification*
 - \(P \) is called its *precondition*
 - \(Q \) its *postcondition*

- \(\{P\} \ C \ \{Q\} \) is true if
 - whenever \(C \) is executed in a state satisfying \(P \)
 - and *if* the execution of \(C \) terminates
 - then the state in which \(C \)’s execution terminates satisfies \(Q \)

- These specifications are ‘partial’ because for \(\{P\} \ C \ \{Q\} \) to be true it is *not* necessary for the execution of \(C \) to terminate when started in a state satisfying \(P \)

- It is only required that *if* the execution terminates, then \(Q \) holds

- \(\{X = 1\} \ \text{WHILE} \ T \ \text{DO} \ X := X \ \{Y = 2\} \) — **this specification is true!**
• **A stronger kind of specification is a total correctness specification**
 - there is no standard notation for such specifications
 - we shall use \([P] C [Q]\)

• A total correctness specification \([P] C [Q]\) is true if and only if
 - whenever \(C\) is executed in a state satisfying \(P\) the **execution of \(C\) terminates**
 - after \(C\) terminates \(Q\) holds

• **\([X = 1] \ Y:=X; \ WHILE \ T \ DO \ X:=X \ [Y = 1]\)**
 - this says that the execution of \(Y:=X;\ WHILE \ T \ DO \ X:=X\) terminates when started in a state satisfying \(X = 1\)
 - after which \(Y = 1\) will hold
 - this is clearly false
Total Correctness

• Informally:

\[\text{Total correctness} = \text{Termination} + \text{Partial correctness} \]

• Total correctness is the ultimate goal
 • usually easier to show partial correctness and termination separately

• Termination is usually straightforward to show, but there are examples where it is not: no one knows whether the program below terminates for all values of \(X \)

```plaintext
WHILE X > 1 DO
  IF ODD(X) THEN X := (3 \times X) + 1 ELSE X := X \text{ DIV } 2
```

 • \(X \ \text{DIV} \ 2 \) evaluates to the result of rounding down \(X/2 \) to a whole number

 • the **Collatz conjecture** is that this terminates with \(X=1 \)

• Microsoft’s T2 tool proves systems code terminates
- \{X=x \land Y=y\} \text{ R:=X; X:=Y; Y:=R } \{X=y \land Y=x\}
 - this says that \textit{if} the execution of
 \[
 \text{R:=X; X:=Y; Y:=R}
 \]
 terminates (which it does)
 - \textit{then} the values of X and Y are exchanged

- The variables x and y, which don’t occur in the command and are used to name the initial values of program variables X and Y

- They are called \textit{auxiliary variables} or \textit{ghost variables}

- Informal convention:
 - program variable are upper case
 - auxiliary variable are lower case
• To construct formal proofs of partial correctness specifications, *axioms and rules of inference are needed*

• This is what Floyd-Hoare logic provides
 • the formulation of the deductive system is due to Hoare
 • some of the underlying ideas originated with Floyd

• A proof in Floyd-Hoare logic is a sequence of lines, each of which is either an *axiom* of the logic or follows from earlier lines by a *rule of inference* of the logic
 • proofs can also be trees, if you prefer

• A formal proof makes explicit what axioms and rules of inference are used to arrive at a conclusion
Judgements

• Three kinds of things that could be true or false:
 • statements of mathematics, e.g. \((x + 1)^2 = x^2 + 2 \times x + 1\)
 • partial correctness specifications \(\{P\} \ C \ \{Q\}\)
 • total correctness specifications \([P] \ C \ [Q]\)

• These three kinds of things are examples of judgements
 • a logical system gives rules for proving judgements
 • Floyd-Hoare logic provides rules for proving partial correctness specifications
 • the laws of arithmetic provide ways of proving statements about integers

• \(\vdash S\) means statement \(S\) can be proved
 • how to prove predicate calculus statements assumed known
 • this course covers axioms and rules for proving program correctness statements
The proof rules that follow constitute an axiomatic semantics of our programming language.

Expressions

\[E ::= N \mid V \mid E_1 + E_2 \mid E_1 - E_2 \mid E_1 \times E_2 \mid \ldots \]

Boolean expressions

\[B ::= T \mid F \mid E_1 = E_2 \mid E_1 \leq E_2 \mid \ldots \]

Commands

\[C ::= V := E \quad \text{Assignments} \]
\[C_1 \mid C_2 \quad \text{Sequences} \]
\[\text{IF } B \text{ THEN } C_1 \text{ ELSE } C_2 \quad \text{Conditionals} \]
\[\text{WHILE } B \text{ DO } C \quad \text{WHILE-commands} \]
Substitution Notation

- $Q[E/V]$ is the result of replacing all occurrences of V in Q by E
 - read $Q[E/V]$ as ‘Q with E for V’
 - for example: $(x+1 > x)[Y+Z/X] = ((Y+Z)+1 > Y+Z)$
 - ignoring issues with bound variables for now (e.g. variable capture)

- Same notation for substituting into terms, e.g. $E_1[E_2/V]$

- Think of this notation as the ‘cancellation law’
 \[V[E/V] = E \]
 which is analogous to the cancellation property of fractions
 \[v \times \frac{e}{v} = e \]

- Note that $Q[x/V]$ doesn’t contain V (if $V \neq x$)
The Assignment Axiom (Hoare)

- **Syntax:** $V := E$
- **Semantics:** value of V in final state is value of E in initial state
- **Example:** $X := X + 1$ (adds one to the value of the variable X)

<table>
<thead>
<tr>
<th>The Assignment Axiom</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vdash {Q[E/V]} V := E {Q}$</td>
</tr>
</tbody>
</table>

Where V is any variable, E is any expression, Q is any statement.

- **Instances of the assignment axiom are**
 - $\vdash \{E = x\} V := E \{V = x\}$
 - $\vdash \{Y = 2\} X := 2 \{Y = X\}$
 - $\vdash \{X + 1 = n + 1\} X := X + 1 \{X = n + 1\}$
 - $\vdash \{E = E\} X := E \{X = E\}$ (if X does not occur in E)
Many people feel the assignment axiom is ‘backwards’

One common erroneous intuition is that it should be

\[\vdash \{ P \} \quad V := E \quad \{ P[V/E] \} \]

where \(P[V/E] \) denotes the result of substituting \(V \) for \(E \) in \(P \)

this has the false consequence \(\vdash \{ X = 0 \} \quad X := 1 \quad \{ X = 0 \} \)

(since \((X=0)[X/1] \) is equal to \((X=0) \) as \(1 \) doesn’t occur in \((X=0) \))

Another erroneous intuition is that it should be

\[\vdash \{ P \} \quad V := E \quad \{ P[E/V] \} \]

this has the false consequence \(\vdash \{ X = 0 \} \quad X := 1 \quad \{ 1 = 0 \} \)

(which follows by taking \(P \) to be \(X = 0 \), \(V \) to be \(X \) and \(E \) to be \(1 \))
Validity

- Important to establish the validity of axioms and rules

- Later will give a *formal semantics* of our little programming language
 - then *prove* axioms and rules of inference of Floyd-Hoare logic are sound
 - this will only increase our confidence in the axioms and rules to the extent that we believe the correctness of the formal semantics!

- The Assignment Axiom is not valid for ‘real’ programming languages
 - In an early PhD on Hoare Logic G. Ligler showed that the assignment axiom can fail to hold in six different ways for the language Algol 60
The validity of the assignment axiom depends on expressions not having side effects.

Suppose that our language were extended so that it contained the ‘block expression’

\[
\text{BEGIN } Y := 1; 2 \text{ END}
\]

- This expression has value 2, but its evaluation also ‘side effects’ the variable \(Y \) by storing 1 in it.

If the assignment axiom applied to block expressions, then it could be used to deduce

\[
\vdash \{ Y = 0 \} \ X := \text{BEGIN } Y := 1; 2 \text{ END } \{ Y = 0 \}
\]

- Since \((Y=0)[E/X] = (Y=0)\) (because \(X \) does not occur in \((Y=0)\))

- This is clearly false; after the assignment \(Y \) will have the value 1
This is the original semantics of assignment due to Floyd

\[\vdash \{ P \} \ V := E \ \{ \exists v. \ V = E[v/V] \land P[v/V] \} \]

- where \(v \) is a new variable (i.e. doesn’t equal \(V \) or occur in \(P \) or \(E \))

Example instance

\[\vdash \{ X=1 \} \ X := X + 1 \ \{ \exists v. \ X = X + 1[v/X] \land X=1[v/X] \} \]

Simplifying the postcondition

\[\vdash \{ X=1 \} \ X := X + 1 \ \{ \exists v. \ X = X + 1[v/X] \land X=1[v/X] \} \]
\[\vdash \{ X=1 \} \ X := X + 1 \ \{ \exists v. \ X = v + 1 \land v = 1 \} \]
\[\vdash \{ X=1 \} \ X := X + 1 \ \{ \exists v. \ X = 1 + 1 \land v = 1 \} \]
\[\vdash \{ X=1 \} \ X := X + 1 \ \{ X = 1 + 1 \land \exists v. \ v = 1 \} \]
\[\vdash \{ X=1 \} \ X := X + 1 \ \{ X = 2 \land T \} \]
\[\vdash \{ X=1 \} \ X := X + 1 \ \{ X = 2 \} \]

Forwards Axiom equivalent to standard one but harder to use
The Assignment Axiom (Hoare)

- Syntax: $V := E$
- Semantics: value of V in final state is value of E in initial state
- Example: $x := x + 1$ (adds one to the value of the variable x)

The Assignment Axiom

\[
\vdash \{ Q[E/V] \} \ V := E \ \{ Q \}
\]

Where V is any variable, E is any expression, Q is any statement.

- Instances of the assignment axiom are
 - $\vdash \{ E = x \} \ V := E \ \{ V = x \}$
 - $\vdash \{ Y = 2 \} \ X := 2 \ \{ Y = X \}$
 - $\vdash \{ X + 1 = n + 1 \} \ X := X + 1 \ \{ X = n + 1 \}$
 - $\vdash \{ E = E \} \ X := E \ \{ X = E \}$ (if x does not occur in E)
Precondition Strengthening

- Recall that

\[\vdash S_1, \ldots, \vdash S_n \]

\[\vdash S \]

means \(\vdash S \) can be deduced from \(\vdash S_1, \ldots, \vdash S_n \)

- Using this notation, the rule of precondition strengthening is

\[
\begin{align*}
\vdash P \Rightarrow P', & \quad \vdash \{P'\} C \{Q\} \\
\hline
& \vdash \{P\} C \{Q\}
\end{align*}
\]

- Note the two hypotheses are different kinds of judgements
Postcondition weakening

- Just as the previous rule allows the precondition of a partial correctness specification to be strengthened, the following one allows us to weaken the postcondition.

\[
\begin{align*}
\vdash \{P\} \ C \ \{Q'\}, & \quad \vdash Q' \Rightarrow Q \\
\vdash \{P\} \ C \ \{Q\}
\end{align*}
\]
• Here is a little formal proof

1. ⊢ \{R=X \land 0=0\} \quad Q:=0 \quad \{R=X \land Q=0\} \quad \text{By the assignment axiom}
2. ⊢ R=X \implies R=X \land 0=0 \quad \text{By pure logic}
3. ⊢ \{R=X\} \quad Q:=0 \quad \{R=X \land Q=0\} \quad \text{By precondition strengthening}
4. ⊢ R=X \land Q=0 \implies R=X+(Y \times Q) \quad \text{By laws of arithmetic}
5. ⊢ \{R=X\} \quad Q:=0 \quad \{R=X+(Y \times Q)\} \quad \text{By postcondition weakening}

• The rules precondition strengthening and postcondition weakening are sometimes called the rules of consequence
The sequencing rule

- Syntax: $C_1; \cdots ; C_n$

- Semantics: the commands C_1, \cdots , C_n are executed in that order

- Example: $R:=X; X:=Y; Y:=R$
 - the values of X and Y are swapped using R as a temporary variable
 - note side effect: value of R changed to the old value of X

\[
\begin{align*}
\vdash \{P\} C_1 \{Q\}, & \quad \vdash \{Q\} C_2 \{R\} \\
\vdash \{P\} C_1; C_2 \{R\}
\end{align*}
\]
Example: By the assignment axiom:

(i) ⊢ {X=x \land Y=y} \quad R:=X \quad \{R=x \land Y=y\}

(ii) ⊢ {R=x \land Y=y} \quad X:=Y \quad \{R=x \land X=y\}

(iii) ⊢ {R=x \land X=y} \quad Y:=R \quad \{Y=x \land X=y\}

Hence by (i), (ii) and the sequencing rule

(iv) ⊢ {X=x \land Y=y} \quad R:=X; \quad X:=Y \quad \{R=x \land X=y\}

Hence by (iv) and (iii) and the sequencing rule

(v) ⊢ {X=x \land Y=y} \quad R:=X; \quad X:=Y; \quad Y:=R \quad \{Y=x \land X=y\}
• Syntax: IF S THEN C_1 ELSE C_2

• Semantics:
 • if the statement S is true in the current state, then C_1 is executed
 • if S is false, then C_2 is executed

• Example: IF $X < Y$ THEN $\text{MAX} := Y$ ELSE $\text{MAX} := X$
 • the value of the variable MAX it set to the maximum of the values of X and Y
The Conditional Rule

The conditional rule

\[\vdash \{ P \land S \} C_1 \{ Q \}, \quad \vdash \{ P \land \neg S \} C_2 \{ Q \} \]
\[\vdash \{ P \} \text{ IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \{ Q \} \]

- From Assignment Axiom + Precondition Strengthening and
 \[\vdash (X \geq Y \Rightarrow X = \max(X,Y)) \land (\neg(X \geq Y) \Rightarrow Y = \max(X,Y)) \]
 it follows that
 \[\vdash \{ T \land X \geq Y \} \text{ MAX:=}X \ \{ \text{MAX=}\max(X,Y) \} \]
 and
 \[\vdash \{ T \land \neg(X \geq Y) \} \text{ MAX:=}Y \ \{ \text{MAX=}\max(X,Y) \} \]

- Then by the conditional rule it follows that
 \[\vdash \{ T \} \text{ IF } X \geq Y \text{ THEN } \text{MAX:=}X \text{ ELSE } \text{MAX:=}Y \ \{ \text{MAX=}\max(X,Y) \} \]
WHILE-commands

- **Syntax:** `WHILE S DO C`

- **Semantics:**
 - if the statement `S` is true in the current state, then `C` is executed and the WHILE-command is repeated
 - if `S` is false, then nothing is done
 - thus `C` is repeatedly executed until the value of `S` becomes false
 - if `S` never becomes false, then the execution of the command never terminates

- **Example:** `WHILE ¬(X=0) DO X:= X-2`
 - if the value of `X` is non-zero, then its value is decreased by 2 and then the process is repeated

- This WHILE-command will terminate (with `X` having value 0) if the value of `X` is an even non-negative number
 - in all other states it will not terminate
Invariants

- Suppose $\vdash \{ P \land S \} C \{ P \}$

- P is said to be an invariant of C whenever S holds

- The WHILE-rule says that
 - if P is an invariant of the body of a WHILE-command whenever the test condition holds
 - then P is an invariant of the whole WHILE-command

- In other words
 - if executing C once preserves the truth of P
 - then executing C any number of times also preserves the truth of P

- The WHILE-rule also expresses the fact that after a WHILE-command has terminated, the test must be false
 - otherwise, it wouldn’t have terminated
The WHILE-Rule

The WHILE-rule

\[
\begin{align*}
\vdash & \quad \{P \land S\} \; C \; \{P\} \\
\vdash & \quad \{P\} \quad \text{WHILE} \; S \; \text{DO} \; C \; \{P \land \neg S\}
\end{align*}
\]

• It is easy to show

\[
\vdash \quad \{X=R+(Y \times Q) \land Y \leq R\} \quad R:=R-Y; \; Q:=Q+1 \quad \{X=R+(Y \times Q)\}
\]

• Hence by the WHILE-rule with \(P = 'X=R+(Y \times Q)' \) and \(S = 'Y \leq R' \)

\[
\vdash \quad \{X=R+(Y \times Q)\} \\
\quad \text{WHILE} \; Y \leq R \; \text{DO} \\
\quad \quad (R:=R-Y; \; Q:=Q+1) \\
\quad \quad \{X=R+(Y \times Q) \land \neg (Y \leq R)\}
\]
Example

- From the previous slide

\[\vdash \{ X=R+(Y \times Q) \} \]

\[
\text{WHILE } Y \leq R \text{ DO} \\
\quad (R:=R-Y; \ Q:=Q+1) \\
\quad \{ X=R+(Y \times Q) \land \neg (Y \leq R) \}
\]

- It is easy to deduce that

\[\vdash \{ T \} \quad R:=X; \ Q:=0 \quad \{ X=R+(Y \times Q) \} \]

- Hence by the sequencing rule and postcondition weakening

\[\vdash \{ T \} \]

\[
\text{R:=X;} \\
\quad Q:=0; \\
\text{WHILE } Y \leq R \text{ DO} \\
\quad (R:=R-Y; \ Q:=Q+1) \\
\quad \{ R<Y \land X=R+(Y \times Q) \}
\]
• We have given:
 • a notation for specifying what a program does
 • a way of proving that it meets its specification

• Now we look at ways of finding proofs and organising them:
 • finding invariants
 • derived rules
 • backwards proofs
 • annotating programs prior to proof

• Then we see how to automate program verification
 • the automation mechanises some of these ideas
How does one find an invariant?

The WHILE-rule

\[\vdash \{ P \land S \} \ C \ \{ P \} \]
\[\vdash \{ P \} \ \text{WHILE} \ S \ \text{DO} \ C \ \{ P \land \neg S \} \]

• Look at the facts:
 • invariant \(P \) must hold initially
 • with the negated test \(\neg S \) the invariant \(P \) must establish the result
 • when the test \(S \) holds, the body must leave the invariant \(P \) unchanged

• Think about how the loop works – the invariant should say that:
 • what \text{has been done so far} together with what \text{remains to be done}
 • holds \text{at each iteration} of the loop
 • and gives \text{the desired result} when the loop terminates
Example

- Consider a factorial program

\[
\{X=n \land Y=1\}
\]

WHILE \(X\neq 0\) DO

\[
(Y:=Y\times X; \ X:=X-1)
\]

\[
\{X=0 \land Y=n!\}
\]

- Look at the facts
 - initially \(X=n\) and \(Y=1\)
 - finally \(X=0\) and \(Y=n!\)
 - on each loop \(Y\) is increased and, \(X\) is decreased

- Think how the loop works
 - \(Y\) holds the result so far
 - \(X!\) is what remains to be computed
 - \(n!\) is the desired result

- The invariant is \(X!\times Y = n!\)
 - ‘stuff to be done’ \(\times\) ‘result so far’ = ‘desired result’
 - decrease in \(X\) combines with increase in \(Y\) to make invariant
Related example

\{X=0 \land Y=1\}
\hspace{1cm}
\text{WHILE } X<N \text{ DO (} X:=X+1; \ Y:=Y\times X\}\hspace{1cm}\{Y=N!\}

\begin{itemize}
 \item Look at the Facts
 \begin{itemize}
 \item initially \(X=0\) and \(Y=1\)
 \item finally \(X=N\) and \(Y=N!\)
 \item on each iteration both \(X\) an \(Y\) increase: \(X\) by 1 and \(Y\) by \(X\)
 \end{itemize}
 \item An invariant is \(Y = X!\)
 \item At end need \(Y = N!\), but WHILE-rule only gives \(\neg(X<N)\)
 \item \textbf{Ah Ha!} Invariant needed: \(Y = X! \land X \leq N\)
 \item At end \(X \leq N \land \neg(X<N) \Rightarrow X=N\)
 \item Often need to strengthen invariants to get them to work
 \begin{itemize}
 \item typical to add stuff to ‘carry along’ like \(X \leq N\)
 \end{itemize}
\end{itemize}
Conjunction and Disjunction

Specification conjunction

\[\vdash \{ P_1 \} \ C \ \{ Q_1 \}, \quad \vdash \{ P_2 \} \ C \ \{ Q_2 \} \]

\[\vdash \{ P_1 \land P_2 \} \ C \ \{ Q_1 \land Q_2 \} \]

Specification disjunction

\[\vdash \{ P_1 \} \ C \ \{ Q_1 \}, \quad \vdash \{ P_2 \} \ C \ \{ Q_2 \} \]

\[\vdash \{ P_1 \lor P_2 \} \ C \ \{ Q_1 \lor Q_2 \} \]

- These rules are useful for splitting a proof into independent bits
 - they enable \(\vdash \{ P \} \ C \ \{ Q_1 \land Q_2 \} \) to be proved by proving separately that both \(\vdash \{ P \} \ C \ \{ Q_1 \} \) and also that \(\vdash \{ P \} \ C \ \{ Q_2 \} \)

- Any proof with these rules could be done without using them
 - i.e. they are theoretically redundant (proof omitted)
 - however, useful in practice
Derived rules for finding proofs

• Suppose the goal is to prove \{Precondition\} Command \{Postcondition\}

• If there were a rule of the form

\[
\begin{align*}
\vdash H_1, \cdots, \vdash H_n \\
\vdash \{P\} C \{Q\}
\end{align*}
\]

then we could instantiate

\[
P \leftrightarrow \text{Precondition}, \ C \leftrightarrow \text{Command}, \ Q \leftrightarrow \text{Postcondition}
\]

to get instances of \(H_1, \cdots, H_n\) as subgoals

• Some of the rules are already in this form e.g. the sequencing rule

• We will derive rules of this form for all commands

• Then we use these derived rules for mechanising Hoare Logic proofs
• We will establish derived rules for all commands

\[
\begin{align*}
\vdash \{P\} & \quad V := E \quad \{Q\} \\
\vdash \{P\} & \quad C_1; C_2 \quad \{Q\} \\
\vdash \{P\} & \quad \text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \quad \{Q\} \\
\vdash \{P\} & \quad \text{WHILE } S \text{ DO } C \quad \{Q\}
\end{align*}
\]

• These support ‘backwards proof’ starting from a goal \(\{P\} \quad C \quad \{Q\}\)
The Derived Assignment Rule

- **An example proof**

 1. \(\vdash \{R=X \wedge 0=0\} \quad Q:=0 \quad \{R=X \wedge Q=0\} \)
 By the assignment axiom.
 2. \(\vdash R=X \Rightarrow R=X \wedge 0=0 \)
 By pure logic.
 3. \(\vdash \{R=X\} \quad Q:=0 \quad \{R=X \wedge Q=0\} \)
 By precondition strengthening.

- **Can generalise this proof to a proof schema:**

 1. \(\vdash \{Q[E/V]\} \quad V:=E \quad \{Q\} \)
 By the assignment axiom.
 2. \(\vdash P \Rightarrow Q[E/V] \)
 By assumption.
 3. \(\vdash \{P\} \quad V:=E \quad \{Q\} \)
 By precondition strengthening.

- **This proof schema justifies:**

\[
\begin{align*}
\vdash & P \Rightarrow Q[E/V] \\
\vdash & \{P\} \quad V:=E \quad \{Q\}
\end{align*}
\]

- **Note:** \(Q[E/V] \) is the **weakest liberal precondition** \(wlp(V:=E, Q) \)

- **Example proof above can now be done in one less step**

 1. \(\vdash R=X \Rightarrow R=X \wedge 0=0 \)
 By pure logic.
 2. \(\vdash \{R=X\} \quad Q:=0 \quad \{R=X \wedge Q=0\} \)
 By derived assignment.
• The following rule will be useful later

\[
\begin{align*}
&\vdash \{P\} \ C \ \{Q[E/V]\} \\
&\vdash \{P\} \ C; V := E \ \{Q\}
\end{align*}
\]

• Intuitively work backwards:
 • push Q ‘through’ $V := E$, changing it to $Q[E/V]$

• Example: By the assignment axiom:

\[
\vdash \{X=x \land Y=y\} \ R := X \ \{R=x \land Y=y\}
\]

• Hence by the sequenced assignment rule

\[
\vdash \{X=x \land Y=y\} \ R := X; \ X := Y \ \{R=x \land X=y\}
\]
The Derived Sequencing Rule

- The rule below follows from the sequencing and consequence rules

```
<table>
<thead>
<tr>
<th>The Derived Sequencing Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊢ P ⇒ P₁</td>
</tr>
<tr>
<td>⊢ {P₁} C₁ {Q₁}          ⊢ Q₁ ⇒ P₂</td>
</tr>
<tr>
<td>⊢ {P₂} C₂ {Q₂}          ⊢ Q₂ ⇒ P₃</td>
</tr>
<tr>
<td>...                      ...</td>
</tr>
<tr>
<td>⊢ {Pₙ} Cₙ {Qₙ}          ⊢ Qₙ ⇒ Q</td>
</tr>
<tr>
<td>⊢ {P} C₁; ...; Cₙ {Q}</td>
</tr>
</tbody>
</table>
```

- Exercise: why no derived conditional rule?
The Derived While Rule

Derived While Rule

\[\vdash P \Rightarrow R \quad \vdash \{R \land S\} \ C \ \{R\} \quad \vdash R \land \neg S \Rightarrow Q \]

\[\vdash \{P\} \ \text{WHILE} \ S \ \text{DO} \ C \ \{Q\} \]

- This follows from the While Rule and the rules of consequence

- Example: it is easy to show

\[\vdash R=X \land Q=0 \Rightarrow X=R+(Y\times Q) \]

\[\vdash \{X=R+(Y\times Q) \land Y \leq R\} \ R:=R-Y; \ Q:=Q+1 \ \{X=R+(Y\times Q)\} \]

\[\vdash X=R+(Y\times Q) \land \neg (Y \leq R) \Rightarrow X=R+(Y\times Q) \land \neg (Y \leq R) \]

- Then, by the derived While rule

\[\vdash \{R=X \land Q=0\} \]

\[\text{WHILE} \ Y \leq R \ \text{DO} \]

\[(R:=R-Y; \ Q:=Q+1) \]

\[\{X=R+(Y\times Q) \land \neg (Y \leq R)\} \]

17
Forwards and backwards proof

• Previously it was shown how to prove \(\{P\}C\{Q\} \) by
 • proving properties of the components of \(C \)
 • and then putting these together, with the appropriate proof rule, to get the desired property of \(C \)

• For example, to prove \(\vdash \{P\}C_1;C_2\{Q\} \)

• First prove \(\vdash \{P\}C_1\{R\} \) and \(\vdash \{R\}C_2\{Q\} \)

• then deduce \(\vdash \{P\}C_1;C_2\{Q\} \) by sequencing rule

• This method is called forward proof
 • move forward from axioms via rules to conclusion

• The problem with forwards proof is that it is not always easy to see what you need to prove to get where you want to be

• It is more natural to work backwards
 • starting from the goal of showing \(\{P\}C\{Q\} \)
 • generate subgoals until problem solved
• Backwards proof just involves using the rules backwards

• Given the rule

\[\vdash S_1 \ldots \vdash S_n \]
\[\vdash S \]

• Forwards proof says:
 - if we have proved \(\vdash S_1 \ldots \vdash S_n \) we can deduce \(\vdash S \)

• Backwards proof says:
 - to prove \(\vdash S \) it is sufficient to prove \(\vdash S_1 \ldots \vdash S_n \)

• Having proved a theorem by backwards proof, it is simple to extract a forwards proof
• The sequencing rule introduces a new statement R

$$
\vdash \{P\} \ C_1 \ R \ \vdash \ R \ C_2 \ Q \ \\
\vdash \{P\} \ C_1;C_2 \ Q
$$

• To apply this backwards, one needs to find a suitable statement R

• If C_2 is $V := E$ then sequenced assignment gives $Q[E/V]$ for R

• If C_2 isn’t an assignment then need some other way to choose R

• Similarly, to use the derived While rule, must invent an invariant
• It is helpful to think up these statements before you start the proof and then annotate the program with them

 • the information is then available when you need it in the proof

 • this can help avoid you being bogged down in details

 • the annotation should be true whenever control reaches that point

• Example, the following program could be annotated at the points P_1 and P_2 indicated by the arrows

\[
\begin{align*}
\{T\} \\
R &:= X; \quad \{R=X \land Q=0\} \quad \leftarrow P_1 \\
Q &:= 0; \\
\text{WHILE } Y \leq R \text{ DO } \{X = R+Y \times Q\} \quad \leftarrow P_2 \\
(R &:= R-Y; \quad Q := Q+1) \\
\{X = R+Y \times Q \land R \leq Y\}
\end{align*}
\]
• The architecture of a simple program verifier will be described

• Justified with respect to the rules of Floyd-Hoare logic

• It is clear that
 • proofs are long and boring, even if the program being verified is quite simple
 • lots of fiddly little details to get right, many of which are trivial, e.g.
 \[\vdash (R = X \land Q = 0) \Rightarrow (X = R + Y \times Q) \]
Architecture of a Verifier

Specifying to be proved

• human expert

Annotated specification

• VC generator

Set of logic statements (VCs)

• theorem prover

Simplified set of verification conditions

• human expert

End of proof
Verification conditions

- The three steps in proving $\{P\}C\{Q\}$ with a verifier

- 1 The program C is *annotated* by inserting statements (*assertions*) expressing conditions that are meant to hold at intermediate points
 - tricky: needs intelligence and good understanding of how the program works
 - automating it is an artificial intelligence problem

- 2 A set of logic statements called *verification conditions* (VCs) is then generated from the annotated specification
 - this is purely mechanical and easily done by a program

- 3 The verification conditions are proved
 - needs automated theorem proving (i.e. more artificial intelligence)

- To improve automated verification one can try to
 - reduce the number and complexity of the annotations required
 - increase the power of the theorem prover
 - still a research area
• It will be shown that
 • if one can prove all the verification conditions generated from \(\{P\}C\{Q\} \)
 • then \(\vdash \{P\}C\{Q\} \)

• Step 2 converts a verification problem into a conventional mathematical problem

• The process will be illustrated with:

\[
\begin{align*}
\{T\} \\
R & := X; \\
Q & := 0; \\
\text{WHILE } Y \leq R \text{ DO} \\
(& \quad (R := R - Y; \ Q := Q + 1)) \\
\{ & \quad X = R + Y \times Q \land R < Y\}
\end{align*}
\]
Example

- Step 1 is to insert annotations P_1 and P_2

\[
\begin{align*}
\{T\} \\
R:=X; \\
Q:=0; \{R=X \land Q=0\} \leftarrow P_1 \\
\text{WHILE } Y \leq R \text{ DO } \{X = R+Y \times Q\} \leftarrow P_2 \\
(R:=R-Y; \ Q:=Q+1) \\
\{X = R+Y \times Q \land R<Y\}
\end{align*}
\]

- The annotations P_1 and P_2 state conditions which are intended to hold whenever control reaches them
Example Continued

\{ T \}
 \begin{align*}
 & R := X; \\
 & Q := 0; \quad \{ R = X \land Q = 0 \} \leftarrow P_1 \\
 & \text{WHILE } Y \leq R \text{ DO } \{ X = R + Y \times Q \} \leftarrow P_2 \\
 & \quad (R := R - Y; \quad Q := Q + 1) \\
 & \{ X = R + Y \times Q \land R < Y \}
 \end{align*}

- Control only reaches the point at which P_1 is placed once
- It reaches P_2 each time the WHILE body is executed
 - whenever this happens $X = R + Y \times Q$ holds, even though the values of R and Q vary
 - P_2 is an invariant of the WHILE-command
Generating and Proving Verification Conditions

- Step 2 will generate the following four verification conditions

 (i) \(T \Rightarrow (X=X \land 0=0) \)

 (ii) \((R=X \land Q=0) \Rightarrow (X = R+(Y\times Q)) \)

 (iii) \((X = R+(Y\times Q)) \land Y\leq R \Rightarrow (X = (R-Y)+(Y\times(Q+1))) \)

 (iv) \((X = R+(Y\times Q)) \land \neg(Y\leq R) \Rightarrow (X = R+(Y\times Q) \land R<Y) \)

- Notice that these are statements of arithmetic
 - the constructs of our programming language have been ‘compiled away’

- Step 3 consists in proving the four verification conditions
 - easy with modern automatic theorem provers
Annotated command is a command with statements (assertions) embedded within it.

A command is properly annotated if statements have been inserted at the following places:

(i) before C_2 in $C_1;C_2$ if C_2 is not an assignment command
(ii) after the word DO in WHILE commands

The inserted assertions should express the conditions one expects to hold whenever control reaches the point at which the assertion occurs.

Can reduce number of annotations using weakest preconditions (see later)
• A properly annotated specification is a specification \(\{P\}C\{Q\} \) where \(C \) is a properly annotated command

• Example: To be properly annotated, assertions should be at points \(1 \) and \(2 \) of the specification below

\[
\begin{align*}
\{ & X=n \} \\
Y & :=1; \quad \leftarrow 1 \\
\text{WHILE } X \neq 0 \text{ DO } \leftarrow 2 \\
& (Y := Y \times X; \ X := X-1) \\
\{ & X=0 \land Y=n! \}
\end{align*}
\]

• Suitable statements would be

at \(1 \): \(\{ Y = 1 \land X = n \} \)

at \(2 \): \(\{ Y \times X! = n! \} \)
• The VCs generated from an annotated specification \(\{P\}C\{Q\} \) are obtained by considering the various possibilities for \(C \)

• We will describe it command by command using rules of the form:

• The VCs for \(C(C_1, C_2) \) are

 • \(vc_1, \ldots, vc_n \)

 • together with the VCs for \(C_1 \) and those for \(C_2 \)

• Each VC rule corresponds to either a primitive or derived rule
• This process will be justified by showing that \(\vdash \{P\}C\{Q\} \) if all the verification conditions can be proved.

• We will prove that for any \(C \)
 • assuming the VCs of \(\{P\}C\{Q\} \) are provable
 • then \(\vdash \{P\}C\{Q\} \) is a theorem of the logic
• The argument that the verification conditions are sufficient will be by induction on the structure of C

• Such inductive arguments have two parts
 • show the result holds for atomic commands, i.e. assignments
 • show that when C is not an atomic command, then if the result holds for the constituent commands of C (this is called the induction hypothesis), then it holds also for C

• The first of these parts is called the basis of the induction

• The second is called the step

• The basis and step entail that the result holds for all commands
Assignment commands

The single verification condition generated by

\[\{P\} \ V := E \ \{Q\} \]

is

\[P \Rightarrow Q[E/V] \]

• Example: The verification condition for

\[\{X = 0\} \ \text{X := X + 1} \ \{X = 1\} \]

is

\[X = 0 \Rightarrow (X + 1) = 1 \]

(which is clearly true)

• Note: \(Q[E/V] = \text{wlp}("V := E", Q) \)
• We must show that if the VCs of \(\{P\} \ V := E \ \{Q\} \) are provable then \(\vdash \ {P} \ V := E \ {Q} \)

• Proof:

 • Assume \(\vdash P \Rightarrow Q[E/V] \) as it is the VC

 • From derived assignment rule it follows that \(\vdash {P} \ V := E \ {Q} \)
Conditionals

The verification conditions generated from

\{P\} \text{ IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \{Q\}

are

(i) the verification conditions generated by

\{P \land S\} C_1 \{Q\}

(ii) the verifications generated by

\{P \land \neg S\} C_2 \{Q\}

• Example: The verification conditions for

\{T\} \text{ IF } X \geq Y \text{ THEN MAX:=}X \text{ ELSE MAX:=}Y \{\text{MAX=}\max(X,Y)\}

are

(i) the VCs for \{T \land X \geq Y\} MAX:=X \{\text{MAX=}\max(X,Y)\}

(ii) the VCs for \{T \land \neg(X \geq Y)\} MAX:=Y \{\text{MAX=}\max(X,Y)\}
• Must show that if VCs of

\{P\} \text{ IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \ \{Q\}

are provable, then

\vdash \{P\} \text{ IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \ \{Q\}

• Proof:

 • Assume the VCs \{P \land S\} C_1 \ \{Q\} and \{P \land \neg S\} C_2 \ \{Q\}

 • The inductive hypotheses tell us that if these VCs are provable then the corresponding Hoare Logic theorems are provable

 • i.e. by induction \vdash \{P \land S\} C_1 \ \{Q\} and \vdash \{P \land \neg S\} C_2 \ \{Q\}

 • Hence by the conditional rule \vdash \{P\} \text{ IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \ \{Q\}
• If $C_1;C_2$ is properly annotated, then either

[Case 1:] it is of the form $C_1;\{R\}C_2$ and C_2 is not an assignment

[Case 2:] it is of the form $C;V := E$

• And C, C_1 and C_2 are properly annotated
Sequences

1. The verification conditions generated by

\[\{P\} C_1 \{R\} C_2 \{Q\} \]

(where \(C_2\) is not an assignment) are the union of:

(a) the verification conditions generated by \(\{P\} C_1 \{R\}\)
(b) the verifications generated by \(\{R\} C_2 \{Q\}\)

2. The verification conditions generated by

\[\{P\} C;V:=E \{Q\} \]

are the verification conditions generated by \(\{P\} C \{Q[E/V]\}\)
• **Case 1:** If the verification conditions for

\[\{P\} C_1 ; \{R\} C_2 \{Q\} \]

are provable

• Then the verification conditions for

\[\{P\} C_1 \{R\} \]

and

\[\{R\} C_2 \{Q\} \]

must both be provable

• Hence by induction

\[\vdash \{P\} C_1 \{R\} \text{ and } \vdash \{R\} C_2 \{Q\} \]

• Hence by the sequencing rule

\[\vdash \{P\} C_1;C_2 \{Q\} \]
• **Case 2:** If the verification conditions for

\[\{P\} \ C \ ; \ V := E \ \{Q\} \]

are provable, then the verification conditions for

\[\{P\} \ C \ \{Q[E/V]\} \]

are also provable

• Hence by induction

\[\vdash \ \{P\} \ C \ \{Q[E/V]\} \]

• Hence by the derived sequenced assignment rule

\[\vdash \ \{P\} \ C \ ; \ V := E \ \{Q\} \]
VCs for WHILE-Commands

- A correctly annotated specification of a WHILE-command has the form

 \[\{P\} \text{WHILE} S \text{DO} \{R\} C \{Q\} \]

- The annotation \(R\) is called an invariant

```
WHILE-commands
The verification conditions generated from

\[ \{P\} \text{WHILE} S \text{DO} \{R\} C \{Q\} \]

are

(i) \(P \Rightarrow R\)
(ii) \(R \land \neg S \Rightarrow Q\)
(iii) the verification conditions generated by \(\{R \land S\} C\{R\}\)
```
Justification of \textbf{WHILE VCs}

- If the verification conditions for

\[
\{P\} \text{WHILE } S \text{ DO } \{R\} \ C \ \{Q\}
\]

are provable, then

\[\vdash P \Rightarrow R\]

\[\vdash (R \land \neg S) \Rightarrow Q\]

and the verification conditions for

\[
\{R \land S\} \ C \ \{R\}
\]

are provable

- By induction

\[\vdash \{R \land S\} \ C \ \{R\}\]

- Hence by the derived \textbf{WHILE}-rule

\[\vdash \{P\} \ \text{WHILE } S \text{ DO } \ C \ \{Q\}\]
Summary

- Have outlined the design of an automated program verifier
- Annotated specifications compiled to mathematical statements
 - if the statements (VCs) can be proved, the program is verified
- Human help is required to give the annotations and prove the VCs
- The algorithm was justified by an inductive proof
 - it appeals to the derived rules
- All the techniques introduced earlier are used
 - backwards proof
 - derived rules
 - annotation
Dijkstra’s weakest preconditions

- Weakest preconditions is a theory of refinement
 - idea is to calculate a program to achieve a postcondition
 - not a theory of post hoc verification

- Non-determinism a key idea in Dijkstra’s presentation
 - start with a non-deterministic high level pseudo-code
 - refine to deterministic and efficient code

- Weakest preconditions (wp) are for total correctness

- Weakest liberal preconditions (wlp) for partial correctness

- If C is a command and Q a predicate, then informally:
 - $\text{wlp}(C, Q) = ‘\text{The weakest predicate } P \text{ such that } \{P\} C \{Q\}’$
 - $\text{wp}(C, Q) = ‘\text{The weakest predicate } P \text{ such that } [P] C [Q]’$

- If P and Q are predicates then $Q \Rightarrow P$ means P is ‘weaker’ than Q
Rules for weakest preconditions

- Relation with Hoare specifications:
 \[
 \{P\} \ C \ \{Q\} \iff P \Rightarrow \text{wlp}(C, Q) \\
 \[P\] \ C \ \[Q\] \iff P \Rightarrow \text{wp}(C, Q)
 \]

- Dijkstra gives rules for computing weakest preconditions:
 \[
 \text{wp}(V := E, Q) = Q[E/V] \\
 \text{wp}(C_1; C_2, Q) = \text{wp}(C_1, \text{wp}(C_2, Q)) \\
 \text{wp}(\text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2, Q) = (S \Rightarrow \text{wp}(C_1, Q)) \land (\neg S \Rightarrow \text{wp}(C_2, Q))
 \]
 For deterministic loop-free code the same equations hold for \text{wlp}

- Rule for \textsc{while}-commands doesn’t give a first order result

- Weakest preconditions closely related to verification conditions

- VCs for \{P\} \ C \ \{Q\} are related to \(P \Rightarrow \text{wlp}(C, Q)\)
 - VCs use annotations to ensure first order formulas can be generated
Using \text{wlp} to improve verification condition method

- If C is \textbf{loop-free} then VC for $\{P\} C \{Q\}$ is $P \Rightarrow \text{wlp}(C, Q)$
 - no annotations needed in sequences!

- Cannot in general compute a \textbf{finite} formula for $\text{wlp}(\text{WHILE } S \text{ DO } C, Q)$

- The following holds
 $$\text{wlp}(\text{WHILE } S \text{ DO } C, Q) = \text{if } S \text{ then } \text{wlp}(C, \text{wlp}(\text{WHILE } S \text{ DO } C, Q)) \text{ else } Q$$

- Above doesn’t define $\text{wlp}(C, Q)$ as a finite statement

- Could use a hybrid VC and \text{wlp} method
• Define $sp(C, P)$ to be ‘strongest’ Q such that $\{P\} C \{Q\}$

 • partial correctness: $\{P\} C \{sp(C, P)\}$

 • strongest means if $\{P\} C \{Q\}$ then $sp(C, P) \Rightarrow Q$

• Note that wlp goes ‘backwards’, but sp goes ‘forwards’

 • verification condition for $\{P\} C \{Q\}$ is: $sp(C, P) \Rightarrow Q$

• By ‘strongest’ and Hoare logic postcondition weakening

 • $\{P\} C \{Q\}$ **if and only if** $sp(C, P) \Rightarrow Q$
Strongest postconditions for loop-free code

- Only consider loop-free code

- \(\text{sp}(V := E, P) = \exists v. V = E[v/V] \land P[v/V] \)

- \(\text{sp}(C_1 ; C_2, P) = \text{sp}(C_2, \text{sp}(C_1, P)) \)

- \(\text{sp}(\text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2, P) = \text{sp}(C_1, P \land S) \lor \text{sp}(C_2, P \land \neg S) \)

- \(\text{sp}(V := E, P) \) corresponds to Floyd assignment axiom

- Can *dynamically prune* conditionals because \(\text{sp}(C, F) = F \)

- Computer strongest postconditions is *symbolic execution*
Computing \textit{sp} versus \textit{wlp}

- **Computing \textit{sp} is like execution**
 - can simplify as one goes along with the ‘current state’
 - may be able to resolve branches, so can avoid executing them
 - Floyd assignment rule complicated in general
 - \textit{sp} used for symbolically exploring ‘reachable states’
 (related to \textit{model checking})

- **Computing \textit{wlp} is like backwards proof**
 - don’t have ‘current state’, so can’t simplify using it
 - can’t determine conditional tests, so get big \textit{if-then-else} trees
 - Hoare assignment rule simpler for arbitrary formulae
 - \textit{wlp} used for improved verification conditions
• If C is loop-free then VC for $\{P\} \ C \ \{Q\}$ is $sp(C, P) \Rightarrow Q$

• Cannot in general compute a \textbf{finite} formula for sp(WHILE S DO C, P)

• The following holds

$$sp(WHILE \ S \ DO \ C, \ P) = sp(WHILE \ S \ DO \ C, \ sp(C, (P \land S))) \lor (P \land \neg S)$$

• Above doesn’t define $sp(C, P)$ to be a finite statement

• As with \texttt{wlp}, can use a hybrid VC and sp method
• Annotate then generate VCs is the classical method
 • practical tools: Gypsy (1970s), SPARK (current)
 • weakest preconditions are alternative explanation of VCs
 • wlp needs fewer annotations than VC method described earlier
 • wlp also used for refinement

• VCs and wlp go backwards, sp goes forward
 • sp provides verification method based on symbolic simulation
 • widely used for loop-free code
 • current research potential for forwards full proof of correctness
 • probably need mixture of forwards and backwards methods (Hoare’s view)
Range of methods for proving \(\{P\}C\{Q\} \)

- **Bounded model checking (BMC)**
 - unwind loops a finite number of times
 - then symbolically execute
 - check states reached satisfy decidable properties

- **Full proof of correctness**
 - add invariants to loops
 - generate verification conditions
 - prove verification conditions with a theorem prover

- **Research goal:** unifying framework for a spectrum of methods
decidable checking proof of correctness
So far our discussion has been concerned with partial correctness

- what about termination

A total correctness specification $[P] \ C \ [Q]$ is true if and only if

- whenever C is executed in a state satisfying P,
 then the execution of C terminates

- after C terminates Q holds

Except for the WHILE-rule, all the axioms and rules described so far are sound for total correctness as well as partial correctness
Let's consider the following proof:

1. $\vdash \{T\} X := X \{T\}$ (assignment axiom)
2. $\vdash \{T \land T\} X := X \{T\}$ (precondition strengthening)
3. $\vdash \{T\} \text{WHILE } T \text{ DO } X := X \{T \land \neg T\}$ (2 and the WHILE-rule)

If the WHILE-rule worked for total correctness, then this would show:

$\vdash [T] \text{WHILE } T \text{ DO } X := X [T \land \neg T]$

Thus the WHILE-rule is unsound for total correctness.
• Replace { and } by [and], respectively, in:
 • Assignment axiom (see next slide for discussion)
 • Consequence rules
 • Conditional rule
 • Sequencing rule

• The following is a valid derived rule

\[
\vdash \{P\} \ C \ \{Q\} \\
\vdash [P] \ C \ [Q]
\]

if C contains no WHILE-commands
Assignment axiom for total correctness

$$\vdash [P[E/V]] \; V := E \; [P]$$

Note that the assignment axiom for total correctness states that assignment commands *always* terminate.

So all function applications in expressions must terminate.

This might not be the case if functions could be defined recursively.

Consider $X := \text{fact}(-1)$, where $\text{fact}(n)$ is defined recursively:

$$\text{fact}(n) = \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n-1)$$
• We assume erroneous expressions like $1/0$ don’t cause problems

• Most programming languages will raise an error on division by zero

• In our logic it follows that

$$\vdash [T] \ x := 1/0 \ [x = 1/0]$$

• The assignment $x := 1/0$ halts in a state in which $x = 1/0$ holds

• This assumes that $1/0$ denotes some value that x can have
Two Possibilities

- There are two possibilities

 (i) $1/0$ denotes some number;

 (ii) $1/0$ denotes some kind of ‘error value’.

- It seems at first sight that adopting (ii) is the most natural choice

 - this makes it tricky to see what arithmetical laws should hold

 - is $(1/0) \times 0$ equal to 0 or to some ‘error value’?

 - if the latter, then it is no longer the case that $\forall n. \ n \times 0 = 0$ is valid

- It is possible to make everything work with undefined and/or error values, but the resultant theory is a bit messy
• **WHILE**-commands are the only commands in our little language that can cause non-termination
 - they are thus the only kind of command with a non-trivial termination rule

• The idea behind the **WHILE**-rule for total correctness is
 - to prove **WHILE** S **DO** C terminates
 - show that some non-negative quantity decreases on each iteration of C
 - this decreasing quantity is called a **variant**
WHILE-Rule for Total Correctness (ii)

- In the rule below, the variant is E, and the fact that it decreases is specified with an auxiliary variable n

- The hypothesis $\vdash P \land S \Rightarrow E \geq 0$ ensures the variant is non-negative

WHILE-rule for total correctness

\[
\vdash [P \land S \land (E = n)] \ C [P \land (E < n)], \quad \vdash P \land S \Rightarrow E \geq 0
\]

\[
\vdash [P] \text{WHILE } S \text{ DO } C [P \land \neg S]
\]

where E is an integer-valued expression
and n is an identifier not occurring in P, C, S or E.
The Derived While Rule

- Derived WHILE-rule needs to handle the variant

<table>
<thead>
<tr>
<th>Derived WHILE-rule for total correctness</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊢ P ⇒ R</td>
</tr>
<tr>
<td>⊢ R ∧ S ⇒ E ≥ 0</td>
</tr>
<tr>
<td>⊢ R ∧ ¬S ⇒ Q</td>
</tr>
<tr>
<td>⊢ [R ∧ S ∧ (E = n)] C [R ∧ (E < n)]</td>
</tr>
<tr>
<td>⊢ [P] WHILE S DO C [Q]</td>
</tr>
</tbody>
</table>
VCs for Termination

- Verification conditions are easily extended to total correctness
- To generate total correctness verification conditions for `WHILE`-commands, it is necessary to add a variant as an annotation in addition to an invariant
- Variant added directly after the invariant, in square brackets
- No other extra annotations are needed for total correctness
- VCs for `WHILE`-free code same as for partial correctness
A correctly annotated total correctness specification of a WHILE-command thus has the form

\[[P] \text{WHILE } S \text{ DO } \{ R \}[E] C [Q] \]

where \(R \) is the invariant and \(E \) the variant.

Note that the variant is intended to be a non-negative expression that decreases each time around the WHILE loop.

The other annotations, which are enclosed in curly brackets, are meant to be conditions that are true whenever control reaches them (as before).
A correctly annotated specification of a **WHILE**-command has the form

\[[P] \text{WHILE } S \text{ DO } \{R\} [E] \ C \ [Q] \]

The verification conditions generated from

\[[P] \text{WHILE } S \text{ DO } \{R\} [E] \ C \ [Q] \]

are

(i) \(P \Rightarrow R \)

(ii) \(R \land \neg S \Rightarrow Q \)

(iii) \(R \land S \Rightarrow E \geq 0 \)

(iv) the verification conditions generated by

\[[R \land S \land (E = n)] \ C[R \land (E < n)] \]

where \(n \) is a variable not occurring in \(P, R, E, C, S \) or \(Q \).
Summary

- We have given rules for total correctness
- They are similar to those for partial correctness
- The main difference is in the WHILE-rule
 - because WHILE commands are the only ones that can fail to terminate
- Must prove a non-negative expression is decreased by the loop body
- Derived rules and VC generation rules for partial correctness easily extended to total correctness
- Interesting stuff on the web
Soundness and completeness of Hoare logic

- Review of first-order logic
 - syntax: languages, function symbols, predicate symbols, terms, formulae
 - semantics: interpretations, valuations
 - soundness and completeness

- Formal semantics of Hoare triples
 - preconditions and postconditions as terms
 - semantics of commands
 - soundness of Hoare axioms and rules
 - completeness and relative completeness
• Assume: language \(L \), interpretation \(\mathcal{I} = (D, I) \), valuation \(s \in \text{Var} \rightarrow D \)

• Define \(E_{\text{sem}} \) \(E \in D \) by:
 • if \(E \in \text{Var} \) then \(E_{\text{sem}} \) \(E \) \(s \) = \(s(E) \)
 • if \(E = f \), where \(f \) a function symbol of arity 0, then \(E_{\text{sem}} \) \(E \) \(s \) = \(I[f] \)
 • if \(E = f(E_1, \ldots, E_n) \), then \(E_{\text{sem}} \) \(E \) \(s \) = \(I[f](E_{\text{sem}} \) \(E_1 \) \(s \), \(\ldots \), \(E_{\text{sem}} \) \(E_n \) \(s \))

• Define \(S_{\text{sem}} \) \(S \in \text{Bool} \) by:
 • if \(S = p \), where \(p \) a predicate symbol of arity 0, then \(S_{\text{sem}} \) \(S \) \(s \) = \(I[p] \)
 • if \(S = p(E_1, \ldots, E_n) \), then \(S_{\text{sem}} \) \(S \) \(s \) = \(I[p](E_{\text{sem}} \) \(E_1 \) \(s \), \(\ldots \), \(E_{\text{sem}} \) \(E_n \) \(s \))
 • \(S_{\text{sem}}(\neg S) \) \(s \) = \(\neg(S_{\text{sem}} \) \(S \) \(s \))
 • \(S_{\text{sem}}(S_1 \land S_2) \) \(s \) = \((S_{\text{sem}} \) \(S_1 \) \(s \)) \(\land \) \((S_{\text{sem}} \) \(S_2 \) \(s \))
 • \(S_{\text{sem}}(S_1 \lor S_2) \) \(s \) = \((S_{\text{sem}} \) \(S_1 \) \(s \)) \(\lor \) \((S_{\text{sem}} \) \(S_2 \) \(s \))
 • \(S_{\text{sem}}(S_1 \Rightarrow S_2) \) \(s \) = \((S_{\text{sem}} \) \(S_1 \) \(s \)) \(\Rightarrow \) \((S_{\text{sem}} \) \(S_2 \) \(s \))
 • \(S_{\text{sem}}(\forall v. S) \) \(s \) = \textit{if (for all} \(d \in D : S_{\text{sem}} \) \(S(s[d/v]) = \text{true} \) \textit{then} true \textit{else} false
 • \(S_{\text{sem}}(\exists v. S) \) \(s \) = \textit{if (for some} \(d \in D : S_{\text{sem}} \) \(S(s[d/v]) = \text{true} \) \textit{then} true \textit{else} false

• Note: will just say “\(S_{\text{sem}} \) \(S \) \(s \)” to mean that “\(S_{\text{sem}} \) \(S \) \(s \) = true”
Satisfiability, validity and completeness

- Recall that a language L specifies predicate and function symbols

- S is *satisfiable* iff for some interpretation of L and s: $\text{Sem}_L S \ s = \text{true}$

- S is *valid* iff for all interpretations of L and all s: $\text{Sem}_L S \ s = \text{true}$

- Notation: $\models S$ means S is valid

- Deductive system for first-order logic specifies $\vdash S$ – i.e. S is provable

- Soundness: if $\vdash S$ then $\models S$ (easy induction on length of proof)

- Completeness: if $\models S$ then $\vdash S$ (Gödel 1929)
Sentences, Theories

- A **sentence** is a statement with no free variables
 - truth or falsity of sentences solely determined by interpretation
 - if S is a sentence then $\text{Ssem } S_{s_1} = \text{Ssem } S_{s_2}$ for all s_1, s_2

- A **theory** is a set of sentences
 - Γ will range over sets of sentences

- $\Gamma \vdash S$ means S can be deduced from Γ using first-order logic

- Γ is consistent iff there is no S such that $\Gamma \vdash S$ and $\Gamma \vdash \neg S$

- $\Gamma \models_I S$ means S true if I makes all of Γ true

- $\Gamma \models S$ means $\Gamma \models_I S$ true for all I

- **Soundness and Completeness:** $\Gamma \models S$ iff $\Gamma \vdash S$
Gödel’s incompleteness theorem

- \mathcal{L}_{PA} is the language of Peano Arithmetic

- \mathcal{I}_{PA} is the standard interpretation of arithmetic

- $\models_{\mathcal{I}_{PA}} S$ means S is true in \mathcal{I}_{PA}

- PA is the first-order theory of Peano Arithmetic

- There exists a sentence G of \mathcal{L}_{PA} and neither $PA \vdash G$ nor $PA \vdash \neg G$
 - Gödel’s first incompleteness theorem (1930)
 - as G is a sentence either $\models_{\mathcal{I}_{PA}} G$ or $\models_{\mathcal{I}_{PA}} \neg G$
 - so there is a sentences, G_T say, true in \mathcal{I}_{PA} but can’t be proved from PA
 - i.e. $\models_{\mathcal{I}_{PA}} G_T$ but not $PA \vdash G_T$
Semantics of Hoare triples

- Recall that \(\{P\} \ C \ \{Q\} \) is true if
 - whenever \(C \) is executed in a state satisfying \(P \)
 - and if the execution of \(C \) terminates
 - then \(C \) terminates in a state satisfying \(Q \)

- \(P \) and \(Q \) are first-order statements

- Will formalise semantics of \(\{P\} \ C \ \{Q\} \) to express:
 - whenever \(C \) is executed in a state \(s_1 \) such that \(\text{Ssem} \ P \ s_1 \)
 - and if the execution of \(C \) starting in \(s_1 \) terminates
 - then \(C \) terminates in a state \(s_2 \) such that \(\text{Ssem} \ Q \ s_2 = \text{true} \)

- Need to define “\(C \) starts in \(s_1 \) and terminates in \(s_2 \)”
 - this is the semantics of commands
 - will define \(\text{Csem} \ C \ s_1 \ s_2 \) to mean if \(C \) starts in \(s_1 \) then it can terminate in \(s_2 \)

- Semantics of \(\{P\} \ C \ \{Q\} \) is \(\text{Hsem} \ P \ C \ Q \) where:
 \[
 \text{Hsem} \ P \ C \ Q = \forall s_1 \ s_2. \text{Ssem} \ P \ s_1 \land \text{Csem} \ C \ s_1 \ s_2 \Rightarrow \text{Ssem} \ Q \ s_2
 \]

- Sometimes write \(\models \{P\} \ C \ \{Q\} \) to mean \(\text{Hsem} \ P \ C \ Q \)
Semantics of commands

- **Assignments**
 \[
 C_{\text{sem}}(V := E) \ s_1 \ s_2 = (s_2 = s_1[(E_{\text{sem}} E \ s_1)/V])
 \]

- **Sequences**
 \[
 C_{\text{sem}}(C_1;C_2) \ s_1 \ s_2 = \exists s. C_{\text{sem}} C_1 s_1 s \land C_{\text{sem}} C_2 s s_2
 \]

- **Conditional**
 \[
 C_{\text{sem}}(\text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2) \ s_1 \ s_2
 = (S_{\text{sem}} S s_1 \land C_{\text{sem}} C_1 s_1 s_2) \lor (\neg S_{\text{sem}} S s_1 \land C_{\text{sem}} C_2 s_1 s_2)
 = \text{if } S_{\text{sem}} S s_1 \text{ then } C_{\text{sem}} C_1 s_1 s_2 \text{ else } C_{\text{sem}} C_2 s_1 s_2
 \]

- **While-commands**
 \[
 C_{\text{sem}}(\text{WHILE } S \text{ DO } C) \ s_1 \ s_2 = \exists n. \text{Iter } n (S_{\text{sem}} S) (C_{\text{sem}} C) s_1 s_2
 \]

where the function Iter is defined by recursion on \(n \) as follows:

\[
\begin{align*}
\text{Iter } 0 \ p \ c \ s_1 \ s_2 &= \neg(p \ s_1) \land (s_1 = s_2) \\
\text{Iter } (n+1) \ p \ c \ s_1 \ s_2 &= p \ s_1 \land \exists s. \ c \ s_1 \ s \land \text{Iter } n \ p \ c \ s \ s_2
\end{align*}
\]

- argument \(n \) of Iter is the number of iterations
- argument \(p \) is a predicate on states (e.g. \(S_{\text{sem}} S \))
- argument \(c \) is a semantic function (e.g. \(C_{\text{sem}} C \))
- arguments \(s_1 \) and \(s_2 \) are the initial and final states, respectively
Soundness of Hoare Logic: summary

- **Assignment axiom:**
 \[\forall s_1 s_2. \text{Ssem} (Q[E/V]) s_1 \land \text{Csem} (V := E) s_1 s_2 \Rightarrow \text{Ssem} Q s_2 \]
 \[\models \{Q[E/V]\} V := E \{Q\} \]

- **Precondition strengthening:**
 \[(\forall s. \text{Ssem} P s \Rightarrow \text{Ssem} P' s) \land \text{Hsem} P' C Q \Rightarrow \text{Hsem} P C Q \]
 \[(\models P \Rightarrow P') \land \models \{P'\} C \{Q\} \Rightarrow \models \{P\} C \{Q\} \]

- **Postcondition weakening:**
 \[\text{Hsem} P C Q' \land (\forall s. \text{Ssem} Q' s \Rightarrow \text{Ssem} Q s) \Rightarrow \text{Hsem} P C Q \]
 \[\models \{P\} C \{Q'\} \land (\models Q' \Rightarrow Q) \Rightarrow \models \{P\} C \{Q\} \]

- **Sequencing rule:**
 \[\text{Hsem} P C_1 Q \land \text{Hsem} Q C_2 R \Rightarrow \text{Hsem} P (C_1; C_2) R \]
 \[\models \{P\} C_1 \{Q\} \land \models \{Q\} C_2 \{R\} \Rightarrow \models \{P\} C_1; C_2 \{R\} \]

- **Conditional rule:**
 \[\text{Hsem} (P \land S) C_1 Q \land \text{Hsem} (P \land \neg Q) C_2 Q \Rightarrow \text{Hsem} P (\text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2) Q \]
 \[\models \{P \land S\} C_1 \{Q\} \land \models \{P \land \neg S\} C_2 \{Q\} \Rightarrow \models \{P\} \text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \{Q\} \]

- **WHILE rule:**
 \[\text{Hsem} (P \land S) C P \Rightarrow \text{Hsem} P (\text{WHILE } S \text{ DO } C) (P \land \neg S) \]
 \[\models \{P \land S\} C \{P\} \Rightarrow \models \{P\} \text{WHILE } S \text{ DO } C \]
Completeness and decidability of Hoare Logic

• Soundness: \(\vdash \{P\}C\{Q\} \Rightarrow \models \{P\}C\{Q\} \)

• Decidability: \(\{T\}C\{F\} \iff C \text{ doesn’t halt} \)
 • the Halting Problem is undecidable

• Completeness: really want \(\models_{IPA} \{P\}C\{Q\} \Rightarrow PA \vdash \{P\}C\{Q\} \)
 • to show this not possible, first observe that for any \(P \)
 • \(\models_{IPA} \{T\}X:=X\{P\} \iff \models_{IPA} P \)
 • \(PA \vdash \{T\}X:=X\{P\} \iff PA \vdash P \)

• If Hoare logic were complete, then taking \(P \) above to be \(GT \):
 \(\models_{IPA} GT \Rightarrow \models_{IPA} \{T\}X:=X\{GT\} \Rightarrow PA \vdash \{T\}X:=X\{GT\} \Rightarrow PA \vdash GT \)
 contradicting Gödel’s theorem

• Must separate completeness of programming and specification logics
Relative completeness (Cook 1978) – basic idea

- $|\Rightarrow_{PA} \{P\}C\{Q\}$ entails $\Gamma_{PA} \vdash \{P\}C\{Q\}$, where $\Gamma_{PA} = \{S \mid \Rightarrow_{PA} S\}$

- Proof outline:
 - define $\text{wlp}(C, Q)$ in L_{PA}
 - straight line code easy - see earlier slides
 - $\text{wlp}((\text{WHILE} S \text{DO} C), Q)$ needs tricky encoding using Gödel’s β function (see Winskel’s book *The formal semantics of programming languages: an introduction*)
 - $|\Rightarrow_{PA} \{P\}C\{Q\}$ implies $|\Rightarrow_{PA} P \Rightarrow \text{wlp}(C, Q)$ by induction on C and semantics
 - $\Gamma_{PA} \vdash \{\text{wlp}(C, Q)\}C\{Q\}$ by induction on C and Hoare logic
 - hence $|\Rightarrow_{PA} \{P\}C\{Q\}$ implies $\Gamma_{PA} \vdash \{P\}C\{Q\}$ by precondition strengthening

- Cook’s theorem is for any *expressive* assertion language
 - i.e. any language in which $\text{wlp}(C, Q)$ is definable
Summary: soundness, decidability, completeness

- Hoare logic is sound
- Hoare logic is undecidable
 - deciding \(\{T\}C\{F\} \) is halting problem
- Hoare logic for our simple language is complete relative to an oracle
 - oracle must be able to prove \(P \Rightarrow \text{wlp}(C, Q) \)
 - relative completeness
 - requires expressibility: \(\text{wlp}(C, Q) \) expressible in assertion language

The incompleteness of the proof system for simple Hoare logic stems from the weakness of the proof system of the assertion language logic, not any weakness of the Hoare logic proof system.

- Clarke showed relative completeness fails for complex languages
Additional topics

Note: only a fragment of these additional topics will be covered!

- Blocks and local variables
- FOR-commands
- Arrays
- Correct-by-Construction (program refinement)
- Separation Logic
Blocks and local variables

- **Syntax:** `BEGIN VAR V_1; \cdots VAR V_n; C \ END`

- **Semantics:** command C is executed, then the values of V_1, \ldots, V_n are restored to the values they had before the block was entered
 - the initial values of V_1, \ldots, V_n inside the block are unspecified

- **Example:** `BEGIN VAR R; R:=X; X:=Y; Y:=R \ END`
 - the values of X and Y are swapped using R as a temporary variable
 - this command does *not* have a side effect on the variable $R`
• The block rule takes care of local variables

\[\vdash \{P\} \ C \ \{Q\} \]
\[\vdash \{P\} \ \text{BEGIN VAR} \ V_1; \ldots; \ \text{VAR} \ V_n; \ C \ \text{END} \ \{Q\} \]

where none of the variables \(V_1, \ldots, V_n \) occur in \(P \) or \(Q \).

• Note that the block rule is regarded as including the case when there are no local variables (the ‘\(n = 0 \)’ case)
The Side Condition

- The syntactic condition that none of the variables V_1, \ldots, V_n occur in P or Q is an example of a side condition.

- From

$$\vdash \{X=x \land Y=y\} \quad R:=X; \quad X:=Y; \quad Y:=R \quad \{Y=x \land X=y\}$$

it follows by the block rule that

$$\vdash \{X=x \land Y=y\} \quad \text{BEGIN VAR} \quad R; \quad R:=X; \quad X:=Y; \quad Y:=R \quad \text{END} \quad \{Y=x \land X=y\}$$

since R does not occur in $X=x \land Y=y$ or $X=y \land Y=x$.

- However from

$$\vdash \{X=x \land Y=y\} \quad R:=X; \quad X:=Y \quad \{R=x \land X=y\}$$

one cannot deduce

$$\vdash \{X=x \land Y=y\} \quad \text{BEGIN VAR} \quad R; \quad R:=X; \quad X:=Y \quad \text{END} \quad \{R=x \land X=y\}$$

since R occurs in $R=x \land X=y$.
FOR-commands

- **Syntax:** `FOR V := E₁ UNTIL E₂ DO C`

 - **restriction:** V must not occur in E₁ or E₂, or be the left hand side of an assignment in C (explained later)

- **Semantics:**
 - if the values of terms E₁ and E₂ are positive numbers e₁ and e₂
 - and if e₁ ≤ e₂
 - then C is executed \((e₂ − e₁) + 1\) times with the variable V taking on the sequence of values e₁, e₁+1, ..., e₂ in succession
 - for any other values, the FOR-command has no effect

- **Example:** `FOR N := 1 UNTIL M DO X := X + N`

 - if the value of the variable M is m and \(m ≥ 1\), then the command \(X := X + N\) is repeatedly executed with N taking the sequence of values 1, ..., m
 - if \(m < 1\) then the FOR-command does nothing
Subtleties of FOR-commands

- There are many subtly different versions of FOR-commands
- For example
 - the expressions E_1 and E_2 could be evaluated at each iteration
 - and the controlled variable V could be treated as global rather than local
- Early languages like Algol 60 failed to notice such subtleties
- Note that with the semantics presented here
 FOR-commands cannot *generate* non termination
More on the semantics of FOR-commands

- The semantics of
 \[
 \text{FOR } V := E_1 \text{ UNTIL } E_2 \text{ DO } C
 \]
 is as follows:

 (i) E_1 and E_2 are evaluated once to get values e_1 and e_2, respectively.

 (ii) If either e_1 or e_2 is not a number, or if $e_1 > e_2$, then nothing is done.

 (iii) If $e_1 \leq e_2$ the FOR-command is equivalent to:
 \[
 \text{BEGIN VAR } V ; \text{ V := e}_1 ; C ; \text{ V := e}_1 + 1 ; C ; \ldots ; \text{ V := e}_2 ; C \text{ END}
 \]
 i.e. C is executed $(e_2 - e_1) + 1$ times with V taking on the sequence of values $e_1, e_1 + 1, \ldots, e_2$

- If C doesn’t modify V then FOR-command equivalent to:
 \[
 \text{BEGIN VAR } V ; \text{ V := e}_1 ; \ldots \underbrace{C ; V := V + 1 ; \ldots}_{\text{repeated}}\text{ V := e}_2 ; C \text{ END}
 \]
The Rule of Constancy (Derived Frame Rule)

- The following derived rule is used on the next slide

\[
\begin{align*}
\vdash \{P\} C \{Q\} \\
\vdash \{P \land R\} C \{Q \land R\}
\end{align*}
\]

where no variable assigned to in \(C\) occurs in \(R\)

- Outline of derivation
 - prove \(\{R\} C \{R\}\) by induction on \(C\)
 - then use Specification Conjunction

- Assume \textbf{C doesn’t modify V} and \(\vdash \{P\} C \{P[V+1/V]\}\) then:

\[
\begin{align*}
\vdash \{P \land V=v\} C \{P[V+1/V] \land V=v\} & \quad \text{(assumption + constancy rule)} \\
\vdash \{P[V+1/V] \land V=v\} V:=V+1 \{P \land V=v+1\} & \quad \text{(assign. ax + pre. stren.)} \\
\vdash \{P \land V=v\} C; V:=V+1 \{P \land V=v+1\} & \quad \text{(sequencing)}
\end{align*}
\]

- So \(C; V:=V+1\) has \(P\) as an invariant and increments \(V\)
Towards the FOR-Rule

- If $e_1 \leq e_2$ the FOR-command is equivalent to:

 $$\text{BEGIN VAR } V; \ V := e_1; \ldots \ C; \ V := V+1; \ldots \ V := e_2; \ C \ END$$

- Assume C doesn’t modify V and $\vdash \{P\} \ C \ \{P[V+1/V]\}$

- Hence:

 $\vdash \{P[e_1/V]\} \ V := e_1 \ \{P \land V = e_1\}$ \hspace{1cm} (assign. ax + pre. streng.)

 $\vdash \{P \land V = v\} \ C; \ V := V+1 \ \{P \land V = v+1\}$ \hspace{1cm} (last slide; $V = e_1, e_1+1, \ldots, e_2-1$)

 $\vdash \{P \land V = v\} \ C; \ V := V+1 \ \{P \land V = e_2+1\}$

 $\vdash \{P \land V = e_2\} \ C \ \{P[V+1/V] \land V = e_2\}$ \hspace{1cm} (assign. ax + assumption + constancy)

 $\vdash \{P \land V = e_2\} \ C \ \{P[e_2+1/V]\}$ \hspace{1cm} (post. weak.)

- Hence by the sequencing and block rules

 $\vdash \{P\} C \{P[V+1/V]\}$

 $\vdash \{P[e_1/V]\} \text{BEGIN VAR } V; \ V := e_1; \ldots \ C; \ V := V+1; \ldots \ V := e_2; \ C \ END \{P[e_2+1/V]\}$
The FOR-Rule

- To rule out the problems that arise when the controlled variable or variables in the bounds expressions, are changed by the body, we simply impose a side condition on the rule that stipulates that it cannot be used in these situations.

The FOR-rule

\[\vdash \{ P \land (E_1 \leq V) \land (V \leq E_2) \} \ C \ \{ P[V+1/V] \} \]
\[\vdash \{ P[E_1/V] \land (E_1 \leq E_2) \} \ FOR \ V := E_1 \ UNTIL \ E_2 \ DO \ C \ \{ P[E_2+1/V] \} \]

where neither V, nor any variable occurring in E_1 or E_2, is assigned to in the command C.

- Note \((E_1 \leq V) \land (V \leq E_2)\) in precondition of rule hypothesis
 - added to strengthen rule to allow proofs to use facts about V’s range of values

- Can be tricky to think up P
Comment on the FOR-Rule

• The FOR-rule does not enable anything to be deduced about FOR-
commands whose body assigns to variables in the bounds expres-
sions

• This precludes such assignments being used if commands are to be
reasoned about

• Only defining rules of inference for non-tricky uses of constructs
motivates writing programs in a perspicuous manner

• It is possible to devise a rule that does cope with assignments to
variables in bounds expressions

• Consider the rule below \((e_1, e_2\) are fresh auxiliary variables):

\[
\vdash \{P \land (e_1 \leq V) \land (V \leq e_2)\} C \{P[V+1/V]\}
\]

\[
\vdash \{P[E_1/V] \land (E_1 \leq E_2) \land (E_1 = e_1) \land (E_2 = e_2)\} \quad \text{FOR } V := E_1 \text{ UNTIL } E_2 \text{ DO } C \{P[e_2+1/V]\}
\]
To cover the case when $E_2 < E_1$, we need the FOR-axiom below:

\[
\vdash \{ P \land (E_2 < E_1) \} \text{ FOR } V := E_1 \text{ UNTIL } E_2 \text{ DO } C \{ P \}
\]

This says that when E_2 is less than E_1 the FOR-command has no effect.
Ensuring Soundness

- It is clear from the discussion of the FOR-rule that it is not always straightforward to devise correct rules of inference

- It is important that the axioms and rules be sound. There are two approaches to ensure this

 (i) define the language by the axioms and rules of the logic
 (ii) prove that the logic is sound for the language

- Approach (i) is called axiomatic semantics
 - the idea is to define the semantics of the language by requiring that it make the axioms and rules of inference true
 - it is then up to implementers to ensure that the logic matches the language

- Approach (ii) is proving soundness of the logic
• One snag with axiomatic semantics is that most existing languages have already been defined in some other way
 • usually by informal and ambiguous natural language statements

• The other snag with axiomatic semantics is that by Clarke’s Theorem it is known to be impossible to devise relatively complete Floyd-Hoare logics for languages with certain constructs
 • it could be argued that this is not a snag at all but an advantage, because it forces programming languages to be made logically tractable

• An example of a language defined axiomatically is Euclid
From Proof rules for the programming language Euclid

7.1. (module rule)

1. \(Q \Rightarrow Q(0)(A/t) \),

2. \(P1\{\textbf{const} \ K; \ \textbf{var} \ V; \ S_{4}\} \ Q4(A/t) \land Q \),

3. \(P2(A/t) \land Q \{S_{2}\} \ Q2(A/t) \land Q \),

4. \(\exists g1(P3(A/t) \land Q \{S_{3}\} \ Q3(A/t) \land g = g1(A, c, d)) \),

5. \(\exists g(P3(A/t) \land Q \Rightarrow Q3(A/t)) \),

6. \(P6(A/t) \land Q \{S_{6}\} \ Q1 \),

7. \(P \Rightarrow P1(a/c) \),

8. \([Q0(a/c, x/t, x'/t') \Rightarrow (P2(x/t, x'/t', a2/x2, e2/c2, a/c) \land
(Q2(x2#/t, x'/t', a2#/x2, e2/c2, a/c, y2#/y2, a2/x2', y2/y2') \Rightarrow
R1(x2#/x, a2#/a2, y2#/y2))) \{x \cdot p(a2, e2) \} R1 \land Q0(a/c, x/t, x'/t') \),

8.1. \((Q0(a/c, x/t) \Rightarrow P3(x/t, a3/c3, a/c)) \Rightarrow
Q3(x/t, a3/c3, a/c, f(a3, d3)/g) \land Q0(a/c, x/t) \),

8.2. \(P1(a/c) \land (Q4(x4#/t, x'/t', a/c, y4#/y4, y4/y4') \Rightarrow R4(x4#/x, y4#/y4)) \{x \cdot \text{Initially} \} R4 \land Q0(a/c, x/t, x'/t') \),

8.3. \((Q0(a/c, x/t, x'/t') \Rightarrow P6(x/t, x'/t', a/c)) \land (Q1(a/c, y6#/y6, y6/y6') \Rightarrow
R(y6#/y6)) \{x \cdot \text{Finally} \} R \)

\[\]

8.4. \(P(x#/x) \{x \cdot \text{Initially}; \ S; \ x \cdot \text{Finally} \} R(x#/x) \)

\[P\{\textbf{var} \ x: T(a); \ S\} \ R \land Q1 \]
• Syntax: $V(E_1):=E_2$

• Semantics: the state is changed by assigning the value of the term E_2 to the E_1-th component of the array variable V

• Example: $A(X+1) := A(X)+2$

 • if the value of X is x

 • and the value of the x-th component of A is n

 • then the value stored in the $(x+1)$-th component of A becomes $n+2$
The axiom
\[
\vdash \{P[E_2/A(E_1)]\} \ A(E_1):=E_2 \ \{P\}
\]
doesn’t work

Take \(P \equiv 'X=Y \land A(Y)=0', \ E_1 \equiv 'X', \ E_2 \equiv '1' \)

- since \(A(X) \) does not occur in \(P \)
- it follows that \(P[1/A(X)] = P \)
- hence the axiom yields:
 \[
 \vdash \{X=Y \land A(Y)=0\} \ A(X):=1 \ \{X=Y \land A(Y)=0\}
 \]

Must take into account possibility that changes to \(A(X) \)
may change \(A(Y), A(Z) \) etc

- since \(X \) might equal \(Y, Z \) etc (i.e. aliasing)

Related to the Frame Problem in AI
The naive array assignment axiom

\[\vdash \{ P[E_2/A(E_1)] \} \ A(E_1):=E_2 \ \{ P \} \]

does not work: changes to \(A(X) \) may also change \(A(Y), A(Z), \ldots \)

The solution, due to Hoare, is to treat an array assignment

\[A(E_1):=E_2 \]

as an ordinary assignment

\[A := A\{ E_1 \leftarrow E_2 \} \]

where the term \(A\{ E_1 \leftarrow E_2 \} \) denotes an array identical to \(A \), except that the \(E_1 \)-th component is changed to have the value \(E_2 \)
• Array assignment is a special case of ordinary assignment

\[A := A\{E_1 \leftarrow E_2\} \]

• Array assignment axiom just ordinary assignment axiom

\[
\vdash \{ P[A\{E_1 \leftarrow E_2\}/A] \} \ A := A\{E_1 \leftarrow E_2\} \ \{P\}
\]

• Thus:

The array assignment axiom

\[
\vdash \{ P[A\{E_1 \leftarrow E_2\}/A] \} \ A(E_1) := E_2 \ \{P\}
\]

Where \(A \) is an array variable, \(E_1 \) is an integer valued expression, \(P \) is any statement and the notation \(A\{E_1 \leftarrow E_2\} \) denotes the array identical to \(A \), except that \(A(E_1) = E_2 \).
Array Axioms

- In order to reason about arrays, the following axioms, which define the meaning of the notation $A\{E_1 \leftarrow E_2\}$, are needed

The array axioms

\[
\vdash A\{E_1 \leftarrow E_2\}(E_1) = E_2
\]

\[
\vdash E_1 \neq E_3 \Rightarrow A\{E_1 \leftarrow E_2\}(E_3) = A(E_3)
\]

- Second of these is a Frame Axiom
 - don’t confuse with Frame Rule of Separation Logic (later)
 - “frame” is a rather overloaded word!
New Topic: Separation logic

- One of several competing methods for reasoning about pointers
- Details took 30 years to evolve
- Shape predicates due to Rod Burstall in the 1970s
- Separation logic: by O’Hearn, Reynolds and Yang around 2000
- Several partially successful attempts before separation logic
- Very active research area
 - QMUL, UCL, Cambridge, Harvard, Princeton, Yale
 - Microsoft
 - startup Monoidics bought by Facebook
• So far the state just determined the values of variables
 • values assumed to be numbers
 • preconditions and postconditions are first-order logic statements
 • state same as a valuation $s : \text{Var} \rightarrow \text{Val}$

• To model pointers – e.g. as in C – add heap to state
 • heap maps locations (pointers) to their contents
 • store maps variables to values (previously called state)
 • contents of locations can be locations or values
 \[X \mapsto l_1 \mapsto l_2 \mapsto v \]

 store \quad heap \quad heap

<table>
<thead>
<tr>
<th>Heap semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Store} = \text{Var} \rightarrow \text{Val}$</td>
</tr>
<tr>
<td>$\text{Heap} = \text{Num} \rightarrow_{f_{\text{in}}} \text{Val}$</td>
</tr>
<tr>
<td>$\text{State} = \text{Store} \times \text{Heap}$</td>
</tr>
</tbody>
</table>

• Note: store also called stack or environment; heap also called store
Adding pointer operations to our language

Expressions:
\[E ::= N \mid V \mid E_1 + E_2 \mid E_1 - E_2 \mid E_1 \times E_2 \mid \ldots \]

Boolean expressions:
\[B ::= T \mid F \mid E_1 = E_2 \mid E_1 \leq E_2 \mid \ldots \]

commands:
\[C ::= V := E \quad \text{value assignments} \]
\[\mid V := [E] \quad \text{fetch assignments} \]
\[\mid [E_1] := E_2 \quad \text{heap assignments (heap mutation)} \]
\[\mid V := \text{cons}(E_1, \ldots, E_n) \quad \text{allocation assignments} \]
\[\mid \text{dispose}(E) \quad \text{pointer disposal} \]
\[\mid C_1 ; C_2 \quad \text{sequences} \]
\[\mid \text{IF } B \text{ THEN } C_1 \text{ ELSE } C_2 \quad \text{conditionals} \]
\[\mid \text{WHILE } B \text{ DO } C \quad \text{while commands} \]
Pointer manipulation constructs and faulting

- Commands executed in a state \((s, h)\)
- Reading, writing or disposing pointers might fault
- Fetch assignments: \(V := [E]\)
 - evaluate \(E\) to get a location \(l\)
 - fault if \(l\) is not in the heap
 - otherwise assign contents of \(l\) in heap to the variable \(V\)
- Heap assignments: \([E_1] := E_2\)
 - evaluate \(E_1\) to get a location \(l\)
 - fault if the \(l\) is not in the heap
 - otherwise store the value of \(E_2\) as the new contents of \(l\) in the heap
- Pointer disposal: \(\text{dispose}(E)\)
 - evaluate \(E\) to get a pointer \(l\) (a number)
 - fault if \(l\) is not in the heap
 - otherwise remove \(l\) from the heap
- Allocation assignments: $V := \text{cons}(E_1, \ldots, E_n)$
 - choose n consecutive locations that are not in the heap, say $l, l+1, \ldots$
 - extend the heap by adding $l, l+1, \ldots$ to it
 - assign l to the variable V in the store
 - make the values of E_1, E_2, \ldots be the new contents of $l, l+1, \ldots$ in the heap

- Allocation assignments never fault

- Allocation assignments are *non-deterministic*
 - any suitable $l, l+1, \ldots$ not in the heap can be chosen
 - always exists because the heap is finite
Example (different from the background reading)

\[
X := \text{cons}(0, 1, 2); \quad [X] := Y + 1; \quad [X+1] := Z; \quad Y := [Y+Z]
\]

- \(X := \text{cons}(0, 1, 2)\) allocates three new pointers, say \(l, l+1, l+2\)
 - \(l\) initialised with contents 0, \(l+1\) with 1 and \(l+2\) with 2
 - variable \(X\) is assigned \(l\) as its value in store

- \([X] := Y + 1\) changes the contents of \(l\)
 - \(l\) gets value of \(Y + 1\) as new contents in heap

- \([X+1] := Z\) changes the contents of \(l+1\)
 - \(l+1\) gets the value of \(Z\) as new contents in heap

- \(Y := [Y+Z]\) changes the value of \(Y\) in the store
 - \(Y\) assigned in the store the contents of \(Y + Z\) in the heap
 - faults if the value of \(Y + Z\) is not in the heap
Local Reasoning and Separation Logic

- Want to just reason about just those locations being modified
 - assume all other locations unchanged

- Solution: separation logic
 - **small** and **forward** assignment axioms + **separating conjunction**
 - **small** means just applies to fragment of heap (*footprint*)
 - **forward** means Floyd-style forward rules that support symbolic execution
 - **non-faulting semantics** of Hoare triples
 - symbolic execution used by tools like smallfoot
 - **separating conjunction** solves frame problem - like rule of constancy for heap

- Need new kinds of assertions to state separation logic axioms
Sneak preview of the Frame Rule

The frame rule

\[
\begin{align*}
\Gamma & \vdash \{P\} C \{Q\} \\
\Gamma & \vdash \{P \star R\} C \{Q \star R\}
\end{align*}
\]

where no variable modified by \(C\) occurs free in \(R\).

- Separating conjunction \(P \star Q\)
 - heap can be split into two disjoint components
 - \(P\) is true of one component and \(Q\) of the other
 - \(\star\) is commutative and associative
Local Reasoning and Separation Logic

- Want to just reason about just those locations being modified
 - assume all other locations unchanged

- Solution: separation logic
 - small and forward assignment axioms + separating conjunction
 - small means just applies to fragment of heap (*footprint*)
 - forward means Floyd-style forward rules that support symbolic execution
 - non-faulting semantics of Hoare triples
 - symbolic execution used by tools like smallfoot
 - separating conjunction solves frame problem - like rule of constancy for heap

- Need new kinds of assertions to state separation logic axioms
Separation logic assertions: emp

- emp is an atomic statement of separation logic
- emp is true iff the heap is empty
- The semantics of emp is:
 \[\text{emp} (s, h) \iff h = \{\} \] (where \{\} is the empty heap)
- Abbreviation: \(E_1 \triangleq E_2 =_{def} (E_1 = E_2) \land \text{emp} \)
- From the semantics: \((E_1 \triangleq E_2)(s, h) \iff E_1(s) = E_2(s) \land h = \{\} \)
- \(E_1 = E_2 \) is independent of the heap and only depends on the store
- Semantics of \(E_1 = E_2 \) is:
 \[(E_1 = E_2)(s, h) \iff E_1(s) = E_2(s) \]
 no constraint on the heap – any \(h \) will do
Separation logic: small axioms and faulting

- One might expect a heap assignment axiom to entail:
 \[
 \vdash \{T\}[0] := 0\{0 \mapsto 0\}
 \]
i.e. after executing \([0] := 0\) the contents of location \(0\) in the heap is \(0\)

- Recall the sneak preview of the frame rule:

 \[
 \begin{array}{c}
 \vdash \{P\} \ C \ \{Q\} \\
 \hline
 \vdash \{P * R\} \ C \ \{Q * R\}
 \end{array}
 \]

 where no variable modified by \(C\) occurs free in \(R\).

- Taking \(R\) to be the points-to statement \(0 \mapsto 1\) yields:
 \[
 \vdash \{T * 0 \mapsto 1\}[0] := 0\{0 \mapsto 0 \ast 0 \mapsto 1\}
 \]
 something is wrong with the conclusion!

- Solution: define Hoare triple so \(\vdash \{T\}[0] := 0\{0 \mapsto 0\}\) is not true
The non-faulting semantics of Hoare triples \(\{P\}C\{Q\}\) is:

if \(P\) holds then

(i) executing \(C\) doesn’t fault and
(ii) if \(C\) terminates then \(Q\) holds

\[
\models \{P\}C\{Q\} = \\
\forall s\ h.\ P(s, h) \Rightarrow \neg (C(s, h)\text{fault}) \land \forall s'\ h'.\ C(s, h)(s', h') \Rightarrow Q(s', h')
\]

Now \(\models \{T\}[0] := 0\{0 \mapsto 0\}\) is not true as \(((0) := 0)(s, \{\})\text{fault}\)

Recall the sneak preview of the frame rule:

<table>
<thead>
<tr>
<th>The frame rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vdash {P}C{Q} \quad \vdash {P \star R}C{Q \star R})</td>
</tr>
<tr>
<td>where no variable modified by (C) occurs free in (R).</td>
</tr>
</tbody>
</table>

So can’t use frame rule to get \(\vdash \{T \star 0 \mapsto 1\}[0] := 0\{0 \mapsto 0 \star 0 \mapsto 1\}\)
Store assignment axiom

\[\vdash \{ V \triangleq v \} V := E \{ V \triangleq E[v/V] \} \]

where \(v \) is an auxiliary variable not occurring in \(E \).

- \(E_1 \triangleq E_2 \) means value of \(E_1 \) and \(E_2 \) equal in the store and heap is empty
- In Hoare logic (no heap) this is equivalent to the assignment axiom

\[\vdash \{ V=v \} V := E \{ V=E[v/V] \} \]

\[\vdash \{ V=v \land Q[E[v/V]/V] \} V := E \{ V=E[v/V] \land Q[E[v/V]/V] \} \]

\[\vdash \exists v. V=v \land Q[E[v/V]/V] V := E \{ \exists v. V=E[v/V] \land Q[E[v/V]/V] \} \]

\[\vdash \exists v. V=v \land Q[E[V/V]/V] V := E \{ \exists v. V=E[v/V] \land Q[V/V] \} \]

\[\vdash \exists v. V=v \land Q[E/V] V := E \{ \exists v. V=E[v/V] \land Q \} \]

\[\vdash (\exists v. V=v) \land Q[E/V] V := E \{ (\exists v. V=E[v/V]) \land Q \} \]

\[\vdash T \land Q[E/V] V := E \{ (\exists v. V=E[v/V]) \land Q \} \]

\[\vdash Q[E/V] V := E \{ Q \} \]

- Separation logic: exists introduction valid, rule of constancy invalid
Fetch assignment axiom

\[\vdash \{(V = v_1) \land E \mapsto v_2\} V := [E] \{(V = v_2) \land E[v_1/V] \mapsto v_2\} \]

where \(v_1, v_2 \) are auxiliary variables not occurring in \(E \).

- Precondition guarantees the assignment doesn’t fault
- \(V \) is assigned the contents of \(E \) in the heap
- Small axiom: precondition and postcondition specify singleton heap
- If neither \(V \) nor \(v \) occur in \(E \) then the following holds:
 \[\vdash \{E \mapsto v\} V := [E] \{(V = v) \land E \mapsto v\} \]
 (proof: instantiate \(v_1 \) to \(V \) and \(v_2 \) to \(v \) and then simplify)
Heap assignment axiom

Heap assignment axiom (heap mutation)

$$\vdash \{ E \leftrightarrow - \} [E] := F \{ E \leftrightarrow F \}$$

- Precondition guarantees the assignment doesn’t fault
- Contents of E in heap is updated to be value of F
- Small axiom: precondition and postcondition specify singleton heap
Pointer allocation

Allocation assignment axiom

\[
\vdash \{ V = v \} \ V := \text{cons} (E_1, \ldots, E_n) \ \{ V \mapsto E_1 [v/V], \ldots, E_n [v/V] \}
\]

where \(v \) is an auxiliary variable not equal to \(V \) or occurring in \(E_1, \ldots, E_n \)

- Never faults
- If \(V \) doesn’t occur in \(E_1, \ldots, E_n \) then:

\[
\vdash \{ V = v \} \ V := \text{cons} (E_1, \ldots, E_n) \ \{ V \mapsto E_1 [v/V], \ldots, E_n [v/V] \} \quad \text{alloc. assign. ax}
\]

\[
\vdash \{ V = v \} \ V := \text{cons} (E_1, \ldots, E_n) \ \{ V \mapsto E_1, \ldots, E_n \} \quad \text{V not in } E_i \text{ assump.}
\]

\[
\vdash \{ \exists v. \ V = v \} \ V := \text{cons} (E_1, \ldots, E_n) \ \{ \exists v. \ V \mapsto E_1, \ldots, E_n \} \quad \text{exists intro.}
\]

\[
\vdash \{ \exists v. \ V = v \land \text{emp} \} \ V := \text{cons} (E_1, \ldots, E_n) \ \{ \exists v. \ V \mapsto E_1, \ldots, E_n \} \quad \text{definition of } =
\]

\[
\vdash \{ \text{emp} \} \ V := \text{cons} (E_1, \ldots, E_n) \ \{ V \mapsto E_1, \ldots, E_n \} \quad \text{predicate logic}
\]

- Which is a derivation of:

Derived allocation assignment axiom

\[
\vdash \{ \text{emp} \} \ V := \text{cons} (E_1, \ldots, E_n) \ \{ V \mapsto E_1, \ldots, E_n \}
\]

where \(V \) doesn’t occur in \(E_1, \ldots, E_n \).
Pointer deallocation

Dispose axiom

\[\vdash \{ E' \mapsto - \} \text{dispose}(E) \{ \text{emp} \} \]

- Attempting to deallocate a pointer not in the heap faults
- Small axiom: singleton precondition heap, empty postcondition heap
- Sanity checking example proof:
 \[\vdash \{ E_1' \mapsto - \} \text{dispose}(E_1) \{ \text{emp} \} \]
 \[\vdash \{ \text{emp} \} V := \text{cons}(E_2) \{ V \mapsto E_2 \} \]
 \[\vdash \{ E_1' \mapsto - \} \text{dispose}(E_1) ; V := \text{cons}(E_2) \{ V \mapsto E_2 \} \]
 dispose axiom
 derived allocation assignment axiom
 sequencing rule
• Following rules apply to both Hoare logic and separation logic

<table>
<thead>
<tr>
<th>The sequencing rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vdash {P} C_1 {Q}$, $\vdash {Q} C_2 {R}$</td>
</tr>
<tr>
<td>$\vdash {P} C_1; C_2 {R}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The conditional rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vdash {P \land S} C_1 {Q}$, $\vdash {P \land \neg S} C_2 {Q}$</td>
</tr>
<tr>
<td>$\vdash {P} \text{IF } S \text{THEN } C_1 \text{ELSE } C_2 {Q}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The WHILE-rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vdash {P \land S} C {P}$</td>
</tr>
<tr>
<td>$\vdash {P} \text{WHILE } S \text{DO } C {P \land \neg S}$</td>
</tr>
</tbody>
</table>

• For separation logic, need to think about faulting
Local Reasoning and Separation Logic

- Want to just reason about just those locations being modified
 - assume all other locations unchanged

- Solution: separation logic
 - `small` and `forward` assignment axioms + `separating conjunction`
 - `small` means just applies to fragment of heap (*footprint*)
 - `forward` means Floyd-style forward rules that support symbolic execution
 - `non-faulting semantics` of Hoare triples
 - symbolic execution used by tools like smallfoot
 - `separating conjunction` solves frame problem - like rule of constancy for heap

- Need new kinds of assertions to state separation logic axioms
<table>
<thead>
<tr>
<th>Summary of pointer manipulating axioms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store assignment axiom</td>
</tr>
<tr>
<td>$\vdash { V \leftarrow v } V := E { V \leftarrow E[v/V] }$</td>
</tr>
<tr>
<td>where v is an auxiliary variable not occurring in E.</td>
</tr>
<tr>
<td>Fetch assignment axiom</td>
</tr>
<tr>
<td>$\vdash {(V = v_1) \land E \mapsto v_2} V := [E] {(V = v_2) \land E[v_1/V] \mapsto v_2}$</td>
</tr>
<tr>
<td>where v_1, v_2 are auxiliary variables not occurring in E.</td>
</tr>
<tr>
<td>Heap assignment axiom</td>
</tr>
<tr>
<td>$\vdash {E \mapsto _} [E] := F {E \mapsto F}$</td>
</tr>
<tr>
<td>Allocation assignment axiom</td>
</tr>
<tr>
<td>$\vdash { V \leftarrow v } V := \text{cons}(E_1, \ldots, E_n) {V \mapsto E_1[v/V], \ldots, E_n[v/V] }$</td>
</tr>
<tr>
<td>where v is an auxiliary variable not equal to V or occurring in E_1, \ldots, E_n</td>
</tr>
<tr>
<td>Dispose axiom</td>
</tr>
<tr>
<td>$\vdash {E \mapsto _} \text{dispose}(E) {\text{emp}}$</td>
</tr>
</tbody>
</table>
The frame rule

The rule of constancy

\[\vdash \{ P \} C \{ Q \} \]
\[\vdash \{ P \land R \} C \{ Q \land R \} \]
where no variable modified by \(C \) occurs free in \(R \).

- Rule of constancy is not valid for heap assignments
 \[\vdash \{ X \mapsto _-\} [X] := 0 \{ X \mapsto 0 \} \]
 but not (c.f. arrays)
 \[\{ X \mapsto _- \land Y \mapsto 1 \} [X] := 0 \{ X \mapsto 0 \land Y \mapsto 1 \} \]
 as \(X \) and \(Y \) could initially both be bound to the same location

- Using \(\star \) instead of \(\land \) forces \(X \) and \(Y \) to point to different locations

The frame rule

\[\vdash \{ P \} C \{ Q \} \]
\[\vdash \{ P \star R \} C \{ Q \star R \} \]
where no variable modified by \(C \) occurs free in \(R \).

- Soundness a little tricky due to faulting
Compound command rules

- Following rules apply to both Hoare logic and separation logic

<table>
<thead>
<tr>
<th>The sequencing rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\vdash {P} C_1 {Q}, \quad \vdash {Q} C_2 {R}]</td>
</tr>
<tr>
<td>[\vdash {P} C_1; C_2 {R}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The conditional rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\vdash {P \land S} C_1 {Q}, \quad \vdash {P \land \neg S} C_2 {Q}]</td>
</tr>
<tr>
<td>[\vdash {P} \text{IF} S \text{THEN} C_1 \text{ELSE} C_2 {Q}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The WHILE-rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\vdash {P \land S} C {P}]</td>
</tr>
<tr>
<td>[\vdash {P} \text{WHILE} S \text{DO} C {P \land \neg S}]</td>
</tr>
</tbody>
</table>

- For separation logic, need to think about faulting
Proof:

\[\{ (X = x) \land X \mapsto v \} X := [X] \{ (X = v) \land x \mapsto v \}\]
fetch assignment axiom

\[\{ (Y = y) \land Y \mapsto v \} Y := [Y] \{ (Y = v) \land y \mapsto v \}\]
fetch assignment axiom

\[\{ ((X = x) \land X \mapsto v) \star ((Y = y) \land Y \mapsto v) \} X := [X]\]
frame rule

\[\{ ((Y = y) \land Y \mapsto v) \star ((X = v) \land x \mapsto v) \} Y := [Y]\]
frame rule

\[\{ ((X = x) \land X \mapsto v) \star ((Y = y) \land Y \mapsto v) \} \quad \text{sequencing rule and commutativity of } \star \]

\[\{ \exists v \ x \ y. ((X = x) \land X \mapsto v) \star ((Y = y) \land Y \mapsto v) \}\] exists-introduction (3 times)

\[\{ \exists v \ x \ y. ((X = x) \land X \mapsto v) \star ((Y = y) \land Y \mapsto v) \}\]

\[\{ \exists v. X \mapsto v \star Y \mapsto v \} X := [X] ; Y := [Y] \{ X = Y \}\] rules of consequence (see next slide)
Current research and the future

• Extending separation logic to cover practical language features
 • various concurrency idioms
 • objects

• Building tools to mechanise separation logic
 • much work on shape analysis, e.g.:
 \[
 \{\exists x. \text{list } x \ X\}
 Y:=\text{nil};
 \text{WHILE } \neg (X = \text{nil}) \text{ DO (Z:=}[X+1]; \ [X+1]:=Y; Y:=X; X:=Z)\}
 \{\exists x. \text{list } x \ Y\}
 \]
 automatically finds memory usage errors

• Finally, something to think about:
 should we be verifying code in old fashioned languages (pramatism)
 or creating new methods to create correct software (idealism)?

“The tension between idealism and pragmatism is as profound (almost)
as that between good and evil (and just as pervasive).”
[Tony Hoare]
New Topic: Refinement

- So far we have focused on proving programs meet specifications.
- An alternative is to ensure a program is **correct by construction**.
- The proof is performed in conjunction with the development:
 - errors are spotted earlier in the design process
 - the reasons for design decisions are available
- Programming becomes less of a black art and more like an engineering discipline.
- Rigorous development methods such as the B-Method, SPARK and the Vienna Development Method (VDM) are based on this idea.
- The approach here is based on “Programming From Specifications”:
 - a book by Carroll Morgan
 - simplified and with a more concrete semantics.
Refinement Laws

- **Laws of Programming** refine a specification to a program
- As each law is applied, proof obligations are generated
- The laws are derived from the Hoare logic rules
- Several laws will be applicable at a given time
 - corresponding to different design decisions
 - and thus different implementations
- The “Art” of Refinement is in choosing appropriate laws to give an efficient implementation
- For example, given a specification that an array should be sorted:
 - one sequence of laws will lead to Bubble Sort
 - a different sequence will lead to Insertion Sort
 - see Morgan’s book for an example of this
A refinement specification has the form $[P, Q]$

- P is the precondition
- Q is the postcondition

Unlike a partial or total correctness specification, a refinement specification does not include a command.

Goal: derive a command that satisfies the specification.

P and Q correspond to the pre and post condition of a total correctness specification.

A command is required which if started in a state satisfying P, will terminate in a state satisfying Q.
Example

- \([T, \; X=1]\)
 - this specifies that the code provided should terminate in a state where \(X\) has value 1 whatever state it is started in

- \([X>0, \; Y=X^2]\)
 - from a state where \(X\) is greater than zero, the program should terminate with \(Y\) the square of \(X\)
• Let P, Q range over statements (predicate calculus formulae)

• Add specifications to commands

\[
E ::= N \mid V \mid E_1 + E_2 \mid E_1 - E_2 \mid E_1 \times E_2 \mid \ldots
\]

\[
B ::= T \mid F \mid E_1 = E_2 \mid E_1 \leq E_2 \mid \ldots
\]

\[
C ::= \text{SKIP (does nothing, SKIP-Axiom is } \vdash [P] \text{ SKIP [P])}
\mid V := E
\mid C_1 ; C_2
\mid \text{IF } B \text{ THEN } C_1 \text{ ELSE } C_2
\mid \text{BEGIN VAR } V_1 ; \ldots \text{ VAR } V_1 ; C \text{ END}
\mid \text{WHILE } B \text{ DO } C
\mid [P, Q]
\]
Specifications as Sets of Commands

- Refinement specifications can be mixed with other commands but are not in general executable

- Example

\[
\begin{align*}
R & := X; \\
Q & := 0; \\
[R=X \land Y>0 \land Q=0, \ X=R+Y \times Q]
\end{align*}
\]

- Think of a specification as defining the set of implementations

\[
[P, Q] = \{ C \mid \vdash [P] C [Q] \}
\]

- For example

\[
[T, X=1] = \{"X:=1", \ "IF \neg(X=1) \ THEN \ X:=1", \ "X:=2;X:=X-1", \ \cdots \}
\]

- Don’t confuse use of \{\cdots\} as set brackets and in Hoare triples
Notation for combining sets of commands

• Wide spectrum language commands are sets of ordinary commands

• Let c, c_1, c_2 etc. denote sets of commands, then define:

$$c_1; \cdots ; c_n = \{ C \mid \exists C_1 \cdots C_n. C = C_1; \cdots ; C_n \land C_1 \in c_1 \land \cdots \land C_n \in c_n \}$$

$$= \{ C_1; \cdots ; C_n \mid C_1 \in c_1 \land \cdots \land C_n \in c_n \}$$

BEGIN VAR $V_1; \cdots$ VAR $V_n; c$ END = \{ BEGIN VAR $V_1; \cdots$ VAR $V_n; C$ END | $C \in c$ \}

IF S THEN c_1 ELSE c_2 = \{ IF S THEN C_1 ELSE C_2 | $C_1 \in c_1 \land C_2 \in c_2$ \}

WHILE S DO c = \{ WHILE S DO C | $C \in c$ \}
Refinement based program development

- The client provides a non-executable program (the specification)
- The programmer’s job is to transform it into an executable program
- It will pass through a series of stages in which some parts are executable, but others are not
- Specifications give lots of freedom about how a result is obtained
 - executable code has no freedom
 - mixed programs have some freedom
- We use the notation $p_1 \supseteq p_2$ to mean program p_2 is more refined (i.e. has less freedom) than program p_1
- N.B. The standard notation is $p_1 \sqsubseteq p_2$
- A program development takes us from the specification, through a series of mixed programs to (we hope) executable code

\[spec \supseteq mixed_1 \supseteq \ldots \supseteq mixed_n \supseteq code \]
The Skip Law

\([P, \ P] \supseteq \{\text{SKIP}\}\)

- **Derivation:**

 \[C \in \{\text{SKIP}\} \iff C = \text{SKIP} \implies \vdash [P] C [P] \text{ (Skip Axiom)} \iff C \in [P, \ P] \text{ (Definition of } [P, \ P])\]

- **Examples**

 \[[X=1, \ X=1] \supseteq \{\text{SKIP}\}\]

 \[[T, \ T] \supseteq \{\text{SKIP}\}\]

 \[[X=R+Y\times Q, \ X=R+Y\times Q] \supseteq \{\text{SKIP}\}\]
Notational Convention

- Omit \{ and \} around individual commands

- Skip law becomes:
 \[[P, P] \supseteq \text{SKIP} \]

- Examples become:
 \[[X=1, X=1] \supseteq \text{SKIP} \]
 \[[T, T] \supseteq \text{SKIP} \]
 \[[X=R+Y \times Q, X=R+Y \times Q] \supseteq \text{SKIP} \]
The Assignment Law

\[[P[E/V], P] \supseteq \{V := E\} \]

- **Derivation**

 \[C \in \{V := E\} \]
 \[\iff C = V := E \]
 \[\implies \vdash [P[E/V], P] C [P] \quad \text{(Assignment Axiom)} \]
 \[\iff C \in [P[E/V], P] \quad \text{(Definition of } [P[E/V], P] \text{)} \]

- **Examples**

 \[[Y=1, X=1] \supseteq X:=Y \]
 \[[X+1=n+1, X=n+1] \supseteq X:=X+1 \]
Laws of Consequence

Precondition Weakening

$$[P, Q] \supseteq [R, Q]$$

provided $$\vdash P \Rightarrow R$$

Postcondition Strengthening

$$[P, Q] \supseteq [P, R]$$

provided $$\vdash R \Rightarrow Q$$

- We are now “weakening the precondition” and “strengthening the post condition”
 - this is the opposite terminology to the Hoare rules
 - refinement consequence rules are ‘backwards’
 Derived Assignment Law

\[
[P, Q] \supseteq \{V := E\}
\]

provided \(\vdash P \Rightarrow Q[E/V] \)

- **Derivation**

 \[
 [P, Q] \\
 \supseteq (\text{Precondition Weakening} \quad \vdash P \Rightarrow Q[E/V]) \\
 [Q[E/V], Q] \\
 \supseteq (\text{Assignment}) \\
 V := E
 \]

- **Example**

 \[
 [T, R = X] \\
 \supseteq (\text{Derived Assignment} \quad \vdash T \Rightarrow X = X) \\
 R := X
 \]
The Sequencing Law

\[[P, \ Q] \supseteq [P, \ R]; \ [R, \ Q] \]

- **Derivation of Sequencing Law**

 \(C \in [P, \ R] ; [R, \ Q] \)

 \(\iff C \in \{ C_1 ; C_2 \mid \vdash [P] C_1 [R] \land \vdash [R] C_2 [Q] \} \)

 (Definition of \(c_1 ; c_2 \))

 \(\iff C \in \{ C_1 ; C_2 \mid \vdash [P] C_1 ; C_2 [Q] \} \)

 (Sequencing Rule)

- **Example**

 \[[T, \ R=X \land Q=0] \]

 \(\supseteq \) (Sequencing)

 \[[T, \ R=X] ; [R=X, \ R=X \land Q=0] \]

 \(\supseteq \) (Derived Assignment \(\vdash T \Rightarrow X=X \))

 \[R:=X; [R=X, \ R=X \land Q=0] \]

 \(\supseteq \) (Derived Assignment \(\vdash R=X \Rightarrow R=X \land 0=0 \))

 \[R:=X; Q:=0 \]
Creating different Programs

- By applying the laws in a different way, we obtain different programs

- Consider previous example: using a different assertion with the sequencing law creates a program with the assignments reversed

\[
[T, \quad R=X \land Q=0] \\
\supseteq (\text{Sequencing}) \\
[T, \quad Q=0] ; [Q=0, \quad R=X \land Q=0] \\
\supseteq (\text{Derived Assignment} \quad \vdash \quad T \Rightarrow 0=0) \\
Q:=0; [Q=0, \quad R=X \land Q=0] \\
\supseteq (\text{Derived Assignment} \quad \vdash \quad Q=0 \Rightarrow X=X \land Q=0) \\
Q:=0; R:=X
\]
Inefficient Programs

- Refinement does not prevent you making silly coding decisions
- It **does** prevent you from producing incorrect executable code

Example

\[
[T, \ R=X \land Q=0] \\
\supseteq (Sequencing) \\
[T, \ R=X \land Q=0] ; [R=X \land Q=0, \ R=X \land Q=0] \\
\supseteq (as previous example) \\
Q:=0; R:=X; [R=X \land Q=0, \ R=X \land Q=0] \\
\supseteq (Skip) \\
Q:=0; R:=X; \text{SKIP}
\]
The refinement rules give the freedom to wander down blind alleys

We may end up with an unrefinable step
- since it will not be executable, this is safe
- we will not get an incorrect executable program

Example

\[[X=x \land Y=y, \quad X=y \land Y=x] \]
\[\supseteq (\text{Sequencing}) \]
\[[X=x \land Y=y, \; X=x \land Y=x] ; [X=x \land Y=x, \; X=y \land Y=x] \]
\[\supseteq (\text{Derived Assignment} \quad \models X=x \land Y=y \Rightarrow X=x \land X=x) \]

\[Y:=X; \; [X=x \land Y=x, \; X=y \land Y=x] \]
\[\supseteq (\text{Sequencing}) \]
\[Y:=X; \]
\[[X=x \land Y=x, \; Y=y \land Y=x]; \]
\[[Y=y \land Y=x, \; X=y \land Y=x] \]
\[\supseteq (\text{Assignment}) \]
\[Y:=X; \]
\[[X=x \land Y=x, \; Y=y \land Y=x]; \quad \text{(no way to refine this!)} \]
\[X:=Y \]
The Block Law

\[[P, \ Q] \supseteq \text{BEGIN VAR } V_1; \ldots; \text{VAR } V_n; [P, \ Q] \text{ END} \]
where \(V_1, \ldots, V_n \) do not occur in \(P \) or \(Q \)

- Derivation: exercise

- Example

\[[X=x \land Y=y, \ X=y \land Y=x] \]
\[\supseteq \text{(Block)} \]
BEGIN VAR R; [X=x \land Y=y, \ X=y \land Y=x] END
\[\supseteq \text{(Sequencing and Derived Assignment)} \]
BEGIN VAR R; R:=X; X:=Y; Y:=R END
The Conditional Law

\[[P, \ Q] \supseteq \text{IF } S \text{ THEN } [P \land S, \ Q] \text{ ELSE } [P \land \neg S, \ Q] \]

- The Conditional Law can be used to refine any specification and any test can be introduced

- You may not make any progress by applying the law however
 - you may need the same program on each branch!
The While Law

\[[R, \ R \land \neg S] \supseteq \text{WHILE } S \text{ DO } [R \land S \land (E=n), \ R \land (E<n)] \]

provided \[\vdash R \land S \Rightarrow E \geq 0 \]

and where \(E \) is an integer-valued expression and \(n \) is an identifier not occurring in \(P, S, E \) or \(C \).

- **Example**

\[[X=R+Y \times Q \land Y>0, \ X=R+Y \times Q \land Y>0 \land \neg Y\leq R] \]
\[\supseteq \text{(While } \vdash X=R+Y \times Q \land Y>0 \land Y\leq R \Rightarrow R\geq 0) \]

WHILE \(Y\leq R \) **DO**

\[[X=R+Y \times Q \land Y>0 \land Y\leq R \land R=n, \]
\[X=R+Y \times Q \land Y>0 \land R<n] \]
More Notation

- The notation
 \[[P_1, P_2, P_3, \ldots, P_{n-1}, P_n] \]
 is used to abbreviate:
 \[[P_1, P_2] ; [P_2, P_3] ; \cdots ; [P_{n-1}, P_n] \]

- Brackets around specifications \{C\} omitted

- If \(C \) is a set of commands, then
 \[R := X ; C \]
 abbreviates
 \[\{R := X\} ; C \]
Exercise: check the refinement on this slide

Let I stand for $X = R + (Y \times Q)$, then:

$[Y > 0, \ I \land R \leq Y]$
\supseteq (Sequencing)
$[Y > 0, \ R = X \land Y > 0, \ I \land R \leq Y]$
\supseteq (Assignment)
$R := X ; \ [R = X \land Y > 0, \ I \land R \leq Y]$
\supseteq (Sequencing)
$R := X ; \ [R = X \land Y > 0, \ R = X \land Y > 0 \land Q = 0, \ I \land R \leq Y]$
\supseteq (Assignment)
$R := X ; \ Q := 0 ; \ [R = X \land Y > 0 \land Q = 0, \ I \land R \leq Y]$
\supseteq (Precondition Weakening)
$R := X ; \ Q := 0 ; \ [I \land Y > 0, \ I \land R \leq Y]$
\supseteq (Assignment)
$R := X ; \ Q := 0 ; \ [I \land Y > 0, \ I \land Y > 0 \land \neg(Y \leq R)]$
\supseteq (While)
$R := X ; \ Q := 0 ;$
$\text{WHILE } Y \leq R \text{ DO } [I \land Y > 0 \land Y \leq R \land R = n,$
$I \land Y > 0 \land R < n]$
\supseteq (Sequencing)
$R := X ; \ Q := 0 ;$
$\text{WHILE } Y \leq R \text{ DO } [I \land Y > 0 \land Y \leq R \land R = n,$
$X = (R - Y) + (Y \times Q) \land Y > 0 \land (R - Y) < n,$
$I \land Y > 0 \land R < n]$
\supseteq (Derived Assignment)
$R := X ; \ Q := 0 ;$
$\text{WHILE } Y \leq R \text{ DO } [I \land Y > 0 \land Y \leq R \land R = n,$
$X = (R - Y) + (Y \times Q) \land Y > 0 \land (R - Y) < n];$
$R := R - Y$
\supseteq (Derived Assignment)
$R := X ; \ Q := 0 ;$
$\text{WHILE } Y \leq R \text{ DO } Q := Q + 1 ; \ R := R - Y$
Data Refinement

- So far we have given laws to refine commands

- This is termed *Operation Refinement*

- It is also useful to be able to refine the representation of data
 - replacing an abstract data representation by a more concrete one
 - e.g. replacing numbers by binary representations

- This is termed *Data Refinement*

- Data Refinement Laws allow us to make refinements of this form

- The details are beyond the scope of this course
 - they can be found in Morgan’s book
Summary

- Refinement ‘laws’ based on the Hoare logic can be used to develop programs formally

- A program is gradually converted from an unexecutable specification to executable code

- By applying different laws, different programs are obtained
 - may reach unrefinable specifications (blind alleys)
 - but will never get incorrect code

- A program developed in this way will meet its formal specification
 - one approach to ‘Correct by Construction’ (CbC) software engineering
- The last lecture will be on some current research
 - hot area where Computer Lab is world leader

- Shows that Hoare logic still relevant
 - possible PhD area if you like this course