
PVS Wish List1

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

Aug 7, 2009

1This research was supported NSF Grants CNS-0823086 and CNS-0644783.



Overview

Prototype Verification System (PVS) is an interactive theorem
prover that combines automation and interaction.

It also explores the synergy between language and inference
(the computational Sapir-Whorf hypothesis) through features
such as predicate subtypes, dependent types, parametric
theories.

PVS integrates a variety of external tools: MONA, Yices,
BDDs, mu-calculus model checking.

PVS is also a back-end tool for many other systems (InVesT,
LOOP, ESC/Java2, Why, TAME, Rockwell-Collins, etc.).

PVS is available in source code and is actively maintained.

We list some ongoing and planned improvements.

N. Shankar PVS Wish List



Looking Back

PVS has been available since 1993 and used in several
projects.

External users have contributed libraries and useful tools
(PVSio, batchmode).

We’ve taken the “prototype” aspect of this seriously to
experiment with and evolve the system based on user
feedback.

Users have largely found the system quite easy to learn:
typically few weeks.

The language is quite complex: types, recursive data types,
predicate and structural subtypes, recursive and co-recursive
datatypes, parametric theories, and theory interpretations.

Most of the features are extremely popular, but a simpler
kernel language might be helpful.

N. Shankar PVS Wish List



Ground Evaluation

The type system ensures that well-typed programs can only
crash by exceeding resource bounds. Actually, it does a lot
more than that.

The ground evaluator does an update analysis to perform safe
destructive updates.

But many difficult features are not handled by the code
generator, e.g., theory interpretations, possibly executable
functions.

New prototype ground evaluator does type-reified evaluation
to instrument the code generation to be type-sensitive.

We and others are also targetting other languages (e.g., Why,
C).

N. Shankar PVS Wish List



Other Improvements

Theory parameters are too heavy-handed for simple
definitions, e.g., map, that can be made polymorphic at the
declaration level.

The model checker used in PVS is very old and needs to be
upgraded to use the CUDD library.

Nonlinear arithmetic: Grant Passmore has built the RAHD
extension to PVS, but this needs a lot more work.

Yices 1 is used as an end-game prover, but Yices 2 can be
used to as an online decision procedure with multiple contexts.

Better quantifer instantiation (next slide).

Faster rewriting.

N. Shankar PVS Wish List



SMT-Backed Declarative Proof

With declarative proofs, you want to build proofs from
primitive demonstrations of the form Γ ` A.

Each such step could be checked by an SMT solver using
unsatisfiable cores to ensure minimality.

This can be used to produce robust and readable proofs.

N. Shankar PVS Wish List


