PVS Wish List!

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

Aug 7, 2009

1This research was supported NSF Grants CNS-0823086 and CNS-0544783.



e Prototype Verification System (PVS) is an interactive theorem
prover that combines automation and interaction.

@ It also explores the synergy between language and inference
(the computational Sapir-Whorf hypothesis) through features
such as predicate subtypes, dependent types, parametric
theories.

@ PVS integrates a variety of external tools: MONA, Yices,
BDDs, mu-calculus model checking.

@ PVS is also a back-end tool for many other systems (InVesT,
LOOP, ESC/Java2, Why, TAME, Rockwell-Collins, etc.).

@ PVS is available in source code and is actively maintained.

@ We list some ongoing and planned improvements.

N. Shankar PVS Wish List



Looking Back

@ PVS has been available since 1993 and used in several
projects.

@ External users have contributed libraries and useful tools
(PVSio, batchmode).

@ We've taken the “prototype” aspect of this seriously to
experiment with and evolve the system based on user
feedback.

@ Users have largely found the system quite easy to learn:
typically few weeks.

@ The language is quite complex: types, recursive data types,
predicate and structural subtypes, recursive and co-recursive
datatypes, parametric theories, and theory interpretations.

@ Most of the features are extremely popular, but a simpler
kernel language might be helpful.

N. Shankar PVS Wish List



Ground Evaluation

@ The type system ensures that well-typed programs can only
crash by exceeding resource bounds. Actually, it does a lot
more than that.

@ The ground evaluator does an update analysis to perform safe
destructive updates.

@ But many difficult features are not handled by the code
generator, e.g., theory interpretations, possibly executable
functions.

@ New prototype ground evaluator does type-reified evaluation
to instrument the code generation to be type-sensitive.

e We and others are also targetting other languages (e.g., Why,
Q).

N. Shankar PVS Wish List



Other Improvements

@ Theory parameters are too heavy-handed for simple
definitions, e.g., map, that can be made polymorphic at the
declaration level.

@ The model checker used in PVS is very old and needs to be
upgraded to use the CUDD library.

@ Nonlinear arithmetic: Grant Passmore has built the RAHD
extension to PVS, but this needs a lot more work.

@ Yices 1 is used as an end-game prover, but Yices 2 can be
used to as an online decision procedure with multiple contexts.

e Better quantifer instantiation (next slide).

e Faster rewriting.

N. Shankar PVS Wish List



SMT-Backed Declarative Proof

@ With declarative proofs, you want to build proofs from
primitive demonstrations of the form ' - A.

@ Each such step could be checked by an SMT solver using
unsatisfiable cores to ensure minimality.

@ This can be used to produce robust and readable proofs.

N. Shankar PVS Wish List



