
Some Challenges for Future ITP

Andy Gordon

Microsoft Research

Workshop on Interactive Theorem Proving (ITP), University of Cambridge, August 2009



Typecheckers, Refinements, Provers

• Refinement (aka subset) types are a Hot Topic in PL design
– type pos = x:int {x > 0}

val sqrt: x:real {x >= 0} -> r:real {x = r*r} 

– Unifies behavioural types, security types, patterns, Hoare logic, etc

– Typechecker generates logical goals, passes to automatic prover

– But what if ATP fails, can we somehow appeal to ITP?

1. F7: Refinement Types for a Concurrent ML

2. Minim: Refinement Types for a Database Query Language

3. Some Observations, Some Challenges



F7 – REFINEMENT TYPES FOR ML 
WITH CONCURRENCY (F#/OCAML)

J. Bengtson, K. Bhargavan, C. Fournet, A. Gordon, S. Maffeis,
Refinement Types for Secure Implementations, IEEE CSF 2008.

K. Bhargavan, C. Fournet, A. Gordon,
Modular Verification of Security Protocol Code by Typing, under review.



Problem of Verifying Protocol Code

• The problem of vulnerabilities in security protocols is 
remarkably resistant to the success of formal methods

• Perhaps, tools for verifying the actual protocol code will help
– Csur (VMCAI’05), fs2pv (CSF’06), F7 (CSF’08), Aspier (CSF’09), etc etc

• Currently, fs2pv most developed, but hitting a wall
– Translates libraries and protocol code from F#/OCaml to ProVerif

– ProVerif does whole-program analysis of code versus symbolic attacker

– Long, unpredictable run times on Cardspace (ASIACCS’08), TLS (CCS’08)

• Instead, we’re developing a compositional analysis for the 
fs2pv libraries and code, based on refinement types



Refined Types for Crypto APIs

• APIs enriched with pre- and post-conditions in FOL

• Predicates declared by “equational” or “inductive” definitions

• Typechecker F7 relies on external SMT solver



file.fs7

file.fs

file.fsi

Generate proof obligations

Z3

fsc

Erase types

F7 Typechecker Implementation
Extended ML Interface, with
Refinement Type Annotations

SMT Solver
Incomplete

F# Compiler

F7



F7 in Action



Performance on Larger Protocols

• F7’s compositional type-checking is scaling better than 
ProVerif’s whole-program analysis on these examples

• Still, ProVerif can find attack traces;
maybe ProVerif’s analysis can be modularized?



Three Observations

• We need some way to justify our assumptions

• ATP is mono-tactical ITP
– Input via obscure parameters, patterns, repetition

– Output partly via timing channel

• A lesson learnt from crypto formalisms is that it’s better to 
start from code and extract logical model, than the converse
– Think of the C++ “don’t pay if you don’t use” principle

– F# is in-the-box with Visual Studio 2010 – what will happen?

– But with some exceptions, this is reverse of tooling I’ve seen for ITP



MINIM – REFINEMENT TYPES FOR A 
DATABASE QUERY LANGUAGE

G. Bierman, A. Gordon, D. Langworthy,
Semantic Subtyping with an SMT Solver, under review.



Semantic Subtyping with an SMT Solver

• Since summer 2008, we’ve been collaborating on the design and 
implementation of typing for a new database language, M

• M is a data-oriented first-order functional language, combining 
refinement types (T where e) and typecase (e in T)

– A novel combination, useful eg for database integrity constraints

• Our research contributions include:

– Semantics for M in first-order logic: expressions are terms;
types are predicates; (semantic) subtyping is valid implication

– MSRC Minim checker relies on SMT solver (Z3) to decide subtyping

• Semantic subtyping adds value in key Oslo scenarios (eg DSLs)

– So, engaging to enhance Oslo codebase with Minim algorithms

– And, building reference implementation for post-PDC version of M



Accessing Tagged Unions

U is the type of tagged data, where the 
tag determines the type of the data

A notorious problem is forgetting to 
check the tag, but Minim catches this

To type-check the else-branch y.data,
we know !(y.tag), and must show the type of y,
which is (U where value==y),
is a subtype of the record type {data:Text;}

We check subtyping via a semantics of types in logic, and ask Z3 the following:
“if !(y.tag) and y satisfies (U where value==y), does y satisfy {data: Text;}”



The standard M typechecker relies on standard structural subtyping;
Structural rules do not work well for the rich type system of M and fail to catch even 
simple errors like this one, caught by Minim’s semantic subtyping

Semantic subtyping effectively checks code manipulating the syntax trees of Domain 
Specific Language, an important application area for M



Three Challenges

In the context of Fancy Type Systems, three reasons to use ITP:
1. To Mechanize the Metatheory for the Masses (the POPLmark Challenge)

2. To check that FOL theories used in refinement formulas are sound

3. To help out the ATP during type-checking

• Challenge 2: Steal UI ideas from modern programming and 
testing environments (as if proofs were programs!)

– Hover, Pause, F5

• Challenge 3: Conversely, can typecheckers steal ideas from ITP 
to “make the common case easy, and the rare case possible”

– Annotate code with tactics to help typechecker
(cf Why/Caduceus and HOL-Boogie)

– Least common denominator tactic language?
How about an ITP Systems Comp?



Proof by Squigglies
(DEFPRED (Man x))
(DEFPRED (Mortal x))

;(BG_PUSH (Man Socrates))

;(BG_PUSH (FORALL (x) (IMPLIES (Man x) (Mortal x))))

(Man Socrates)

(Mortal Socrates)

(EXISTS (x) (Man x))



Proof by Testing



Resources

• Umbrella project, Cryptographic Verification Kit
http://research.microsoft.com/cvk

• F7: refinement types for F#
http://research.microsoft.com/F7

• Lectures on Principles and Applications of Refinement Types
http://research.microsoft.com/en-us/people/adg/part.aspx

• Microsoft “Oslo” Developer Center
http://msdn.microsoft.com/oslo

• Z3: an efficient SMT solver
http://research.microsoft.com/en-us/um/redmond/projects/z3/

http://research.microsoft.com/cvk
http://research.microsoft.com/F7
http://research.microsoft.com/en-us/people/adg/part.aspx
http://research.microsoft.com/en-us/people/adg/part.aspx
http://research.microsoft.com/en-us/people/adg/part.aspx
http://msdn.microsoft.com/oslo
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

