Some Challenges for Future ITP

Andy Gordon

Microsoft Research

Workshop on Interactive Theorem Proving (ITP), University of Cambridge, August 2009

Typecheckers, Refinements, Provers

« Refinement (aka subset) types are a Hot Topic in PL design

— type pos = x:int {x > 0}
val sqrt: x:real {x >= 0} -> r:real {x = r*r}

— Unifies behavioural types, security types, patterns, Hoare logic, etc
— Typechecker generates logical goals, passes to automatic prover
— But what if ATP fails, can we somehow appeal to ITP?

1. F7:Refinement Types for a Concurrent ML
2. Minim: Refinement Types for a Database Query Language
3. Some Observations, Some Challenges

J. Bengtson, K. Bhargavan, C. Fournet, A. Gordon, S. Maffeis,
Refinement Types for Secure Implementations, IEEE CSF 2008.

K. Bhargavan, C. Fournet, A. Gordon,
Modular Verification of Security Protocol Code by Typing, under review.

F7 — REFINEMENT TYPES FOR ML
WITH CONCURRENCY (F#/OCAML)

Problem of Verifying Protocol Code

The problem of vulnerabilities in security protocols is
remarkably resistant to the success of formal methods

Perhaps, tools for verifying the actual protocol code will help
— Csur (VMCAI’05), fs2pv (CSF’'06), F7 (CSF'08), Aspier (CSF'09), etc etc
Currently, fs2pv most developed, but hitting a wall

— Translates libraries and protocol code from F#/0Caml to ProVerif

— ProVerif does whole-program analysis of code versus symbolic attacker
— Long, unpredictable run times on Cardspace (ASIACCS’08), TLS (CCS’08)

Instead, we’re developing a compositional analysis for the
fs2pv libraries and code, based on refinement types

Refined Types for Crypto APIs

val aes_encrypt: (» AES CBC =*)
K:key —
b:bytes{(SKey(k) A CanSymEncrypt(k,b)) v (Pub(k) A Pub(b))} —
e:bytes{IsEncryption(e,k,b)}

val aes_decrypt: (#+ AES CBC «)
k:key{SKey(k) v Pub(k)} —
e:bytes —
b:bytes{(¥p. IsEncryption(e.k.,p) = b = p) A(Pub(k) = Pub(b))}

* APIs enriched with pre- and post-conditions in FOL
* Predicates declared by “equational” or “inductive” definitions
 Typechecker F7 relies on external SMT solver

F7 Typechecker Implementation

Extended ML Interface, with

Refinement Type Annotations Generate proof obligations

file.fs7 & Z3

Ly

Pt

S
Q(%
S SMT Solver

Incomplete

Erase types

file.fsi

file.fs F# Compiler

fsc

F7 In Action

—
cvk - Microsoft Visual Studic r—— - — —_— - C=HACL
File Edit View Project Build Debug Data Tools Test Apalyze Window Help
E@'ﬂ'ﬁgﬁ|*%ﬁ§|‘ﬂ'm"£”P Debug = Any CPU '|@ :EH"Typechecking;
< query.fs * X 7 query.fs? - X
let ResponseTag = "Response™ it private wval emitResponse: i

r:regquest -»> s:string {Response(r,=)} -> message
let emitResponse ©r 2 =

let info = ResponseTag™r™=s in private wval checkResponsze:
let h = hmac k info in [:] r:regquest -»> message -» s:string {Response(r,=)}
pickle (=, h)
type service = r: request -> s:string {Response(r,s)}
let checkResponse (r: string) (m: message) = private wval forecast: service =3
let =2,h = parseBesponse m in
let info = ResponseTag™r™s in val addr: (content,content) HNet.addr
let v = hmacVerify k info h in val client: string -> string
= private wval mk server: service -»> unit
= val =erver: unit -» unit &
< | m | r « | i b

| =] Output

{I Ready Ln18 Coll Ch1l INS

Performance on Larger Protocols

Example F# Program F7 Typechecking Fs2pv Verification
Modules | Lines of Code | Interface Checking Time Queries | Verifying Time
Cryptographic Patterns 1 158 lines 100 lines 17.1s 4 3.8s
Basic Protocol (Section 2) 1 76 lines 141 lines 8s 4 4.1s
Otway-Rees (Section 4.2) 1 265 lines 233 lines | 1m.29.9s 10 8m 2.2s
Otway-Rees (No MACs) I 265 lines - (Type Incorrect) || 10 2m 19.2s
Secure Conversations (Section 4.3) 1 123 lines 111 lines 29.64s - (Not Verified)
Web Services Security Library 5 1702 475 48.81s (Not Verified Separately)
X.509-based Client Auth (Section 5.1) + 1 + 88 lines + 22 lines | + 10.8s 2 20.2s
Password-X.509 Mutual Auth(Section 5.2) | + 1 + 129 lines + 44 lines | + 12s 15 44m
X.509-based Mutual Auth +1 + 111 lines + 53 lines | 18 o
Windows Cardspace (Section 5.3) 1 1429 lines 309 lines(| 6m3s) 6 _ 66m 21s)
\v/ N~ —

Table 1. Verification Times and Comparison with ProVerif

* F7’s compositional type-checking is scaling better than
ProVerif’s whole-program analysis on these examples

* Still, ProVerif can find attack traces;
maybe ProVerif’s analysis can be modularized?

Three Observations

 We need some way to justify our assumptions
e ATP is mono-tactical ITP

— Input via obscure parameters, patterns, repetition
— Output partly via timing channel
* Alesson learnt from crypto formalisms is that it’s better to
start from code and extract logical model, than the converse
— Think of the C++ “don’t pay if you don’t use” principle
— F#is in-the-box with Visual Studio 2010 — what will happen?
— But with some exceptions, this is reverse of tooling I’ve seen for ITP

MINIM - REFINEMENT TYPES FOR A
DATABASE QUERY LANGUAGE

Semantic Subtyping with an SMT Solver

e Since summer 2008, we’ve been collaborating on the design and
implementation of typing for a new database language, M

M is a data-oriented first-order functional language, combining
refinement types (T where e) and typecase (e in T)

— A novel combination, useful eg for database integrity constraints
e Our research contributions include:

— Semantics for M in first-order logic: expressions are terms;
types are predicates; (semantic) subtyping is valid implication

— MSRC Minim checker relies on SMT solver (Z3) to decide subtyping
 Semantic subtyping adds value in key Oslo scenarios (eg DSLs)

— So, engaging to enhance Oslo codebase with Minim algorithms

— And, building reference implementation for post-PDC version of M

Accessing Tagged Unions

L File Edit View Window Help
untitled1* Minim Mode
hodule M {
type U : {tag: Logical; data: Any;;
where (value.tag) ? (value.data in Integer32) : (value.data in Text);

‘%GmeTaggEdData{) pU* U is the type of tagged data, where the

tag determines the type of the data

{ {tag=>true, data=>42},
{tag=>false, data=>"freddy”} }
A notorious problem is forgetting to
UnsafeGetText(y:U): Text { y.data } check the tag, but Minim catches this

Can't convert y to type {data :Text_:}l ‘

SafeGetText(y:U): Text

To type-check the else-branch y.data,

(y-tag ? "not text” : y.data) we know !(y.tag), and must show the type of y,
which is (U where value==y),
is a subtype of the record type {data:Text;}

We check subtyping via a semantics of types in logic, and ask Z3 the following:
“if I(y.tag) and y satisfies (U where value==y), does y satisfy {data: Text;}”

L

L File Edit View Window Help
untitled1* Minim Mode
module M {

F() : Integer32 where value == 2 | %nﬂ

|Can't convert 3 to type (valuelnteger where (value= :2]!}|

[R——

The standard M typechecker relies on standard structural subtyping;
Structural rules do not work well for the rich type system of M and fail to catch even
simple errors like this one, caught by Minim’s semantic subtyping

-

40 Fle Edit View Window Help
untitled1* Minim Mode
type Statement : [kind:{"assignment"}; var: Text; rhs: Expression;} |
fkind:{"while"}; test:Expression; body:Statement;} |
fkind:{"if"}; test:Expression; tt:Statement; ff:Statement;} |
{kind:{"seq"}; sl:Statement; s2:Statement;}
{kind:{"skip"};};
|
FindExpr(S:Statement) : (Expression | {null}l) {
(S.kind=="assignment"”) ? S.rhs
((S.kind=="while" || S.kind=="if") ? S.test : null) }

Semantic subtyping effectively checks code manipulating the syntax trees of Domain
Specific Language, an important application area for M

Three Challenges

In the context of Fancy Type Systems, three reasons to use ITP:

1.
2.
3.

To Mechanize the Metatheory for the Masses (the POPLmark Challenge)
To check that FOL theories used in refinement formulas are sound
To help out the ATP during type-checking
Challenge 2: Steal Ul ideas from modern programming and
testing environments (as if proofs were programs!)

— Hover, Pause, F5

Challenge 3: Conversely, can typecheckers steal ideas from ITP
to “make the common case easy, and the rare case possible”
— Annotate code with tactics to help typechecker
(cf Why/Caduceus and HOL-Boogie)

— Least common denominator tactic language?
How about an ITP Systems Comp?

4 File Edit View Window Help

untitled1* Simplify Mode

(DEFPRED (Man x))
(DEFPRED (Mortal x))

(BG_PUSH (Man Socrates)) ; add to background theory

(Man Socrates) ; purple formulas proved by Z3

Mortal Socrates) ; red formulas not proved

(BG_PUSH (FORALL (x) (IMPLIES (Man x) (Mortal x))))

(Man, Socrates)
Mortal Socrates)

; squiggles updated behind scenes by running Z3

Proof by Testing

Minim - Microsoft Visual Studio =~ - - - " e e @@g
File Edit View Refactor Project Build Debug Data Tools Test Apalyze Window Help

A-E-E e % B9 - - E-5E | b Debug ~ Any CPU - | " : FT Typechecking _
4% (KD BEOAEEREE| S (= -

- Theorems.cs MinimFuundatiunTstI e

% TestProject.UnitTestl v S¥Ru nTool(string input) -

[TestHethod]
|| public void Testl() { ValidExpected("(EQ O O0)")r }

[TestMethod]
public wvoid Test2() { ValidExpected(" (HOT (AND (In_Integer v) (In_Logical w)))")r }

[TestMethod] ':l
public woid Test3 () { ValidExpected (" (EXISTS (=) (EQ = O))"™)y; }
1| 1 | 3
Test Results ~ 1 X
?g; | §3 adg@MSRC-1782798 2009-08-24 © = | “p Run ~ h¥]Debug = U1 | % =¥ - %5 3 | Group By: [None] ~ | [All Columr ~ z
Q Test run failed Results: 1/3 passed; Item(s) checked: 2
| Result Test Mame Project Error Message . Duration Output (StdCut)
' O Qﬂ@ Passed Testl MinimFoundationTest 00:00:00.3661355 (EQ00]..
[w! Qﬂﬂ Failed Test? MinimFoundationTest Assert.Fail failed. Mot proved by 23, 00:00:00.1780203 (MOT (AND (In_Integer v] (In_Logical v]])...

| v qﬂﬂ Failed Test3 MinimFoundationTest Assert.Fail failed. Mot proved by 73, 00:00:00.1054728 (EXISTS () (EQ x0))...

Resources

Umbrella project, Cryptographic Verification Kit
http://research.microsoft.com/cvk

F7: refinement types for F#
http://research.microsoft.com/F7

Lectures on Principles and Applications of Refinement Types
http://research.microsoft.com/en-us/people/adg/part.aspx

Microsoft “Oslo” Developer Center
http://msdn.microsoft.com/oslo

Z3: an efficient SMT solver
http://research.microsoft.com/en-us/um/redmond/projects/z3/

http://research.microsoft.com/cvk
http://research.microsoft.com/F7
http://research.microsoft.com/en-us/people/adg/part.aspx
http://research.microsoft.com/en-us/people/adg/part.aspx
http://research.microsoft.com/en-us/people/adg/part.aspx
http://msdn.microsoft.com/oslo
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

