This pseudo-code description was created for the 2" Workshop on Theorem Proving in
Certification to be held December 5 - 6, 2011 in Cambridge, UK. It has been “seeded” with
some intentional defects and other aberrations for the purposes of evaluating and demonstrating
the effectiveness of formal analysis as a means of verifying software. All uses of this pseudo-
code or variants of this pseudo-code should acknowledge this workshop as the original source.

Updat eNGvel ocity ()

Nose Cear Velocity Estimte Update Function

Created 2010.07. 16
Updat ed 2011. 02. 12
Updat ed 2011. 08. 04

This function is invoked by the schedul er at | east once every 500
mllisecs while the weight-on-wheels condition is true. It reads
three gl obal variables (NGO ickTinme, NGRotati ons and MI1isecs)and
updates two other gl obal variables (estimtedG oundVel ocity and
est i mat edGroundVel oci tyl sAvai |l abl e) .

The m ni mum nmeasurabl e velocity is 3 kmhr. It is not safe to
use the output of this function to determne that the aircraft
i s stopped.

Requi rement #1: When the estimat edG oundVel ocitylsAvailable flag
is true (i.e., this global variable is set to a non-zero val ue),

t he val ue of the global variable estimtedG oundVelocity shall be
within 3 knmihr of the true velocity of the aircraft at some nmonment
within the past 3 seconds. This requirenent may be expressed in a
sem -formal manner as foll ows (where behaviour is nodelled at the
mllisecond tine scale):

FORALL t,
I F (estinmatedG oundVel ocityl sAvail able at time (t + 3000))
THEN EXI STS n, m SUCH THAT:
((1 <= n) AND (n <= 3000)) AND
((-3 <=mM AND (m<= 3)) AND
(estimatedCGroundVel ocity at tine (t + 3000) =
(trueGoundVel ocity at tine (t + n)) + m

This property nmust hold if all of the follow ng assunptions are
true:

1. The sensor detects the conpletion of a full rotation of the nose
gear wheel with a maximumerror of 1 cm i.e., there is a maximm
variation of +/- 1 centineter in the location of a fixed position
on the perineter of the wheel between the tinmes when a “click”

is signaled to the conmputer.

2. The two gl obal variables, NG ickTime and NCGRotations, are
updated no nore than 2 mlliseconds after the sensor detects the
conpletion of a full rotation of the nose gear wheel.

3. The maxi num change in velocity (to be tolerated by this function)
is 20 neters per second per second at speeds above 150 km hr and no

nore than 10 nmeters per second per second at | ower speeds. The
maxi mumtol erable jerk (i.e., derivative of acceleration) is 3 neters
per second cubed.

4. The wheel diameter is between 12 and 50 inches.

5. No other part of the software is capable of nodifying the val ues
of estimatedG oundVel ocityl sAvail abl e and esti nat edG oundVel oci ty.

6. The aircraft is noving at |east 3knihr.

7. Once invoked, this update function runs to conpletion, or at |east
t he gl obal variables updated by this function will not be read by any
any other part of the software between the tine when this function is
entered and when its execution is conpl eted

Requi rerment #2: If all of the above assunptions are true, the
esti mat edG oundVel oci tyl sAvail able flag shall be true if the val ues
of the three gl obal variables NG ickTinme, NGRotations and MIIlisecs
have been valid when accessed during the two previous invocations of
this function.

*/

| * SYSTEM ADAPTATI ON PARAMETERS */

/* WHEEL_DI AVMETER i s the approxi mate di aneter of the nose gear wheel
in inches (accurate within 1 inch of true dianeter).
*/

#defi ne WHEEL_DI AMETER 26
/* M N_SPEED is the m ni mum neasureabl e speed, in knihr */
#define M N_SPEED 3

/* MAX_SPEED is an upper bound on the range of neasurable velocity
while the aircraft is noving on the ground, in kmhr.
*/

#defi ne MAX_SPEED 600

/* MAX_ACCEL is an upper bound on the rate at which the nmeasured speed
may increase or decrease, in neters per second squared. Note: just
a quantity, i.e., always a positive value regardl ess of whether the
speed is increasing or decreasing.

*/

#def i ne MAX_ACCEL 20

/* MAX_NUM FAI LED UPDATES is an upper bound on the nunber of tines
that attenpts to update the estinmated ground speed can fai
consecutively (because the estimated velocity or estinmated
(de-)acceleration rate is too high to be valid).

*/

#defi ne MAX_FAI LED_UPDATES 5

/* GLOBAL VARI ABLES */

/* NGO ickTinme (unsigned 16 bits) is the approxi mate system cl ock
ti me when the nose gear wheel npst recently conpleted a full
rotation causing NGRotations to be increnented.

*/

extern unsigned NGO i ckTi ne;

/* NGRotations (unsigned 16 bits) is the nurmber of conpleted full
rotations of the nose gear, i.e., it is increnented when each full
rotation is conpleted.

*/

extern unsi gned NGRot ati ons;

/* MIlisecs (unsigned 16 bits) is the nunber of milliseconds since
the start of system execution, i.e., systemclock tine.

*/

extern unsigned MIIlisecs;

/* estimatedG oundVel ocityl sAvail able (unsigned 16 bits) is
non-zero if and only if estimatedGoundVel ocity is a valid output.

*/

extern unsi gned esti mat edG oundVel oci tyl sAvai | abl e;

/* estimtedG oundVel ocity (unsigned 16 bits) is the neasured velocity,
in knmihr, of the aircraft while noving on the ground when
esti mat edG oundVel oci tyl sAvail able is a non-zero val ue.

*/

extern unsi gned estinmat edG oundVel ocity;

voi d Updat eNGvel ocity () {

/* private constants */

/* whcf is circunference in centineters of the nose gear wheel. */

static int whef = (((WHEEL_DI AMETER * 254) [/ 7) * 22) / 100;

/* maxMsecs is an upper bound on the time for a full rotation of

t he nose gear wheel .

*/

static int maxMsecs = (whcf * 36) / M N_SPEED,

/* maxUpdates is an upper bound on the nunber of updates required
for a full rotation of the nose gear wheel where maxi mumtinme
bet ween updates is 500 millisecs.

*/

static int nmaxUpdates = (maxMsecs / 500) + 1;

/* maxCicks is an upper bound the number of full rotations,

i.e., clicks between innovations of this function where the
maxi mum tinme between updates is 500 mllisecs.
*/

static int maxdicks = (MAX_SPEED / (whcf * 36)) * 500;
/* unsigned variables on target hardware are 16 bits */

static unsigned prevTinme = O;

static unsigned prevCount = O;

static unsigned prevCurr = O;

static unsigned firstTine = 1;

static unsigned nunfail edUpdates = O;

static unsigned updat esWthout Newd i cks = O;

unsigned thisTime, thisCount, currTinme, t1, t2, t3, dl, d2,
neweGV, deltaEGV, badResult;

currTinmne = M1 Iisecs;
thisTime = NGO ickTine;
t hi sCount = NGRot ati ons;

/*
“click” “updat e” “click” “updat e”
| | | I
| <----------- dl--------- >l <------ d2----- >|
I I I I
| <----------- tl--------- >l <------ t2----- >|
I I I I
| [<-----mmmmmm-- t3---------- >|
------ R e e I el I 11 -]
W X Y z
N N N N
prevTi me prevCurr thi sTime currTime
pr evCount t hi sCount

The above di agram shows one possi bl e sequence of events where
there is a single “click” at point Y after the previous update
prior to the current update at point Z

In general, there will be deltaCount updates between the

previ ous update and the current update at point Z, where

del taCount is any nunber |ess than maxUpdates, including O.
*/

if (thisTime == prevTinme) return; /* too soon, just skip this update */
esti mat edGroundVel oci tyl sAvail abl e = 0;

i f (thisCount == prevCount) {

/* Okay to skip a few updates at | ow speed, but eventually it needs
to be set to unavailable if there are not any new “clicks”. Note
that an upper bound on changes in velocity should limt the
potential inaccuracy that results fromm ssing a few updat es.

*/

i f (++tupdat esWthout NewC i cks > maxUpdat es) {
esti mat ed& oundVel oci tyl sAvai |l abl e = 0;

return;

}
el se updat esWt hout NewCdl i cks = 0;

/* tl is the elapsed tine (in mlliseconds) between the tine at
the nost recent update prior to the previous update occurred
and the tine at which the npst recent update occurred

*/

if (prevTime <= thisTine) t1 = thisTine — prevTi ne;
else tl1 = 65534 — (prevTine — thisTine);

/* t2 is the elapsed tinme (in nmilliseconds) between the tine at
the nost recent update occurred and the current tine.
*/

if (thisTinme <= currTine) t2 = currTime — thisTine;
else t2 = 65534 — (thisTinme — currTine);

if (t2 > maxMsecs) firstTinme = 1;

if (firstTime == 1) {
prevTime = thisTine;

prevCount = thisCount;
badResult = 0;
firstTime = O;

return;

}

if (prevCount < thisCount) deltaCount = thisCount — prevCount;
el se deltaCount = 65534 — (prevCount — thisCount);

badResult = (deltaCount > maxClicks) ? 1 : O;

/* dl is the distance (in centinmeters) travelled since the nost
recent click seen by the nost recent update until the nost
recent click, i.e., the distance travelled between prevTi ne
and thisTi ne.

*/

dl = whcf * del t aCount;

/* d2 is an estinmate of the distance (in centineters) travelled
since the nost recent click. |If there has at |east once
click since the tinme of the nbst recent click observed by
the previous update, i.e., deltaCount > 0, then use dl/t1l
to approximate the current velocity used to cal cul ate d2.

O herwi se, use the velocity that results fromthe previous
updat e, but nake sure that d2 is I ess than the circunference
of the wheel (which is inmportant to check in the case of
rapi d deceleration to a | ow speed).

*/

if (deltaCount == 0) d2 = (esti matedG oundVel ocity * t2) / 36;
else d2 = (d1 * t2) / t1;
if (d2 > whef) d2 = whef - 1;

/*
dl + d2 = the total distance estimated to have been travell ed
since the nost recent click that occurred prior to the tine
of the nost recent update (in centineters)

tl +t2 =the total elapsed time since the nost recent click
that occurred prior to the tinme of the npst recent update (in
nmlliseconds)

*/

neweGv = ((((dl1 + d2) * 360) / (t1 +t2)) + 5) / 10;
badResult += newEGV > MAX_ SPEED;

i f (newEGV < estimatedG oundVel ocity)
del taEGV = estimatedGoundVel ocity - newtEGV;
el se deltaEGV = newkEGV - estimated& oundVel ocity;

if (prevCurr <= currTine) t3 = currTime — prevCurr;
else t3 = 65534 — (thisTime — prevCurr);

badResult += (((deltaEGY * 100) / t3) * 100) > MAX_ ACCEL;
esti mat edGroundVel oci tyl sAvail abl e = 1;

/* If the result is bad, then don't update estinmatedG oundVel ocity,
as the previous estimate should be valid for a few nore update
cycles. But if the problempersists, then reset the flag to
indicate that the estimated velocity is no |onger avail able.

*/

if ((badResult > 0) && (nuntail edUpdat es++ > MAX_FAI LED UPDATES)) ({
firstTinme = 1,
esti mat edG oundVel oci tyl sAvail able = 0;

else if (badResult > 0) nunfail edUpdat es++;
el se estinmat edG oundVel ocity = newkGY,

prevTime = thisTine;
prevCount = thisCount;
prevCurr = currTine;

