Nose Gear (NG) Velocity Example

Version 1.1, September 2011
Critical Systems Labs Inc.

This is a completely fictitious example of a simple function that estimates the velocity of an aircraft
while moving on the ground.

Overview: The velocity is estimated by measuring the elapsed time of a full rotation of the nose gear
wheel. Each time this wheel completes a full rotation, a pulse (informally called a “click”) is generated
by an electro-mechanical sensor connected to a computer. The pulse causes a hardware interrupt
which is serviced by an interrupt routine that increments a 16-bit counter called “NGRotations” and
stores the current time in a 16-bit variable called “NGClickTime”. The Real-time Operating System
(RTOS) periodically invokes another function that uses the current value of this counter to re-calculate
an estimate of the current velocity and store the result in a global variable called
“estimatedGroundVelocity”. The RTOS ensures that this update function is invoked at least once every
500 milliseconds, however, the exact timing of each invocation relative to a hardware interrupt is not
predictable. In addition to the counter that records rotations of the wheel, this update function has
read-only access to a 16-bit counter called “Millisecs” which is incremented once every millisecond. This
counter is the same source of time used by the interrupt routine to update NGClickTime. The
circumference of the nose gear wheel is also available to the update function as the value of a compile-
time constant called “WHEEL_DIAMETER”. The update function may store private data values that are
protected from invocation to invocation. An example of this calculation is shown below:

0 degrees — “click” 120 degrees 240 degrees 0 degrees — “click”

H/W interrupt H/W interrupt
NGClickTime = 4123 millisecs NGClickTime = 4367millisecs
NGRotations = 8954 NGRotations = 8955
WHEEL_DIAMETER = 22 inches 12 inches/foot
Pl=3.14 5280 feet/mile

estimatedGroundVelocity = distance travel/elapsed time
=((3.14 * 22)/(12*5280))/((4367-4123)/(1000*3600))
=16 mph

1 © Copyright, Critical Systems Labs Inc., 2011



In this particular example, it is assumed that NGRotations has just been incremented when the
calculation is performed, i.e., the update function is invoked within a few milliseconds after a new
‘click'. However, the implementation of this function should handle the more general case in which the
update function can be invoked at any time.

Requirement 1: When the estimatedGroundVelocitylsAvailable flag is true (i.e., while the aircraft is
moving on the ground an this global variable is set to a non-zero value), the value of the global variable
estimatedGroundVelocity shall be within 3 km/hr of the true velocity of the aircraft at some moment
within the past 3 seconds.

This requirement may be expressed in a semi-formal manner as follows (where behaviour is modelled at
the millisecond time scale):

FORALL t,
IF (estimatedGroundVelocityIsAvailable at time (t + 3000))
THEN EXISTS n, m SUCH THAT:
((1 <= n) AND (n <= 3000)) AND
((-=3 <= m) AND (m <= 3)) AND
(estimatedGroundVelocity at time (t + 3000) =
(trueGroundVelocity at time (t + n)) + m)

Assurance Case(s): The assurance cases must provide evidence that the design (or implementation) of
the update function satisfies the required behaviour. Note that the above statement of the required
behaviour is expressed in terms of a relationship between a physical object (i.e., the aircraft) and the
value of a variable in the memory of the computer. All assumptions needed to support the assurance
cases must be explicitly stated. The evidence provided by these assurance cases must be at least as
thorough as the evidence that would required for RTCA DO 178B certification of Level A software
including MCDC test coverage. (If formal analysis is used instead of testing, then the assurance cases
must be accompanied by an argument that the results of formal analysis are at least as thorough as
what would be achieved by MCDC test coverage.)

2 © Copyright, Critical Systems Labs Inc., 2011



