
Slide:

A Complete Solution to the Nose Gear Challenge

Yannick Moy
Senior Software Engineer

Slide:

The Extended Nose Gear Challenge

Slide:

HLR 1: when available, computed velocity should be close to actual velocity

HLR 2: computed velocity should be available most of the time

The Original Nose Gear Challenge

Slide:

Best solution so far presented by Colin O'Halloran: from Simulink to SPARK
with CLawZ

Other solutions use contract-based specification / verification with SPARK to:

• guarantee absence of run-time errors

• prove that implementation conforms to contract

Solutions from 2nd Workshop (2011)

Slide:

The Extended Nose Gear Challenge

HLR 1: when available, computed velocity should be close to actual velocity

HLR 2: computed velocity should be available most of the time

HLR 3: a log of all events of the latest five minutes shall be saved

HLR 4: the graphical user interface shall show

1. the estimated velocity computed

2. a warning message if the velocity is not available

3. all events collected

COMPUTATION LOGGER GUI

Slide:

A Solution Focused on Integrity

Preservation

Slide:

System to Software Integrity Preservation

Our main goal for the Nose Gear Challenge

6 ways to preserve integrity:

1. peer review at different levels (classical approach)

2. extensive testing at different levels and compare output (Simulink vs gen. code)

3. qualifiable automatic code generation (SCADE, GNAT Pro Simulink)

4. formalize requirement as source code contracts (Ada 2012, SPARK)

5. translate contracts across different levels (Simulink assertion to SPARK contract)

6. extract properties at different levels and compare them (CLawZ, Mathworks)

Slide:

System to Software Integrity Preservation

Architecture
AADL

SRC
Ada 2012 &

SPARK 2014

Obj

HLR formalised as formal

assertions in BLESS

HLR formalised as model

verification blocks in Simulink

and assertions in Ada 2012

HLR and LLR formalised as

formal assertions

preservation of integrity

preservation of integrity

Traceability study &

run-time monitoring

preservation of integrity

LLR
Simulink &

Ada 2012 assertions

HLR
AADL System Model

traceability

traceability

traceability

Slide:

Languages:

● AADL architecture description language

● Simulink modeling language

● Ada 2012 programming language (with contracts)

● SPARK 2014 subset of Ada for formal verification

Tools:

• Ocarina code generator: AADL → Ada

• GNAT Pro for Simulink (qualifiable): Simulink → Ada

• SPARK formal verification toolset: SPARK → proofs

• CodePeer static analyzer: Ada → potential errors

• GNAT Pro: Ada → executable

• GNAT Dashboard: Ada → visualization of certification artifacts

• Qualifying Machine (QM): artifacts → agile qualification management

Our Choice of Languages and Tools

Slide:

QM
Information

broker for

certification data

AADL
System-level design

SW Architecture

design

Code generation

GNAT Pro

Simulink
Qualifiable

Code generation

SPARK 2014
Low-level design

Formal

verification

CodePeer
Verification

GNAT

Dashboard
Certification

artifacts

quality

System &

Software

engineer

Control

engineer

Software

engineer

Software

engineer

Project/Quality

Manager

DER

Certification Manager

QA Manager

Slide:

QM
Information

broker for

certification data

AADL
System-level design

SW Architecture

design

Code generation

GNAT Pro

Simulink
Qualifiable

Code generation

SPARK 2014
Low-level design

Formal

verification

CodePeer
Verification

GNAT

Dashboard
Certification

artifacts

quality

System &

Software

engineer

Control

engineer

Software

engineer

Software

engineer

Project/Quality

Manager

DER

Certification Manager

QA Manager

Improve communication

between departments

Slide:

QM
Information

broker for

certification data

AADL
System-level design

SW Architecture

design

Code generation

GNAT Pro

Simulink
Qualifiable

Code generation

SPARK 2014
Low-level design

Formal

verification

CodePeer
Verification

GNAT

Dashboard
Certification

artifacts

quality

System &

Software

engineer

Control

engineer

Software

engineer

Software

engineer

Project/Quality

Manager

DER

Certification Manager

QA Manager

Decrease V&V costs

Slide:

QM
Information

broker for

certification data

AADL
System-level design

SW Architecture

design

Code generation

GNAT Pro

Simulink
Qualifiable

Code generation

SPARK 2014
Low-level design

Formal

verification

CodePeer
Verification

GNAT

Dashboard
Certification

artifacts

quality

System &

Software

engineer

Control

engineer

Software

engineer

Software

engineer

Project/Quality

Manager

DER

Certification Manager

QA Manager
Ensure end-to-end

property preservation

Slide:

System-level Specification in AADL

 abstract Velocity_Calculation

 features

 NGRotations : in data port Integer;

 NGClickTime : in data port Date;

 Millisecs : in data port Date;

 estimatedGroundVelocity : requires data access Velocity;

 estimatedGroundVelocityIsAvailable : requires data access Boolean;

 properties

 Dispatch_Protocol => Periodic;

 Period => 500 Ms;

 Compute_Entrypoint => classifier (Velocity_Calculation_Spg);

 Compute_Execution_Time => 10 Ms .. 100 Ms;

System I/O

Real-time properties

and allocation

Slide:

System-level Specification in AADL

thread Velocity_Calculation

...

assert

 <<hlr_availability: :

 (((Millisecs + NGClickTime^(-1)) - Timing_Properties::Period) <= 3000)

 iff estimatedGroundVelocityIsAvailable >>

states

 s0 : initial state;

 s1 : complete state;

transitions

 s0 -[]-> s1 {};

 s1 -[on dispatch]-> s1 {

 Velocity_Calculation_Spg(

 NGRotations, NGClickTime, Millisecs,

 estimatedGroundVelocity, estimatedGroundVelocityIsAvailable)

 << hlr_availability() >>

 };

end Velocity_Calculation;

HLR formalised

as assertions

Formal specification of

behaviour (skeleton) plus

verification of assertions

Slide:

Simulink Model (LLR)

Slide:

Only code currently generated, contract manually translated

In the future: contract generated from Simulink observer

 procedure nose_gear_comp

 (NGRotations : Unsigned_16;

 NGClickTime : Unsigned_16;

 Millisecs : Unsigned_16;

 estimatedGroundVelocity : out Long_Float;

 estimatedGroundVelocityIsAvailable : out Boolean)

 with Post =>

 -- @llr Compute

 -- The ground velocity shall be available only if the time difference

 -- between the current calculation and the previous one is less than

 -- 2500.

 (EstimatedGroundVelocityIsAvailable =

 (Millisecs + 500 - Old_NGClickTime_memory <= 3000));

Generated Code in SPARK

Slide:

HLR 3: a log of all events of the latest five minutes shall be saved

events scheduled at rate of one every 500 ms → 600 events in 5 mn

API of logger should give:

• function to retrieve content of the log Log_Content

• procedure to update content of the log Write_To_Log

Most natural specification cannot be expressed as contract: “Log_Content

returns the set of events that have been added to the log by calls to

Write_To_Log”

Use contract on Write_To_Log instead

Formal Specification and Verification in SPARK

Slide:

 procedure Write_To_Log (E : Log_Entry)

 -- @llr Write_To_Log

 with Contract_Cases =>

 -- The logger component shall be able to accept a new logging message.

 -- For an old empty log, the new content is the new entry alone.

 (Is_Empty =>

 Log_Content = Singleton_Log (E),

 -- For an old full log, the new content is the old one, with the

 -- oldest entry removed, plus the new entry.

 Is_Full =>

 Log_Content =

 Log_Content'Old (Log_Content'Old'First + 1 .. Log_Content'Old'Last)

 & E,

 -- For an old log neither empty not full, the old content is

 -- preserved, and the new entry added.

 others =>

 Log_Content = Log_Content'Old & E);

Formal Specification and Verification in SPARK

Slide:

automatic formal verification of contract

→ verification of HLR 3

+ automatic formal verification of absence of run-time errors

work in progress, current tool limitation does not allow 100% proof…

Formal Specification and Verification in SPARK

Slide:

Summary of Verification Strategies for HLR 1 - 4

HLR 1: when available, computed velocity should be close to actual velocity

→ simulation in Simulink, same as done by Colin O’Halloran in 2011

HLR 2: computed velocity should be available most of the time

→ BLESS annotation in AADL → observer in Simulink → contract in SPARK

→ formally verified against implementation

HLR 3: a log of all events of the latest five minutes shall be saved

→ contract in SPARK → formally verified against implementation

HLR 4: the graphical user interface shall show …

→ tests

Slide:

Problem: “big-freeze” in certification

Development is frozen after start of certification, due to high cost of manual

certification activities

Solution: automatic management of artifacts dependencies

Demo of the Qualifying Machine

Agile Management of Certification Artifacts

Slide:

Progress on Verification Activities

Slide:

Use of static analysis (CodePeer) and formal verification (SPARK) detected

errors in manually-written contracts...

and one error (!) in the code generator:

Sum_out_1 := Integer_32

 ((NGRotations_out_1) - (Old_NGRotations_out_1));

should be

Sum_out_1 := Integer_32 (NGRotations_out_1) -

 Integer_32 (Old_NGRotations_out_1);

Initial Experiments

Slide:

Initial code generation strategy used many type conversions

→ Hard to analyze automatically

New code generation strategy preserves types

→ Much better automation of proof

Simulink has no concept of bounded integer types

→ Information on ranges is not passed on to generated code

Suitable assertion blocks in Simulink can give this information

→ Possible use in code generator to generate ranges in Ada code

Preserving Integrity from Simulink to SPARK

Slide:

Warnings!

• You may feel a sense of over engineering

– A side effect of showing several tools applied to a simple system

– Real systems REALLY demand the use of several tools

• Tool maturity

– CodePeer is the most mature one

– SPARK 2014 is close to be a used product

– AADL and AADL code generation have been tested in several projects

– GNAT Pro Simulink is being tested on industrial use cases

– QM and GNAT Dashboard are used internally

