

A Complete Solution to the Nose Gear Challenge

Yannick Moy Senior Software Engineer

The Extended Nose Gear Challenge

The Original Nose Gear Challenge

HLR 1: when available, computed velocity should be close to actual velocity

HLR 2: computed velocity should be available most of the time

Best solution so far presented by Colin O'Halloran: from Simulink to SPARK with CLawZ

Other solutions use contract-based specification / verification with SPARK to:

- guarantee absence of run-time errors
- prove that implementation conforms to contract

The Extended Nose Gear Challenge

HLR 1: when available, computed velocity should be close to actual velocity

HLR 2: computed velocity should be available most of the time

HLR 3: a log of all events of the latest five minutes shall be saved

HLR 4: the graphical user interface shall show

- 1. the estimated velocity computed
- 2. a warning message if the velocity is not available
- 3. all events collected

A Solution Focused on Integrity Preservation

Our main goal for the Nose Gear Challenge

6 ways to preserve integrity:

- 1. peer review at different levels (classical approach)
- 2. extensive testing at different levels and compare output (Simulink vs gen. code)
- 3. **qualifiable automatic code generation** (SCADE, GNAT Pro Simulink)
- 4. formalize requirement as source code contracts (Ada 2012, SPARK)
- 5. translate contracts across different levels (Simulink assertion to SPARK contract)
- 6. extract properties at different levels and compare them (CLawZ, Mathworks)

System to Software Integrity Preservation

Languages:

- AADL architecture description language
- Simulink modeling language
- Ada 2012 programming language (with contracts)
- SPARK 2014 subset of Ada for formal verification

Tools:

- Ocarina code generator: $AADL \rightarrow Ada$
- GNAT Pro for Simulink (qualifiable): Simulink \rightarrow Ada
- SPARK formal verification toolset: SPARK \rightarrow proofs
- CodePeer static analyzer: Ada \rightarrow potential errors
- GNAT Pro: Ada \rightarrow executable
- GNAT Dashboard: Ada \rightarrow visualization of certification artifacts
- Qualifying Machine (QM): artifacts \rightarrow agile qualification management

GNAT Dashboard *Certification artifacts quality*

Project/Quality Manager

GNAT Dashboard Certification artifacts quality

Slide:

System-level Specification in AADL

System-level Specification in AADL

thread Velocity Calculation

. . .

assert

```
<<hlr availability: :
```

(((Millisecs + NGClickTime^(-1)) - Timing Properties::Period) <= 3000)

iff estimatedGroundVelocityIsAvailable >>

states

```
s0 : initial state;
```

```
s1 : complete state;
```

transitions

```
s0 -[ ]-> s1 {};
```

```
s1 - [ on dispatch ] -> s1  {
```

```
Velocity_Calculation_Spg(
```

NGRotations, NGClickTime, Millisecs,

estimatedGroundVelocity, estimatedGroundVelocityIsAvailable)

```
<< hlr availability() >>
```

};

end Velocity_Calculation;

HLR formalised as assertions

Formal specification of behaviour (skeleton) plus verification of assertions

Simulink Model (LLR)

Only code currently generated, contract manually translated

In the future: contract generated from Simulink observer

```
procedure nose_gear_comp
(NGRotations : Unsigned_16;
    NGClickTime : Unsigned_16;
    Millisecs : Unsigned_16;
    estimatedGroundVelocity : out Long_Float;
    estimatedGroundVelocityIsAvailable : out Boolean)
with Post =>
    -- @llr Compute
    -- The ground velocity shall be available only if the time difference
    -- between the current calculation and the previous one is less than
    -- 2500.
    (EstimatedGroundVelocityIsAvailable =
        (Millisecs + 500 - Old_NGClickTime_memory <= 3000));</pre>
```

HLR 3: a log of all events of the latest five minutes shall be saved

events scheduled at rate of one every 500 ms \rightarrow 600 events in 5 mn

API of logger should give:

- function to retrieve content of the log Log_Content
- procedure to update content of the log Write_To_Log

Most natural specification cannot be expressed as contract: "Log_Content returns the set of events that have been added to the log by calls to Write_To_Log"

Use contract on Write_To_Log instead

```
procedure Write To Log (E : Log Entry)
-- @llr Write To Log
with Contract Cases =>
       -- The logger component shall be able to accept a new logging message.
       -- For an old empty log, the new content is the new entry alone.
       (Is Empty =>
                Log Content = Singleton Log (E),
       -- For an old full log, the new content is the old one, with the
       -- oldest entry removed, plus the new entry.
       Is Full =>
                Log Content =
                Log Content'Old (Log Content'Old'First + 1 .. Log Content'Old'Last)
                 & Ε,
       -- For an old log neither empty not full, the old content is
       -- preserved, and the new entry added.
       others =>
```

```
Log Content = Log Content'Old & E);
```

automatic formal verification of contract

 \rightarrow verification of HLR 3

+ automatic formal verification of absence of run-time errors

work in progress, current tool limitation does not allow 100% proof...

HLR 1: when available, computed velocity should be close to actual velocity
→ simulation in Simulink, same as done by Colin O'Halloran in 2011

HLR 2: computed velocity should be available most of the time \rightarrow BLESS annotation in AADL \rightarrow observer in Simulink \rightarrow contract in SPARK \rightarrow formally verified against implementation

HLR 3: a log of all events of the latest five minutes shall be saved \rightarrow contract in SPARK \rightarrow formally verified against implementation

HLR 4: the graphical user interface shall show ... \rightarrow tests

Problem: "big-freeze" in certification

Development is frozen after start of certification, due to high cost of manual certification activities

Solution: automatic management of artifacts dependencies

Demo of the Qualifying Machine

Progress on Verification Activities

Use of static analysis (CodePeer) and formal verification (SPARK) detected errors in manually-written contracts...

```
and one error (!) in the code generator:
Sum_out_1 := Integer_32
 ((NGRotations_out_1) - (Old_NGRotations_out_1));
```

should be

Initial code generation strategy used many type conversions

 \rightarrow Hard to analyze automatically

New code generation strategy preserves types

 \rightarrow Much better automation of proof

Simulink has no concept of bounded integer types

 \rightarrow Information on ranges is not passed on to generated code

→ Possible use in code generator to generate ranges in Ada code

Warnings!

- You may feel a sense of over engineering
 - A side effect of showing several tools applied to a simple system
 - Real systems REALLY demand the use of several tools
- Tool maturity
 - CodePeer is the most mature one
 - SPARK 2014 is close to be a used product
 - AADL and AADL code generation have been tested in several projects
 - GNAT Pro Simulink is being tested on industrial use cases
 - QM and GNAT Dashboard are used internally