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Fuzzing
1. Plain fuzzing, with long inputs to trigger seg-faults and find hence find
buffer overflows

2. Protocol fuzzing based on known protocol/ format, fuzzing interesting
fields [eg SNOOZE]

Command APDU
Header (required) Body (optional)

Data

CLA | INS P1 P2 Le Field

Le

3. State-based fuzzing to reach interesting states in the protoco/ state-
machine, and then fuzz there

essentially model-based testing

[eg Peach, jTor]




Example: protocol fuzzing to crash Things

(SMS Transport Layer)
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GSM is a very “rich” protocol
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Fuzzing protocol fields quickly reveals weird behaviour

« using USRP as GSM cell tower

« no SMS-of-death found,
but lots of phones crashing in weird ways




Example: protocol fuzzing for information leakage

+ e-passport implements protocol to prevent "skimming”

« correct protocols runs don't leak info to an eavesdropper

Command APDU
Header (required) Body (optional)

Data

CLA | INS P1 P2 Le Field

Le

«  But fuzzing "incorrect” instructions leaks a fingerprint,
unique per implementation and hence (almost) unique per country

« for Australian, Belgian, Dutch, French, German, Greek, Italian, Polish,
Spanish, Swedish passports



In the other direction:
Instead of using protocol knowledge when testing,
we can also use testing to gain protocol knowledge

or to gain knowledge about protocol implementation

In order

 to analyse your own code and hunt for bugs, or

 to reverse-engineer someone else's unknown protocol,
eg a botnet, to fingerprint or analyse (and attack) it



What to reverse engineer?

Different aspects that can be learned:

* timing/traffic analyis

« protocol formats [eg Discoverer, Dispatcher, Tupni,.... ]
 protocol state-machine [eg LearnLib]

or both protocol format & state-machine [eg Prospex]



How to reverse engineer?

« passive vs active learning

ie passive observing or active testing
* active learning involves a form of fuzzing

« active learning is harder, as it requires more software in test harness
that produces meaningful data

* these approach learns different things;
passive learning uses & produces statistics

« black box vs white box

ie only observing in/output or also looking inside running code

 white-box analysis for eg encypted traffic, by looking at handling of
data after decryption [eg ReFormat, TaintScope]



Passive learning

software system execution traces
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Learning malware models

known botnet unknown botnet
command and control command and control

model
checking

state machine learning




Passive learning

A
" O
o O=Q
OO
positive data: aa, b, bba

negative data: a, aaa, aabb
in a prefix tree
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Passive learning

@—» select two states

@ combine and iterate

positive data: aa, b, bba ©>i:
negative data: a, aaa, aabb ©\b‘
in a prefix tree

0O
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Active learning with Angluin's L* algorithm

Basic idea: compare a deterministic system's response to
c a

- bsa

a ' a '
If response is different, then { b >C{'

otherwise ?
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Active learning with L*

Implemented in LearnLib library

reset
Learner _ Teacher
|
F4 output !
0O @ equivalence:
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yes or a counterexample

Equivalence can only be approximated in a black box setting
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Learning set-up for banking cards

Learner

abstract instructions

and response

instruction
INS

| >
< |

2 byte
status word SW

concrete instructions
and response

Teacher

test
harness

data + SW
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Test harness for EMV

Our test harness implements standard EMV instructions

« SELECT (to select application)

« INTERNAL AUTHENTICATE (for a challenge-response)
« VERIFY (to check the PIN code)

« READ RECORD

« GENERATE AC (fo generate application cryptogram)

LearnLib then tries to learn all possible combinations

*  Most commands with fixed parameters, but some with different options
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Maestro application on Volksbank bank card
raw result
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| GENEMATE AC 2nd
R0
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Maestro application on Volksbank bank card
merging arrows with identical outputs
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Maestro application on Volksbank card
merging all arrows with same start & end state

Other

Selected

ET PROCESSING OPTIONS (valid)

" GPO performed 3 DGET DATA /[ READ RECORD

T PROCESSING OPTIONS (valid) /GENERATE AC / GET PROCESSING OPTIONS

Finished (no DDA)

GET PROCESSING OPTIONS (valid)

INTERNAL AUTHENTICATE SELECT
Other
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SELECT
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Finished (DDA) YO
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Formal models for freel

Experiments with Dutch, German and Swedish banking and credit cards
Learning takes between 9 and 26 minutes

Editing by hand to merge arrows and choose sensible names for states

« could be automated
Limitations

« We do not try to learn response to incorrect PIN as cards would quickly
block...

« We cannot learn about one protocol step which requires knowledge of card's
secret 3DES key

No security problems found, but interesting insight in implementations
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SecureCode application on Rabobank card

Initialisation ). >Other

used for internet banking, hence
entering PIN with VERIFY obligatory

GET DATA (valid) / READ RECORD (valid)

GPO performed 3
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4. VERIFY %

Verify performed 3 SGET DATA (valid) / READ RECORD (valid) / VERIFY

GENERATE AC 1st
AAC

GENERATE AC 1st ARQC
ARQC

ARQC requested

GENERATE AC 2nd TC / AAC
AAC

GENERATE AC 1st TC
TC

GENERATE AC 1st AAC
AAC

] Transaction finished
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understanding & comparing implementations
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Using these state-diagrams

Analysing the models by hand, or with model checker, for flaws

* Yo see if all paths are correct & secure

Fuzzing or model-based testing

* using the diagram as basis for automated fuzz testing
 fuzzing the order and/or the parameters of commands

Program verification

« proving that there is no functionality beyond that in the diagram

Using it when doing a manual code review
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Case study: analysis of internet banking devices

Just in case you think that of course there won't be security flaws in
banking soft/hardware that could be found using these technigues...

We analysed a USB-connected smartcard reader for internet banking
that provides a trusted display for What-You-Sign-Is-What-You-See
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Reverse engineering reveal a major security protocol flaw

This was done manually but could have been found by fuzzing USB

Instructions
[Blom et al., Designed to fail, NORDSEC 2012]
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Conclusions

Fuzzing (model-based testing) and active learning are closely related
State machines are a great specification formalism

* easy to draw on white boards, typically omitted in official specs

and you can extract them for free from implementations
* using very standard, off-the-shelf, tools like LearnLib
Useful for security analysis of protocol implementations

 for reverse engineering, fuzz testing, or formal verification

Future work: learning extended finite state machines with variables
(eg the internal transaction counter in EMV cards)
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Questions?
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