Automated reverse engineering of
security protocols

Learning to fuzz, fuzzing to learn

Fides Aarts Erik Poll

Joeri de Ruiter Sicco Verwer

Radboud University Nijmegen

Fuzzing
1. Plain fuzzing, with long inputs to trigger seg-faults and find hence find
buffer overflows

2. Protocol fuzzing based on known protocol/ format, fuzzing interesting
fields [eg SNOOZE]

Command APDU
Header (required) Body (optional)

Data

CLA | INS P1 P2 Le Field

Le

3. State-based fuzzing to reach interesting states in the protoco/ state-
machine, and then fuzz there

essentially model-based testing

[eg Peach, jTor]

Example: protocol fuzzing to crash Things

(SMS Transport Layer)

I Teleservice Identifier I ose | Beaor: Reply Bearer Data

GSM is a very “rich” protocol

" ComA SMS Delive Report Message lsuss bmit Report Message ™
(SMS Teleservice Layer)

I l\;lessage Identifier | Success TP-Fal "e User Data Language J’ ED ling
A~ ,| | B
i
Short , Supple- Grou Broadcast
Gl Message Lotalion meﬁ?ar Callp Call TP-Failur
CM Control o0 Services 5 S SubmitRe ’ IC 1 | |E o 9| e IF ids |CHARI l” g'
Service Services Control Control e Submi-Repon TPDY g P
(CC) (LCSs) epor Mossage X
MM (sss) | (@cc) | (@co) — // \ \
to SMS-Deliver-Report TPDI - ”."
e .
RR 3)
oo TP-FCS TP-UD
(Failuve-Causa)l I(D la-Co d gS chem)[(U t L gh)l (User-Data) l

Fuzzing protocol fields quickly reveals weird behaviour

« using USRP as GSM cell tower

« no SMS-of-death found,
but lots of phones crashing in weird ways

Example: protocol fuzzing for information leakage

+ e-passport implements protocol to prevent "skimming”

« correct protocols runs don't leak info to an eavesdropper

Command APDU
Header (required) Body (optional)

Data

CLA | INS P1 P2 Le Field

Le

« But fuzzing "incorrect” instructions leaks a fingerprint,
unique per implementation and hence (almost) unique per country

« for Australian, Belgian, Dutch, French, German, Greek, Italian, Polish,
Spanish, Swedish passports

In the other direction:
Instead of using protocol knowledge when testing,
we can also use testing to gain protocol knowledge

or to gain knowledge about protocol implementation

In order

 to analyse your own code and hunt for bugs, or

 to reverse-engineer someone else's unknown protocol,
eg a botnet, to fingerprint or analyse (and attack) it

What to reverse engineer?

Different aspects that can be learned:

* timing/traffic analyis

« protocol formats [eg Discoverer, Dispatcher, Tupni,....]
 protocol state-machine [eg LearnLib]

or both protocol format & state-machine [eg Prospex]

How to reverse engineer?

« passive vs active learning

ie passive observing or active testing
* active learning involves a form of fuzzing

« active learning is harder, as it requires more software in test harness
that produces meaningful data

* these approach learns different things;
passive learning uses & produces statistics

« black box vs white box

ie only observing in/output or also looking inside running code

 white-box analysis for eg encypted traffic, by looking at handling of
data after decryption [eg ReFormat, TaintScope]

Passive learning

software system execution traces

ABEEEED..
ABDCDCD.. @ ees S software
BBBDGHA... [.t | medel

system call or BBDDDEH ... | oate machine skl

communication logs learning et

eg (tfimed) state machine

Learning malware models

known botnet unknown botnet
command and control command and control

model
checking

state machine learning

Passive learning

A
" O
o O=Q
OO
positive data: aa, b, bba

negative data: a, aaa, aabb
in a prefix tree

10

Passive learning

@—» select two states

@ combine and iterate

positive data: aa, b, bba ©>i:
negative data: a, aaa, aabb ©\b‘
in a prefix tree

0O

11

Active learning with Angluin's L* algorithm

Basic idea: compare a deterministic system's response to
c a

- bsa

a ' a '
If response is different, then { b >C{'

otherwise ?

12

Active learning with L*

Implemented in LearnLib library

reset
Learner _ Teacher
|
F4 output !
0O @ equivalence:
%2)b M=H?
a - | >

< |

yes or a counterexample

Equivalence can only be approximated in a black box setting

13

Learning set-up for banking cards

Learner

abstract instructions

and response

instruction
INS

| >
< |

2 byte
status word SW

concrete instructions
and response

Teacher

test
harness

data + SW

14

Test harness for EMV

Our test harness implements standard EMV instructions

« SELECT (to select application)

« INTERNAL AUTHENTICATE (for a challenge-response)
« VERIFY (to check the PIN code)

« READ RECORD

« GENERATE AC (fo generate application cryptogram)

LearnLib then tries to learn all possible combinations

* Most commands with fixed parameters, but some with different options

15

Maestro application on Volksbank bank card
raw result

;

e —

i1
\

i Mg W

{ i g | i 6 e 4 i

st

!

TN

| | | I"I
| Tl Hﬁ!;miﬂ'ﬁ.' LR e g S TR
| I |

Wvie B\ s 0 b

el 8|Sl 0 | e 4

16

| GENEMATE AC 2nd
R0

L

Maestro application on Volksbank bank card
merging arrows with identical outputs

——

GENERATE AC Lt TC/ ARQC
000 ARQC

[NTERNAL AUTHENTICATS READ REEGRU (imiah3| GET DATA {inyaPs) GET DATA (valid] | READ RECTRD {vali]
Ags 0o \
|

A80C reuested e —

000 ARC

INTERKAL AUTHENTICATE

9000

9000

/

|

i " MLN.ITH&TIEA READ RECCRD invat) GET DATA (ineadh GET DATA [vaid) READ RECORD (vaid)
6&81 bt ||

383

ﬁ!ﬂ! 5985

‘/I;I;al_s;;\ GET DATA | GET PROCESSING BP"I'I[.‘HSl,uaIu:I'MDRE GENERA ’“E‘PF.O‘DESSIHG DFTICHS (i IIiTEM#.UTHEH'I'ICHE

ST

9000
(sebtes (GENERATE AT GET PROCESSING DPTHONS (invatd READ ILECIID invakg) GET DATA (invahe NTERNAL AUTHE GETDATA (vali) | READ RECORD (valid| { SELECT
W GA86 J@/ 9000

I."GEF PROCESSING DPTIONS {vakd) 1SELECT

L} | a0
FHB RECGRD (Wit GET DAT (invalif GET DATA (vatd) / READ RECORD (vald] \SELECT
o P‘”“”““ sasa 3100 k!

|I GENERATE AC 2nd’, EE’ PROCESSING OFTIONS (vaid} \GENERATE AC Ist | GET PROCESSING oPTioKS |
e [905 |

ik GET DATA (vai) | READ RECORD (vl

AN
00

.tmmssmﬁ CRTIONS 2l \|
| Ll /I

NTERNAL AUTHENTICATE

GENERATE AC 1¢t AC \'ul[iET PROCESSING OFTONS |
4000

/

GET DATA [valid] READ RECORD (vt

GENERATE AC Ind TC", GENERATE AC Jnd ARC EENEH.T‘EILEIS‘.TCIM.IGETPRDCESSIhGIJPﬂﬂHS EEI‘IEMEﬁ.CMQCl.
L owome | £ 085 Vs

90007

00

SELECT
5000

17

Maestro application on Volksbank card
merging all arrows with same start & end state

Other

Selected

ET PROCESSING OPTIONS (valid)

" GPO performed 3 DGET DATA /[READ RECORD

T PROCESSING OPTIONS (valid) /GENERATE AC / GET PROCESSING OPTIONS

Finished (no DDA)

GET PROCESSING OPTIONS (valid)

INTERNAL AUTHENTICATE SELECT
Other

Cootpetomed T3

ET DATA / INTERNAL AUTHENTICATE / READ RECORD

SELECT

GENERATE AC 1st TC / ARQC
ARQC

INTERNAL AUTHENTICATE | GENERATE AC 2nd / GET PROCESSING OPTIONS GENER“TE:‘CC 1st AAC

ARQC requested) HGET DATA /INTERNAL AUTHENTICATE / READ RECORD

GENERATE AC 2nd TC /GENERATE AC 2nd AAC

Finished (DDA) YO

18

Formal models for freel

Experiments with Dutch, German and Swedish banking and credit cards
Learning takes between 9 and 26 minutes

Editing by hand to merge arrows and choose sensible names for states

« could be automated
Limitations

« We do not try to learn response to incorrect PIN as cards would quickly
block...

« We cannot learn about one protocol step which requires knowledge of card's
secret 3DES key

No security problems found, but interesting insight in implementations

19

SecureCode application on Rabobank card

Initialisation). >Other

used for internet banking, hence
entering PIN with VERIFY obligatory

GET DATA (valid) / READ RECORD (valid)

GPO performed 3

EEEENg,
" -

4. VERIFY %

Verify performed 3 SGET DATA (valid) / READ RECORD (valid) / VERIFY

GENERATE AC 1st
AAC

GENERATE AC 1st ARQC
ARQC

ARQC requested

GENERATE AC 2nd TC / AAC
AAC

GENERATE AC 1st TC
TC

GENERATE AC 1st AAC
AAC

] Transaction finished

20

understanding & comparing implementations

e e
_ —_—

|SELECT

= =
/semcte_n)cugg_______ .

;ﬂ:aﬂm e DAETONH GO SeiET \ npo perk)rmed :I_;{.,FT DATA (valid) / READ RECORD (valid) / VERIFY |Other

,’:ﬁisﬂl' 0FTONS /GENERATE AL | GET PR [em;:.:\ﬁm TERNAL ALTHENTIC A"E '\\;El:r- |other INTERNAL AUTHENTICATE /
™ 1 A \ \ GENERATE AC 15(TC / ARQC - e
[7 Frihetioo 004 \Mns /}Fn mm, INTERNAL AUTHENTICATE | READ REC JJ UDA nenormeud_’j‘_‘)c.ﬂ DATA (valid) / READ RECORD (valld} | VERIFY

{ —ov—/ e I
' \ / |I reufnme Af_ ist .m: ENEMTE n(, }sr TC/AROC |
\ \ F— | \
|, GET PROCESSING OFTIONS fvald) ', ' TN GENERNTEAC 15 TCIARGE | \ |

\ \ \'\ GENERATE A0 13 A8C N _(/_AROC leaues(ecl ‘\ |GENER‘“T::CC 1st AAC
A | GENERATE AL 2o GET PROCESSING OFTIONG | ™ s e uﬂj};&? DATA | INTESNAL AUTHENTICATE | READ RECCSD — /
*, , \ . i . | .
\ i . \ = / GENERATE AC 2nd TC / AAC —
N 5 S ﬁm,\ i[a A0 TC [RENERATE AC Ind AAC AAC / —

e P B = I S = g e

-___::“::a_____ ‘\‘.—f/ _C Transaction finished _)
Fi N.‘] — —

Volksbank Maestro Rabobank Maestro
implementation implementation

Are both implementations correct & secure? And compatible?

— ,ﬁ\ Sa e————
(Other /GET PROCESSING GPTIONS (valid) e
| "\\\

21

Using these state-diagrams

Analysing the models by hand, or with model checker, for flaws

* Yo see if all paths are correct & secure

Fuzzing or model-based testing

* using the diagram as basis for automated fuzz testing
 fuzzing the order and/or the parameters of commands

Program verification

« proving that there is no functionality beyond that in the diagram

Using it when doing a manual code review

22

Case study: analysis of internet banking devices

Just in case you think that of course there won't be security flaws in
banking soft/hardware that could be found using these technigues...

We analysed a USB-connected smartcard reader for internet banking
that provides a trusted display for What-You-Sign-Is-What-You-See

& g o
\ - — L Ty
3
, -? k VR 1‘. -
L o PN 4
N M
-

T

PV
m B AT ey
s - ‘N ni

Reverse engineering reveal a major security protocol flaw

This was done manually but could have been found by fuzzing USB

Instructions
[Blom et al., Designed to fail, NORDSEC 2012]

23

Conclusions

Fuzzing (model-based testing) and active learning are closely related
State machines are a great specification formalism

* easy to draw on white boards, typically omitted in official specs

and you can extract them for free from implementations
* using very standard, off-the-shelf, tools like LearnLib
Useful for security analysis of protocol implementations

 for reverse engineering, fuzz testing, or formal verification

Future work: learning extended finite state machines with variables
(eg the internal transaction counter in EMV cards)

24

Questions?

25

