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What is verification by theorem proving

I Use of a theorem prover to aid verification.
Here’s an arbitrary selection of applications:

parts of processors (e.g. pipelines, floating point units),
whole processors, crypto hardware, security protocols,
synchronization protocols, distributed algorithms, synthesis,
system properties (e.g. separation), compilers, code transformation,
high level code, machine code, proof carrying code,
meta-theorems about property/hardware/software/design languages,
flight control systems, railway signalling, . . .

I Broad interpretation of theorem proving includes most FV methods
Verification task Theorem proving technique Theorems proved

boolean equivalence propositional algorithms (BDD, SAT etc) `(B1 = B2)

model checking fixpoint calculation, automata algorithms etc `(M |= P)

assertion checking decision procedures, first-order methods `f

proof of correctness induction, heuristic search, interactive proof `F
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Direct versus embedded theorem proving

I Theorem prover can be used directly

. . . . . . . . . . . . . . or embedded in a tool

USER FORMULATES PROBLEMS
    IN FORMAL LOGIC

USER INTERFACE

THEOREM
PROVER

 VERIFICATION TOOL WITH OWN
PROBLEM DESCRIPTION LANGUAGE

API

THEOREM
PROVER
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Direct and embedded theorem proving

I Direct proving mainly for heroic proofs

• substantial user guidance needed

• e.g. processor proofs, verification of floating point algorithms

• e.g. non verification proofs: Gödel’s theorem, consistency of AC

I Embedded proving common for verification

• can invoke automatic ‘proof engines’

• hides formal logic stuff

• slot into standard design/verification flows
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Direct theorem proving

I Need to formulate problems in logic

• can code in ‘raw logic’
• or embed an application-specific notation

I Issue: how powerful should the logic be

• simple logics support more automation
• powerful logics support better specification and embedding

I Need to drive the theorem prover to create proof

• requires training, but not deep knowledge of formal logic
• performing proof requires insight into problem

I Issue: design of user interface

• fancy GUIs are good for beginners, but get in the way for experts
• good for humans not necessarily good as API for tools
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Recent quote from an EDA tool user group (ESNUG)

I don’t know why tool vendors like GUIs so much.
They are fine for a novice user but impossible for real work.
There is just no way to script a GUI tool for regressions.
The later releases had much improved support for the command line
interface.
[http://www.deepchip.com/items/0414-05.html]

I This is not about theorem proving . . . . . . . . . . . . . . . . . .but maybe it applies?
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Choice of logic

I Specifications need both discrete and continuous mathematics

• verification of floating point algorithms need real analysis
• verification of probabilistic algorithms need measure theory

I Set theory is the standard foundation (F.O.L. + ZF axioms)

I First-order logic plus recursive datatypes seems the minimum

I Many provers support some kind of higher-order logic

• because of types and support for functional programming

I Issue: should there be a standard logic?

• lots of choices:
∗ first order versus higher-order
∗ classical versus constructive
∗ typed versus untyped
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Choice of logic and embedded proving

I Switching proof methodology harder than switching language

• can learn a new logic in a day

• needs a month to learn to effectively drive a major theorem prover

I Maybe choice of logic not really an issue

• need EDA tool builders to drive any standard

• maybe next year an Accellera Theorem Proving Technical Committee!

I Embedding prover in a verification tool hides logic from users

• but not from tool developers

• tool developers are usually familiar with logic and semantics
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Choice of theorem prover interaction method (1)

I Orthogonal choices:
• top-down (backward or goal-directed) versus bottom-up (forward)

top-down (backward or goal-directed) versus bottom-up (forward)

• declarative versus imperative

I Top-down

• also known as “backward” or “goal-directed” proof
• split goal-to-be-proved into subgoals
• split subgoals into sub-subgoals
• proceed until subgoals are decidable

I Bottom-up

• also known as “forward proof”
• start from axioms
• combine using rules of inference
• eventually deduce goal to be proved
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Choice of theorem prover interaction method (2)

I Orthogonal choices:
• top-down (backward or goal-directed) versus bottom-up (forward)
• declarative versus imperative

declarative versus imperative

I Declarative: give a sequence lemmas or subgoals leading to conclusion
• for top-down, something like:

Goal follows if goal-1 which follows if goal-2 · · · which follows if goal-n which is trivial

• for bottom-up, something like:
Lemma-1 hence Lemma-2 hence · · · hence Theorem

• pioneered by Mizar proof checker; like textbook proofs; readable
• good for checking proofs, less good for finding them

I Imperative: write a proof-generating program in a ‘tactic language’
• something like:

apply induction then simplify and invoke resolution

• typically unreadable prover-specific instructions
• good for finding proofs and for programming verification algorithms
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Choice of theorem prover interaction method (summary)

I Top-down versus bottom-up

• top-down better for direct proof
• bottom-up good for ‘fine grain’ proof scripts (cf. machine code)
• LCF-like systems synthesise forward proofs via backward scripts

I Mature proof assistants support both directions

I Declarative versus imperative

• imperative:
∗ better for finding proofs (can invoke proof search engines)
∗ provides better API for embedded proof

• declarative:
∗ more natural for checking textbook like proofs
∗ but rather verbose and ‘COBOL like’

I Mature proof assistants support both declarative and imperative styles
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A common verification scenario

THEOREMS DEBUG DATA

VERIFICATION PROBLEMS

POSSIBLE
USER
INTERACTION

POSSIBLE
USER
INTERACTION

PRE-PROCESSOR

THEOREM
PROVER

I Input verification problem

I Generate proof problem

I Solve with theorem prover

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I Ideally no user interaction

I Pre-processor may need extra input
(e.g. pragmas, annotations)

I Prover may need lots of help
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Example 1

THEOREMS UNPROVED VCs

{precondition}
 CODE
{postcondition}

THEORING
PROVING
EXPERT

ANNOTATE
WITH
INVARIANTSVERIFICATION

CONDITION
GENERATOR

THEOREM
PROVER

I Input code + pre and post conditions

I Compute VCs

• user adds annotations
• then VCs generated automatically

I VCs fed to a theorem prover

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I Classical program verification
• Gypsy
• Stanford Pascal Verifier

I Extended static checking (ESC)

I Maybe basis for deeper ABV?
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I Classical program verification
• Gypsy
• Stanford Pascal Verifier

I Extended static checking (ESC)

I Maybe basis for deeper ABV?
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Example 2

THEOREMS COUNTEREXAMPLES

SPECIFICATION AND 
 IMPLEMENTATION
  OF A MACHINE

THEOREM
PROVING
EXPERT

THEOREM
PROVING
EXPERTSYMBOLIC

SIMULATION

THEOREM
PROVER

I Input machines
• specification transition function
• implementation transition function

I Simulate to matching states

I Prove equivalence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I Year long processor verifications
• ACL2, HOL, PVS
• symbolic simulation by proof

I Automatic pipeline verification
• e.g. Burch and Dill
• symbolic simulation not by proof
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Methodology issues

: Extreme 1————— Extreme 2

THEOREMS DEBUG DATA

VERIFICATION PROBLEMS

POSSIBLE
USER
INTERACTION

POSSIBLE
USER
INTERACTION

PRE-PROCESSOR

THEOREM
PROVER

I What problem description language?

• problem-specific language————————————
• problem represented in a logic

I How is pre-processing implemented?

• pre-processing is YACC———————————
• pre-processing is rewriting

I What kind of theorem prover?

• problem-specific algorithm————————————-
• general purpose prover

I How are bits glued together?

• glue is scripting in C, Perl etc.—————————————-
• glue is formal proof
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Issues

. . . . . . . . . . . . . . . . Extreme 1 . . . . . . . . . . . . . . . . Extreme 2

I Extreme 1

• efficient, scary

I Extreme 2

• inefficient, reassuring

I Spectrum:

↑ ↑
Extreme1 Extreme2

I What problem description language?

1. ad-hoc problem language
2. problem represented in a logic

I Is pre-processing formal?

1. pre-processing is YACC
2. pre-processing is formal proof

I What kind of theorem prover?

1. problem-specific algorithm
2. general purpose prover

I How are bits glued together?

1. glue is scripting: C, Perl etc.
2. glue is formal proof
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Programming the spectrum of provers

I Need both efficiency and soundness

• balance depends on application

↑ ↑

I Would like IDE to help manage programming across spectrum

• IDE: Integrated Development Environment
• provides proof engine components
• and ways of linking them
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Proof engines one might want to combine

I Little engines of proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (cf. Shankar, FLoC’02)

• automatic

∗ propositional solvers (SAT)
∗ decision procedures, model checkers (arithmetic, LTL, CTL, M2L)

I Medium engines of proof

• mainly automatic, lightweight user guidance

∗ model checkers with lightweight proof (SMV, Forte)
∗ first-order provers (SVC/CVC, EVC, Gandalf, Otter, SPASS, INKA, Vampire)

I Big engines of proof

• user guided, but may have automatic tools (smaller engines)

∗ specific applications (LAMBDA, STeP)
∗ general (PVS, Isabelle, HOL, ProofPower, Acl2, Nuprl, OMEGA, Eves, IMPS, Coq)
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Combining ‘engines of proof’

I Middleware exists for connecting tools

• Prosper, MathWeb Software Bus, XML

• rather heavy, still experimental

I However , big engines of proof have evolved to be proof IDEs

• support efficient execution

• have scripting language
∗ usually based on Lisp or ML

• can invoke smaller engines of proof as components
∗ model checkers, SAT provers etc.

• can do fine grain programming of sequences of inference steps
∗ maybe using efficient representations (e.g. BDD operations)
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MathWeb (http://www.mathweb.org/mathweb/demo.html)
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Theorem prover as tool implementation platform

I Not a new idea:
• 1973. Kowalski & Hayes, Colmerauer: logic programming
• 1998. CAV 98: Hardin/Wilding/Greve:

“Transforming the Theorem Prover into a Digital Design Tool”

I Current big theorem provers are result of 30 years of evolution

I Issue: link engines via middleware or invoke them from a proof IDE?

I My opinions

• middleware experiments (e.g. Prosper) have raised issues
∗ efficient data exchange, controlling (starting/stopping engines)

• proof engines need good APIs

• CORBA type solution too heavy

• theorem prover as IDE is manageable . . . . . . . . . . . and available now!
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Debugging versus correctness

I Formal verification can be viewed as debugging

• fits into standard verification flow
∗ FV can start from states produced by simulation
∗ gets hard-to-find bugs

• but how does one know when to stop debugging?

I Ultimate goal is proof of correctness

• provides much stronger assurance that everything is covered
∗ coverage assurance only as good as the specification

• widely thought to be impractical
∗ that was 1990s, is practical now . . . . . . . . . . . . . . . . . . though expensive
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Opinions are divided: recent quotes found on the web

I Find bugs, not proofs

Proofs have low value. Counter-examples have very high value.
Counter-example technologies have seen tremendous advances over last few years.
Proof technologies have not made much progress. . . . . . . . . . . . . . . . . . . . . . . . . . . . false!
Design teams that try a revolutionary path (e.g., “proving correctness”) will miss
their next tapeouts and be out of business (or out of jobs).
[http://www.0-in.com/papers/DAC02Pr.PDF]

I Real value is assurance that there are no bugs

... senior staff engineer at XXXX, said formal verification has two possible
applications finding bugs in RTL code, and gaining assurance of zero bugs prior to
tapeout. “What we’ve found at XXXX, although we do find bugs, is that the real
value of formal verification is the assurance,” ...
[http://www.eedesign.com/story/OEG20030606S0017]
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[http://www.0-in.com/papers/DAC02Pr.PDF]

I Real value is assurance that there are no bugs

... senior staff engineer at XXXX, said formal verification has two possible
applications finding bugs in RTL code, and gaining assurance of zero bugs prior to
tapeout. “What we’ve found at XXXX, although we do find bugs, is that the real
value of formal verification is the assurance,” ...
[http://www.eedesign.com/story/OEG20030606S0017]
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My opinions

I Counter-example technologies are a stepping stone

Rational people resist change as long as they can get the job done
using current methods.
[http://www.0-in.com/papers/DAC02Pr.PDF]

I Finding bugs has immediate value, but proof can deliver much more

• gets foot in the door for full formal specification
• need more traditional/formal combinations . . . . . . . . . . more feet in door

I Full correctness assurance is possible now, and the cost is falling!

• theorem proving methods getting better and better
• computers faster and cheaper, so deep proof search more practical
• components need specifications and correct implementations
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Could there be a market for ‘Proof IP’

I Already exists design IP and property IP

• e.g. ARM designs and AMBA golden properties

I What about high level specification and proof IP?

• design IP needs multilevel specifications (RTL, behavioral)

• specifications are more valuable if correct
∗ sell validated component specifications
• design tweaks need verification tweeks
∗ sell bespoke proof scripts to validate tweaks

I Could also produce custom theorem proving environments

• synthesise processor & hardware/software FV tools from specification

• generate bespoke ESL/co-design theorem proving environments
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Quote from the web – Proof IP?

PRODUCT OVERVIEW

XXXX: Conquers Toughest Verification Challenges with 100% Formal Proof...
XXXX Pre-Built Proof Kits are available for a long list of industry standard
interfaces. Pre-Built Proof Kits contain all the necessary spec-level
requirements to prove interface compliance, delivering immediate benefits to
users. ...
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Conclusions

. . . . . . . . . . . . . . . . . Long Live Theorem Proving!

I Issues

• declarative versus imperative; forward versus backward
• efficiency versus coherence (CORBA vs. proof IDE)
• plethora of logics
• user-interface versus API
• counter-examples versus proof of correctness

I Challenges

• getting theorem proving into real verification flows
∗ Intel, AMD can do it; tough for small companies
∗ proof engine deployment platform: ProofStudio.net
• advance state-of-the-art
∗ better integrate first order reasoning, equality & decision procedures
∗ go beyond first order automation
• keep up demonstrator projects
∗ hard to motivate as ‘proof of concept’ established
∗ need more cost/benefit stories
• make a market for specification and proof IP THE END
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Emergency slides for if I finish too early!

I

Some applications and spinoff from theorem proving research

I

Quotes from the web
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Two applications of theorem proving research

I Tenison VTOCTM

• new commercial product
• not FV, but exploits ideas from semantics and theorem proving

I Processing semantics of Accellera PSL/Sugar property language

• current research at Cambridge
• use a theorem prover to generate verification tools

I Features of these examples

• use ideas or tools from theorem proving
• generate tools for standard verification (simulation)

I Opinion

• need more wacky blue sky research, AI etc.
• essential investment for long term innovation
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Example of spinoff from theorem proving research

I Tenison EDA story (www.tenison.com)

RTL Verilog or VHDL

VTOCTM

Cycle-accurate C++/SystemC

I Programmed in theorem prover language ML

I Based on executing denotational semantics

I Generates very efficient simulation models

I Moral

• ‘blue sky’ research can have unexpected applications
• a cliché, but still worth repeating
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Generating tools for PSL

. . . . . . . . . Gordon, Hurd, Slind, CHARME 2003

Official semantics of PSL

    HOL 4
THEOREM PROVER

I Input ‘golden’ semantics from LRM

I Generate tools by proof

I Generated tools work by proof

TOOL1: evaluate LTL properties on a specific path

TOOL2: compile properties to HDL checkers (idea from FoCs)

TOOL3: check CTL properties against a model (Amjad’s PhD)
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From the web

With re-spin costs of $1 Million or more, and time-to-market a driving
concern, how can you be sure that your design is 100% Bug-Free?
XXXXTM provides 100% Formal Proof that your design matches
Spec-Level Design Requirements ensuring that your design will be
right the first time.

I Reminds me of Viper !
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More quotes from the web

. . . a bug which costs $1 to fix on the programmer’s desktop costs
$100 to fix once it is incorporated into a complete program, and many
thousands of dollars if it is identified only after the software has been
deployed in the field.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

However, though formal-methods research may have failed to deliver
on the promises of the 1960s, it has still produced a collection of
useful techniques. A number of firms are now creating software tools
that can allow such techniques to be applied more widely by
programmers who are not versed in such formal methods.

The trick is to integrate them into the software systems, called
integrated development environments, that are used to create and
manage code.

[http://www.economist.com/science/tq/displayStory.cfm?story_id=1841081]
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THE END

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . really!
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