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Abstract
This technical report describes CHERI ISAv7, the seventh version of the Capability Hardware
Enhanced RISC Instructions (CHERI) Instruction-Set Architecture (ISA) being developed by
SRI International and the University of Cambridge. This design captures nine years of research,
development, experimentation, refinement, formal analysis, and validation through hardware
and software implementation. CHERI ISAv7 is a substantial enhancement to prior ISA ver-
sions. We differentiate an architecture-neutral protection model vs. architecture-specific in-
stantiations in 64-bit MIPS, 64-bit RISC-V, and x86-64. We have defined a new CHERI
Concentrate compression model. CHERI-RISC-V is more substantially elaborated. A new
compartment-ID register assists in resisting microarchitectural side-channel attacks. Experi-
mental features include linear capabilities, capability coloring, temporal memory safety, and
64-bit capabilities for 32-bit architectures.

CHERI is a hybrid capability-system architecture that adds new capability-system primi-
tives to commodity 64-bit RISC ISAs, enabling software to efficiently implement fine-grained
memory protection and scalable software compartmentalization. Design goals include incre-
mental adoptability within current ISAs and software stacks, low performance overhead for
memory protection, significant performance improvements for software compartmentalization,
formal grounding, and programmer-friendly underpinnings. We have focused on providing
strong, non-probabilistic, efficient architectural foundations for the principles of least privilege
and intentional use in the execution of software at multiple levels of abstraction, preventing and
mitigating vulnerabilities.

The CHERI system architecture purposefully addresses known performance and robust-
ness gaps in commodity ISAs that hinder the adoption of more secure programming models
centered around the principle of least privilege. To this end, CHERI blends traditional paged
virtual memory with an in-address-space capability model that includes capability registers,
capability instructions, and tagged memory. CHERI builds on the C-language fat-pointer lit-
erature: its capabilities can describe fine-grained regions of memory, and can be substituted
for data or code pointers in generated code, protecting data and also improving control-flow
robustness. Strong capability integrity and monotonicity properties allow the CHERI model to
express a variety of protection properties, from enforcing valid C-language pointer provenance
and bounds checking to implementing the isolation and controlled communication structures
required for software compartmentalization.

CHERI’s hybrid capability-system approach, inspired by the Capsicum security model, al-
lows incremental adoption of capability-oriented design: software implementations that are
more robust and resilient can be deployed where they are most needed, while leaving less criti-
cal software largely unmodified, but nevertheless suitably constrained to be incapable of having
adverse effects. Potential deployment scenarios include low-level software Trusted Computing
Bases (TCBs) such as separation kernels, hypervisors, and operating-system kernels, as well as
userspace TCBs such as language runtimes and web browsers. We also see potential early-use
scenarios around particularly high-risk software libraries (such as data compression, protocol
parsing, and image processing), which are concentrations of both complex and historically
vulnerability-prone code exposed to untrustworthy data sources, while leaving containing ap-
plications unchanged.
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Chapter 1

Introduction

CHERI (Capability Hardware Enhanced RISC Instructions) extends commodity RISC Instruct-
ion-Set Architectures (ISAs) with new capability-based primitives that improve software ro-
bustness to security vulnerabilities. The CHERI model is motivated by the principle of least
privilege, which argues that greater security can be obtained by minimizing the privileges ac-
cessible to running software. A second guiding principle is the principle of intentional use,
which argues that, where many privileges are available to a piece of software, the privilege to
use should be explicitly named rather than implicitly selected. While CHERI does not prevent
the expression of vulnerable software designs, it provides strong vulnerability mitigation: at-
tackers have a more limited vocabulary for attacks, and should a vulnerability be successfully
exploited, they gain fewer rights, and have reduced access to further attack surfaces. CHERI
allows software privilege to be minimized at two granularities:

Fine-grained code protection CHERI provides support for fine-grain protection and inten-
tional use through in-address-space memory capabilities, which replace integer virtual-
address representations of code and data pointers. The aim here is to minimize the rights
available to be exercised on an instruction-by-instruction basis, limiting the scope of
damage from inevitable software bugs. CHERI capabilities protect the integrity and valid
provenance of pointers themselves, as well as allowing fine-grained protection of the in-
memory data and code that pointers refer to. These protection policies can, to a large
extent, be based on information already present in program descriptions – e.g., from C-
language types, memory allocators, and run-time linking. This application of least privi-
lege and intentional use provides strong protection against a broad range of memory- and
pointer-based vulnerabilities and exploit techniques – buffer overflows, format-string at-
tacks, pointer injection, data-pointer-corruption attacks, control-flow attacks, and so on.
Many of these goals can be achieved through code recompilation on CHERI.

Secure encapsulation At a coarser granularity, CHERI also supports secure encapsulation
and intentional use through the robust and efficient implementation of highly scalable
in-address-space software compartmentalization using object capabilities. The aim here
is to minimize the set of rights available to larger isolated software components, building
on efficient architectural support for strong software encapsulation. These protections are
grounded in explicit descriptions of isolation and communication provided by software
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authors, such as through explicit software sandboxing. This application of least privilege
and intentional use provides strong mitigation of application-level vulnerabilities, such as
logical errors, downloaded malicious code, or software Trojans inserted in the software
supply chain.

Effective software compartmentalization depends on explicit software structure, and can
require significant code change. Where compartmentalization already exists in soft-
ware, CHERI can be used to significantly improve compartmentalization performance
and granularity. Where that structure is not yet present, CHERI can improve the adoption
path for compartmantalization due to supporting in-address-space compartmentalization
models.

CHERI is designed to support incremental adoption within current security-critical, C-
language Trusted Computing Bases (TCBs): operating-system (OS) kernels, key system li-
braries and services, language runtimes supporting higher-level type-safe languages, and appli-
cations such as web browsers and office suites. While CHERI builds on many historic ideas
about capability systems (see Chapter 11), one of the key contributions of this work is CHERI’s
hybrid capability-system architecture. In this context, hybrid refers to combining aspects from
conventional architectures, system software, and language/compiler choices with capability-
oriented design. Key forms of hybridization in the CHERI design include:

A RISC capability system A capability-system model is blended with a conventional RISC
user-mode architecture without disrupting the majority of key RISC design choices.

An MMU-enabled capability system A capability-system model is cleanly and usefully com-
posed with conventional ring-based privilege and virtual memory based on MMUs (Mem-
ory Management Units).

A C-language capability system CHERI can be targeted by a C/C++-language compiler with
strong compatibility, performance, and protection properties.

Hybrid system software CHERI supports a range of OS models including conventional MMU-
based virtual-memory designs, hybridized designs that host capability-based software
within multiple virtual address spaces, and pure single-address-space capability systems.

Incremental adoptability Within pieces of software, capability-aware design can be disre-
garded, partially adopted, or fully adopted with useful and predictable semantics. This
allows incremental adoption within large software bases, from OS kernels to application
programs.

We hope that these hybrid aspects of the design will support gradual deployment of CHERI
features in existing software, rather than obliging a clean-slate software design, thereby offering
a more gentle hardware-software adoption path.

In the remainder of this chapter, we describe our high-level design goals for CHERI, the
notion that CHERI is an architecture-neutral protection model with architecture-specific map-
pings (such as CHERI-MIPS and CHERI-RISC-V), an introduction to the CHERI-MIPS con-
crete instantiation, a brief version history, an outline of the remainder of this report, and our
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publications to date on CHERI. A more detailed discussion of our research methodology, in-
cluding motivations, threat model, and evolving approach from ISA-centered prototyping to a
broader architecture-neutral protection model may be found in Chapter 10. Historical context
and related work for CHERI may be found in Chapter 11. The Glossary at the end of the re-
port contains stand-alone definitions of many key ideas and terms, and may be useful reference
material when reading the report.

1.1 CHERI Design Goals
CHERI has three central design goals aimed at dramatically improving the security of con-
temporary C-language TCBs, through processor support for fine-grained memory protection
and scalable software compartmentalization, whose (at times) conflicting requirements have
required careful negotiation in our design:

Fine-grained memory protection improves software resilience to escalation paths that allow
low-level software bugs involving individual data structures and data-structure manipu-
lations to be coerced into more powerful software vulnerabilities; e.g., through remote
code injection via buffer overflows, control-flow and data-pointer corruption, and other
memory-based techniques. Unlike MMU-based memory protection, CHERI memory
protection is intended to be driven by the compiler in protecting programmer-described
data structures and references, rather than via coarse page-granularity protections. CHERI
capabilities limit how pointers can be used by scoping the ranges of memory (via bounds)
and operations that can be performed (via permissions). They also protect the integrity,
provenance, and monotonicity of pointers in order to prevent inadvertent or inappropriate
manipulation that might otherwise lead to privilege escalation.

Memory capabilities may be used to implement data pointers (protecting against a variety
of data-oriented vulnerabilities such as overflowing buffers) and also to implement code
pointers (supporting the implementation of control-flow integrity by preventing corrupted
code pointers and return addresses from being used). Fine-grained protection also pro-
vides the foundation for expressing compartmentalization within application instances.
We draw on, and extend, ideas from recent work in C-language software bounds checking
by combining fat pointers with capabilities, allowing capabilities to be substituted for C
pointers with only limited changes to program semantics.

CHERI permits efficient implementation of dialects of C and C++ in which various in-
valid accesses, deemed to be undefined behavior in those languages, and potentially
giving arbitrary behavior in their implementations, are instead guaranteed to throw an
exception.

Software compartmentalization involves the decomposition of software (at present, primar-
ily application software) into isolated components to mitigate the effects of security
vulnerabilities by applying sound principles of security, such as abstraction, encapsu-
lation, type safety, and especially least privilege and the minimization of what must be
trustworthy (and therefore sensibly trusted!). Previously, it seems that the adoption of
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compartmentalization has been limited by a conflation of hardware primitives for virtual
addressing and separation, leading to inherent performance and programmability prob-
lems when implementing fine-grained separation. Specifically, we seek to decouple the
virtualization from separation to avoid scalability problems imposed by MMUs based
on translation look-aside buffers (TLBs), which impose a very high performance penalty
as the number of protection domains increases, as well as complicating the writing of
compartmentalized software.

A viable transition path must be applicable to current software and hardware designs. CHERI
hardware must be able to run most current software without significant modification, and
allow incremental deployment of security improvements starting with the most critical
software components: the TCB foundations on which the remainder of the system rests,
and software with the greatest exposure to risk. CHERI’s features must significantly im-
prove security, to create demand for upstream processor manufacturers from their down-
stream mobile and embedded device vendors. These CHERI features must at the same
time conform to vendor expectations for performance, power use, and compatibility to
compete with less secure alternatives.

We draw on formal methodologies wherever feasible, to improve our confidence in the
design and implementation of CHERI. This use is necessarily subject to real-world constraints
of timeline, budget, design process, and prototyping, but it has helped increase our confidence
that CHERI meets our functional and security requirements. Formal methods can also help to
avoid many of the characteristic design flaws that are common in both hardware and software.
This desire requires us not only to perform research into CPU and software design, but also to
develop new formal methodologies, and adaptations and extensions of existing ones.

We are concerned with satisfying the need for trustworthy systems and networks, where
trustworthiness is a multidimensional measure of how well a system or other entity satisfies its
various requirements – such as those for security, system integrity, and reliability, as well as
human safety, and total-system survivability, robustness, and resilience, notably in the presence
of a wide range of adversities such as hardware failures, software flaws, malware, accidental
and intentional misuse, and so on. Our approach to trustworthiness encompasses hardware and
software architecture, dynamic and static evaluation, formal and non-formal analyses, good
software-engineering practices, and much more.

1.2 Architecture Neutrality and Architectural Instantiations

CHERI consists of an architectural-neutral protection model, and a set of instantiations of that
model across multiple ISAs. Our initial mapping into the 64-bit MIPS ISA has allowed us to
develop the CHERI approach; we have now expanded to include a more elaborated mapping
into the 64-bit RISC-V ISA, and a sketch mapping into the x86-64 ISA. In doing so, we have
attempted to maximize the degree to which specification is architecture neutral, and minimize
the degree to which it is architecture specific. Even within a single ISA, there are multiple
potential instantiations of the CHERI protection model, which offer different design tradeoffs
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– for example, decisions about whether to have separate integer and capability register files or
to merge them into a single register file.

The successful mapping into multiple ISAs has led us to believe that the CHERI protec-
tion model is a portable protection model, that support portable software stacks in much the
same way that portable virtual-memory-based operating systems can be implemented across
a variety of architectural MMUs. Unlike MMUs, whose software interactions are primarily
with the operating system, CHERI interacts directly with compiler-generated code, key system
libraries, compartmentalization libraries, and applications; across all of these, we have found
that an architecture-neutral approach can be highly effective, offering portability to the vast
majority of CHERI-aware C/C++ code. We first consider the architecture-neutral model, and
then applications of our approach in specific ISAs.

1.2.1 The Architecture-Neutral CHERI Protection Model

The aim of the CHERI protection model, as embodied in both the software stack (see Chap-
ter 2) and architecture (see Chapter 3), is to support two vulnerability mitigation objectives:
first, fine-grained pointer and memory protection within address spaces, and second, primitives
to support both scalable and programmer-friendly compartmentalization within address spaces.
The CHERI model is designed to support low-level TCBs, typically implemented in C or a C-
like language, in workstations, servers, mobile devices, and embedded devices. In contrast
to MMU-based protection, this is done by protecting references to code and data (pointers),
rather than the location of code and data (virtual addresses). This is accomplished via an in-
address-space capability-system model: the architecture provides a new primitive, the capabil-
ity, that software components (such as the OS, compiler, run-time linker, compartmentalization
runtime, heap allocator, etc.) can use to implement strongly protected pointers within virtual
address spaces.

In the security literature, capabilities are tokens of authority that are unforgeable and dele-
gatable. CHERI capabilities are integer virtual addresses that have been extended with meta-
data to protect their integrity, limit how they are manipulated, and control their use. This meta-
data includes a tag implementing strong integrity protection (differentiating valid and invalid
capabilities), bounds limiting the range of addresses that may be dereferenced, permissions
controlling the specific operations that may be performed, and also sealing, used to support
higher-level software encapsulation. Protection properties for capabilities include the ISA en-
suring that capabilities are always derived via valid manipulations of other capabilities (prove-
nance), that corrupted in-memory capabilities cannot be dereferenced (integrity), and that rights
associated with capabilities are non-increasing (monotonicity).

CHERI capabilities may be held in registers or in memories, and are loaded, stored, and
dereferenced using CHERI-aware instructions that expect capability operands rather than in-
teger virtual addresses. On hardware reset, initial capabilities are made available to software
via special and general-purpose capability registers. All other capabilities will be derived from
these initial valid capabilities through valid capability transformations.

In order to continue to support non-CHERI-aware code, dereference of integer virtual ad-
dresses via legacy instruction is transparently indirected via a default data capability (DDC)
for loads and stores, or a program-counter capability (PCC) for instruction fetch.
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A variety of programming-language and code-generation models can be used with a CHERI-
extended ISA. As integer virtual addresses continue to be supported, C or C++ compilers might
choose to always implement pointers via integers, selectively implement certain pointers as
capabilities based on annotations or type information (i.e., a hybrid C interpretation), or al-
ternatively always implement pointers as capabilities except where explicitly annotated (i.e.,
a pure-capability interpretation). Programming languages may also employ capabilities inter-
nal to their implementation: for example, to protect return addresses, vtable pointers, and other
virtual addresses for which capability protection can provide enhanced vulnerability mitigation.

When capabilities are being used to implement pointers (e.g., to code or data) or internal
addresses (e.g., for return addresses), they must be constructed with suitably restricted rights,
to accomplish effective protection. This is a run-time operation performed using explicit in-
structions (e.g., to set bounds, mask permissions, or seal capabilities) by the operating system,
run-time linker, language runtime and libraries, and application code itself:

The operating-system kernel may narrow bounds and permissions on pointers provided as
part of the start-up environment when executing a program binary (e.g., to arguments
or environmental variables), or when returning pointers from system calls (e.g., to new
memory mappings).

The run-time linker may narrow bounds and permissions when setting up code pointers or
pointers to global variables.

The system library may narrow bounds and permissions when returning a pointer to newly
allocated heap memory.

The compartmentalization runtime may narrow bounds and permissions, as well as seal ca-
pabilities, enforcing compartment isolation (e.g., to act as sandboxes).

The compiler may insert instructions to narrow bounds and permissions when generating code
to take a pointer to a stack allocation, or when taking a pointer to a field of a larger
structure allocated as a global, on the stack, or on the heap.

The language runtime may narrow bounds and permissions when returning pointers to newly
allocated objects, or when setting up internal linkage, as well as seal capabilities to non-
dereferenceable types.

The application may request changes to permissions, bounds, and other properties on point-
ers, in order to further subset memory allocations and control their use.

The CHERI model can also be used to implement other higher-level protection properties.
For example, tags on capabilities in memory can be used to support accurate C/C++-language
temporal safety via revocation or garbage collection, and sealed capabilities can be used to en-
force language-level encapsulation and type-checking features. The CHERI protection model
and its implications for software security are described in detail in Chapter 2.

CHERI is an architecture-neutral protection model in that, like virtual memory, it can be
deployed within multiple ISAs. In developing CHERI, we initially considered it as a con-
crete extension to the 64-bit MIPS ISA; using it, we could explore the implications downwards
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into the microarchitecture, and upwards into the software stack. Having developed a mature
hardware-software protection model, we used this as the baseline in deriving an architecture-
neutral CHERI protection model. This architecture-neutral model is discussed in detail in
Chapter 3. We have demonstrated the possibility of adding CHERI protection to more than one
base ISA by providing a detailed concrete instantiation for the 64-bit MIPS ISA (Chapter 4),
a draft instantiation in the RISC-V ISA (Chapter 5), and a lightweight architectural sketch for
the x86-64 ISA (Chapter 6).

1.2.2 An Architecture-Specific Mapping into 64-bit MIPS

The CHERI-MIPS ISA (see Chapter 4) is an instantiation of the CHERI protection model as an
extension to the 64-bit MIPS ISA [50]. CHERI adds the following features to the MIPS ISA1

to support granular memory protection and compartmentalization within address spaces:

Capability registers describe the rights (protection domain) of the executing thread to access
memory, and to invoke object references to transition between protection domains. We
model these registers as a separate capability register file, supplementing the general-
purpose integer register file.

Capability registers contain a tag, object type, permission mask, base, length, and offset
(allowing the description of not just a bounded region, but also a pointer into that region,
improving C-language compatibility). Capability registers are suitable for describing
both data and code, and can hence protect both data integrity/confidentiality and control
flow. Certain registers are reserved for use in exception handling; all others are available
to be managed by the compiler using the same techniques used with conventional regis-
ters. Over time, we imagine that software will increasingly use capabilities rather than
integers to describe data and object references.

Another potential integration into the ISA (which would maintain the same CHERI pro-
tection semantics) would be to extend the existing general-purpose integer registers so
that they could also hold capabilities. This might reduce the hardware resources required
to implement CHERI support. However, we selected our current approach to maintain
consistency with the MIPS ISA extension model (in which coprocessors have indepen-
dent register files), and to minimize Application Binary Interface (ABI) disruption on
boundaries between legacy and CHERI-aware code for the purposes of rapid architec-
tural and software iteration. We explore the potential space of mappings from the CHERI
model into the ISA in greater detail in Section 3.10.1, as well as in Chapters 5 and 6 where
we consider alternative mappings into non-MIPS ISAs.

Capability instructions allow executing code to create, constrain (e.g., by reducing bounds
or permissions), manage, and inspect capability register values. Both unsealed (memory)
and sealed (object) capabilities can be loaded and stored via memory capability registers

1Formally, CHERI instructions are added to MIPS as a MIPS coprocessor – a reservation of opcode space in-
tended for third-party use. Despite the suggestive term “coprocessor”, CHERI support will typically be integrated
tightly into the processor pipeline, memory subsystem, and so on. We therefore eschew use of the term.
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(i.e., dereferencing). Object capabilities can be invoked, via special instructions, allow-
ing a transition between protection domains, but are immutable and non-dereferenceable,
providing encapsulation of the code or data that they refer to. Capability instructions im-
plement guarded manipulation: invalid capability manipulations (e.g., to increase rights
or length) and invalid capability dereferences (e.g., to access outside of a bounds-checked
region) result in an exception that can be handled by the supervisor or language runtime.
A key aspect of the instruction-set design is intentional use of capabilities: explicit ca-
pability registers, rather than ambient authority, are used to indicate exactly which rights
should be exercised, to limit the damage that can be caused by exploiting bugs. Tradeoffs
exist around intentional use, and in some cases compatibility or opcode utilization may
dictate implicit capability selection; for example, legacy MIPS load and store instructions
implicitly dereference a Default Data Capability as they are unable to explicitly name a
capability register. Most capability instructions are part of the user-mode ISA, rather
than the privileged ISA, and will be generated by the compiler to describe application
data structures and protection properties.

Tagged memory associates a 1-bit tag with each capability-aligned and capability-sized word
in physical memory, which allows capabilities to be safely loaded and stored in memory
without loss of integrity. Writes to capability values in memory that do not originate from
a valid capability in the capability register file will clear the tag bit associated with that
memory, preventing accidental (or malicious) dereferencing of invalid capabilities.

This functionality expands a thread’s effective protection domain to include the transitive
closure of capability values that can be loaded via capabilities via those present in its
register file. For example, a capability register representing a C pointer to a data struc-
ture can be used to load further capabilities from that structure, referring to further data
structures, which could not be accessed without suitable capabilities.

Non-bypassable tagging of unforgeable capabilities enables not only reliable and secure
enforcement of capability properties, but also reliable and secure identification of capa-
bilities in memory for the purposes of implementing other higher-level protection prop-
erties such as temporal safety.

In keeping with the RISC philosophy, CHERI instructions are intended for use primarily
by the operating system and compiler rather than directly by the programmer, and consist of
relatively simple instructions that avoid (for example) combining memory access and register
value manipulation in a single instruction. In our current software prototypes, there are di-
rect mappings from programmer-visible C-language pointers to capabilities in much the same
way that conventional code generation translates pointers into general-purpose integer register
values; this allows CHERI to continuously enforce bounds checking, pointer integrity, and so
on. There is likewise a strong synergy between the capability-system model, which espouses
a separation of policy and mechanism, and RISC: CHERI’s features make possible the imple-
mentation of a wide variety of OS, compiler, and application-originated policies on a common
protection substrate that optimizes fast paths through hardware support.

Our prototype of this approach, instantiating our ideas about CHERI capability access to a
specific instruction set (the 64-bit MIPS ISA) has necessarily led to a set of congruent imple-
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mentation decisions about register-file size, selection of specific instructions, exception han-
dling, memory alignment requirements, and so on, that reflect that starting-point ISA. These
decisions might be made differently with another starting-point ISA as they are simply sur-
face features of the underlying approach; we anticipate that adaptations to ISAs such as ARM,
RISC-V, and x86-64 would adopt instruction-encoding conventions, and so on, more in keeping
with their specific flavor and design (see Chapters 5 and 6).

Other design decisions reflect the goal of creating a platform for prototyping and exploring
the design space itself; among other choices, this includes the initial selection of 256-bit capa-
bilities, giving us greater flexibility to experiment with various bounds-checking and capability
behaviors. However, a 256-bit capability introduces potentially substantial cache overhead for
pointer-intensive applications – so we have also developed a “compressed” 128-bit in-memory
representation. This approach exploits redundancy between the virtual address represented by
a capability and its lower and upper bounds – but necessarily limits granularity, leading to
stronger alignment requirements.

In our CHERI-MIPS prototype implementation of the CHERI model, capability support
is tightly coupled with the existing processor pipeline: instructions propagate values between
general-purpose integer registers and capability registers; capabilities transform interpretation
of virtual addresses generated by capability-unaware instructions including by transforming the
program counter; capability instructions perform direct memory stores and loads both to and
from general-purpose integer registers and capability registers; and capability-related behaviors
deliver exceptions to the main pipeline. By virtue of having selected the MIPS-centric design
choice of exposing capabilities as a separate set of registers, we maintain a separate capability
register file as an independent hardware unit – in a manner comparable to vector or floating-
point units in current processor designs. The impacts of this integration include additional
control logic due to maintaining a separate register file, and a potentially greater occupation of
opcode space, whereas combining register files might permit existing instructions to be reused
(with care) across integer and capability operations.

Wherever possible, CHERI systems make use of existing hardware designs: processor
pipelines and register files, cache memory, system buses, commodity DRAM, and commodity
peripheral devices such as NICs and display cards. We are currently focusing on enforcement
of CHERI security properties on applications running on a general-purpose processor; in future
work, we hope to consider the effects of implementing CHERI in peripheral processors, such
as those found in Network Interface Cards (NICs) or Graphical Processing Units (GPUs).

1.2.3 Architectural Neutrality: CHERI-RISC-V and CHERI-x86-64

We believe that the higher-level memory protection and security models we describe encom-
pass not only a number of different potential expressions within a single ISA (e.g., whether to
have separate capability registers or to extend general-purpose integer registers to also option-
ally hold capabilities), but also be applied to other RISC (and CISC) ISAs. This should allow
reasonable source-level software portability (leaving aside language runtime and OS assembly
code, and compiler code generation) across the CHERI model implemented in different archi-
tectures – in much the same way that conventional OS and application C code, as well as APIs
for virtual memory, are moderately portable across underlying ISAs.
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We have therefore developed two further mappings of the CHERI protection model into
specific ISAs: CHERI-RISC-V (Chapter 5) and CHERI-x86-64 (Chapter 6). CHERI-RISC-V
is a draft architecture that we are in the process of defining and implementing: RISC-V derives
many of it foundational design choices from MIPS, with some more contemporary architectural
choices such as hardware page-table walking, and the adaptation to CHERI is very similar. In
some areas, we have chosen to leave open specific aspects of the design, learning from our
work on CHERI-MIPS, to allow evaluation of performance tradeoffs – e.g., as relates to using
a split or merged capability register file. CHERI-x86-64 is an architectural sketch that we have
developed to better understand how the CHERI model might apply to more CISC instruction
sets. Despite substantive underlying differences between x86-64 and MIPS, we find that many
aspects of our approach carry through. We do not yet have implementation aims for CHERI-
x86-64, although we hope to explore this further in the future.

1.3 Deterministic Protection
CHERI has been designed to provide strong, non-probabilistic protection rather than depending
on short random numbers or truncated cryptographic hashes that can be leaked and reinjected,
or that could be brute forced. Essential to this approach is using out-of-band memory tags
that prevent confusion between data and capabilities. Software stacks can use these features to
construct higher-level protection properties, such as preventing the transmission of pointers via
Inter-Process Communication (IPC) or network communications. They are also an essential
foundation to strong compartmentalization, which assumes a local adversary.

1.4 Formal Modeling and Provable Protection
The design process for CHERI has used formal semantic models as an important tool in various
ways. Our goal here has been to understand how we can support the CHERI design and en-
gineering process with judicious use of mathematically rigorous methods, both in lightweight
ways (providing engineering and assurance benefits without the costs of full formal verifica-
tion), and using machine-checked proof to establish high confidence that the architecture design
provides specific security properties.

The basis for all this has been use of formal specifications of the ISA instruction behavior
as a fundamental design tool, initially for CHERI-MIPS in L3 [37], and now for CHERI-MIPS
and CHERI-RISC-V in Sail [8]. L3 and Sail are domain-specific languages specifically de-
signed for expressing instruction behavior, encoding data, etc. Simply moving from the infor-
mal pseudocode commonly used to describe instruction behavior to parsed and type-checked
artifacts already helps maintain clear specifications. The CHERI-MIPS instruction descriptions
in Chapter 7 are automatically included from the Sail model, keeping documentation and model
in sync.

Both L3 and Sail support automatic generation of executable models (variously in SML,
OCaml, or C) from these specifications. These executable models have been invaluable, both
as golden models for testing our hardware prototypes, and as emulators for testing CHERI soft-
ware above. The fact that they are automatically generated from the specifications again helps
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keep things in sync, enabling regression testing on any change to the specification, and makes
for easy experimentation with design alternatives. The generated emulators run fast enough
to boot FreeBSD in a few minutes (booting cheribsd currently takes around 250s, roughly
320kips).

We have also used the models to automatically generate ISA test cases, both via simple
random instruction generation, and using theorem-prover and SMT approaches [16].

Finally, the models support formal verification, with mechanised proof, of key architec-
tural security properties. L3 and Sail support automatic generation of versions of the models
in the definition languages of (variously) the HOL4, Isabelle, and Coq theorem provers, which
we have used as a basis for proofs. Key architectural verification goals including proving not
just low-level properties, such as the monotonicity of each individual instruction and proper-
ties of the CHERI Concentrate compression scheme, but also higher-level goals such as com-
partment monotonicity, in which arbitrary code sequences isolated within a compartment are
unable to construct additional rights beyond those reachable either directly via the register file
or indirectly via loadable capabilities. We have proven a number of such properties about the
CHERI-MIPS ISA, to be documented in future papers and reports.

The CHERI design process has also benefitted from an interplay with our work on rigorous
semantics for C [79, 78].

1.5 CHERI ISA Version History
A complete version history, including detailed notes on instruction-set changes, can be found
in Appendix A. A short summary of key ISA versions is presented here:

CHERI ISAv1 - 1.0–1.4 - 2010–2012 Early versions of the CHERI ISA explored the integra-
tion of capability registers and tagged memory – first in isolation from, and later in com-
position with, MMU-based virtual memory. CHERI-MIPS instructions were targeted
only by an extended assembler, with an initial microkernel (“Deimos”) able to create
compartments on bare metal, isolating small programs from one another. Key early de-
sign choices included:

• to compose with the virtual-memory mechanism by being an in-address-space pro-
tection feature, supporting complete MMU-based OSes,

• to use capabilities to implement code and data pointers for C-language TCBs, pro-
viding reference-oriented, fine-grained memory protection and control-flow integrity,

• to impose capability-oriented monotonic non-increase on pointers to prevent privi-
lege escalation,

• to target capabilities with the compiler using explicit capability instructions (includ-
ing load, store, and jumping/branching),

• to derive bounds on capabilities from existing code and data-structure properties,
OS policy, and the heap and stack allocators,

• to have both in-register and in-memory capability storage,
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• to use a separate capability register file (to be consistent with the MIPS coprocessor
extension model),

• to employ tagged memory to preserve capability integrity and provenance outside
of capability registers,

• to enforce monotonicity through constrained manipulation instructions,

• to provide software-defined (sealed) capabilities including a “sealed” bit, user-defined
permissions, and object types,

• to support legacy integer pointers via a Default Data Capability (DDC),

• to extend the program counter (PC) to be the Program-Counter Capability (PCC),

• to support not just fine-grained memory protection, but also higher-level protection
models such as software compartmentalization or language-based encapsulation.

CHERI ISAv2 - 1.5 - August 2012 This version of the CHERI ISA developed a number of
aspects of capabilities to better support C-language semantics, such as introducing tags
on capability registers to support capability-oblivious memory copying, as well as im-
provements to support MMU-based operating systems.

UCAM-CL-TR-850 - 1.9 - June 2014 This technical report accompanied publication of our
ISCA 2014 paper on CHERI memory protection. Changes from CHERI ISAv2 were sig-
nificant, supporting a complete conventional OS (CheriBSD) and compiler suite (CHERI
Clang/LLVM), a defined CCall/CReturn mechanism for software-defined object capabili-
ties, capability-based load-linked/store-conditional instructions to support multi-threaded
software, exception-handling improvements such as a CP2 cause register, new instruc-
tions CToPtr and CFromPtr to improve compiler efficiency for hybrid compilation, and
changes relating to object capabilities, such as user-defined permission bits and instruc-
tions to check permissions/types.

CHERI ISAv3 - 1.10 - September 2014 CHERI ISAv3 further converges C-language point-
ers and capabilities, improves exception-handling behavior, and continues to mature sup-
port for object capabilities. A key change is shifting from C-language pointers being rep-
resented by the base of a capability to having an independent “offset” (implemented as a
“cursor”) so that monotonicity is imposed only on bounds, and not on the pointer itself.
Pointers are allowed to move outside of their defined bounds, but can be dereferenced
only within them. There is also a new instruction for C-language pointer comparison
(CPtrCmp), and a NULL capability has been defined as having an in-memory representa-
tion of all zeroes without a tag, ensuring that BSS (pre-zeroed memory) operates without
change. The offset behavior is also propagated into code capabilities, changing the be-
havior of PCC, EPCC, CJR, CJALR, and several aspects of exception handling. The sealed
bit was moved out of the permission mask to be a stand-alone bit in the capability, and we
went from independent CSealCode and CSealData instructions to a single CSeal instruc-
tion, and the CSetType instruction has been removed. While the object type originates as
a virtual address in an authorizing capability, that interpretation is not mandatory due to
use of a separate hardware-defined permission for sealing.
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UCAM-CL-TR-864 - 1.11 - January 2015 This technical report refines CHERI ISAv3’s con-
vergence of C-language pointers and capabilities; for example, it adds a CIncOffset

instruction that avoids read-modify-write accesses to adjust the offset field, as well as
exception-handling improvements. TLB permission bits relating to capabilities now
have modified semantics: if the load-capability bit is not present, than capability tags
are stripped on capability loads from a page, whereas capability stores trigger an excep-
tion, reflecting the practical semantics found most useful in our CheriBSD prototype.

CHERI ISAv4 / UCAM-CL-TR-876 - 1.15 - November 2015 This technical report describes
CHERI ISAv4, introducing concepts required to support 128-bit compressed capabilities.
A new CSetBounds instruction is added, allowing adjustments to both lower and upper
bounds to be simultaneously exposed to the hardware, providing more information when
making compression choices. Various instruction definitions were updated for the poten-
tial for imprecision in bounds. New chapters were added on the protection model, and
how CHERI features compose to provide stronger overall protection for secure software.
Fast register-clearing instructions are added to accelerate domain switches. A full set of
capability-based load-linked, store-conditional instructions are added, to better support
multi-threaded pure-capability programs.

CHERI ISAv5 / UCAM-CL-TR-891 - 1.18 - June 2016 CHERI ISAv5 primarily serves to in-
troduce the CHERI-128 compressed capability model, which supersedes prior candidate
models. A new instruction, CGetPCCSetOffset, allows jump targets to be more efficiently
calculated relative to the current PCC. The previous multiple privileged capability per-
missions authorizing access to exception-handling state has been reduced down to a sin-
gle system privilege to reduce bit consumption in capabilities, but also to recognize their
effective non-independence. In order to reduce code-generation overhead, immediates to
capability-relative loads and stores are now scaled.

CHERI ISAv6 / UCAM-CL-TR-907 - 1.20 - April 2017 CHERI ISAv6 introduces support for
kernel-mode compartmentalization, jump-based rather than exception-based domain tran-
sition, architecture-abstracted and efficient tag restoration, and more efficient generated
code. A new chapter addresses potential applications of the CHERI protection model to
the RISC-V and x86-64 ISAs, previously described relative only to the 64-bit MIPS ISA.
CHERI ISAv6 better explains our design rationale and research methodology.

CHERI ISAv7 / UCAM-CL-TR-927 - 7.0 - June 2019 CHERI ISAv7 differentiates an arch-
itecture-neutral CHERI protection model vs. its architecture-specific instantiations in 64-
bit MIPS, 64-bit RISC-V, and x86-64. A new capability compression scheme, CHERI
Concentrate, is defined, and the previous scheme, CHERI-128, is deprecated. CHERI-
MIPS now supports special-purpose capability registers, which have been moved out of
the numbered general-purpose capability register space. New special-purpose capability
registers, including those for thread-local storage, have been defined. CHERI-RISC-V
is more substantially elaborated. A new compartment-ID register assists in resisting mi-
croarchitectural side-channel attacks. New optimized instructions with immediate fields
improve the performance of generated code. Experimental 64-bit capabilities have been
defined for 32-bit architectures, as well as instructions to accelerate spatial and temporal
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memory safety. The opcode reencoding begun in prior CHERI ISA specification versions
has now been completed.

1.5.1 Changes in CHERI ISA 7.0-ALPHA1
This release of the CHERI Instruction-Set Architecture is an interim version intended for sub-
mission to DARPA/AFRL to meet the requirements of CTSRD deliverable A001:

• The CHERI ISA specification version numbering scheme has changed to include the
target major version in the draft version number.

• A significant refactoring of early chapters in the report has taken place: there is now
a more clear distinction between architecture-neutral aspects of CHERI, and those that
are architecture specific. The CHERI-MIPS ISA is now its own chapter distinct from
architecture-neutral material. We have aimed to maximize architecture-neutral content
– e.g., capability semantics and contents, in-memory representation, compression, etc.
– using the architecture-specific chapters to address only architecture-specific aspects
of the mapping of CHERI into the specific architecture – e.g., as relates to register-file
integration, exception handling, and the Memory Management Unit (MMU). In some
areas, content must be split between architecture-neutral and architecture-specific chap-
ters, such as behavior on reset, handling of the System_Access_Registers permission
and its role in controlling architecture-specific behavior, and the integration of CHERI
with virtual memory, where the goals are largely architecture neutral but mechanism is
architecture specific.

• There are now dedicated chapters for each of our applications of CHERI to each of three
ISAs: 64-bit MIPS (Chapter 4), 64-bit RISC-V (Chapter 5), and x86-64 (Chapter 6).

• Our CHERI-RISC-V prototype has been substantially elaborated, and now includes an
experimental encoding in Appendix C. We have somewhat further elaborated our x86-64
model, including addressing topics such as new page-table bits for CHERI, including
a hardware-managed capability dirty bit. We also consider potential implications for
RISC-V compressed instructions.

• We have completed an opcode renumbering for CHERI-MIPS. The “proposed new en-
coding” from CHERI ISAv6 has now become the established encodings; the prior encod-
ings are now documented as “deprecated encodings”.

• Substantial improvements have been made to descriptive text around memory protection,
with the concept of “pointer protection” – i.e., as implemented via tags – more clearly
differentiated from memory protection.

• We now more clearly describe how terms like “lower bound” and “upper bound” relate
to the base, offset, and length fields.

• We now more clearly differentiate language-level capability semantics from capability
use in code generation and the ABI, considering pure-capability and hybrid C as distinct
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from pure-capability and hybrid code generation. We explain that different language-
level integer interpretations of capabilities are supportable by the architecture, depending
on compiler code-generation choices.

• Potential software policies for revocation, garbage collection, and capability flow control
based on CHERI primitives are described in greater detail.

• Monotonicity is more clearly described, as are the explicit opportunities for non-mono-
tonicity around exception handling and CCall Selector 1. Handling of disallowed requests
for non-monotonicity or bypass of guarded manipulation by software is more explicitly
discussed, including the opportunities for both exception throwing and tag stripping to
maintain CHERI’s invariants.

• Further notes have been added regarding the in-memory representation of capabilities,
including the storage of NULL capabilities, virtual addresses for non-NULL capabilities,
and how to store integer values in untagged capability registers. These values now appear
in the bottom 64 bits of the in-memory representation. Topics such as endianness are also
considered.

• NULL capabilities are now defined as having a base of 0x0, the maximum length sup-
ported in a particular representation (264 for 128-bit capabilities, and 264 − 1 for 256-bit
capabilities), and no granted permissions. NULL capabilities continue to have an all
zeros in-memory representation. This allows integers to be stored in the offset of an
untagged capability without concern that they may hold values that are unrepresentable
with respect to capability bounds.

• New instructions CReadHwr and CWriteHwr have been added. These have allowed us to
migrate special capability registers (SCRs) out of the general-purpose capability register
file, including DDC, the new user TLS register (CULR), the new privileged TLS register
(CPLR), KR1C, KR2C, KCC, KDC, and EPCC. Access to privileged special registers
continues to be authorized by the Access_System_Registers permission on PCC.

• With this migration, C0 is now available to use as a NULL capability register, which is
more consistent with the baseline MIPS ISA in which R0 is the zero register. The only
exception to this is in capability-relative load and store instructions, and the CTestSubset

instruction, in which an operand of C0 specifies that DDC should be used.

• Various instruction pseudo-ops to access special registers, such as CGetDefault, now ex-
pand to special capability register access instructions instead of capability move instruc-
tions.

• With consideration of merged rather than split integer and capability register files for
RISC-V and x86-64, and a separation between general-purpose capability registers and
special capability registers (SCRs) on 64-bit MIPS, we avoid describing the integer reg-
ister file as the “general-purpose register file”. We describe a number of tradeoffs around
ISA design relating to using a split vs. merged register file; avoiding the use of specific
capability registers as special registers assists in supporting both register-file approaches.
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• The CPU reset state of various capability registers is now more clearly defined. Most
capability registers are initialized to NULL on reset, with the exception of DDC, PCC,
KCC, and EPCC. These defaults authorize initial access to memory for the boot process,
and are designed to allow CHERI-unaware code to operate oblivious to the capability-
system feature set.

• We more clearly describe design choices around failure-mode choices, including throw-
ing exceptions and clearing tag bits. Here, concerns in conclude stylistic consistency
with the host architecture, potential use cases, and interactions with the compiler and
operating system.

• In general, we now refer to software-defined permissions rather than user-defined per-
missions, as these permissions without an architectural interpretation may be used in any
ring.

• Permission numbering has been rationalized so that 128-bit and 256-bit microarchitec-
tural permission numbers consistently start at 15.

• The existing permission Permit_Seal, which authorized sealing and explicit unsealing of
sealed capabilities, has now been broken out into two separate permissions: Permit_Seal,
which authorizes sealing, and Permit_Unseal, which authorizes explicit unsealing. This
will allow privilege to be reduced where unsealing is desirable (e.g., within object imple-
mentations, or in C++ vtable use) by not requiring that permission to seal for the object
type is also granted.

• The ISA quick reference has been updated to reflect new instructions, as well as to more
correctly reflect endianness.

• We have added a reference to a new technical report, Capability Hardware Enhanced
RISC Instructions (CHERI): Notes on the Meltdown and Spectre Attacks [147], which
considers the potential interactions between CHERI and the recently announced Spectre
and Meltdown microarchitectural side-channel attacks. CHERI offers substantial poten-
tial to assist in mitigating aspects of these attacks, as long as the microarchitecture per-
forms required capability checks before performing any speculative memory accesses.

• We have added two new instructions, Get the architectural Compartment ID (CGetCID)
and Set the architectural Compartment ID (CSetCID), which allow information on com-
partments to be passed to via architecture to microarchitecture in order to support mitiga-
tion of side-channel attacks. This could be used to tag branch-predictor entries to control
the compartments in which they can be used, for example. A new Permit_Set_CID per-
mission allows capabilities to delegate use of ranges of CIDs.

• Bugs have been fixed in the definitions of capability-relative load and store instruc-
tions: permission checks involving the Permit_Load, Permit_Load_Cap, Permit_Store,
and Permit_Store_Cap permissions were not properly updated from our shift from an un-
tagged capability register file to a tagged register file. All loads now require Permit_Load.
If Permit_Load_Cap is also present, then tags will not be stripped when loading into a
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capability register. All stores now require Permit_Store. If Permit_Store_Cap is also
present, then storing a tagged capability will not generate an exception.

• New Capability Set Bounds From Immediate (CSetBoundsImm) and Capability Increment
Offset From Immediate (CIncOffsetImm) instructions have been added. These instruc-
tions optimize global-variable setup and stack allocations by reducing the number of
instructions and registers required to adjust pointer values and set bounds.

• New Capability Branch if Not NULL (CBNZ) and Capability Branch if NULL (CBEZ) in-
structions have been added, which optimize pointer comparisons to NULL.

• A new Capability to Address (CGetAddr) instruction allows the direct retrieval of a capa-
bility’s virtual address, rather than requiring the base and offset to be separately retrieved
and added together. This facilitates efficient implementation of a CHERI C variant in
which all casts of capabilities to integers have virtual-address rather than offset inter-
pretation. A capability’s virtual address is now more directly defined when we specify
capability fields.

• We more clearly describe CCall Selector 1 as “exception-free domain transition” rather
than “userspace domain transition”, as it is also intended to be used in more privileged
rings.

• We have shifted to more consistently throwing an exception at jump instructions (e.g.,
CJR) that go out of bounds, rather than throwing the exception when fetching the first
instruction at the target address. This provides more debugging information when using
compressed capabilities, as otherwise EPCC might have unrepresentable bounds in the
event that the jump target is outside of the representable region.

• The exception vectors use during failures of Selector 0 and Selector 1 CCall have been
clarified. The general-purpose exception vector is used for all failure modes with CCall

Selector 1.

• New experimental instruction Test that Capability is a Subset of Another (CTestSubset)
has been added. This instruction is intended to be used by garbage collectors that need
to rapidly test whether a capability points into the range of another capability.

• A new experimental 64-bit capability format for 32-bit virtual addresses has been added
(Section D.7).

• A description of an experimental linear capability model has been added (Section D.10).
This model introduces the concept that a capability may be linear – i.e., that it can only be
moved rather copied in memory-to-register, register-to-register, and register-to-memory
operations. This introduces two new instructions, Linear Load Capability Register (LLCR)
and Linear Store Capability Register (LSCR). This functionality has not yet been fully
specified.
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• An experimental appendix considers possible implementations of indirect capabilities,
in which a capability value points at an actual capability to utilize, allowing table-based
capability lookups (Section D.11).

• An experimental appendix considering potential forms of compression for capability per-
missions has been added (Section D.8).

• We have added a reference to our ICCD 2017 paper, Efficient Tagged Memory, which
describes how to efficiently implement tagged memory in memory subsystems not sup-
porting inline tags directly in DRAM [54].

1.5.2 Changes in CHERI ISA 7.0-ALPHA2

This version of the CHERI Instruction-Set Architecture is an interim version distributed for
review by DARPA and our collaborators:

• We have removed the range check from the CToPtr specification, as this has proven mi-
croarchitecturally challenging. We anticipate that current consumers requiring this range
check can use the new CTestSubset instruction alongside CToPtr.

• Use of a branch-delay slot with CCall Selector 1 has been removed.

• With the addition of CReadHwr and CWriteHwr and shifting of special capability registers
out of the general-purpose capability register file, we have now removed the check for the
Access_System_Registers permission for all registers in the general-purpose capability
register file.

• A new CCheckTag instruction is added, which throws an exception if the tag is not set on
the operand capability. This instruction could be used by a compiler to shift capability-
related exception behavior from invalid dereference to calculation of an invalid capability
via a non-exception-throwing manipulation.

• We have added a new CLCBI instruction that allows capability-relative loads of capabilities
to be performed using a substantially larger immediate (but without a general-purpose
integer-register operand). This substantially accelerates performance in the presence of
CHERI-aware linkage by avoiding multi-instruction sequences to load capabilities for
global variables.

• We have added new discussion relating to microarchitectural side channels such as Spec-
tre and Meltdown (Section 2.5).

• We have added a reference to our ASPLOS 2019 paper, CheriABI: Enforcing Valid
Pointer Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environ-
ment, which describes how to adapt a full MMU-based OS design to support ubiquitous
use of capabilities to implement C and C++ pointers in userspace [28].
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• We have added a reference to our POPL 2019 paper, ISA Semantics for ARMv8-A, RISC-
V, and CHERI-MIPS, which describes a formal modeling approach for instruction-set
architectures, as well as a formal model of the CHERI-MIPS ISA [8].

• We have added a reference to our POPL 2019 paper, Exploring C Semantics and Pointer
Provenance, which describes a formal model for C pointer provenance, and is evaluated
in part using pure-capability CHERI code [78].

• We have added a description of an experimental compact capability coloring scheme,
a possible candidate to replace our Local-Global capability flow-control model (Sec-
tion D.13). In the proposed scheme, a series of orthogonal “colors” can be set or cleared
on capabilities, authorized by a color space implemented in a style similar to the sealed-
capability object-type space using a single permission. For a single color implementing
the Local-Global model, two bits are still used. However, for further colors, only a single
bit is used. This could make available further colors to use for kernel-user separation,
inter-process isolation, and so on.

• An experimental Permit_Recursive_Mutable_Load permission is described, which, if not
present, causes further capabilities loaded via that capability to be loaded without store
permissions (see Section D.6).

• We have added a new experimental CLoadTags instruction that allows tags to be loaded
for a cache line without pulling data into the cache.

• A new experimental sealed entry capability feature is described, which permits entry
via jump but otherwise do not allow dereferencing (Section D.12). These are similar
to enter capabilities from the M-Machine [18], and could provide utility in providing
further constraints on capability use for the purposes of memory protection – e.g., in the
implementation of C++ v-tables.

• A new experimental memory type token feature is described, which provides an alterna-
tive mechanism to object types within pairs of sealed capabilities (Section D.14).

1.5.3 Changes in CHERI ISA 7.0-ALPHA3
This version of the CHERI Instruction-Set Architecture is an interim version distributed for
review by DARPA and our collaborators:

• The CHERI Concentrate capability compression format is now documented, with a more
detailed rationale section than the prior CHERI-128 section.

• The CLCBI (Capability Load Capability with Big Immediate) instruction, which acceler-
ates position-independent access to global variables, is no longer considered experimen-
tal.

• The architecture-neutral description of tagged memory has been clarified.
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• The maximum supported lengths for both compressed and uncompressed capabilities has
been updated: 264 for 128-bit +capabilities, and 264 − 1 for 256-bit capabilities.

• It is clarified that CLoadTags instruction must provide cache coherency consistent with
other load instructions. We recommend “non-temporal” behavior, in which unnecessary
cache-line fills are avoided to limit cache pollution during revocation.

• We now define the object type for unsealed capabilities, returned by the CGetType instruc-
tion, as 264 − 1 rather than 0.

• An experimental section has been added on how CHERI capabilities might compose with
memory-versioning schemes such as Sparc ADI and Arm MTE (see Section D.9).

• Pseudocode throughout the CHERI ISA specification is now generated from our Sail
formal model of the CHERI-MIPS ISA [8].

• The Glossary has been updated for CHERI ISAv7 changes including CHERI-RISC-V,
split vs. merged register files, capabilities for physical addresses, and special capability
registers.

• Capability exception codes are now shared across architectures.

• CHERI-RISC-V now includes capability-relative floating-point load and store instruc-
tions. We have clarified that existing RISC-V floating-point load and store instructions
are constrained by DDC.

• CHERI-RISC-V now throws exceptions, rather than clearing tags, when non-monotonic
register-to-register capability operations are attempted.

• While a specific encoding-mode transition mechanism is not yet specified for CHERI-
RISC-V, candidate schemes are described and compared in greater detail.

• CHERI-RISC-V’s “capability encoding mode” now has different impacts for uncom-
pressed instructions vs. compressed instructions: In the compressed ISA, jump instruc-
tions also become capability relative.

• CHERI-RISC-V page-table entries now contain a “capability dirty bit” to assist with
tracking the propagation of capabilities.

• Throwing an exception on an out-of-bounds capability-relative jump rather than on the
target fetch is now more clearly explained: This improves debuggability by maintaining
precise information about context state on jump, whereas after the jump, bounds may
not be representable due to capability compression. When an inappropriate EPCC is
installed, the exception will still be thrown on instruction fetch.

• A new ErrorEPCC special register has been defined, to assist with exceptions thrown
within exception handlers; its behavior is modeled on the existing MIPS ErrorEPC spe-
cial register.
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1.5.4 Changes in CHERI ISA 7.0-ALPHA4
This version of the CHERI Instruction-Set Architecture is an interim version distributed for
review by DARPA and our collaborators:

• We have added new instructions CSetAddr (Set capability address to value from register),
CAndAddr (Mask address of capability – experimental), and CGetAndAddr (Move capabil-
ity address to an integer register, with mask – experimental), which optimize common
virtual-address-related operations in language runtimes such as WebKit’s Javascript en-
gine. These instructions cater better to a language mapping from C’s intptr_t type to the
virtual address, rather than offset, of a capability, which has been our focus previously.
These complement the previously added CGetAddr that allows easier compiler access to a
capability’s virtual address.

• We have added two new experimental instructions, CRAM (Retrieve Mask to Align Capa-
bilities to Precisely Representable Address) and CRRL (Round to Next Precisely Repre-
sentable Value), which allow software to retrieve alignment information for the base and
length for a proposed set of bounds.

• CMove, which was previously an assembler pseudo-operation for CIncOffset, is now a
stand-alone instruction. This avoids the need to special case sealed capabilities when
CIncOffset is used solely to move, not to modify, a capability.

• The names of the instructions CSetBoundsImmediate and CIncOffsetImmediate have been
shortened to CSetBoundsImm and CIncOffsetImm.

• The instructions CCheckType and CCheckPerm have been deprecated, as they have not
proven to be particularly useful in implementing multi-protection-domain systems.

• We have added a new pseudo-operation, CAssertInBounds, described in Section 7.5.5,
allows an exception to be thrown if the address of a capability is not within bounds.

• The instruction CCheckTag has now been assigned an opcode.

• We have revised the encodings of many instructions in our draft CHERI-RISC-V speci-
fication in Appendix C.

• We more clearly specify that when a special register write occurs to EPC, the result is
similar to CSetOffset but with the tag bit stripped, in the event of a failure, rather than an
exception being thrown.

• We have added a reference to our TaPP 2018 paper, Pointer Provenance in a Capabil-
ity Architecture, which describes how architectural traces of pointer behavior, visible
through the CHERI instruction set, can be analyzed to understand software and structure.

• We have added a reference to our ICCD 2018 paper, CheriRTOS: A Capability Model
for Embedded Devices, which describes an embedded variant of CHERI using 64-bit
capabilities for 32-bit addresses, and how embedded real-time operating systems might
utilize CHERI features.
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• We have revised our description of conventions for capability values, including when
used as pointers, to hold integers, and for NULL value, to more clearly describe their
use. We more clearly describe the requirements for the in-memory representation of
capabilities, such as a zeroed NULL capability so that BSS behaves as desired. We
provide more clear architecture-neutral explanations of pointer dereferencing, capability
permissions and their composition, the namespaces protected by capability permissions,
exception handling, exception priorities, virtual memory, and system reset. These defini-
tions appear in Chapter 3. Chapter 4, which describes CHERI-MIPS, has been shortened
as a variety of content has been made architectural neutral.

• More detailed rationale is provided for our composition of CHERI with MIPS exception
handling.

• We are more careful to use the term “pointer” to refer to the C-language type, verses
integer or capability values that maybe used by the compiler to implement pointers.

• With the advent of ISA variations utilizing a merged register file, we are more careful to
differentiate integer registers from general-purpose registers, as general-purpose registers
may also hold capabilities.

• We more clearly define the terms “upper bound” and “lower bound”.

• We now more clearly describe the effects of our principle of intentionality on capability-
aware instruction design in Section 3.6.

• We better describe the rationale for tagged capabilities in registers and memory, in con-
trast to cryptographic and probabilistic protections, in Section 8.2.

• We have made a number of improvements to the CHERI-x86-64 sketch, described in
Chapter 6, to improve realism around trap handling and instruction design.

• We have rewritten our description of the interaction between CHERI and Direct Memory
Access (DMA) in Section 3.8.4. to more clearly describe tag-stripping and capability-
aware DMA options.

1.5.5 Changes in CHERI ISA 7.0

This version of the CHERI Instruction-Set Architecture is a full release of the Version 7 speci-
fication:

• We have now deprecated the CHERI-128 capability compression format, in favor of
CHERI Concentrate.

• The RISC-V AUIPC instruction now returns a PCC-relative capability in the capability
encoding mode.
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• Capabilities now contain a flags field, which will hold state that can be changed without
affecting privilege. Corresponding experimental CGetFlags and CSetFlags instructions
have been added. These are described in greater detail in Section D.1.

• The capability encoding-mode bit in CHERI-RISC-V is specified as a bit in the flags
field of a capability. The current mode is defined as the flag bit in the currently installed
PCC. Design considerations and other potential options are described in Chapter 8.

• We now more explicitly describe the reset states of special and general-purpose capability
registers for CHERI-MIPS and CHERI-RISC-V.

• Compressed capabilities now contain a dedicated otype field that always holds an object
type (see sections 2.3.7 and 3.3.1), rather than stealing bounds bits for object type when
sealing. Now, any representable capability may be sealed. Several object type values are
reserved for architectural experimentation (see table 3.2).

• More detail is provided regarding the integration of CHERI Concentrate with special
registers, its alignment requirements, and so on.

• Initial discussion of a disjoint capability tree for physical addresses and hardware facili-
ties using these has been added to the experimental appendix, in appendix D.16.

• Initial discussion of a hybrid 64/128-bit capability design has been added to the experi-
mental appendix, in appendix D.15.

• We have added formal Sail instruction semantics for CHERI-RISC-V; this is currently in
Appendix C.

• We have added a reference to our IEEE TC 2019 paper, CHERI Concentrate: Practical
Compressed Capabilities, which describes our current approach to capability compres-
sion.

• We have added a reference to Alexandre Joannou’s PhD dissertation, High-performance
memory safety: optimizing the CHERI capability machine, which describes approaches
to improving the efficiency of capability compression and tagged memory.

1.6 Experimental Features
Appendix D describes a number of experimental features that extend CHERI with new func-
tionality. These include several architectural features:

• Capability flags that allow non-security bit-wise metadata to be associated with capabil-
ities

• Instructions to assist with memory-allocation alignment

• Fast capability subset testing and non-temporal tag loading to better support sweeping
revocation for temporal memory safety
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• Efficient tag rederivation for use with swapping, memory compression, memory encryp-
tion, and virtual-machine migration

• A recursive mutable load permission that limits the store rights via future capability loads

• 64-bit capabilities for 32-bit architectures

• More efficient capability permission representations

• Memory versioning for use with capabilities

• Linear capabilities

• Indirect capabilities

• Sealed entry capabilities (with dedicated, hardware object type)

• Capability coloring for capability flow control

• Sealing with large object type fields in memory

• A system for mixing 64-bit and 128-bit capabilities

• Capabilities referencing physical addresses

• Use of capabilities across a system for peripherals and accelerators

• New instructions to improve code density

We believe that these represent interesting, and in some cases promising, portions of the de-
sign space beyond the baseline CHERI. However, they appear in an appendix because: (1) we
do not yet recommend their use; (2) they have not been thoroughly evaluated across architec-
ture, hardware, and software with respect to utility, security, compatibility, microarchitectural
realism, nor performance; and/or (3) their preservation of essential CHERI security properties
has not been formally proven. They are therefore included to provide insight into potential
future directions or interesting potential alternative points in the overall design space.

1.7 Document Structure
This document is an introduction to, and a reference manual for, the CHERI protection model
and instruction-set architecture.

Chapter 1 introduces the CHERI protection model, our architecture-neutral approach, and spe-
cific CHERI-MIPS and CHERI-RISC-V ISAs.

Chapter 2 describes the high-level model for the CHERI approach in terms of architectural
features, software protection objectives, and software mechanism.
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Chapter 3 provides a detailed description of architecture-neutral aspects of the CHERI protec-
tion model, including capability and tagged-memory models, categories of new instructions,
etc.

Chapter 4 describes an architecture-specific mapping of the CHERI protection model into the
64-bit MIPS architecture. This includes specification of the CHERI-MIPS capability coproces-
sor, register file, Translation Look-aside Buffer (TLB), privilege model, and other ISA-specific
semantics.

Chapter 5 describes a draft architecture-specific mapping of the CHERI protection model into
the 64-bit RISC-V architecture. This includes specification of the CHERI-RISC-V architecture
extension, register file, Memory Management Unit (MMU), privilege models, and other ISA-
specific semantics.

Chapter 6 provides an “architectural sketch” of how the CHERI protection model might be
mapped into the x86-64 ISA, a decidedly non-RISC instruction set.

Chapter 7 provides a detailed description of each new CHERI-MIPS instruction, its pseudo-
operations, and how compilers should handle floating-point loads and stores via capabilities.

Chapter 8 discusses the design rationale for many aspects of the CHERI-MIPS ISA, as well as
our thoughts on future refinements based on lessons learned to date.

Chapter 9 outlines a detailed (but not formally proved) argument for why a reference monitor
above CHERI provides certain security properties, and touches on some issues in the specifi-
cation that formal proof has to deal with.

Chapter 10 describes the motivations and hardware-software co-design research approach taken
in developing CHERI, including major phases of the research. Chapter 11 describes the

historical context for this work, including past systems that have influenced our approach.

Chapter 12 discusses our short- and long-term plans for the CHERI protection model and
CHERI-MIPS ISA, considering both our specific plans and open research questions that must
be answered as we proceed.

Appendix A provides a more detailed version history of the CHERI protection model and
CHERI-MIPS ISA.

Appendix B is a quick reference for CHERI-MIPS instructions and encodings.

Appendix C is a quick reference for the proposed CHERI-RISC-V instructions and encodings.

Appendix D specifies a number of CHERI-MIPS instructions that we still consider experimen-
tal, and hence are not included in the main specification.

Appended E describes our prior (now deprecated) CHERI-128 compression scheme, which has
been superseded by CHERI Concentrate.

The report also includes a Glossary defining many key CHERI-related terms.

Future versions of this document will continue to expand our consideration of the CHERI
model and CHERI-MIPS instruction-set architecture, its impact on software, and evaluation
strategies and results. Additional information on our prototype CHERI hardware and software
implementations, as well as formal methods work, can be found in accompanying reports.
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1.8 Publications

As our approach has evolved, and project developed, we have published a number of papers
and reports describing aspects of the work. Our conference papers contain greater detail on
the rationale for various aspects of our hardware-software approach, along with evaluations of
micro-architectural impact, software performance, compatibility, and security:

• In the International Symposium on Computer Architecture (ISCA 2014), we published
The CHERI Capability Model: Revisiting RISC in an Age of Risk [153]. This paper
describes our architectural and micro-architectural approaches with respect to capability
registers and tagged memory, hybridization with a conventional Memory Management
Unit (MMU), and our high-level software compatibility strategy with respect to operating
systems.

• In the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2015), we published Beyond the PDP-11: Architec-
tural support for a memory-safe C abstract machine [21], which extends our architectural
approach to better support convergence of pointers and capabilities, as well as to further
explore the C-language compatibility and performance impacts of CHERI in larger soft-
ware corpora.

• In the IEEE Symposium on Security and Privacy (IEEE S&P, or “Oakland”, 2015), we
published CHERI: A Hybrid Capability-System Architecture for Scalable Software Com-
partmentalization [146], which describes a hardware-software architecture for mapping
compartmentalized software into the CHERI capability model, as well as extends our
explanation of hybrid operating-system support for CHERI.

• In the ACM Conference on Computer and Communications Security (CCS 2015), we
published Clean Application Compartmentalization with SOAAP [46], which describes
our higher-level design approach to software compartmentalization as a a form of vul-
nerability mitigation, including static and dynamic analysis techniques to validate the
performance and effectiveness of compartmentalization.

• In the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2016), we published Into the depths of C: elaborating the de facto stan-
dards [79], which develops a formal semantics for the C programming language. As
part of that investigation, we explore the effect of CHERI on C semantics, which led us
to refine a number of aspects of CHERI code generation, as well as refine the CHERI
ISA. In the other direction, understanding the changes needed to port existing software
to CHERI has informed our views on what C semantics should be.

• In the September-October 2017 issue of IEEE Micro, we published Fast Protection-
Domain Crossing in the CHERI Capability-System Architecture [143], expanding on ar-
chitectural and microarchitectural aspects of the CHERI object-capability compartmen-
talization model described in our Oakland 2015 paper.
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• In the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2017), we published CHERI-JNI: Sinking the Java se-
curity model into the C [20]. This paper describes how to use CHERI memory safety and
compartmentalization to isolate Java Native Interface (JNI) code from the Java Virtual
Machine, imposing the Java memory and security model on native code.

• In the MIT Press book, New Solutions for Cybersecurity, we published two chapters on
CHERI. Balancing Disruption and Deployability in the CHERI Instruction-Set Archi-
tecture (ISA) discusses our research and development approach, and how CHERI hy-
bridizes conventional architecture, microarchitecture, operating systems, programming
languages, and general-purpose software designs with a capability-system model [136].
Fundamental Trustworthiness Principles in CHERI discusses how CHERI fulfills a num-
ber of critical trustworthiness principles [92].

• In the International Conference on Computer Design (ICCD 2017), we published Ef-
ficient Tagged Memory [54]. This paper describes how awareness of the architectural
semantics of tagged pointers can be used to improve performance and reduce DRAM
access overheads for tagging implemented over DRAM without innate tag storage.

• In the International Conference on Computer Design (ICCD 2019), we published Cheri-
RTOS: A Capability Model for Embedded Devices [157]. This paper describes an embed-
ded variant on CHERI using 64-bit capabilities for 32-bit addresses, and how embedded
real-time operating systems might utilize CHERI features.

• In the ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
2019), we published ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS, which
describes a formal modeling approach and formal models for several instruction sets
including CHERI-MIPS [8].

• In the ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
2019), we published Exploring C Semantics and Pointer Provenance, describing a formal
model for C pointer provenance and its practical evaluation, including via pure-capability
C code on the CHERI architecture [78].

• In the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2019), we published CheriABI: Enforcing Valid Pointer
Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment [28].
This paper describes how to adapt a full MMU-based OS design to support ubiquitous
use of capabilities to implement C and C++ pointers in userspace.

• In IEEE Transactions on Computers, we published CHERI Concentrate: Practical Com-
pressed Capabilities [152]. This paper describes our compressed 128-bit and 64-bit ca-
pability formats, evaluating the effects of precision loss in bounds, and the potential
performance impact of the approach.

We have additionally released several technical reports, including this document, describ-
ing our approach and prototypes. Each has had multiple versions reflecting evolution of our
approach:
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• This report, the Capability Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture [137, 138, 141, 142, 140], describes the CHERI ISA, both as a high-
level, software-facing model and the specific mapping into the 64-bit MIPS instruction
set. Successive versions have introduced improved C-language support, support for scal-
able compartmentalization, and compressed capabilities.

• The Capability Hardware Enhanced RISC Instructions: CHERI Programmer’s Guide [135]
describes in greater detail our mapping of software into instruction-set primitives in both
the compiler and operating system; earlier versions of the document were released as the
Capability Hardware Enhanced RISC Instructions: CHERI User’s Guide [133].

• The Bluespec Extensible RISC Implementation: BERI Hardware Reference [144, 145]
describes hardware aspects of our prototyping platform, including physical platform and
practical user concerns.

• The Bluespec Extensible RISC Implementation: BERI Software Reference [132, 134]
describes non-CHERI-specific software aspects of our prototyping platform, including
software build and practical user concerns.

• The technical report, Clean application compartmentalization with SOAAP (extended
version) [45], provides a more detailed accounting of the impact of software compart-
mentalization on software structure and security using conventional designs, with poten-
tial applicability to CHERI-based designs as well.

• The technical report, Capability Hardware Enhanced RISC Instructions (CHERI): Notes
on the Meltdown and Spectre Attacks [147] explores the potential interactions between
CHERI, a fundamentally architectural protection technique, and the recently announced
Spectre and Meltdown microarchitectural side-channel attacks. The report describes a
modest architecture extension identifying CHERI compartment identifiers to the microar-
chitecture, and also explores opportunities for Spectre mitigation arising from performing
capability checks in speculation.

The following technical reports are PhD dissertations that describe both CHERI and our
path to our current design:

• Robert Watson’s PhD dissertation, New approaches to operating system security ex-
tensibility, describes the operating-system access-control and compartmentalization ap-
proaches, including FreeBSD’s MAC Framework and Capsicum, which motivated our
work on CHERI [128, 129].

• Jonathan Woodruff’s PhD dissertation, CHERI: A RISC capability machine for practical
memory safety, describes our CHERI1 prototype implementation [154].

• Robert Norton’s PhD dissertation, Hardware support for compartmentalisation, describes
how hardware support is provided for optimized domain transition using the CHERI2
prototype implementation [96].
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• Alexandre Joannou’s PhD dissertation, High-performance memory safety: optimizing the
CHERI capability machine, describes hardware optimizations for efficient implementa-
tion of CHERI capabilities such as capability compression for a 128-bit capability format
and a hierarchical tag cache for efficient tagged memory [55].

As our research proceeded, and prior to our conference and journal articles, we published a
number of workshop papers laying out early aspects of our approach:

• Our philosophy in revisiting of capability-based approaches is described in Capabilities
Revisited: A Holistic Approach to Bottom-to-Top Assurance of Trustworthy Systems, pub-
lished at the Layered Assurance Workshop (LAW 2010) [95], shortly after the inception
of the project.

• Mid-way through creation of both the BERI prototyping platform, and CHERI protection
model and CHERI-MIPS ISA, we published CHERI: A Research Platform Deconflating
Hardware Virtualization and Protection at the Workshop on Runtime Environments, Sys-
tems, Layering and Virtualized Environments (RESoLVE 2012) [148].

• Jonathan Woodruff, whose PhD dissertation describes our initial CHERI prototype, pub-
lished a workshop paper on this work at the CEUR Workshop’s Doctoral Symposium
on Engineering Secure Software and Systems (ESSoS 2013): Memory Segmentation to
Support Secure Applications [95].

• In the USENIX Workshop on the Theory and Practice of Provenance (TaPP), we pub-
lished Pointer Provenance in a Capability Architecture [74]. This paper describes how
architectural traces of pointer behavior, visible through the CHERI instruction set, can
be analyzed to understand software structure and security.

Further research publications and technical reports will be forthcoming.
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Chapter 2

The CHERI Protection Model

This chapter describes the portable CHERI protection model, its use in software, and its im-
pact on potential software vulnerabilities; concrete mappings into computer architecture are
left to later chapters. We consider a number of topics from a more abstract, software-facing
perspectives: the principles underlying the model, our goals for capabilities, hybridization with
conventional architectural designs, implications for operating-system and language support and
compatibility, and concerns around microarchitectural side channels.

There are many potential concrete mappings of this abstract software-facing protection
model into specific Instruction-Set Architectures (ISAs), but most key aspects of the model can
be shared across target architectures, including the capability protection model, composition
with virtual memory, and tagged memory. Whether used for memory protection or compart-
mentalization, CHERI’s properties should hold with considerable uniformity across underlying
architectural implementations (e.g., regardless of capability size, whether capabilities are stored
in their own register file or as extensions to general-purpose integer registers, etc.), and should
support common (and ideally portable) programming models and approaches.

We detail cross-architecture aspects of CHERI in Chapter 3. Our current instantiations
within concrete ISAs include the mature CHERI-MIPS ISA (Chapter 4), a draft CHERI-RISC-
V ISA (Chapter 5), and a high-level sketch of a CHERI-x86-64 (Chapter 6). CHERI-MIPS re-
mains our reference instantiation, and has been validated with a complete end-to-end hardware-
software stack including ISA-level simulations, FPGA implementation, operating system, com-
piler, linker, debugger, and application suite. CHERI-RISC-V is a draft specification that has
not yet seen significant use. Our motivations for targeting this second ISA are detailed in
Chapter 5; they include demonstrating the portability of the CHERI approach, a desire to use a
more contemporary ISA as a baseline, and the potential opportunity for technology transition.
We include our x86-64 sketch to explore how the CHERI protection model might apply to the
dominant non-RISC architecture.

2.1 Underlying Principles

The design of CHERI is influenced by two broad underlying principles that are as much philo-
sophical as architectural, but are key to all aspects of the design:

45
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The principle of least privilege It should be possible to express and enforce a software design
in which each program component can execute with only the privileges it requires to
perform its function. This is expressed in terms of architectural privileges (e.g., by al-
lowing restrictions to be imposed in terms of bounds, permissions, etc., encapsulating a
software-selected but hardware-defined set of rights) and at higher levels of abstraction
in software (e.g., by allowing sealed capabilities to refer to encapsulated code and data
incorporating both a software-selected and software-defined set of rights). This prin-
ciple has a long history in the research literature, and has been explored (with varying
degrees of granularity) both in terms of the expression of reduced privilege (i.e., through
isolation and compartmentalization) and the selection of those privileges (e.g., through
hand separation, automated analysis, and so on).

The principle of intentional use When multiple rights are available to a program, the selec-
tion of rights used to authorize work on behalf of the program should be explicit, rather
than implicit in the architecture or another layer of software abstraction. The effect of
this principle is to avoid the accidental or unintended exercise of rights that could lead to
a violation of the intended policy. It helps counter what are classically known as ‘con-
fused deputy’ problems, in which a program will unintentionally exercise a privilege that
it holds legitimately, but on behalf of another program that does not (and should not) ex-
ercise that privilege [49]. This principle, common to many capability systems but usually
not explicitly stated, has been applied throughout the CHERI design, from architectural
privileges (e.g., the requirement to explicitly identify capability registers used for load
or store) through to the sealed capability mechanism that can be used to support object-
capability models such as found in CheriBSD.

These principles, which offer substantial mitigations against software vulnerabilities or mali-
cious code, guide the integration of a capability-system model with the general-purpose instruc-
tion set – and its exposure in the software model. A more detailed exploration of the design
principles embodied in and supported by CHERI can be found in Fundamental Trustworthiness
Principles in CHERI [92].

2.2 CHERI Capabilities: Strong Protection for Pointers
The purpose of the CHERI ISA extensions is to provide strong protection for pointers within
virtual address spaces, complementing existing virtual memory provided by Memory Manage-
ment Units (MMUs). These protections apply to the storage and manipulation of pointers, and
also accesses performed via pointers. The rationale for this approach is two-fold:

1. A large number of vulnerabilities in Trusted Computing Bases (TCBs), and many of the
application exploit techniques, arise out of bugs involving pointer manipulation, corrup-
tion, and use. These occur in several ways, with bugs such as those permitting attackers
to coerce arbitrary integer values into dereferenced pointers, or leading to undesirable
arithmetic manipulation of pointers or buffer bounds. These can have a broad variety of
impacts – including overwriting or leaking sensitive data or program metadata, injection
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of malicious code, and attacks on program control flow, which in turn allow attacker
privilege escalation.

Virtual memory fails to address these problems as (a) it is concerned with protecting data
mapped at virtual addresses rather than being sensitive to the context in which a pointer
is used to reference the address – and hence fails to assist with misuse of pointers; and
(b) it fails to provide adequate granularity, being limited to page granularity – or even
more coarse-grained “large pages” as physical memory sizes grow.

2. Strong integrity protection, fine-grained bounds checking, encapsulation, and monotonic-
ity for pointers can be used to construct efficient isolation and controlled communication,
foundations on which we can build scalable and programmer-friendly compartmentaliza-
tion within address spaces. This facilitates deploying fine-grained application sandbox-
ing with greater ubiquity, in turn mitigating a broad range of logical programming errors
higher in the software stack, as well as resisting future undiscovered vulnerability classes
and exploit techniques.

Virtual memory also fails to address these problems, as (a) it scales poorly, paying a high
performance penalty as the degree of compartmentalization grows; and (b) it offers poor
programmability, as the medium for sharing is the virtual-memory page rather than the
pointer-based programming model used for code and data sharing within processes.

Consequently, CHERI capabilities are designed to represent language-level pointers with
additional metadata to protect their integrity and provenance, enforce bounds checks and per-
missions (and their monotonicity), and hold additional fields supporting undereferenceable (i.e.,
sealed) software-defined pointers suitable to implement higher-level protection models such as
separation and efficient compartmentalization. Unlike virtual memory, whose functions are
intended to be managed by low-level operating-system components such as kernels, hypervi-
sors, and system libraries, CHERI capabilities are targeted at compiler and language-runtime
use, allowing program structure and dynamic memory allocation to direct their use. We antic-
ipate CHERI being used within operating-system kernels, and also in userspace libraries and
applications, for the purposes of both memory protection and compartmentalization.

Significant attention has gone into providing strong compatibility with the C and C++ pro-
gramming languages, widely used in off-the-shelf TCBs such as OS kernels and language run-
times, and also with conventional MMUs and virtual-memory models – which see wide use
today and continue to operate on CHERI-enabled systems. This is possible by virtue of CHERI
having a hybrid capability model that securely composes a capability-system model with con-
ventional architectural features and programming-language pointer interpretation. CHERI is
designed to support incremental migration via selective recompilation (e.g., transforming point-
ers into capabilities, as discussed below). It provides several possible strategies for selectively
deploying changes into larger code bases – constructively trading off source-code compatibility,
binary compatibility, performance, and protection.

Most source code can be recompiled to employ CHERI capabilities transparently by virtue
of existing pointer syntax and semantics, which the compiler can map into capability use just as
it currently maps that functionality into integer virtual-address use – while providing additional
metadata to the architecture allowing the implementation of stronger memory safety. Code in
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Figure 2.1: CHERI enforces strict integrity, provenance validity, monotonicity, bounds, per-
missions, and encapsulation on pointers, mitigating common vulnerabilities and exploit tech-
niques.

which all pointers (and implied virtual addresses) are implemented solely using capabilities
is referred to as pure-capability code. Capability use can also be driven selectively, albeit less
transparently, through annotation of C pointers and types to indicate that hybrid capability code
generation should be used when operating on those pointers – referred to as hybrid-capability
code. It is also possible to imagine compilers making automatic policy-based decisions about
capability use on a case-by-case basis, based on trading off compatibility, performance, and
protection with only limited programmer intervention. It is further worth observing that, al-
though the primary focus of CHERI has been protecting pointers using capabilities, capabili-
ties are a more generalizable hardware data type that can be used to protect other types from
corruption and mis-manipulation.

2.3 Architectural Capabilities
In current systems, pointers are integer values that are commonly stored in two architectural
forms: in integer registers, and in memory. Capabilities are likewise stored in registers and
memory, and contain integer values interpreted as virtual addresses; they also contain addi-
tional metadata to implement protection properties around pointers, such as bounds. Capabil-
ities are therefore larger than the virtual addresses they protect – typically between 2× (e.g.,
128-bit compressed capabilities on a 64-bit architecture) and 4× (e.g., 256-bit uncompressed
capabilities on a 64-bit architecture). The majority of the capability is stored in a register or in
addressable memory, as is the case for current integer pointers; however, there is also a 1-bit tag
that may be inspected via the instruction set, but is not visible via byte-wise loads and stores.
This tag is used to record whether the capability is valid; it is preserved by legal capability op-
erations but cleared by other operations on that memory. Some of CHERI’s protections are for
pointers themselves (e.g., their integrity and provenance validity), whereas others are for the
pointee data or code referenced by pointers (e.g., bounds and permissions). CHERI’s sealing
feature protects both a pointer (via immutability) and the pointee (via non-dereferenceability).

Extending architectures with capability registers and suitable memory storage naturally
aligns with many current architectural and microarchitectural design choices, as well as software-
facing considerations such as compiler code generation, stack layout, operating-system behav-
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ior, and so on. However, the generalized CHERI protection model can be mapped into architec-
tures in many different forms. For example, an early design choice might be between holding
capabilities in a dedicated capability register file or extending existing 64-bit registers to hold
128-bit capabilities. While this and many other choices will affect a variety of factors in the ar-
chitecture and microarchitecture, the resulting protection model can be considered portable in
that common protection properties and usage patterns can be mapped into various architectural
instantiations. These topics are considered further in Chapter 3.

In the remainder of this section, we describe the high-level protection properties and other
functionality that capabilities grant to pointers and the execution environment (see Figure 2.1):

• Capability tags for pointer integrity and provenance (Section 2.3.1)

• Capability bounds to limit the dereferenceable range of a pointer (Section 2.3.2)

• Capability permissions to limit the use of a pointer (Section 2.3.3)

• Capability monotonicity and guarded manipulation to prevent privilege escalation (Sec-
tion 2.3.4)

• Capability sealing to implement software encapsulation (Section 2.3.6)

• Capability object types to enable a software object-capability model (Section 2.3.7)

• Sealed capability invocation to implement non-monotonic domain transition (Section 2.3.8)

• Capability control flow to limit pointer propagation (Section 2.3.10)

• Capability compression to reduce the in-memory overhead of pointer metadata (Sec-
tion 2.3.11)

• Hybridization with integer pointers (Section 2.3.12)

• Hybridization with MMU-based virtual memory (Section 2.3.13)

• Hybridization with ring-based privilege (Section 2.3.14)

• Failure modes and exception delivery (Section 2.3.15)

• Capability revocation (Section 2.3.16)

These features allow capabilities to be architectural primitives upon which higher-level soft-
ware protection and security models can be constructed (see Section 2.4).
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2.3.1 Tags for Pointer Integrity and Provenance
Each location that can hold a capability – whether a capability register or a capability-sized,
capability-aligned word of memory – has an associated 1-bit tag that consistently and atomi-
cally tracks capability validity for the value stored at that location:

Capability registers each have a 1-bit tag tracking whether the in-register value is a valid
capability. This bit will be set or cleared only as permitted by guarded manipulation.

Capability-sized, capability-aligned words of memory each have a 1-bit tag associated with
the location, which is not directly addressable via data loads or stores: tagged memory.
Depending on the ISA variant, this may be at 128-bit or 256-bit granularity. The capa-
bility’s virtual address, as well as its other metadata such as bounds and permissions, are
stored within the capability in addressable memory; these fields are protected by the cor-
responding unaddressable tag bit. If untagged memory exists in the system, the tags of
capability values stored to those locations are discarded, and all loaded capability values
will have the tag bit unset.

Tags atomically follow capabilities into and out of capability registers when their values are
loaded from, or stored to, tagged memory. Stores of other non-capability types – e.g., of bytes
or half words – automatically and atomically clear the tag in the destination memory location.
This allows in-memory pointer corruption by data stores to be detected on next attempted deref-
erence – for example, this prevents arbitrary data received over the network from being directly
dereferenced as a pointer.

The capability tag controls which operations can be performed using a capability. Attempt-
ing controlled operations on an untagged capability will cause an precise exception.

Regardless of the value of the tag bit, capability register fields can be accessed: they can be
extracted and, subject to guarded manipulation, modified. Similarly, addressable portions of the
capability can be read from memory using ordinary data load and store instructions. Capability
values can also be loaded and stored via other valid capabilities regardless of the validity of the
loaded or stored capability. An untagged capability value is simply data: allowing capability
registers to hold untagged values allows them to be used for capability-oblivious operations.
For example, a region of memory can be copied via capability registers, including pointers
within data structures, preserving the value of the tag bit for each copied location.

However, other operations that dereference or otherwise use a capability require that the
capability have its tag set – i.e., be a valid capability. Dereferencing refers to using the ca-
pability to load or store data or other capabilities, or to fetch instructions. This includes the
implied dereference associated with the Default Data Capability controlling legacy integer-
relative loads and stores. A valid tag is also required to use a capability to seal or unseal
another capability, to jump to that capability, to use it to set the architectural compartment ID,
or to call it for the purposes of domain transition. Detailed information on which instructions
require capabilities to have valid tags, or operate on untagged capability values, may be found
in the instruction reference.

Valid capabilities can be constructed only by deriving them from existing valid capabilities,
which ensures pointer provenance (Figure 2.1). In almost all cases, a new capability value will
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be derived from a single capability value – e.g., as a result of reducing bounds or permissions.
In a few cases, a capability may derive from multiple other capability values. For example,
a sealed capability is derived from both the authorizing sealing capability and an original data
capability. Similarly, an explicitly unsealed capability is derived from both the sealed capability
and the capability that authorizes its unsealing.

Implementing C pointers as tagged capabilities allows them to be reliably identified in
the virtual address space, which can help support techniques such as garbage collection. The
CHERI ISA has been designed to avoid leakage of virtual addresses out of tagged capabilities
(e.g., into general-purpose integer registers) during normal memory allocation, comparison,
manipulation, and dereference, to facilitate reliable detection of pointers in both registers and
memory. Virtual addresses can be extracted from capabilities – e.g., for debugging purposes –
but avoiding doing so in code generation supports potential use of techniques such as copying
garbage collection.

Our CHERI prototype implements tagged memory using partitioned memory, with tags
and associated capability-sized units linked and propagated by the cache hierarchy in order to
provide suitable atomicity. However, it is also possible to imagine implementations in which
DRAM or non-volatile memory is extended to store tags with capability-sized units as well
– which might be more suitable for persistent memory types where atomicity is not simply a
property of coherent access through the cache. We similarly assume that DMA will clear tags
when writing to memory, although it is possible to imagine future DMA implementations that
are able to propagate tags (e.g., to maintain tags on pointers in descriptor rings).

2.3.2 Bounds on Pointers

Capabilities contain lower and upper bounds for each pointer; while the pointer may move out
of bounds (and perhaps back in again), attempts to dereference an out-of-bounds pointer will
throw a hardware exception. This prevents exploitation of buffer overflows on global variables,
the heap, and the stack, as well as out-of-bounds execution. Allowing pointers to sometimes
be out-of-bounds with respect to their buffers – without faulting – is important for de-facto
C-language compatibility. The 256-bit capability variant allows pointers to stray arbitrarily out
of bounds. The 128-bit scheme imposes some restrictions, as bounds compression depends
on redundancy between the pointer and bounds, which may not be present if the pointer is
substantially outside of its bounds (see Section 3.4.4 for details).

Bounds originate in allocation events. The operating system places bounds on pointers to
initial address-space allocations during process startup (e.g., via the initial register file, and
ELF auxiliary arguments), and on an ongoing basis as new address-space mappings are made
available (e.g., via mmap system calls). Most bounds originate in the userspace language runtime
or compiler-generated code, including the run-time linker for function pointers and global data,
the heap allocator for pointers to heap allocations, and generated code for pointers taken to
stack allocations. Programming languages may also offer explicit subsetting support to allow
software to impose its own expectations on suitable bounds for memory accesses to complex
objects (such as in-memory video streams) or in their own memory allocators.
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2.3.3 Permissions on Pointers
Capabilities additionally extend each pointer with a permissions mask controlling how the
pointer may be used; for example, the run-time linker or compiler may set the permissions
so that pointers to data cannot be reused as code pointers, or so that pointers to code cannot be
used to store data. Further permissions control the ability to load and store capabilities them-
selves, allowing the compiler to implement policies such as dereferenceable code and data
pointers cannot be loaded from character strings. Permissions can also be made accessible
to higher-level aspects of the run-time and programmer model, offering dynamic enforcement
of concepts similar to const.1 Languages may provide further facilities to allow programmer-
directed refinement of permissions – for example, for use in Just-in-Time (JIT) compilers.

Permissions changes, as with bounds setting, are often linked to allocation events. Per-
missions on capabilities for initial memory memory mappings will be introduced by the ker-
nel during process startup; further capabilities returned for new mappings will also have their
permissions restricted based on intended use. Executable capabilities representing function
pointers and return addresses will be refined by the run-time linker. Read-only and read-write
capabilities referring to data will be refined by the run-time linker, heap allocator, and stack
allocator.

Permissions also control access to the sealing facility used for encapsulation (see Sec-
tion 2.3.6). While sealing permission could be granted with all data and code capabilities, best
practice in privilege minimization suggests that a separate hierarchy of sealing pointers should
be maintained instead. Returning independent sealing capabilities via a dedicated system-call
interface reduces opportunities for arbitrary code and data capabilities being used improperly
for this purpose.

2.3.4 Capability Monotonicity via Guarded Manipulation
Capability monotonicity is a property of the CHERI ISA design ensuring that new capabilities
must be derived from existing capabilities only via valid manipulations that may narrow (but
never broaden) rights ascribed to the original capability. This property prevents broadening
the bounds on pointers, increasing the permissions on pointers, and so on, eliminating many
manipulation attacks and inappropriate pointer reuses. Monotonicity also underlies effective
isolation for software compartmentalization by ensuring that delegated capabilities cannot be
used to reach other resources despite further manipulation. CHERI enforces capability mono-
tonicity via four mechanisms:

Limited expressivity Some instructions are prevented, by design, from expressing an increase
of rights due to the expression of their operands and implementation. For example, per-
missions on capabilities are modified using a bitwise ‘and’ operation, and hence cannot
express an increase in permissions.

Exceptions on monotonicity violation Some instructions may be able to represent non-mono-
tonic operations, but attempts to use them non-monotonically will lead to an exception

1The C-language const qualifier conflates several orthogonal properties and thus can not be enforced auto-
matically. Our language extensions include more constrained __input and __output qualifiers.
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being delivered. For example, an attempt to broaden bounds on a capability might throw
an exception without writing back the non-monotonically modified capability. Throwing
an exception at the point of violation may ease debugging close to the point of violation.

Stripping the tag in register write-back As an alternative to throwing an exception, a non-
monotonic operation might succeed in writing back a new capability – but with the tag
bit cleared, preventing future dereference. Clearing the tag allows the failure to be dis-
covered by an explicit software check, or on the next attempt to dereference. This may
make debugging more expensive (if additional checks are introduced, perhaps with help
from the compiler) or more tricky (if loss of the tag is only discovered substantially later).

Stripping the tag during memory store Tagged memory ensures that attempts to directly mod-
ify capability fields (whether non-monotonically or otherwise) will clear the tag, causing
later attempts to dereference the capability to fail. This ensures that attempts to modify
capabilities cannot bypass guarded manipulation.

Selecting which enforcement mechanism to use will reflect the specific operation being im-
plemented, concerns about about ease of debugging, as well as the context of the surrounding
architecture. For example, in some architectures, exceptions can be thrown on any instruc-
tion (e.g., MIPS), while in others it is preferable for exceptions to be thrown only on memory
accesses (e.g., ARMv8). As a result of these combined architectural features, guarded manip-
ulation implements non-bypassable capability monotonicity.

Monotonicity allows reasoning about the set of reachable rights for executing code, as they
are limited to the rights in any capability registers, and inductively, the set of any rights reach-
able from those capabilities – but no other rights, which would require a violation of mono-
tonicity. Monotonicity is a key foundation for fine-grained compartmentalization, as it pre-
vents delegated rights from being used to gain access to other undelegated areas of memory.
More broadly, monotonicity contributes to the implementation of the principle of intentional
use, in that capabilities not only cannot be used for operations beyond those for which they are
authorized, but also cannot inadvertently be converted into capabilities describing more broad
rights.

The two notable exceptions to capability monotonicity are invocation of sealed capabilities
(see Section 2.3.8) and exception delivery (see Section 2.3.15). Where non-monotonicity is
present, control is transferred to code trusted to utilize a gain in rights appropriately – for exam-
ple, a trusted message-passing routine in the userspace runtime, or an OS-provided exception
handler. This non-monotonicity is required to support protection-domain transition from one
domain holding a limited set of rights to destination domain that holds rights unavailable to the
originating domain – and is therefore also a requirement for fine-grained compartmentalization
(see Section 2.4.4).

2.3.5 Capability Flags
Capabilities include a flags field that can be manipulated freely. Unlike the permissions field, it
does not determine privilege, i.e., the state of this field is orthogonal to capability monotonicity.
Currently, there are only architecture-specific interpretations for this field: CHERI-RISC-V
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uses it to control opcode interpretation on instruction fetch. In the future, other non-security
behavioral flags relating to capabilities may be placed here.

2.3.6 Sealed Capabilities

Capability sealing allows capabilities to be marked as immutable and non-dereferenceable,
causing hardware exceptions to be thrown if attempts are made to modify, dereference, or jump
to them. This enables capabilities to be used as unforgeable tokens of authority for higher-
level software constructs grounded in encapsulation, while still allowing them to fit within the
pointer-centric framework offered by CHERI capabilities. Sealed capabilities are the founda-
tion for building the CheriBSD object-capability model supporting in-address-space compart-
mentalization, where pairs of sealed code and data capabilities are object references whose
invocation triggers a protection-domain switch. Sealed capabilities can also be used to sup-
port other operating-system or language robustness features, such as representing other sorts
of delegated (non-hardware-defined) rights, or ensuring that pointers are dereferenced only by
suitable code (e.g., in support of language-level memory or type safety).

2.3.7 Capability Object Types

Capabilities contain an additional piece of metadata, an object type, updated when a capability
undergoes (un)sealing. Object types allow multiple sealed capabilities to be indelibly (and
indivisibly) linked, so that the kernel or language runtime can avoid expensive checks (e.g.,
via table lookups) to confirm that they are intended to be used together. For example, for
object-oriented compartmentalization models (such as the CheriBSD object-capability model),
pairs of sealed capabilities can represent objects: one is the code capability for a class, and the
other is a data capability representing the data associated with a particular instance of an object.
In the CheriBSD model, these two sealed capabilities have the same value in their object-type
field, and two candidate capabilities passed to object invocation will not be accepted together
if their object types do not match.

The object-type field is set when a capability is sealed based on a second input capability
authorizing use of the type space – itself simply a capability permission authorizing sealing
within a range of values specified by the capability’s bounds. A similar model authorizes
unsealing, which permits a sealed capability to be restored to a mutable and dereferenceable
state – if a suitable capability to have sealed it is held. This is used in the CheriBSD model
during object invocation to grant the callee access to its internal state.

A similar model could be achieved without using an unsealing mechanism: a suitably privi-
leged component could inspect a sealed capability and rederive its unsealed contents. However,
authorizing both sealing and unsealing based on type capabilities allows the right to construct
encapsulated pointers to be delegated, without requiring recourse to a privileged software su-
pervisor at the cost of additional domain transitions – or exercise of unnecessary privilege.
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2.3.8 Sealed Capability Invocation
CHERI supports two forms of non-monotonicity: jump-like capability invocation, and excep-
tion handling (see Section 2.3.15). In CHERI-MIPS, the CCall instruction (optionally paired
with use of the CReturn instruction) accepts a pair of sealed capability operands on which var-
ious checks are performed (for example, that they are valid, sealed, and have matching object
types). If all tests are passed, then additional capabilities become available to the executing
CPU context – either by virtue of unsealing of the operand registers (jump-like CCall) or by
control transferring to the exception handler (exception-based CCall).

For both models, the destination execution environment has well-defined and reliable prop-
erties, such as a controlled target program-counter capability and additional data capability that
can be used to authorize domain transition. The jump-like model avoids the microarchitectural
overhead of exception delivery, behaving much like a conventional jump to register, permitting
an in-address-space domain switch without changing rings.

In both cases, the newly executing code has the ability to further manipulate execution state,
and impose semantics such as call-return secure function invocation (CheriBSD) or secure
asynchronous message passing (microkernel), which will likely be followed by a privilege de-
escalation as a target domain is entered (see Section 2.4.4).

Object-Capability Policies in CHERI

Consider an execution environment having access to several capabilities sealed with the same
otype. The tests required by the jump-like CCall mechanism describe a Cartesian product of
method rights (indicated by the sealed code capability) and object rights (sealed data capability)
to this environment. Regardless of how the environment came to have these sealed capabilities,
it is free to pair any sealed code capability with any sealed data capability and have the CCall

tests pass.
Non-Cartesian and/or stateful policies can, however, be encoded by indirection, using mem-

ory to store additional data to be checked by the invoked subsystem on entry. The sealed data
pointers given out by the invoked subsystem now no longer directly reference objects; instead,
they reference “data trampolines” describing the pairing of object(s) and remote agent(s) with
associated access rights information. Attenuation of access rights is no longer necessarily an
ambiently available action and requires either the explicit construction of membranes (i.e.,
proxy objects) or active cooperation of the invoked subsystem (or an agent acting on its behalf)
to create new data trampoline(s).

2.3.9 Capability Protection for Non-Pointer Types
While the design of CHERI capabilities is primarily focused on the protection of pointers,
the pointer interpretation of capabilities depends entirely on a capability’s permissions mask.
If the mask authorizes load, store, and fetch instructions, then the capability has a pointer
interpretation. Capabilities are not required to have those permissions set, however, allowing
capabilities to be used for other purposes – for example, to protect other critical data types
from in-memory corruption (such as implementing UNIX file descriptors or stack canaries), or
to authorize access to system services (such as authorizing use of specific system calls identified
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by the capability). Sealed capabilities and a set of software-defined permissions bits facilitate
these use cases by permitting non-architecture-defined capability interpretations while retaining
capability-based protections.

2.3.10 Capability Flow Control
The CHERI capability model is designed to support the implementation of language-level
pointers: tagged memory allows capabilities to be stored in memory, and in particular, embed-
ded within software-managed data structures such as objects or the stack. CHERI is therefore
particularly subject to a historic criticism of capability-system models – namely, that capability
propagation makes it difficult to track down and revoke rights (or to garbage collect them). To
address this concern, CHERI has three mechanisms by which the flow of capabilities can be
constrained:

Capability TLB bits extend the existing load and store permissions on TLB entries (or, in ar-
chitectures with hardware page-table walkers, page-table entries) with new permissions
to authorize loading and storing of capabilities. This allows the operating system to
maintain pages from which tagged capabilities cannot be loaded (tags will be transpar-
ently stripped on load), and to which capabilities cannot be stored (a hardware exception
will be thrown). This can be used, for example, to prevent tagged capabilities from be-
ing stored in memory-mapped file pages (as the underlying object might not support tag
storage), or to create regions of shared memory through which capabilities cannot flow.

Capability load and store permission bits extend the load and store permissions on capabil-
ities themselves, similarly allowing a capability to be used only for data access – if suit-
ably configured. This can be used to create regions of shared memory within a virtual
address space through which capabilities cannot flow. For example, it can prevent two
separated compartments from delegating access to one another’s memory regions, instead
limiting communication to data traffic via the single shared region.

Capability control-flow permissions “color” capabilities to limit propagation of specific types
of capabilities via other capabilities. This feature marks capabilities as global or local to
indicate how they can be propagated. Global capabilities can be stored via any capabil-
ity authorized for capability store. Local capabilities can be stored only via a capability
specifically authorized as store local. This can be used, for example, to prevent propa-
gation of temporally sensitive stack memory between compartments, while still allowing
garbage-collected heap memory references to be shared.

This feature remains under development, as we hope to generalize it to further uses such
as limiting the propagation of ephemeral DRAM references in persistent-memory sys-
tems. However, it is used successfully in the CheriBSD compartmentalization model to
improve memory safety and limit obligations of garbage collection.

The decision to strip tags on load, but throw an exception on store, reflects pragmatic
software utilization goals: language runtimes and system libraries often need to implement
capability-oblivious memory copying, as the programmer may not wish to specify whether a
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region of memory must (or must not) contain capabilities. By stripping tags rather than throw-
ing an exception on load, a capability-oblivious memory copy is safe to use against arbitrary
virtual addresses and source capabilities – without risk of throwing an exception. Software that
wishes to copy only data from a source capability (excluding tag bits due to a non-propagation
goal) can simply remove the load-capability permission from the source capability before be-
ginning a memory copy.

On the other hand, it is often desirable to detect stripping of a capability on store via a
hardware exception, to ease debugging. For example, it is typically desirable to catch storing
a tagged capability to a file as early as possible in order to avoid debugging a later failed
dereference due to loss of a tag. Similarly, storing a tagged capability to a virtual-memory page
might be an indicator to a garbage collector that it may now be necessary to scan that page in
search of capabilities.

This design point conserves TLB and permission bits; there is some argument that complet-
ing the space (i.e., shifting to three or four bits each) would offer functional improvements – for
example, the ability to avoid exceptions on a capability-oblivious memory copy via a capability
that does not authorize capability store, or the ability to transparently strip tags on store to a
shared memory page. However, we have not yet found these particular combinations valuable
in our software experimentation,

2.3.11 Capability Compression
The 256-bit in-memory representation of CHERI capabilities provides full accuracy for pointer
lower bounds and upper bounds, as well as a large object type space with software-defined
permissions. The 128-bit implementation of CHERI uses floating-point-like fat-pointer com-
pression techniques that rely on redundancy between the three 64-bit virtual addresses. The
compressed representation exchanges stronger alignment requirements (proportional to object
size) for a more compact representation. The CHERI Concentrate compression model (see
Section 3.4.4) maintains the monotonicity inherent in the 256-bit model: no ISA manipula-
tion of a capability can grant increased rights, and when unrepresentable cases are generated
(e.g., a pointer substantially out of bounds, or a very unaligned object), the pointer becomes
un-dereferenceable. Memory allocators already implement alignment requirements for heap
and stack allocations (word, pointer, page, and superpage alignments), and these algorithms
require only minor extension to ensure fully accurate bounds for large memory allocations.
Small allocations require no additional alignment, where the definition of ‘small’ depends on
the compression format used and might be from 4 kiB to 1 MiB. Relative to a 64-bit pointer, the
128-bit design reduces per-pointer memory overhead (with a strong influence on cache foot-
print for some software designs) by roughly two thirds, compared to the 256-bit representation.

2.3.12 Hybridization with Integer Pointers
Processors implementing CHERI capabilities also support existing programs compiled to use
conventional integer pointers rather than capabilities, using two special capabilities:

Default Data Capability indirects and controls non-capability-based pointer-based load and
store instructions.
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Figure 2.2: CHERI supports a wide range of operational software models including: unmodi-
fied MMU-based RISC operating systems; hybrid operating systems utilizing the MMU to sup-
port a process model and/or virtualization while using CHERI within virtual address spaces;
and pure single-address-space CHERI-based operating systems.

Program Counter Capability extends the conventional program counter with capability meta-
data, indirecting and controlling instruction fetches.

Programs compiled to use capabilities to represent pointers (whether implicitly or via ex-
plicit program annotations) will not use the default data capability, instead employing capability
registers and capability-based instructions for pointer operations and indirection. The program-
counter capability will be used regardless of the code model employed, although capability-
aware code generation will employ constrained program-counter bounds and permissions to
implement control-flow robustness rather than using a single large code segment. Support for
legacy loads and stores can be disabled by installing a sufficiently constrained (e.g., untagged)
default data capability.

Different compilation modes and ABIs provide differing levels of compatibility with exist-
ing code – but include the ability to run entirely unmodified non-CHERI binaries, to execute
non-CHERI code in sandboxes within CHERI-aware applications, and CHERI-aware code in
sandboxes within CHERI-unaware applications.

2.3.13 Hybridization with Virtual Addressing
The above features compose naturally with, and complement, the Virtual-Memory (VM) mod-
els commonly implemented using commodity Memory Management Units (MMUs) in current
OS designs (Figure 2.2). Capabilities are within rather than between address spaces; they pro-
tect programmer references to data (pointers), and are intended to be driven primarily by the
compiler rather than by the operating system. In-address-space compartmentalization comple-
ments process isolation by providing fine-grained memory sharing and highly efficient domain
switching for use between compartments in the same application, rather than between inde-
pendent programs via the process model. Operating-system kernels will also be able to use
capabilities to improve the safety of their access to user memory, as user pointers cannot be
accidentally used to reference kernel memory, or accidentally access memory outside of user-
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provided buffers. Finally, the operating system might choose to employ capabilities internally,
and even in its interactions with userspace, in referencing kernel data structures and objects.

2.3.14 Hybridization with Architectural Privilege

Conventional architectures employ ring-based mechanisms to control use of architectural priv-
ilege: only code executing in “supervisor” or “kernel” mode is permitted to access the virtual
address space with supervisor rights, but also to control the MMU, certain cache management
operations, interrupt-related features, system-call return, and so on. The ring model prevents
unprivileged code from manipulating the virtual address space (and other processor features)
in such a way as to bypass memory protection and isolation configured by the operating sys-
tem. Contemporary instantiations may also permit virtualization of those features, allowing
unmodified operating systems to execute efficiently over microkernels or hypervisors. CHERI
retains support for these models with one substantial modification: use of privileged features
within privileged rings, other than in accessing virtual memory as the supervisor, depends on
the program-counter capability having a suitable hardware permission set.

This feature similarly allows code within kernels, microkernels, and hypervisors to be com-
partmentalized, preventing bypass of the capability model within the kernel virtual address
space through control of virtual memory features. The feature also allows vulnerability miti-
gation by allowing only explicit use of privileged features: kernel code can be compiled and
linked so that most code executes with a program-counter capability that does not authorize use
of privilege, and only by jumping to selected program-counter capabilities can that privilege be
exercised, preventing accidental use. Finally, this feature paves the way for process and object
models in which the capability model is used without recourse to rings.

2.3.15 Failure Modes and Exceptions

Bounds checks, permissions, monotonicity, and other properties of the CHERI protection model
inevitably introduce the possibility of new ISA-visible failure modes when software violates
rules imposed through capabilities (whether due to accident or malicious intent). In general,
in our prototyping, we have selected to deliver hardware exceptions as early as possible when
such events occur; for example, on attempts to perform disallowed load and store operations, to
broaden bounds, and so on. This allows the operating system (which in turn may delegate to the
userspace language runtime or application) the ability to catch and handle failures in various
ways – such as by emulating disallowed accesses, converting to a language-visible exception,
or performing some diagnostic or mitigation activity.

Different architectures express differing design philosophies for when exceptions may be
delivered, and there is flexibility in the CHERI model in when exceptions might be deliv-
ered. For example, while an attempt to broaden (rather than narrow) bounds could generate
an immediate exception (our prototyping choice), the operation could instead generate a non-
dereferenceable pointer as its output, in effect deferring an exception until the time of an at-
tempted load, store, or instruction fetch. The former offers slightly improved debuggability (by
exposing the error earlier), whereas the latter can offer microarchitectural benefits by reducing
the set of instructions that can throw exceptions. Both of these implementations ensure mono-
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tonicity by preventing derived pointers from improperly allowing increased access following
guarded manipulation, and are consistent with the model.

2.3.16 Capability Revocation, Garbage Collection, and Flow Control
Revocation is a key design concern in capability systems, as revocation is normally imple-
mented via table indirection – an approach in tension with the CHERI design goal of avoid-
ing table-based lookups or indirection on pointer operations. As described in Section 2.3.10,
CHERI provides explicit ISA-level features to constrain the flow of capabilities in order to
reduce the potential overhead in walking through memory to find outstanding capabilities to
resources (e.g., to implement garbage collection or sweeping revocation). There are also ex-
plicit features in the instruction-set architecture that directly support the implementation of both
pointer and object-capability revocation:

MMU-based virtual-address revocation As CHERI capabilities are evaluated prior to virtual
addressing (i.e., they are pointers within address spaces), the MMU can be used not only
to maintain virtual address spaces, but also to explicitly prevent the dereferencing of
pointers to virtual address ranges – regardless of the capability mechanism. Combined
with a policy of either non-reuse of virtual address space (as distinct from non-reuse
of physical address space), sweeping revocation, or garbage collection, this allows all
outstanding capabilities (and any further capabilities derived from them) to be revoked
without the need to search for those capabilities in the register file or memory. This
revocation is subject to the granularity and scalability limitations of MMUs: for example,
it is not possible to revoke portions of the virtual address space smaller than one page.

This low-level hardware mechanism must be combined with suitable software manage-
ment of the virtual address space in order for it to be effective. For example, a policy
of non-reuse of the virtual address space at allocation time will prevent stale capabili-
ties from referring to a new allocation after an old one has been freed. A further policy
of revoking MMU mappings for the region of virtual address space will prevent use of
the freed memory as a communications channel from the point of free. Asynchronous
and batched revocations will improve performance, subject to windows of opportunity
in which use after free (but not use after re-allocation) might still be possible. It is also
worth observing explicitly that non-reuse of the virtual address space in no way implies
non-reuse of physical memory, as memory underlying revoked virtual addresses can be
safely reused. An alternative to virtual address-space non-reuse is garbage collection, in
which outstanding references to freed (and perhaps revoked) virtual address space are
sought and explicitly invalidated.

Use of the MMU for virtual address-space revocation is subject to a number of limits
depending on the non-reuse and garbage-collection policies adopted. For example, if
small, sub-page-size, tightly packed memory allocations are freed in a manner that leads
to fragmentation (i.e., both allocated and freed memory within the same virtual page),
then revocation will not be possible – as it would prevent access to valid allocations
(which could be emulated only at great expense). Similarly, fragmentation of the virtual
address space may lead to greater overhead in the OS’s virtual-memory subsystem, due
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to the need to maintain many individual small mappings, as well as the possibility of
reduced opportunity to use superpages should revocations occur that are expressed in
terms of smaller page sizes.

However, overall, the MMU provides a non-bypassable means of preventing use of all
outstanding capabilities to a portion of the virtual address space, permitting strong revo-
cation to be used where appropriate.

Accurate garbage collection Traditional implementations of C are not amenable to accurate
garbage collection because unions and types such as intptr_t allow a register or memory
location to contain either an integer value or a pointer. CHERI-C does not have this
limitation: The tag bit makes it possible to accurately identify all memory locations that
contain data that can be interpreted as a pointer. In addition, the value of the pointer
(encoded in the offset) is distinct from the base and length; thus, code that stores other
data in low bits of the pointer will not affect the collector. Garbage collection is the
logical dual of revocation: garbage collection extends the lifetime of objects as long as
they have valid references, whereas revocation curtails the lifetime of references once the
objects to which they refer are no longer valid. A simple stop-the-world mark-and-sweep
collector for C can perform both tasks, scanning all reachable memory, invalidating all
references to revoked objects, and recycling unreachable memory.

More complex garbage collectors typically rely on read or write barriers (i.e., mecha-
nisms for notifying the collector that a reference has been read or written). These are
typically inserted by the compiler; however, in the context of revocation the compiler-
generated code must be treated as untrusted. It may be possible to use the permission bits
– either in capabilities themselves or in page-table entries – to introduce traps that can be
used as barriers.

Capability tags for sweeping revocation In addition to supporting garbage collection, capa-
bility tags in registers and memory also allow the reliable identification of capabilities
for the purposes of explicit revocation. Subject to safety in the presence of concurrency
(e.g., by suspending software execution in the virtual address space, or temporarily lim-
iting access to portions of the virtual address space), software can reliably sweep through
registers and memory, clearing the tags (or otherwise replacing) for capabilities that are
to be revoked. This comes at potentially significant cost, which can be mitigated through
use of the MMU – e.g., to prevent capabilities from being used in certain pages intended
only to store data, or to track where capabilities have been stored via a capability dirty
bit in virtual-memory metadata.

Revocation of sealed capabilities When the interpretation of sealed capabilities is performed
by a trustworthy software exception handler, there is the opportunity for that exception
handler to implement revocation semantics explicitly. For example, the CCall selector
0/CReturn exception handler could interpret the virtual address of a sealed capability as
pointing to a table entry within the kernel, rather than directly encapsulating a pointer to
user memory. The address could be split into two parts: a table index, and a generation
counter. The table entry could then itself contain a generation counter. Sealed object-
capability references to the table entry would incorporate the value of the counter at the
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time of sealing, and the CCall mechanism would check the generation count, rejecting
invocation on a mismatch. When object-capability revocation is desired, the table gen-
eration counter could be bumped, preventing any further use of outstanding references.
This approach would be subject to limits on table-entry reuse and the size of the table;
for example, a reasonable design might employ a 24-bit table index (permitting up to
224 objects in the system at a time) and a 40-bit generation counter. Use of the 24-bit
object-type could further increase the number of objects permissible in the system con-
currently. Many other similar schemes incorporating explicit checks for revocation based
on software interposition employing counters, tables, etc., can be imagined.

CHERI includes several architectural features to facilitate techniques such as garbage col-
lection and sweeping revocation. Tags allow capabilities to be accurately identified in both
registers and memory. In addition, CHERI can limit the flow of capabilities via various mecha-
nisms, limiting the memory areas that must be swept for the two techniques: MMU permissions
controlling capability load and store via specific pages; capability permissions controlling ca-
pability load and store via specific capabilities; and the local-global feature that controls the
propagation of subsets of capabilities. These primitives may be combined to support higher-
level software policies such as:

• “capabilities may not be shared between address spaces”

• “local stack capabilities may be stored only to the local stack”

• “this shared-memory buffer can be used only for data sharing, not capability sharing”

• “capabilities can flow only one way through this shared buffer”

• “only the TCB can introduce capabilities to shared memory between compartments”

• “supervisor involvement is required to share sealed capabilities between compartments”

• “first store of a capability to any page will deliver an exception to the supervisor”

As a result, garbage collection and sweeping revocation can rely on strong invariants about
capability propagation that limit the areas of memory that must be swept for garbage collection
or revocation.

2.4 Software Protection and Security Using CHERI
The remainder of the chapter explores these ideas in greater detail, describing the high-level
semantics offered by the ISA and how they are mapped into programmer-visible constructs
such as C-language features. The description in this chapter is intended to be agnostic to
the specific Instruction-Set Architecture (ISA) in which CHERI is implemented. Whereas the
implementation described in later chapters maps into the 64-bit MIPS ISA, the overall CHERI
strategy is intended to support a variety of ISA backends, and could be implemented in the
64-bit ARMv8, SPARCv9, or RISC-V ISAs with only modest localization. In particular, it
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is important that programmers be able to rely on the properties described in this chapter –
regardless of the ISA-level implementation – and that software abstractions built over these
properties have consistent behavior that can be depended upon to mitigate vulnerabilities.

2.4.1 Abstract Capabilities
The CHERI architecture imposes tight constraints on capability manipulation and use includ-
ing provenance validity and monotonicity. While these rules generally permit the execution
of current C and C++ code without significant modification, there are occasions on which the
programmer model of pointer properties (for example) may violate rules for capabilities. For
example, the architecture maintains provenance validity of capabilities from reset, permitting
them to remain valid only if they are held in tagged memory or registers. In practice, oper-
ating systems may swap memory pages from DRAM to disk and back, violating architectural
provenance validity. The OS kernel is able to maintain the appearance of provenance valid-
ity for swapped pages by saving tags when swapping out, and re-deriving capabilities from
valid architectural capabilities when swapped back in – maintaining the abstract capabilities
that compiler-generated code works with. Our ASPLOS 2019 paper on CheriABI explores
this issue in detail [28], covering topics such as context switching, the C-language runtime,
virtual-memory behavior, and debugging.

2.4.2 C/C++ Language Support
CHERI has been designed so that there are clean mappings from the C and C++ programming
language into these protection properties. Unlike conventional virtual memory, the compiler
(rather than the operating system) is intended to play the primary role in managing these pro-
tections. Protection is within address spaces, whether in a conventional user process, or within
the operating-system kernel itself in implementing its own services or in accessing user mem-
ory:

Spatial safety CHERI protections are intended to directly protect the spatial safety of userspace
types and data structures. This protection includes the integrity of pointers to code and
data, as well as implied code pointers in the form of return addresses and vtable entries;
bounds on heap and stack allocations; the prevention of executable data, and modification
of executable code via permission.

Temporal safety CHERI provides instruction-set foundations for higher-level temporal safety
properties, such as non-reuse of heap allocations via garbage collection and revocation,
and compiler clearing of return addresses on the stack. In particular, the capability tags
on registers and in memory allows pointers to be reliably located and atomically replaced
with a different value (including an invalid capability). Acceleration features allow capa-
bilities to be located more efficiently than simply sweeping all of physical memory.

Software compartmentalization CHERI provides hardware foundations for highly efficient
software compartmentalization, the fine-grained decomposition of larger software pack-
ages into smaller isolated components that are granted access only to the memory (and
also software-defined) resources they actually require.



64 CHAPTER 2. THE CHERI PROTECTION MODEL

Enforcing language-level properties CHERI’s software-defined permission bits and sealing
features can also be used to enforce other language-level protection objectives (e.g., opac-
ity of pointers exposed outside of their originating modules) or to implement hardware-
assisted type checking for language-level objects (e.g., to more robustly link C++ objects
with their corresponding vtables).

CHERI protections are implemented by a blend of functionality:

Compiler and linker responsible for generating code that manipulates and dereferences code
and data pointers, compile-time linkage, and stack allocation.

Language runtime responsible for ensuring that program run-time linkage, memory alloca-
tion, and exceptions implement suitable policies in their refinement and distribution of
capabilities to the application and its libraries.

Operating-system kernel responsible for interactions with conventional virtual memory, main-
taining capability state across context switches, reporting protection failures via signals
or exceptions, and implementing domain-transition features used with compartmental-
ization.

Application program and libraries responsible for distributing and using pointers, allocat-
ing and freeing memory, and employing higher-level capability-based protection features
such as compartmentalization during software execution.

Data-Pointer Protection

Depending on the desired compilation mode, some or all data pointers will be implemented
using capabilities. We anticipate that memory allocation (whether from the stack or heap, or
via kernel memory mapping) will return capabilities whose bounds and permissions are suitable
for the allocation, which will then be maintained for any derived pointers, unless explicitly
narrowed by software. This will provide the following general classes of protections:

Pointer integrity protection Overwriting a pointer in memory with data (e.g., received over a
socket) will not be able to construct a dereferenceable pointer.

Pointer provenance checking and monotonicity Pointers must be derived from prior point-
ers via manipulations that cannot increase the range or permissions of the pointer.

Bounds checking Pointers cannot be moved outside of their allocated range and then be deref-
erenced for load, store, or instruction fetch.

Permissions checking Pointers cannot be used for a purpose not granted by its permissions.
In as much as the kernel, compiler, and run-time linker restrict permissions, this will (for
example) prevent data pointers from being used for code execution.

Bounds or permissions subsetting Programmers can explicitly reduce the rights associated
with a capability – e.g., by further limiting its valid range, or by reducing permissions
to perform operations such as store. This might be used to narrow ranges to specific
elements in a data structure or array, such as a string within a larger structure.
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Flow control on pointers Capability (and hence pointer) flow propagation can be limited us-
ing CHERI’s capability flow-control mechanism, and used to enforce higher-level poli-
cies such as that stack capabilities cannot be written to global data structures, or that
non-garbage-collectable capabilities cannot be passed across domain transitions.

Code-Pointer Protection

Again with support of the compiler and linker, CHERI capabilities can be used to implement
control-flow robustness that prevents code pointers from being corrupted or misused. This
can limit various forms of control-flow attacks, such as overwriting of return addresses on
the stack, as well as pointer re-use attacks such as Return-Oriented Programming (ROP) and
Jump-Oriented Programming (JOP). Potential applications include:

Return-address protection Capabilities can be used in place of pointers for on-stack return
addresses, preventing their corruption.

Function-pointer protection Function pointers can also be implemented as capabilities, pre-
venting corruption.

Exception-state protection On-stack exception state and signal frame information also con-
tain pointers whose protection will limit malicious control-flow attacks.

C++ vtable protection A variety of control-flow attacks rely on either corrupting C++ vtables,
or improper use of vtables, which can be detected and prevented using CHERI capabili-
ties to implement both pointers to, and pointers in, vtables.

2.4.3 Protecting Non-Pointer Types
One key property of CHERI capabilities is that although they are designed to represent pointers,
they can also be used to protect other types – whether those visible directly to programmers
through APIs or languages, or those used only in lower-level aspects of the implementation
to improve robustness. A capability can be stripped of its hardware interpretation by masking
all hardware-defined permission bits (e.g., those authorizing load, store, and so on). A set of
purely software-defined permission bits can be retrieved, masked, and checked using suitable
instructions. Sealed capabilities further impose immutability on capability fields. These non-
pointer capabilities benefit from tag-based integrity and provenance protections, monotonicity,
etc. There are many possible use cases, including:

• Using CHERI capabilities to represent hardware resources such as physical addresses, in-
terrupt numbers, and so on, where software will provide implementation (e.g., allocation,
mapping, masking), but where capabilities can be stored and delegated.

• Using CHERI capabilities as canaries in address spaces: while stripping any hardware-
defined interpretation, tagged capabilities can be used to detect undesired memory writes
where bounds may not be suitable.
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• Using CHERI capabilities to represent language-level type information, where there is
not a hardware interpretation, but unforgeable tokens are required – for example, to au-
thorize use of vtables by suitable C++ objects.

2.4.4 Isolation, Controlled Communication, and Compartmentalization

In software compartmentalization, larger complex bodies of software (such as operating-system
kernels, language runtimes, web browsers, and office suites) are decomposed into multiple
components that run in isolation from one another, having only selectively delegated rights to
the broader application and system, and limited further attack surfaces. This allows the im-
pact of exploited vulnerabilities or faults to be constrained, subject to software being suitably
structured – i.e., that its privileges and functionality have been suitable decomposed and safely
represented. Software sandboxing is one example of compartmentalization, in which particu-
larly high-risk software is tightly isolated due to the risks it poses – for example, in rendering
HTML downloaded from a web site, or in processing images attached to e-mail. Compartmen-
talization is a more general technique, of which sandboxing is just one design pattern, in which
privileges are delimited and minimized to improve software robustness [57, 101, 131, 46]. Soft-
ware compartmentalization is one of the few known techniques able to mitigate future unknown
classes of software vulnerability and exploitation, as its protective properties do not depend on
the specific vulnerability or exploit class being used by an attacker.

Software compartmentalization is build on two primitives: software isolation and controlled
communication. CHERI hybridizes two orthogonal mechanisms exist to construct isolation and
controlled communication: the conventional MMU (using multiple virtual address spaces as
occurs in widely used sandboxed process models), and CHERI’s in-address-space capability
mechanism (by constructing closures in the graph of reachable capabilities). These mecha-
nisms can be combined to construct fine-grained software compartmentalization within vir-
tual address spaces, which may complement (or even replace) a virtual-address-based process
model.

To constrain software execution using CHERI, a more privileged software runtime must
arrange that only suitable capabilities are delegated to software that must run in isolation. For
example, the runtime might grant software access to its own code, a stack, global variables,
and heap storage, but not to the private privileged state of the runtime, nor to the internal state
of other isolated software components. This is accomplished by suitably initializing the thread
register file of the software (and hence CPU register file when it begins execution) to point
into an initial set of delegated code and allocation capabilities, and then exercising discretion
in storing capabilities into any further memory that it can reach. Capability nonforgeability,
monotonicity, and provenance validity ensure that new rights cannot be created by constrained
software, and that existing rights cannot be escalated. As isolation refers not just to the initial
state, but also the continuing condition of software, discretion in delegating capabilities must
be continued throughout execution, in much the same way that software isolation using the
MMU depends not just on safe initial configuration, but safe continuing configuration as code
executes.

In order to achieve compartmentalization, and not simply isolation, CHERI’s selective non-
monotonic mechanisms can be used: exception handling, and jump-based invocation. If the
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software supervisor arranges that additional rights will be acquired by the exception handler
(using more privileged kernel code and data capabilities), then the exception handler will be
able to perform non-monotonic transformations on the set of capabilities in the register file,
accessing memory (and other resources) unavailable to the isolated code. Sealed capabilities
allow encapsulated handles to resources to be delegated to isolated code in such a manner that
the sealed capabilities and resources they describe can be protected from interference. CHERI’s
jump-based invocation mechanism allows those resources to be unsealed in a controlled man-
ner, with control flow transferred to appropriate receiving code in a way that protects both the
caller and callee. This source of non-monotonicity can also be used to implement domain tran-
sition by having the caller discard rights prior to performing the jump, and the callee acquire
any necessary rights via unsealing of its capabilities. It is essential to CHERI’s design that
exercise of non-monotonicity support reliable transfer of control to code trusted with newly
acquired rights.

Efficient controlled communication can persist across domain transitions through the ap-
propriate delegation of capabilities to shared memory, as well as the delegation of sealed
capabilities allowing selected domain switching. CHERI’s permissions allow uses of shared
memory to be constrained in a variety of ways. The software configuring compartmentaliza-
tion might choose to delegate load-only or load-execute access to shared code or read-only
data segments. Other permissions constrain the propagation of capabilities; for example, the
software supervisor might allow communication only using data and not capabilities via a com-
munication ring between two mutually distrusting phases in a processing pipeline. Similarly,
CHERI’s local-global protections might be utilized to prevent capabilities for non-garbage-
collectable memory from being shared between mutually distrusting components, while still
allowing garbage-collectable heap allocations to be delegated.

Collectively, these mechanisms allow a variety of software-defined compartmentalization
models to be constructed. We have experimented with several, including the CheriBSD in-
process compartmentalization mechanism, which models domain transition on a secure func-
tion call with trusted stack maintained by the operating-system kernel via exception-based
invocation [146, 143], and microkernel-based systems that utilize jump-based domain tran-
sition within a single-address-space operating system, which model domain transition on asyn-
chronous or synchronous message passing. Effective software compartmentalization relies not
only on limiting access to memory, but also a variety of other properties such as appropriate
(perhaps fair or prioritized) scheduling, resource allocation, and non-leakage of data or rights
via newly allocated or freshly reused memory, which are higher-level properties that must be
ensured by the software supervisor. While many of these concerns exist in MMU-based soft-
ware compartmentalization, they can take on markedly different forms or implications. For
example, the zeroing of memory before reuse prevents the leakage of rights, and not just data,
in the capability model. As with MMU-based isolation and compartmentalization, CHERI
provides strong architectural primitives, and is not intended to directly address microarchitec-
tural concerns such as cache side channels or information leakage through branch predictors,
performance counters, or other state.

Substantially different architectural underpinnings for capability-based, rather than MMU-
based, compartmentalization give it quite different practical properties. For example, two pro-
tection domains sharing access to a region of memory will not experience increased page-table
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and TLB footprint by virtue of sharing a virtual address space. Similarly, the model for delegat-
ing shared memory is substantially different: simple pointer delegation, rather than page-table
construction, has far lower overhead. On the other hand, revoking access to shared memory via
the capability model requires either non-reuse of portions of the virtual address space, sweeping
capability revocation, or garbage collection (see Section 2.3.16). We have found that the two
approaches complement one another well: virtual memory continues to provide a highly useful
underpinning for conventional coarse-grained virtual-machine and process models, whereas
CHERI compartmentalization works extremely well within applications as it caters to rapid
domain switching and large amounts of sharing between fine-grained and tightly coupled com-
ponents.

2.4.5 Source-Code and Binary Compatibility
CHERI supports Application Programming Interfaces (APIs) and Application Binary Inter-
faces (ABIs) with compatibility properties intended to facilitate incremental deployment of its
features within current software environments. For example, an OS kernel can be extended to
support CHERI capabilities in selected userspace processes with only minor extensions to con-
text switching and process setup, allowing both conventional and CHERI-extended programs
to execute – without implying that the kernel itself needs to be implemented using capabili-
ties. Further, given suitable care with ABI design, CHERI-extended libraries can exist within
otherwise unmodified programs, allowing fine-grained memory protection and compartmen-
talization to be deployed selectively to the most trusted software (i.e., key system libraries) or
least trustworthy (e.g., video CODECs), without disrupting the larger ecosystem. CHERI has
been tested with a large range of system software, and efficiently supports a broad variety of C
programming idioms poorly supported by the state of the art in software memory protection. It
provides strong and reliable hardware-assisted protection in eliminating common exploit paths
that today can be mitigated only by using probabilistically correct mechanisms (e.g., grounded
in address-space randomization) that often yield to determined attackers.

2.4.6 Code Generation and ABIs
Compilers, static and dynamic linkers, debuggers, and operating systems will require extension
to support CHERI capabilities. We anticipate multiple conventions for code generation and
binary interfaces, including:

Conventional code generation Unmodified operating systems, user programs, and user li-
braries will work without modification on CHERI processors. This code will not re-
ceive the benefits of CHERI memory protection – although it may execute encapsulated
within sandboxes maintained by CHERI-aware code, and thus can participate in a larger
compartmentalized application. It will also be able to call hybrid code.

Hybrid code generation Conventional code generation, calling conventions, and binary inter-
faces can be extended to support (relatively) transparent use of capabilities for selected
pointers – whether hand annotated (e.g., with a source-code annotation) or statically de-
termined at compile time (e.g., return addresses pushed onto the stack). Hybrid code will
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generally interoperate with conventional code with relative ease – although conventional
code will be unable to directly dereference capability-based types. CHERI memory-
protection benefits will be seen only for pointers implemented via capabilities – which
can be adapted incrementally based on tolerance for software and binary-interface mod-
ification.

Pure-capability code generation Software can also be compiled to use solely capability-based
instructions for memory access, providing extremely strong memory protection. Direct
calling in and out of pure-capability code from or to conventional code or hybrid code
requires ABI wrappers, due to differing calling conventions. Extremely strong memory
protection is experienced in the handling of both code and data pointers.

Compartmentalized code is accessed and can call out via object-capability invocation and
return, rather than by more traditional function calls and returns. This allows strong iso-
lation between mutually distrusting software components, and makes use of a new calling
convention that ensures, among other properties, non-leakage of data and capabilities in
unused argument and return-value registers. Compartmentalized code might be gener-
ated using any of the above models; although it will experience greatest efficiency when
sharing data with other compartments if a capability-aware code model is used, as this
will allow direct loading and storing from and to memory shared between compartments.
Containment of compartmentalized components does not depend on the trustworthiness
of the compiler used to generate code for those components.

Entire software systems need not utilize only one code-generation or calling-convention
model. For example, a kernel compiled with conventional code, and a small amount of CHERI-
aware assembly, can host both hybrid and pure-capability userspace programs. A kernel com-
piled to use pure-capability or hybrid code generation could similarly host userspace processes
using only conventional code. Within the kernel or user processes, some components might
be compiled to be capability-aware, while others use only conventional code. Both capability-
aware and conventional code can execute within compartments, where they are sandboxed with
limited rights in the broader software system. This flexibility is critical to CHERI’s incremental
adoption model, and depends on CHERI’s hybridization of the conventional MMU, OS models,
and C programming-language model with a capability-system model.

2.4.7 Operating-System Support
Operating systems may be modified in a number of forms to support CHERI, depending on
whether the goal is additional protection in userspace, in the kernel itself, or some combination
of both. Typical kernel deployment patterns, some of which are orthogonal and may be used in
combination, might be:

Minimally modified kernel The kernel enables CHERI support in the processor, initializes
register state during context creation, and saves/restores capability state during context
switches, with the goal of supporting use of capabilities in userspace. Virtual memory
is extended to maintain tag integrity across swapping, and to prevent tags from being



70 CHAPTER 2. THE CHERI PROTECTION MODEL

used with objects that cannot support them persistently – such as memory-mapped files.
Other features, such as signal delivery and debugging support require minor extensions
to handle additional context. The kernel can be compiled with a capability-unaware
compiler and limited use of CHERI-aware assembly. No additional protection is afforded
to the kernel in this model; instead, the focus is on supporting fine-grained memory
protection within user programs.

Capability domain switching in userspace Similar to the minimally modified kernel model,
only modest changes are made to the kernel itself. However, some additional extensions
are made to the process model in order to support multiple mutually distrusting security
domains within user processes. For example, new CCall and CReturn exception han-
dlers are created, which implement kernel-managed ‘trusted stacks’ for each user thread.
Access to system calls is limited to authorized userspace domains.

Fine-grained capability protection in the kernel In addition to capability context switching,
the kernel is extended to support fine-grained memory protection throughout its design,
replacing all kernel pointers with capabilities. This allows the kernel to benefit from
pointer tagging, bounds checking, and permission checking, mitigating a broad range of
pointer-based attacks such as buffer overflows and return-oriented programming.

Capability domain switching in the kernel Support for a capability-aware kernel is extended
to include support for fine-grained, capability-based compartmentalization within the
kernel itself. This in effect implements a microkernel-like model in which components
of the kernel, such as filesystems, network processing, etc., have only limited access to
the overall kernel environment delegated using capabilities. This model protects against
complex threats such as software supply-chain attacks against portions of the kernel
source code or compiled kernel modules.

Capability-aware system-call interface Regardless of the kernel code generation model, it
is possible to add a new system-call Application Binary Interface (ABI) that replaces
conventional pointers with capabilities. This has dual benefits for both userspace and
kernel safety. For userspace, the benefit is that system calls operating on its behalf will
conform to memory-protection policies associated with capabilities passed to the kernel.
For example, the read system call will not be able to overflow a buffer on the userspace
stack as a result of an arithmetic error. For the kernel, referring to userspace memory only
through capabilities prevents a variety of confused deputy problems in which kernel bugs
in validating userspace arguments could permit the kernel to access kernel memory when
userspace access is intended, perhaps reading or overwriting security-critical data. The
capability-aware ABI would affect a variety of user-kernel interactions beyond system
calls, including ELF auxiliary arguments during program startup, signal handling, and
so on, and resemble other pointer-compatibility ABIs – such as 32-bit compatibility for
64-bit kernels.

These points in the design space revolve around hybrid use of CHERI primitives, with a con-
tinued strong role for the MMU implementing a conventional process model. It is also possible
to imagine operating systems created without taking this view:
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Pure-capability operating system A clean-slate operating-system design might choose to min-
imize or eliminate MMU use in favor of using the CHERI capability model for all protec-
tion and separation. Such a design might reasonably be considered a single address-space
system in which capabilities are interpreted with respect to a single virtual address space
(or the physical address space in MMU-free designs). All separation would be imple-
mented in terms of the object-capability mechanism, and all memory sharing in terms
of memory capability delegation. If the MMU is retained, it might be used simply for
full-system virtualization (a task for which it is well suited), or also support mechanisms
such as paging and revocation within the shared address space.

2.5 Protection Against Microarchitectural Side-Channels
While CHERI has been designed as an architectural security mechanism – i.e., one concerned
with explicit access to memory contents or control of system functions – recent publication of
highly effective attacks against microarchitectural side channels has caused us to reconsider
CHERI’s potential role [61]. Several of these attacks (e.g., Spectre variants) rely on overly op-
timistic speculative execution of paths that violate invariants embedded in the executing code.
For example, code may contain explicit bounds checks, but by suitably training a branch pre-
dictor, an attacker can cause the code to bypass those checks in speculative execution, which
then leaves behind a measurable result in the instruction or data cache. CHERI offers new op-
portunities to bound speculative execution such that it observes security properties otherwise
not explicitly available to the microarchitecture. Possible bounds on speculative execution
grounded in CHERI features include:

• Enforcing capability tag checks in speculation, preventing code or data pointers without
valid provenance from being used.

• Enforcing capability bounds checks in speculation, preventing any out-of-bounds mem-
ory accesses for data load/store or instruction fetch.

• Enforcing capability permission checks in speculation, preventing inappropriate loads or
stores or instruction fetch.

• Enforcing other capability protections, such as being sealed, to ensure encapsulation is
implemented in speculation.

• Limiting data-value speculation for capability values, or for values that will be combined
with capabilities (e.g., integer values that are added to a capability offset to calculate a
new capability).

• Limiting speculation across protection-domain boundary transitions.

In addition, we have extended CHERI with new instructions to get and set a software-
defined compartment ID (CID). Unlike with conventional MMU-based virtual address spaces
that have specific address-space identifiers or page-table roots identifying protection domains,
CHERI protection domains are emergent from the dynamic delegation of capabilities. The
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CID might be used by microarchitectures to limit speculation of sharing of microarchitectural
state. For example, branch-predictor entries may be tagged with a CID to prevent them from
being used with the wrong compartment. This would necessarily need to be combined with an
address-space identifier (ASID), as addresses (and hence corresponding capabilities) may have
different interpretations in different address spaces.

As with other CHERI features, CID management is authorized using a capability, allowing
regions of CIDs to be delegated to domains or switchers for their own selective use. Where
strong side-channel-free confidentiality is not required between a set of domains, the CID may
be left as-is. Otherwise, a suitably authorized software domain switcher will be able to set the
CID to a new value.

Protective effects rely, of course, on appropriate implementation in the microarchitecture.
Further notes on our thoughts on CHERI and microarchitectural side channels may be found in
our technical report, Capability Hardware Enhanced RISC Instructions (CHERI): Notes on the
Meltdown and Spectre Attacks [147].



Chapter 3

Mapping CHERI Protection into
Architecture

In this chapter, we explore architecture-neutral aspects of the mapping from the abstract CHERI
protection model into Instruction-Set Architectures (ISAs). We consider the high-level archi-
tectural goals in mappings and the implications of our specific capability-system model before
turning to the concrete definitions associated with CHERI’s architectural capabilities, register
files, tagged memory, and its composition with various existing architectural features such as
exception handling and virtual memory.

We conclude with a consideration of “deep” versus “surface” design choices: where there
is freedom to make different choices in instantiating the CHERI model in a specific ISA, with
an eye towards both the adaptation design space and also applications to further non-MIPS
ISAs, and where divergence might lead to protection inconsistency across architectures. These
topics are revisited in greater detail in Chapters 4 (CHERI-MIPS), 5 (CHERI-RISC-V), and 6
(CHERI-x86-64), addressing specify emerging CHERI variants (or, in the case of CHERI-x86-
64, a conceptual variant).

3.1 High-Level Architectural Goals
In addition to the broad abstract goal of supporting pointer-centric protection with strong com-
patibility and performance objectives, we have pursued the following architectural goals in
integrating CHERI into contemporary instruction-set architectures:

1. When mapping the CHERI model into RISC architectures, CHERI’s extensions should
subscribe to the RISC design philosophy: a load-store instruction set intended to be tar-
geted by compilers, with more complex instructions motivated by quantitative analysis.
While current page-table structures (or in the case of MIPS, simply TLB mechanisms)
are retained for functionality and compatibility, new table-oriented structures are avoided
in describing new security primitives. In general, instructions that do not access memory
or trigger an exception should be single-cycle register-to-register operations.

2. New primitives, such as tagged memory and capabilities, are aligned closely with current
microarchitectural designs (e.g., as relates to register files, pipelined and superscalar pro-
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cessors, memory subsystems, and buses), offering minimal disruption necessary to offer
substantial semantic and performance improvements that would be difficult to support
with current architectures. Where current de-facto approaches to microarchitecture must
be changed to support CHERI – such as through the adoption of architectural tagged
memory – there are efficient implementations.

3. CHERI composes sensibly with MMU-based memory protection: current MMU-based
operating systems should run unmodified on CHERI designs, and as CHERI support
is introduced in an MMU-based operating system, it should compose naturally while
allowing both capability-aware and legacy programs to run side-by-side. This allows
software designers to view the system as a set of more conventional virtual address spaces
within which CHERI offers protection – or as a single-address-space system environment
as use of the MMU is minimized.

4. As protection pressure shifts from conventional MMU-based techniques to reference-
oriented protection using CHERI capabilities, page-table efficiency increases as larger
page sizes cease to penalize protection.

5. Utilization of protection primitives is common-case, not exceptional, occurring in perform-
ance-centric code paths such as stack and heap allocation, on pointer arithmetic, and on
pointer load and store, rather than being an infrequent higher-cost activity that can be
amortized.

6. The principles of least privilege and intentional use dictate a number of aspects of CHERI
ISA design, including requiring that no confusion arise between the use of capabilities
as pointers versus integers as pointers. Load, store, and jump instructions will never
automatically select semantics based on presence of a tag – for example, to avoid oppor-
tunities accidental use of the wrong right (e.g., by virtue of a capability tag being cleared
due to an exploitable software vulnerability leading to its interpretation as an integer
virtual address). Similarly, associative lookups of capabilities are entirely avoided.

Trade-offs around this design goal inevitably exist. For example, to run unmodified soft-
ware, CHERI provides a Default Data Capability that is transparently dereferenced when
legacy integer-pointer-based code accesses memory, which we deem necessary for com-
patibility reasons. Similarly, we do not currently choose to provide granular control over
the use of ring-based processor privilege, in order to avoid the complexity and disruption
of implementing entirely new interfaces for interrupt and MMU management, using a
single permission on code capabilities rather than a broad set of possible capabilities rep-
resenting different privileges. A purer (non-hybridized) capability-system design would
avoid these design choices.

7. Just as C-language pointers map cleanly and efficiently into integers today, pointers must
similarly map cleanly, efficiently, and vastly more robustly, into capabilities. This should
apply both to language-visible data and code pointers, but also pointers used in imple-
menting language features, such as references to C++ vtables, return addresses, etc.
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8. Flexibility exists to employ only legacy integer pointers or capabilities as dictated by soft-
ware design and code generation, trading off compatibility, protection, and performance
– while ensuring that security properties are consistently enforced and can be reasoned
about cleanly.

9. When used to implement isolation and controlled communication in support of compart-
mentalization, CHERI’s communication primitives scale with the actual data footprint
(i.e., the working set of the application). Among other things, this implies that commu-
nication should not require memory copying costs that grow with data size, nor trigger
TLB aliasing that increases costs as the degree of sharing increases. Our performance
goal is to support at least two orders of magnitude more active protection domains per
core than current MMU-based systems support (going from tens or hundreds to at least
tens of thousands of domains), and similarly to reduce effective domain-crossing cost by
at least two orders of magnitude.

10. When sharing memory or object references between protection domains, programmers
should see a unified namespace connoting efficient and comprehensible delegation.

11. When implementing efficient protection-domain switching, the architecture supports a
broad range of software-defined policies, calling conventions, and memory models. Where
possible, software TCB paths should be avoided – but where necessary for semantic flex-
ibility, they should be supported safely and efficiently. As with MMU-based protection-
domain representation and crossing, CHERI supports both synchronous and asynchronous
communication patterns.

12. Where possible, we make use of provable, deterministic protection, avoiding probabilis-
tic techniques. For example, we avoid the use of cryptographic hashes that must be
truncated to small numbers of bits within a pointer or capability, instead making use of
tagging. This not only avoids brute-force attempts against short hashes, but also allows
stronger non-reinjection properties: pointers leaked via network communications or IPC
cannot be reinjected, despite having previously been valid. This in turn allows stronger
temporal safety properties to be enforced by software, due to having stronger guarantees.
Provability is an essential aspect to our work: CHERI’s architectural safety properties
must be formally expressible, and mechanically provable from that expression.

13. More generally, we seek to exploit hardware performance gains wherever possible: in
eliminating repeated software-generated checks by providing richer semantics, in pro-
viding stronger underlying atomicity for pointer integrity protection that would be very
difficult to provide on current architectures, and in providing more scalable models for
memory sharing between mutually distrusting software components. By making these
operations more efficient, we encourage their more extensive use.

These and other design goals permeate CHERI’s abstract architecture-neutral design as well
as its architecture-specific instantiations.
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3.2 Capability-System Model

In CHERI, capabilities are unforgeable tokens of authority through which programs access all
memory and services within an address space. Capabilities are a fundamental hardware type
that may be held in registers (where they can be inspected, manipulated, and dereferenced
using capability instructions), or in memory (where their integrity is protected). They include
an integer virtual address, bounds, permissions, and other protective metadata including an
object type and one-bit tag.

Capability permissions determine what operations (if any) are available via the architecture.
Commonly used permissions include those authorizing memory loads, memory stores, and
instruction fetches. Where permissions authorize memory access, capability bounds limit the
range of addresses that may be accessed; for other permissions, bounds constrain other forms
of access (e.g., use of the object-type space). Memory capabilities (those authorizing memory
access) may be used to load other capabilities into registers for use. Capabilities may also be
sealed in order to make their fields immutable and the capability non-dereferenceable.

While motivated by the goal of representing pointers (protected virtual addresses), they
are also able to protect non-pointer values. For example, sealed capabilities without memory-
access permissions may be used to represent references to protection domains that can be tran-
sitioned to via software-defined object invocation.

Unforgeability is implemented by two means: tag bits and guarded manipulation. Each
capability register (and each capability-aligned physical memory location) is associated with
a tag bit indicating that a capability is valid. Attempts to directly overwrite a capability in
memory using data (rather than capability) stores automatically clears the tag bit. When data
is loaded into a register, its tag bit is also loaded; while data without a valid tag can be loaded
into a register, attempts to dereference or invoke such a register will trigger an exception.

Guarded manipulation is enforced by virtue of the ISA: instructions that manipulate capa-
bility register fields (e.g., base, offset, length, permissions, type) are not able to increase the
rights associated with a capability. Similarly, sealed capabilities can be unsealed only via the
invocation mechanism, or via the unseal instruction subject to similar monotonicity rules. This
enforces encapsulation, and prevents unauthorized access to the internal state of objects.

Collectively, unforgeability and guarded manipulation ensure that dereferenceable capabil-
ities (those with their tag set) have valid provenance: they are derived only from other valid
capabilities, and only through valid manipulations. All other capabilities will not have their tag
set, hence cannot be dereferenced.

Intentionality avoids the automatic selection of a capability from among a set in order to
locate rights to authorize a requested operation. It is always clear for every instruction what
capability will authorize its action, e.g., whether for the executing code capability (to authorize
privileged ISA operations such as MMU management), explicit operand capabilities (to query,
modify, or dereference), or implicit use of the Default Data Capability (e.g., when constraining
legacy load and store instructions). There are no associative lookups of capabilities to select
from among several options, and instructions are always clearly defined as expecting an integer
or a tagged capability as an operand, failing if that expectation is not met.

We anticipate that many languages will expose capabilities to the programmer via point-
ers or references – e.g., as qualified pointers in C, or mapped from object references in Java.
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Similarly, capabilities may be used to bridge communication between different languages more
safely – for example, by imposing Java memory-protection and security properties on native
code compiled against the Java Native Interface (JNI). In general, we expect that languages
will not expose registers directly for management by programmers, instead using them for in-
struction operands and as a cache of active values, as is the case for integer pointers today.
On the other hand, we expect that there will be some programmers using the equivalent of
assembly-language operations, and the CHERI compartmentalization model does not place
trust in compiler correctness for non-TCB code.

3.3 Architectural Capabilities

CHERI capabilities are an architectural data type, directly implemented by the CPU hardware
in a manner similar to integers or floating-point values. Capabilities may be held in registers
or in tagged memory. On RISC (“load-store”) architectures, CHERI-aware code can use new
capability instructions to inspect, manipulate, and dereference capabilities held in registers. On
CISC architectures, direct use of capabilities in memory may also be possible. In-register mod-
ification of capability values is subject to guarded manipulation (e.g., to enforce monotonicity),
and dereference is subject to appropriate checks (e.g., for a valid tag, sealing, appropriate per-
missions, and suitable bounds). In-memory modification of capability values is protected by
tagged memory.

3.3.1 Capability Contents

Capabilities contain a number of software-accessible architectural fields, which may differ in
content and size from the microarchitectural implementation or in-memory representation:

• Tag bit (“tag”, 1 bit “out of band” from addressable memory)

• Permissions mask (“perms”, parameterizable size)

• Software-defined permissions mask (“uperms”, parameterizable size)

• Flags (“flags”, parameterizable size)

• Object type (“otype”, 64 bits)

• Offset (“offset”, 64 bits)

• Base virtual address (“base”, 64 bits)

• Length in bytes (“length”, 64 bits)
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Bit Name Tag? Seal? Bounds?

0 Global X - -
1 Permit_Execute X Unsealed Address
2 Permit_Load X Unsealed Address
3 Permit_Store X Unsealed Address
4 Permit_Load_Capability X Unsealed -
5 Permit_Store_Capability X Unsealed -
6 Permit_Store_Local_Capability X Unsealed -
7 Permit_Seal X Unsealed Object Type
8 Permit_CCall X Sealed -
9 Permit_Unseal X Unsealed Object Type
10 Access_System_Registers X Unsealed -
11 Permit_Set_CID X Unsealed CID

Table 3.1: Architectural permission bits for the perms capability field, along with checks usu-
ally used alongside that permission: Tag? Require a valid tag; Seal? Require the capability
to be sealed or unsealed; Bounds? Perform a bounds check authorizing access to the listed
namespace. See the instruction-set reference for detailed per-instruction requirements.

Tag Bit

The tag bit indicates whether an in-register capability or a capability-sized, capability-aligned
location in physical memory contains a valid capability. If tag is set, the capability is valid and
can be dereferenced (subject to other checks). If tag is clear, the remainder contains 256 (or
128) bits of normal data; an untagged capability cannot be dereferenced. If capabilities are held
in dedicated registers, those registers must still have tag bits in order to allow untagged data to
move through those registers – e.g., to implement capability-oblivious memory-copy and sort
operations. Section 3.4.2 describes the behavior of tagged memory.

Permission Bits

The perms bit vector governs the architecturally defined permissions of the capability including
read, write, and execute permissions. Bits 0–11 of this field, which control use and propaga-
tion of the capability, and also limit access to privileged instructions, are defined in Table 3.1.
Permissions grant access only subject to constraints imposed by the current architectural ring –
that is, they always restrict relative to the existing architectural security model. Permissions are
also contingent on the capability tag bit being set, and specific permissions may depend on the
capability being sealed (or unsealed), or bounds checks against base and length, when used:

Global Allow this capability to be stored via capabilities that do not themselves have
Permit_Store_Local_Capability set.

Permit_Execute Allow this capability to be used in the PCC register as a capability for the
program counter, constraining control flow.
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Permit_Load Allow this capability to be used to load untagged data; also requires
Permit_Load_Capability to permit loading a tagged value.

Permit_Store Allow this capability to be used to store untagged data; also requires
Permit_Store_Capability to permit storing a tagged value.

Permit_Load_Capability Allow this capability to be used to load capabilities with valid tags;
Permit_Load is also required.

Permit_Store_Capability Allow this capability to be used to store capabilities with valid tags;
the permission Permit_Store is also required.

Permit_Store_Local_Capability Allow this capability to be used to store non-global capabil-
ities; also requires Permit_Store and Permit_Store_Capability.

Permit_Seal Allow this capability to authorize the sealing of another capability with a otype
equal to this capability’s base + offset.

Permit_CCall Allow this sealed capability to be used with a “direct” CCall (i.e., without pass-
ing through a software exception handler).

Permit_Unseal Allow this capability to be used to unseal another capability with a otype equal
to this capability’s base + offset.

Permit_Set_CID Allow the architectural compartment ID to be set to this capability’s base +
offset using CSetCID.

In general, permissions on a capability relate to its implicit or explicit use in authorizing
an operation that uses the capability – e.g., in fetching an instruction via PCC, branching to
a code capability, loading or storing data via a capability, loading or storing a capability via a
capability, performing sealing or unsealing operations, or controlling capability propagation. In
addition, a further privileged permission controls access to privileged aspects of the instruction
set such as exception-handling, which are key to the security of the model and yet do not fit the
“capability as an operand” model:

Access_System_Registers Allows access to privileged processor permitted by the architec-
ture (e.g., by virtue of being in supervisor mode), with architecture-specific implications.
This bit limits access to features such as MMU manipulation, interrupt management, pro-
cessor reset, and so on. The operating system can remove this permission to implement
constrained compartments within the kernel.

A richer conversion to a capability architecture might replace existing privileged instruc-
tions (e.g., to flush the TLB) with new instructions that accept an authorizing capability as an
operand, and adopt a more granular model for authorizing architectural privileges using capa-
bilities than this all-or-nothing approach.

The Permit_Store_Local_Capability permission bit is used to limit capability propagation
via software-defined policies: local capabilities (i.e., those without the Global permission set)
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otype value Interpretation
264 − 1 Unsealed capability
264 − 2 Reserved (experimental “enter capabilities”; appendix D.12)
264 − 3 Reserved (experimental “memory type tokens”; appendix D.14)

264 − 4 through 264 − 16 Reserved
other Capability sealed by CSeal

Table 3.2: Object types and their architecture-specified roles.

can be stored only via capabilities that have Permit_Store_Local_Capability set. Normally, this
permission will be set only on capabilities that, themselves, have the Global bit cleared. This
allows higher-level, software-defined policies, such as “Disallow storing stack references to
heap memory” or “Disallow passing local capabilities via cross-domain procedure calls,” to be
implemented. We anticipate both generalizing and extending this model in the future in order to
support more complex policies – e.g., relating to the propagation of garbage-collected pointers,
or pointers to volatile vs. non-volatile memory.

Software-Defined Permission Bits

The uperms bit vector may be used by the kernel or application programs for software-defined
permissions. They can be masked and retrieved using the same CAndPerm and CGetPerm instruc-
tions that operate on hardware-defined permissions, and also checked using the CCheckPerm

instruction. When using 256-bit capabilities, 16 software-defined permission bits are available;
with 128-bit capabilities, 4 software-defined permission bits are available.

Software-defined permission bits can be used in combination with existing hardware-defined
permissions (e.g., to annotate code or data capabilities with further software-defined rights), or
in isolation of them (with all hardware-defined permissions cleared, giving the capability only
software-defined functionality). For example, software-defined permissions on code capabil-
ities could be employed by a userspace runtime to allow the kernel to determine whether a
particular piece of user code is authorized to perform system calls. Similarly, user permissions
on sealed data capabilities might authorize use of specific methods (or sets of methods) on ob-
ject capabilities, allowing different references to objects to authorize different software-defined
behaviors. By clearing all hardware-defined permissions, software-defined capabilities might
be used as unforgeable tokens authorizing use of in-application or kernel services.

Flags

The flags field can be read with the CGetFlags instruction and written with the CSetFlags in-
struction.

There are no architecture-neutral flags currently defined, therefore the size and interpreta-
tion of this field are entirely architecture specific.
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Object Type

The 64-bit otype field indicates whether a capability is sealed and, if so, what “type” it has;
see table 3.2 for defined values. CHERI uses multiple object types to allow software to create
unforgeable associations between sealed capabilities.1 If a capability is sealed, it becomes non-
dereferenceable (i.e., cannot be used for load, store, or instruction fetch) and immutable (i.e.,
whose fields cannot be manipulated). Capability unsealing is mediated either by capabilities
(via the CUnseal instruction) or by control transfers (via the CCall instruction); see section 4.10).
One potential application of sealed capabilities is for use as object-capability references – i.e.,
as references to software-defined objects with architecturally enforced encapsulation. However,
they are available to software for more general use in constructing architecturally protected
references.

While defined as a 64-bit space, the object types available to an implementation of CHERI
may be a smaller space. If so, the implementation values in otype fields are translated to the
abstract space as if by sign extension. Attempts to seal capabilities to types that cannot be
expressed by the implementation will fail in an implementation-specified way, but generally
similarly to any other representability failure.

Base

The 64-bit base field is the base virtual address of the segment described by a capability. The
base field is the lower bound of the capability: dereferencing an effective virtual address below
base will throw an exception. In the presence of compressed capabilities, not all possible 64-bit
values of base will be representable (see Section 3.4.4).

Offset

The 64-bit offset field holds a free-floating pointer that will be added to the base when derefer-
encing a capability. The value can float outside of the range described by the capability – e.g.,
as a result of using CSetOffset to set the offset to a negative value, or to a value greater than
length – but an exception will be thrown if a requested dereference is out of range. A non-zero
offset may be used when a language-level pointer refers to a location within a memory alloca-
tion or data structure; for example, to point into the middle of a string, or at a non-zero index
within an array. A non-zero offset may also be used when the lower bound of a memory alloca-
tion is insufficiently aligned to permit precise description with the base field of a compressed
capability (see Section 3.4.4).

Virtual Address

The virtual address, or cursor, of a capability is the sum of its base and offset fields. The
components of the virtual address may be accessed separately (e.g., via CGetOffset), or as a

1While earlier versions of the CHERI-MIPS ISA interpreted this field as an address, recent versions treat this as
a software-managed value without architectural interpretation. The width of the object type field is defined by the
architectural implementation and may be less than the 64 bits suggested here; in such cases, the implementation
field must be the least significant bits of the architectural otype and should be sign extended upon interpretation.
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single combined entity (e.g., via CGetAddr and CSetAddr) depending on the software use case.
For example, an integer cast of a C-language pointer might return either the offset or the virtual
address, depending on the C-language interpretation being used.

Length

The 64-bit length field is the length of the segment described by a capability. The sum of base
and length is the upper bound of the capability: accessing at or above base + length will
throw an exception. In the presence of compressed capabilities, not all possible 64-bit values
of length will be representable (see Section 3.4.4).

3.3.2 Capability Values
Pointer Values in Capabilities

In general, C and C++-language pointers are suitable to be represented as memory capabilities
(i.e., those that are unsealed and have a memory interpretation by virtue of memory-related per-
missions). This includes both data pointers, which may have enabled permissions that include
Permit_Load, Permit_Store, Permit_Load_Capability, and Permit_Store_Capability, and code
pointers, which may have enabled permissions that include Permit_Load, Permit_Execute, and
Permit_Load_Capability. Other permissions, such as Global or Permit_CCall, may also be
present. The following architectural values will normally be used:

• The tag is set.

• The capability is unsealed (has otype of 264 − 1).

• perms contains a suitable combination of load, store, and execute permissions, as well
as other possible permissions.

• base will point to the bottom of the memory allocation, allowing for suitable alignment
if bounds compression is used.

• offset will point within the memory allocation (but may point outside in some circum-
stances).

• The virtual address will be equal to the integer value of the pointer.

• length will be the length of the memory allocation, allowing for suitable alignment if
bounds compression is used.

Code pointers will normally include Permit_Load and Permit_Load_Capability so that con-
stant islands and global variables can be accessed via the code segment. In the presence
of bounds compression (i.e., with 128-bit capabilities), the memory allocation may require
stronger alignment so as to ensure precise bounds. Implied pointers in the run-time environ-
ment, originating in compiler-generated code or the run-time linker, such as Program Link-
age Table (PLT) entries, Global Offset Table (GOT) entries, the Thread-Local Storage (TLS)
pointer, C++ v-table pointers, and return addresses, will typically have similar values. Note
that the flags field may have an architecture-specific default value.
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The NULL Capability

When representing C-language pointers as capabilities, it is important to have a definition of
NULL with as close-as-possible semantics to today’s definition that NULL has an integer value
of 0. We choose to define a NULL capability that has the following architecture values set:

• tag is cleared.

• The capability is unsealed (has otype of 264 − 1).

• perms is 0x0.

• flags is 0x0.

• base is 0x0.

• offset is 0x0.

• By implication, the virtual address of the capability is 0x0.

• length is the largest permitted length (264 − 1 on 256-bit CHERI, and 264 on 128-bit
CHERI).

The NULL capability is used in several places in the architecture, including being the value
returned when C0 is used as an operand to many (but not all) instructions, when a 0 integer
value is passed to CToPTR, and when comparisons with NULL are performed by the CBEZ and
CBNZ instructions.

3.3.3 Integer Values in Capabilities
In the C language, the intptr_t type is intended to be an integer type large enough to hold a
pointer, and sees two common uses: an opaque field that can hold either an integer or pointer
type; or an integer type permitting arithmetic and other integer operations on pointer values.
We find it convenient to store an integer value in a capability using the following conventions:

• tag is cleared.

• The capability is unsealed (has otype of 264 − 1).

• perms is 0x0.

• flags is 0x0.

• base is 0x0.

• offset is the integer value to be stored.

• By implication, the virtual address of the capability is the integer value to be stored.

• length is the largest permitted length (264 − 1 on 256-bit CHERI, and 264 on 128-bit
CHERI).
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3.3.4 General-Purpose Capability Registers
General-purpose capability registers are registers that are able to load, store, inspect, manip-
ulate, and dereference capabilities while preserving their 1-bit tag and full set of structured
fields. New capability-aware instructions (see Section 3.6) allow use of new registers or new
fields added to existing registers, and via guarded manipulation must implement properties such
as tag preservation, monotonic transformation, and so on. Capability registers are tagged so that
capability-oblivious operations – such as tag-preserving memory copies of regions containing
both data and capabilities – can be performed, preserving both set and unset tag bits. This
means that all capability-aware instructions dereferencing a capability must check for a valid
tag, as capability registers may contain data values that are not permitted to be dereferenced.

Architectures may be extended with capability registers in two ways: first, by introducing
new architectural registers that supplement existing registers, or second, by extending exist-
ing registers with new capability-register fields that can be accessed through new instructions.
These two approaches may be combined in the same architecture, as in CHERI-MIPS (see
Chapter 4), where we introduce both a new capability register file supplementing the integer
register file, and also extend certain special registers, as described in Section 3.3.5, to become
capability registers – such as the Program Counter (PC) becoming the Program-Counter Capa-
bility (PCC).

An alternative approach would extend the existing general-purpose integer register file to
allow it to hold both 64-bit integers and capabilities, with instructions selecting the desired
semantics when utilizing a register. We refer to this design as a merged register file. This
is similar to extension of 32-bit registers to 64-bit registers, in which 32-bit load, store, and
manipulation can take place despite the full register size being large enough to hold a 64-bit
value. A similar set of constraints applies: when an integer is loaded into a capability-width
register, the tag bit and remainder of the non-integer data bits in the register must be zeroed,
in similar manner to the use of zero or sign extension when loading a smaller integer into a
larger integer register. When a register containing a tagged capability is used as an input to an
integer arithmetic operation, we recommend that the virtual address of a capability be used as
the integer value used for input.

When integer and capability instructions share a common underlying register file, it is es-
sential that intentionality be maintained: instructions must not select between integer and ca-
pability interpretations based on the tag value. Instead, instructions must specifically interpret
input and output registers as integers or as capabilities. If a capability dereference is expected,
an exception must be thrown if the input register does not contain a valid tag. If an integer
dereference is to be performed, only the integer portion of the capability register will be used
(per above, the virtual address of the capability), and it will be indirected through an appropriate
implied capability such as the Program-Counter Capability (PCC) or Default Data Capability
(DDC).

When utilizing a merged register file, not all integer registers may be extended to hold
capabilities. A tradeoff exists around the extension of existing well-supported ABIs, such as
the calling convention, vs. the impact of register-file growth and opcode utilization. Larger
numbers of capability registers will increase the memory footprint of context switching and the
cost of stack spillage (where a callee cannot know whether a register requires saving as a full
capability or whether integer width would be sufficient). Similarly, larger numbers of available
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capability registers increase the opcode footprint of capability-relative instructions. While this
opcode space is no greater than for integer-relative instructions, in some architectures (e.g.,
ARMv8), opcode space is at a substantial premium, and adding new capability variants of all
load/store/jump instructions will over-consume or exhaust the space. Reducing the number
of capability registers comes at other costs, such as potentially disrupting current ABI design
choices, and increasing register pressure for pointer-intensive workloads. Here, a variety of
design points are available, but one option would be to limit capabilities to a subset of the full
register file, allowing a smaller number of bits to name the available capability registers. This
pressure is especially acute in variable-size instruction sets (e.g., with the RISC-V compressed
instruction set). Other options to avoid this pressure include the introduction of new opcode
modes in which existing opcodes can be reused to refer to capabilities instead of integers, at a
cost to binary compatibility. The most straightforward choice, where opcode space is plentiful
with respect to the vocabulary of load-store instructions, is to allow all existing general-purpose
integer registers to hold capabilities.

Microarchitectural and in-memory representations of capabilities may differ substantially
from the architectural representation in terms of size and contents, but these differences will
not be exposed via instructions operating on capability-register fields. We define two variants
with 256-bit and 128-bit in-memory representations of a conceptual 256-bit capability register,
with the latter employing capability compression (Section 3.4.4) to reduce the register-file and
memory footprint.

Register-File Implications for Integer Values in Capabilities

The convention for storing integers in capabilities, described in Section 3.3.3, is not currently
defined in architecture when using a split register file. However, it is convenient that:

• Adding an integer value to the offset of a NULL capability (e.g., using CIncOffset) gives
a capability that follows these conventions.

• Maximal bounds allow the virtual address to take on any value without risking a bounds
representability failure during arithmetic – in contrast to using a maximum length of 0,
which might otherwise seem intuitive.

With a merged register file, this is instead an architectural definition, and is used when an
integer value is moved or loaded into a capability register. This might occur during an ordinary
data load into a register, or as a result of (for example) an integer arithmetic operation writing
back to a register. Sign extension will occur as normal for the architecture to fill the offset field,
with remaining fields being set to the above values.

3.3.5 Special Capability Registers
In addition to the general-purpose capability registers available for use via capability load,
store, jump, query, and manipulation instructions, there are also a set of Special Capability
Registers (SCRs). These capability registers are accessed via special get and set instructions
(and, in some architectures, swap or direct manipulation), and serve specific architectural func-
tions. Access to special capability registers is controlled on a case-by-case basis (CReadHwr and
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CWriteHwr), but may include universal read and write access, read and write access only when
holding Permit_Access_System_Registers, or based on execution ring or exception-handling
state. The specific registers vary by underlying architecture, but will include the following (or
natural variations of them):

Program Counter Capability (PCC) extends the existing Program Counter (PC) to be a full
capability, imposing validity, permission, bounds, and other checks on instruction fetch.

Default Data Capability (DDC) indirects legacy non-capability loads and stores, controlling
and relocating data accesses to memory.

Exception Program Counter Capability (EPCC) Just as conventional architectures save the
PC in EPC following an exception, and restore EPC into PC on exception return, EPCC
extends EPC to hold a copy of the full saved PCC.

Kernel Code Capability (KCC) When an exception is taken, the value in PCC is replaced
with the value in KCC, installing a suitable execution and security context for the ex-
ception handler. Note: A better name for this capability might be the Exception Code
Capability.

Kernel Data Capability (KDC) When an exception is taken, KDC holds a suitable data ca-
pability for use by the exception handler. Note: A better name for this capability might
be the Exception Data Capability.

User Thread-Local Storage (CULR) A capability extended version of a Thread-Local Stor-
age (TLS) register, available to any executing code.

Privileged Thread-Local Storage (CPLR) A capability register intended to be used only by
privileged code within a ring to implement Thread-Local Storage (TLS).

Although these capability special registers may be viewed as extensions to existing special
registers (e.g., EPC), CHERI introduces new capability-based instructions to get and set their
values, rather than conflating them with existing integer-based special-register instructions in
the architecture ISA, in order to ensure intentional use in the presence of a merged register file.

Where existing special registers, such as the Program Counter (PC) or Exception Program
Counter (EPC), are extended to become capabilities, the semantics of accessing the integer
interpretation must be determined with care. Unlike with the general-purpose integer register
file, it may be desirable for reasons of compatibility to modify the capability while retaining
its tag and other metadata (such as bounds and permissions) without modification – subject
to maintaining monotonicity. For example, when modifying PC, it is desirable to leave other
fields (such as bounds of PCC) unmodified, and further to have integer accesses be performed
on offset rather than on the capability virtual address, so that capability-unaware code can
jump within its code segment without experiencing a tag violation or being exposed to absolute
virtual addresses. A similar argument applies to EPC, where capability-unaware exception-
handling code may be able to continue to operate. These design choices allow accesses to
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be relocated relative to each of these capabilities.2 In the case of EPC, it is desirable that
attempted writes be considered equivalent to CSetOffset, but with failures – such as might
occur if a sealed capability has been placed in EPCC – leading to the tag being cleared rather
than an exception being through in what is likely to already be an exception-handling context.

3.4 Capabilities in Memory
Maintaining the integrity and provenance validity of capabilities stored to, and later read from,
memory, is an essential feature of the CHERI architecture. Capabilities may be stored to mem-
ory in a broad variety of circumstances, including, when language-level pointers are imple-
mented using capabilities, operating-system context switching, stack spills of capability regis-
ters, stack storage for local pointer variables, pushing return capabilities to the stack on function
call, the capabilities held in Global Offset Table (GOT) structures to reach global variables,
global variables themselves holding types implemented via capabilities, Procedure Linkage
Table (PLT) entries holding code capabilities that can be jumped to, and so on. As tagged
memory maintains tag bits at capability-sized, capability-aligned intervals, stores of capabili-
ties to memory will retain their tags only if at suitable alignment. This allows capabilities to be
held at any suitably aligned memory location, interleaved arbitrarily with other data – such as
is commonly the case with pointers and other data today.

3.4.1 In-Memory Representation
As implemented in CHERI-MIPS and CHERI-RISC-V, all in-memory capability bits are di-
rectly addressable via ordinary data accesses (e.g., byte loads) except for the tag bit, which
is stored “out-of-band” as a 129th or 257th bit. The in-memory capability representation will
typically not be a direct mapping of architectural capability fields into memory, as fields may
be stored as partially computed values to improve performance (e.g., storing a virtual address
rather than base and offset), to reduce size (e.g., through bounds compression), or to utilize
multiple formats (e.g., for unsealed vs. sealed capabilities). Given the prior definitions, we
impose several constraints on the in-memory representation:

The NULL capability has an in-memory representation of all zero bytes and a cleared tag.
This definition allows zero-filled memory to be interpreted as NULL-filled memory when
loaded as a capability, providing greater consistency with the C-language expectations for
NULL pointers3.

The bottom 64 bits of a capability hold its virtual address. Supporting casts between a ca-
pability and an ordinary integer type sized to correspond to the size of a virtual address
has significant utility in practical C code.

2This is a design point on which we have had considerable discussion, and for which other approaches would
also be reasonable. For example, a virtual-address interpretation of PC or EPC would also be meaningful, but
would place greater constraints on how capabilities were used to constrain access by unmodified software.

3This design choice has a number of implications, including that the architectural length cannot be stored
untransformed for 256-bit capabilities – it might instead need to be the XOR of the length, and that as NULL
pointers do not have tags set, they cannot be differentiated from zeroes in memory.
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A 256-bit format is described in Section 3.4.3. A 128-bit compressed format is described
in Section 3.4.4. These formats vary in terms of the number of permission bits they offer, and
also bounds precision effects stemming from capability compression. Concrete architectures
may additionally allocate bits for the flags field.

Software authors are discouraged from directly interpreting the in-memory capability repre-
sentation to improve the chances of software portability (e.g., across architectures) and forward
compatibility (e.g., with respect to newly added permissions or other changes in field behavior).
This also allows multi-endian architectures or heterogenous designs to utilize a single endian-
ness for in-memory capability storage (e.g., little endian) to avoid ambiguities in which the
same in-memory bit pattern might otherwise describe two different sets of rights depending on
where it is loaded and interpreted. This is also important given the desire to be able to retrieve
the virtual address or integer value of an in-memory capability by loading from the bottom 64
bits of the capability.

Despite the software benefits from avoiding encoding the in-memory capability representa-
tion, it is important that the in-memory representation be considered architectural (i.e., having
a defined and externally consistent representation) to better support systems software functions
such as swap, core dumps, debuggers, virtual-machine migration, and efficient run-time link-
ing, which may embed that representation within file formats or network protocols.

3.4.2 Tagged Memory

CHERI relies on tagged physical memory: the association of a 1-bit tag with each capability-
sized, capability-aligned location in physical memory. Associating tags with physical memory
ensures that if memory is mapped at multiple virtual addresses, the same tags will be loaded and
stored regardless of the virtual address through which it is accessed. Tags must be atomically
bound to the data they protect. As a result, it is expected that tags will be cached with the
memory they describe within the cache hierarchy.

When a capability-sized value in a capability register is written to a capability-aligned area
of memory using a capability store instruction, and the capability via which the store takes place
has suitable permissions, the tag bit on the capability register will be stored atomically in mem-
ory with the capability value. Other stores of untagged capability values or other types (e.g.,
bytes, half words, words, floats, doubles, and double words) across one or more capability-
aligned locations in memory will atomically clear the corresponding tag bits for that memory.

When a capability-sized value is loaded into a capability register from a capability-aligned
location in memory using a capability load instruction, and the capability via which the load
takes place has suitable permissions, the tag associated with that memory is loaded atomically
into the register along with the capability value. Otherwise, loads will clear the capability
register tag bit.

Strong atomicity properties are required such that it is not possible to partially overwrite
a capability value in memory while retaining the tag, or partially load a capability and have
the tag bit set. These strong atomicity properties ensure that tag bits are set only on capability
values that have valid provenance – i.e., that have not been corrupted due to data stores into
their contents, or undergone non-monotonic transformations. Our use of atomicity, in this
context, has primarily to do with the visibility of partial or interleaved results (which must
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Figure 3.1: 256-bit memory representation of a capability

not occur for capability stores or tag clearing during data overwrite, or there is a risk that
corrupted capabilities might be dereferenceable), rather than ordering or visibility progress
guarantees (where we accept the memory model of the host architecture). This provides a set
of properties that falls out naturally from current microarchitectures and coherent memory-
subsystem designs: atomicity is with respect only to lines in the local cache, and not global
state.

3.4.3 256-bit Capability Format

A 256-bit format for representing capabilities is shown in Figure 3.1. This is the format that is
currently used by the 256-bit versions of the Bluespec implementation, the L3 formal model,
and the CHERI-enabled QEMU MIPS emulator. Programs should not rely on this memory
representation, as there are alternative capability representations (see, for example, the 128-bit
format in Section 3.4.4), and it may change in future. Instead, programs should access the fields
through the instructions provided in the ISA.

Note that there is a significant difference between the architecturally defined fields and the
in-memory representation: this format implements offset as cursor − base, where the cursor
field is internal to the implementation. These fields are stored in memory in a big-endian format.
The CHERI processor prototype is currently always defined to be big-endian, in contrast to the
traditional MIPS ISA, which allows endianness to be selected by the supervisor. This is not
fundamental to our approach; rather, it is expedient for early prototyping purposes.

In this representation, uperms is a 16 bit field and perms is a 15-bit field. otype is taken
to be the least-significant 24-bits of the architectural otype value and is sign-extended to the
architectural value.4

4Prior versions of the architecture had a separate s flag within the 256-bit capability encoding, used to dis-
criminate sealed and unsealed capabilities. In version 7 of the ISA, unsealed capabilities were redefined as having
otype of 264 − 1 and this bit was reclaimed as reserved.
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3.4.4 Compressed Capabilities
256-bit capabilities offer high levels of precision and software compatibility, but at a cost: qua-
drupling the size of pointers. This has significant software and micro-architectural costs to
cache footprint, memory bandwidth, and also in terms of the widths of memory paths in the de-
sign. However, CHERI is designed to be largely agnostic to the in-memory representation, per-
mitting alternative “compressed” representations while retaining largely compatible software
behavior. Compression is possible because the base, length, and pointer values in capabilities
are frequently redundant. For example the pointer is often within bounds and the length small,
so the most significant bits of the pointer, base and upper bound are likely to be the same. This
can be exploited by increasing the alignment requirements on bounds associated with a pointer
(while retaining full precision for the pointer itself) and encoding the bounds relative to the
pointer with limited precision. Space can further be recovered by enforcing stronger alignment
requirements on sealed capabilities than for data capabilities (as unsealed capabilities have a
particular object type), and by reducing the number of permission and reserved bits.

Using this approach, it is possible to usefully represent capabilities via a compressed 128-bit
in-memory representation, while retaining a 256-bit architectural view. Compression results in
a loss of precision, exposed as a requirement for stronger bounds alignment, for larger memory
allocations. Because of the representation, we are able to vary the requirement for alignment
based on the size of the allocation, and for small allocations (< 4 KiB), impose no additional
alignment requirements. The design retains full monotonicity: no setting of bounds or adjust-
ment of the pointer value can cause bounds to increase, granting further rights – but care must
be taken to ensure that intended reductions in rights occur where desired. Some manipulations
of pointers could lead to unrepresentable bounds (as the bounds are no longer redundant to
content in the pointer): in this case, which occurs when pointers are moved substantially out of
bounds, the tag will be cleared preventing further dereferencing.

For bounds imposed by memory allocators, this is not a substantial cost: heap, stack, and
OS allocators already impose alignment in order to achieve natural word, pointer, page, or
superpage alignment in order to allow fields to be accessed and efficient utilization of virtual-
memory features in the architecture. For software authors wishing to impose narrower bounds
on arbitrary subsets of larger structures, the precision effects can become visible: it is no longer
possible to arbitrarily subset objects over the 4 KiB threshold without alignment adjustments
to bounds. This might occur, for example, if a programmer explicitly requested small and un-
aligned bounds within a much larger aligned allocation – such as might be the case for video
frame data within a 1 GiB memory mapping. In such cases, care must be taken to ensure that
this cannot lead to buffer overflows with potential security consequences. Alignment require-
ments are further explored in Section 3.4.5 and Appendix E.3.4.

Different representations might be used for unsealed data capabilities versus sealed capa-
bilities used for object-capability invocation. Data capabilities experience very high levels of
precision intended to support string subsetting operations on the stack, in-memory protocol
parsing, and image processing. Sealed capabilities require additional fields, such as the object
type and further permissions, but because they are unused by current software, and represent
coarser-grained uses of memory, greater alignment can be enforced in order to recover space
for these fields. Even stronger alignment requirements could be enforced for the default data
capability in order to avoid further arithmetic addition in the ordinary RISC load and store
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paths, where a bitwise or, rather than addition, is possible due to zeroed lower bits in strongly
aligned bounds.

We specify two different 128-bit compression schemes for capabilities. CHERI Concentrate
(Section 3.4.5) is our current compression format. CHERI-128 (Appendix E) is our previous
compression format, and is now considered deprecated.

3.4.5 CHERI Concentrate Compression
CHERI Concentrate is a compressed capability encoding that uses a floating point representa-
tion to encode the bounds relative to the capability’s address [152]. It is a development from the
CHERI-128 compression format described in Appendix E. For a more detailed rational behind
some of the encoding decisions see Section 8.25.

Figure 3.2 shows the capability format and decoding method for 128-bit CHERI concen-
trate. The format contains a 64-bit address, a, 16 permission bits (4 user defined and 12 hard-
ware defined), an 18-bit object type and 27 bits that encode the bounds relative to the address.
The following definitions are used in the description of the bounds encoding:

MW is the mantissa width, a parameter of the encoding that determines the precision of the
bounds. For 128-bit capabilities we use MW = 14, but this could be adjusted depending
on the number of bits available in the capability format.

B and T are MW -bit values that are substituted into the capability address to form the base
and top. They are stored in a slightly compressed form in the encoding, in one of two
formats depending on the IE bit.

IE is the internal exponent bit that selects between two formats. If the bit is set then an expo-
nent is stored instead of the lower three bits of B and T fields (BE and TE), reducing the
precision available by three bits. Otherwise the exponent is implied to be zero and the
full width of B and T are used.

E is the 6-bit exponent. It determines the position at which B and T are inserted in a. Larger
values allow larger regions to be encoded but impose stricter alignment restrictions on
the bounds.

In more detail the base, b, and top, t, are derived from the address by substituting the MW
‘middle bits’ (bits E to E +MW ) of a, amid, with B and T respectively and clearing the lower
E bits. In order to allow for memory regions that span alignment boundaries and so that a can
roam over a larger region while maintaining the original bounds the most significant bits of a
may be adjusted up or down by one using corrections cb and ct which are described later.

The IE bit selects between two cases: the IE = 0 case with zero exponent for regions
less than 212 bytes long or the internal exponent case with E stored in the lower bits of T and
B. In the latter case E is chosen such that the most significant non-zero bit of the length of
the region aligns with T [12] in the decoded top. This means that the top two bits of T can
be derived from B using the equality T = B + L, where L[12] is known from the values of
IE and E and a carry out is implied if T [11..0] < B[11..0] (because we know that the top is
more than the base). Storing the exponent in the lower bits of T and B means that there is less
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063

p’16 otype’18 IE T [11 : 3] TE’3 B[13 : 3] BE’3

a’64

p: permissions otype: object type a: pointer address

If IE = 0: If IE = 1:
E = 0 E = {TE, BE}

T [2 : 0] = TE T [2 : 0] = 0
B[2 : 0] = BE B[2 : 0] = 0

Lcarry_out =

{
1, if T [11 : 0] < B[11 : 0]

0, otherwise
Lcarry_out =

{
1, if T [11 : 3] < B[11 : 3]

0, otherwise
Lmsb = 0 Lmsb = 1

Reconstituting the top two bits of T:

T [13 : 12]=B[13 : 12] + Lcarry_out + Lmsb

Decoding the bounds:

address, a = atop = a[63 : E + 14] amid = a[E + 13 : E] alow = a[E − 1 : 0]

top, t = atop + ct T [13 : 0] 0’E

base, b = atop + cb B[13 : 0] 0’E

To calculate corrections ct and cb:

A3 = a[E + 13 : E + 11]
B3 = B[13 : 11]
T3 = T [13 : 11]
R = B3 − 1

A3 < R T3 < R ct A3 < R B3 < R cb

false false 0 false false 0
false true +1 false true +1
true false −1 true false −1
true true 0 true true 0

Figure 3.2: CHERI Concentrate 128-bit capability format and decoding
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Figure 3.3: Graphical representation of memory regions encoded by CHERI Concentrate. The
example addresses on the left are for a 0x6000-byte object located at 0x1E000; the representable
region extends 0x4000 below the object’s base and 0x8000 above the object’s limit.

bounds precision for non-zero exponents, but we consider this an acceptable compromise to
save encoding bits given that larger objects are more likely to have aligned bounds or be easily
padded to alignment boundaries.

If we required that t and b had the same atop bits above E + 14 the lower bits of a would
give us a space of s = 2E+14 values over which a can range without changing the decoded
bounds. However, this would be an unacceptable restriction for software so instead we make
use of the same ‘spare’ encodings but define a representable limit, R, relative to the base by
subtracting one from the top three bits of B. If B, T or amid is less than R we infer that they lie
in the 2E+14 aligned region above R labelled spaceU in figure 3.3. This allows us to compute
the corrections to atop, cb and ct, shown in the tables in figure 3.2. The overall effect is that we
guarantee at least 1

8
s bytes below the base and 1

4
s above top where a can roam out-of-bounds

while still allowing us to recover the bounds.

Additionally there is one corner case in the decoding that must be correctly handled: to
allow the entire 64-bit address space to be addressable we permit t to be up to 264 (i.e. a 65-bit
value), but this bit-size mismatch introduces some additional complication when decoding. The
following condition is required to correct t for capabilities whose representable region wraps
the edge of the address space:

if ((E < 52)&((t[64 : 63]− b[63]) > 1)) then t[64] =!t[64]

That is, if the decoded length of the capability is larger than E allows, invert the most significant
bit of t.
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CHERI Concentrate Encoding (Set Bounds)

To encode a capability with requested base, b, length, l, and top, t = b+ l, using this encoding
we must first determine E by finding the most significant set bit of l. We select an E that aligns
T [12] with the most significant set bit of l as required for the top two bits of T to be inferred
correctly when decoded:

E = 52− CountLeadingZeros(l[64 : 13])

Note that l is a 65-bit value allowing the maximum possible length of 264 to be encoded with
E = 52, T = 0 and B = 0. We exclude the lower 12 bits of l because lengths less than this are
encoded with E = 0 and IE set depending on the value of l[12] (Lmsb):

IE =

{
0, if E = 0 and l[12] = 0

1, otherwise

The values of B and T are formed by extracting the relevant bits from b and t. For IE = 0 this
means:

B = b[14 : 0]T = t[12 : 0]

With IE = 1, we discard the lower bits and also lose three bits of each to store the exponent:

B = b[E + 14 : E + 3]T = t[E + 12 : E + 3]

If in truncating t we have rounded it down (i.e., if there were any set bits in t[E + 2 : 0]) then
we must increment T by one to ensures that the encoded region includes the requested top as
required by CSetBounds. In rounding b and t to 2E+3 aligned values we may have increased the
length, so if the truncation and rounding results in L[13] being set (where L = T −B) then we
must increase E by one and re-derive B and T as above (and this time we will be guaranteed
that L will not overflow).

CHERI Concentrate Alignment Requirements

For a requested base and top to be exactly representable the CHERI concentrate format may
require additional alignment requirements:

• For allocations with IE = 0 (i.e. lengths less than 4 kiB for MW = 14) there is no
specific alignment requirement.

• For larger allocations the base and top must be aligned to 2E+3 byte boundaries (i.e.
the E + 3 least significant bits are zero) where E is determined from the length, l, by
E = 52− CountLeadingZeros(l[64 : 13])

• No additional alignment requirements are currently placed on sealed capabilities or on
DDC.

Note that there is a jump in required alignment from 1-byte to 8-bytes at the transition between
IE = 0 and IE = 1 caused by using the lower 3 bits of T and B to store the exponent.
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CHERI Concentrate Microarchitectural Considerations

CHERI concentrate decoding can be done quite efficiently in hardware. In particular when
decoding the bounds calculating and comparing against the representable limit, R, requires
only three-bit arithmetic and reconstituting the top two bits of T requires a 12-bit comparison
and two bit arithmetic. Deriving the bounds is then a case of shifting and masking, and an up
to 49-bit increment or decrement of atop.

However, in our prototype FPGA implementation we found that CSetBounds required some
optimization in order to meet timing.

We found it useful to construct a mask from l using a ‘smear right’ operation. This uses
a tree of shift rights and ORs to set all bits from the most significant set bit down and can be
done in parallel with computing E. This mask, shifted appropriately, can then be used to test
for loss of significance bits in t and b and also for incrementing T when needed.

Rather than calculating T − B to detect length overflow we instead detect when l is at its
maximum (all ones below most significant set bit) and preemptively increment E. This results
in slightly less tight bounds than the algorithm presented above and some encodings that are
not used, but is conservative.

The fast representable bounds check presented in Appendix E can be used when modify-
ing the address to detect when the bounds can no longer be correctly reconstructed and the
capability should become untagged.

3.4.6 64-bit Capabilities for 32-bit Architectures

We describe an experimental application of these compression ideas to a 32-bit architecture,
yielding 64-bit capabilities, in Appendix D.7.

3.5 Capability State on CPU Reset

Although the architecture-neutral description of CHERI does not define a specific set of ca-
pability registers (or capability extensions to existing registers), there are architecture-neutral
invariants that must be maintained from the time of processor reset. An initial set of strong
root capabilities must be available from inception for use by software. Most critically, the
program-counter capability must authorize the execution of code following reset, and will typ-
ically cover the entire virtual address space. Similarly, at least one suitable root data capability
is necessary to authorize access for data loads and stores; this will typically also cover the entire
virtual address space.

An important design question is whether multiple roots are present, and if so, whether
they define disjoint trees of potential capabilities. For example, the initial program-counter
capability might grant load and execute permissions but not store permission; similarly, an
initial data capability might grant load and store permissions but not execute permissions. Due
to monotonicity rules, this would prevent the later creation of any capability holding both store
and execute permissions (“WˆX”). Similarly, it is easy to imagine using additional independent
capability roots for orthogonal architectural rights, such as sealing and unsealing permission
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vs. memory access, which utilize independent namespaces (object types vs. virtual addresses).
Additional discussion may be found in appendix D.8.

In general, we have taken the view that initial architectural root capabilities should hold all
permissions, both architecture-defined and software-defined, allowing software the flexibility
to implement any suitable models. This impacts higher-level software behavior substantially:
for example, certain current POSIX APIs (e.g., mmap() combined with mprotect()) assume that
decisions about load, store, and execute combinations can be made dynamically, and that it is
possible to have pointers that hold all three permissions.

Depending on compatibility and security goals, software might choose to expose indepen-
dent roots in its own structure – e.g., by not granting sealing permission to user code using code
or data capabilities, instead returning a specific sealing root capability via a separate system
call, allowing only certain object types to be used directly by userspace. The main downsides
to this view are that the architecture itself does not directly embody invariants such as WˆX,
and that this also prevents use of different formats for disjoint provenance trees of capabilities
with orthogonal functions – e.g., the use of different formats for memory-access vs. sealing
capabilities. We choose to accept these costs in return for a more flexible software model in
which all root capabilities at processor reset hold all permissions.

3.5.1 Capability Registers on Reset
When the CPU is hard reset, all capability registers intended to act as roots will be initialized
to the following values:

• The tag bit is set.

• offset = 0, except for the program-counter capability, which will have its offset initialized
to an appropriate boot vector address. Other architecture-specific capability registers may
have other initial values – e.g., as relates to exception vectors.

• base = 0

• length = 264 − 1 for 256-bit capabilities, and 264 for compressed capability representa-
tions.

• otype = 264 − 1 (truncated as required by the implementation’s encoding).

• All available permission bits are set. When the 256-bit capability representation is used,
31 permission bits are available, including 16 software-defined permissions. When the
128-bit capability representation is used, 15 permission bits are available, including 4
software-defined permissions. Software-defined permissions bits that are not available
are set to zero.

• Concrete architectures specify the reset value of flags for root capabilities.

• All unused bits are cleared.

If the architecture-specific approach is to extend existing integer registers to also hold tagged
capabilities, then those registers may instead be initialized to hold untagged values:
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• The tag bit is unset.

• offset = 0 (or some other value appropriate to the register).

• base = 0.

• length = 264 − 1 for 256-bit capabilities, and 264 for compressed capability representa-
tions.

• otype = 264 − 1 (truncated as required by the implementation’s encoding).

• All available permission bits are unset.

• flags = 0x0.

• All unused bits are cleared.

3.5.2 Tagged Memory on Reset
In an ideal world, all tags in memory are cleared on CPU reset, as this avoids the unpredictable
introduction of additional capability roots. However, this is not straightforward to offer archi-
tecturally or microarchitecturally. We instead rely on firmware or software supervisors to en-
sure that pages placed into use, especially with untrustworthy code, have been properly cleared.
While this property is often already enforced by real-world hardware and systems – whether
due to Error-Correcting Codes (ECC),5 or because of page zeroing by the OS. However, the
criticality of this behavior becomes quite high given the risks associated with errant tagged
values.

3.6 Capability-Aware Instructions
A key design choice in the CHERI protection model is intentionality: the use of explicit instruc-
tions that accept (and require) capability operands rather than overloading existing instructions,
allowing selection of integer-relative or capability-relative semantics. In particular, it is essen-
tial that selection of integer or capability semantics never be conditional on the value of the
operand’s tag. This requires not just the introduction of instructions to inspect, manipulate,
load, and store capabilities, as a new CPU data type, but also a set of explicit load, store,
and control-flow instructions accepting capability operands as the base address or jump target
where the baseline ISA would accept explicit integer operands.

We have generally attempted to minimize the number of new instructions. However, in
some cases multiple variants are required to optimize important code paths – for example, capa-
bility bounds can be set using both an integer register operand (CSetBounds), where there is a dy-
namically defined size, such as when using malloc, and an immediate operand (CSetBoundsImm),
where there is a compilation-time size available, such as for most stack-allocated buffers.

5To avoid any potential confusion, we note that ECC is also widely used for Elliptic-Curve Cryptography.
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Where possible, the structure and semantics of capability instructions have been aligned
with similar core MIPS instructions, similar calling conventions, and so on. CHERI depends
on introducing several new classes of instructions to the baseline ISA. In some cases these are
congruent to similar instructions relating to general-purpose integer registers, control-flow ma-
nipulation, and memory accesses, in the form of capability-register manipulation, jumps to ca-
pabilities, and capability-relative memory accesses. Others have functions specific to CHERI,
such as those manipulating capability fields, and those relating to protection-domain transi-
tion. The semantics of these instructions implements many aspects of the protection model;
for example, constraints on permission and bounds manipulation in capability field manipula-
tion instructions contribute to enforcing CHERI’s capability monotonicity properties. These
instructions are described in detail in Chapter 7:

Retrieve capability fields These instructions extract specific capability-register fields and move
their values into general-purpose (integer) registers: CGetAddr, CGetAndAddr, CGetBase,
CGetFlags, CGetLen, CGetOffset, CGetPerm, CGetSealed, CGetTag, and CGetType.

Capability move This instruction moves a capability from one register to another without
change: CMove.

Conditional capability move These instructions conditionally move a value based on whether
a capability is NULL or non-NULL: CMOVN and CMOVZ.

Manipulate capability fields These instructions modify capability-register fields, setting them
to values moved from integer registers, subject to constraints such as monotonicity and
representability: CAndAddr, CAndPerm, CClearTag, CIncOffset, CIncOffsetImm, CSetAddr,
CSetBounds, CSetBoundsExact, CSetBoundsImm, CSetFlags, and CSetOffset.

Derive integer pointers from capabilities, or capabilities from integer pointers The CToPtr

and CFromPtr instructions efficiently convert between integer pointers and capabilities,
performing suitable bounds checks against contextual capabilities. These support effi-
cient hybrid code, in which use of integer pointers and capabilities are intermixed.

Capability pointer comparison and arithmetic These instructions provide C-language-centric
pointer comparison and subtraction behavior: CPtrCmp and CSub.

Load or store via a capability These instructions access memory indirected via an explicitly
named capability register, and will ideally correspond to a full range of contemporary
indexing modes present in the baseline ISA – for example, allowing aligned or unaligned
access to zero-extended and sign-extended integers of varying widths, as well as load-
ing and storing of capabilities themselves. Further, software stacks dependent on atomic
operations on pointers will require a suitable suite of atomic operations loading, modify-
ing, and storing capabilities – e.g., load-linked, store-conditional instructions, or atomic
test-and-set instructions, depending on the underlying architecture. These instructions
include: CL[BHWD][U], CLCBI, CLL[BHWD][U], CLLC, CSC, CS[BHWD], CSC[BHWD], and CSCC.

These correspond in semantics to the similar baseline ISA instructions, but are con-
strained by the properties of the named capability including tag check, permissions,
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bounds, seal check, and so on; if capability protections would be violated, then an excep-
tion will be thrown. Capability restrictions can be used to implement spatial safety via
permissions and bounds.

Program-Counter Capability Generated code makes frequent reference to PCC in common
position-independent code structures, such as references to the Global Offset Table (GOT)
or Program Linkage Table (PLT). The instructions CGetPCC and CGetPCCSetOffset allow
PCC to be retrieved.

Capability jumps Capability-based code pointers allow the implementation of control-flow
robustness by limiting the permissions and bounds on jump targets (e.g., preventing store,
and limiting fetchable instructions). Depending on the underlying ISA, different jump
variations may be required – for example, adding capability variants of jump-and-link
register, jump register, and so on, including: CJALR and CJR.

Branch on capability fields These instructions branch within the current program-counter ca-
pability (i.e., to an immediate relative to the current program counter) dependent on ca-
pability tags or the capability holding a NULL value. These include: CBEZ, CBNZ, CBTS,
and CBTU.

Capability checks The CCheckPerm, CCheckTag, and CCheckType instructions compare capa-
bility fields with expected permissions and types, throwing an exception if they do not
match, or that the capability tag is set. These are used to validate arguments on entry
to protected subsystem, and for compiler-inserted tag assertions. Argument validation
instructions are in the process of being deprecated, as they have not seen practical use.

Capability sealing The CSeal and CUnseal instructions seal or unseal capabilities given a suit-
able authorizing capability (i.e., one with the Permit_Seal or Permit_Unseal permission
as appropriate). Sealed capabilities allow software to implement encapsulation, such as
is required for software compartmentalization.

Protection-domain switching The CCall and CReturn instructions are primitives upon which
protection-domain switching can be implemented. Both instructions can be implemented
in terms of hardware-assisted exception handlers; CCall has a further jump-based seman-
tic that unseals its sealed code and data capability-register operands. Both calling seman-
tics allow software-controlled non-monotonicity by granting access to additional state
via exception-handler registers or unsealing.

Fast register clear The CClearRegs instruction clears a range of capability, integer, or floating-
point registers to support fast protection-domain transition.

Special capability registers Special capability registers are read and written via special CReadHwr
and CWriteHwr.

Tag loading and rederivation Certain system operations, such as process or virtual-machine
checkpointing and memory compression, require that tagged memory have its tags saved
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and then restored. Memory locations can be iteratively loaded into capability regis-
ters to check for tags; tags can then be later restored by manually rederived manually
using instructions such as CAndPerm and CSetBounds. However, these instruction se-
quence is complex and can incur substantial overhead when used during bulk restora-
tion. The CLoadTags instruction allows tags to be loaded for a cache line of memory
(non-temporally), and the CBuildCap, CCopyType, and CCSeal instructions allow tags to be
efficiently restored.

Compartment identifiers CHERI protection domains, when constructed purely of graphs of
capabilities, do not allow the microarchitecture to explicitly identify one domain from
another. In order to allow tagging of microarchitectural state, such as branch-predictor
entries, to avoid side channels, instructions are present to allow software to explicitly
identify compartment boundaries where confidentiality requirements preclude more ex-
tensive microarchitectural sharing: CGetCID and CSetCID.

In addition, architectures may require additional capability-related instructions related to
conditional moves and exception delivery.

3.7 Handling Failures
Instruction-set architectures have various resources in the event that a “failure” occurs, with
common choices being to set special status bits (on ISAs that have status registers), to write
back a special value to a general-purpose integer register, or to throw an exception. CHERI
introduces several new potential failure modes:

Instruction-fetch failures Because the program counter is extended to be a capability, it is
possible for CHERI to deny access for instruction fetch. For example, the program
counter may move out of bounds, software may jump to an untagged or otherwise in-
sufficiently authorized capability, or an exception handler may install an untagged or
insufficiently authorized capability on return.

We explored two variations on failure reporting: to report the failure via an exception
at the time that the new program-counter capability is installed (e.g., on the jump in-
struction), or at the time that the instruction fetch is requested (i.e., when execution of
the new instruction is requested). Throwing an exception on fetch leads to the most
consistent general behavior, and also better handles installation of an invalid exception
program-counter capability by avoiding an exception within the kernel when the excep-
tion program-counter capability is written to. Throwing an exception prior to writing the
new value to PC, on the other hand, provides more complete debugging information: the
errant jump PC is available to the exception handler. With compressed capabilities, this
also provides access to the target virtual address and fully precise bounds; in the event
of a substantially out-of-bounds target address, either the target virtual address or the
bounds would have to be discarded to ensure a representable capability.

Ultimately, both approaches are consistent with our security goals. We therefore err on
the side of improved debuggability, throwing exceptions on jump where possible. We
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also require checking of capability properties on instruction fetch to catch cases such as
exception return to an invalid or out-of-bounds capability.

Load and store failures When dereferencing a capability for data access occurs, ISAs gener-
ally report this failure via an exception at the time of the attempted access, which CHERI
in general does as well. These exceptions fit existing patterns of exception delivery in
MMU-based architectures and operating systems, which are designed to handle faults on
memory access.

There are two cases in which an alternative approach is taken: when the Permit_Load
capability permission or equivalent page-table or TLB permission is not present, any tag
on the loaded capability is instead stripped. This avoids an exception that depends on
the loaded data value, which is awkward in some architectures (e.g., ARMv8), but also
facilitates writing code for tag-stripping memory copies, which arise frequently around
protection-domain boundaries.

Guarded manipulation failures A new class of register-to-register instructions in CHERI can
experience failures when attempts are made to violate rules imposed via guarded manip-
ulation – for example, attempts to perform non-monotonic operations, or transforma-
tions that lead to non-representable bounds with compressed capabilities. In our initial
CHERI-MIPS design, we took the perspective that reporting failures early allowed the
greatest access to debugging information, and favored throwing an exception at the ear-
liest possible point: the instruction attempting to violate guarded manipulation.

Another potential design choice is to instead strip the tag from the value being writ-
ten back to a target capability register, which maintains our security safety properties,
but defers exception delivery until an attempted dereference – e.g., an instruction load
via the resulting untagged capability. There are two arguments for this latter behavior:
first, that some architectures by design limit the set of instructions that throw exceptions
to facilitate superscalar scheduling (e.g., ARMv8); and second, that exception delivery
means that failures that could otherwise be easily detected and handled by a compiler or
language run time via an explicit tag check are now complex to handle.

When using tag stripping in ISAs with status registers (e.g., ARMv8), the cost of check-
ing results for frequent operations can be amortized via a single status check. For ISAs
without status registers, checking results can come at a significant cost, and a deferred
exception delivery at time of dereference will be the best choice for performance-critical
code.

We therefore make design choices about exception delivery for violations of guarded ma-
nipulation in a case-by-case basis, taking into account more general architectural design
philosophies, and also specific use cases where software may benefit from tag clearing
rather than exception delivery.
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3.8 Composing Architectural Capabilities with Existing ISAs
In applying CHERI to an architecture, the aim is to impose the key properties of the abstract
CHERI model in a manner keeping with the design philosophy and approach of each architec-
ture: strong compatibility with MMU-based, C-language TCBs; strong fine-grained memory
protection supporting language properties; and incrementally deployable, scalable, fine-grained
compartmentalization. This should allow the construction of portable, CHERI-aware software
stacks that have consistent protection properties across a range of underlying architectures and
architectural integration strategies.

ISAs vary substantially in their representation and semantics, but have certain common
aspects:

• One or more operation encoding (opcode) spaces representing specific instructions as
fetched from memory;

• A set of architectural registers managed by a compiler or hand-crafted assembly code,
which hold intermediate values during computations;

• Addressable memory, reached via a variety of segmentation and paging mechanisms that
allow [optional] implementation of virtual addressing;

• An instruction set allowing memory values to be loaded and stored, values to be com-
puted upon, control flow to be manipulated, and so on, with respect to both general-
purpose integer and floating-point values – and vectors of values for an increasing num-
ber of ISAs;

• An exception mechanism allowing both synchronous exceptions (e.g., originating from
instructions such as divide-by-zero, system calls, unimplemented instructions, and page-
table misses) and asynchronous events from outside of the instruction flow (timers, inter-
processor interrupts, and external I/O interrupts) that cause a controlled transition to a
supervisor;

• A set of control instructions or other (perhaps memory-mapped) interfaces permitting
interaction with the boot environment, management of interrupt mechanisms, privileged
state, virtual addressing features, timers, debugging features, energy management fea-
tures, and performance-profiling features.

Depending on the architecture, these might be strictly part of the ISA (e.g., implemented
explicit instructions to flush the TLB, mask interrupts, or reset the register state), or
they may be part of a broader platform definition with precise architectural behavior
dependent on the specific processor vendor (e.g., having firmware interfaces that flush
TLBs or control interrupt state, or register values at the start of OS boot rather than CPU
reset).

Implementations of these concepts in different ISAs differ markedly: opcodes may be of
fixed or variable lengths; instructions might strictly separate or combine memory access and
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computation; page tables may be a purely software or architectural constructs; and so on. De-
spite these differences in underlying software representation, a large software corpus (imple-
mented in both low-level languages (e.g., C, C++) and higher-level managed languages – e.g.,
Java) can be written and maintained in a portable manner across multiple mainstream architec-
tures.

The CHERI protection model is primarily a transformation of memory access mechanisms
in the instruction set, substituting a richer capability mechanism for integer pointers used with
load and store instructions (as well as instruction fetch). However, it has broad impact across
all of the above ISA aspects, as it is by design explicitly integrated with register use (to ensure
intentionality of access) rather than implicit in existing memory access (as is the case with
virtual memory). CHERI must also integrate with the exception mechanism, as handling an
exception implies a change in effective protection domain, control of privileged operations
such as management of virtual memory, and so on.

CHERI-MIPS is an application of the CHERI protection model to the 64-bit MIPS ISA.
CHERI-MIPS is grounded in MIPS’s load-storage architecture (instructions either load/store
data with respect to memory, or compute on register values, but never both), the software-
managed TLB (page tables are a purely software construct), and the MIPS ISA “coprocessor”
opcode space reserved for ISA extensions. As a result, a number of concrete design choices are
made that are in many ways specific to MIPS: a decision to separate general-purpose integer
files and capability register files; occupation of the coprocessor opcode space; and TLB rather
than page-table additions to control the use of capabilities. These low-level design choices
will apply to only a limited degree in other ISAs – but the objectives achieved through these
choices must also appear in other ISAs implementing the CHERI model: explicit use of capa-
bilities for addressing relative to virtual-address spaces, monotonicity enforcement via guarded
manipulation, tagged memory protecting valid pointer provenance in memory, suitable sup-
port in the exception mechanism to allow current OS approaches combining user and kernel
virtual-address spaces, and so on.

In the following chapters we present high-level sketches of applications of the CHERI pro-
tection model to three ISAs: 64-bit MIPS (in which our ideas were first developed and proto-
typed), RISC-V (a contemporary load-store instruction set – which in many ways is a descen-
dant of the MIPS ISA); and the x86-64 ISA (which has largely independent lineage of Complex
Instruction Set (CISC) architectures). The CHERI model applies relatively cleanly to all three,
with many options available in how specifically to apply its approach, and yet with a consistent
overall set of implications for software-facing design choices. Wherever possible, we aim to
support the same operating-system, language, compiler, run-time, and application protection
and security benefits, which will be represented differently in machine code and low-level soft-
ware support, but be largely indistinguishable from a higher-level programming perspective.
These instantiations should retain the highly compatible strong protection and compartmental-
ization scalability properties seen with CHERI extensions for MIPS.

It is possible to imagine less tight integration of CHERI’s features with the instruction set.
Microcontrollers, for example, are subject to tighter constraints on area and power, and yet
might benefit from the use of capabilities when sharing memory with software running on a
fully CHERI-integrated application processor. For example, a microcontroller might perform
DMA on behalf of a CHERI-compiled application, and therefore desire to constrain its access to
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those possible through capabilities provided by the application. In this scenario, a less complete
integration might serve the purposes of that environment, such as by providing a small number
of special capability registers sufficient to perform capability-based loads and stores, or to
perform tag-preserving memory copies, but not intended to be used for the majority of general-
purpose operations in a small, fixed-purpose program for which strong static checking or proof
of correctness may be possible.

3.8.1 Architectural Privilege
In operating-system design, privileges are a special set of rights exempting a component from
the normal protection and access-control models – perhaps for the purposes of system boot-
strapping, system management, or low-level functionality such as direct hardware access. In
CHERI, three notions of privilege are defined, complementing current notions of architectural
privilege:

Ring-based privilege derives from the widely used architectural notion that code executes
within a ring, typically indicated by the state of a privileged status register, authoriz-
ing access to architectural protection features such as MMU configuration or interrupt
management. Code executing in lower rings, such as a microkernel, hypervisor, or full
operating-system kernel, has the ability to manage state giving it control over state in
higher, but not lower, rings. When a privileged operation is attempted in a higher ring,
an architectural exception will typically be thrown, allowing a supervisor to emulate the
operation, or handle this as an error by delivering a signal or terminating a process. More
recent hardware architectures allow privileged operations to be virtualized, improving
the performance of full-system virtualization in which code that would historically have
run in the lowest ring (i.e., the OS kernel) now runs over a hypervisor.

CHERI retains and extends this notion of privilege into the capability model: when an
unauthorized operation is performed (such as attempting to expand the rights associated
with a capability), the processor will throw an exception and transition control to a lower
ring. The exception mechanism itself is modified in CHERI, in order to save and restore
the capability register state required within the execution of each ring – to authorize
appropriate access for the exception handler. The lower ring may hold the privilege to
perform the operation, and emulate the unauthorized operation, or perform exception-
handling operations such as delivering a signal to (or terminating) the user process.

Capability control of ring-related privileges refers to limitations that can be placed on ring-
related privileges using the capability model. Normally, code executing in lower protec-
tion rings (e.g., the supervisor) has access to privileged functions, such as MMU, cache,
and interrupt management, by virtue of ambient authority. CHERI permits that ambient
authority to be constrained via capability permissions on the program-counter capability,
preventing less privileged code (still executing within a low ring) from exercising virtual-
memory features that might allow bypassing of in-kernel sandboxing. More generally,
this allows vulnerability mitigation by requiring explicit (rather than implicit) exercise of
privilege, as individual functions can be marked as able to exercise those features, with
other kernel code unable to do so.
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These models can be composed in a variety of ways. For example, if a compartmental-
ization model is implemented in userspace over a hybrid kernel, the kernel might choose to
accept system calls from only suitably privileged compartments within userspace – such as
by requiring those compartments to have a specific software-defined permission set on their
program-counter capability.

Layering Software Privilege over Capability Privilege

In addition to these purely architectural views of privilege, privileged software (e.g., the OS
kernel running in supervisor mode) is able to selectively proxy access to architectural privi-
lege via system calls. This facility is used extensively in contemporary designs. For example,
requests to memory map files or anonymous memory, after processing by many levels of ab-
straction, lead to page-table updates, TLB flushes, and so on. Similarly, requests to configure
in-process signal timers or time out I/O events, many levels of abstraction lower, are translated
into operations to manage hardware timers and interrupts.

Similar structures can be implemented using the CHERI capability model. Privilege through
capability context is a new, and more general, notion of privilege arising solely from the ca-
pability model, based on a set of rights held by an execution context connoting privilege within
an address space. When code begins executing within a new address space, it will frequently
be granted full control over that address space, with initial capabilities that allow it to derive
any required code, data, and object capabilities it might require. This notion of privilege is
fully captured by the capability model, and no recourse is required to a lower ring as part of
privilege management in this sense. This approach follows the spirit of Paul Karger’s paper on
limiting the damage potential of discretionary Trojan horses [57], and extends it further. Cer-
tain operations, such as domain transition, do employ the ring mechanism, in order to represent
controlled privilege escalation – e.g., via the object-capability call and return instructions.

3.8.2 Traps, Interrupts, and Exception Handling

CHERI retains and extends existing architectural exception support, as triggered by traps, sys-
tem calls, and interrupts. CHERI affects the situations in which exceptions are triggered, and
changes aspects of exception delivery, state management within exceptions, and also exception
return. Exception handling is also one of the means by which non-monotonic state transition
takes place: as exception handlers are entered, they gain access to capabilities unavailable to
general execution, allowing them to implement mechanisms such as domain transition to more
privileged compartments. As exception support varies substantially by architecture – how ex-
ception handlers are registered, what context is saved and restored, and so on – CHERI inte-
gration necessarily varies substantially. However, certain general principles apply regardless of
the specific architecture.

New Exceptions for Existing and New Instructions

New exception opportunities are introduced for both existing and new instructions, which may
trap if insufficient rights are held, or an invalid operation is requested. For example:
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• Instruction fetch may trap if it attempts to fetch an instruction in a manner not authorized
by the installed Program-Counter Capability (PCC).

• Existing integer-relative load and store instructions will trap if they attempt to access
memory locations in a manner not authorized by the installed Default Data Capability
(DDC).

• New capability-relative load and store instructions will trap if they attempt to access
memory locations in a manner not authorized by the explicitly presented capability.

• New capability-manipulation instructions may trap if they violate guarded-manipulation
rules, such as by attempting to increase the bounds on a capability.

In general, CHERI attempts to provide useful cause information when exceptions fire, including
to identify whether an exception was triggered by using an invalid capability, dereferencing a
sealed capability, or an access request not being authorized by capability permissions or bounds
(see Section 3.8.2 for details).

Exception Delivery

The details of exception delivery vary substantially by architecture; however, CHERI adapta-
tions are in general fairly consistent across architectures:

Interrupt state Interrupts will typically be disabled on exception entry. System software will
typically leave interrupts disabled during low-level processing, but re-enable interrupts so as to
allow preemption during normal kernel operation. CHERI does not change this behavior.

Control-flow state The Program Counter (PC) will be saved to an Exception Program Counter
(EPC). System status state, such as the ring in which the interrupted code was executing, as
well as possibly other state such as interrupt masks, will be saved in a special status register.
System software will typically save this and any other register state associated with the pre-
empted code, allowing to to establish a full execution context for the exception handler, or to
switch to another thread. CHERI extends PC to become a Program-Counter Capability (PCC)
and EPC to become an Exception Program-Counter Capability (EPCC). Depending on the ar-
chitecture, status registers may be extended to also contain CHERI-related information, such
as whether opcode interpretation for loads and stores is integer relative or capability relative (as
in CHERI-RISC-V), allowing that state to differ between interrupted code and the exception
handler.

Other architectural state In addition to general-purpose registers, architectures may provide
access to a set of special registers, such as for Thread-Local Storage (TLS). Additional context
banking or saving may also occur, to facilitate fast exception delivery. For example, in ARMv8,
the stack pointer register is banked, allowing exception handlers to use their own stack pointer
to save remaining registers. In x86-64, the full register context will be saved to a pre-configured
memory location. CHERI extensions are also required to these additional pieces of architectural
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context management; for example, TLS integer registers must be extended to become TLS
capabilities. The banked ARMv8 stack pointer would need to widened to a full capability, and
the x86-64 context-management implementation would also need to save full capability state.

Exception-handler entry In order to execute an exception handler, the architecture will
switch to an appropriate ring (often the supervisor ring), and set PC to the address of the
desired exception vector. Exception delivery may also change other aspects of execution, such
32-bit vs. 64-bit execution, so as to enter the exception handler in the execution mode that is
expected. CHERI introduces two new capabilities: the Kernel Code Capability (KCC) and the
Kernel Data Capability (KDC), which provide additional rights to the exception handler autho-
rizing its execution. KCC will automatically be combined with exception vector address and
installed in PCC to execute the vector. KDC becomes available by virtue of PCC having the
Access_System_Registers permission, and can be used to reach exception-handler data such as
global variables.

Safe exception state handling

In some architectures, partial register banking or reserved exception-only registers mean that
exception handlers must utilize only a subset of registers unless they explicitly save them.
With CHERI, it is essential that capability register values not just be saved and restored, to
ensure correct functionality, but that capability register values are also not leaked, as this may
undesirably grant privilege. For example, even if the ABI does not require that a system call
or trap maintain the values of certain registers over exception handling, the exception handler
must restore or clear those values to ensure that capabilities used by the exception handler or
another context are not leaked.

Exception Return

Exception return unwinds the effects described in the previous section, restoring PC from
EPCC, restoring the saved ring and interrupt-enable state, swapping banked registers, and
so on. The changes made to support CHERI exception entry must also be made to exception
return, such as restoring the full EPCC to PCC.

Capability Exception Causes

In each of the target ISAs (MIPS, RISC-V, and x86-64), we introduce a new capability status
code register that reports further details of the most recent capability-related exception. Use of
the capability status register is indicated by a new high-level exception code in the ISA’s native
exception cause register. Depending on the ISA, the capability status register may be banked
(i.e., there may be different independent instances in different rings). The register is formatted
as shown in Figure 3.4. The possible values for ExcCode are shown in Table 3.8.2. If the last
instruction to throw an exception did not throw a capability exception, then the ExcCode field
of capcause will be None. ExcCode values from 128 to 255 are reserved for use by application
programs.
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07815

ExcCode RegNum

Figure 3.4: Capability Cause Register

Value Description

0x00 None
0x01 Length Violation
0x02 Tag Violation
0x03 Seal Violation
0x04 Type Violation
0x05 Call Trap
0x06 Return Trap
0x07 Underflow of trusted system stack
0x08 Software-defined Permission Violation
0x09 MMU prohibits store capability
0x0a Requested bounds cannot be represented exactly
0x0b reserved
0x0c reserved
0x0d reserved
0x0e reserved
0x0f reserved
0x10 Global Violation
0x11 Permit_Execute Violation
0x12 Permit_Load Violation
0x13 Permit_Store Violation
0x14 Permit_Load_Capability Violation
0x15 Permit_Store_Capability Violation
0x16 Permit_Store_Local_Capability Violation
0x17 Permit_Seal Violation
0x18 Access_System_Registers Violation
0x19 Permit_CCall Violation
0x1a Access_CCall_IDC Violation
0x1b Permit_Unseal Violation
0x1c Permit_Set_CID Violation
0x1d reserved
0x1e reserved
0x1f reserved

Table 3.3: Capability Exception Codes
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The RegNum field of capcause will hold the number of the capability register whose per-
mission was violated in the last exception, if this register was not the unnumbered register
PCC. If the capability exception was raised because PCC did not grant access to a numbered
reserved register, then capcause will contain the number of the reserved register to which ac-
cess was denied. If the exception was raised because PCC did not grant some other permission
(e.g., permission to read capcause was required, but not granted) then RegNum will hold 0xff.

Capability Exception Priority

Exception handling in most architectures involves an architectural cause code that describes the
type of event that triggered the exception – for example, indicating that a trap has been caused
by a read or write page fault. Exception types are prioritized so that if more than one exception
code could be delivered – e.g., there is the potential for both an alignment fault and also a page
fault triggered by a particular load or store – a single cause is consistently reported.

Capability-triggered exceptions in general have a high priority, above that for either align-
ment faults or MMU-related faults (such as page-table or TLB misses), as capability process-
ing logically occurs “before” a virtual address is interpreted. This also prevents undesirable
(or potentially insecure) behaviors, such as the ability to trigger a page fault on a virtual ad-
dress outside the bounds of a capability being dereferenced: instead, the bounds error should
be reported. Similarly, if an operating system implements emulation of unaligned loads and
stores by catching unaligned-access exceptions, having capability checks occur in preference
to alignment exceptions avoids having alignment emulation also perform capability checks –
e.g., of its length or permissions. Other priority rules are less security critical, but are defined
by this specification so that exception processing is deterministic. Each architecture defines
its own exception priority, and architecture-specific instantiations of CHERI must define an
architecture-specific prioritization for capability-related exceptions relative to other exception
types.

If an instruction could potentially throw more than one capability exception, capcause is
set to the highest priority exception (numerically lowest priority value) as shown in Table 3.4.
The RegNum field of capcause is set to the register which caused the highest priority exception.

If an instruction throws more than one capability exception with the same priority (e.g.,
both the source and destination register are reserved registers), then the register that is furthest
to the left in the assembly language opcode has priority for setting the RegNum field.

3.8.3 Virtual Memory

Where virtual memory is present and enabled, CHERI capabilities are interpreted with respect
to the current virtual address space. In CHERI-MIPS, this means that the embedded address in
a capability is always a virtual address, as the virtual-address translation cannot be disabled. In
others, such as CHERI-RISC-V, where virtual-address translation can be enabled or disabled
dynamically, the embedded address will be interpreted as a physical address when translation
is disabled, and a virtual address when virtual addressing is enabled.

Capabilities do not embed Address-Space IDentifiers (ASIDs), and so will be interpreted
relative to the current virtual address space; this means that, as with virtual addresses them-
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Priority Description

1 Access_System_Registers Violation
2 Tag Violation
3 Seal Violation
4 Type Violation
5 Permit_Seal Violation

Permit_CCall Violation
Access_CCall_IDC Violation
Permit_Unseal Violation
Permit_SetSID Violation

6 Permit_Execute Violation
7 Permit_Load Violation

Permit_Store Violation
8 Permit_Load_Capability Violation

Permit_Store_Capability Violation
9 Permit_Store_Local_Capability Violation
10 Global Violation
11 Length Violation
12 Requested bounds cannot be represented exactly
13 Software-defined Permission Violation
14 MMU prohibits store capability
15 Call Trap

Return Trap

Table 3.4: Exception Priority
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selves, the interpretation of a specific capability value depends on the address space that they
are used in. The operating system or other TCBs may wish to limit the flow of capabilities
between address spaces for this reason.

Processing of capabilities is therefore “before” virtual-address translation, with the result
of each memory access via a capability being an access control decision (allow or reject the ac-
cess) and a virtual address and length for the authorized operation. The operation then proceeds
through the normal memory access paths for instruction fetch, load, or store. The capability
mechanism therefore never enables new operations not already supported by existing MMU-
based checks.

Authorizing MMU Control

Memory Management Units (MMUs) typically come in two flavors: those supporting archi-
tectural (hardware) page-table walking; and those supporting software TLB management. In
the former category, a series of instructions or control registers configures parameters such as
the page-table format being used, the current page-table root, and can selectively or fully flush
the Translation Look-aside Buffer (TLB). The page table has an architecturally defined format,
consisting of a multi-level tree of Page-Table Directory Entries (PTDEs) and leaf-node Page-
Table Entries (PTEs), and may not only be read but also written to if dirty bits are supported.
The architecture will perform a series of memory reads to locate the correct page-table entry
to satisfy a lookup, filling a largely microarchitectural TLB. In the latter category, instructions
directly manipulate architectural TLB entries as a result of TLB miss (or other) exceptions. In
both cases, exceptions may fire if operations are rejected as a result of page permission checks
(e.g., and attempt to store to a read-only page). CHERI composes with these mechanisms in
several ways:

• CHERI controls use of privileged instructions and control registers that configure the
MMU, including enabling and disabling translation, configuring a page-table root if sup-
ported, and flushing the TLB. To perform these operations, the Access_System_Registers
permission must be present on PCC.

• On systems with a software-managed TLB, such as CHERI MIPS, retrieving and insert-
ing TLB entries also depends on Access_System_Registers being present on PCC. The
TLB exception handler will use KCC and KDC, available in the exception context, to
authorize access to the software-managed page table.

• On systems with a hardware page-table walker, CHERI currently does not control mem-
ory accesses performed by the walker via physical addresses. In a more ideal future
world, the page-table walker would be given an initial, likely physical, capability to use
as the root, and have further access authorized by capabilities embedded in page-table
directory entries.

Page-Table-Entry or TLB-Entry Permissions

Virtual-address translation is itself unmodified, but permission checking is extended with two
new page permissions in the TLB entries or PTEs (depending on the architecture):
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Page-Table Load Capability Permission If this permission is present, as well as the existing
page-table read permission, then loading tagged capabilities is permitted. Otherwise, if a
capability load operation would load a capability value that has the tag bit set, the tag bit
will be stripped before register write back.

Page-Table Store Capability Permission If this permission is present, as well as the existing
page-table write permission, then storing tagged capabilities is permitted. Otherwise,
if a capability store operation occurs with a capability value that has the tag bit set, an
exception will be thrown.

With the page-table store-capability permission, it is also imaginable that the architecture
might choose to strip the tag bit before performing the store, rather than throw an excep-
tion, if the permission is required but not present. This would avoid a data-dependent
exception, which may simplify the microarchitecture. However, this would disallow the
dynamic tracking of possible capability locations using this permission bit, in a manner
similar to emulated dirty page support. As this support may be important in improving
performance for revocation and garbage collection, it would be desirable to provide some
other mechanism in that case.

Capability Dirty Bit

In architectures that support tracking dirty pages in the page table, by performing updates to
page-table entries when a page has been dirtied, it is imaginable that a new capability dirty
bit might provide a suitable substitute for trapping on a failed capability store. This bit would
be set atomically if a new tagged capability value is stored via the page. In as much as the
architecture supported false positives for the page dirty bit – i.e., that the dirty bit could be
set even though there wasn’t a committed data write – that would also be permissible for the
capability dirty bit. However, false negatives – in which the dirty bit is not set despite the page
becoming dirty – would not be permissible for the capability dirty bit. Otherwise, there is a risk
that revocation or garbage collection might “miss” a capability, violating a temporal security or
safety policy.

Memory Compression, Memory Encryption, Swapping, and Migration

When memory pages are stored to a non-tag-bearing medium, such as by virtue of being com-
pressed in DRAM, encrypted, swapped, or perhaps migrated to another system by virtue of
process or virtual-machine migration, tags must also be saved and restored. Architecturally,
this can be performed by reading through the page of memory, checking for tags, and pre-
serving them out-of-band – e.g., in a swap meta-data structure. They can then be restored
by rederiving the capability value from some suitably privileged authorizing capability. We
offer specific instructions to support efficiently restoring tags without software inspecting the
in-memory format: CBuildCap and CCSeal. The CLoadTags allows efficient gathering of tag data
from full cache lines, and will have non-temporal behavior – i.e., will not perform cache allo-
cation, despite being coherent, to avoid sweeping passes pulling all the corresponding data into
the cache. It is imaginable that a CStoreTags instruction might be desirable to set tags bulk,
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but this would require some care with privilege to avoid an arbitrary CSetTag implementation
rather than controlled rederivation.

3.8.4 Direct Memory Access (DMA)

As described in this chapter, the CHERI capability model is a property of the instruction-set
architecture of the CPU, and imposed on code executing on that CPU. However, in most com-
puter systems, Direct Memory Access (DMA) is used by non-application cores, accelerators,
and peripheral devices to transfer data into and out of system memory without explicit instruc-
tion execution for each byte transferred: device drivers configure and start DMA using device
or DMA-engine control registers, and then await completion notification through an interrupt
or by polling. Used in isolation, nothing about the CHERI ISA implies that device memory
access would be constrained by capabilities.

DMA Stores with Tag Stripping

Our first recommendation is that, in the absence of additional support, DMA access to memory
be unable to write tagged values, and that it implicitly strip tags associated with stored memory
locations as all writes will be data and not capabilities. This implements a conservative model
in which only the CPU is able to introduce capabilities into the system, and DMA stores do
not risk errantly (or maliciously) introducing capabilities without valid provenance, or corrupt
CPU-originated capabilities– as all such writes will involve data and not capabilities.

Capability-Aware DMA and IOMMUs

Our second recommendation is that “capability-aware DMA” – i.e., DMA that can load and
store tagged values – be the remit of only trustworthy DMA engines that will preserve valid
provenance, ensure monotonicity, and so on. As with capabilities on general-purpose CPUs,
capabilities must be evaluated with respect to an address space. In the event that no IOMMU
is present, this will be a (possibly “the”) physical address space. With an IOMMU, this will be
one of potentially many I/O virtual address spaces. As with multiple virtual address spaces on
an MMU-enabled general-purpose CPU, care will need to be taken to ensure that capabilities
can be used only in address spaces where they have appropriate meaning.

There is a more general question about the reachability of all capabilities: a general-purpose
OS can reasonably be expected to find all available capabilities through awareness of architec-
tural registers and tag-enabled memory, for the purposes of revocation or garbage collection.
Capabilities held by devices will require additional work to locate or revoke, and will likely
require awareness of the specific device. This is an area for further research.
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3.9 Implications for Software Models and Code Generation

3.9.1 C and C++ Language and Code Generation Models

CHERI capabilities are an architectural primitive that can be used in a variety of ways to sup-
port different aspects of software robustness. This is especially true because of CHERI’s hybrid
approach, which supports incremental deployment within both source languages and code gen-
eration. We have explored three different C and C++ language models:

Pure Integer Pointers In this C-language variant, all pointers are assumed to be implemented
as integer virtual addresses.

Hybrid Pointers In this C-language variant, pointers may be implemented as integer virtual
addresses or as capabilities depending on language-level types or other annotations.
While we have primarily explored the use of a simple qualifier, __capability, which
indicates that a pointer type should be implemented as a capability, a variety of other
mechanisms can or could be used. For example, policy for the use of capabilities might
be dictated by binary compatibility constraints: public APIs and ABIs for a library might
utilize integer pointers, but all internal implementation might use capabilities.

Pure-Capability Pointers In this C-language variant, all pointers are implemented as capabil-
ities.

Alongside these language-level models, we have also developed a set of binary code-
generation and binary interface conventions regarding software-managed capabilities. These
are similar to those used in non-capability designs, including features such as caller-save and
callee-save registers, a stack pointer, etc. We have explored three different Application Binary
Interfaces (ABIs) that utilize capabilities to varying degrees:

Native ABI The native ABI(s) for the architecture: capability registers and capability instruc-
tions are unused. Generated code relies on CHERI compatibility features to interpret
integer pointers with respect to the program-counter and default-data capabilities.

Hybrid ABI Capability-aware code makes selective use of capability registers and instruc-
tions, but can transparently interoperate with MIPS-ABI code when capability arguments
or return values are unused. The programmer may annotate pointers or types to indicate
that data pointers should be implemented in terms of capabilities; the compiler and linker
may be able utilize capabilities in further circumstances, such as for pointers that do not
escape a scope, or are known to pass to other hybrid code. They may also use capa-
bilities for other addresses or values used in generated code, such as to protect return
addresses or for on-stack canaries. The goal of this ABI is binary compatibility with,
where requested by the programmer, additional protection. This is used within hybrid
applications or libraries to provide selective protection for key allocations or memory
types, as well as interoperability with pure-capability compartments.
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Pure-Capability ABI Capabilities are used for all language-level pointers, but also underlying
addresses in the run-time environment, such as return addresses. The goal of this ABI
is strong protection at significant cost to binary interoperability. This is used for both
compartmentalized code, and also pure-capability (“CheriABI”) applications.

3.9.2 Object Capabilities

As noted above, the CHERI design calls for two forms of capabilities: capabilities that describe
regions of memory and offer bounded-buffer “segment” semantics, and object capabilities that
permit the implementation of protected subsystems. In our model, object capabilities are repre-
sented by a pair of sealed code and data capabilities, which provide the necessary information
to implement a protected subsystem domain transition. Object capabilities are “invoked” us-
ing the CCall instruction (which is responsible for unsealing the capabilities, performing a safe
security-domain transition, and argument passing), followed by CReturn (which reverses this
process and handles return values).

In traditional capability designs, invocation of an object capability triggered microcode
responsible for state management. Initially, we implemented CCall and CReturn as software
exception handlers in the kernel, but are now exploring optimizations in which CCall and
CReturn perform a number of checks and transformations to minimize software overhead. In
the longer term, we hope to investigate the congruence of object-capability invocation with
message-passing primitives between architectural threads: if each register context represents a
security domain, and one domain invokes a service offered by another domain, passing a small
number of general-purpose integer and capability registers, then message passing may offer a
way to provide significantly enhanced performance.6 In this view, architectural thread contexts,
or register files, are simply caches of thread state to be managed by the processor.

Significant questions then arise regarding rendezvous: how can messages be constrained so
that they are delivered only as required, and what are the interactions regarding scheduling?
While this structure might appear more efficient than a TLB (by virtue of not requiring objects
with multiple names to appear multiple times), it still requires an efficient lookup structure
(such as a TCAM).

In either instantiation, a number of design challenges arise. How can we ensure safe in-
vocation and return behavior? How can callers safely delegate arguments by reference for
the duration of the call to bound the period of retention of a capability by a callee (which is
particularly important if arguments from the call stack are passed by reference)?

How should stacks themselves be handled in this light, since a single logical stack will
arguably be reused by many different security domains, and it is undesirable that one domain
in execution might ‘pop’ rights from another domain off of the stack, or reuse a capability to
access memory previously used as a call-by-reference argument.

These concerns argue for at least three features: a logical stack spanning many stack frag-

6This appears to be another instance of the isomorphism between explicit message passing and shared memory
design. If we introduce hardware message passing, then it will in fact blend aspects of both models and use the
explicit message-passing primitive to cleanly isolate the two contexts, while still allowing shared arguments using
pointers to common storage, or delegation using explicit capabilities. This approach would allow application
developers additional flexibility for optimization.
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ments bound to individual security domains, a fresh source of ephemeral stacks ready for reuse,
and some notion of a do-not-transfer facility in order to prevent the further propagation of
a capability (perhaps implemented via a revocation mechanism, but other options are read-
ily apparent). PSOS explored similar notions of propagation-limited capabilities with similar
motivations.

Our current software CCall/CReturn maintains a ‘trusted stack’ in the kernel address space
and provides for reliable return, but it is clear that further exploration is required. Our goal is
to support many different semantics as required by different programming languages, from an
enhanced C language to Java. By adopting a RISC-like approach, in which traps to a lower
ring occur when architecture-supported semantics is exceeded, we will be able to supplement
the architectural model through modifications to the supervisor.

3.10 Concluding Notes

3.10.1 Deep Versus Surface Design Choices
In adapting an ISA to implement the CHERI protection model, there are both deeper design
choices (e.g., to employ tagged memory and registers) that might span multiple possible appli-
cations to an ISA, and more surface design choices reflecting the specific possible integrations
(e.g., the number of capability registers). Further, applications to an ISA are necessarily sensi-
tive to existing choices in the ISA – for example, whether and how page tables are represented
in the instruction set, and the means by which exception delivery takes place. In general, the
following aspects of CHERI are fundamental design decisions that it is desirable to retain in
applying CHERI concepts in any ISA:

• Capabilities can be used to implement pointers into virtual address spaces (or physical
address spaces for processors without MMUs);

• Tags on registers determine whether they are valid pointers for loading, fetching, or jump-
ing to;

• Tagged registers can contain both data and capabilities, allowing (for example) capability-
oblivious memory copies;

• Tags on pointer-sized, pointer-aligned units of memory preserve validity (or invalidity)
across loads and stores to memory;

• Tags are associated with physical memory locations – i.e., if the same physical memory
is mapped at two different virtual addresses, the same tags will be used;

• Attempts to store data into memory that has a valid tag will atomically clear the tag;

• Capability loads and stores to memory offer strong atomicity with respect to capability
values and tags preventing race conditions that might yield combinations of different
capability values, or the tag remaining set when a corrupted capability is reloaded;
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• Pointers are extended to include bounds and permissions; the “pointer” is able to float
freely within (and to varying extents, beyond) the bounds;

• Permissions are sufficient to control both data and control-flow operations;

• Guarded manipulation implements monotonicity: rights can be reduced but not increased
through valid manipulations of pointers;

• Invalid manipulations of pointers violating guarded-manipulation rules lead to an ex-
ception or clearing of the valid tag, whether in a register or in memory, with suitable
atomicity;

• Loads via, stores via, and jumps to capabilities are constrained by their permissions and
bounds, throwing exceptions on a violation;

• Capability exceptions, in general, are delivered with greater priority than MMU excep-
tions;

• Permissions on capabilities include the ability to not just control loading and storing of
data, but also loading and storing of capabilities;

• Capability-unaware loads, stores, and jump operations via integer pointers are constrained
by implied capabilities such as the Default Data Capability and Program Counter Capa-
bility, ensuring that legacy code is constrained;

• If present, the Memory Management Unit (MMU), whether through extensions to software-
managed Translation Look-aside Buffers (TLBs), or via page-table extensions for hardware-
managed TLBs, contains additional permissions controlling the loading and storing of
capabilities;

• Strong C-language compatibility is maintained through definitions of NULL to be un-
tagged, zero-filled memory, instructions to convert between capabilities and integer point-
ers, and instructions providing C-compatible equality operators;

• Reserved capabilities, whether in special registers or within a capability register file,
allow a software supervisor to operate with greater rights than non-supervisor code, re-
covering those rights on exception delivery;

• A simple capability control-flow model to allow the propagation of capabilities to be
constrained;

• Sealed capabilities allow software-defined behaviors to be implemented, along with suit-
able instructions to (with appropriate authorization) seal and unseal capabilities based on
permissions and object types;

• By clearing architecture-defined permissions, and utilizing software-defined permissions,
capabilities can be used to represent spaces other than the virtual address space;
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• For compressed capabilities, pointers can stray well out-of-bounds without becoming
unrepresentable;

• For compressed capabilities, alignment requirements do not restrict common object sizes
and do not restrict large objects beyond common limitations of allocators and virtual
memory mapping; and

• That through inductive properties of the instruction set, from the point of CPU reset, via
guarded manipulation, and suitable firmware and software management, it is not possible
to “forge” capabilities or otherwise escalate privilege other than as described by this
model and explicit exercise of privilege (e.g., via saved exception-handler capabilities,
unsealing, etc).

The following design choices are associated with our specific integration of the CHERI
model into the 64-bit MIPS ISA, and might be revisited in various forms in integrating CHERI
support into other ISAs (or even with MIPS):

• Whether capability registers are in their own register file, or extended versions of exist-
ing general-purpose integer registers, as long as tags are used to control dereferencing
capabilities;

• The number of capability registers present;

• How capability-related permissions on MMU pages are indicated;

• How capabilities representing escalated privilege for exception handlers are stored;

• Whether specific capability-related failures (in particular, operations violating guarded
manipulation) lead to an immediate exception, or simply clearing of the tag and a later
exception on use;

• How tags are stored in the memory subsystem – e.g., whether close to the DRAM they
protect or in a partition of memory – as long as they are presented with suitable protec-
tions and atomicity up the memory hierarchy;

• How the instruction-set opcode space is utilized – e.g., via coprocessor reservations in
the opcode space, reuse of existing instructions controlled by a mode, etc;

• What addressing modes are supported by instructions – e.g., whether instructions accept
only a capability operand as the base address, perhaps with immediates, or whether they
also accept integer operands via non-capability (or untagged) registers; and

• How capabilities are represented microarchitecturally – e.g., compressed or decompressed
if compression is used; if the base and offset are stored pre-computed as a cursor rather
than requiring additional arithmetic on dereference; or whether an object-type field is
present for non-sealed in-memory representations.
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3.10.2 Potential Future Changes to the CHERI Architecture
The following changes have been discussed and are targeted for short-term implementation in
the CHERI architecture:

• Define the values of base, length, and offset for compressed capabilities with e > 43,
where the formulas for decompressing base and top do not make sense due to bit indexes
being out of bounds. This is possible for the default capability (defined to have length =
264, although e is unspecified) and untagged data loaded from memory. One proposed
behavior is to treat all untagged compressed capabilities as though they have base =
0 and length = 264 for the purposes of the instructions where this matters, namely
CGetBase, CGetOffset, CIncOffset, CGetLen, CPtrCmp and CSub. However, there is also a
desire that CSetOffset should preserve the values of T and B for debugging purposes,
where possible.

• Consider re-writing pseudocode in terms of absolute addresses rather than offsets, with-
out changing the semantics. This would eliminate repeated use of base + offset to mean
the address field of the capability; it would also potentially reduce ambiguity such as
where base is not well defined due to e > 43 as above.

• Provide a separate instruction for clearing the global bit on a capability. Global is cur-
rently treated as a permission, but it is really an information flow label rather than a
permission. We may want to allow clearing the global bit on a sealed capability, which
would be easiest to implement with a separate instruction, as permissions cannot be
changed on sealed capabilities.

• Provide multiple orthogonal capability “colors”, expanding the local-global features to
allow multiple consumers. We have considered in particular the use of colors to: (1)
prevent kernel pointers from errantly wandering into userspace memory; (2) prevent user
pointers from improperly moving between processes sharing some or all of their virtual
address spaces; (3) prevent pointers from improperly flowing between intra-process pro-
tection domains; and (4) to prevent stack pointers from being improperly shared between
threads. Section D.13 elaborates a more efficient representation for this coloring model,
requiring one rather than two bits per color, by virtue of utilizing a new capability type
to authorize color management.

• Allow clearing of software-defined permission bits for sealed capabilities rather than re-
quiring a domain switch or call to a privileged supervisor to do this. One way to do
this would be to provide a separate instruction for clearing the software-defined permis-
sion bits on a sealed capability. The other permission bits on a sealed capability can be
regarded as the permissions to access memory that the called protected subsystem will
gain when CCall is invoked on the sealed capability; these should not be modifiable by
the caller. On the other hand, the software-defined capability bits can be regarded as
application-specific permissions that the caller has for the object that the sealed capabil-
ity represents, and the caller might want to restrict these permissions before passing the
sealed capability to another subsystem.
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• Provide a CFromInt instruction that copies a general-purpose integer register into the off-
set field of a capability register, clearing all the other fields of the capability – includ-
ing the tag bit. This is an architecturally cleaner way to implement casting an int to
an intcap_t than the current approach of CFromPtr of the NULL pointer followed by
CSetOffset.

• Provide a variant of CSetBounds that sets imprecise bounds suitable for sealing with CSeal.
In the 128-bit representation, the bounds of sealed capabilities have stronger alignment
requirements than for unsealed capabilities.

• Introduce a CTestSubset instruction, which would allow efficient testing of whether one
capability describes rights that are a subset of another, directly exposing the partial order
implied by subset tests in CToPtr, the proposed CBuildCap, etc. This is described in more
detail in Section D.18.

• Add versions of CSetOffset and CIncOffset that raise an exception, rather than clearing
the tag bit, when the result is not representable. This would assist in debugging, by
causing an exception to be raised at the point in the program when the capability became
unrepresentable, rather than later on when the capability is dereferenced.

An alternative implementation (rather than having separate trapping and non-trapping
instructions) would be to add a status register that enables the trapping behavior. This
is similar to floating point, where the FCSR controls whether a floating point overflow
results in an IEEE infinity value or an exception being thrown.

A cheap tag assertion instruction that can trigger a trap when a tag is lost would allow
special compilation modes to improve debuggability by detecting unexpected tag loss
sooner.

If MIPS had a user status register, a tag-loss bit could be set implicitly on tag clear,
allowing intermittent conditional-branch instructions to detect and handle loss.

• Add a version of CUnseal that returns NULL, rather than raising an exception, if the
security checks fail. A common use case for CUnseal is that a protected subsystem is
passed a sealed capability by an untrusted (possibly malicious) caller, and the callee uses
CUnseal to unseal it. It would be quicker for the callee to use a non-trapping CUnseal

and then check that the result is not NULL, rather than either (a) catching the exception
in the case that the untrusted caller has passed a bad capability; or (b) checking that the
capability is suitable for unsealing before attempting to unseal it.

• Add a CGetPCCIncOffset instruction that is similar to CGetPCCSetOffset, except that it
increments the offset instead of setting it. This instruction could be useful (for example)
when using the variant of CCall that doesn’t push a return capability on to the trusted
system stack; CGetPCCIncOffset would provide a convenient way to construct a capability
for the return address.

• Add instructions for copying non-capability data from a capability register into a general-
purpose integerregister. A use case is when a function is called with a parameter whose
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type is the union of a pointer and a non-pointer type, such as an int. This parameter
must be passed in a capability register, because the tag needs to be preserved when it
holds a capability. If the body of the function accesses the non-capability branch of the
union, it needs to get the non-capability bits out of the capability register and into a
general purpose register. This can be done by spilling the capability register to the stack
and then reading it back into a general-purpose integer register, but a register to register
copy would be faster. (We need to investigate whether this happens often enough for the
optimization to be worthwhile).

With compressed 128-bit capabilities, two instructions are needed (to get the upper and
lower 64 bits of the capability register). With uncompressed 256-bit capabilities, 4 in-
structions are needed.

• Add an instruction that is like CSetBounds except that it sets base to the current base +
offset and the new length is the old length − offset (i.e., the upper bound is unchanged).
A question that needs to be resolved: what if the requested bounds cannot be represented
exactly? The use case for this instruction is when its desired to move up the base of the
capability, without needing to extra instructions to explicitly calculate the new length.

• Add an instruction that returns the alignment requirement for memory regions of a par-
ticular size. Having an instruction for this would avoid the need for memory allocators
to know the details of the compression scheme.

• Swapping and virtual-machine migration require that tags be stripped from capabilities
as memory is serialized, and that tags be reattached to capabilities as memory is restored.
Section D.5 describes a set of experimental instructions that improve the efficiency of
these operations, but also avoid the need for software to directly inspect and interact with
the in-memory representation of capabilities.

• If one wishes to scan memory to revoke capabilities, being able to skip over contigu-
ous spans of non-capabilities in mapped memory may greatly accelerate the process and
reduce DRAM traffic. An instruction for this purpose is proposed in Section D.4.

• Add instructions for loading/storing floating point registers via a capability. This is not
just a performance optimization, but also simplifies register allocation in a compiler:
storing a float by moving it to an integer register and then storing the integer register to
memory needs an integer register that isn’t being used for something else.

The following changes have been discussed for longer-term consideration:

• Allow CReturn to accept code/data capability arguments, which might be ignored for the
time being – or simply make CReturn a variation on CCall.

• Introduce support for a userspace exception handler for CCall and CReturn, allowing more
privileged user code (rather than kernel code) to implement the semantics of exception-
based domain switching, provide memory for use in trusted stacks (if any), and so on.
This would allow application environments to provide their own object models without
needing to depend on highly privileged kernel code.
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• Introduce finer-grained permissions (or new capability types) to express CPU privileges
in a more granular way. For example, to allow management of interrupt-related CPU
features without authorizing manipulation of the MMU.

• Introduce a control-flow-focused “immutable” (or, more accurately, “nonmanipulable”)
permission bit, which would prevent explicit changes to the bounds or offset, while still
allowing the offset to be implicitly changed if the capability is placed in execution (i.e.,
is installed in PCC. This would limit the ability of attackers, in the presence of a memory
re-use bug, to manipulate the offset of a control-flow capability in order to attempt a code
re-use exploit. Some care would be required – e.g., to ensure that it was easy and efficient
to update the value in the offset during OS exception handling, where it is common to
adjust the value of the PC forward after emulating an instruction.

• Introduce further hardware permissions, such as physical-address load and store permis-
sions, which would allow non-virtual-address interpretations of capabilities, bypassing
the MMU. These might be appropriate for use by kernels, accelerators, and DMA en-
gines there physical addresses (or perhaps hypervisor-virtualised physical addresses) of-
fer great efficiency or improved semantics.

• Consider whether any further instructions require variants that accept immediate values
rather than register operands. Some already exist (e.g., when setting bounds or offsets,
to avoid setting up integer register operands) but it may also be worth adding others.
For example, if it transpires that permission-masking is a common operation in some
workloads, a new CAndPermImm could be added.

• Capability linearity, in which the architecture prevents duplication of a capability, might
offer stronger invariants around protection-domain crossing. Section D.10 describes an
experimental proposal for how this might be implemented.

• Today, a uniform set of capability roots are provided: PCC, DDC, KCC, and possibly
other special capability registers, are all preinitialised to grant all permissions across the
full address space. This is a simple model that is easy to understand, but implies that
certain efficiencies cannot be realized in the in-memory capability representation – for
example, although sealing, CIDs, and memory access refer to different namespaces, we
cannot efficiently encode the lack of overlap to reduce the number of bits in capability
representation.

Moving to multiple independent roots originating in different special registers would
allow these efficiencies to be realized. For example, by having three different capability
roots – memory capabilities (with only virtual-address permissions), sealing capabilities
(with only sealing and unsealing permissions), and compartment capabilities (with only
CID permissions).

A further root could be achieved by introducing a distinction between PCC authorizing
use of the privileged ISA (e.g., TLB manipulation) and a special register used for this
purpose. If a new “system authorization special register” were to be added, then a fur-
ther System_Access_Registers-only root could be introduced, and derived capabilities
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could be installed into the special register when those privileges are required; a NULL
capability could be installed when not in order to prevent use.

• Introduce capability-extended versions of virtually indexed cache-management instruc-
tions. This is important in order to allow compartmentalized DMA-enabled device drivers
to force write-back. Support for invalidate, however, remains challenging, as invalidate
instructions could cause memory to “rewind”, for example rolling back memory zero-
ing. This may require some changes around device drivers to avoid the need for direct
use of invalidation instructions by unprivileged device drivers, and is a topic for further
research.
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Chapter 4

The CHERI-MIPS Instruction-Set
Architecture

Having considered the software-facing semantics and architecture-neutral aspects of the CHERI
protection model in previous chapters, we now turn to elaborating CHERI capabilities within a
specific RISC architecture: 64-bit MIPS. Wherever possible, CHERI-MIPS implements archi-
tecture-neutral concepts as described in Chapter 3. In addition to the mechanics of defining
specific instructions and choices about whether a new register file is used (vs. extending the
existing integer register file), MIPS differs substantially from other RISC ISAs in several key
areas – especially in its use of a software-managed Translation Look-aside Buffer (TLB), and
in the details of its exception mechanism. In those cases, we necessarily take a MIPS-oriented
perspective. This chapter specifies the following aspects of CHERI-MIPS:

• Architectural capabilities

• The capability register file

• Special capability registers

• Capability-aware instructions

• Capability state on CPU reset

• Exception handling and capability-related exceptions

• Changes to MIPS ISA processing

• Changes to the Translation Look-aside Buffer (TLB)

• Protection-domain transition

• Capability register conventions and the Application Binary Interface (ABI)

The chapter finishes with a discussion of potential future directions for the CHERI-MIPS ISA.
Detailed descriptions of specific capability-aware instructions can be found in Chapter 7.
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4.1 The CHERI-MIPS ISA Extension
CHERI-MIPS extends 64-bit MIPS with a new tagged capability register file able to hold both
valid capabilities and data, and tagged memory to distinguish and protect capabilities. It adds
new capability instructions that inspect, manipulate, and use capability registers. CHERI-
MIPS also modifies certain existing MIPS architectural behaviors, such as relating to existing
MIPS memory accesses, the program counter, exception delivery, and the software-managed
TLB. New instructions are added using the coprocessor-2 portion of the MIPS opcode space,
which is intended for local vendor extensions. Despite this MIPS-originated nomenclature,
microarchitectural implementations of CHERI will be tightly integrated with the main pipeline,
rather than as a separate “coprocessor”. Wherever possible, CHERI-MIPS inherits its behavior
from the architecture-neutral specification found in Chapter 3; however, in some cases must
extend it – e.g., by defining MIPS-specific aspects of architectural privilege.

4.2 Capabilities
In CHERI-MIPS, capabilities may be held in a dedicated capability register file, where they can
be manipulated or dereferenced using capability coprocessor instructions, in a set of special ca-
pability registers, and in tagged memory. Capabilities in the capability register file may be used
as operands to capability instructions that retrieve or modify capability contents, namely, load
and store instructions, and control-flow instructions. Capability addresses used for load, store,
and instruction fetch are always interpreted as virtual addresses. Special capability registers
are accessed via new read- and write-register instructions. Guarded manipulation and tagged
memory enforce capability unforgeability, capability monotonicity, provenance validity, and
capability integrity.

4.2.1 Capability Permissions
Architecture-neutral capability permission bits are described in Section 3.3.1; the following
permissions have CHERI-MIPS-specific interpretations:

Access_System_Registers Allow access to EPCC, ErrorEPCC, KDC, KCC, KR1C, KR2C
and capcause when this permission is set in PCC. Also authorize access to kernel fea-
tures such as the TLB, CP0 registers, and system-call return (see Section 4.8).

4.2.2 Capability Flags
In CHERI-MIPS, the flags field has size 0.

4.3 Capability Registers
CHERI supplements the 32 general-purpose per-hardware-thread integer registers provided by
the MIPS ISA with 32 additional general-purpose capability registers. Where general-purpose
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integer registers describe data values operated on by a software thread, capability registers
describe its instantaneous rights within an address space. A thread’s capabilities potentially
imply a larger set of rights (loadable via held capabilities) which may notionally be considered
as the protection domain of a thread.

There are also several special capability registers associated with each architectural thread,
including a memory capability that corresponds to the instruction pointer, and capabilities used
during exception handling. This is structurally congruent to implied registers and system con-
trol coprocessor (CP0) registers found in the base MIPS ISA. Special instructions are used to
move special capabilities in and out of general-purpose capability registers.

Unlike general-purpose integer registers, capability registers are structured, consisting of
a 1-bit tag and a 128-bit or 256-bit set of architectural fields with defined semantics and con-
strained values. As described in the previous chapter, the in-memory representation of a capa-
bility may be far smaller as a result of compression techniques; we define CHERI-MIPS vari-
ants with both 128-bit and 256-bit capabilities. Capability instructions retrieve and set these
fields by moving values in and out of general-purpose integer registers, enforcing constraints
on field manipulation.

4.4 The Capability Register File

In CHERI-MIPS, the general-purpose capability register file is distinct from the general-purpose
integer register file. Table 4.4 illustrates capability registers defined by the capability coproces-
sor. CHERI-MIPS defines 31 general-purpose capability registers, which may be named using
most capability register instructions. These registers are intended to hold the working set of
rights required by in-execution code, intermediate values used in constructing new capabilities,
and copies of capabilities retrieved from EPCC and PCC as part of the normal flow of code
execution, which is congruent with current MIPS-ISA exception handling via coprocessor 0.
In addition to the 31 general-purpose capability registers, C0 is a constant NULL capability1.
The special capability registers (other than PCC) can be read using the CReadHwr instruction
and set using the CWriteHwr instruction, subject to suitable permission.

Each capability register also has an associated tag indicating whether it currently contains
a valid capability. Any load, store, or instruction fetch via an invalid capability will trap.

4.5 Capability-Aware Instructions

Per Section 3.6, CHERI-MIPS introduces a number of new capability-related instructions.
Many are “portable” CHERI instructions, but others are MIPS-specific either in terms of aug-
menting the existing instruction set (congruent capability-based jump, load, and store instruc-
tions), or to address MIPS-specific interactions with CHERI (e.g., as relates to exception han-
dling). CHERI-MIPS introduces the following control-flow and memory-access instruction
classes:

1For some instructions, specifying a register operand of 0 will utilize DDC rather than C0. This can reduce
the instruction count for certain sequences such as capability loads and stores in a hybrid compiler mode.
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Register(s) Description

CNULL (C0) A capability register that returns the NULL value when read.
Writes to CNULL are ignored.

C1...C25 General-purpose capability registers referenced explicitly by
capability-aware instructions

IDC (C26) Invoked data capability: the capability that was unsealed at the
last protected procedure call

C27...C31 General-purpose capability registers referenced explicitly by
capability-aware instructions

Special Register(s) Description

PCC Program counter capability (PCC): the capability through which
PC is indirected by the processor when fetching instructions.

DDC Capability register through which all non-capability load and
store instructions are indirected. This allows legacy MIPS code
to be controlled using the capability coprocessor.

KR1C A capability reserved for use during kernel exception handling.
KR2C A capability reserved for use during kernel exception handling.
KCC Kernel code capability: the code capability moved to PCC when

entering the kernel for exception handling.
KDC Kernel data capability: the data capability containing the security

domain for the kernel exception handler.
EPCC Capability register associated with the exception program counter

(EPC) required by exception handlers to save, interpret, and store
the value of PCC at the time the exception fired.

ErrorEPCC Capability register associated with the error exception pro-
gram counter (ErrorEPC) that is used on exception return if
CP0.Status.ERL is set. The CHERI prototype does not actually
support any exception types (e.g. cache error) that require Er-
rorEPC but it is supported for consistency with MIPS.

Table 4.1: Capability registers defined by the capability coprocessor. See CReadHwr (7.4) and
CWriteHwr (7.4) for details on special capability registers.
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Load or store via a capability These instructions access memory indirected via an explicitly
named capability register, and include a full range of access sizes (byte, half word, word,
double word, capability), sign extension for loads, and load-linked/store-conditional vari-
ations implementing atomic operations: CL[BHWDC][U], CS[BHWDC], CLL[BHWDC], and
CSC[BHWDC].

Capability jumps These instructions jump to an explicitly named capability register, setting
the program-counter capability to the value of the capability operand: CJR and CJALR.
These correspond in semantics to the MIPS JR jump, used for function returns, and JALR,
used for function calls, but constrained by the properties of the named capability includ-
ing permissions, bounds, validity, and so on.

CHERI-MIPS introduces the following further capability-aware instructions to cater to architect-
ure-specific aspects of the MIPS ISA:

Conditional move The CMovN and CMovZ instructions conditionally move a capability from one
register to another, permitting conditional behavior without the use of branches. These
support efficient hybrid code, in which use of integer pointers and capabilities are inter-
mixed.

Retrieve program-counter capability These instructions retrieve the architectural program-
counter capability, and optionally modify its offset for the purposes of PCC-relative ad-
dressing: CGetPCC and CGetPCCSetOffset.

Exception handling The CGetCause and CSetCause instructions set and get capability-related
exception state, such as the cause of the current exception.

Get and set special capability registers The CReadHWR and CWriteHWR instructions get and set
special capability registers such as DDC, EPCC, KDC, and KCC.

4.6 Capability State on CPU Reset

Section 3.5 requires that capability root registers be initialized to offer full capability rights; all
other registers are initialized to NULL. The capability roots in CHERI-MIPS are PCC, KCC,
EPCC, ErrorEPCC. These values allow capability-unaware code to load and store data with
respect to the full virtual address space, and for exception handling to operate with full rights.
All other general-purpose and special capability registers should contain the NULL value.

In our CHERI-MIPS hardware prototype, all tags in physical memory are initialized to 0,
ensuring that there are no valid capabilities in memory on reset. This is not strictly required:
the firmware, hypervisor, or operating system can in principle ensure that tags are cleared on
memory before it is exposed to untrustworthy software, in much the same way that they will
normally ensure that memory is cleared to prevent data leaks before memory reuse.
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4.7 Exception Handling
As described in Section 3.8.2, CHERI adopts and extends the existing exception model of its
host architecture. CHERI-MIPS retains the same general model found in MIPS, with modest
extensions to provide exception handlers with both code and data capabilities, as well as allow
the interrupted capability-extended context to be saved and restored.

4.7.1 Exception-Related Capabilities
MIPS exception handling saves interrupted state, transfers control to an exception vector, and
also grants supervision privilege in the ring model. CHERI-MIPS extends this model so that the
exception handler also gains access to additional code and data capabilities (KCC and KDC)
to authorize its execution.

In order to preserve the full interrupted PCC, EPC has been extended from a special integer
register to a special capability register, EPCC. Accessing the existing MIPS CP0 EPC special
register in effect accesses the offset field of EPCC.

When an exception occurs, the victim PCC is copied to EPCC so that the exception may
return to the correct address, and KCC, leaving aside its offset field, which will be set to the
appropriate MIPS exception-vector address, is moved to PCC to grant execution rights for
kernel code.

Access to KDC, the Kernel Data Capability, is authorized by System_Access_Registers,
and can be used to reach exception-handler data. KCC will normally be configured to grant
this access, if KDC is used. Exception handlers making use of legacy loads and stores will
most likely install KDC in DDC. DDC, as with other special registers, will need to be saved
and restored to implement full context switching.

When an exception handler returns with ERET, EPCC (or ErrorEPCC if CP0.Status.ERL
is set), possibly after having been updated by the software exception handler, is moved into
PCC.

4.7.2 Exception Temporary Special Registers
In the MIPS ABI, two general-purpose integer registers are reserved for use by exception han-
dlers: $k0 and $k1. In earlier CHERI-MIPS revisions, we made a similar design choice for the
capability register file, reserving two capabilities for exception-handling use. In more recent
revisions, we have defined two special capability registers, KR1C and KR2C, which are acces-
sible only when Access_System_Registers is present on PCC, and can be used to hold values
during exception handling – for example, to temporarily save the value of a general-purpose
capability register so that it can be used to hold KDC during context save.

4.7.3 Capability-Related Exceptions and the Capability Cause Register
CHERI-MIPS implements a capcause register that gives additional information about the causes
of capability-related exceptions, as described in Section 3.8.2. The CGetCause instruction can
be used by an exception handler to read the capcause register. Software can use CSetCause to
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set ExcCode to either an architectural or software-defined value. CGetCause and CSetCause will
raise an exception if PCC.perms.Access_System_Registers is not set, allowing control over
whether unprivileged code can access capcause. When an attempted operation, prohibited by
the capability mechanism, triggers an exception, the ExcCode field within the cause register
of coprocessor 0 are set to 18 (C2E, coprocessor 2 exception), and capcause will be set to a
constant from Table 3.8.2.

4.7.4 Exceptions and Indirect Addressing
If an exception is caused by the combination of the values of a capability register and a general-
purpose integer register (e.g., if an expression such as clb t1, t0(c0) raises an exception
because the offset t0 is trying to read beyond c0’s length), the number of the capability register
(not of the general-purpose integer register) will be stored in capcause.RegNum.

4.7.5 Capability-Related Exception Priority
In CHERI-MIPS, capability exceptions have a lower priority than Reset, Soft Reset, and Non-
Maskable Interrupt (NMI) but higher priority than all other exception types. In particular, they
have a priority higher than address errors (e.g., alignment exceptions, reported by AdEL and
AdES) and TLB exceptions, as capability processing for addresses occurs logically “before”
dereference of a virtual address. With respect to the capability cause register provided via
capcause, CHERI-MIPS implements the exception priority scheme described in Section 3.8.2.

4.7.6 Implications for Pipelining
MIPS is unusual as an architecture in that the privileged supervisor mode can explicitly see
the effects of pipeline hazards. System software must issue suitable NOPs and barriers to en-
sure that potentially confusing (and even insecure) implications of pipelining are not visible to
application software. For example, MIPS normally requires a specific number of NOP instruc-
tions follow any writes to TLB-related registers before the effects of those writes are visible to
software. In general, CHERI does not change this behavior: general-purpose capability regis-
ters experience no visible pipelining effects in normal use; and where exiting pipelining effects
exist, such as in accessing EPC, similar assumptions should be made about capability-extended
registers, such as EPCC.

4.8 Changes to MIPS ISA Processing
The following changes are made to the behavior of instructions from the standard MIPS ISA
when a capability coprocessor is present:

Instruction fetch The MIPS-ISA program counter (PC) is extended to a full program-counter
capability (PCC), which incorporates the historic PC as PCC.offset. Instruction fetch is con-
trolled by the Permit_Execute permission, as well as bounds checks, tag checks, and a require-
ment that the capability not be sealed. Failures will cause a coprocessor 2 exception (C2E) to
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be thrown. In general, instructions that set PCC (such as CJR) prohibit setting invalid values
with the notable exception of ERET. This is because ERET will typically be used in the kernel’s
exception return routine where triggering an exception could be difficult to recover from. If an
ERET occurs with an invalid EPCC the relevant exception is raised on the following instruction
fetch, just as returning to an invalid PC would trigger a TLB fault on the next instruction fetch
in MIPS. Note that EPCC for the resulting exception will not have changed. This is particularly
important if EPCC was sealed.

If an address exception occurs during instruction fetch (e.g., AdEL, or a TLB miss) then
BadVAddr is set equal to PCC.base + PCC.offset, providing the absolute virtual address rather
than a PCC-relative virtual address to the supervisor, avoiding the need for capability awareness
in TLB fault handling.

Load and Store instructions Standard MIPS load and store instructions are interposed on
by the default data capability, DDC. Addresses provided for load and store will be transformed
and bounds checked by DDC.base, DDC.offset, and DDC.length. DDC must have the appro-
priate permission (Permit_Store or Permit_Load) set, the full range of addresses covered by
the load or store must be in range, DDC.tag must be set, and DDC must not be sealed (i.e.,
DDC.otype must be 264−1). Failures will cause a coprocessor 2 exception (C2E) to be thrown.
As with instruction fetch, BadVAddr values provided to the supervisor will be absolute virtual
addresses, avoiding the need for capability awareness in TLB fault handling.

Standard MIPS load and store instructions will raise an exception if the value loaded or
stored is larger than a byte, and the virtual address is not appropriately aligned. With the
capability coprocessor present, this alignment check is performed after adding DDC.base.
(DDC.base will typically be aligned, so the order in which the check is performed will of-
ten not be visible. In addition, CHERI1 can be built with an option to allow unaligned loads or
stores as long as they do not cross a cache line boundary).

Floating-point Load and Store instructions If the CPU is configured with a floating-point
unit, all loads and stores between the floating-point unit and memory are also relative to
DDC.base and DDC.offset, and are checked against the permissions, bounds, tag, and sealed
state of DDC.

Jump and branch instructions If the target is out-of-bounds in relation to PCC, a copro-
cessor 2 exception (C2E) will be thrown. The RegNum field of capcause will indicate a PCC
exception, and ExcCode will indicate a Length Violation. EPC and EPCC will point to the
branch instruction and not the branch target (as in previous CHERI revisions). This is better
for debugging and removes the need for a special case for handling the situation where EPCC
is not representable due to capability compression.

Jump and link register After a JALR instruction, the return address is relative to PCC.base.

Exceptions The MIPS exception program counter (EPC) is extended to a full exception
program-counter capability (EPCC), which incorporates the historic EPC as EPCC.offset. If
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an exception occurs while CP0.Status.EXL is false, PCC will be saved in EPCC and the pro-
gram counter will be saved in EPCC.offset (also visible as EPC). If CP0.Status.EXL is true,
then EPCC and EPC are unchanged. (In the MIPS ISA, exceptions leave EPC unchanged if
CP0.Status.EXL is true). After saving the old PCC the contents of the kernel code capability
(KCC), excluding KCC.offset, are moved into PCC. PC (and PCC.offset) will be set so that
PCC.base + PC is the exception vector address normally used by MIPS. This allows the ex-
ception handler to run with the permissions granted by KCC, which may be greater than the
permissions granted by PCC before the exception occurred.

On return from an exception (ERET), PCC is restored from EPCC (or ErrorEPCC if Sta-
tus.ERL is set in CP0). The program counter is restored from the offset field. This allows
exception handlers that are not aware of capabilities to continue to work on a CPU with the
CHERI-MIPS extensions. If EPCC is not appropriate for execution, the target will throw the
relevant exception in response to an unusable PCC. Similarly, the result of an exception or
interrupt is UNDEFINED if KCC.tag is not set, KCC is sealed, or KCC does not have the
execute permission.

The legacy MIPS instructions DMFC0 and DMTC0 can be used to read or write the offset of
EPCC and ErrorEPCC as EPC and ErrorEPC respectively. Note that we must prohibit mod-
ification of sealed capabilities and, if capability compression is being used (see Section 3.4.4),
cope with the possibility of an unrepresentable result. An attempt to modify a sealed EPCC
or ErrorEPCC using DMTC0 results in the tag being cleared. If EPC is set so far outside the
bounds of EPCC that the bounds would no longer be representable, then the tag is cleared and
other fields are set as per CSetOffset. An unrepresentable EPCC cannot occur as a result of
an exception because the PC should always be within the bounds of PCC or nearly in bounds:
branches outside PCC bounds should throw an exception on the branch instruction, and if ex-
ecution runs off the end of PCC then the resulting EPCC will have an offset just 4 more than
the top of PCC so is guaranteed to be representable.

CP0, TLB, CACHE, and ERET privileges The set of MIPS privileges normally reserved
for use only in kernel mode, including the ability to read and write CP0 control registers (using
MFC0, MTC0, DMFC0, and DMTC0), manage the TLB (using TLBR, TLBWI, TLBWR, and TLBP), perform
CACHE operations that could lead to data loss or rollback of stores, and use the ERET exception-
return instruction, is available only if PCC contains the Access_System_Registers permission
AND the CPU is running in kernel mode. This permits capability sandboxes to be used in
kernel mode by preventing them from being subverted using the TLB.

Other KSU-controlled mechanisms Despite the Access_System_Registers permission con-
trolling use of privileged ISA features, absence of the bit does not change the behavior of the
MIPS ISA with respect to other KSU/EXL-related mechanisms. For example, the value present
in the bit does not affect any of the following: selection of the TLB miss handler to use; the
KSU bits used to select the kernel, supervisor, or user virtual address space used in TLB lookup;
the KSU bits reported in the XContext register; or the automatic setting and clearing of the EXL
flag on exception entry and return. Memory capabilities are used to constrain the use of mem-
ory within kernel or supervisor compartments, rather than the ring-based MIPS segmentation
mechanism, which is unaffected by the Access_System_Registers permission.
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Table 4.2: EntryLo Register

4.9 Changes to the Translation Look-aside Buffer (TLB)
CHERI-MIPS implements adaptations to virtual-memory support following the model de-
scribed in Section 3.8.3. As MIPS provides a software-managed TLB, changes are primarily
with respect to TLB management instructions (which now require the Access_System_Registers
permission on PCC) and TLB-entry contents.

Two new permission bits have been added to the MIPS EntryLo portion of each TLB entry
to indicate whether a given memory page is configured to have capabilities loaded or stored
(see Figure 4.2). This functionality can be used in a variety of ways to control and track
capability use within a virtual address space. For example, mapping pages without PTE_SC
and/or PTE_LC can be used to prevent sharing of tagged capability values between address
spaces where capabilities might have different interpretations. PTE_SC could also be used to
implement a “capability dirty bit” in the TLB handler, tracking which pages have been used to
store capabilities, perhaps for the purposes of efficient garbage collection or revocation.

Load Capability (PTR_LC) If this bit is set then capability loads are disabled for the page. If
the CLC instruction is used on a page with the L bit set, and the load succeeds, the value
loaded into the destination register will have its tag bit cleared, even if the tag bit was set
in memory.

Store Capability (PTR_SC) IF this bit is set, capability stores are disabled for the page. If the
CSC instruction is used on a page with the S bit set, and the capability register to be stored
has the tag bit set, then a CP2 exception will be raised, with capcause set to 0x9 (MMU
prohibits store capability). If the capability register to be stored does not have the tag bit
set (i.e., it contains non-capability data), then this exception will not be raised, and the
store will proceed.

As with other TLB-related exceptions, BadVAddr will be set to the absolute virtual address that
has triggered the fault, and EntryHi will also be set accordingly.

4.10 Protection-Domain Transition with CCall and CReturn
Cross-domain procedure calls are implemented using the CCall instruction, which provides
access to controlled non-monotonicity for the purposes of a privileged capability register-file
transformation and memory access. The instruction accepts two capability-register operands,
which represent the sealed code and data capability describing a target protection domain.
CCall checks that the two capabilities are valid, that both are sealed, that the code capability is
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executable, that the data capability is non-executable, and that they have a matching object type.
In addition to a pair of sealed capability-register operands, CCall accepts a selector operand that
determines which of two domain-transition semantics will be used:

Selector 0 - exception-handler semantics In this semantic, an exception is thrown, with con-
trol transferred to the kernel code capability for the purposes of any required capability
register-file and memory accesses. For example, the operating-system kernel might im-
plement a “trusted stack” to track the “caller” PCC and IDC for the purposes of later
restoring control, and arrange for the sealed operand capabilities to be installed in PCC
and IDC on exception return via ERET. Other operations might include argument valida-
tion (e.g., to ensure that non-global capabilities are not passed across domain transitions),
or register clearing (e.g., to ensure that non-argument registers do not leak information
from the caller to the callee). A new dedicated exception vector is used, in a style similar
to the dedicated TLB miss exception vector on MIPS, so as to avoid overhead arising
from adding new code to existing exception vectors (see Section 4.10.1).

Selector 1 - jump-like semantics In this semantic, the sealed code and data capabilities are
unsealed by the instruction, and placed in PCC and IDC, with control transferred directly
to the target code capability. A programming-language or concurrent programming-
framework runtime might arrange that all sealed code capabilities point to a message-
passing implementation that proceeds to check argument registers or clear other registers,
switching directly to the target domain via a further CJR, or returning to the caller if the
message will be delivered asynchronously.

A further instruction CReturn is provided that triggers an exception in a similar manner to
CCall, but without capability operand checks. A different capability cause register value allows
software to distinguish CCall from CReturn.

Voluntary protection-domain crossing – i.e., not triggered by an interrupt – will typically
be modeled as a form of function invocation or message passing by the operating system. In
either case, it is important that function callers/callees, message senders/recipients, and the
operating system itself, be constructed to protect themselves from potential confidentiality or
integrity problems arising from leaked or improperly consumed general-purpose integer reg-
isters or capabilities passed across domain transition. On invocation, callers will wish to en-
sure that non-argument registers, as well as unused argument registers, are cleared. Callees
will wish to receive only expected argument registers. Similarly, on return, callees will wish
to ensure that non-return registers, as well as unused return registers, are cleared. Likewise,
callers will wish to receive back only expected return values. In practice, responsibility for
this clearing lies with multiple of the parties: for example, only the compiler may be aware of
which argument registers are unused for a particular function, whereas the operating system or
message-passing routine may be able to clear other registers. Work performed by the operating
system as a trusted intermediary in a reliable way may be usefully depended on by either party
in order to prevent duplication of effort. For example, both caller and callee can rely on the
OS to clear non-argument registers on call, and non-return registers on return, allowing that
clearing to occur exactly once during in an exception handler (selector 0) or an exception-free
message-passing routine (selector 1). Efficient register clearing instructions (e.g., CClearRegs)
can also be used to substantially accelerate this process.
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In CHERI, the semantics of secure message passing or invocation are software defined,
and we anticipate that different operating-system and programming-language security models
might handle these, and other behaviors, in different ways. For example, in our prototype
CheriBSD implementation, the operating-system kernel maintains a “trusted stack” onto which
values are pushed during invocation, and from which values are popped on return. Over time,
we anticipate providing multiple sets of semantics, perhaps corresponding to less synchronous
domain-transition models, and allowing different userspace runtimes to select (or implement)
the specific semantics their programming model requires. This is particularly important in
order to provide flexible error handling: if a sandbox suffers a fault, or exceeds its execution-
time budget, it is the OS and programming language that will define how recovery takes place,
rather than the ISA definition.

4.10.1 CCall Selector 0 and CReturn Exception Handling
CCall selector 0 and CReturn unconditionally throw exceptions when executed. However, this
can happen in one of two ways:

1. One of more checks performed by CCall on its sealed capability operands may fail, caus-
ing a C2E exception to be thrown, a suitable capcause value for the error to be set, and
the general-purpose exception-handler vector to execute.

2. All checks performed by CCall or CReturn pass, causing a C2E exception to be thrown,
capcause to be set to Call Trap or Return Trap, and a dedicated protection-domain transi-
tion vector to execute. This vector is 0x100 above the general-purpose exception handler,
and as with the similar TLB miss vector, allows performance overhead to be minimized
through the use of a specialized fast-path exception handler.

The checks performed automatically by CCall allow software to avoid substantial overhead
on every transition, and include checking that tag bits and object types of passed code and
data capabilities are suitable. If one or more checks fail, then a suitable exception code for
the failure, such as Tag Violation, Sealed Violation, or Type Violation, will be set instead. This
design balances a desire for a flexible software implementation with the performance benefits
of parallel checking in hardware.

4.11 Capability Register Conventions / Application Binary
Interface (ABI)

All ABIs implement the following capability register reservations for calls within a protection
domain (i.e., ordinary jump-and-link-register / return instructions):

• C1–C2 are caller-save. During a cross-domain call, these are used to pass the PCC and
IDC values, respectively. In the invoked context, they are always available as tempo-
raries, irrespective of whether the function was invoked as the result of a cross-domain
call.
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• C3–C10 are used to pass arguments and are not preserved across calls.

• C11–C16 and C25 are caller-save registers.

• C17–C24 are callee-save registers.

In all ABIs, the following convention also applies:

• C3 optionally contains a capability returned to a caller (congruent to MIPS $v0, $v1).

The pure-capability ABI, used within compartments or for pure-capability (“CheriABI“) appli-
cations, implements the following further conventions for capability use:

• C11, in the pure-capability ABI, contains the stack capability (congruent to MIPS $sp).

• C12, in the pure-capability ABI, contains the jump register (congruent to MIPS $t9).

• C17, in the pure-capability ABI, contains the link register (congruent to MIPS $ra).

When calling (or being called) across protection domains, there is no guarantee that a non-
malicious caller or callee will abide by these conventions. Thus, all registers should be re-
garded as caller-save, and callees cannot depend on caller-set capabilities for the stack and
jump registers. Additionally, all capability registers that are not part of the explicit argument
or return-value sets should be cleared via explicit assignment or via the CClearHi and CClearLo

instructions. This will prevent leakage of rights to untrustworthy callers or callees, as well as
accidental use (e.g., due to a compiler bug). Where rights are explicitly passed between do-
mains, it may be desirable to clear the global bit that will (in a suitably configured runtime)
limit further propagation of the capability. Similar concerns apply to general-purpose integer
registers, or capability registers holding data, which should be preserved by the caller if their
correct preservation is important, and cleared by the caller or callee if they might leak sensi-
tive data. Optimized clearing instructions ClearHi and ClearLo are available to efficiently clear
general-purpose integer registers.

4.12 Potential Future Changes to the CHERI-MIPS ISA
The following changes have been discussed and are targeted for short-term implementation in
the CHERI-MIPS architecture:

• Develop (modest) changes to CCall selector 1 so as to ensure that the two sealed capa-
bilities are in expected registers for the callee. With selector 0, our extensions to MIPS
CP0 allow the exception handler to check the trapping instruction’s encoding to ensure
C1 and C2 are passed (or other ABI choices), ensuring reliable access to sealed versions
of the caller’s operands – giving access to the object type, for example. In userspace, we
do not have access to MIPS CP0, and it would be preferable to find some other way to
reliably pass not just the unsealed versions, but also caller sealed versions, to the callee.
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One way to accomplish this would be to complete our shift of reserved capability reg-
isters away from the main capability register file into a bank of named system registers,
allowing allowing the two input registers and two output sealed registers to be placed in
well-known locations for access by the callee. This would also avoid encoding use of
IDC in the instruction definition, which is similarly undesirable.

• Another feature consideration for CCall selector 1 is the need for the caller to construct its
own return PCC value. In more conventional CJALR jump-and-link-register instructions,
the call instruction itself saves the current PCC. While placing yet more obligation on
the architecture to write to registers, this would avoid substantial caller work (typically
materialization of a return address provided by the linker, CGetPCC, and CSetOffset to
construct a suitable return capability).

• Add instructions for loading/storing floating point registers via a capability. This is not
just a performance optimization, but also simplifies register allocation in a compiler:
storing a float by moving it to an integer register and then storing the integer register to
memory needs an integer register that isn’t being used for something else.

The following changes have been discussed for longer-term consideration:

• Consider further the effects of combining general-purpose integer and capability regis-
ter files, which would avoid adding a new register file, but make some forms of ABI
compatibility more challenging.



Chapter 5

The CHERI-RISC-V Instruction-Set
Architecture (Draft)

In this chapter we propose a draft application of the CHERI protection model to the RISC-V
ISA. We build on our experience designing CHERI-MIPS, revisiting key design choices and
also adapting the model anew to a similar but distinct instruction set with a more contempo-
rary set of architectural features. We choose to design CHERI-RISC-V as a parameterizable
instruction set that includes several key design points that allow us to evaluate both microar-
chitectural and architectural implications via side-by-side experiments. This specification is
a draft in that it remains a work-in-progress and has not yet been fully elaborated or realized
in microarchitecture. In particular, we are aware that our compiler-targeted instruction set is
likely to be largely usable, but the privileged aspects, including exception handling and page-
table walking, will likely require further iteration. We anticipate substantial changes in future
CHERI ISA revisions as the CHERI-RISC-V ISA matures.

5.1 The RISC-V Instruction-Set Architecture

RISC-V is a contemporary open-source architecture developed at the University of California
at Berkeley. RISC-V is intended to be used with a range of microprocessors spanning small
32-bit microcontrollers intended for embedded applications to larger 64-bit superscalar proces-
sors intended for use in datacenter computing. The RISC-V ISA is reminiscent of MIPS, with
some important differences: a more modular design allows the ISA to be more easily subsetted
and extended; a variable-length instruction encoding improves code density; the MMU has a
hardware page-table walker rather than relying on software TLB management; the ISA avoids
exposing pipelining behaviors to software (e.g., there is no branch-delay slot); and it has a more
contemporary approach to atomic memory instructions. Various drafts and standardized exten-
sions add other more contemporary features such as hypervisor support. There is also ongoing
work to define broader platform behaviors beyond the architecture, including platform self-
description and peripheral-device enumeration. At the time of writing, the RISC-V userspace
ISA has been standardized (v2.2) [126], but the privileged ISA remains under development
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(v1.10) [127]1.

5.2 CHERI-RISC-V Approach
Our application of CHERI to the RISC-V architecture is motivated by several opportunities:

• To gain access to a maturing open-source ISA, hardware, and software ecosystem, for
the purposes of a stronger experimental baseline and methodology (such as more mature
core variants). At the time of writing, the MIPS software ecosystem remains richer, but
we see a substantial community effort at filling gaps for RISC-V.

• To demonstrate the portability of the CHERI approach across multiple architectures, and
in particular to illustrate how portable CHERI software stacks can be designed and main-
tained despite underlying architectural differences.

• To apply lessons learned from CHERI-MIPS in an entirely fresh application of the pro-
tection model to a new architecture. Many of our MIPS design choices reflect pragmatic
design choices made prior to the development of full compiler and operating-system
stacks, and are difficult to change within those stacks.

• To revisit and scientifically explore a design space around CHERI integration into a target
architecture – for example, around the use of register files and exceptions.

• To support new CHERI experimentation in the space of microcontrollers, heterogenous
cores and accelerators, and DMA, as well as in relation to microarchitectural side chan-
nels.

• To lay groundwork for possible open-source transition of the CHERI protection model
into the RISC-V architecture.

In the following subsections, we describe our high-level approach before providing a more
detailed specification of CHERI-RISC-V.

5.2.1 Target RISC-V ISA Variants
The RISC-V ISA defines both 32-bit (XLEN=32) and 64-bit (XLEN=64) base integer instruction
sets (RV32I, RV64I). Our current proposal would support either mode with few differences
beyond capability width, although safe support for both modes in a single processor is not
specified at this time. Our definition of CHERI-RISC-V should work with either 32-register
or 16-register (RV32E) variants of RISC-V. We specify CHERI as applied to RV-G, which con-
sists of the general-purpose elements of the RISC-V ISA: integer, multiplication and division,
atomic, floating-point, and double floating-point instructions. We also describe extensions to
RV-S, the draft privileged portion of the ISA.

1As v1.11 of the privileged specification remains a work-in-progress, we define CHERI-RISC-V relative to
v1.10.
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5.2.2 CHERI-RISC-V is an ISA Design Space
A key aim in CHERI-RISC-V is to allow experiments to be run comparing various CHERI-
related parameters: Are the general-purpose integer and capability register files separate or
merged? Are capabilities with respect to 32-bit or 64-bit virtual addresses? What are the
impacts of various instruction-set variations or microarchitectural optimizations? How does
greater investment of opcode space affect performance – and what techniques, such as instruc-
tion compression or different capability-aware modes, may impact this? How can CHERI
interact with other architectural specializations such as DMA and heterogenous compute? To
answer these and other questions, we have designed CHERI-RISC-V as an ISA design space,
in which several key design dimensions are parameterized:

• Both 32-bit and 64-bit RISC-V are extended, with 64-bit and 128-bit capabilities respec-
tively.

• Both split and merged general-purpose integer and capability register files are supported.

• Optional instruction variations and an optional “capability encoding mode” that invest
opcode space differently to reduce instruction count for common instruction sequences
– especially with respect to load/store instructions that occupy substantial quantities of
opcode space.

With respect to all of these design dimensions, we intend that specific instantiated microar-
chitectures, compiler targets, compiled operating systems, and compiled software stacks sup-
port only one point in the space. However, we hope that carefully parameterized hardware and
software designs will be able to target more than one point to allow side-by-side comparison
from the perspectives of hardware resource utilization, performance, security, and compatibil-
ity.

5.2.3 CHERI-RISC-V Strategy
Our baseline strategy transliterates non-load/store CHERI-specific instruction definitions “as
is” to the greatest extent possible, and retains the fundamental CHERI design choices includ-
ing the use of capabilities in tagged capability registers (protected by guarded manipulation)
and tagged memory. As with MIPS, legacy RISC-V integer-relative load/store instructions
similarly indirect via DDC, and instruction fetch via PCC. We utilize the same in-memory ca-
pability representation, architectural constants, and compression model in both CHERI-MIPS
and CHERI-RISC-V.

Certain necessary divergences arise around RISC-V-specific aspects of the ISA, in partic-
ular around privileged features such as exception handling and hardware page-table support.
Greater variation also arises around memory load/store instructions, where we attempt to con-
form to the RISC-V philosophy (supporting only relatively simple addressing modes due to
the assumption of micro-op fusion), and for branch instructions (where no branch-delay slot is
used).

A key area where CHERI-RISC-V differs from CHERI-MIPS is in allowing the general-
purpose integer and capability register files to be “merged”, in the style of 64-bit extensions to
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32-bit architectures, rather than introducing a new capability register file. This approach offers
the potential for reduced microarchitectural overhead due to reduced control logic, as well as
reduced disruption to software context management. Both “split” and “merged” register files
are supported in CHERI-RISC-V to allow explicit evaluation of their respective compatibility,
security, and performance tradeoffs.

Wherever possible, we attempt to conform to the specific aesthetic of RISC-V, such as with
respect to opcode layout choices and aligning the semantics of new Special Capability Register
access instructions with existing RISC-V CSRs.

5.2.4 Architectural Features Shared with CHERI-MIPS
The following CHERI-MIPS features have been transliterated into CHERI-RISC-V:

• Tagged memory with capability-width tag granularity and alignment.

• An identical architectural capability format (i.e., fields accessed via explicit instructions).

• An identical in-memory capability format, including compression model(s) – except that
the format is little endian. We anticipate transitioning CHERI-MIPS to a little-endian
in-memory format in due course.

• Registers able to hold capabilities are tagged.

• PCC transforms and controls program-counter-relative fetches.

• DDC transforms and controls legacy RISC-V load-store instructions, including relocat-
ing access addresses using the capability base and offset.

• Requests for non-monotonic capability transformations, capability-related violations (such
as loads/stores/fetches via untagged capabilities, out-of-bound accesses, and so on) trig-
ger immediate precise exceptions.

• It is never left ambiguous as to whether a register index operand to a load or store in-
struction, or the register target of a jump instruction, is a capability and therefore must
have a tag set. This both ensures that a split register file can be used (as it is always clear
what register file the operand reads from) and also reinforces intentionality.

• The Access_System_Registers permission bit limits privileged ISA operations within
privileged rings. While RISC-V’s specific privileged operations differ, the intent remains
the same: to allow code compartmentalization within the privileged ring.

5.2.5 Architectural Features that Differ from CHERI-MIPS
The following important differences arise between CHERI-MIPS and CHERI-RISC-V:

• CHERI-RISC-V supports a “merged” register-file variant.
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• RISC-V exception handling – including register banking, scratch registers, and cause
mechanism – is used.

• A new capability exception code, {Interrupt=0, Exception Code=32}, will be re-
ported in the RISC-V mcause, scause, and ucause CSRs when capability-related ex-
ceptions (such as tag violations) occur.

• New per-mode capability CSRs are added as {m,s,u}ccsr, which includes additional
capability-specific exception cause information, such as more specific cause information
and the identity of the faulting register (see Section 5.3.4).

• CHERI-related page permissions are added to RISC-V architectural page-table formats
rather than MIPS TLB entries.

• In CHERI-MIPS, capabilities authorizing memory access (i.e., with the Permit_Load,
Permit_Store, ... permissions) always have a virtual-address interpretation. This still
allows describing physical addresses due to MIPS’s architectural physically mapped seg-
ments, which directly map portions of the physical address space into the virtual address
space.

In CHERI-RISC-V, the interpretation of addresses in memory capabilities depends on
whether virtual addressing is enabled via the RISC-V satp CSR2. When satp is set to
Bare, capabilities have a physical-address interpretation. When satp enables page-table
translation, capabilities have a virtual-address interpretation.

• Both XLEN=32 and XLEN=64 will be supported (albeit not dynamically). In the future,
it may be desirable to also support XLEN=128.

• A richer set of atomic instructions is extended with capability support.

• There is support only for compressed capabilities (128 bit for XLEN=64; 64 bit for
XLEN=32).

• Floating point is fully supported, including capability-relative floating-point load and
store instructions.

• The flags field contains a single bit indicating the “capability encoding mode” to use
when the capability is installed as PCC.

• In the non-compressed RISC-V encoding, the capability encoding mode allows existing
opcodes, e.g. for loads, stores, auipc, to be interpreted as expecting capability rather than
integer operands (reducing opcode footprint while maintaining intentionality).

2This is not a substantially different design choice than in CHERI-MIPS or with MMU addressing enabled:
memory capabilities are interpreted relative to the active address space, and control of that address space is dele-
gated to suitably privileged code, whether configuring a simple direct map between virtual and physical memory,
or managing multiple more complex address spaces. In all cases, care is required as physical-memory access
authorized by a capability is determined by the addressing mode and current translation table contents.
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• In the compressed RISC-V encoding, the capability encoding mode allows existing load,
store, and jump opcodes to be interpreted as expecting capability rather than integer
operands.

5.3 CHERI-RISC-V Specification
In this section, we describe in greater detail the integration of CHERI into the RISC-V in-
struction set, drawing attention to both similarities and differences from CHERI-MIPS. Draft
instruction opcode encodings can be found in Appendix C; these are expected to change as our
approach evolves.

5.3.1 Tagged Capabilities and Memory

In CHERI-MIPS, we allow both registers and memory to hold tagged capabilities, allowing
capabilities and data to be intermingled. This allows capabilities to be embedded within
in-memory data structures, and supports the implementation of capability-oblivious memory
copy operations. We recommend that the same approach be taken in CHERI-RISC-V, as this
will maintain strong C-language pointer compatibility for capabilities. This implies the use
of tagged memory as in CHERI-MIPS, consisting of 1-bit tags protecting capability-aligned,
capability-sized words of memory in CHERI-RISC-V, implemented with suitable protection
and atomicity properties.

In 64-bit MIPS, we define both 128-bit and 256-bit capability format variants, offering
varying degrees of precision and space for additional metadata. Based on the success of the
CHERI-128 format in running a full suite of software including the CheriBSD operating system
and large applications such as the Postgres database and nginx web server, we choose to define
only 128-bit and 64-bit capabilities in CHERI-RISC-V.

While we currently do not define CHERI-RISC-V support for RV128, we anticipate that
we will wish to support RV128 in the future. It seems plausible that 256-bit capabilities might
incorporate 128-bit addresses along with compressed bounds in a similar manner to our 128-bit
capabilities for 64-bit addresses.

5.3.2 Capability Register File

In 64-bit MIPS, we introduce an additional capability register file to hold tagged 128-bit or
256-bit capability registers, rather than extending the general-purpose integer register file. In
RISC-V, we are presented with a choice: introduce a new (“split”) register file (e.g., as occurs
with the RISC-V F extension for floating point), or extend the existing (“merged”) general-
purpose integer registers in the base instruction set.

Both options can be effectively targeted by a CHERI-aware compiler, but offer quite dif-
ferent performance tradeoffs for both the microarchitecture and software code generation. For
example, an additional register file may require additional control logic, especially in simpler
pipelined designs, and additional registers may impose an additional data-cache footprint due
to additional callee/caller register saving and context switching.
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In CHERI-RISC-V, we choose to specify the instruction set such that the register-file choice
is parameterized, allowing the design space to be evaluated experimentally. Particular CPUs
and compiled software stacks will target only one of these two approaches.

Split Register File

In CHERI-RISC-V, the split register file works much as in CHERI-MIPS: CHERI instructions
with capability register operands access the capability register file, and integer operands specify
access to the integer register file.

Merged Register File

In CHERI-RISC-V, we alternatively allow use of a merged register file in which general-
purpose integer registers optionally hold full capabilities, along with a tag, reducing the amount
of control logic otherwise required (by avoiding an additional register file). This also reduces
the size of register context growth, but does require us to avoid a design choice made in ear-
lier version of the CHERI-MIPS ISA in which certain general capability registers had reserved
functions, such as DDC and EPCC. These must instead be accessed via Special Capability
Registers accessed via dedicated instructions similar to those accessing conventional RISC-V
Control and Status Registers (CSRs), which offer two further advantages: the number of ca-
pability registers can more easily be varied (e.g., in RV32E), and the special behavior of those
registers with respect to legacy memory access and exception handling is disentangled from the
register file’s control logic. Clean separation of general-purpose vs. control capability registers
is also a design choice present in the CHERI-MIPS ISA as of CHERI ISAv7 for these reasons.

Merging the general-purpose integer and capability register files raises the question of
whether and how non-capability-aware instructions should interact with capability values in
registers – a concern not dissimilar to the behavior of instructions on 64-bit architectures offer-
ing legacy 32-bit support. We specify that individual instructions reading from, or writing to, a
register in the register file have fixed integer or capability interpretations based on the opcode
encoding – i.e., that new instructions be introduced that explicitly specify whether capability
semantics are required for an input or output register, or that the current architectural mode
unambiguously specify integer or capability operand interpretation.

A further design choice relates to the specific subset of general-purpose integer registers
that are extended to capability width, as it need not be the case that all are. In our baseline
specification, we extend all registers, but allow software ABIs to limit specific numbered regis-
ters to only integer use. We hope to evaluate different points in this design space to determine
whether performance tradeoffs favour a complete set of capability registers, or simply a partial
set (which might reduce microarchitectural overhead).

The bottom XLEN bits of the register will contain the integer interpretation (which, for a
capability, will be its address), and the top XLEN bits (plus additional tag bit) will contain any
capability metadata. When a register is read as an integer (i.e., using an opcode that dictates
an integer interpretation), the register’s bottom XLEN bits will be utilized, and any other bits
ignored. When a register is written as an integer, its bottom XLEN bits will hold the new integer
value, and the top XLEN bits and tag bit will be cleared to match those of the NULL capability.
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This both prevents in-register corruption of tagged capabilities by implicitly clearing the tag,
and also provides reasonable semantics for integer access to capability values.

Capability Length Architectural Constant (CLEN)

One challenge in introducing CHERI support is that the architectural constant, XLEN, the num-
ber of bits in a register, is used to define numerous behaviors throughout the ISA, such as the
size of CSRs, the operation of integer operations, the size of addresses, and so on. We choose
to leave XLEN as constant as the majority of these operations are intended to be of the natural
integer size (e.g., for addition). However, this does mean that in some cases we need to intro-
duce new instructions intended to operate on full capability-wide values. We introduce a new
architectural constant, CLEN, which we define as 2×XLEN, which excludes the tag bit. Opera-
tions such as capability-width CSR access, capability load, and capability store will operate on
CLEN+1 bits including the tag bit.

Specifically, for 32-bit CHERI-RISC-V, CLEN will be 64 bits, and for 64-bit CHERI-RISC-
V, CLEN will be 128 bits, affecting a variety of functions including the stride of tag bits in
physical memory. Opcode space is reserved in the RISC-V ISA for 64-bit load and store in-
structions even when XLEN is 32, and we can reuse these opcode reservations and encodings to
load 64-bit CLEN words as well as their tag bit. Similarly, when XLEN is 64, we can use 128-bit
CLEN load and store opcodes.

We do not currently define support for 32-bit compatibility (with or without capability sup-
port) when operating in a 64-bit RISC-V processor, but anticipate that adding non-capability-
aware 32-bit support would be straightforward. We also do not yet define an architecture sup-
porting multiple capability widths concurrently, but recognize that there are certain use cases
– such as when interoperating between a 64-bit application core and a 32-bit microcontroller
within a single System-on-Chip (SoC) – where this would be valuable.

5.3.3 Capability-Aware Instructions

In CHERI-MIPS, two general categories of instructions are added: those that query or manip-
ulate capability fields within registers, and those that utilize registers for the purposes of load,
store, or jump operations.

Register-to-register instructions querying and manipulating fields can remain roughly as
defined in CHERI-MIPS, allowing integer values to be moved in and out of portions of an in-
register capability, subject to guarded manipulation. As such, they are simply new instructions
defined in CHERI-RISC-V and added to the opcode space. When using a split register file,
those instructions operate as in CHERI-MIPS, accessing the integer or capability register files
as specified. With the merged register file, integer and capability values are instead read from,
and written back to, the same register file.

In CHERI-RISC-V, assuming that capabilities are stored in the general-purpose integer reg-
ister file, it is possible to imagine having memory-access and control-flow instructions condi-
tion their behavior based on the presence of a tag, selecting a compatible integer behavior if the
tag is not set, and a capability behavior if it is set. However, this would violate the principle
of intentional use: not only should privilege be minimized, but it should not be unintention-
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ally, implicitly, or ambiguously exercised. Allowing a corrupted capability (i.e., one with its
tag stripped due to an overlapping data write) to dereference DDC implicitly would violate
this design goal. We therefore specify strong type safety for all capability-aware instructions:
all instructions explicitly encode whether an integer or capability operand is being used, and
attempts to use untagged values where tagged ones are expected will lead to an exception.

5.3.4 Control and Status Registers (CSRs)

CHERI-RISC-V extends the behavior of the baseline RISC-V integer CSR set, allowing capa-
bility control over access to some CSRs for compartmentalization purposes, as well as adding
several new CSRs to control capability-related functionality. These are accessed via existing
RISC-V CSR instructions, and their encodings are given in Table 5.1. New Special Capability
Registers (SCRs), accessed via new CSR-like instructions, are described in Section 5.3.5.

Encoding Register Privilege notes

0x8C0 User capability control and status
register (uccsr)

PCC.perms.Access_System_Registers

0x9C0 Supervisor capability control and status
register (sccsr)

{S,M}-mode &
PCC.perms.Access_System_Registers

0xBC0 Machine capability control and status
register (mccsr)

M-mode &
PCC.perms.Access_System_Registers

Table 5.1: Control and Status Registers (CSRs)

Controlling Access to CSRs

Accessing RISC-V CSRs also requires the PCC.perms.Access_System_Registers permission
to be set for the currently executing code. This allows privileged-level code to be constrained
from interfering with key system management functionality (such as exception handling).

Capability Control and Status Registers (CCSRs)

New per HART {m,s,u}ccsr XLEN-bit RISC-V CSRs are defined as per Figure 5.1 (shown for
XLEN=32):

01245910151631

WIRI cap idx cause WIRI d e

Figure 5.1: {m,s,u}ccsr register format; WIRI bits are Write Ignore Read Ignore.

e The e “enable” bit tells whether capability extensions are enabled or disabled.
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d The d “dirty” bit tells whether a capability register has been written. This is intended to help
with memory requirements when implementing context switching.

cause The cause field reports the cause of the last capability exception, following the encoding
described in Table 3.8.2.

cap idx The cap idx field reports the index of the capability register that caused the last ex-
ception.

5.3.5 Special Capability Registers (SCRs)

Special Capability Registers (SCRs) are similar to CSRs in that they affect special functions
such as exception delivery, rather than being general-purpose registers, but have capability
rather than integer types. SCRs are therefore accessed via new capability-aware instructions.

The new CSpecialRW instruction allows reading and writing special capability registers.
When the destination register is 0, the instruction shall not read the special capability regis-
ter and shall not cause any of the side-effects that might occur on a special capability register
read, similar to the standard csrrw RISC-V instruction. When the source register is 0, the in-
struction will not write to the special capability register at all, and so shall not cause any of the
side effects that might otherwise occur on a special capability register write, similarly to the
standard csrrs/c RISC-V instruction.

Table 5.2 lists the SCRs available via that instruction, as well as their values at CPU reset,
which will be set in a manner consistent with the description in Section 3.5. Whether a register
is initialized to NULL or the omnipotent capability, its flags field will be initialized to zero
(specifying integer encoding mode).

5.3.6 Efficiently Encoding Capability-Relative Operations

The RISC-V instructions that interpret arguments or results as addresses (e.g. loads, stores,
jumps, auipc) can either act on integer pointers relative to DDC or PCC, or on explicit capa-
bilities. For example, capability-relative load and store instructions accept (and expect) capa-
bility operands that relocate and constrain data accesses, performing tag, bounds, permission,
and other checks as required. However, load and store instructions occupy large amounts of
instruction encoding space due to having multiple register operands and large immediate val-
ues. One consideration in adding CHERI support to RISC-V is the degree to which we are
willing to occupy large chunks of remaining encoding space by simply supplementing each
address-manipulating instruction with a corresponding capability-relative version, as we did in
CHERI-MIPS. Other options that conserve opcode space include utilizing a more limited set of
addressing modes or using smaller immediate sizes for capability-relative instructions – with
a potentially significant negative impact on performance due to an increase in resulting code
size. We therefore consider several points in this design space:

• Introduce a full set of new load and store instructions occupying substantial opcode space,
but providing more efficient capability-intensive generated code.
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Idx Register Modes ASR Write Reset Extends

0 Program counter cap. (PCC) U, S, M N N ∞ PC
1 Default data cap. (DDC) U, S, M N Y ∞ -

4 User trap code cap. (UTCC) U, S, M Y Y ∞ utvec
5 User trap data cap. (UTDC) U, S, M Y Y ∅ -
6 User scratch cap. (UScratchC) U, S, M Y Y ∅ -
7 User exception PC cap. (UEPCC) U, S, M Y Y ∞ uepc

12 Supervisor trap code cap. (STCC) S, M Y Y ∞ stvec
13 Supervisor trap data cap. (STDC) S, M Y Y ∅ -
14 Supervisor scratch cap. (SScratchC) S, M Y Y ∅ -
15 Supervisor exception PC cap. (SEPCC) S, M Y Y ∞ sepc

28 Machine trap code cap. (MTCC) M Y Y ∞ mtvec
29 Machine trap data cap. (MTDC) M Y Y ∅ -
30 Machine scratch cap. (MScratchC) M Y Y ∅ -
31 Machine exception PC cap. (MEPCC) M Y Y ∞ mepc

Table 5.2: Special Capability Registers (SCRs). Modes shows which RISC-
V privilege modes are allowed to access the registers. ASR indicates whether
PCC.perms.Access_System_Registers must be set to permit access (in addition to being in
a permitted mode). PCC is not writable via CSpecialRW, but is set by CJALR and during excep-
tions. Reset indicates whether the register should be initialised to the default root capability
(∞) or NULL capability (∅). Some special capabilities registers are extensions of existing
RISC-V registers, with the capability offset being equal to the original register.

• Introduce only a limited set of new load and store instructions, reducing new opcode
utilization, and supportingly less efficient capability-intensive generated code.

• Introduce a new capability encoding mode in which existing RISC-V load-store opcode
space is reused for capability-relative accesses, allowing a rich set of load-store instruc-
tions without substantially occupying available RISC-V opcode space.

In the conventional (legacy) integer encoding mode, a small set of capability-relative
loads and stores are added, tuned to limit opcode space utilization – e.g., by having small
or no immediates – at the cost of increased code footprint.

To maintain intentionality, this approach is never ambiguous in either mode as to whether
load and store opcodes are intended to access relative to integer or capability operand:
address operands are always integer relative in integer encoding mode, and always capa-
bility relative in capability encoding mode.

Pure-capability and hybrid code can be generated against either encoding, but will be
most efficient (in terms of instruction footprint) when generated against the correspond-
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ing mode. We have specified that the encoding mode will change as a result of jumping
to a PCC with a different encoding-mode flag. Section 8.26 considers other options for
encoding-mode switches.

In the interest of experimentation, we plan to pursue all three approaches in stages, considering
tradeoffs around efficiency and instruction-set design across a range of workloads:

1. Begin by adding a conservative set of capability-relative load and store instructions with-
out immediate offsets, which will consume a small amount of opcode space, and be
sufficient to allow initial compiler engineering to take place.

2. Introduce an architectural “encoding mode bit” in which RISC-V instruction encodings
used for integer-relative DDC-constrained loads and stores are instead used for CHERI-
RISC-V capability-relative loads and stores. To continue to allow hybrid code when in
capability mode, we would introduce a further simple set of DDC-indirected integer-
relative loads and stores with no immediate, similar to the capability-relative set de-
scribed above.

3. Introduce a full set of capability-relative loads and stores with immediate offsets to en-
able full flexibility without switching modes. While this may not be acceptable to the
upstream community without increasing the size of instructions, we should understand
how much performance is being lost by reducing the flexibility of code generation.

As register-relative jump instructions have relatively light opcode utilization, and because
there are many easy-to-imagine uses for protecting control flow using capabilities even in hy-
brid code, we do not apply semantic changes to those baseline non-compressed RISC-V in-
structions when in capability encoding mode. The implications for compressed instructions are
described in Section 5.3.7.

Encoding Modes

We define two encoding modes, selected using the CHERI-RISC-V-specific encoding-mode
flag in the capability flags field of PCC:

Integer encoding mode (0) Conventional RISC-V execution mode, in which address operands
to existing RISC-V load and store opcodes contain integer addresses. If using a merged
register file, the upper 64 bits and tag bit of the operand register will be ignored. The
dereference will implicitly occur relative to DDC. The tag bit on DDC must indicate that
a valid capability is present, and all capability-related checks (such as bounds checks)
must be performed in order for a successful load or store to take place.

Capability encoding mode (1) CHERI capability encoding mode, in which address operands
to existing RISC-V load and store opcodes contain capabilities. The tag bit must indicate
a valid capability is present, and all capability-related checks (such as bounds checks)
must be performed in order for a successful load or store to take place.
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The operating system will automatically save and restore PCC on context switches, pre-
serving an execution context’s encoding mode. It is essential that changes in encoding mode
be properly observed when an exception is processed, as the exception handler must execute
with expected semantics or risk insecure behavior. When {M,S,U}TCC is set by the operating
system, it should contain an appropriate encoding-mode flag to ensure that exception handlers
utilize the correct instruction encoding.

Non-Compressed Instructions Affected by Capability Encoding Mode

The following non-compressed RISC-V load and store instructions would be affected by the
capability encoding-mode bit (see the following section for further details on compressed in-
structions):

Integer load LB LH LW LD
Integer load (unsigned) LBU LHU LWU LDU LQ
Integer store SB SH SW SD SQ
Floating-point load FLW FLD FLQ
Floating-point store FSW FSD FSQ
Atomic LR SC AMOSWAP AMOADD AMOAND
Atomic (cont) AMOOR AMOXOR AMOMAX AMOMIN
Address calculation AUIPC3

5.3.7 Compressed Instructions
The compressed instruction extension (extension C) is now routinely used by the RISC-V gcc
compiler to improve code density. It seems likely that the Compressed extension will become
mandatory for the General configuration (which is currently IMAFD). Two problems arise in
adding compressed instruction support for capabilities: the need for additional opcode space
for load, store, and jump instructions; and the need to add new instructions to load and store
capabilities.

Given the tight encoding space for compressed instructions, some registers (e.g. the stack
pointer - sp) are implicit for some instructions. Since there appears to be no free encoding
space to differentiate between a capability-sp and an integer-sp, one potential design choice is
to use our capability encoding mode to also control the interpretation of compressed instruc-
tions. Similarly, for compressed loads and stores that can use only registers x8–x15 as the
base address, the encoding mode would allow us to reuse opcode space. As with the base-
line compressed instruction set, this imposes ABI-related constraints on the architecture, and
would require the compiler to conform to those constraints in order to accomplish the best code
density.

In his thesis [125], Waterman gives the following function prologue and epilogue examples
to illustrate how compressed instructions improve code density:

prologue_legacy: epilogue_legacy:

c.addi sp, -16 c.ldsp ra, 8(sp)

3See Section 5.3.12.
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c.sdsp ra, 8(sp) c.ldsp s0, 0(sp)

c.sdsp s0, 0(sp) c.addi sp, 16

c.jr t0 c.jr ra

For capability-aware code, saving and restoring the return address (ra) requires capabil-
ity store and load instructions. Given the frequency of capability use for the pure-capability
code targeted by our capability encoding mode (all pointer loads and stores), one option might
be to relieve pressure on the compressed opcode space by removing the less frequently used
floating-point double load and store instructions. For RV64, we could replace the compressed
load floating-point double (C.FLD) with compressed load capability (C.LC) with the same en-
coding as compressed load quad (C.LQ) used in RV128. Similarly, replace: C.FSD with C.SC

(compressed store capability). For stack-relative memory access, replace floating-point double
operations with capability operations: C.FLDSP with C.LCSP and C.FSDSP with C.SCSP.

In the RISC-V I base instruction set (non-compressed instructions), we chose to make ca-
pability jump instructions available in both integer and capability encoding modes, as they use
relatively little encoding space compared to the amount of free space available. In the RISC-
V C extension (compressed instructions), the amount of free space is far smaller, leading us
to select a different design choice: when in capability encoding mode, as with load-store in-
structions, we interpret existing compressed instructions C.J, C.JAL, C.JR, and C.JALR as the
capability instructions CJAL, CJR, and CJALR, accepting capability rather than integer register
operands for jump target registers and link registers.

There is one large gap in the compressed instruction encoding at 100X_XXXX_XXXX_XX00
(where X= don’t care) that could be used to support a CIncOffsetImm (c.cincoff) instruction
to allow the stack pointer to be adjusted.

This would result in capability-aware prologue and epilogues:

prologue_cap_aware: epilogue_cap_aware:

c.cincoff csp, -16 c.lcsp cra, 8(csp)

c.scsp cra, 8(csp) c.lcsp s0, 0(csp)

c.scsp cs0, 0(csp) c.cincoff csp, 16

c.cjr ct0 c.cjr cra

A further interaction relates to encoding-mode selection. If we pursue a design choice
using the lowest bit of a target jump address to set the encoding used following a jump, then
no additional opcode pressure is introduced. If we instead choose to use new instructions, such
as to get or set the mode explicitly, then additional space might be required. The amount of
space required would be modest, but this additional usage might be a further consideration in
the encoding-mode management strategy.

If the approach of using a mode bit for compressed instructions is adopted, then it follows
that the uncompressed versions of the instructions should follow suit to preserve the design
intent that all compressed instructions can be expanded out to uncompressed instructions by
the processor’s decoder, and that the assembler should be permitted to optimize uncompressed
instructions into their compressed form where possible.
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Compressed Instructions Affected by Capability Encoding Mode

The following compressed instructions are affected by capability encoding mode:

Control flow C.JALR C.JR
Compressed integer load C.LW C.LD C.LWSP C.LDSP
Compressed integer store C.SW C.SD C.SWSP C.SDSP
Compressed floating-point load C.FLW C.FLD C.FLWSP C.FLDSP
Compressed floating-point store C.FSW C.FSD C.FSWSP C.FSDSP

5.3.8 Floating Point
The vast majority of floating-point instructions are not impacted by the presence of CHERI-
RISC-V. In CHERI-MIPS, we did not define capability-relative load and store instructions for
floats and doubles, requiring that they loaded via general-purpose integer registers and then be
moved into floating-point registers, leading to reduced code density. Existing RISC-V floating-
point load and store instructions, in the integer encoding mode, are relocated and constrained
by DDC. In CHERI-RISC-V, we define a new set of simple capability-relative load and store
instructions, as well as a more rich set via capability encoding mode.

5.3.9 Exception Handling
RISC-V defines several privilege modes, including machine mode, user mode, and supervisor
mode, with exceptions allowing controlled transition between those modes. CHERI-RISC-V
introduces several new exception-related Special Capability Registers to supplement existing
RISC-V exception CSRs with new capability-related functionality. In addition, {m,s,u}ccsr
will indicate the most recent capability-related exception, as defined in Table 3.8.2, delivered
to the corresponding mode.

The 6-bit cap idx and 5-bit cause fields qualify the last capability exception. cause holds
the capability exception cause as described in Table 3.8.2. cap idx holds the capability register
index of the capability associated with the exception. When the most significant bit is set, the
5 least significant bits are used to index the special purpose capability register file described in
Table 5.2, otherwise, they index the general-purpose capability register file.

Exceptions to Machine Mode

We define the following new special capability registers that can be read and written only from
machine mode:

• MEPCC - Machine Mode Exception Program Counter Capability (extends mepc)

• MTDC - Machine Mode Data Capability

• MTCC - Machine Mode Trap Code Capability (extends mtvec)

• MScratchC - Machine Mode Scratch Capability
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Exceptions to Supervisor Mode

We define the following new special capability registers that can be read and written only from
supervisor mode and above:

• SEPCC - Supervisor Mode Exception Program Counter Capability (extends sepc)

• STDC - Supervisor Mode Data Capability

• STCC - Supervisor Mode Trap Code Capability (extends stvec)

• SScratchC - Supervisor Mode Scratch Capability

Exceptions to User Mode

We employ the “N” extension (for “User-Level Interrupts”) being developed in the newer ver-
sions of the RISC-V specifications, and extend it with the following new special capability
registers that can be read and written from any mode:

• UEPCC - User Mode Exception Program Counter Capability (extends uepc)

• UTDC - User Mode Data Capability

• UTCC - User Mode Trap Code Capability (extends uvec)

• UScratchC - User Mode Scratch Capability

The extension could be leveraged for user-space-only implementations of CCall, as well
as routing specific interrupts from suitable devices to user-level compartments for handling by
sandboxed device drivers.

Explicit vector and data capabilities replace our definitions of the KCC and KDC Special
Capability Registers in CHERI-MIPS, giving each ring its own code and data capabilities to uti-
lize during exception handling. We define “scratch capabilities” to allow the exception handler
to stash a capability register for the purposes of having a working register that corresponding
data capabilities can be loaded to in order to begin a full context save. This is consistent with
RISC-V’s use of scratch registers in various modes to avoid committing general-purpose in-
teger registers to exception handling, as happens in the MIPS ABI with $k0 and $k1. We are
therefore able to similarly avoid the need for CHERI-MIPS’s KR1C and KR2C.

5.3.10 Virtual Memory and Page Tables
In CHERI-RISC-V, capability addresses are interpreted with respect to the privilege level of
the processor. In Machine Mode, capability addresses, as with integer addresses in RISC-V, are
interpreted as physical addresses. In Supervisor and User Modes, capability addresses, again
as with RISC-V, are interpreted as virtual addresses.

Unlike in CHERI-MIPS, the page-table walker is implemented by the architecture and not
the software stack, and in the absence of further extensions to the page-table format, continues
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to contain physical addresses loaded and stored on behalf of executing software. In CHERI-
RISC-V, we require the Access_System_Registers permission to change the page-table root and
other virtual-memory parameters. In the future, it may be desirable to extend the page-table
walking mechanism to itself utilize capabilities, allowing the walker to be constrained.

As with CHERI-MIPS, it is desirable to extend the Memory Management Unit to constrain
the loading and storing of valid capabilities via specific page mappings. In CHERI-MIPS, this
is expressed via two new Translation Look-aside Buffer (TLB) permissions that, if not set, strip
tags on load, or trigger an exception when storing a capability with a valid tag bit. The natural
translation of this idea to RISC-V, which includes architectural support for page tables, rather
than software TLB management, would be to add two effectively identical permission bits to
the current Page Table Entry (PTE) format. Unfortunately, there are no remaining spare bits in
the RISC-V Sv32 (32-bit) PTE format for additional hardware permissions. For the purposes of
prototyping, it may be desirable to utilize the two available software-defined PTE permission
bits – but these are likely to be used in current operating systems, requiring a longer-term
solution. The Sv39 (39-bit) and Sv48 (48-bit) PTE formats include several reserved bits, which
could be allocated for use by CHERI-RISC-V. We define the following new permissions:

• A new page load permission; if not present, it strips tags from loaded capabilities.

• A new page store permission; if not present, it causes attempts to store a capability with
the tags set to throw an exception.

The RISC-V architecture defines management of accessed and dirty bits per page table (and
page directory). In the same spirit, we define an additional metadata bit, called capability-dirty
which is to be set in a leaf PTE whenever that PTE is used as part of a store-capability instruc-
tion. Hardware is permitted to set this bit even if the store-capability instruction faults before
completing; implementations are also permitted leave setting this bit to software and, so, to trap
on capability-store instructions using a leaf PTE in which this bit is clear (using the existing
page fault cause scause code). Capability-store instructions are, additionally, expected to set
the existing dirty bit (or trap if it is clear, again, using the existing scause code). Hardware
must tolerate a leaf PTE being marked as capability-dirty but not (data) dirty (as well as vice
versa) as software may be tracking the two states across different intervals.

5.3.11 The RV-128 LQ, SQ, and Atomic Instructions

The putative 128-bit RISC-V ISA (RV-128) reserves additional quadword load and store in-
structions, LQ and SQ, to be used to load and store 128-bit quantities, as well as quad-word
atomics. In CHERI-RISC-V for RV-64, we reuse these opcode encodings for our 129-bit ca-
pability load and store instructions, CLC and CSC, to avoid additional opcode commitment. We
also introduce corresponding atomics on capabilities reusing the quad-word atomic opcodes.

Should the future RV-128 standard utilize 128-bit addresses, then the most natural course
of action would be to utilize compressed 256-bit capabilities, and add new capability load and
store opcodes for the broader capability width. However, should an RV-128 be defined that in-
stead uses 64-bit virtual addresses (i.e., one with 128-bit data registers but not a 128-bit address
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space), our current opcode-space reuse would not be appropriate for a corresponding CHERI-
RISC-V variant. Overloaded opcodes might reduce intentionality and in the split register-file
configuration we would be unable to distinguish operations intended for the integer register file
vs. the capability register file. With respect to intentionality, it remains to be seen how essential
this concern is with respect to security: tag-free copies could still be implemented efficiently
by stripping Permit_Load_Capability from a source capability during a memory copy. How-
ever, the alignment requirements imposed by our capability load, store, and atomic instructions
can be beneficial in debugging what is otherwise potential tag loss. Should RV-128 be more
fully specified in the future, we will need to revisit whether capability load instructions can be
combined with the LQ, SQ, and atomic instructions.

5.3.12 The AUIPC Instruction
The RISC-V AUIPC instruction generates an address derived from PC and a 20-bit immediate,
typically intended to be used in generating addresses for global variables. Because this instruc-
tion occupies a significant amount of opcode space, we choose to implement a capability-based
version of the instruction only in the capability encoding mode, where the instruction returns a
capability derived from PCC rather than an integer virtual address. When using AUIPC to gen-
erate an integer in the capability encoding mode, or a capability in the integer encoding mode,
an additional, less efficient, instruction sequence must be used instead. Depending on the code
linkage model, it might also be desirable to have a further version of the instruction, GAUIPC,
which returns a capability derived from a global capability table register.



Chapter 6

The CHERI-x86-64 Instruction-Set
Architecture (Sketch)

In this chapter, we explore models for applying CHERI protection to the x86 architecture. The
x86 architecture is a widely deployed CPU architecture used in a variety of applications ranging
from mobile to high-performance computing. The architecture has evolved over time from 16-
bit processors without MMUs to present-day systems with 64-bit processors supporting virtual
memory via a combination of segmentation and paging.

The x86 architecture has spanned three register sizes (16, 32, and 64 bits) and multiple
memory management models. We choose to define CHERI solely for the 64-bit x86 architec-
ture for a variety of reasons including its more mature virtual-memory model, as well as its
larger general-purpose integer register file.

6.1 Capability Registers versus Segments
The x86 architecture first added virtual memory support via relocatable and variable-sized seg-
ments. Each segment was assigned a mask of permissions. Memory references were resolved
with respect to a specific segment including relocation to a base address, bounds checking, and
access checks. Special segment types permitted transitions to and from different protection
domains.

These features are similar to features in CHERI capabilities. However, there are also some
key differences.

First, x86 addresses are stored as a combination of an offset and a segment spanning two
different registers. General-purpose registers are used to hold offsets, and dedicated segment
selector registers are used to hold information about a single segment. The x86 architecture
provides six segment selector registers – three of which are reserved for code, stack, and gen-
eral data accesses. A fourth register is typically used to define the location of thread-local
storage (TLS). This leaves two segment registers to use for fine-grained segments such as sep-
arate segments for individual stack variables. These registers do not load a segment descriptor
from arbitrary locations in memory. Instead, each register selects a segment descriptor from a
descriptor table with a limited number of entries. One could treat the segment descriptor tables
(or portions of these tables) as a cache of active segments.
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Second, more fine-grained segments are not derived from existing segments. Instead, each
entry in a descriptor table is independent. Write access to a descriptor table permits construction
of arbitrary segments (including special segments that permit privilege transitions). Restricting
descriptor-table write access to kernel mode does not protect against construction of arbitrary
segments in kernel mode due to bugs or vulnerabilities. As a result, segment descriptors are not
able to provide the same provenance guarantees as tagged capabilities.

Third, existing segment descriptors do not have available bits for storing types or permis-
sions more expressive than the existing read, write, and execute.

Finally, x86 segmentation is typically not used in modern operating systems. On the 32-bit
x86 architecture, systems generally create segments with infinite bounds and use a non-zero
base address only for a single segment that provides TLS. The 64-bit x86 architecture codifies
this by removing segment bounds entirely and supporting non-zero-base addresses only for two
segment registers. Software for x86 systems stores only the offset portion of virtual addresses
in pointer variables. Segment registers are set to fixed values at program startup, never change,
and are largely ignored.

One approach for providing a similar set of features to CHERI capabilities on x86 would be
to extend the existing segment primitives to accommodate some of these differences. For ex-
ample, descriptor-table entries could be tagged, whereby loading an untagged segment would
trigger an exception. However, some other potential changes are broader in scope (e.g., whether
segment selectors should contain an index into a table, versus a logical address of a segment de-
scriptor). Extending segments would also result in a very different model compared to CHERI
capabilities on other architectures, limiting the ability to share code and algorithms. Instead, we
propose to add CHERI capabilities to 64-bit x86 by extending existing general-purpose integer
registers.

6.2 Tagged Capabilities and Memory

As with CHERI-MIPS and CHERI-RISC-V, we recommend that both memory and registers
contain tagged capabilities. Similar to CHERI-RISC-V, we also recommend a single, 128-bit
format for CHERI-x86-64 capabilities.

6.3 Extending Existing Registers

The x86 architecture has expanded its general-purpose integer registers multiple times. Thus,
the 16-bit AX register has been extended to 32-bit EAX and 64-bit RAX. We propose extend-
ing each general-purpose integer register to a tagged, 128-bit register able to contain a single
capability. The capability-sized registers would be named with a ‘C’ prefix in place of the ‘R’
prefix used for 64-bit registers (CAX, CBX, etc.). As with CHERI-RISC-V, we recommend
that reads of the general-purpose registers as integers return the cursor value (virtual address).
Writes to general-purpose registers using non-capability-aware instructions should clear the
tag and upper 128 bits of capability metadata, storing the desired integer value in the register’s
cursor.
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Some x86 instructions have implicit memory operands addressed by a register. When using
capabilities to address memory, the instructions would use the full capability register.

The “string” instructions use RSI as source address and RDI as a destination address. For
example, the STOS instruction stores the value in AL/AX/EAX/RAX to the address in RDI, and
then either increments or decrements the destination index register (depending on the Direction
Flag). When using capabilities, these string instructions should use CSI instead of RSI and
CDI instead of RDI.

Instructions that work with the stack such as PUSH or CALL use the stack pointer (RSP) as an
implicit operand. With capabilities these instructions would use CSP instead of RSP.

The RIP register (which contains the address of the current instruction) would also be
extended into a CIP capability. This would function as the equivalent of PCC for CHERI-
MIPS.

6.4 Additional Capability Registers
Additional capability registers beyond those present in the general-purpose integer register set
will also be required.

A new register will be required to hold DDC for controlling non-capability-aware memory
accesses.

The x86 architecture currently uses the FS and GS segment selector registers to provide
thread-local storage (TLS). In the 64-bit x86 architecture, these selectors are mostly reduced
to holding an alternate base address that is added as an offset to the virtual address of existing
instructions. For CHERI-x86-64 we recommend replacing these segment registers with two
new capability registers: CFS and CGS.

In addition, new capability registers may be required to manage user to kernel transitions
as detailed below.

6.5 Using Capabilities with Memory Address Operands
As with CHERI-MIPS, CHERI-x86-64 should support running existing x86-64 code, capability-
aware code, and hybrid code. This requires the architecture to support multiple addressing
modes. The x86 architecture has implemented this in the past when it was extended to sup-
port 32-bit operation. We propose to reuse some of the same infrastructure to support a new
capability-based addressing mode.

When x86 was extended from 16 bits to 32 bits, the architecture included the ability to
run existing 16-bit code without modification as well as execute individual 16-bit or 32-bit
instructions within a 32-bit or 16-bit codebase. The support for 16-bit versus 32-bit operation
was split into two categories: operand size and addressing modes. The code segment descriptor
contains a single-bit ‘D’ flag, which sets the default operand size and addressing mode. These
attributes can then be toggled to the non-default setting via opcode prefixes. The 0x66 prefix is
used to toggle the operand size, and the 0x67 prefix is used to toggle the addressing mode.

In 64-bit (“long”) mode, the ‘D’ flag is currently always set to 0 to indicate 32-bit operands
and 64-bit addressing. A value of 1 for ‘D’ is reserved. The 0x67 opcode prefix is used to
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toggle between 32-bit and 64-bit addresses, but a few other single-byte opcodes are invalid in
64-bit mode and could be repurposed as a prefix.

We propose a new capability-aware addressing mode that can be toggled via the ‘D’ flag
of the current code segment and a new 0x62 opcode prefix. (In 32-bit x86, the 0x62 opcode is
the BOUND instruction, which is invalid in 64-bit mode.) If the ‘D’ flag of a 64-bit code segment
is set to 1, then the CPU would execute in “capability mode” – which would include using
the capability-aware addressing mode by default. Individual instructions could toggle between
capability-aware and “plain” 64-bit addressing via the 0x62 opcode prefix. Addresses using
the “plain” 32-bit or 64-bit addressing would always be treated as offsets relative to DDC.
Instructions using capability-aware addressing would always use 64-bit virtual addresses and
ignore any 0x67 opcode prefix.

Note that one can change the value of CS in user mode (for example, a user process in
FreeBSD/amd64 can switch between 32 and 64-bit by using a far call that loads a different
value of CS). This would mean that user code could swap into pure-capability mode without
requiring a system call. However, this would not alter the contents of capability registers or
their enforcement, merely the decoding of instructions. If DDC is invalid, then sandboxed
code that switched to a non-capability CS would still require valid capability registers to access
memory.

6.5.1 Capability-Aware Addressing
For instructions with register-based memory operands, capability-aware addressing would use
the capability version of the register rather than the virtual address relative to DDC.

For example:

mov 0x8(%cbp),%rax

would read the 64-bit value at offset 8 from the capability described by the CBP register.
On the other hand,

mov 0x8(%rbp),%rax

would read the 64-bit value at an offset of RBP+8 from the DDC capability. Both instruc-
tions would use the same opcode aside from the addition of an 0x62 opcode prefix. In a code
segment with ‘D’ set to 1, the second instruction would require the prefix. In a code segment
with ‘D’ set to 0, the first instruction would require the prefix.

6.5.2 Scaled-Index Base Addressing
x86 also supports an addressing mode that combines the values of two registers to construct a
virtual address known as scaled-index base addressing. These addresses use one register, the
base, and a second register, the index, multiplied by a scaling factor of 1, 2, 4, or 8. For these
addresses, capability-aware addresses would select a capability for the base register, but the
index register would use the integer value of the register. For example:
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mov (%rax,%rbx,4),%rcx

This computes an effective address of RAX + RBX * 4 and loads the value at that address
into RCX, The capability-aware version would be:

mov (%cax,%rbx,4),%rcx

That is, starting with the CAX capability, RBX * 4 would be added to the offset, and the
resulting address validated against the CAX capability.

6.5.3 RIP-Relative Addressing
The 64-bit x86 architecture added a new addressing mode to support more efficient Position-
Independent Code (PIC) performance. This addressing mode uses an immediate offset relative
to the current value of the instruction pointer. These addresses are known as RIP-relative
addresses. To support existing code, RIP-relative addresses should be resolved relative to DDC
when executing instructions from a code segment whose segment descriptor has ‘D’ set to 0.
In “capability mode” where ‘D’ is set to 1, these immediate offset and memory access should
instead be validated relative to CIP (the equivalent of PCC from CHERI-MIPS).

An alternative approach might be to always require RIP-relative addresses relative to CIP
and require the runtime environment to configure a suitable CIP capability when executing
non-capability-aware code.

6.5.4 Using Additional Capability Registers
The proposed capability-aware addressing mode proposed above allows for the capability ver-
sions of existing general-purpose integer registers such as CAX or CBP to be encoded in exist-
ing register instructions. However, it does not permit the direct use of the additional capability
registers DDC, CFS, or CGS. DDC is not expected to be used as an explicit base address, but
CFS and CGS must be usable in this manner to support TLS with capability-aware addresses.

One option would be to repurpose the existing FS and GS segment prefixes when used
with instructions using capability-aware addresses to select an implicit base register of CFS
or CGS, respectively. However, this approach is potentially confusing. Would an instruction
using an existing address of “(%cax)” and an instruction prefix of “GS:” simply use the cursor
of CAX (value of RAX) as an offset relative to CGS? In addition, instructions that manipulate
capabilities need a way to specify an additional capability register as an operand.

To handle both of these cases, we propose to reuse the existing FS and GS segment prefixes
to extend the capability register selector field in opcodes. This is similar to the use of bits in
REX prefixes to extend the general-purpose integer register selector fields in other instructions.
Instructions with memory addresses will use at most one capability-register, and the FS prefix
could be used to select capability registers with an index of 32 or higher. For instructions
operating on two capability registers, the FS prefix would affect the register selected for the
first capability register operand, and the GS prefix would affect the register selected for the
second capability register operand. Additional capability registers such as DDC, CFS, and
CGS would be assigned register indices starting at 32 and require a suitable prefix.



162CHAPTER 6. THE CHERI-X86-64 INSTRUCTION-SET ARCHITECTURE (SKETCH)

6.6 Capability-Aware Instructions

6.6.1 Control-Flow Instructions

Existing control-flow operations such as JMP, CALL, and RET would modify the offset of the CIP
capability as well as verify that the new offset is valid.

New instructions would be required when performing a control-flow operation that loads a
full CIP capability. For example, a new CJMP instruction would accept either a capability regis-
ter or an in-memory capability as its sole argument and load the new capability into CIP similar
to the CHERI-MIPS CJR instruction. New CCALL and CRET instructions (not to be confused with
the CHERI-MIPS protection-domain cross instructions) would be used for function calls that
push the full CIP capability onto the stack as the return address.

6.6.2 Manipulating Capabilities

New instructions will need to be defined to support capability manipulations similar to CHERI-
MIPS.

New MOV variants could handle loading and storing of capabilities similar to CLC and CSC.
A new variant of CMPXCHG will be required to support atomic operations on capabilities.

(Note that CMPXCHG16B’s existing semantics are not suitable for capabilities as it divides the
values into register pairs.) It may also be desirable to define a capability variant of XADD.

Variants of PUSH/POP could be used to save and restore capability registers on the stack – if
those operations are common enough to warrant new instructions rather than using capability
MOV instructions paired with adjustments to CSP.

For other capability operations such as CIncOffset, we propose adopting existing CHERI-
MIPS instructions rather than repurposing existing instructions such as ADD. Existing general-
purpose x86 instructions support two operands rather than three operands. To avoid introducing
a new operand encoding format, we propose to use two-operand variants of CHERI-MIPS
instructions when adapting instructions to x86.

The LEA instruction warrants additional consideration. When capability mode addressing is
enabled for this instruction, the effective address should be a capability stored in a capability
destination register. This would permit the use of LEA to perform some operations such as
CIncOffset, without overwriting the source capability register.

6.6.3 Inspecting Tags

CHERI-MIPS provides dedicated CBTU and CBTS instructions for conditional branches. For
x86, a more natural model may be to add a new “tagged” flag to the RFLAGS register. Any
instruction that stored a capability such as capability-aware variants of MOV would set this flag
to the tag bit of the stored capability. New conditional jump instructions would be added that
tested this flag.
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6.7 Capability Violation Faults
For reporting capability violations, we propose reserving a new exception vector. This new
exception would report an error code pushed as part of the exception frame similar to GP# and
PF# faults. The error code would contain one of the values from Table 3.8.2 to indicate the
specific violation. In addition, it may be useful to provide a copy of the relevant capability
register via one of the currently-unused but reserved control registers, such as CR5 or CR12 –
similar to the PF# virtual address stored in CR2. This would avoid the need for decoding the
faulting instruction to determine the relevant capability.

6.8 Interrupt and Exception Handling
For interrupt and exception handling, we propose a new overall CPU mode that enables the
use of capabilities. The availability of this mode would be indicated by a new CPUID flag. The
mode would be enabled by setting a new bit in CR4. When this mode is enabled, exceptions
would push a new type of interrupt frame that would replace RIP with the full CIP capability,
and RSP with the full CSP capability. IRET would be modified to unwind this expanded stack
frame.

Interrupt and exception handlers require new capabilities for the program counter (CIP)
and stack pointer (CSP) registers. We consider two possible approaches.

6.8.1 Kernel Code and Stack Capabilities

The first approach would add two new control registers: the Kernel Code Capability (KCC)
and Kernel Stack Capability (KSC). Access to these registers would be restricted to supervisor
mode. These new registers could be named as instruction operands, using the same approach
decribed earlier for CFS and CGS.

Transitions into supervisor mode would load new offsets relative to KCC and KSC from
existing data structures and tables to construct the new CIP and CSP register values. For
example, the current virtual address stored in each Interrupt Descriptor Table (IDT) entry would
be used as an offset relative to KCC to build CIP, and the address stored in the Interrupt
Stack Table (IST) entry in the current Task-State Segment (TSS) would be used as an offset
relative to KSC to build CSP. Transitions via the SYSCALL instruction would use the offset from
IA32_LSTAR to construct the new CIP.

This approach does require broad capabilities for KCC and KSC that can accommodate
any desired entry point or stack location. However, it will require minimal changes to existing
systems code such as operating-system kernels.

6.8.2 Capabilities in Entry Points

The second approach would be to replace virtual addresses stored in existing entry points with
complete capabilities. This is a more invasive change, requiring larger changes to existing
systems code, but it enables the use of more fine-grained capabilities for each entry point.
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Bit Name Description

62 CW Permits stores of tagged capabilities
61 CR Preserves tags when reading capabilities
60 CD Set when a tagged capability is stored to this page

Table 6.1: CHERI-x86-64 Page Table Bits

Setting the desired kernel stack pointers CSP would require a new TSS layout that expanded
the existing RSP and IST entries to capabilities.

For SYSCALL, a new control register CSTAR could be added to hold the target instruction
pointer. As with KCC, this register would be a privileged register in the same bank as CFS and
CGS.

Entries in the IDT would be expanded to 32-bytes, appending a capability code pointer
in the last 16 bytes. This would double the size of the IDT, and most of the bytes would be
unused. However, it would ensure that all of the information currently stored in an IDT entry
(such as the segment selector, IST index, and descriptor type) would be configurable.

6.8.3 SWAPGS and Capabilities

The SWAPGS instruction is used in user-to-kernel transitions for the 64-bit x86 architecture to
permit separate TLS pointers for user and kernel mode. One option would be to provide a
capability version of SWAPGS, either by extending the IA32_KERNEL_GS_BASE MSR to a
capability, or adding a new MSR. However, this instruction can be difficult to use. Interrupt and
exception handlers must be careful not to invoke SWAPGS if the interrupt or exception is taken
while executing the kernel mode GS. We recommend avoiding the use of SWAPGS, and instead
defining a new privileged control register KGS. Operating systems could either choose to use
KGS to initialize CGS in interrupt and exception handlers, or else use KGS directly as the
kernel mode TLS pointer.

6.9 Page Tables

Similar to CHERI on other architectures, additional page-table permission bits governing loads
and stores of capabilities are desirable. In addition, it may be beneficial to have a “capability
dirty” bit. At present the 64-bit x86 architecture has reserved bits in a range from bit 52 to bit
62. Similar to the non-execute bit (bit 63), CHERI-x86-64 could use bits starting at bit 62 as
described in Table 6.1. Higher bits are preferred, to permit maximal room for growth of the
physical address field that currently ends at bit 51.
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6.10 Capabilities and Integer Instructions
Throughout this chapter, we have proposed that CHERI-x86-64 should assume that existing
integer instructions writing to a capaiblity register should always strip the tag with the exception
of LEA in capability mode. This approach offers the following benefits:

• It avoids “implicit” operations on capabilities.

• It is consistent with 32-bit instructions zero-extending results when stored in 64-bit reg-
isters in long mode.

• Micro-architecturally it permits integer instructions to always assume an untagged out-
put.

However, an alternative approach would be for integer instructions to instead perform the
requested integer operation against the virtual address, and strip the tag only if the new virtual
address results in unrepresentable bounds. In this model, existing instructions such as ADD or
SUB could be used in place of CIncOffset. This would offer the following benefits:

• Pointer manipulations may be able to use shorter instructions, because new capability-
specific instructions will all likely be using 2- and 3-byte opcodes.

• Fewer new opcodes may be required, because some capability instructions might be fully
implemented via existing instructions.

• Compilers may be able to reuse existing code sequences for function prologues and epi-
logues.
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Chapter 7

The CHERI-MIPS Instruction-Set
Reference

CHERI-MIPS’s instructions express a variety of operations affecting capability and integer
registers as well as memory access and control flow. A key design concern is guarded ma-
nipulation, which provides a set of constraints across all instructions that ensure monotonic
non-increase in rights through capability manipulations. These instructions also assume, and
specify, the presence of tagged memory, described in the previous chapter, which protects in-
memory representations of capability values. Many further behaviors, such as reset state and
exception handling (taken for granted in these instruction descriptions), are also described in
the previous chapter. A small number of more recently specified experimental instructions are
specified in Appendix D rather than in this chapter.

The instructions fall into a number of categories: instructions to copy fields from capability
registers into integer registers so that they can be computed on, instructions for refining fields
within capabilities, instructions for memory access via capabilities, instructions for jumps via
capabilities, instructions for sealing capabilities, and instructions for capability invocation. In
this chapter, we specify each instruction via both informal descriptions and code in the Sail
language. To allow for more succinct code descriptions, we rely on a number of common
function definitions also described in this chapter.

7.1 Sail language used in instruction descriptions
The instruction descriptions contained in this chapter are accompanied by code in the Sail
language [8, 105] taken from the Sail CHERI-MIPS implementation [104]. Sail is a domain
specific imperative language designed for describing processor architectures. It has a compiler
that can output executable code in OCaml or C for building executable models, and can also
translate to various theorem prover languages for automated reasoning about the ISA.

The following is a brief description of the Sail language features used in this document. For
a full description see the Sail language documentation.

Types used in Sail:

• int Sail integers are of arbitrary precision (therefore there are no overflows) but can be
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constrained using simple first-order constraints. As a common case integer range types
can be defined using range(a,b) to indicate an integer in the range a to b inclusive.
Operations on integers repsect the constraints on their operands so, for example, if x and
y have type range(a, b) then x + y has type range(a + a, b + b). Integer literals are
written in decimal.

• bits(n) is a bit vector of length n. Vectors are indexed using square bracket notation
with index 0 being the least significant bit. Aritmetic and logical operations on vectors
are defined on two vectors of equal length producing a result of the same length and
truncating on overflow. Where signedness is significant it is indicated in the operator
name, for example <_s performs signed comparison of bit vectors . Bit vector literals
are written in hexadecimal for multiples of four bits or in binary with 0x or 0b prefixes,
e.g. 0x3 means ‘0011’ and 0b11 means ‘11’. The at symbol, @, indicates concatenation of
vectors.

• structs are similar to C structs with named, typed fields acessed with a dot as in struct_val

.field_name. Struct copying with field updates is also supported as in {struct_val with

field_name=new_val}.

• Registers in Sail contain the architectural state that is modified by instruction execution.
By convention register names in the CHERI specification start with a capital letter to dis-
tinguish them from local variables. Sail also supports a form of ‘assignment’ to function
calls as in wGPR(rd)= result. This is just syntactic sugar for an extra argument to the
function call. This syntax is used by functions that write registers or memory and have
special behavior such as wGPR, writeCapReg and MEMw.

The following operators and expression syntax are used in the Sail code:

• Boolean operators: not, | (logical OR), & (logical AND), ^ (exclusive OR)

• Integer operators: + (addition), - (subtraction), * (multiplication), % (modulo)

Sail operations on integers are the usual mathematical operators. Note a % b is the mod-
ulo operator that, for b > 0 returns a value in the range 0 to b − 1 regardless of the sign
of a. Although Sail integers are notionally infinite in range, CHERI instruction can be
implemented with finite arithmetic.

• Bit vector operators: & (bitwise AND), <_s (signed less than), @ (bit vector concatenation)

• Equality: == (equal), != (not equal)

• Vector slice:

v[a..b]

Creates a sub-range of a vector from index a down to b inclusive.
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128-bit 256-bit Description

cap_size 16 32 Number of bytes used to store a capability.
max_otype 218 − 1 224 − 1 Maximum otype allowed by capability format.

MIPS RISC-V Description

num_flags 0 1 Number of capability flags.

Figure 7.1: Constants in Sail code

• Local variables:

mutable_var = exp;

let immutable_var = exp;

Mutable variables are introduced by simply assigning to them. An explicit type may
be given following a colon, but types can usually be inferred. Sail supports mutable or
immutable variables where immutable ones are introduced by let and assigned only once
when created.

• Functional if:

if cond then exp1 else exp2

May return a value similar to C ternary operator.

• Function invocation:

func_id (arg1, arg2)

• Field selection from struct:

struct_val.field

Returns the value of the given field from structure.

• Functional update of structure:

{struct_val with field=exp}

A copy of the structure with the named field replaced with another value.

7.2 Common Constant Definitions

The constants used in the Sail are show in Table 7.1; their value depends on the capability
format in use and architecture specific features such as the RISC-V capability mode flag.
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7.3 Common Function Definitions

This section contains descriptions of convenience functions used by the sail code featured in
this chapter.

Functions for integer and bit vector manipulation

The following functions convert between bit vectors and integers and manipulate bit vectors:
unsigned : forall (’n : Int). bits(’n) -> range(0, 2 ^ ’n - 1)

converts a bit vector of length n to an integer in the range 0 to 2n − 1.

signed : forall (’n : Int), ’n >= 1. bits(’n) -> range(- (2 ^ (’n - 1)), 2 ^ (’n -

1) - 1)

converts a bit vector of length n to an integer in the range −2n−1 to 2n−1 − 1 using twos-
complement.

to_bits : forall (’l : Int), ’l >= 0. (int(’l), int) -> bits(’l)

to_bits(l, v) converts an integer, v, to a bit vector of length l. If v is negative a twos-
complement representation is used. If v is too large (or too negative) to fit in the requested
length then it is truncated to the least significant bits.

pow2 : forall (’n : Int), ’n >= 0. int(’n) -> int(2 ^ ’n)

pow2(n) returns 2 raised to the power n.

zero_extend

Adds zeros in most significant bits of vector to obtain a vector of desired length.

sign_extend

Extends the most significant bits of vector preserving the sign bit.

zeros

Produces a bit vector of all zeros

ones

Produces a bit vector of all ones

Functions for ISA exception behavior
SignalException : forall (’o : Type). Exception -> ’o

Causes the processor to raise the given exception in the usual manner defined by the pro-
cessor architecture (as modified for CHERI).

SignalExceptionBadAddr : forall (’o : Type). (Exception, bits(64)) -> ’o

causes the processor to raise the given exception as per SignalException, but with an asso-
ciated bad address (on MIPS this is written to the BadVAddr register to aid with exception
handling).

raise_c2_exception : forall (’o : Type). (CapEx, regno) -> ’o
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causes the processor to raise a capability exception by writing the given capability excep-
tion cause and register number to the CapCause register then signalling an exception using
SignalException (on CHERI-MIPS this is a C2E exception in most cases, or a special
C2Trap for CCall and CReturn).

raise_c2_exception_noreg : forall (’o : Type). CapEx -> ’o

is as raise_c2_exception except that CapCause.RegNum is written with the special value
0xff indicating PCC or no register.

checkCP2usable : unit -> unit

checkCP2usable raises a co-processor unusable exception if CP0Status.CU[2] is not set. All
capability instructions must first check that the capability co-processor is enabled. This
allows the operating system to only save and restore the full capability context for processes
that use capabilities.

Functions for control flow
execute_branch : bits(64) -> unit

execute_branch checks the given offset against the bounds of PCC and raises a capability
length exception if it is out of bounds, otherwise a branch occurs in the normal manner for
the architecture (on MIPS this implies a branch delay slot, so NextInBranchDelay is set to
true).

execute_branch_pcc : Capability -> unit

execute_branch_pcc executes a branch to the given capability, replacing PCC and taking
the new PC from the offset field. Note that on MIPS the new PCC does not take effect until
after the branch delay slot.

set_next_pcc : Capability -> unit

set_next_pcc sets PCC to the given capability before executing the next instruction. It is
used for CCall, which has no branch delay.

Functions for reading and writing register and memory
rGPR : bits(5) -> bits(64)

Reads the value of the given general purpose register as a 64-bit vector. Register zero is
always zero.

wGPR : (bits(5), bits(64)) -> unit

wGPR(rd, v) writes the 64-bit value, v, to the general purpose register rd. Writes to register
zero are ignored.

readCapReg : regno -> Capability

readCapReg reads a given capability register or, the null capabiility if the argument is zero.

readCapRegDDC : regno -> Capability

readCapRegDDC is the same as readCapReg except that when the argument is zero the value
of DDC is returned instead of the null capability. This is used for instructions that expect
an address, where using null would always generate an exception.

writeCapReg : (regno, Capability) -> unit
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writeCapReg(cd, cap_val) writes capability, cap_val capability register cd. Writes to reg-
ister zero are ignored.

memBitsToCapability : (bool, bits(256)) -> Capability

memBitsToCapability(tag, capBits) converts capBits from the in-memory capability for-
mat to a convenient structure for ease of field access. Note that the bit representation is
xored with the bit representation of the null capability to ensure that null is always stored
as all-zeros in memory.

capToMemBits : Capability -> bits(256)

capToMemBits is the reverse of memBitsToCapability.

MEMr_wrapper : forall (’n : Int), (1 <= ’n & ’n <= 8). (bits(64), int(’n)) -> bits(8

* ’n)

MEMr_wrapper(addr, size) reads a vector of size bytes of memory from physical address
addr (big-endian byte order on CHERI-MIPS).

MEMr_reserve_wrapper : forall (’n : Int), (1 <= ’n & ’n <= 8). (bits(64), int(’n))

-> bits(8 * ’n)

is the same as MEMr_wrapper except that the read is marked as part of a load linked / store
conditional pair.

MEMr_tagged : forall (’size : Int), ’size >= 1. (bits(64), int(’size)) -> (bool,

bits(’size * 8))

reads size bytes from the given physical address in memory and the associated tag value.

MEMr_tagged_reserve : forall (’size : Int), ’size >= 1. (bits(64), int(’size)) -> (

bool, bits(’size * 8))

is as MEMr_tagged except that the load is marked as part of a load linked / store conditional.

MEMw_wrapper : forall (’n : Int), ’n >= 1. (bits(64), int(’n), bits(8 * ’n)) -> unit

MEMw_wrapper(addr, size, value) writes size bytes of value to physical address addr.

MEMw_conditional_wrapper : forall (’n : Int), ’n >= 1. (bits(64), int(’n), bits(8 *
’n)) -> bool

MEMw_conditional_wrapper(addr, size, value) attempts to write size bytes of value to
physical address addr and returns a boolean indicating store conditional success or failure.

MEMw_tagged : forall (’size : Int), ’size >= 1. (bits(64), int(’size), bool, bits(’

size * 8)) -> unit

MEMw_tagged(addr, size, t, value) writes size bytes, value, to physical address, addr,
with associated tag value, t.

MEMw_tagged_conditional : forall (’size : Int), ’size >= 1. (bits(64), int(’size),

bool, bits(’size * 8)) -> bool

MEMw_tagged_conditional(addr, size, t, value) writes size bytes, value, to physical ad-
dress, addr, with associated tag value, t and returns store conditional success or failure.

TLBTranslate : (bits(64), MemAccessType) -> bits(64)

TLBTranslate(addr, acces_type) translates the virtual address, addr, to a physical address
assuming the given access_type (load or store). If the TLB lookup fails an ISA exception
is raised.
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TLBTranslateC : (bits(64), MemAccessType) -> (bits(64), bool)

TLBTranslateC is the same as TLBTranslate except that it also returns a boolean indicating
whether capability loads or stores are permitted for the given page.

wordWidthBytes : WordType -> range(1, 8)

Returns the width of the given WordType (byte, half, word, double) in bytes.

isAddressAligned : (bits(64), WordType) -> bool

isAddressAligned(address, wordtype) returns whether address is naturally aligned for the
given wordtype.

extendLoad : forall (’sz : Int), ’sz <= 64. (bits(’sz), bool) -> bits(64)

extendLoad(val, signed) extends val to 64-bits in either sign extended or zero extended
fashion according to signed.

getAccessLevel : unit -> AccessLevel

Returns the current effective access level (User, Supervisor or Kernel) determined by ac-
cessing the relevant parts of the MIPS status register.

grantsAccess : (AccessLevel, AccessLevel) -> bool

Returns whether the first AccessLevel is sufficient to grant access at the second, required,
access level.

Functions for manipulating capabilities
The sail code abstracts the capability representation using the following functions for getting
and setting fields in the capability. The functions have different implementations for 256-bit
and 128-bit capability formats.

The base of the capability is the address of the first byte of memory to which it grants access
and the top is one greater than the last byte, so the set of dereferenceable addresses is:

{a ∈ N | base ≤ a < top}

Note that for 128-bit capabilities top can be up to 264, meaning the entire 64-bit address space
can be addressed, but that the 256-bit capability format has a maximum length of 264−1 so the
last byte of the address space is inaccessible. Capability length is defined by the relationship
base + length = top.
getCapBase : Capability -> uint64

returns the base of the given capability as an integer in the range 0 to 264 − 1.

getCapTop : Capability -> CapLen

returns the top of the given capability as an integer in the range 0 to 265.

getCapLength : Capability -> CapLen

returns the length of the given capability as an integer in the range 0 to 265.

The capability’s address (also known as cursor) and offset (relative to base) are related by:

base + offset mod 264 = cursor

The following functions return the cursor and offset of a capability respectively:
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getCapCursor : Capability -> uint64

returns the address of the capability as an integer in the range 0 to 264 − 1.

getCapOffset : Capability -> uint64

returns the offset of the capability (i.e. address relative to base) as an integer in the range 0
to 264 − 1

.
The following functions adjust the bounds and offset of capabilities. When using compressed
capabilities not all combinations of bounds and offset are representable, so these functions
return a boolean value indicating whether the requested operation was successful. Even in the
case of failure a capability is still returned, although it may not preserve the bounds of the
original capability.
setCapBounds : (Capability, bits(64), bits(65)) -> (bool, Capability)

setCapBounds(cap, base, top) returns a new capabiltiy value derived from cap with given
base and top and the address set to base. The returned boolean value indicates whether the
requested bounds were exactly representable. When capability compression is in use the
base and top of the returned capabiltiy may cover a larger region than requested in order to
comply with alignment requirements, however the bounds will never exceed the bounds of
the original capabiltiy and the address will still point to the requested base.

setCapAddr : (Capability, bits(64)) -> (bool, Capability)

setCapAddr(cap, addr) returns a new capability derived from cap with the address set to addr

. If the operation fails due to representability checks then the result will have the expected
address but the bounds may be incorrect.

setCapOffset : (Capability, bits(64)) -> (bool, Capability)

setCapOffset(cap, off) returns a new capability derived from cap with the offset set to off

(i.e. with address = cap.base + off ). If the operation fails due to representability checks
then the result will have the expected address but the bounds may be incorrect. Note that,
for performance reasons, an approximate representability check may be used that means
the operation could fail even though the result would be representable.

incCapOffset : (Capability, bits(64)) -> (bool, Capability)

incCapOffset is the same as setCapOffset except that the 64-bit value is added to the current
capability offset modulo 264 (i.e. signed twos-complement arithemtic).

sealCap : (Capability, bits(24)) -> (bool, Capability)

sealCap(cap, otype) returns a new capability derived from cap but sealed with the given
otype. The returned boolean indicates whether the sealed capability is exactly representable
(there may be additional restrictions on sealed capabilities depending on the compression
used).

unsealCap : Capability -> Capability

unsealCap(cap) returns a new unsealed capability derived from cap. The value of otype is
lost.

int_to_cap : bits(64) -> Capability
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creates a capability with the given 64-bit vector in its offset field. The resulting capability
is untagged and has base zero but the other fields are undefined and may vary, depending
on the capabilty compression format, to ensure that any offset can be represented.

Capability permissions are accessed using the following functions:
getCapPerms : Capability -> bits(31)

gets the permissions of the capabilty as a 31-bit vector. The architecturally defined permis-
sions are in the least significant bits and user defined permissions are in bits 15 and above.
Reserved bits are zero.

setCapPerms : (Capability, bits(31)) -> Capability

sets the permission of the capabiltiy as a 31-bit vector. Writes to reserved bits are ignored,
although this behaviour is subject to change in future revisions.

getCapFlags : Capability -> CFlags

Gets the architecture specific capability flags for given capability.

setCapFlags : (Capability, CFlags) -> Capability

setCapFlags(cap, flags) sets the architecture specific capability flags on cap to flags and
returns the result as new capability.

7.4 Table of CHERI Instructions
Tables 7.2 and 7.3 list available capability coprocessor instructions.
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Mnemonic Description

CGetAddr Move capability address to an integer register
CGetAndAddr Move capability address to an integer register, with mask (experimen-

tal)
CGetBase Move base to an integer register
CGetFlags Move flags to an integer register (experimental)
CGetLen Move length to an integer register
CGetOffset Move offset to an integer register
CGetPerm Move permissions to an integer register
CGetSealed Test if a capability is sealed
CGetTag Move tag bit to an integer register
CGetType Move object type to an integer register
CPtrCmp Capability pointer compare
CToPtr Capability to integer pointer

CAndAddr Mask address of capability (experimental)
CAndPerm Restrict permissions
CBuildCap Import a capability (experimental)
CClearRegs Clear multiple registers
CClearTag Clear the tag bit
CCopyType Import a capability’s otype (experimental)
CFromPtr Create capability from pointer
CGetPCC Move PCC to capability register
CGetPCCSetOffset Move PCC to capability register with new offset
CIncOffset Increment offset
CIncOffsetImm Increment Offset by Immediate
CMove Move capability
CMOVN Conditionally move capability on non-zero
CMOVZ Conditionally move capability on zero
CReadHwr Read a special-purpose capability register
CSetAddr Set capability address to value from register
CSetBounds Set bounds
CSetBoundsExact Set bounds exactly
CSetBoundsImm Set bounds (immediate)
CSetFlags Set flags (experimental)
CSetOffset Set cursor to an offset from base
CSub Subtract capabilities
CWriteHwr Write a special-purpose capability register

Figure 7.2: Capability coprocessor instruction summary



7.4. TABLE OF CHERI INSTRUCTIONS 177

Mnemonic Description

CL[BHWD][U] Load integer via capability
CLC Load capability via capability
CLCBI Load capability via capability (big immediate)
CLL[BHWD][U] Load linked integer via capability
CLLC Load linked capability via capability
CSC Store capability via capability
CS[BHWD] Store integer via capability
CSC[BHWD] Store conditional integer via capability
CSCC Store conditional capability via capability

CBEZ Branch if capability is NULL
CBNZ Branch if capability is not NULL
CBTS Branch if capability tag is set
CBTU Branch if capability tag is unset
CJALR Jump and link capability register
CJR Jump capability register

CCheckPerm Raise exception on insufficient permission (deprecated)
CCheckTag Raise exception if capability tag is unset
CCheckType Raise exception if object types do not match (deprecated)

CSeal Seal a capability
CCSeal Conditionally seal a capability (experimental)
CUnseal Unseal a sealed capability

CCall Call into another security domain
CReturn Return to the previous security domain

CGetCause Move the capability exception cause register to an integer register
CGetCID Move the architectural Compartment ID (CID) to an integer register
CSetCause Set the capability exception cause register
CSetCID Set the architectural Compartment ID (CID)

Figure 7.3: Capability coprocessor instruction summary, continued
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CAndPerm: Restrict Permissions
Format

CAndPerm cd, cb, rt
056101115162021252631

0x12 0x0 cd cs rt 0xd

Description

Capability register cd is replaced with the contents of capability register cb with the perms
field set to the bitwise AND of its previous value and bits 0 .. 10 of integer register rd and the
uperms field set to the bitwise and of its previous value and bits first_uperm .. last_uperm of
rd.

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

let rt_val = rGPR(rt);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else

{

let perms = getCapPerms(cb_val);

let newCap = setCapPerms(cb_val, (perms & rt_val[30..0]));

writeCapReg(cd, newCap);

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.
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CBEZ / CBNZ: Branch if Capability is / is Not Null
Format

CBEZ cb, offset
015162021252631

0x12 0x11 cb offset

CBNZ cb, offset
015162021252631

0x12 0x12 cb offset

Description

Sets the PC to PC + 4*offset + 4, where offset is sign extended, depending on whether cb is
equal to the NULL capability.

The instruction following the branch, in the delay slot, is executed before branching.

Semantics

checkCP2usable();

if InBranchDelay then

SignalException(ResI);

let cb_val = readCapReg(cb);

if (cb_val == null_cap) ^ notzero then

{

let offset : bits(64) = sign_extend(imm @ 0b00) + 4;

execute_branch(PC + offset);

};

NextInBranchDelay = 0b1;

Notes

• In the above Sail code notzero is false for CBEZ and true for CBNZ thus inverting the sense
of the comparison (via exclusive-or) for the latter.

• Like all MIPS branch instructions, CBEZ and CBNZ have a branch delay slot. The instruc-
tion after it will always be executed, regardless of whether the branch is taken or not.

• This instruction is intended to resemble the conditional branch instructions from the
MIPS ISA. In particular, the shift left of the offset by 2 bits and adding 4 is the same
as MIPS conditional branches.

• Contrary to previous versions of the CHERI architecture the bounds check on PCC is
performed during execution of the branch so an out-of-bounds target will result in an
exception. In the Sail code this check occurs in the function.
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CBTS / CBTU: Branch if Capability Tag is Set / Unset
Format

CBTS cb, offset
015162021252631

0x12 0x0a cb offset

CBTU cb, offset
015162021252631

0x12 0x09 cb offset

Description

Sets the PC to PC + 4*offset + 4, where offset is sign extended, depending on whether cb.tag
is set. The instruction following the branch, in the delay slot, is executed before branching.

Semantics

checkCP2usable();

if InBranchDelay then

SignalException(ResI);

let cb_val = readCapReg(cb);

if cb_val.tag ^ notset then

{

let offset : bits(64) = sign_extend(imm @ 0b00) + 4;

execute_branch(PC + offset);

};

NextInBranchDelay = 0b1;

Notes

• In the above Sail code notset, is false for CBTS and true for CBTU thus inverting the
condition (via exclusive-or) for the latter.

• Like all MIPS branch instructions, CBTS and CBTU have a branch delay slot. The instruc-
tion after it will always be executed, regardless of whether the branch is taken or not.

• This instruction is intended to resemble the conditional branch instructions from the
MIPS ISA. In particular, the shift left of the offset by 2 bits and adding 4 is the same
as MIPS conditional branches.

• Contrary to previous versions of the CHERI architecture the bounds check on PCC is
performed during execution of the branch so an out-of-bounds target will result in an
exception. In the Sail code this check occurs in the function.
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CCall: Call into Another Security Domain

Format

CCall cs, cb[, selector]

0101115162021252631

0x12 0x05 cs cb selector

Description

CCall is used to make a call between protection domains, unsealing sealed code and data-
capability operands, subject to checks on those capabilities. This allows the callee to gain
access to a different set of capabilities than its caller, supporting implementation of software
encapsulation. The two operand capabilities must be accessible, be valid capabilities, be sealed,
have matching types, and have suitable permissions and bounds, or an exception will be thrown.
cs contains a sealed code capability for the callee subsystem, which will be unsealed and loaded
into PCC. cb contains a sealed data capability for the callee subsystem, which will be unsealed
and loaded into IDC. In the parlance of object-oriented programming, cb is a capability for an
object’s instance data, and cs is a capability for the methods of the object’s class. The CCall

instruction accepts a selector operand that selects between two domain-transition semantics
following successful completion of operand capability checks:

0 The protection-domain transition will be implemented by a software exception handler,
which will perform any necessary register-file transformation or saving and restoring
of state. This mode of operation does not require Permit_CCall on the sealed capability
operands.

1 The protection-domain transition will be direct, in the style of a jump, without assistance
from a software exception handler. The instruction will unseal the sealed operand capa-
bilities and install them as new PCC and IDC values. This mode of operation requires
Permit_CCall to be present on both sealed capability operands.

If omitted in assembly, the selector field is assumed to be 0. Issuing a CCall instruction with
any value other than 0 or 1 is undefined behavior.

With both selectors, a constrained form of non-monotonicity is supported in the architec-
ture. With selector 0, privilege is escalated through a controlled transfer of execution into an
exception handler that has additional access to exception-context capability registers (and lower
rings). With selector 1, privilege is escalated by virtue of CCall unsealing sealed operand capa-
bility registers during a controlled transfer of execution to the callee in a jump-style transfer of
control.

Selector 0 - Semantics

Selector 0 implements a software-assisted domain transition via an exception handler:
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/* Partial implementation of CCall with checks in hardware, but raising a trap to

perform trusted stack manipulation */

checkCP2usable();

if InBranchDelay then

SignalException(ResI);

let cs_val = readCapReg(cs);

let cb_val = readCapReg(cb);

let cs_cursor = getCapCursor(cs_val);

if not (cs_val.tag) then

raise_c2_exception(CapEx_TagViolation, cs)

else if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if not (cs_val.sealed) then

raise_c2_exception(CapEx_SealViolation, cs)

else if not (cb_val.sealed) then

raise_c2_exception(CapEx_SealViolation, cb)

else if cs_val.otype != cb_val.otype then

raise_c2_exception(CapEx_TypeViolation, cs)

else if not (cs_val.permit_execute) then

raise_c2_exception(CapEx_PermitExecuteViolation, cs)

else if cb_val.permit_execute then

raise_c2_exception(CapEx_PermitExecuteViolation, cb)

else if cs_cursor < getCapBase(cs_val) then

raise_c2_exception(CapEx_LengthViolation, cs)

else if cs_cursor >= getCapTop(cs_val) then

raise_c2_exception(CapEx_LengthViolation, cs)

else

raise_c2_exception(CapEx_CallTrap, cs);

Selector 0 - Exceptions

With selector 0, coprocessor 2 exceptions are raised to both handle failure modes (e.g., that one
or both operand capabilities do not have tags set, are not sealed, etc.), and also to implement
domain-transition semantics in a trap handler.

Where selector 0 generates the Call Trap exception code, the handler vector 0x100 bytes
above the general-purpose exception vector will be used. This alternative vector allows more
efficient implementation of fast-path protection-domain switching in a manner similar to the
dedicated TLB fill exception vector.

With both selector 0 and selector 1, a coprocessor 2 exception will be raised using the
general-purpose exception, rather than dedicated, vector in failure cases:

• cs is not sealed.

• cb is not sealed.

• cs.otype 6= cb.otype
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• cs.perms.Permit_Execute is not set.

• cb.perms.Permit_Execute is set.

• cs.offset ≥ cs.length.

Selector 1 - Semantics

Selector 1 implements a jump-like domain transition without using a software exception han-
dler:
/* Jump-like implementation of CCall that unseals arguments */

checkCP2usable();

if InBranchDelay then

SignalException(ResI);

let cs_val = readCapReg(cs);

let cb_val = readCapReg(cb);

let cs_cursor = getCapCursor(cs_val);

if not (cs_val.tag) then

raise_c2_exception(CapEx_TagViolation, cs)

else if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if not (cs_val.sealed) then

raise_c2_exception(CapEx_SealViolation, cs)

else if not (cb_val.sealed) then

raise_c2_exception(CapEx_SealViolation, cb)

else if cs_val.otype != cb_val.otype then

raise_c2_exception(CapEx_TypeViolation, cs)

else if not (cs_val.permit_ccall) then

raise_c2_exception(CapEx_PermitCCallViolation, cs)

else if not (cb_val.permit_ccall) then

raise_c2_exception(CapEx_PermitCCallViolation, cb)

else if not (cs_val.permit_execute) then

raise_c2_exception(CapEx_PermitExecuteViolation, cs)

else if cb_val.permit_execute then

raise_c2_exception(CapEx_PermitExecuteViolation, cb)

else if cs_cursor < getCapBase(cs_val) then

raise_c2_exception(CapEx_LengthViolation, cs)

else if cs_cursor >= getCapTop(cs_val) then

raise_c2_exception(CapEx_LengthViolation, cs)

else

{

set_next_pcc(unsealCap(cs_val));

C26 = unsealCap(cb_val);

NextPC = to_bits(64, getCapOffset(cs_val));

}

CCall with selector 1 executes like a branch in the pipeline, but does not have a branch delay
slot. This is due to the difficulty of allowing one instruction from the calling domain to execute
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in the new domain. See Section 8.24.

Selector 1 - Exceptions

In addition to exceptions that can be thrown by selector 0, selector 1 will raise a coprocessor 2
exception if:

• cs.perms.Permit_CCall is not set

• cb.perms.Permit_CCall is not set

The general-purpose exception vector will be used for these failure-mode exceptions.

Notes

• Selector 0 semantics can be implemented in a number of ways split over hardware and
software; we have experimented with several. A simple implementation might have
CCall throw a software exception, with all other behavior implemented via a software
trap handler. A hybrid implementation could perform various checks in hardware, defer-
ring only trusted stack manipulation (or other behaviors, such as asynchronous calling
conventions) to the software trap handler. Further defensive coding conventions (beyond
instruction semantics) may also sensibly be shifted to the exception handler in order to
avoid redundancy – e.g., the clearing of the same registers to prevent leaks in either direc-
tion. A significant tension exists in the hardware optimization of this instruction between
using a flexible calling convention and semantics versus exploiting hardware optimiza-
tion opportunities. Authors of compilers or assembly language programs should not rely
on CCall being implemented in any particular blend of hardware and software.

• From the point of view of security, CCall needs to be an atomic operation (i.e. the caller
cannot decide to just do some of it, because partial execution could put the system into
an insecure state). From a hardware perspective, more complex domain-transition imple-
mentations (e.g., to implement function-call semantics or message passing) may need to
perform multiple memory reads and writes, which might take multiple cycles and com-
plicate control logic. Supporting both selector 0 and selector 1 semantics for constrained
privilege escalation allow software trap handlers or trusted domains to perform those
sequences without more complex instructions.

• Implementations may choose to restrict the register numbers that may be passed as cs and
cb in order to avoid the need to decode the instruction and identify the register arguments.
The software implementation in CheriBSD at the time of writing requires the cs be C1,
and that cb be C2, consistent with the CHERI ABI.

• Different microarchitectural tradeoffs exist around exception-like or jump-like semantics
for the CCall (and corresponding CReturn) instructions. For example, exceptions may
require greater disruption of speculated instructions in pipeline and superscalar designs.
The jump-like semantics may therefore be preferred for this reason, but do require quite
different software use of sealed capabilities.
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• The 10-bit selector in the CCall instruction allows for the possibility of further semantics
being developed – e.g., to model domain transition on hardware multithreading behavior
(such as passing values between register files or performing other synchronization), more
complex in-hardware sequences including memory access, etc. For example, CCall vari-
ations might perform more or less unsealing (e.g., operating only on PCC), set up sealed
or unsealed link registers for both code and data in the style of a more conventional jump
(e.g., by sealing and moving caller PCC and IDC registers into ABI-reserved registers),
or more fully implement models such as the CheriBSD and CheriOS domain transitions
as described below (e.g., by pushing return state onto stacks, or implementing message
passing).

• In our initial hardware implementation, selector-1 semantics were implemented as selec-
tor 42.

• The unsealing of the capabilities stored to PCC and IDC may have implications beyond
just the object type of these capabilities. When capability compression is in use, the
microarchitectural bit representation of other fields within a capability may depend on
the value of the otype, so this assignment may have the effect of changing the bit rep-
resentation of the other fields. i.e., a hardware implementation may need to change the
representation of the rest of the capability. (In the deprecated CHERI-128 of Appendix E,
for example, which does not have a dedicated otype field, CCall clears the sealed bits of
the capabilities stored to PCC and IDC but must also zero the bits that held the otype
values and are now part of the bounds metadata.)

Expected Software Use

Higher-level software protection-domain transitions transform the capability register file to re-
duce or expand the set of code and data rights available to the executing thread of control.
In CHERI-based software, these transitions can be usefully modeled as function invocation or
message passing in which data and capability registers are passed as arguments or messsages,
and in which callers and callees can be protected from undesired access to internal state from
the other party (i.e., encapsulation). Domain transitions may implement symmetric (mutual) or
asymmetric distrust between caller and callee, depending on guarantees about limiting callee
access to caller state, and vice versa.

Either selector may be used to implement mutual distrust by entering a more privileged
“trusted intermediary” able to perform capability and integer register clearing, saving, and
restoring, as well as tracking properties of communications such as message passing or im-
plementing a trusted stack for reliable call-return semantics and error recovery. The CCall

instruction performs a set of checks on sealed operand capabilities that can be depended on
with either selector, allowing domain transition to be more efficient.

With selector 0, the software exception handler will perform any necessary transformation
of the register files – e.g., by clearing registers, unsealing and installing a new PCC from cs,
unsealing and installing a new IDC from cb, or recording a trustworthy return path in a “trusted
stack” to implement call-return semantics. This allows implementation of a variety of trust
models with varying performance properties; for example, where the caller trusts the callee, less
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register clearing may be performed. In our CheriBSD software prototype, the CCall exception
handler implements a strong function-call-like semantic using a trusted stack to support a safe
CReturn. The sealed code and data capability directly describe the callee protection domain, and
so are unsealed and installed in callee capability registers when it starts executing. Returning
from the exception prevents further use of privileged exception-handling capabilities.

With selector 1, a number of use cases can be formulated, depending on trust model. To
implement mutual distrust, sealed code capabilities must point to an intermediary that is trusted
by the callee to implement escalation to callee privilege. With respect to capabilities, the caller
can perform its own register clearing and encapsulation of (optional) return state passed via
register arguments to the callee. CCall selector 1 does not implement a link register, allowing
the calling convention to implement semantics not implying a leak PCC to the callee. In
our CheriOS software prototype, sealed code capabilities refer to one of a set of message-
passing implementations, with the sealed data capability describing the message ring and target
domain’s code and data capabilities. A second CJR out of the message-passing implementation
into the callee, combined with suitable register clearing, is suitable to deescalate privilege to
the callee protection domain without a second use of CCall.

Sketch of the CheriBSD CCall Model

The CheriBSD CCall model implements domain transition via a short privileged exception
handler using selector 0. Modeled on function invocation, the handler depends on hardware-
assisted checks (such as of operand register accessibility, validity, sealing, types, and permis-
sions). If the checks pass, the handler will unseal the sealed operand capabilities, installing
them in PCC and IDC. It also clears other non-argument registers to prevent data and capa-
bility leakage from caller to callee. In addition, CheriBSD implements a trusted stack that
tracks caller PCC and IDC so that a later CReturn can restore control (and security state) one
instruction after the original call site. Finally, the CheriBSD handler also implements a form of
capability flow control by preventing the passing of non-global capabilities between caller and
callee. A corresponding software exception-handler implementation of the CReturn instruction
will pop an entry from the trusted stack, suitably clear non-return registers, and perform capa-
bility flow-control on non-global return capabilities. The CheriBSD CCall exception handler
operates as follows:

1. PCC (with its offset field set to the program counter (PC) + 4) is pushed onto the trusted
system stack.

2. IDC is pushed onto the trusted system stack.

3. cs is unsealed and the result placed in PCC.

4. cb is unsealed and the result placed in IDC.

5. The program counter is set to cs.offset. (i.e. control branches to virtual address cs.base
+ cs.offset, because the program counter is relative to PCC.base).

The CheriBSD CCall can be modeled with the following pseudocode:
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if not cs.tag then
raise_c2_exception(exceptionTag, cs)

else if not cb.tag then
raise_c2_exception(exceptionTag, cb)

else if not cs.sealed then
raise_c2_exception(exceptionSealed, cs)

else if not cb.sealed then
raise_c2_exception(exceptionSealed, cb)

else if cs.otype 6= cb.otype then
raise_c2_exception(exceptionType, cs)

else if not cs.perms.Permit_Execute then
raise_c2_exception(exceptionPermitExecute, cs)

else if cb.perms.Permit_Execute then
raise_c2_exception(exceptionPermitExecute, cb)

else if cs.offset≥ cs.length then
raise_c2_exception(exceptionLength, cs)

else
PCC.offset← PC + 4
TSS← TSS − capability_size
mem[TSS .. TSS + capability_size − 1]← PCC
tags[toTag(TSS)]← PCC.tag
TSS← TSS − capability_size
mem[TSS .. TSS + capability_size − 1]← IDC
tags[toTag(TSS)]← IDC.tag
PCC← cs
PCC.sealed← false
PCC.otype← 0
PC← cs.offset
IDC← cb
IDC.sealed← false
IDC.otype← 0

end if
This software pseudocode may raise a further coprocessor 2 exception if:

• The trusted system stack would overflow (i.e., if PCC and IDC were pushed onto the
system stack, it would overflow the bounds of TSC).

The exception handler also clears non-argument capability and integer registers, and pre-
vents the use of argument registers that are valid capabilities but do not have the global bit
set.

The trusted-stack (TSC) behavior described in the software pseudocode above is not suit-
able for a RISC-style load-store processor implementation due to its complex combination of
control-flow, register-to-register, and memory-access operations.
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Sketch of the CheriOS CCall Model

As an alternative to an exception-based implementation, a jump-based interpretation of CCall
is also available by setting the selector field to 1. In this case, the architecture allows non-
monotonic transformation of the register file when presented with suitable operand capabilities,
unsealing the two capabilities into PCC and IDC without the need for a software exception
handler. The “callee” can then use these additional rights to implement domain switching and
expansion/reduction of privilege via ordinary loads and register moves.

In the CheriOS model, CCall is used to implement an asynchronous message-passing se-
mantic. The sealed code capability is directed to a software message-passing implementation
that acts as a “trusted intermediary”, and the sealed data capability refers to a description of the
destination domain including message ring. The message-passing implementation adds argu-
ment registers to the ring, and will then either return control to the sender context, or continue
in to the recipient context. This is accomplished by suitable register-file manipulation to give
up any unnecessary privilege, and an ordinary capability jump to pass control to an appropriate
unprivileged domain. As with the CheriBSD model, the message-passing routine must perform
any necessary saving of caller context, checking and clearing of registers, and installation of
callee context to support safe interactions.
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CCheckPerm: Raise Exception on Insufficient Permission (DEPRECATED)
Format

CCheckPerm cs, rt
056101115162021252631

0x12 0x0 cs rt 0x8 0x3f

Description

An exception is raised (and the capability cause set to “user-defined permission violation”) if
there is a bit set in rt that is not set in cs.perms (i.e., rt describes a set of permissions, and an
exception is raised if cs does not grant all of those permissions).

Semantics

checkCP2usable();

let cs_val = readCapReg(cs);

let cs_perms : bits(64) = zero_extend(getCapPerms(cs_val));

let rt_perms = rGPR(rt);

if not (cs_val.tag) then

raise_c2_exception(CapEx_TagViolation, cs)

else if (cs_perms & rt_perms) != rt_perms then

raise_c2_exception(CapEx_UserDefViolation, cs)

Exceptions

A coprocessor 2 exception is raised if:

• cs.tag is not set.

• There is a bit that is set in rt and is not set in cs.perms.

• There is a bit that is set in rt and is not set in cs.uperms.

Notes

• This instruction has been deprecated, and will be removed from future versions of the
CHERI architecture. The original use case for which this instruction was imagined, argu-
ment checking for object-capability invocation, has not proven to be a fast path requiring
architectural acceleration. Further, it is more likely that compartmentalization runtimes
and applications will prefer a branching, rather than trapping, instruction.

• If cs.tag is not set, then cs does not contain a capability, cs.perms might not be meaning-
ful as a permissions field, and so a tagViolation exception is raised.

• This instruction can be used to check the permissions field of a sealed capability, so the
instruction does not check whether cs is sealed.
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CCheckTag: Raise Exception if Tag is Unset
Format

CCheckTag cs

0x12 0x0 cs 0x6 0x1f 0x3f

Description

An exception is raised (and the capability cause register set to “tag violation”) if cs.tag is not
set.

Semantics

checkCP2usable();

let cs_val = readCapReg(cs);

if not(cs_val.tag) then

raise_c2_exception(CapEx_TagViolation, cs);

Exceptions

A coprocessor 2 exception is raised if:

• cs.tag is not set.

Notes

• This instruction is intended to support debugging modes for compilers where an un-
tagged capability may result from an attempted non-monotonic operation, rather than an
exception.
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CCheckType: Raise Exception if Object Types Do Not Match (DEPRE-
CATED)

Format

CCheckType cs, cb

056101115162021252631

0x12 0x0 cs cb 0x9 0x3f

Description

An exception is raised if cs.otype is not equal to cb.otype.

Semantics

checkCP2usable();

let cs_val = readCapReg(cs);

let cb_val = readCapReg(cb);

if not (cs_val.tag) then

raise_c2_exception(CapEx_TagViolation, cs)

else if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if not (cs_val.sealed) then

raise_c2_exception(CapEx_SealViolation, cs)

else if not (cb_val.sealed) then

raise_c2_exception(CapEx_SealViolation, cb)

else if cs_val.otype != cb_val.otype then

raise_c2_exception(CapEx_TypeViolation, cs)

Exceptions

A coprocessor 2 exception is raised if:

• cs.tag is not set.

• cb.tag is not set.

• cs is not sealed.

• cb is not sealed.

• cs.otype6= cb.otype.
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Notes

• This instruction has been deprecated, and will be removed from future versions of the
CHERI architecture. The original use case for which this instruction was imagined, argu-
ment checking for object-capability invocation, has not proven to be a fast path requiring
architectural acceleration. Further, it is more likely that compartmentalization runtimes
and applications will prefer a branching, rather than trapping, instruction.
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CClearRegs: Clear Multiple Registers
Format

ClearLo mask
ClearHi mask
CClearLo mask
CClearHi mask
FPClearLo mask
FPClearHi mask

015162021252631

0x12 0x0f regset mask

Description

The registers in the target register set, regset, corresponding to the set bits in the immediate
mask field are cleared. That is, if bit 0 of mask is set, then the lowest numbered register in
regset is cleared, and so on. The following values are defined for the regset field:

Mnemonic regset Affected registers

ClearLo 0 R0–R15
ClearHi 1 R16–R31
CClearLo 2 DDC, C1–C15
CClearHi 3 C16–C31
FPClearLo 4 F0–F15
FPClearHi 5 F16–F31

For integer registers, clearing means setting to zero. For capability registers, clearing con-
sists of setting all capability fields such that the in-memory representation will be all zeroes,
with a cleared tag bit, granting no rights.

Note: For CClearLo bit 0 in mask refers to DDC and not C0 since C0 is the NULL register.

Semantics

if ((regset == CLo) | (regset == CHi)) then

checkCP2usable();

foreach (i from 0 to 15)

if (m[i]) then

match regset {

GPLo => wGPR(to_bits(5, i)) = zeros(),

GPHi => wGPR(to_bits(5, i+16)) = zeros(),

CLo => if i == 0 then

DDC = null_cap
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else

writeCapReg(to_bits(5, i)) = null_cap,

CHi => writeCapReg(to_bits(5, i+16)) = null_cap

}

Exceptions

• A Reserved Instruction exception is raised for unknown or unimplemented values of
regset.

• CClearLo and CClearHi raise a coprocessor unusable exception if the capability coproces-
sor is disabled.

• FPClearLo and FPClearHi raise a coprocessor unusable exception if the floating point unit
is disabled.

Notes

• These instructions are designed to accelerate the register clearing that is required for
secure domain transitions. It is expected that they can be implemented efficiently in
hardware using a single ‘valid’ bit per register that is cleared by the ClearRegs instruction
and set on any subsequent write to the register.

• The mnemonic for the integer-register instruction does not make it very clear what the
instruction does. It would be preferable to have a more descriptive mnemonic.
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CClearTag: Clear the Tag Bit
Format

CClearTag cd, cb
056101115162021252631

0x12 0x0 cd cb 0xb 0x3f

Description

Capability register cd is replaced with the contents of cb, with the tag bit cleared.

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

writeCapReg(cd, {cb_val with tag=false});
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CFromPtr: Create Capability from Pointer

Format

CFromPtr cd, cb, rt

056101115162021252631

0x12 0x0 cd cb rt 0x13

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Description

rt is a pointer using the C-language convention that a zero value represents the NULL pointer.
If rt is zero, then cd will be the NULL capability (tag bit not set, all other bits also not set). If
rt is non-zero, then cd will be set to cb with the offset field set to rt.

Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

let rt_val = rGPR(rt);

if rt_val == 0x0000000000000000 then

writeCapReg(cd, null_cap)

else if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else

{

let (success, newCap) = setCapOffset(cb_val, rt_val);

if success then

writeCapReg(cd, newCap)

else

writeCapReg(cd, int_to_cap(to_bits(64, getCapBase(cb_val)) + rt_val))

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set and rt 6= 0.

• cb is sealed and rt 6= 0.
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Notes

• CSetOffset doesn’t raise an exception if the tag bit is unset, so that it can be used to
implement the intcap_t type. CFromPtr raises an exception if the tag bit is unset: although
it would not be a security violation to to allow it, it is an indication that the program is in
error.

• The encodings of the NULL capability are chosen so that zeroing memory will set a
capability variable to NULL. This holds true for compressed capabilities as well as the
256-bit version.
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CGetAddr: Move Capability Address to an Integer Register
Format

CGetAddr rd, cb
056101115162021252631

0x12 0x0 rd cb 0xf 0x3f

Description

rd is set to cb.base + cb.offset, returning the virtual address of a capability in an integer register.
This instruction may be appropriate for use cases in which C is utilizing a virtual-address
rather than offset integer interpretation of capabilities, or in which integer values are stored in
capability registers.

Semantics

checkCP2usable();

let capVal = readCapReg(cb);

wGPR(rd) = capVal.address;

Notes

• This differs from CToPtr in that it does not perform any range checks with respect to an
authorizing capability, nor require that cb be a valid and unsealed capability.
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CGetBase: Move Base to an Integer Register
Format

CGetBase rd, cb
056101115162021252631

0x12 0x0 rd cb 0x2 0x3f

Description

Integer register rd is set equal to the base field of capability register cb.

Semantics

checkCP2usable();

let capVal = readCapReg(cb);

wGPR(rd) = to_bits(64, getCapBase(capVal));
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CGetCID: Move the Architectural Compartment ID to an Integer Register
Format

CGetCID rd
056101115162021252631

0x12 0x0 rd 0x4 0x1f 0x3f

Description

Move the architectural Compartment ID (CID) to integer register rd, retrieving the last value
set by CSetCID.

Semantics

checkCP2usable();

wGPR(rd) = CID;

Exceptions

This instruction does not raise any exceptions.

Notes

• We choose not to require any additional privilege to query the CID. An argument could
be made that this is an information leak. If so, one possible design choice would be to
require Access_System_Registers to retrieve the value of the CID; however, this would
be inconsistent with the access-control model for setting the CID.

• While this instruction has been introduced for debugging purposes, it could also have
utility in indexing state – e.g., to implement concepts such as compartment-local storage.



7.4. TABLE OF CHERI INSTRUCTIONS 201

CGetCause: Move the Capability Exception Cause Register to an Integer
Register
Format

CGetCause rd
056101115162021252631

0x12 0x0 rd 0x1 0x1f 0x3f

Description

Integer register rd is set equal to the capability cause register.

Semantics

checkCP2usable();

if not (pcc_access_system_regs ()) then

raise_c2_exception_noreg(CapEx_AccessSystemRegsViolation)

else

wGPR(rd) = zero_extend(CapCause.bits())

Exceptions

A coprocessor 2 exception is raised if:

• PCC.perms.Access_System_Registers is not set.
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CGetLen: Move Length to an Integer Register
Format

CGetLen rd, cb
056101115162021252631

0x12 0x0 rd cb 0x3 0x3f

Description

Integer register rd is set equal to the length field of capability register cb.

Semantics

checkCP2usable();

let capVal = readCapReg(cb);

let len65 = getCapLength(capVal);

wGPR(rd) = to_bits(64, if len65 > MAX_U64 then MAX_U64 else len65);

Notes

• With the 256-bit representation of capabilities, length is a 64-bit unsigned integer and can
never be greater than 264−1. With the 128-bit compressed representation of capabilities,
the result of decompressing the length can be 264; CGetLen will return the maximum value
of 264 − 1 in this case.
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CGetOffset: Move Offset to an Integer Register
Format

CGetOffset rd, cb
056101115162021252631

0x12 0x0 rd cb 0x6 0x3f

Description

Integer register rd is set equal to the offset fields of capability register cb.

Semantics

checkCP2usable();

let capVal = readCapReg(cb);

wGPR(rd) = to_bits(64, getCapOffset(capVal));
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CGetPCC: Move PCC to Capability Register
Format

CGetPCC cd
056101115162021252631

0x12 0x0 cd 0x0 0x1f 0x3f

Description

Capability register cd is set equal to the PCC, with cd.offset set equal to PC.

Semantics

checkCP2usable();

let (success, pcc) = setCapOffset(PCC, PC);

assert (success, "PCC with offset PC should always be representable");

writeCapReg(cd, pcc);
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CGetPCCSetOffset: Move PCC to Capability Register with New Offset
Format

CGetPCCSetOffset cd, rs
056101115162021252631

0x12 0x0 cd rs 0x7 0x3f

Description

Capability register cd is set equal to the PCC, with cd.offset set equal to rs.

Semantics

checkCP2usable();

let rs_val = rGPR(rs);

let (success, newPCC) = setCapOffset(PCC, rs_val);

if (success) then

writeCapReg(cd, newPCC)

else

writeCapReg(cd, int_to_cap(rs_val));

Notes
• This instruction is a peformance optimization; a similar effect can be achieved with

CGetPCC followed by CSetOffset.
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CGetPerm: Move Permissions to an Integer Register
Format

CGetPerm rd, cb
056101115162021252631

0x12 0x0 rd cb 0x0 0x3f

Description

The least significant 11 bits of integer register rd are set equal to the perms field of capability
register cb; bits first_uperm to last_uperm of rd are set equal to the uperms field of cb. The
other bits of rd are set to zero.

Semantics

checkCP2usable();

let capVal = readCapReg(cb);

wGPR(rd) = zero_extend(getCapPerms(capVal));
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CGetSealed: Test if Capability is Sealed
Format

CGetSealed rd, cb
056101115162021252631

0x12 0x0 rd cb 0x5 0x3f

Description

The low-order bit of integer register rd is set to 0 if cb.otype is 264 − 1 and 1 otherwise. All
other bits of rd are cleared.

Semantics

checkCP2usable();

let capVal = readCapReg(cb);

wGPR(rd) = zero_extend(capVal.sealed);
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CGetTag: Move Tag Bit to an Integer Register
Format

CGetTag rd, cb
056101115162021252631

0x12 0x0 rd cb 0x4 0x3f

Description

The low bit of integer register rd is set to the tag value of cb. All other bits are cleared.

Semantics

checkCP2usable();

let capVal = readCapReg(cb);

wGPR(rd) = zero_extend(capVal.tag);
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CGetType: Move Object Type to an Integer Register
Format

CGetType rd, cb
056101115162021252631

0x12 0x0 rd cb 0x1 0x3f

Description

Integer register rd is set equal to the otype field of capability register cb.

Semantics

checkCP2usable();

let capVal = readCapReg(cb);

wGPR(rd) = if capVal.sealed

then zero_extend(capVal.otype)

else 0xffffffffffffffff

Notes
• If the capability is not sealed, a value of -1 is returned. As the allowed values of otype in

a sealed capability are non-negative, this makes it easy to tell from the result of CGetType
whether the capability was sealed or unsealed. This might be used, for example, in an
efficient routine for paging capabilities back into memory from swap.
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CIncOffset: Increment Offset
Format

CIncOffset cd, cb, rt
056101115162021252631

0x12 0x0 cd cb rt 0x11

Description

Capability register cd is set equal to capability register cb with its offset field replaced with
cb.offset + rt.

If capability compression is in use, and the requested base, length and offset cannot be
represented exactly, then cd.tag is cleared, cd.base and cd.length are set to zero, cd.perms is
cleared, and cd.offset is set equal to cb.base + cb.offset + rt.

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

let rt_val = rGPR(rt);

if cb_val.tag & cb_val.sealed & (rt_val != 0x0000000000000000) then

raise_c2_exception(CapEx_SealViolation, cb)

else

{

let (success, newCap) = incCapOffset(cb_val, rt_val);

if success then

writeCapReg(cd, newCap)

else

writeCapReg(cd, int_to_cap(cb_val.address + rt_val))

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is set and cb is sealed.

Notes

• For security reasons, CIncOffset must not change the offset of a sealed capability.

• As a special case, we allow CIncOffset with an offset of zero to work on sealed capabil-
ities; this is so that CIncOffset can be used as a capability move instruction.

• If the tag bit is not set, and the offset is being used to hold an integer, then CIncOffset

should still increment the offset. This is so that CIncOffset can be used to implement in-
crement of a intcap_t type. Because the tag is unset, CIncOffset will ignore the decoded
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otype and so will not attempt to enforce immutability of detagged sealed capabilities.
(The precise effect of CIncOffset on such non-capability data will depend on which bi-
nary representation of capabilities is being used.)

• If the tag bit is not set, and capability compression is in use, the arbitrary data in cb
might not decompress to sensible values of the base and length fields, and there is no
guarantee that retaining these values of base and length while changing offset will result
in a representable value.

From a software perspective, the requirement is that incrementing offset on an untagged
capability will work if base and length are zero. (This is how integers, and pointers that
have lost precision, will be represented). If base and length have non-zero values (or cb
cannot be decompressed at all), then the values of base and length after this instruction
are UNPREDICTABLE.

• In assembly language, CMove cd, cb is a pseudo-instruction that the assembler converts to
CIncOffset cd, cb, $zero.
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CIncOffsetImm: Increment Offset by Immediate
Format

CIncOffset cd, cb, incrementimm

0101115162021252631

0x12 0x13 cd cb incrementimm

Description

Capability register cd is set equal to capability register cb with its offset field replaced with
cb.offset + incrementimm.

If capability compression is in use, and the requested base, length and offset cannot be
represented exactly, then cd.tag is cleared, cd.base and cd.length are set to zero, cd.perms is
cleared, and cd.offset is set equal to cb.base + cb.offset + incrementimm.

Semantics

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is set and cb is sealed.

Notes

• For security reasons, CIncOffsetImm must not change the offset of a sealed capability.

• If the tag bit is not set, and the offset is being used to hold an integer, then CIncOffsetImm

should still increment the offset. This is so that CIncOffsetImm can be used to imple-
ment increment of a intcap_t type. Because the tag is unset, CIncOffset will ignore the
decoded otype and so will not attempt to enforce immutability of detagged sealed ca-
pabilities. (The precise effect of CIncOffset on such non-capability data will depend on
which binary representation of capabilities is being used.)

• If the tag bit is not set, and capability compression is in use, the arbitrary data in cb
might not decompress to sensible values of the base and length fields, and there is no
guarantee that retaining these values of base and length while changing offset will result
in a representable value.

From a software perspective, the requirement is that increasing offset on an untagged
capability will work if base and length are zero. (This is how integers, and pointers that
have lost precision, will be represented). If base and length have non-zero values (or cb
cannot be decompressed at all), then the values of base and length after this instruction
are UNPREDICTABLE.
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CJR / CJALR: Jump (and Link) Capability Register
Format

CJALR cb, cd
056101115162021252631

0x12 0x0 cd cb 0xc 0x3f

CJR cb
056101115162021252631

0x12 0x0 cb 0x3 0x1f 0x3f

Description

The current PCC (with an offset of the current PC + 8) is optionally saved in cd. PCC is then
loaded from capability register cb and PC is set from its offset.

Semantics

checkCP2usable();

if InBranchDelay then

SignalException(ResI);

let cb_val = readCapReg(cb);

let cb_ptr = getCapCursor(cb_val);

let cb_top = getCapTop(cb_val);

let cb_base= getCapBase(cb_val);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if (cb_val.sealed) then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_execute) then

raise_c2_exception(CapEx_PermitExecuteViolation, cb)

else if cb_ptr < cb_base then

raise_c2_exception(CapEx_LengthViolation, cb)

else if (cb_ptr + 4) > cb_top then

raise_c2_exception(CapEx_LengthViolation, cb)

else if (cb_ptr % 4) != 0 then

SignalException(AdEL)

else

{

if link then

{

let (success, linkCap) = setCapOffset(PCC, PC+8);

assert(success, "Link cap should always be representable.");

writeCapReg(cd, linkCap);

};
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execute_branch_pcc(cb_val);

};

NextInBranchDelay = 0b1;

Exceptions

A coprocessor 2 exception will be raised if:

• cb.tag is not set.

• cb is sealed. (But see Appendix D.12.)

• cb.perms.Permit_Execute is not set.

• cb.offset + 4 is greater than cb.length.

An address error exception will be raised if

• cb.base + cb.offset is not 4-byte word aligned.

Notes

• CJALR has a branch delay slot.

• The change to PCC does not take effect until the instruction in the branch delay slot has
been executed.

• cb.base and cb.length are treated as unsigned integers, and the result of the addition does
not wrap around (i.e., an exception is raised if cb.base+cb.offset is greater than maxaddr).
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Load Integer via Capability Register
Format

CLB rd, rt, offset(cb)
CLH rd, rt, offset(cb)
CLW rd, rt, offset(cb)
CLD rd, rt, offset(cb)
CLBU rd, rt, offset(cb)
CLHU rd, rt, offset(cb)
CLWU rd, rt, offset(cb)
CLBR rd, rt(cb)
CLHR rd, rt(cb)
CLWR rd, rt(cb)
CLDR rd, rt(cb)
CLBUR rd, rt(cb)
CLHUR rd, rt(cb)
CLWUR rd, rt(cb)
CLBI rd, offset(cb)
CLHI rd, offset(cb)
CLWI rd, offset(cb)
CLDI rd, offset(cb)
CLBUI rd, offset(cb)
CLHUI rd, offset(cb)
CLWUI rd, offset(cb)

013101115162021252631

0x32 rd cb rt offset s t

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Purpose

Loads a data value via a capability register, and extends the value to fit the target register.

Description

The lower part of integer register rd is loaded from the memory location specified by cb.base
+ cb.offset + rt + 2t ∗ offset. Capability register cb must contain a valid capability that grants
permission to load data.

The size of the value loaded depends on the value of the t field:

0 byte (8 bits)

1 halfword (16 bits)

2 word (32 bits)
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3 doubleword (64 bits)

The extension behavior depends on the value of the s field: 1 indicates sign extend, 0
indicates zero extend. For example, CLWU is encoded by setting s to 0 and t to 2, CLB is encoded
by setting s to 1 and t to 0.

Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_load) then

raise_c2_exception(CapEx_PermitLoadViolation, cb)

else

{

let ’size = wordWidthBytes(width);

let cursor = getCapCursor(cb_val);

let vAddr = (cursor + unsigned(rGPR(rt)) + size*signed(offset)) % pow2(64);

let vAddr64 = to_bits(64, vAddr);

if (vAddr + size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if not (isAddressAligned(vAddr64, width)) then

SignalExceptionBadAddr(AdEL, vAddr64)

else

{

let pAddr = TLBTranslate(vAddr64, LoadData);

memResult : bits(64) = extendLoad(MEMr_wrapper(pAddr, size), signext);

wGPR(rd) = memResult;

}

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cb.perms.Permit_Load is not set.

• addr + size > cb.base + cb.length
NB: The check depends on the size of the data loaded.
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• addr < cb.base

An AdEL exception is raised if addr is not correctly aligned.

Notes

• This instruction reuses the opcode from the Load Word to Coprocessor 2 (LWC2) instruc-
tion in the MIPS Specification.

• rt is treated as an unsigned integer.

• offset is treated as a signed integer.

• BERI1 has a compile-time option to allow unaligned loads and stores. If BERI1 is built
with this option, an unaligned load will only raise an exception if it crosses a cache line
boundary.
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CLC: Load Capability via Capability
Format

CLC cd, rt, offset(cb)
CLCR cd, rt(cb)
CLCI cd, offset(cb)

056101115162021252631

0x36 cd cb rt offset

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Description

Capability register cd is loaded from the memory location specified by cb.base + cb.offset
+ rt + offset. Capability register cb must contain a capability that grants permission to load
capabilities. The virtual address cb.base + cb.offset + rt + offset must be capability_size
aligned.

The bit in the tag memory corresponding to cb.base + cb.offset + rt + offset is loaded into
the tag bit associated with cd.

Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_load) then

raise_c2_exception(CapEx_PermitLoadViolation, cb)

else

{

let cursor = getCapCursor(cb_val);

let vAddr = (cursor + unsigned(rGPR(rt)) + 16 * signed(offset)) % pow2(64);

let vAddr64 = to_bits(64, vAddr);

if (vAddr + cap_size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if (vAddr % cap_size) != 0 then

SignalExceptionBadAddr(AdEL, vAddr64)

else

{

let (pAddr, suppressTag) = TLBTranslateC(vAddr64, LoadData);

let (tag, mem) = MEMr_tagged(pAddr, cap_size);
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let cap = memBitsToCapability(tag & cb_val.permit_load_cap & not (suppressTag)

, mem);

writeCapReg(cd, cap);

}

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cb.perms.Permit_Load is not set.

• addr + capability_size > cb.base + cb.length.

• addr < cb.base.

An address error during load (AdEL) exception is raised if:

• The virtual address addr is not capability_size aligned.

Notes

• This instruction reuses the opcode from the Load Doubleword to Coprocessor 2 (LDC2)
instruction in the MIPS Specification.

• offset is interpreted as a signed integer.

• The CLCI mnemonic is equivalent to CLC with cb being the zero register ($zero). The CLCR

mnemonic is equivalent to CLC with offset set to zero.

• Although the capability_size can vary, the offset is always in multiples of 16 bytes (128
bits).



220 CHAPTER 7. THE CHERI-MIPS INSTRUCTION-SET REFERENCE

CLCBI: Load Capability via Capability (Big Immediate)
Format

CLCBI cd, offset(cb)
056101115162021252631

0x1d cd cb offset

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Description

Capability register cd is loaded from the memory location specified by cb.base + cb.offset +
offset. Capability register cb must contain a capability that grants permission to load capabili-
ties. The virtual address cb.base + cb.offset + offset must be capability_size aligned.

The bit in the tag memory corresponding to cb.base + cb.offset + offset is loaded into the
tag bit associated with cd.

Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_load) then

raise_c2_exception(CapEx_PermitLoadViolation, cb)

else

{

let cursor = getCapCursor(cb_val);

let vAddr = (cursor + 16 * signed(offset)) % pow2(64);

let vAddr64 = to_bits(64, vAddr);

if (vAddr + cap_size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if (vAddr % cap_size) != 0 then

SignalExceptionBadAddr(AdEL, vAddr64)

else

{

let (pAddr, suppressTag) = TLBTranslateC(vAddr64, LoadData);

let (tag, mem) = MEMr_tagged(pAddr, cap_size);

let cap = memBitsToCapability(tag & cb_val.permit_load_cap & not (suppressTag)

, mem);

writeCapReg(cd, cap);



7.4. TABLE OF CHERI INSTRUCTIONS 221

}

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cb.perms.Permit_Load is not set.

• addr + capability_size > cb.base + cb.length.

• addr < cb.base.

An address error during load (AdEL) exception is raised if:

• The virtual address addr is not capability_size aligned.

Notes

• This instruction reuses the opcode from the Jump and Link Exchange (JALX) instruction in
the MIPS Specification. Future versions of the architecture may use a different encoding
to avoid reusing an opcode with a delay slot for an instruction without a delay slot.

• offset is interpreted as a signed integer.

• Although the capability_size can vary, the offset is always in multiples of 16 bytes (128
bits).

• The larger immediate of CLCBI) enables more efficient code generation in pure-capability
programs for accesses of global variables. In many programs and libraries, the 11-bit
immediate offset of CLC is not sufficient reach all entries in the table of global capabilities
and therefore the compiler must to generate a three-instruction sequence instead. By
using of CLCBI) for accessing globals, the code size of most pure-capability binaries can
be reduced by over 10%.

• Architectures with pc-relative loads or instructions to add a large immediate to PCC
(such as AUIPC) can use those instead of adding a capability load with a larger immediate
offset.
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CLL[BHWD][U]: Load Linked Integer via Capability
Format

CLLB rd, cb
CLLH rd, cb
CLLW rd, cb
CLLD rd, cb
CLLBU rd, cb
CLLHU rd, cb
CLLWU rd, cb

01234101115162021252631

0x12 0x10 rd cb 1 s t

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Description

CLL[BHWD][U] and CSC[BHWD] are used to implement safe access to data shared between different
threads. The typical usage is that CLL[BHWD][U] is followed (an arbitrary number of instructions
later) by CSC[BHWD] to the same address; the CSC[BHWD] will only succeed if the memory location
that was loaded by the CLL[BHWD][U] has not been modified.

The exact conditions under which CSC[BHWD] fails are implementation dependent, particu-
larly in multicore or multiprocessor implementations). The following code is intended to rep-
resent the security semantics of the instruction correctly, but should not be taken as a definition
of the CPU’s memory coherence model.

Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_load) then

raise_c2_exception(CapEx_PermitLoadViolation, cb)

else

{

let ’size = wordWidthBytes(width);

let vAddr = getCapCursor(cb_val);

let vAddr64 = to_bits(64, vAddr);

if (vAddr + size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)
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else if not (isAddressAligned(vAddr64, width)) then

SignalExceptionBadAddr(AdEL, vAddr64)

else

{

let pAddr = TLBTranslate(vAddr64, LoadData);

let memResult : bits(64) = extendLoad(MEMr_reserve_wrapper(pAddr, size),

signext);

CP0LLBit = 0b1;

CP0LLAddr = pAddr;

wGPR(rd) = memResult;

}

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cb.perms.Permit_Load is not set.

• addr + size > cb.base + cb.length

• addr < cb.base

An AdEL exception is raised if addr is not correctly aligned.
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CLLC: Load Linked Capability via Capability
Format

CLLC cd, cb

023101115162021252631

0x12 0x10 cd cb 1111

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_load) then

raise_c2_exception(CapEx_PermitLoadViolation, cb)

else

{

let vAddr = getCapCursor(cb_val);

let vAddr64 = to_bits(64, vAddr);

if (vAddr + cap_size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if (vAddr % cap_size) != 0 then

SignalExceptionBadAddr(AdEL, vAddr64)

else

{

let (pAddr, suppressTag) = TLBTranslateC(vAddr64, LoadData);

let (tag, mem) : (bool, CapBits) = MEMr_tagged_reserve(pAddr, cap_size);

let cap = memBitsToCapability(tag & cb_val.permit_load_cap & not (suppressTag)

, mem);

writeCapReg(cd, cap);

CP0LLBit = 0b1;

CP0LLAddr = pAddr;

}

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.
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• cb is sealed.

• cb.perms.Permit_Load is not set.

• addr + capability_size > cb.base + cb.length

• addr < cb.base

An AdEL exception is raised if:

• addr is not capability aligned.
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CMove: Move Capability to another Register
Format

CMove cd, cb
056101115162021252631

0x12 0x0 cd cb 0xa 0x3f

Description

CMove copies cb into cd.

Semantics

checkCP2usable();

writeCapReg(cd) = readCapReg(cb);

Notes

• This instruction currently has a dedicated encoding but it could also be implemented as
an alias for CMOVZ $zero, cd, cb.

• Originally, CMove was an assembler pseudo for CIncOffset cd, cb, $zero. However, this
requires that CIncOffset with a sealed capability succeeds if the increment is zero. A
future version of the ISA might no longer support this and require the use of CMove for
sealed capabilities. This would allow for a simpler implementation of CIncOffset where
the behavior does not depend on one of the input values.
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CMOVZ / CMOVN: Conditionally Move Capability on Zero / Non-Zero
Format

CMOVN cd, cb, rt
056101115162021252631

0x12 0x0 cd cb rt 0x1c

CMOVZ cd, cb, rt
056101115162021252631

0x12 0x0 cd cb rt 0x1b

Description

CMOVZ copies cb into cd if rt = 0.
CMOVN copies cb into cd if rt 6= 0.

Semantics

checkCP2usable();

if (rGPR(rt) == zeros()) ^ ismovn then

writeCapReg(cd) = readCapReg(cb);

Notes

• In the sail code ismovn is true for CMOVN, thus inverting the condition (via exclusive-or)
in that case.

• Some implementations of cryptographic algorithms need a constant-time move operation
to avoid revealing secret key material through a timing channel. (An attacker must not be
able to determine whether a condition variable inside the cryptographic implementation
is true or false from observations of how long the operation took to complete). In the
current prototype implementation of CHERI, no guarantees are made about CMOVN being
constant time.

If CHERI instructions are to be used in high-security cryptographic processors, consid-
eration should be given to making this operation constant time.
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CPtrCmp: CEQ, CNE, CL[TE][U], CEXEQ, CNEXEQ: Capability Pointer
Compare
Format

CEQ rd, cb, ct

056101115162021252631

0x12 0x0 rd cb ct 0x14

CNE rd, cb, ct

056101115162021252631

0x12 0x0 rd cb ct 0x15

CLT rd, cb, ct

056101115162021252631

0x12 0x0 rd cb ct 0x16

CLE rd, cb, ct

056101115162021252631

0x12 0x0 rd cb ct 0x17

CLTU rd, cb, ct

056101115162021252631

0x12 0x0 rd cb ct 0x18

CLEU rd, cb, ct

056101115162021252631

0x12 0x0 rd cb ct 0x19

CEXEQ rd, cb, ct

056101115162021252631

0x12 0x0 rd cb ct 0x21

CNEXEQ rd, cb, ct

056101115162021252631

0x12 0x0 rd cb ct 0x1a
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Description

Capability registers cb and ct are compared, and the result of the comparison is placed in integer
register rd. The rules for comparison are as follows:

• A capability with the tag bit unset is less than any capability with the tag bit set.

• Otherwise, the result of comparison is the result of comparing (base + offset) mod264

for the two capabilities. Numerical comparison is signed for CLT and CLE, and unsigned
for CLTU and CLEU.

• CExEq and CNExEq compare all the fields of the two capabilities, including tag and the bits
that are reserved for future use.

This instruction can be used to compare capabilities so that capabilities can replace pointers
in C executables.

Mnemonic t Comparison
CEQ 0 =
CNE 1 6=
CLT 2 < (signed)
CLE 3 ≤ (signed)
CLTU 4 < (unsigned)
CLEU 5 ≤ (unsigned)
CEXEQ 6 all fields are equal
CNEXEQ 7 not all fields are equal

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

let ct_val = readCapReg(ct);

equal : bool = false;

ltu : bool = false;

lts : bool = false;

if cb_val.tag != ct_val.tag then

{

if not (cb_val.tag) then

{

ltu = true;

lts = true;

}

}

else

{
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cursor1 = getCapCursor(cb_val);

cursor2 = getCapCursor(ct_val);

equal = (cursor1 == cursor2);

ltu = (cursor1 < cursor2);

lts = to_bits(64, cursor1) <_s to_bits(64, cursor2);

};

let cmp : bool = match op {

CEQ => equal,

CNE => not (equal),

CLT => lts,

CLE => lts | equal,

CLTU => ltu,

CLEU => ltu | equal,

CEXEQ => cb_val == ct_val,

CNEXEQ => cb_val != ct_val

};

wGPR(rd) = zero_extend (cmp)

Exceptions

A reserved instruction exception is raised if

• t does not correspond to comparison operation whose meaning has been defined. (All
possible values of t have now been assigned meanings, so this exception cannot occur).

Notes

• CLTU can be used by a C compiler to compile code that compares two non-NULL pointers
(e.g., to detect whether a pointer to a character within a buffer has reached the end of
the buffer). When two pointers to addresses within the same object (e.g., to different
offsets within an array) are compared, the pointer to the earlier part of the object will be
compared as less. (Signed comparison would also work as long as the object did not span
address 263; the MIPS address space layout makes it unlikely that objects spanning 263

will exist in user-space C code).

• Although the ANSI C standard does not specify whether a NULL pointer is less than
or greater than a non-NULL pointer (clearly, they must not be equal), the comparison
instructions have been designed so that when C pointers are represented by capabilities,
NULL will be less than any non-NULL pointer.

• A C compiler may also use these instructions to compare two values of type uintptr_t

that have been obtained by casting from an integer value. If the cast is compiled as a
CFromPtr of zero followed by CSetOffset to the integer value, the result of CPtrCmp will
be the same as comparing the original integer values, because CFromPtr will have set base
to zero. Signed and unsigned capability comparison operations are provided so that both
signed and unsigned integer comparisons can be performed on capability registers.
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• A program could use pointer comparison to determine the value of base, by setting offset
to different values and testing which values cause base + offset to wrap around and be
less than base + a zero offset. This is not an attack against a security property of the
ISA, because base is not a secret.

• One possible way in which garbage collection could be implemented is for the garbage
collector to move an object and fix up all capabilities that refer to it. If there are appropri-
ate restrictions on which capabilities the program has to start with, the garbage collector
can be sure that the program does not have any references to the object stored as integers,
and so can know that it is safe to move the object. With this type of garbage collection,
comparing pointers by extracting their base and offset with CGetBase and CGetOffset and
comparing the integer values is not guaranteed to work, because the garbage collector
might have moved the object part-way through. CPtrCmp is atomic, and so will work in
this scenario.

• Some compilers may make the optimization that if a check for (a = b) has succeeded,
then b can be replaced with a without changing the semantics of the program. This
optimization is not valid for the comparison performed by CEq, because two capabilities
can point to the same place in memory but have different bounds, permissions etc. and
so not be interchangeable. The CExEq instruction is provided for when a test for semantic
equivalence of capabilities is needed; it compares all the fields, even the ones that are
reserved for future use.

• Mathematically, CEq divides capabilities into equivalence classes, and the signed or un-
signed comparison operators provide a total ordering on these equivalence classes. CExEq
also divides capabilities into equivalence classes, but these are not totally ordered: two
capabilities can be unequal according to CExEq, and also neither less or greater according
to CLT (e.g., if they have the same base + offset, but different length).

• There is an outstanding issue: when capability compression is in use, does CExEq com-
pare the compressed representation or the uncompressed capability? There might be
a difference between the two if there are multiple compressed representations that de-
compress to the same thing. If tag is false, then then capability register might contain
non-capability data (e.g., an integer, or a string) and it might not decompress to any-
thing sensible. Clearly in this case the in-memory compressed representation should be
compared bit for bit. Is it also acceptable to compare the compressed representations
when tag is true? This might lead to two capabilities that are sematically equivalent but
have been computed by a different sequence of operations comparing as not equal. The
consequence of this for programs that use CExEq is for further study.

• If a C compiler compiles pointer equality as CExEq (rather than CEq), it will catch the fol-
lowing example of undefined behavior. Suppose that a and b are capabilities for different
objects, but a has been incremented until its base + offset points to the same memory
location as b. Using CExEq, these pointers will not compare as equal because they have
different bounds.
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• CNEq and CNExEq are in principle redundant, because a compiler could replace CNEq and a
conditional branch with CEq and a conditional branch with the opposite condition (and if
the result of the comparison is assigned to a variable, the compiler could explictly negate
the result of CEq, at a small performance penalty). We provide explicit tests for not equal
in order to simplify the compiler back end.



7.4. TABLE OF CHERI INSTRUCTIONS 233

CReadHwr: Read a Special-Purpose Capability Register
Format

CReadHwr cd, selector
056101115162021252631

0x12 0x0 cd selector 0xd 0x3f

Description

Load the value of special-purpose capability register selector into capability register cd. See
Table 7.1 for the possible values of selector and the permissions required in order to read the
register.

Table 7.1: Access permission required to read special-purpose capability registers
Selector Register Required for read access

0 Default data capability (DDC) ∅
1 User TLS (CULR) ∅
2 ∅

8 Privileged TLS (CPLR) PCC.perms.Access_System_Registers

22 Kernel scratch register 1 (KR1C) Supervisor Mode
23 Kernel scratch register 2 (KR2C) Supervisor Mode

28 Error exception program counter (ErrorEPCC)
Supervisor Mode and
PCC.perms.Access_System_Registers

29 Kernel code capability (KCC)
Supervisor Mode and
PCC.perms.Access_System_Registers

30 Kernel data capability (KDC)
Supervisor Mode and
PCC.perms.Access_System_Registers

31 Exception program counter (EPCC)
Supervisor Mode and
PCC.perms.Access_System_Registers

Semantics

checkCP2usable();

let (needSup, needAccessSys) : (bool, bool) = match unsigned(sel) {

0 => (false, false), /* DDC -- no access control */

1 => (false, false), /* CULR -- no access control */

8 => (false, true), /* CPLR -- privileged TLS */

22 => (true, false), /* KR1C */
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23 => (true, false), /* KR2C */

28 => (true, true), /* ErrorEPCC */

29 => (true, true), /* KCC */

30 => (true, true), /* KDC */

31 => (true, true), /* EPCC */
_ => SignalException(ResI)

};

if needAccessSys & not(pcc_access_system_regs()) then

raise_c2_exception(CapEx_AccessSystemRegsViolation, sel)

else if needSup & not(grantsAccess(getAccessLevel(), Supervisor)) then

raise_c2_exception(CapEx_AccessSystemRegsViolation, sel)

else {

let capVal : Capability = match unsigned(sel) {

0 => DDC,

1 => CULR,

8 => CPLR,

22 => KR1C,

23 => KR2C,

28 => ErrorEPCC,

29 => KCC,

30 => KDC,

31 => EPCC,
_ => {assert(false, "CReadHwr: should be unreachable code"); undefined}

};

writeCapReg(cd, capVal);

};

Exceptions

A reserved Instruction exception is raised for unknown or unimplemented values of selector.
A coprocessor 2 exception is raised if:

• the permission checks as specified in Table 7.1 above were not met for selector

Notes

• In the future we may decide to make PCC accessible via this instruction. This would
save opcode space since we would no longer required a dedicated CGetPCC instruction.
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CReturn: Return to the Previous Security Domain
Format

CReturn
02021252631

0x12 0x05 0x0 0x0 0x7ff

Description

CReturn is used to return from a call into a protected subsystem. As defined, the instruction
simply triggers a specific CP2 exception via the CCall/CReturn exception vector, allowing a
software exception handler to implement any required functionality.

Semantics (hardware)

checkCP2usable();

raise_c2_exception_noreg(CapEx_ReturnTrap)

Exceptions

A coprocessor 2 exception will be raised so that the desired semantics can be implemented in a
trap handler. The capability exception code will be 0x06 and the handler vector will be 0x100
above the general-purpose exception handler.

Notes

• The CReturn instruction may be removed in a future version of the ISA specification
(though it might continue to exist as a pseudo-instruction in the assembler), to be replaced
by a specific selector in the CCall instruction.

• As with CCall, it is possible to imagine a number of points between this exception-based
implementation and a hardware-assisted implementation – e.g., with varying degrees of
architectural checking of return values, clearing of registers, etc. In implementing more
rich hardware functionalities, software flexibility to support a range of ABIs is reduced.

Expected Software Use

CReturn is designed to complement use of the CCall instruction with selector 0 – i.e., where
software implements a function-call-like domain-transition model. It is antipated that CReturn
software exception handlers will perform any sanitization of the register file, capability flow
control, “undo” actions taken in the CCall exception handler to restore execution to the instruc-
tion following CCall in the caller context, unsealing and/or installation of caller capabilities so
that it can continue execution in the original caller protection domain.

It is anticipated that software using CCall selector 1 for domain transition may wish to use
that same instruction for return, rather than CReturn.
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Sketch of the CheriBSD CReturn Model

As with CheriBSD’s CCall exception handler, the CheriBSD CReturn is implemented via a
short privileged exception handler. A frame is popped off of the trusted stack, allowing the
caller PCC and IDC to be restored, non-return capability and integer registers are cleared, and
capability flow control is imposed on return capabilities to prevent non-global capabilities from
being propagated across domain transition. The CheriBSD CReturn exception handler operates
as follows:

1. IDC is popped off the trusted system stack.

2. PCC is popped off the trusted system stack.

The CheriBSD CReturn can be modeled with the following pseudocode:
IDC← mem[TSS .. TSS + capability_size − 1]
IDC.tag← tags[toTag(TSS)]
TSS← TSS + capability_size
PCC← mem[TSS .. TSS + capability_size − 1]
PCC.tag← tags[toTag(TSS)]
TSS← TSS + capability_size
PC← PCC.offset

In addition to the coprocessor 2 exceptions listed above, a coprocessor 2 exception may be
raised by the software exception handler if:

• The trusted system stack would underflow.

• The tag bits are not set on the memory location that are popped from the stack into IDC
and PCC.

In addition, the CheriBSD CReturn handler checks the global bit on capability registers so
that CReturn cannot be used to leak local capabilities. It also clears non-return-value capability
and integer registers.
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CS[BHWD]: Store Integer via Capability

Format

CSB rs, rt, offset(cb)
CSH rs, rt, offset(cb)
CSW rs, rt, offset(cb)
CSD rs, rt, offset(cb)
CSBR rs, rt(cb)
CSHR rs, rt(cb)
CSWR rs, rt(cb)
CSDR rs, rt(cb)
CSBI rs, offset(cb)
CSHI rs, offset(cb)
CSWI rs, offset(cb)
CSDI rs, offset(cb)

013101115162021252631

0x3A rs cb rt offset 0 t

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Purpose

Stores some or all of a register into a memory location.

Description

Part of integer register rs is stored to the memory location specified by cb.base + cb.offset +
rt + 2t ∗ offset. Capability register cb must contain a capability that grants permission to store
data.

The t field determines how many bits of the register are stored to memory:

0 byte (8 bits)

1 halfword (16 bits)

2 word (32 bits)

3 doubleword (64 bits)

If less than 64 bits are stored, they are taken from the least-significant end of the register.
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Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_store) then

raise_c2_exception(CapEx_PermitStoreViolation, cb)

else

{

let size = wordWidthBytes(width);

let cursor = getCapCursor(cb_val);

let vAddr = (cursor + unsigned(rGPR(rt)) + size * signed(offset)) % pow2(64);

let vAddr64= to_bits(64, vAddr);

if (vAddr + size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if not (isAddressAligned(vAddr64, width)) then

SignalExceptionBadAddr(AdES, vAddr64)

else

{

let pAddr = TLBTranslate(vAddr64, StoreData);

let rs_val = rGPR(rs);

match width

{

B => MEMw_wrapper(pAddr, 1) = rs_val[7..0],

H => MEMw_wrapper(pAddr, 2) = rs_val[15..0],

W => MEMw_wrapper(pAddr, 4) = rs_val[31..0],

D => MEMw_wrapper(pAddr, 8) = rs_val

}

}

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cb.perms.Permit_Store is not set.

• addr + size > cb.base + cb.length.

• addr < cb.base
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An address error during store (AdES) is raised if:

• addr is not aligned.

Notes

• This instruction reuses the opcode from the Store Word from Coprocessor 2 (SWC2) in-
struction in the MIPS Specification.

• rt is treated as an unsigned integer.

• offset is treated as a signed integer.

• BERI1 has a compile-time option to allow unaligned loads and stores. If BERI1 is built
with this option, an unaligned store will only raise an exception if it crosses a cache line
boundary.
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CSC: Store Capability via Capability
Format

CSC cs, rt, offset(cb)
CSCR cs, rt(cb)
CSCI cs, offset(cb)

056101115162021252631

0x3e cs cb rt offset

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Description

Capability register cs is stored at the memory location specified by cb.base + cb.offset + rt
+ 16 ∗ offset, and the bit in the tag memory associated with cb.base + cb.offset + rt + 16 ∗
offset is set to the value of cs.tag. Capability register cb must contain a capability that grants
permission to store capabilities. The virtual address cb.base + cb.offset + rt + 16 ∗ offset must
be capability_size aligned.

The various capability encoding schemes define bit representations in memory. While a
given instantiation of CHERI will use a particular scheme, software should, in general, not
attempt to parse capability bit patterns from memory. Instructions for capability interrogation
(e.g., CGetAddr, CGetType) do not require that their source registers be holding tagged capabili-
ties; software wishing to decode memory bit patterns should rather use CLC and interrogate the
result.

Semantics

checkCP2usable();

let cs_val = readCapReg(cs);

let cb_val = readCapRegDDC(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_store) then

raise_c2_exception(CapEx_PermitStoreViolation, cb)

else if not (cb_val.permit_store_cap) then

raise_c2_exception(CapEx_PermitStoreCapViolation, cb)

else if not (cb_val.permit_store_local_cap) & (cs_val.tag) & not (cs_val.global)

then

raise_c2_exception(CapEx_PermitStoreLocalCapViolation, cb)

else

{

let cursor = getCapCursor(cb_val);

let vAddr = (cursor + unsigned(rGPR(rt)) + 16 * signed(offset)) % pow2(64);
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let vAddr64 = to_bits(64, vAddr);

if (vAddr + cap_size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if (vAddr % cap_size) != 0 then

SignalExceptionBadAddr(AdES, vAddr64)

else

{

let (pAddr, noStoreCap) = TLBTranslateC(vAddr64, StoreData);

if cs_val.tag & noStoreCap then

raise_c2_exception(CapEx_TLBNoStoreCap, cs)

else

MEMw_tagged(pAddr, cap_size, cs_val.tag, capToMemBits(cs_val));

}

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cb.perms.Permit_Store is not set.

• cb.perms.Permit_Store_Capability is not set.

• cb.perms.Permit_Store_Local is not set and cs.tag is set and cs.perms.Global is not set.

• addr + capability_size > cb.base + cb.length.

• addr < cb.base.

A TLB Store exception is raised if:

• cs.tag is set and the S bit in the TLB entry for the page containing addr is not set.

An address error during store (AdES) exception is raised if:

• The virtual address addr is not capability_size aligned.
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Notes

• If the address alignment check fails and one of the security checks fails, a coprocessor 2
exception (and not an address error exception) is raised. The priority of the exceptions
is security-critical, because otherwise a malicious program could use the type of the
exception that is raised to test the bottom bits of a register that it is not permitted to
access.

• It is permitted to store a local capability with the tag bit unset even if the permit store
local bit is not set in cb. This is because if the tag bit is not set then the permissions have
no meaning.

• offset is interpreted as a signed integer.

• This instruction reuses the opcode from the Store Doubleword from Coprocessor 2 (SDC2)
instruction in the MIPS Specification.

• The CSCI mnemonic is equivalent to CSC with cb being the zero register ($zero). The CSCR

mnemonic is equivalent to CSC with offset set to zero.

• BERI1 has a compile-time option to allow unaligned loads and stores. CSC to an unaligned
address will raise an exception even if BERI1 has been built with this option, because it
would be a security vulnerability if an attacker could construct a corrupted capability
with tag set by writing it to an unaligned address.

• Although the capability_size can vary, the offset is always in multiples of 16 bytes (128
bits).
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CSC[BHWD]: Store Conditional Integer via Capability
Format

CSCB rd, rs, cb
CSCH rd, rs, cb
CSCW rd, rs, cb
CSCD rd, rs, cb

0123456101115162021252631

0x12 0x10 rs cb rd 00 t

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_store) then

raise_c2_exception(CapEx_PermitStoreViolation, cb)

else

{

let size = wordWidthBytes(width);

let vAddr = getCapCursor(cb_val);

let vAddr64 = to_bits(64, vAddr);

if (vAddr + size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if not (isAddressAligned(vAddr64, width)) then

SignalExceptionBadAddr(AdES, vAddr64)

else

{

let pAddr = TLBTranslate(vAddr64, StoreData);

let rs_val = rGPR(rs);

let success : bool = if (CP0LLBit[0]) then

match width

{

B => MEMw_conditional_wrapper(pAddr, 1, rs_val[7..0]),

H => MEMw_conditional_wrapper(pAddr, 2, rs_val[15..0]),

W => MEMw_conditional_wrapper(pAddr, 4, rs_val[31..0]),

D => MEMw_conditional_wrapper(pAddr, 8, rs_val)

}
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else

false;

wGPR(rd) = zero_extend(success);

}

}
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CSCC: Store Conditional Capability via Capability
Format

CSCC rd, cs, cb
02356101115162021252631

0x12 0x10 cs cb rd 0111

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Semantics

checkCP2usable();

let cs_val = readCapReg(cs);

let cb_val = readCapRegDDC(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_store) then

raise_c2_exception(CapEx_PermitStoreViolation, cb)

else if not (cb_val.permit_store_cap) then

raise_c2_exception(CapEx_PermitStoreCapViolation, cb)

else if not (cb_val.permit_store_local_cap) & (cs_val.tag) & not (cs_val.global)

then

raise_c2_exception(CapEx_PermitStoreLocalCapViolation, cb)

else

{

let vAddr = getCapCursor(cb_val);

let vAddr64 = to_bits(64, vAddr);

if (vAddr + cap_size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if (vAddr % cap_size) != 0 then

SignalExceptionBadAddr(AdES, vAddr64)

else

{

let (pAddr, noStoreCap) = TLBTranslateC(vAddr64, StoreData);

if cs_val.tag & noStoreCap then

raise_c2_exception(CapEx_TLBNoStoreCap, cs)

else

{

let success = if (CP0LLBit[0]) then

MEMw_tagged_conditional(pAddr, cap_size, cs_val.tag, capToMemBits(

cs_val))

else
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false;

wGPR(rd) = zero_extend(success);

}

}

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cb.perms.Permit_Store is not set.

• cb.perms.Permit_Store_Capability is not set.

• cb.perms.Permit_Store_Local_Capability is not set and cs.perms.Global is not set.

• addr + capability_size > cb.base + cb.length

• addr < cb.base

A TLB Store exception is raised if:

• The S bit in the TLB entry corresponding to virtual address addr is not set.

An address error during store (AdES) exception is raised if:

• addr is not correctly aligned.
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CSeal: Seal a Capability
Format

CSeal cd, cs, ct
056101115162021252631

0x12 0x0 cd cs ct 0xb

Description

Capability register cs is sealed with an otype of ct.base + ct.offset and the result is placed in
cd:

• cd.otype is set to ct.base + ct.offset;

• cd is sealed;

• and the other fields of cd are copied from cs.

ct must grant Permit_Seal permission, and the new otype of cd must be between ct.base
and ct.base + ct.length − 1.

Semantics

checkCP2usable();

let cs_val = readCapReg(cs);

let ct_val = readCapReg(ct);

let ct_cursor = getCapCursor(ct_val);

let ct_top = getCapTop(ct_val);

let ct_base = getCapBase(ct_val);

if not (cs_val.tag) then

raise_c2_exception(CapEx_TagViolation, cs)

else if not (ct_val.tag) then

raise_c2_exception(CapEx_TagViolation, ct)

else if cs_val.sealed then

raise_c2_exception(CapEx_SealViolation, cs)

else if ct_val.sealed then

raise_c2_exception(CapEx_SealViolation, ct)

else if not (ct_val.permit_seal) then

raise_c2_exception(CapEx_PermitSealViolation, ct)

else if ct_cursor < ct_base then

raise_c2_exception(CapEx_LengthViolation, ct)

else if ct_cursor >= ct_top then

raise_c2_exception(CapEx_LengthViolation, ct)

else if ct_cursor > max_otype then

raise_c2_exception(CapEx_LengthViolation, ct)

else
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{

let (success, newCap) = sealCap(cs_val, to_bits(24, ct_cursor));

if not (success) then

raise_c2_exception(CapEx_InexactBounds, cs)

else

writeCapReg(cd, newCap)

}

Exceptions

A coprocessor 2 exception is raised if:

• cs.tag is not set.

• ct.tag is not set.

• cs is sealed.

• ct is sealed.

• ct.perms.Permit_Seal is not set.

• ct.offset ≥ ct.length

• ct.base + ct.offset > max_otype

• The bounds of cb cannot be represented exactly in a sealed capability.

Notes

• If capability compression is in use, the range of possible (base, length, offset) values
might be smaller for sealed capabilities than for unsealed capabilities. This means that
CSeal can fail with an exception in the case where the bounds are no longer precisely
representable.
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CSetAddr: Set the Address of Capability
Format

CSetAddr cd, cs, rs
056101115162021252631

0x12 0x0 cd cs rs 0x22

Description

cd is set to cb with cb.a set to rs. If changing the address causes the capability to become
unrepresentable, then an untagged capability with the requested address is returned.

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

let rt_val = rGPR(rt);

if cb_val.tag & cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else

{

let (representable, newCap) = setCapAddr(cb_val, rt_val);

if representable then

writeCapReg(cd, newCap)

else

writeCapReg(cd, int_to_cap(rt_val));

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is set and cb is sealed.

Notes

• This instruction may be useful, in combination with CGetAddr, when C is manipulating
pointers in ways that require a round trip through integer registers.

• This instruction is also useful for uintptr_t arithmetic when using an address interpre-
tation of capabilities. When interpreting uintptr_t as offsets relative to the base, the
compiler will use CGetOffset and CSetOffset instead.
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CSetBounds: Set Bounds
Format

CSetBounds cd, cb, rt
056101115162021252631

0x12 0x0 cd cb rt 0x8

Description

Capability register cd is replaced with a capability that:

• Grants access to a subset of the addresses authorized by cb. That is, cd.base ≥ cb.base
and cd.base + cd.length ≤ cb.base + cb.length.

• Grants access to at least the addresses cb.base + cb.offset . . . cb.base + cb.offset + rt −
1. That is, cd.base≤ cb.base + cb.offset and cd.base + cd.length≥ cb.base + cb.offset
+ rt.

• Has an offset that points to the same memory location as cb’s offset. That is, cd.offset =
cb.offset + cb.base - cd.base.

• Has the same perms as cb, that is, cd.perms = cb.perms.

When the hardware uses a 256-bit representation for capabilities, the bounds of the destina-
tion capability cd are exactly as requested. When the hardware uses a smaller (compressed) rep-
resentation of capabilities in which not all combinations of base and length are representable,
then cd may grant access to a range of memory addresses that is wider than requested, but is
still guaranteed to be within the bounds of cb.

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

let rt_val = unsigned(rGPR(rt));

let cursor = getCapCursor(cb_val);

let base = getCapBase(cb_val);

let top = getCapTop(cb_val);

let newTop = cursor + rt_val;

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if cursor < base then

raise_c2_exception(CapEx_LengthViolation, cb)

else if newTop > top then

raise_c2_exception(CapEx_LengthViolation, cb)
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else

{

let (_, newCap) = setCapBounds(cb_val, to_bits(64, cursor), to_bits(65, newTop)

);

writeCapReg(cd, newCap) /* ignore exact */

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cursor < cb.base

• cursor + rt > cb.base + cb.length

Notes

• In the above Sail code, arithmetic is over the mathematical integers and rt is unsigned,
so a large value of rt cannot cause cursor + rt to wrap around and be less than cb.base.
Implementations (that, for example, will probably use a fixed number of bits to store
values) must handle this overflow case correctly.
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CSetBoundsExact: Set Bounds Exactly
Format

CSetBoundsExact cd, cb, rt
056101115162021252631

0x12 0x0 cd cb rt 0x9

Description

Capability register cd is replaced with a capability with base cb.base+ cb.offset, length rt,
and offset zero. When capability compression is in use, an exception is thrown if the requested
bounds cannot be represented exactly.

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

let rt_val = unsigned(rGPR(rt));

let cursor = getCapCursor(cb_val);

let base = getCapBase(cb_val);

let top = getCapTop(cb_val);

let newTop = cursor + rt_val;

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if cursor < base then

raise_c2_exception(CapEx_LengthViolation, cb)

else if newTop > top then

raise_c2_exception(CapEx_LengthViolation, cb)

else

{

let (exact, newCap) = setCapBounds(cb_val, to_bits(64, cursor), to_bits(65,

newTop));

if not (exact) then

raise_c2_exception(CapEx_InexactBounds, cb)

else

writeCapReg(cd, newCap)

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.
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• cursor < cb.base

• cursor + rt > cb.base + cb.length

• The requested bounds cannot be represented exactly.

Notes

• In the above Sail code, arithmetic is over the mathematical integers and rt is unsigned,
so a large value of rt cannot cause cursor + rt to wrap around and be less than cb.base.
Implementations (that, for example, will probably use a fixed number of bits to store
values) must handle this overflow case correctly.
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CSetBoundsImm: Set Bounds (Immediate)

Format

CSetBounds cd, cb, lengthimm

0101115162021252631

0x12 0x14 cd cb lengthimm

Description

Capability register cd is replaced with a capability that:

• Grants access to a subset of the addresses authorized by cb. That is, cd.base ≥ cb.base
and cd.base + cd.length ≤ cb.base + cb.length.

• Grants access to at least the addresses cb.base + cb.offset . . . cb.base + cb.offset +
lengthimm − 1. That is, cd.base ≤ cb.base + cb.offset and cd.base + cd.length ≥
cb.base + cb.offset + lengthimm.

• Has an offset that points to the same memory location as cb’s offset. That is, cd.offset =
cb.offset + cb.base - cd.base.

• Has the same perms as cb, that is, cd.perms = cb.perms.

When the hardware uses a 256-bit representation for capabilities, the bounds of the destina-
tion capability cd are exactly as requested. When the hardware uses a smaller (compressed) rep-
resentation of capabilities in which not all combinations of base and length are representable,
then cd may grant access to a range of memory addresses that is wider than requested, but is
still guaranteed to be within the bounds of cb.

Semantics

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cursor < cb.base

• cursor + lengthimm > cb.base + cb.length
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Notes

• In the above Sail code, arithmetic is over the mathematical integers and lengthimm is
unsigned, so a large value of lengthimm cannot cause cursor + lengthimm to wrap around
and be less than cb.base. Implementations (that, for example, will probably use a fixed
number of bits to store values) must handle this overflow case correctly.

• If this instruction is used with C0 as the destination register, it can be used to assert
that a given capability grants access to at least lengthimm bytes. An assembler pseudo
instruction CAssertInBounds is supported for this use case.
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CSetCause: Set the Capability Exception Cause Register
Format

CSetCause rt
056101115162021252631

0x12 0x0 rd 0x2 0x1f 0x3f

Description

The capability cause register value is set to the low 16 bits of integer register rt.

Semantics

checkCP2usable();

if not (pcc_access_system_regs ()) then

raise_c2_exception_noreg(CapEx_AccessSystemRegsViolation)

else

{

let rt_val = rGPR(rt);

CapCause->ExcCode() = rt_val[15..8];

CapCause->RegNum() = rt_val[7..0];

}

Exceptions

A coprocessor 2 exception is raised if:

• PCC.perms.Access_System_Registers is not set.

Notes

• CSetCause does not cause an exception to be raised (unless the permission check for
Access_System_Registers fails). CSetCause will typically be used in an exception handler,
where the exception handler wants to change the cause code set by the hardware before
doing further exception handling. (e.g., when the original cause code was CCall, the
CCall handler detects that CCall should fail, and it sets CapCause to the reason it failed).
In cases like this, it is important that EPC (etc.) are not overwritten by CSetCause.
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CSetCID: Set the Architectural Compartment ID
Format

CSetCID cb
056101115162021252631

0x12 0x0 cb 0x5 0x1f 0x3f

Description

Set the architectural Compartment ID (CID) to cb.base + cb.offset if cb has the Permit_Set_CID
permission and cb.offset is in range. The CID can then be used by the microarchitecture to tag
microarchitectural state. CIDs can be utilized in a similar style as ASID matching in TLBs to
determine in what context microarchitectural state can be used. Typical use will be to prevent
sharing where it could otherwise be used as a high-bandwidth microarchitectural side channel
between compartments with confidentiality requirements – for example, to limit the impact of
Spectre-style attacks [61].

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_set_CID) then

raise_c2_exception(CapEx_PermitSetCIDViolation, cb)

else

{

let addr = getCapCursor(cb_val);

if addr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if addr >= getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else

CID = to_bits(64, addr);

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.perms.Permit_Set_CID is not set.

• addr + 1 > cb.base + cb.length.

• addr < cb.base.
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Notes

• The CID can be queried using the CGetCID instruction.

• Although CSetCID has no architectural side effects other than setting an integer register
with a compartment ID, the intent is that the microarchitecture can be made aware of
boundaries across which microarchitectural side channels are less acceptable. A key
design goal for CSetCID is to provide flexible mechanism above which a range of software
policies might be implemented.

• For example, the software supervisor might arrange that all compartments have unique
CIDs such that branch-predictor state cannot be shared. Other policies might use the
same CID for compartments between which strong confidentiality requirements are not
present – e.g., where only integrity or availability protection is required.

• We have chosen not to protect the architectural CID using Access_System_Registers
in order to support virtualizability of the domain switcher – and, in particular, to not
require Access_System_Registers to implement a domain switcher. A new permission
is used, together with bounds checks, such that ranges of CIDs can be delegated when
multiple domain switchers are in use. For example, a set of CIDs might be reserved for
domain-switch implementations themselves, and then subranges delegated to individual
language runtimes or processes within the same address space. Note that such a model
could obligate two CID operations per domain switch involving mutual distrust: one
into the domain switcher, and a second out, in order to not just protect the two endpoint
domains from one another but also the switcher.

• How to ensure that CSetCID is not speculated past (e.g., in the case of microarchitectural
side-channel attacks such as Spectre) is a critical question. We recommend that CSetCID
be considered serialising, and that the CID be set immediately on switcher entry, as well
as again on switcher exit.

• An alternative design choice would accept an integer general-purpose register operand,
rt, as a second argument specifying the CID to switch to. This might be more consistent
with the behavior of CGetCID, but also consume more opcode space.
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CSetOffset: Set Cursor to an Offset from Base
Format

CSetOffset cd, cs, rt
056101115162021252631

0x12 0x0 cd cs rt 0xf

Description

Capability register cd is replaced with the contents of capability register cs with the offset field
set to the contents of integer register rt.

If capability compression is in use, and the requested base, length and offset cannot be
represented exactly, then cd.tag is cleared, cd.base and cd.length are set to zero, cd.perms is
cleared and cd.offset is set equal to cs.base+ rt.

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

let rt_val = rGPR(rt);

if cb_val.tag & cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else

{

let (success, newCap) = setCapOffset(cb_val, rt_val);

if success then

writeCapReg(cd, newCap)

else

writeCapReg(cd, int_to_cap(to_bits(64, getCapBase(cb_val)) + rt_val))

}

Exceptions

A coprocessor 2 exception is raised if:

• cs.tag is set and cs is sealed.

Notes

• CSetOffset can be used on a capability register whose tag bit is not set. This can be
used to store an integer value in a capability register, and is useful when implementing
a variable that is a union of a capability and an integer (intcap_t in C). The in-memory
representation that will be used if the capability register is stored to memory might be
surprising to some users (with the 256-bit representation of capabilities, base + offset is
stored in the cursor field in memory) and may change if the memory representation of
capabilities changes, so compilers should not rely on it.
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• When capability compression is in use, and the requested offset is not representable, the
result preserves the requested base + offset (i.e., the cursor) rather than the architectural
field offset. This field is mainly useful for debugging what went wrong (the capability
cannot be dereferenced, as tag has been cleared), and for debugging we considered it
more useful to know what the requested capability would have referred to rather than
its offset relative to a base that is no longer available. This has the disadvantage that it
exposes the value of base to a program, but base is not a secret and can be accessed by
other means. The main reason for not exposing base to programs is so that a garbage
collector can stop the program, move memory, modify the capabilities and restart the
program. A capability with tag cleared cannot be dereferenced, and so is not of interest
to a garbage collector, and so it doesn’t matter if it exposes base.
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CSub: Subtract Capabilities
Format

CSub rd, cb, ct
056101115162021252631

0x12 0x0 rt cb ct 0xa

Description

Register rd is set equal to (cb.base + cb.offset − ct.base − ct.offset) mod264.

Semantics

checkCP2usable();

let ct_val = readCapReg(ct);

let cb_val = readCapReg(cb);

wGPR(rd) = to_bits(64, getCapCursor(cb_val) - getCapCursor(ct_val))

Notes

• CSub can be used to implement C-language pointer subtraction, or subtraction of intcap_t
.

• Like CIncOffset, CSub can be used on either valid capabilities (tag set) or on integer
values stored in capability registers (tag not set).

• If a copying garbage collector is in use, pointer subtraction must be implemented with
an atomic operation (such as CSub). Implementing pointer subtraction with a non-atomic
sequence of operations such as CGetOffset has the risk that the garbage collector will
relocate an object part way through, giving incorrect results for the pointer difference. If
cb and ct are both pointers into the same object, then a copying garbage collector will
either relocate both of them or neither of them, leaving the difference the same. If cb and
ct are pointers into different objects, the result of the subtraction is not defined by the
ANSI C standard, so it doesn’t matter if this difference changes as the garbage collector
moves objects.
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CToPtr: Capability to Integer Pointer

Format

CToPtr rd, cb, ct

056101115162021252631

0x12 0x0 rd cb ct 0x12

Note: If the encoded value of ct is zero, this instruction will use DDC as the ct operand

Description

If cb has its tag bit unset (i.e. it is either the NULL capability, or contains some other non-
capability data), then rd is set to zero. Otherwise, rd is set to cb.base + cb.offset - ct.base

This instruction can be used to convert a capability into a pointer that uses the C language
convention that a zero value represents the NULL pointer. Note that rd will also be zero if
cb.base + cb.offset = ct.base; this is similar to the C language not being able to distinguish a
NULL pointer from a pointer to a structure at address 0.

Semantics

checkCP2usable();

let ct_val = readCapRegDDC(ct);

let cb_val = readCapReg(cb);

if not (ct_val.tag) then

raise_c2_exception(CapEx_TagViolation, ct)

else if cb_val.tag & cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else

{

let ctBase = getCapBase(ct_val);

/* Note: returning zero for untagged values breaks magic constants such as

SIG_IGN */

wGPR(rd) = if not (cb_val.tag) then

zeros()

else

to_bits(64, getCapCursor(cb_val) - ctBase)

}

Exceptions

A coprocessor 2 exception will be raised if:

• ct.tag is not set.
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Notes

• ct being sealed will not cause an exception to be raised. This is for further study.

• This instruction has two different means of returning an error code: raising an exception
(if ct.tag is not set, or the registers are not accessible) and returning a NULL pointer if
cb.tag is not set.

• If the range of cb is outside the range of ct, a pointer relative to ct can’t always be used
in place of cb: some reads or writes will fail because they are outside the range of ct.
To handle this case, the application can use the CTestSubset instruction followed by a
conditional move.

• CGetAddr similarly allows access to the sum of the base and offset of the operand capa-
bility, but without the translation relative to the authorizing capability or validity/sealed
checks on the operand.
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CUnseal: Unseal a Sealed Capability
Format

CUnseal cd, cs, ct
056101115162021252631

0x12 0x0 cd cs ct 0xc

Description

The sealed capability in cs is unsealed with ct and the result placed in cd. The global bit of cd is
the AND of the global bits of cs and ct. ct must be unsealed, have Permit_Unseal permission,
and ct.base + ct.offset must equal cs.otype.

Semantics

checkCP2usable();

let cs_val = readCapReg(cs);

let ct_val = readCapReg(ct);

let ct_cursor = getCapCursor(ct_val);

if not (cs_val.tag) then

raise_c2_exception(CapEx_TagViolation, cs)

else if not (ct_val.tag) then

raise_c2_exception(CapEx_TagViolation, ct)

else if not (cs_val.sealed) then

raise_c2_exception(CapEx_SealViolation, cs)

else if ct_val.sealed then

raise_c2_exception(CapEx_SealViolation, ct)

else if ct_cursor != unsigned(cs_val.otype) then

raise_c2_exception(CapEx_TypeViolation, ct)

else if not (ct_val.permit_unseal) then

raise_c2_exception(CapEx_PermitUnsealViolation, ct)

else if ct_cursor < getCapBase(ct_val) then

raise_c2_exception(CapEx_LengthViolation, ct)

else if ct_cursor >= getCapTop(ct_val) then

raise_c2_exception(CapEx_LengthViolation, ct)

else

writeCapReg(cd, {unsealCap(cs_val) with

global=(cs_val.global & ct_val.global)

})

Exceptions

A coprocessor 2 exception is raised if:

• cs.tag is not set.

• ct.tag is not set.



7.4. TABLE OF CHERI INSTRUCTIONS 265

• cs is not sealed.

• ct is sealed.

• ct.offset ≥ ct.length

• ct.perms.Permit_Unseal is not set.

• ct.base + ct.offset 6= cs.otype.

Notes

• There is no need to check if ct.base + ct.offset > max_otype, because this can’t happen:
ct.base + ct.offset must equal cs.otype for the otype check to have suceeded, and there
is no way cs.otype could have been set to a value that is out of range.
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CWriteHwr: Write a Special-Purpose Capability Register
Format

CWriteHwr cb, selector
056101115162021252631

0x12 0x0 cb selector 0xe 0x3f

Description

The value of the capability register cb is stored in the special-purpose capability register selec-
tor. See Table 7.2 for the possible values of selector and the permissions required in order to
write to the register.

Table 7.2: Access permission required to write special-purpose capability registers
Selector Register Required for write access

0 Default data capability (DDC) ∅
1 User TLS (CULR) ∅
2 ∅

8 Privileged User TLS (CPLR) PCC.perms.Access_System_Registers

22 Kernel scratch register 1 (KR1C) Supervisor Mode
23 Kernel scratch register 2 (KR2C) Supervisor Mode

28 Error exception program counter (ErrorEPCC)
Supervisor Mode and
PCC.perms.Access_System_Registers

29 Kernel code capability (KCC)
Supervisor Mode and
PCC.perms.Access_System_Registers

30 Kernel data capability (KDC)
Supervisor Mode and
PCC.perms.Access_System_Registers

31 Exception program counter (EPCC)
Supervisor Mode and
PCC.perms.Access_System_Registers

Semantics

checkCP2usable();

let (needSup, needAccessSys) : (bool, bool) = match unsigned(sel) {

0 => (false, false), /* DDC -- no access control */

1 => (false, false), /* CULR -- no access control */

8 => (false, true), /* CPLR -- privileged TLS */

22 => (true, false), /* KR1C */
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23 => (true, false), /* KR2C */

28 => (true, true), /* ErrorEPCC */

29 => (true, true), /* KCC */

30 => (true, true), /* KDC */

31 => (true, true), /* EPCC */
_ => SignalException(ResI)

};

if needAccessSys & not(pcc_access_system_regs()) then

raise_c2_exception(CapEx_AccessSystemRegsViolation, sel)

else if needSup & not(grantsAccess(getAccessLevel(), Supervisor)) then

raise_c2_exception(CapEx_AccessSystemRegsViolation, sel)

else {

let capVal = readCapReg(cb);

match unsigned(sel) {

0 => DDC = capVal,

1 => CULR = capVal,

8 => CPLR = capVal,

22 => KR1C = capVal,

23 => KR2C = capVal,

28 => ErrorEPCC = capVal,

29 => KCC = capVal,

30 => KDC = capVal,

31 => EPCC = capVal,
_ => assert(false, "CWriteHwr: should be unreachable code")

};

};

Exceptions

A reserved Instruction exception is raised for unknown or unimplemented values of selector.
A coprocessor 2 exception is raised if:

• the permission checks as specified in Table 7.2 above were not met for selector

Notes

• In the future we may decide to require PCC.perms.Access_System_Registers in order to
modify DDC

• We may decide to introduce a CSwapHwr instruction that swaps special-purpose register
selector and a general-purpose register
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7.5 Assembler Pseudo-Instructions
For convenience, several pseudo-instructions are accepted by the assembler. These expand to
either single instructions or short sequences of instructions.

7.5.1 CGetDefault, CSetDefault

Get/Set Default Capability

CGetDefault and CSetDefault get and set the capability register that is implicitly employed by
the legacy MIPS load and store instructions. In the current version of the ISA, this register is
special-purpose capability register 0.

In previous versions of the ISA, DDC was register C0 in the main capability register file.
In these versions of the architecture, using CSetDefault rather than an capability operation with
destination C0 allowd the Clang/LLVM compiler to know that the semantics of subsequent
MIPS loads and stores will be affected by the change to DDC.

 # The following are equivalent:

 CGetDDC $c1

 CGetDefault $c1

 CReadHWR $c1, $0

 # The following are equivalent:

 CSetDDC $c1

 CSetDefault $c1

 CWriteHWR $c1, $0

7.5.2 CGetEPCC, CSetEPCC

Get/Set Exception Program Counter Capability

Pseudo-operations are provided for getting and setting EPCC. In the current ISA, EPCC is
special-purpose capability register 31.

 # The following are equivalent:

 CGetEPCC $c1

 CReadHWR $c1, $31

 # The following are equivalent:

 CSetEPCC $c1

 CWriteHWR $c1, $31

7.5.3 CGetKDC, CSetKDC

Get/Set Kernel Data Capability
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 # The following are equivalent:

 CGetKDC $c1

 CReadHWR $30

 # The following are equivalent:

 CSetKDC $c1

 CWriteHWR $30

7.5.4 GGetKCC, CSetKCC
Get/Set Kernel Code Capability

 # The following are equivalent:

 CGetKCC $c1

 CReadHWR $29

 # The following are equivalent:

 CSetKCC $c1

 CWriteHWR $29

7.5.5 CAssertInBounds
Assert that a capability in bounds

This pseudo operation can be used to assert that a capability grants access to a given number of
bytes (if the size argument is omitted, one byte is assumed). This instruction only checks the
bounds of the capability and ignores permissions. Therefore, an access might still be prohibited
even if CAssertInBounds did not raise an exception.

 # The following are equivalent (check that at least one byte is accessible):

 CAssertInBounds $c1

 CSetBoundsImm $cnull, $c1, 1

 # The following are equivalent (check that at least 10 bytes are accessible):

 CAssertInBounds $c1, 10

 CSetBoundsImm $cnull, $c1, 10

7.5.6 Capability Loads and Stores of Floating-Point Values
The current revision of the CHERI ISA does not have CHERI-MIPS instructions for loading
floating point values directly via capabilities. MIPS does provide instructions for moving values
between integer and floating point registers, so a load or store of a floating point value via a
capability can be implemented in two instructions.

Four pseudo-instructions are defined to implement these patterns. These are clwc1 and
cldc1 for loading 32-bit and 64-bit floating point values, and cswc1 and csdc1 as the equivalent
store operations. The load operations expand as follows:

 cldc1 $f7, $zero, 0($c2)

 # Expands to:
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 cld $1, $zero, 0($c2)

 dmtc1 $1, $f7

Note that integer register $1 ($at) is used; this pseudo-op is unavailable if the noat directive
is used. The 32-bit variant (clwc1) has a similar expansion, using clwu and mtc1.

The store operations are similar:

 csdc1 $f7, $zero, 0($c2)

 # Expands to:

 dmfc1 $1, $f7

 csd $1, $zero, 0($c2)

The specified floating point value is moved from the floating point register to $at and then
stored using the correct-sized capability instruction.



Chapter 8

Detailed Design Rationale

During the design of CHERI, we considered many different capability architectures and design
approaches. This chapter describes the various design choices; it briefly outlines some possible
alternatives, and provides rationales for the selected choices.

8.1 High-Level Design Approach: Capabilities as Pointers
Our goals of providing fine-grained memory protection and compartmentalization led to an
early design choice to allow capabilities to be used as C- and C++-language pointers. This
rapidly led to a number of conclusions:

• Capabilities exist within virtual address spaces, imposing an ordering in which capability
protections are evaluated before virtual-memory protections; this in turn had implications
for the hardware composition of the capability coprocessor and conventional interactions
with the MMU.

• Capability pointers can be treated by the compiler in much the same way as integer point-
ers, meaning that they will be loaded, manipulated, dereferenced, and stored via registers
and to/from general-purpose memory only by explicit instructions. These instructions
were modeled on similar conventional RISC instructions.

• Incremental deployment within programs meant that not all pointers would immediately
be converted from integers to capabilities, implying that both forms might coexist in
the same virtual memory; also, there was a strong desire to embed capabilities within
data structures, rather than store them in separate segments, which in turn required fine-
granularity tagging.

• Incremental deployment and compatibility with the UNIX model implied the need to
retain the general-purpose memory management unit (MMU) more or less as it then
existed, including support for variable page sizes, TLB layout, and so on. The MIPS
ISA describes a software-managed TLB rather than hardware page-table walking – as is
present in most other ISAs. However, this is not fundamental to our approach, and either
model would work.

271
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8.2 Tagged Memory for Non-Probablistic Protection
Introducing tagged memory has the potential to impose a substantial adoption cost for CHERI,
due to greater microarchitectural disruption. We have demonstrated that there are efficient
implementations of memory tagging, even without integrated tag support within DRAM [54,
55], but even so there is a significant concern as to whether potential adopters will perceive
the hurdle of adopting tagged memory as outweighing the benefits that tagged memory brings.
In this section, we consider the benefits of tagging, as well as how cryptographic non-tagged
approaches might be used. Tagging offers a number of significant potential benefits:

• Tags are a deterministic (non-probabilistic) means of protecting the integrity and prove-
nance validity of pointers in memory. Probabilistic schemes, such as cryptographic
hashes, are exposed both to direct brute forcing (especially due to limited bit investment
within pointers) and also reinjection if leaked to attackers.

• Tags offer strong atomicity properties that are also well-aligned with current microarchi-
tecture (e.g., in caches), avoiding the need for substantial disruption close to the proces-
sor.

• Tags have highly efficient microarchitectural implementations, including being directly
embedded in tagged DRAM (an option likely to become increasingly available due to the
widespread adoption of error-correcting codes, and also via tag controllers and tag caches
that are affine to the DRAM controller. These may be substantially more performance-
and energy-efficient than cryptographic techniques that would require hashes to be cal-
culated or checked.

• Tags offer strong C-language compatibility, which has been demonstrated with signif-
icant software corpuses including operating-system kernels (FreeBSD), the complete
UNIX userspace (FreeBSD), and significant C and C++-language applications (the Post-
gres database, OpenSSH client and server, and WebKit web-rendering framework).

Key areas of incompatibility include the need to explicitly preserve tags during memory
copies via capability-sized, capability-aligned loads and stores, and stronger alignment
requirements for pointers. The operating system must also support maintaining tags in
virtual memory, including across operations such as swapping, memory compression,
and virtual-machine migration. In general, we have found that the modifications are
modestly sized, although some impacts (such as the cost of tag preservation and restora-
tion) are not yet fully quantified – e.g., for memory compression.

• Tags allow pointers to be deterministically identified in memory, a foundation for strong
temporal memory-safety techniques such as revocation and garbage collection.

• The choice between tag-preserving and tag-stripping memory copying allows software
to impose policies on when it is appropriate and safe for pointers to move between pro-
tection domains. For example, a kernel can selectively preserve tags in system-call argu-
ments, preventing data copied into the kernel from an untrustworthy process from being
interpreted as a pointer within the kernel, or when received by another process.
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As an alternative to tagging, one could imagine making use of probabilistic cryptographic
hashing techniques that protect capabilities from corruption, not unlike Cryptographic Control-
Flow Integrity (CCFI) [72] or Arm’s ARM v8.3 Pointer Authentication Codes (PAC). Some
number of bits would be co-opted from either the virtual address (as is the case in CCFI or
PAC), or from the metadata portion of a CHERI capability to hold a keyed hash, protecting the
contents from corruption in memory or due to mis-manipulation in a register, rather than a tag.
With additional capability metadata bits available, consumption of virtual-address bits could be
reduced.

Wherever the CHERI architecture requires a tag check, a cryptographic hash check could
instead be required architecturally. Wherever the CHERI architecture maintains a tag during
pointer manipulation, the cryptographic hash could be updated. While architectural behavior
might appear to require frequent checks of, and updates to, the hash (e.g., during loop iteration
as a register is successively incremented and then used for loads or stores), it is conceivable
that microarchitectural techniques (such as speculation) might both reduce the delay associated
with those updates, and perhaps also elide them entirely, updating the hash only during write
back. Tags appear to offer the following essential advantages over cryptographic approaches:

• Tags offer deterministic rather than probabilistic protection, and require neither secrecy
of a cryptographic key, nor brute-forcing resistance given a bounded number of hash bits.
Depending on the OS model, cryptographic keys might also be shared by more than one
address space – e.g., if fork() is frequently used to generate multiple processes, or if
there is a shared memory segment that includes linked pointers.

• Tags do not rely on cryptographic hash generation during capability updates, nor check-
ing during dereference. These could otherwise lead to a performance overhead (e.g., as
a result of load-to-use or check-to-use delays), or energy-use overheads (due to frequent
cryptographic hash operations).

• Tags prevent reinjection of leaked pointer values, even though the bitwise pattern of the
addressable memory contents remain identical. Potential vulnerabilities with hash-based
protection include leaking a valid pointer value to a local or remote attacker via socket
communications. The attacker could later reinject that value – potentially into a different
process if they share keying material (e.g., if they are forked from the same parent).

• Tags ensure provenance validity of capabilities, such that the TCB can deterministically
ensure that a pointer value is no longer in memory. As with the previous item, this pro-
tects against reinjection, but has the stronger inductive property that the TCB can reliably
perform revocation or garbage collection. This is also essential to compartmentalization
strength.

However, a hash-based approach also has several appealing properties when compared to
tags:

• Cryptographic hashes do not require the implementation of tagged memory, which could
reduce memory-subsystem complexity and DRAM-traffic impact.
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• Cryptographic hashes do not impose alignment requirements on capabilities, which may
improve compatibility.

• Cryptographically protected capabilities can be copied in memory, swapped to disk, or
migrated in virtual-machine images, without special support for tags.

This could entirely avoid the need for special capability load and store instructions, al-
though retaining them might assist with microarchitectural optimization of hash use.

If hashed-based protection were viewed as a stepping stone to a full CHERI implementa-
tion, substituting hashing for tags in an initial implementation, there are several steps that could
be taken to reduce the further disruption associated with later tag adoption:

• Explicit capability load and store instructions would be maintained and used in future
capability-aware memory copying, etc.

• Capability load and store instructions would require strong alignment for values that
would later be used for load and store, even though this is not required with hashing.

• Other non-tag-related capability properties, such as monotonicity, would continue to be
enforced via guarded manipulation.

However, substantially smaller benefit would arise prior to the introduction of tags: capa-
bilities would be able to provide capability-like spatial memory protection, and probabilistic
pointer integrity protection, but not the non-probabilistic protection or enforcement of prove-
nance validity required for stronger policies such as preventing pointer reinjection, supporting
temporal memory safety through deterministic pointer identification in memory, or enabling
in-address-space compartmentalization that depends on those properties.

8.3 Capability Register File
The decision to separate the capability-register file from the general-purpose integer register file
is somewhat arbitrary from a software-facing perspective: we envision capabilities gradually
displacing general-purpose integer registers as pointers, but where management of the two
register files will remain largely the same, with stack spilling behaving the same way, and so
on, as is already the case for disjoint integer and floating-point register files. We selected the
separate representation for a few pragmatic reasons:

• Coprocessor interfaces frequently make the assumption of additional register files (a la
floating-point registers).

• Capability registers are quite large, and by giving the capability coprocessor its own
pipeline for manipulations, we could avoid enforcing a 256-wide path through the main
pipeline.

• It is more obvious, given a coprocessor-based interface, how to provide compatibility
support in which the capability coprocessor is “disabled,” the default configuration in
order to support unmodified MIPS compilers and operating systems.
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However, it is entirely possible to imagine a variation on the CHERI design in which (more
similar to the manner in which the 32-bit x86 ISA was extended to support 64-bit registers)
the two files are merged and able to hold both general-purpose integer registers and capabil-
ity registers. This becomes a more appealing choice in the presence of 128-bit compressed
capabilities, as register size doubles rather than quadruples.

Early in our design cycle, capability registers were able to hold only true capabilities (i.e.,
with tags); later, we weakened this requirement by adding an explicit tag bit to each register, in
order to improve support for capability-oblivious code such as memory-copy routines able to
copy data structures consisting of both capabilities and ordinary data. This shifts our approach
somewhat more towards a merged approach; our view is that efficiency of implementation and
compatibility (rather than maintaining a negligible effect on the software model) would be the
primary reasons to select one approach or another for a particular starting-point ISA.

Another design variation might have specific capability registers more tightly coupled with
general-purpose integer registers – an approach we discussed extensively, especially when com-
paring with the bounds-checking literature, which has explored techniques based on sidecar
registers or associative look-aside buffers. Many of these approaches did not adopt tags as a
means of strong integrity protection (which we require for the compartmentalization model),
which would make associative techniques less suitable. Further, we felt that the working-set
properties of the two register files might be quite different; effectively pinning the two to one
another would reduce the efficiency of both.

In CHERI-RISC-V (Chapter 5), we parameterize the instruction set to support both split
and merged registers files. This will allow us to explore in greater detail the performance and
compatibility implications of this design choice.

8.4 The Compiler is Not Part of the TCB for Isolated Code
CHERI is designed to support the isolation of arbitrary untrustworthy code, including code
compiled with an incorrect or compromised compiler. The security argument outlined in Chap-
ter 9 starts with the premise that the attacker is able to run arbitrary machine-code. This ap-
proach has advantages for high-assurance systems: compilers are often large and complex pro-
grams, and proving correctness of their security mechanisms is easier if it does not depend on
also proving the correctness of the compiler. This approach also has the advantage that users
are not restricted by the security design to programming in just one programming language,
and can use any language for which a compiler has been written. In particular, it is a design
goal of CHERI that it be able to run legacy code written in C.

Some earlier capability machines, such as the Burroughs B5000, made the compiler a priv-
ileged program. We have followed the approach taken in capability machines such as CAP, in
which the compiler was not privileged.

8.5 Base and Length Versus Lower and Upper Bounds
The CHERI architecture permits two different interpretations of capabilities: as a virtual ad-
dress paired with lower and upper bounds; and as a base, length, and current offset. These dif-
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ferent interpretations support differing C-language models for pointers. The former, in which
pointer casts to integers return their virtual addresses, is more compatible with current software,
but risks leaking those virtual addresses (or their implications) out of tagged values where they
cannot be found for the purposes of pointer-transformation techniques such as copying garbage
collection. The latter, in which pointer casts to integers return their offsets, is less compatible
(as comparisons between pointers into different buffers may give surprising equality results),
but avoids leakage of virtual address out of tagged values, enabling techniques such as copying
garbage collection.

Over time, our thinking on these two approaches has shifted from aiming to support copy-
ing garbage collection in C to one focused on revocation and greater compatibility. While
some C source code naturally is extremely careful to avoid integer interpretations of pointers,
significant amounts of historic code, especially systems code, cannot avoid this idiomatic use.
For example, run-time linkers and memory allocators both naturally consider integer virtual
addresses as part of their operation. More subtly, techniques such as ordering locks for objects
based on object address, or sorting trees based on object address, makes copying garbage col-
lection a difficult prospect. Compressed capabilities further complicate this story, as a precise
lower bound may not be possible without padding; this is easy to arrange within memory al-
locators for new allocations, but when subsetting an existing allocation (e.g., to describe the
bounds of an array embedded within another structure), the 0 offset from the bottom of the
embedded structure may not carry over to being a 0 offset relative to the base address of a
capability.

In recent versions of the CHERI C compiler, we have shifted to preferring a virtual-address
interpretation of pointers in all cases except those where specific built-in functions are used to
query the offset. We retain an optional compiler mode utilizing an offset interpretation, which
will be suitable for future experimentation with copying garbage collection.

8.6 Signed and Unsigned Offsets

In the CHERI instructions that take both a register offset and an immediate offset, the register
offset is treated as unsigned integer, whereas the immediate offset is treated as a signed integer.

Register offsets are treated as unsigned so that given a capability to the entire address space
(except for the very last byte, as explained above), a register offset can be used to access any
byte within it. Signed register offsets would have the disadvantage that negative offsets would
fail the capability bounds check, and memory at offsets within the capability greater than 263

would not be accessible.
Immediate offsets, on the other hand, are signed, because the C compiler often refers to

items on the stack using the stack pointer as register offset plus a negative immediate offset. We
have already encountered observable difficulty due to a reduced number of bits available for im-
mediate offsets in capability-relative memory operations when dealing with larger stack-frame
sizes; it is unclear what real performance cost this might have (if any), but it does reemphasize
the importance of careful investment of how instruction bits are encoded.
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8.7 Address Computation Can Wrap Around
If the target address of a load or store (base + offset + register offset + scaled immediate
offset) is greater than max_addr or less than zero, it wraps around modulo 264. The load or
store succeeds if this modulo arithmetic address is within the bounds of the capability (and
other checks, such as for permissions, also succeed).

An alternative choice would have been for an overflow in the address computation to cause
the load or store to fail with a length-violation exception.

The approach of allowing the address to wrap around does not allow malicious code to break
out of a sandbox, because a bounds check is still performed on the wrapped-around address.

However, there is a potential problem if a program uses an array offset that comes from a
potentially malicious source. For example, suppose that code for parsing packet headers uses
an offset within the packet to determine the position of the next header. The threat is that an
attacker can put in a very large value for the offset, which will cause wrap-around, and result
in the program accessing memory that it is permitted to access, but was not intended to be
accessed at this point in the packet processing. This attack is similar to the confused deputy
attack. It can be defended against by appropriate use of CSetBounds, or by using some explicit
range checks in application code in addition to the bounds checks that are performed by the
capability hardware.

The advantage of the approach that we have taken is that it fits more naturally with C
language semantics, and with optimizations that can occur inside compilers. The following are
equivalent in C:

• a[x + y]

• *(a + x + y)

• (a + x)[y]

• (a + y)[x]

They would not be equivalent if they had different behavior on overflow, and the C compiler
would not be able to perform optimizations that relied on this kind of reordering.

8.8 Overwriting Capabilities in Memory
In CHERI, if a valid in-memory capability is partly overwritten via an untagged data store, then
the tag associated with the in-memory capability is cleared, making it an invalid capability that
cannot be dereferenced.

Alternative designs would have been for the capability to be zeroed first before being over-
written; or for the write to raise an exception (with an explicit “clear tag in memory” operation
for the case when a program really intends to overwrite a capability with non-capability data).

The chosen approach is simpler to implement in hardware. If store instructions needed
to check the tag bit of the memory location that was being written, then they would need a
read-modify-write cycle to memory, rather than just a write; in general, the MIPS architecture
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carefully avoids the need for a read-modify-write cycle within a single instruction. (However,
once the memory system needs to deal with cache coherence, a write is not that much simpler
than a read-modify-write.)

The CHERI behavior also has the advantage that programs can write to a memory location
(e.g., when spilling a register onto the stack) without needing to worry about whether that
location previously contained a capability or non-capability data.

A potential disadvantage is that the contents of capabilities cannot be kept secret from
a program that uses them. A program can always discover the contents of a capability by
overwriting part of it, then reading the result as non-capability data. In CHERI, there are
intentionally other, more direct, ways for a program to discover the contents of a capability it
owns, and this does not present a security vulnerability.

However, there are ABI concerns: we have tried to design the ISA in such a way that soft-
ware does not need to be aware of the in-memory layout of capabilities. As it is necessarily
exposed, there is a risk that software might become dependent on a specific layout. One note-
worthy case is in the operating-system paging code, which must save and restore capabilities
and their tags separately; this can be accomplished by using instructions such as CGetBase on
untagged values loaded from disk and then refining an in-hand capability using CSetBounds

– an important reason not to limit capability field retrieval instructions to tagged values. We
have proposed a new instruction, CBuildCap, which would add a tag to an untagged value in
a capability-register operand, authorized by a second operand holding a suitably authorized
capability, to avoid software awareness of the in-memory layout, as well as to accelerate tag
restoration when implementing system services such as swap. This instruction in effect imple-
ments rederivation, which is also possible using a sequence of individual instructions refining
the authorizing capabilities bounds, permissions, object type, and so on. CBuildCap is not in-
tended to change the set of reachable capabilities.

8.9 Reading Capabilities as Bytes
In CHERI, if a data load instruction such as CLB is used on a memory location containing
a capability, the internal representation of the capability is read. An alternative architecture
would have such loads return zero, or raise an exception.

As noted above, because the contents of capabilities are not secret, allowing them to be read
as raw data is not a security vulnerability.

8.10 OTypes Are Not Secret
Another consequence of the decision not to make the contents of capabilities secret is that the
otype field is not secret. It is possible to determine the otype of a capability by reading it
with CGetType, or by reading the capability as bytes. If a program has two pairs of code and
data capabilities, (c1, d1) and (c2, d2) it can check if c1 and c2 have the same otype by using
CCheckType on (c1, d2), or by invoking CCall on (c1, d2).

As a result, a program can tell whether it has been passed an object of otype O or an
interposing object of otype I that forwards the CCall on to an object of otype O (e.g. after
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having performed some additional access control checks or auditing first).

8.11 Capability Registers are Dynamically Tagged
In CHERI, capability registers and memory locations have a tag bit that indicates whether
they hold a capability or non-capability data. (An alternative architecture would give memory
locations a tag bit, where capability registers could contain only capabilities – with an exception
raised if an attempt were made to load non-capability data into a capability register with CLC.)

Giving capability registers and memory locations a tag bit simplifies the implementation of
cmemcpy(). cmemcpy() is a variant of memcpy() that copies the tag bit as well as the data, and so
can be used to copy structures containing capabilities. As capability registers are dynamically
tagged, cmemcpy() can copy a structure by loading its constituent words into capability registers
and storing them to memory, without needing to know at compile time whether it is copying a
capability or non-capability data.

Tag bits on capability registers may also be useful for dynamically typed languages in which
a parameter to a function can be (at run time) either a capability or an integer. cmemcpy() can
be regarded as a function whose parameter (technically a void *) is dynamically typed.

8.12 Separate Permissions for Storing Capabilities and Data
CHERI has separate permission bits for storing a capability versus storing non-capability data
(and similarly, for loading a capability versus loading non-capability data).

(An alternative design would be just one Permit_Load and just one Permit_Store permission
that were used for both capabilities and non-capability data.)

The advantage of separate permission bits for capabilities is that that there can be two pro-
tected subsystems that communicate via a memory buffer to which they have Permit_Load and
Permit_Store permissions, but do not have Permit_Load_Capability or Permit_Store_Capability.
Such communicating subsystems cannot pass capabilities via the shared buffer, even if they col-
lude. (We realized that this was potentially a requirement when trying to formally model the
security guarantees provided by CHERI.)

8.13 Capabilities Contain a Cursor
In the C language, pointers can be both incremented and decremented. C pointers are some-
times used as a cursor that points to the current working element of an array, and is moved up
and down as the computation progresses.

CHERI capabilities include an offset field, which gives the difference between the base
of the capability and the memory address that is currently of interest. The offset can be both
incremented and decremented without changing base, so that it can be used to implement C
pointers.

In the ANSI C standard, the behavior is undefined if a pointer is incremented more than one
beyond the end of the object to which it points. However, we have found that many existing
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C programs rely on being able to increment a pointer beyond the end of an array, decrement
it back within range, and then deference it. In particular, network packet processing software
often does this. In order to support programs that do this, CHERI offsets are allowed to take on
any value.1 A range check is performed when the capability is dereferenced, so buffer overflows
are prevented; thus, the offset can take on intermediate out-of-range values as long as it is not
dereferenced.

An alternative architecture would have not included an offset within the capability. This
could have been supported by two different capability types in C, one that could not be decre-
mented (but was represented by just a capability) and one that supported decrementing (but
was represented by a pair of a capability and a separate integer for the offset). Programming
languages that did not have pointer arithmetic could have their pointers compiled as just a
capability.

The disadvantage of including offsets within capabilities is that it wastes 64 bits in each
capability in cases where offsets are not needed (e.g., when compiling languages that don’t
have pointer arithmetic, or when compiling C pointers that are statically known to never be
decremented).

The alternative (no offset) architecture could have used those 64 bits of the capability for
other purposes, and stored an extra offset outside the capability when it was known to be
needed. The disadvantage of the no-offset architecture is that C pointers become either un-
able to support decrementing or enlarging: because capabilities need to be aligned, a pair of
a capability and an integer will usually end up being padded to the size of two capabilities,
doubling the size of a C pointer, and this is a serious performance consideration.

Another disadvantage of the no-offset alternative is that it makes the seal/unseal mechanism
considerably more complicated and hard to explain. A program that has a capability for a
range of types has to somehow select which type within its permitted range of types it wishes
to use when sealing a particular data capability. The CHERI architecture uses the offset for
this purpose; not having an offset field leads to more complex encodings when creating sealed
capabilities.

By comparison, the CCured language includes both FSEQ and SEQ pointers. CHERI capa-
bilities are analogous to CCured’s SEQ pointers. The alternative (no offset) architecture would
have capabilities that acted like CCured’s FSEQ, and used an extra offset when implementing
SEQ semantics.

8.14 NULL Does Not Have the Tag Bit Set
In some programming languages, pointer variables must always point to a valid object. In C,
pointers can either point to an object or be NULL; by convention, NULL is the integer value
zero cast to a pointer type.

If hardware capabilities are used to implement a language that has NULL pointers, how is
the NULL pointer represented? CHERI capabilities have a tag bit; if the tag bit is set, a valid

1CHERI Concentrate (section 3.4.5) exploits the observation that, in practice, pointers do not wander “far”
from their base to reduce the number of bits used to store the base, cursor, and limit addresses. Attempts to move
the cursor far out of bounds will, instead, yield an un-tagged result.
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capability follows, otherwise the remaining data can be interpreted as (for example) bytes or
integers. The representation we have chosen for NULL is that the tag bit is not set and the
base and length fields are zero; effectively, NULL is the integer zero stored as a non-capability
value in a capability register.

An alternative representation we have could have chosen for NULL would have been with
the tag bit set, and zero in the base field and length fields. Effectively, NULL would have been
a capability for an array of length zero.

Many CHERI instructions are agnostic as to which of these two conventions for NULL is
employed, but the CFromPtr, CToPtr and CPtrCmp operations are aware of the convention.

The advantages of NULL’s tag bit being unset are:

• Initializing a region of memory by writing zero bytes to it will initialize all capability
variables within the region to the NULL capability. Initializing memory by writing zeros
is, for example, done by the C calloc() function, and by some operating systems.

• It is possible for code to conditionally branch on a capability being NULL by using the
CBTS or CBTU instruction.

8.15 The length of NULL is MAXINT

Given that we have chosen NULL to have its tag bit unset, it isn’t semantically meaningful to
talk about its length, as NULL is not a reference to a region of memory. But programs can still
attempt to query the length of NULL, and the questions arises as to which value is returned.

We have chosen the length of NULL to be 264 − 1, as this simplifies the implementation
of compressed capabilities. To support the semantics of the C language, the capability com-
pression scheme must be able to represent all 264 possible values of offset when tag is set and
length is MAXINT. If we make the length of NULL be MAXINT, the compressed capability
format can use the same encoding regardless of whether tag is set or not: NULL becomes a
value whose offset is currently zero, but that can be changed (with CIncOffset) to any integer
value without becoming unrepresentable.

Alternative design choices included:

• Use a capability compression algorithm that also has the property that all values of offset
are representable when length is zero, and make the length of NULL be zero. Versions of
the CHERI ISA prior to V7 allowed the length of NULL to be implementation-defined,
and used a compression algorithm that had this property, so the length of NULL could be
zero. To enable the use of compression algorithms that don’t have this property, the V7
ISA defines the length of NULL to be MAXINT.

• Use a different compression algorithm depending on whether tag is set or not. This
might make the hardware more complex, but there is no reason in principle why valid
capabilities (tag set) and integers packed into capability registers (tag unset) should have
to use the same compression algorithm.
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8.16 Permission Bits Determine the Type of a Capability

In CHERI, a capability’s permission bits together with the otype field determine what kind
of capability it is. A capability for a region of memory has is unsealed (a otype of 264 − 1)
and Permit_Load and/or Permit_Store set; a capability for an object is sealed and has Per-
mit_Execute unset; a capability to call a protected subsystem (a “call gate”) is sealed and has
Permit_Execute set; a capability that allows the owner to create objects whose type identifier
(otype) falls within a range is unsealed and Permit_Seal set.

An alternative architecture would have included a separate capability type field, as well as
the perms field, within each capability; the meaning of the rest of the bits in the capability
would have been dependent on the value of the capability type field.

A potential disadvantage of not having a capability type field is that different kinds of
capability cannot use the remaining bits of the capability in different ways.

A consequence of the architecture we have chosen is that it is possible for software receiving
the primordial, omnipotent capability to create capabilities with arbitrary permissions. Some
of these sets of permissions do not have a clear use case; they just exist as a consequence
of the representation chosen for capabilities’ permissions. (Other choices are possible; see
Appendix D.8 for a less-orthogonal representation.)

8.17 Object Types Are Not Addresses

In CHERI, we make a distinction between the unique identifier for an object type (the otype
field) and the address of the executable code that implements a method on the type (the base +
offset fields in a sealed executable capability).

An alternative architecture would have been to use the same fields for both, and take the
entry address of an object’s methods as a convenient unique identifier for the type itself.

The architecture we have chosen is conceptually simpler and easier to explain. It has the
disadvantage that the type field is only 24 bits, as there is insufficient space inside the capability
for more.

The alternative of treating the set of object type identifiers as being the same as the set of
memory addresses enables the saving of some bits within a capability by using the same field
for both. It also simplifies assigning type identifiers to protected subsystems: each subsystem
can use its start address as the unique identifier for the type it implements. Subsystems that need
to implement multiple types, or create new types dynamically can be given a capability with
the permission Permit_Set_Type set for a range of memory addresses, and they are then able
to use types within that range. (The current CHERI ISA does not include the Permit_Set_Type
permission; it would be needed only for this alternative approach). This avoids the need for
some sort of privileged type manager that creates new type identifiers; such a type manager
is potentially a source of covert channels. (Suppose that the type manager and allocated type
identifiers in numerically ascending order. A subsystem that asks the type manager twice for a
new type id and gets back n and n+1 knows that no other subsystem has asked for a new type
id in between the two calls; this could in principle be used for covert communication between
two subsystems that were supposed to be kept isolated by the capability mechanism.)
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8.18 Unseal is an Explicit Operation

In CHERI, it would require an explicit operation to convert an undereferenceable pointer to an
object into a pointer that allows the object’s contents to be inspected or modified directly. This
can be done directly with the CUnseal operation, or by using CCall to run the result of unsealing
the first argument on the result of unsealing the second argument.

An alternative architecture would have been one with “implicit” unsealing, where a sealed
capability could be dereferenced without explicitly unsealing it first, provided that the subsys-
tem attempting the dereference had some kind of ambient authority that permitted it to defer-
ence sealed capabilities of that type. This ambient authority could have taken the form of a
protection ring or the otype field of PCC.

A disadvantage of an implicit unseal approach such as the one outlined above is that it is
potentially vulnerable to the “confused deputy” problem [49]: the attacker calls a protected
subsystem, passing a sealed capability in a parameter that the called subsystem expects to be
unsealed. If unsealing is implicit, the protected subsystem can be tricked by the attacker into
using its privileges to read or write to memory to which the attacker does not have access.

The disadvantage of the architecture we have chosen is that protected subsystems need to
be careful not to leak capabilities that they have unsealed, for example by leaving them on
the stack when they return to their caller. In an architecture with “implicit unseal”, protected
subsystems would just need to delete their ambient authority for the type before returning, and
would not need to explicitly clean up all the unsealed capabilities that they had created.

8.19 CMove is not Implemented as CIncOffset

CMove is an independent instruction to move a capability value from one register to another. In
conventional instruction-set design, integer Move is frequently an assembler pseudo-operation
that expands to an arithmetic operation that does not modify the value (e.g., an add instruction
with the zero register as one operand). In an earlier CHERI design, we similarly implemented
CMove is an assembler pseudo-operation that expanded to CIncOffset with an offset of zero.
This required that the CIncOffset instruction treat a zero offset as a special case, allowing it to
be used to move sealed capabilities and values with the tag bit unset. Using a separate opcode
for CMove has the disadvantage of consuming another opcode, but avoids this special case in the
definition of CIncOffset in which an exception will not be thrown if a zero operand is used. We
have therefore changed to specifying an explicit CMove instruction, and removed special casing
in CIncOffset.

8.20 Instruction-Set Randomization

CHERI does not include features for instruction set randomization [59]; the unforgeability of
capabilities in CHERI can be used as an alternative method of providing control flow integrity.

However, instruction set randomization would be easy to add, as long as there are enough
spare bits available inside a capability (the 128 bit representation of capabilities does not have



284 CHAPTER 8. DETAILED DESIGN RATIONALE

many spare bits). Code capabilities could contain a key to be used for instruction set random-
ization, and capability branches such as CJR could change the current ISR key to the value given
in the capability that is branched to.

8.21 System Privilege Permission

In the current version of the CHERI, one of the capability permission bits authorizes access
to privileged processor features that would allow bypass of the capability model, if present
on PCC. This is intended to be used by hybrid operating-system kernels to manage virtual
address spaces, exception handling, interrupts, and other necessary architectural features that
do not map cleanly into memory-oriented capabilities. It can also be used by stand-alone
CHERI-based microkernels to control use of the exception-handling and cache-management
mechanisms, and of the MMU on MMU-enabled hardware. Although the permission limits
use of features to control the virtual address space (e.g., TLB manipulation), it does not prevent
access to kernel-only portions of the virtual address space. This allows kernel code to operate
without privileged permission using the capability mechanism to limit which portions of kernel
address space are available for use in constrained compartments.

We employ a single permission bit to conserve space (especially in 128-bit capabilities),
but also because it offers a coherent view on architectural privilege: many of the privileged ar-
chitectural instructions allow bypass of in-address-space memory protection in different ways,
and using subsets of those operations safely would be quite difficult. In earlier versions of the
CHERI ISA, we employed multiple privileged bits, but did not find the differentiation useful in
practical software design. In more feature-rich privileged instruction sets (e.g., those with vir-
tualization features), a more fine-grained decomposition might be of greater utility, and could
motivate a new capability format intended to authorize use of privilege.

In earlier versions, the privileged permission(s) controlled use of only CP2 privilege (i.e.,
exception-handling capabilities); in the current version, the bit also controls MIPS privileges
available only in kernel mode: TLB, CP0, selected uses of the CACHE instruction, and ERET use.
This allows compartmentalization within the kernel address space (e.g., to sandbox untrustwor-
thy components), as well as more general mitigation by limiting use of privileged features to
only selected code components, jumped to via code pointers carrying the privileged permission.
If virtual-memory and exception-handling features were not controlled by this permission bit,
use of those ISA features would allow bypass of in-kernel compartmentalization. Regardless of
this bit, extreme care is required to safely compartmentalize within an operating-system kernel.

In our design, absence of the privileged permission denies use of privileged ISA features,
but presence does not grant that right unless it is also authorized by kernel mode. Other compo-
sitions of the capability permission bit and existing MIPS KSU (kernel/supervisor/user-mode)
authorization are imaginable. For example, the permission bit could grant privileged ISA use in
userspace regardless of KSU state. While this composition might allow potentially interesting
delegation of privilege to user components, the lack of granularity of control appears to offer
little benefit when a similar effective delegation can be implemented via the exception model
and implied ring transition. In a ring-free design (e.g., one without an MMU or kernel/super-
visor/user modes), however, the privileged permission would be the sole means of authorizing
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privilege.
Another design choice is that we have not extended MIPS with new capability-based priv-

ilege instructions; instead, we chose to limit use of existing instructions (such as those used in
TLB management). This fails to extend the principle of intentional use to these privileged fea-
tures; in return we achieve reduced disruption to current software stacks, and avoid introducing
new instructions in the opcode space. Despite that slight apparent shortcoming, we observe that
fine-grained privilege can still be accomplished – due to use of a permission bit on PCC: even
within a highly privileged kernel, most functions might operate without the ability to employ
privileged instructions, with an explicit use of CJALR to jump to a code pointer with the Ac-
cess_System_Registers permission enabled – which executes only the necessary instructions
and reduces the window of opportunity for privilege misuse.

An alternative design would extend the MIPS privileged instruction set to include versions
that accept explicit capability operands authorizing use of those instructions, in a manner sim-
ilar to our extensions to our capability-extended load and store instructions. Another variation
on this scheme would authorize setting of a privilege status register, enabling specific instruc-
tions (or classes of instructions) based on an offered capability, combining these two approaches
to authorize selected (but unmodified) privileged instructions.

Finally, it is conceivable that capabilities could be used to authorize delegation of the right
to use privileged instructions to userspace code, rather than simply restricting the right to use
privileged instructions in kernel code. We have opted to limit our approach to using capabilities
to restrict features in the MIPS model, with a simple and deterministic composition of features.

8.22 Composing CHERI with MIPS Exception Handling

Exception handling is inevitably architecture specific, with the approach taken in MIPS being
particularly RISC-esque and quirky. In MIPS, an exception interrupts the instruction flow, sets
the EXL status flag to transition to kernel mode, disable interrupts, updates the exception cause
register to provide information about the exception, saves the current PC in EPC, and sets PC
to the appropriate interrupt vector address. Later versions of MIPS allow that address to be
configured. Special handling is also provided if an exception fires while EXL is set, making
use of ErrorEPC instead of EPC. As only one register is saved by the architecture (PC),
this makes it difficult to perform a software-based context switch. Other more recent RISC
architectures will bank a second register, typically the stack pointer, to allow that to take place.
In MIPS, the ABI instead reserves two general-purpose integer registers, $k0 and $k1, for use
by exception handlers.

8.22.1 MIPS-centric Exception Handling

A primary goal of our work is to avoid disrupting MIPS exception handling. This has two
implications: first, that when a capability-unaware OS is booted and operating, it should work
as it did previously; and second, that when a capability-aware OS is used, CHERI extensions
to exception handling preserve the existing structure and approach of exception handling.
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8.22.2 Capability Extensions to MIPS Special Registers
The most natural extension to MIPS exception handling simply extends the existing EPC to be
an Exception Program Counter Capability (EPCC), and ErrorEPC to be an Error Exception
Program Counter Capability (ErrorEPCC), which can save and restore the full PCC rather
than just PC. However, this is insufficient to authorize or safely protect execution of the ex-
ception vector, which the interrupted code may not have access to, and should not be able to
influence. As with later MIPS versions, we therefore allow the exception vector to be defined
using a special capability register, the Kernel Code Capability (KCC), which will be installed
in PCC when the exception is taken, both authorizing access for the exception handler, and pre-
venting the interrupted code from improperly affecting the exception handler. In the interests of
a more object-centered design, in which capabilities for code and data are not unnecessarily, we
also provide a special capability register, the Kernel Data Capability (KDC), which is readable
in kernel mode.

8.22.3 Kernel-Reserved Special Capability Registers
MIPS reserves two general-purpose integer registers for exception-handler bootstrapping, $k0
and $k1. In earlier versions of the CHERI ISA, we similarly reserved two general-purpose
capability registers, KR1C and KR2C, for kernel use. We have since shifted these two the
Special Capability Register File, accessed via CReadHwr and CWriteHwr. We anticipate that
they will be used to temporarily save general-purpose capability registers in a similar manner,
letting the general-purpose registers be used by the exception handler itself – e.g., to hold a
copy of KDC for the purposes of memory access to save capability registers for the preempted
context. This design choice is especially important when contemplating a merged register file,
in which case avoiding further reservations in that file would limit ABI disruption. Avoiding
special interpretations of general-purpose capability registers also avoids special access-control
rules (e.g., to limit access to those registers), simplifying the ISAs. Finally: these registers are
used only very infrequently, and as such take up valuable space that could be available to the
compiler, meaning that using up encoding and register-file space is a poorer use of micro-
architectural resources.

8.23 Interrupts and CCall Selector 0 Use the Same KCC/KDC
MIPS executes all exception handlers within the same privileged ring. We have inherited that
design choice for our CCall selector 0 exception handler, with respect to classical ring-based
security, and also to the decision to use a single set of KCC/KDC special registers. Given that
domain transitions without user address spaces does not actually require supervisor privilege,
it would make substantial sense to shift the software-defined CCall/CReturn mechanism to a
userspace exception handler. These are not supported by MIPS, and substantial prototyping
would be required to evaluate this approach. If that were to be implemented, then it would be
necessary to differentiate the code and data capabilities for the domain-transition implementa-
tion from the kernel’s own code and data capabilities – possibly via additional special registers
configured and switched by the kernel on behalf of the userspace language runtime.
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8.24 CCall Selector 1: Jump-Based Domain Transition

CCall selector 1 offers a non-exception-based mechanism by which non-monotonic capabil-
ity register-file transformations can be performed, in contrast to the exception-based selector
0. Non-monotonicity is accomplished by virtue of unsealing the sealed operand capabilities
to CCall selector 1, whereas selector 0 accomplishes non-monotonicity by virtue of granting
access to exception-mode capability registers (KCC and KDC).

While a standard MIPS pipeline allows a branch delay slot before diverting control flow
after a branch, CCall selector 1 does not have a branch-delay slot – as the remaining branch-
delay instruction in the calling domain would otherwise have access to data registers written
by the branch. Removing the delay slot for this case disturbs the normal control flow of the
pipeline, causing a pipeline bubble in our case, and also prevents an important optimization for
safe domain crossing – which uses the delay slot to clear the last registers in the calling domain
that were needed as operands for the CCall itself. Nevertheless, significant software complexity
was necessary to ensure a safe branch-delay slot for CCall selector 1. Rather than removing
the delay slot after CCall selector 1, we could have thrown an exception on any instruction that
reads or writes IDC in the branch-delay slot. The result would be that the newly unsealed IDC
is available only to code executing at the newly unsealed PCC, avoiding premature exposure
of IDC to the caller before callee code begins executing. However an exception in the branch
delay slot would still expose IDC to the exception handler, and a creative use of signals could
expose IDC to the calling domain. Rather than mandate a more complex set of invariants in
software, we chose to eliminate the branch delay slot of CCall selector 1.

It is possible to imagine more comprehensive jump-based instructions including:

• A variation that has link-register semantics, saving the caller PCC in a manner similar
to CJALR. We choose not to implement this to avoid writing two general-purpose registers
in one instruction, and because the caller can itself perform a move to a link destination
based on CGetPCC.

• A variation that seals caller PCC and IDC to construct a return-capability pair. We
choose not to implement this to multiple register writes in one instruction, because the
caller can itself perform any necessary sealing of its own return state, if required. Further,
to provide strict call-return semantics, additional more complex behavior is required,
which is not well captured by a single RISC instruction.

In general, we anticipate that CCall selector 1 will be used to invoke trusted software rou-
tines with similar behavior and tradeoffs to using a software exception handler with selector
0. For example, we expect that microkernel message-passing system calls implemented using
selector 0 will clear non-argument capability and general-purpose integer registers, perform
global checks, and store any return information required to restore control to the caller before
return to userspace. Unlike a return from a system call, the CCall selector 1 trusted routine can
jump out of trusted code without any special handling in the ISA, as it will conform to mono-
tonic semantics – i.e., the clearing of registers that should not be passed to the callee, followed
by a CJR to transfer control to the callee.
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8.25 Compressed Capabilities
256-bit capabilities provide for byte-granularity protection, allowing arbitrary subsets of the
address space to be described, as well as providing substantial space for object types, software-
defined permissions, and so on. However, they come at a significant performance overhead:
the size of 64-bit pointers is quadrupled, increasing cache footprint and utilization of memory
bandwidth. Fat-pointer compression techniques exploit information redundancy between the
base, pointer, and bounds to reduce the in-memory footprint of fat pointers, reducing the preci-
sion of bounds – with substantial space savings. Prior versions of our compression approaches,
the CHERI-128 candidates, are described in Appendix E.

8.25.1 Semantic Goals for Compressed Capabilities

Our target for compressed capabilities was 128 bits: the next natural power-of-two pointer size
above 64-bit pointers, with an expected one-third of the overhead of the full 256-bit scheme.
A key design goal was to allow both 128-bit and 256-bit capabilities to be used with the same
instruction set, permitting us to maintain and evaluate both approaches side-by-side. To this
end, and in keeping with previously published schemes, the CHERI ISA continues to access
fields such as permissions, pointer, base, and bounds via 64-bit general-purpose integer regis-
ters. The only visible semantic changes between 256-bit and 128-bit operation should be these:
the in-memory footprint when a capability register is loaded or stored, the density of tags
(doubled when the size of a capability is halved), potential imprecision effects when adjusting
bounds, potential loss of tag if a pointer goes (substantially) out of bounds, a reduced number
of permission bits, a reduced object type space, and (should software inspect it) a change in the
in-memory format.

The scheme described in our specification is the result of substantial iteration through de-
signs attempting to find a set of semantics that support both off-the-shelf C-language use, as
well as providing strong protection. Existing pointer-compression schemes generally provided
suitable monotonicity (pointer manipulation cannot lead to an expansion of bounds) and a com-
pletely accurate underlying pointer, allowing base and bounds to experience imprecision only
during bounds adjustment. However, they did not, for example, allow pointers to go “out of
bounds” – a key C-language compatibility requirement identified in our analysis of widely used
C programs. The described model is based on a floating-point representation of distances be-
tween the pointer and base/bounds, and places a particular focus on fully precise representation
bounds for small memory allocations – e.g., as occur on the stack, or when performing string
or image processing.

8.25.2 Precision Effects for Compressed Capabilities

Precision effects are primarily visible during the narrowing of bounds on an existing capability.
In order to provide the implementation with maximum flexibility in selecting a compression
strategy for a particular set of bounds, we have removed the CIncBase and CSetLen instructions
in favor of a single CSetBounds instruction that exposes adjustments to both atomically. This
allows the implementation to select the best possible parameters with full information about
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the required bounds, maximizing precision. Precision effects occur in the form of increased
alignment requirements for base and bounds: if requested bounds are highly unaligned, then
the resulting capability returned by CSetBounds may have broader rights than requested, fol-
lowing stronger alignment rules. CSetBounds maintains full monotonicity; however, bounds on
a returned capability will never be broader than the capability passed in. Further, narrowing
bounds is itself monotonic: as allocations become smaller, the potential for precision increases
due to the narrower range described. Precision effects will generally be visible in two software
circumstances: memory allocation and arbitrary subsetting, which have different requirements.

Memory allocation subdivides larger chunks of memory into smaller ones, which are then
delegated to consumers – which most frequently are heap and stack allocation, but this can also
occur when the operating system inserts new memory mappings into an address space, return-
ing a pointer (now a capability) to that memory. Memory allocators already impose alignment
requirements: certainly for word or pointer alignment so that allocated data structures can be
stored at natural alignment, but also (for larger allocations) for page or superpage alignment
to encourage effective use of virtual memory. Compressed capabilities strengthen these align-
ment requirements for large allocations, which requires modest changes to heap, stack, and OS
memory allocators in order to avoid exposing undesired precision effects. Bounds on memory
allocations will be set using CSetBoundsExact, which will throw an exception if precise bounds
are not possible due to precision effects.

Arbitrary subsetting occurs when programmers explicitly request that a capability to an
existing allocation be narrowed, in order to enforce bounds checks linked to software invariants.
For example, an MPEG decoder might subset a larger memory buffer containing many frames
into individual frames when processing them, in order to catch misbehavior without permitting
(for example) corruption of adjacent frames. Similarly, packet-processing systems frequently
embed packet data within other data structures; bugs in protocol parsing or packet construction
could affect packet metadata, with security consequences. 128-bit CHERI can provide precise
subsetting for smaller subsets, but may experience precision effects for larger subsets. These
are accepted in our programmer model, and could permit buffer overflows between subsets,
which would be prevented in the 256-bit model. Unless specifically annotated to require full
precision, arbitrary subsetting will utilize CSetBounds, which can return monotonically non-
increasing – but with potentially imprecise bounds.

Two further cases required careful consideration: object capabilities, and the default data
capability, for quite different reasons. Object capabilities require additional capability fields
(software-defined permission bits, and the fairly wide object type field). The default data ca-
pability is an ordinary 128-bit capability, but has the property that use of a full cursor (base
plus offset) introduces a further arithmetic addition in a critical path of MIPS loads and stores.
In both cases, we have turned to reduced precision (i.e., increased alignment requirements)
to eliminate these problems, looking to minimum page-granularity alignment of bounds while
retaining fully precise pointers. By requiring strong alignment for default data capabilities,
the extra addition becomes a logical or when constructing the final virtual address, assisting
with the critical path. As object capabilities are used only by newly implemented software, and
provide coarser-grained protection, we accepted the stronger alignment requirement for sealed
capabilities, and have not encountered significant problems as a result.

The final way in which imprecision may be visible to software is if the pointer (offset) in
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a capability goes substantially out of bounds. In this case, the compression scheme may not
be able to represent the distances from the pointer to its original bounds accurately. In this
scenario, the tag will be cleared on the capability to prevent dereference, and then one of the
resulting pointer value or bounds must be cleared due to the unrepresentability of the resulting
value. To discourage this from happening in the more common software case of allowing small
divergence from the bounds, CSetBounds over-provisions bits required to represent the distances
during compression; however, that over-provisioning comes at a slight cost to precision: i.e.,
we accept slightly stronger alignment requirements in return for the ability to allow pointers to
be somewhat out of bounds.

8.26 Capability Encoding Mode
As implemented in CHERI-MIPS, CHERI duplicates the full load-store encoding space to
provide capability-relative variations on load and store instructions. This approach ensures
intentionality: the architecture is always able to perform a DDC-relative access with legacy
integer-relative load and store instructions, and is always able to assert that the tag bit is set
for capability-relative load and store instructions. However, this makes heavy use of remaining
unused opcode space in many instruction sets, and so finding alternative encoding models to
make less copious use of opcode space is desirable.

One scheme we are deploying in CHERI-RISC-V is the use of legacy vs. capability encod-
ing modes: in the legacy encoding mode, load and store opcodes have their current interpreta-
tions, and a small selection of capability-relative loads and stores are added. To get access to
the full range of load and store variations, the encoding mode can be switched to one in which
existing load and store opcodes are instead interpreted as requiring capability operands, and
DDC-relative integer-based access is disabled.

There are a variety of mechanisms that could be used to switch between encoding modes,
but information on the mode must be available at the time of instruction decode. There are
several essential considerations:

How frequently will mode switches take place? There are a range of possibilities, from whole
programs or systems operating within a single encoding, to inter-function or sub-function
changes in mode depending on ABI and optimization requirements. Given our overall
goal in CHERI of avoiding the need for additional exceptions to a privileged supervisor
for capability manipulation, we similarly believe that a non-exception-based encoding
transition mechanism is desirable to support more tight integrations of integer-relative
and capability-relative generated code. As such, the mechanisms we consider will gener-
ally support granular transition, at least at library boundaries or individual function call
and return.

How will encoding mode be selected and preserved across function calls? Assuming that a
more granular approach to encoding is desired – e.g., that there are direct calls between
code generated in differing modes – then it will be necessary to switch to the callee en-
coding during function entry, and restore the caller encoding on function return. This
might be supported implicitly through contextual information, such as using page-table
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properties, or explicitly such as through extended or entirely new compiler- or linker-
managed instructions saving and setting encoding modes.

How will encoding mode be preserved across context switches? As with function-call bound-
aries, this might be implicit (e.g., based on the address or metadata held in PCC, or via
page-table metadata for the target that PCC points to) or explicit (e.g., the saving and
restoring of a bit in {m,s,u}ccsr when an exception is taken).

What will the performance implications be for microarchitectural optimizations? For ex-
ample, will the target encoding be accurately predicted alongside the target PCC, so that
speculative execution can utilize the correct encoding?

How should encoding-mode selection work around protection-domain boundary crossings?
When control is transferred across a protection-domain boundary (e.g., by virtue of an
exception being thrown, or use of CCall), the destination code must be able to ensure that
it is being safely executed with its intended interpretation. This might be implied by the
mechanism (e.g., by virtue of properties of the virtual page holding the executing code)
or explicit (e.g., using dedicated instructions in the callee to switch modes, or assert the
mode, before any affected instructions are executed).

Should encoding-mode switches require privilege? One potential fear is that an additional
encoding mode increases the gadget space available to control-flow attackers. As long
as the effect is only for the current execution context, we currently take the view that
changing encoding modes does not require privilege: the set of available capabilities
remains the same; the increase in gadget space is small; and attacks on control flow to
use gadgets rely on having bypassed control-flow robustness arising from fine-grained
code capabilities. See Section 8.27 for further considerations.

Potential encoding mode-switch mechanisms

We are considering the following mechanisms:

New jump instruction sets mode flag in {m,s,u}ccsr A mode bit in {m,s,u}ccsr would se-
lect between the two different instruction encodings. A new jump instruction would allow
the target mode to be selected via an immediate operand (“enter integer encoding mode”
or “enter capability encoding mode”). This is a simple mechanism allowing dynamic
selection of encoding at a fine granularity – e.g., per function. It utilizes existing context
switching, as {m,s,u}ccsr will already be saved and restored.

This approach has a number of complications from a software perspective: on function
call, the caller must be aware of the callee encoding; on function return, the callee must
likewise be aware of the caller encoding, so as to ensure that the correct encoding is
used when control flow moves between functions. In some usage scenarios, such as
dynamically linked libraries, this might require the introduction of thin stubs – already
present thanks to PLTs during call, but not presently implemented in current software
stacks. Certain more complex control flows, such as those relating to exception delivery,
might similarly present obstacles.
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Flag in jump-target addresses, maintained in {m,s,u}ccsr Because of the minimum code
alignment of 16 bits in RISC-V, the lowest bit in a jump target address is ignored (and
cleared when installed in PC), leaving it available as a potential flag to instructions such
as JALR and CJALR2. This bit could be used to select the target ISA encoding, in the style of
ARMv7’s instruction-set trigger to switch between 32-bit instructions and 16-bit Thumb
instructions. {m,s,u}ccsr would contain an architectural mode bit to select between the
two instruction codings. A lowest bit of 0 in the target virtual address would select inte-
ger encoding mode; a lowest bit of 1 in the target virtual address would select capability
encoding mode. JALR and CJALR would similarly adjust the virtual address of a gener-
ated return address or capability, so as to restore the correct encoding on function return
or exception delivery. This approach would avoid the need for any new instructions
being introduced, and would associate the encoding with the callee rather than caller.
Branch-predictor targets could also reliably predict encoding to allow speculative fetch
and decode.

Software would be relatively easily modified to set the bit as needed during compile-time
or run-time linking. However, there may already be software consumers making use of
the same bit.

Flag in jump-target addresses, maintained in PCC As with the prior option, the lowest bit
in the target virtual address for JALR or CJALR would select the target encoding. How-
ever, rather than extending {m,s,u}ccsr, the lowest bit would persist in PCC and be
ignored as an address for fetching instructions, allowing it to continue to indicate the
target encoding. This would require a modest change to the baseline RISC-V ISA to
preserve but ignore the bit in PC. This approach avoids the need for a new {m,s,u}ccsr

bit, and differently addresses the goal of allowing encoding to track executing code, and
be saved, set, and restored around function calls and returns.

As the bit would not be cleared, debuggers and other address-aware code, such as code
implementing PC-relative GOT access in hybrid mode, would have to be suitably adapted
to ignore the bit. It might be desirable to have the bit also ignored for the purposes of
AUIPC used for GOT access.

New capability flag to select the target encoding of a jump A new capability flag could be
introduced to select the target encoding for capability-relative jump targets (i.e., capabil-
ities authorizing instruction fetch). Changing the flag would not change the rights associ-
ated with a capability, allowing us to avoid a new permission bit to authorize changing the
flag, and sealing would prevent modification. Target encodings could be saved with cor-
responding branch-predictor entries to allow speculative fetch and decode. The encoding
state would be preserved with PCC on call, return, and in exception handling.

Explicit unprivileged instruction to switch modes New instructions could be added to switch
explicitly between the two opcode instructions, to be placed either in function pro-
logues/epilogues, or in trampolines inserted by static or dynamic linkage. Standard

2The JAL instruction shifts its immediate operand, and could not be used to change mode.
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RISC-V RWI, RSI, and RCI CSR manipulation instructions could be used. Dynamic changes
of encoding might necessitate invalidating speculative decoding and execution, however.

Page-table flag specifying encoding for executable code On MMU-enabled systems, page-
table mappings for pages could themselves contain information on the encoding of in-
structions stored in the page. As binary pages are typically mapped by a run-time linker
that is aware of code properties, this would avoid changes to code generation itself, use
of new instructions, flags, etc. However, this would be dependent on having an MMU
present, software authors using the MMU, as well as code having page alignment by en-
coding type. When running without virtual addressing enabled, it would not be possible
to switch modes, which would be undesirable for small embedded-class systems.

Of these potential schemes, requesting a target encoding based on a PCC flag seems the
most appealing.

8.27 Capability Encoding Mode Switching Can Be Unprivi-
leged

In CHERI-RISC-V, we introduce the concept that existing integer-relative load and store op-
codes could be reused in a richer “capability encoding mode”, conserving opcode space. We
argue above that switching between encodings is a safe operation to be performed without priv-
ilege – i.e., by arbitrary untrustworthy code – as long as safe mechanisms exist to switch to a
predetermined encoding state when transitioning across trust boundaries. For example, it must
be the case that exception handlers can operate reliably in their intended encoding regardless
of the encoding mode being used by unprivileged user code triggering an exception. Similarly,
a reliable encoding switch must be achieved when using CCall.

Our argument for safe unprivileged use is grounded in the belief that the primary concern is
one of potential code-reuse attacks, as switching encodings does not change the set of capabil-
ities available to executing code. Instead, the fear is that an attacker able to manipulate control
flow now has access to an increased number of gadgets, as executable memory may now be
used with multiple interpretations. We agree that the gadget space does modestly increase, and
consider the problem from two perspectives:

When the attack is against hybrid code: The attacker may have the ability to influence an
integer-based PC value, and will gain access to additional gadgets (possibly doubling the
gadget space). However, in hybrid code making only limited use of capabilities, CHERI
is not intended to provide additional control-flow robustness.

When the attack is against pure-capability code: The attacker must first gain influence over
a capability-based PCC value, which will not only be protected against a number of
common attacks (e.g., by virtue of tagged memory detecting data overwrites), but also
will have narrowed bounds significantly limiting available gadget space.

Further, a successful mode switch will have the sole impact of converting capability-
relative loads and stores to integer-relative loads and stores against DDC, which will
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hopefully be set to NULL when executing in a pure-capability code environment – mean-
ing that while the interpretation of instructions has changed, the impact of the newly
accessible instructions will by default be an exception being thrown.

Neither of these arguments precludes potentially effective manipulations of the run-time
environment by the attacker, but many tools currently available to attackers that might
benefit from a mode switch are entirely eliminated or significantly mitigated.

Overall, this leads us to the conclusion that unprivileged transition between encodings is
permissible. However, significant care must be taken to ensure that when a privilege change
does occur, there is a safe mechanism by which exception handlers or domain-transition mech-
anisms can execute only in the desired mode.



Chapter 9

CHERI in High-Assurance Systems

This chapter considers the roles of formal methods relating to the assurance of CHERI hardware
and software. It gives an informal explanation of some features of the CHERI mechanism that
may of interest to developers of high-assurance hardware, secure microkernels, and formal
models of CHERI, including an initial security argument for a reference monitor. Further work
on proofs of properties of the CHERI ISA are now part of the CIVF project, noted in the last
section of this chapter.

9.1 Unpredictable Behavior

In the semantics for the CHERI instructions in Chapter 7, we try to avoid defining behavior
as “unpredictable”. There were several reasons for avoiding unpredictable behavior, including
the difficulty it creates for formal verification. Although CHERI is based on the MIPS ISA,
the MIPS ISA specification (e.g., for the R4000) makes extensive use of “unpredictable”. If
“unpredictable” is modeled as “anything could happen”, then clearly the system is not secure.
As a concrete example, imagine a hypothetical CHERI implementation that contains a Trojan
horse such that when a sandboxed program executes an arithmetic instruction whose result is
“unpredictable”, it also changes the capability registers so that a capability granting access to
the entire virtual address space is placed in a capability register. If “unpredictable” means that
anything could happen, then this is compliant with the MIPS ISA; it is also obviously insecure.
Later versions of the MIPS ISA (e.g., MIPS64 volume I) make it clear that “unpredictable”
is more restrictive than this, saying that “unpredictable operations must not read, write, or
modify the contents of memory or internal state that is inaccessible in the current processor
mode”. However, that is clearly not strong enough.

For the CHERI mechanism to be secure, we require that programs whose behavior is “un-
predictable” according to the MIPS ISA do not modify memory or capability registers in a way
that allows the capability mechanism to be bypassed. One easy way to achieve this is that the
“unpredictable” case requires that neither memory nor capability registers are modified.

The test suite for our CHERI1 FPGA implementation checks that the CPU follows known
CHERI1-specific behavior in the “unpredictable” cases.

295
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9.2 Bypassing the Capability Mechanism Using the TLB
If a program can modify the TLB (the status register has CU0 set, KSU not equal to 2, EXL
set or IRL set), then it can bypass the capability mechanism by modifying the TLB. Although
composition with the Memory Management Unit and virtual-addressing mechanism in this
manner is a critical and intentional part of our design, it is worth considering the implications
from the perspective of high-assurance design. The “attack” is as follows: Consider a location
in memory whose virtual address is not accessible using the capability mechanism; take its
physical address and change the TLB so that its new virtual address is one to which you have a
capability, and then access the data through the new virtual address. There are several ways to
prevent this attack:

• In CheriBSD, user-space programs are unable to modify the TLB (except through system
calls such as mmap), and thus cannot carry out this attack. This security argument makes
it explicit that the security of the capability mechanism depends on the correctness of
the underlying operating system. However, this may not be adequate for high-assurance
systems.

• Similarly, a high-assurance microkernel could run untrusted code in user space, with
KSU=2, CU0 false, EXL false, and IRL false. A security proof for the combined hardware-
software system could verify that untrusted code cannot cause this condition to become
false except by reentering the microkernel via a system call or exception.

• A single-address-space microkernel that has no need for the TLB could run on a CHERI-
enabled CPU without a TLB. Our CHERI1 FPGA prototype can be synthesized in a
version without a TLB, and our formal model in the L3 specification language includes a
TLB-less variant. Removing the TLB for applications that don’t need it saves chip area,
and removes the risk that the TLB could be used as part of an attack.

• We are considering future extensions to CHERI that would allow the capability mech-
anism to be used for sandboxing in kernel mode; these would allow more control over
access to the TLB when in kernel mode. As well as enabling sandboxing of device drivers
in monolithic kernels such as that of CheriBSD, the same mechanism could also be used
by microkernels.

9.3 Malformed Capabilities
The encoding formats for capabilities can represent values that can never be created using the
capability instructions while taking the initial contents of the capability registers as a starting
point. For example, in the 256-bit representation, there are bit patterns corresponding to base +
length > 264. The capability registers are initialized on reset, so there will never be malformed
capabilities in the initial register contents, and a CHERI instruction will never create malformed
capabilities from well-formed ones. However, DRAM is not cleared on system reset, so that it
is possible that the initial memory might contain malformed capabilities with the tag bit set.
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Operating systems or microkernels are expected to initialize memory before passing refer-
ences to it to untrusted code. (If you give untrusted code a capability that has the Load_Capability
permission and refers to uninitialized memory, you don’t know what rights you are delegating
to it.) This means that untrusted code should not be in a position to make use of malformed
capabilities.

There are (at least) two implementation choices. An implementation of the CHERI instruc-
tions could perform access-control checks in a way that would work on both well-formed and
malformed capabilities. Alternatively, the hardware could be slightly simplified by performing
the checks in a way that might behave unexpectedly on malformed capabilities, and then rely
on the capability mechanism (plus the operating system initializing memory) to guarantee that
they will never become available to untrusted code.

If the hardware is designed to guard against malformed capabilities, this presents special
difficulties in testing. No program whose behavior is defined by the ISA specification will
ever trigger the case of encountering a malformed capability. (Programs whose behavior is
“unpredictable”, because they access uninitialized memory, may encounter them). However,
some approaches to automatic test generation may have difficulty constructing such tests.

More generally, however, uninitialized memory might also contain highly privileged and
yet entirely well-formed capabilities, and hence references to that memory should be given to
less trustworthy code only after suitable clearing. This requirement is present today for current
hardware, as uncleared memory on boot might contain sensitive data from prior boots, but this
requirement is reinforced in a capability-oriented environment.

9.4 Constants in the Formal Model
The L3 language that we used to specify CHERI does not have a notion of a named constant as
distinct from a mutable variable. Fully machine-checked security proofs may need to prove that
some of these constants are in fact constant. (For example, that it is not possible to bypass the
capability mechanism by changing the CPU’s endianness and hence the effect of a capability
dereference, because there is no way to change the endianness).

9.5 Outline of Security Argument for a Reference Monitor
The CHERI ISA can be used to provide several different security properties (for example,
control-flow integrity or sandboxing). This section provides the outline of a security argument
for how the CHERI instructions can be used to implement a reference monitor.

The Trusted Computer System Evaluation Criteria (“Orange Book”) [88] expressed the
requirement for a reference monitor as “The TCB shall maintain a domain for its own execution
that protects it from external interference or tampering”.

The Common Criteria [51] contain a similar requirement:

“ADV_ARC.1.1D The developer shall design and implement the [target of evalua-
tion] so that the security features of the [target of evaluation security functionality]
cannot be bypassed.”
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“ADV_ARC.1.2D The developer shall design and implement the [target of eval-
uation security functionality] so that it is able to protect itself from tampering by
untrusted active entities.”

In this section, we we explain how the CHERI mechanism can be used to provide this
requirement(s), and provides a semi-formal outline of a proof of its correctness.

We are assuming that the system operates in an environment where the attacker does not
have physical access to the hardware, so that hardware-level attacks such as introducing mem-
ory errors [43] are not applicable.

In this section, we do not consider covert channels. There are many applications where
protection against covert channels is not a requirement. The CHERI1 FPGA implementation
has memory caches, which probably could be exploited as a covert channel.

The architecture we use to meet this requirement consists of (a) some trusted code that ini-
tializes the CPU and then calls the untrusted code; and (b) some untrusted code. The CHERI
capability mechanism is used to restrict which memory locations can be accessed by the un-
trusted code. Here, “trusted” means that, for the purpose of security analysis, we know what
the code does. The “untrusted” code, on the other hand, might do anything.

The reference monitor consists of the trusted code and the CHERI hardware; and the “se-
curity domain” provided for the reference monitor consists of a set of memory addresses (SK)
for the data, code, and stack segments of the trusted code, together with the CHERI reserved
registers.

Our security requirement of the hardware is that the untrusted code will run for a while,
eventually returning control to the trusted code; and when the trusted code is re-entered, (a) it
will be reentered at one of a small number of known entry points; (b) its code, data and stack
will not have been modified by the untrusted code; and (c) the reserved capability registers will
not have been modified by the untrusted code.

This security property provided by the hardware allows us to reason that the trusted code is
still trusted when it is reentered. If its code and data have not been modified. we can still know
what it will do (to the extent that it is actually trustworthy – not just “trusted”),

The “cannot be bypassed” and “tamperproof” requirements are here interpreted as meaning
that there is no way within the ISA to modify the reference monitor’s reserved memory or the
reserved registers. That is, all memory accesses are checked against a capability register, and
do not succeed unless the capability permits them. The untrusted code can access memory
without returning control to the trusted code; however, all of its memory access are mediated
by the capability hardware, which is considered to be part of the reference monitor. Tampering
with the reference monitor by making physical modifications to the hardware is considered to
be out of scope; the attacker is assumed not to have physical access.

The proof of this security property proceeds by induction on states. Let the predicate Se-
cureState refer to the following set of conditions:

• CP0.Status.KSU 6= 0

• CP0.Status.CU0 = false

• CP0.Status.EXL = false
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• CP0.Status.ERL = false

• The TLB is initialized such that every entry has been initialized; every entry has a valid
page mask; and there is no (ASID, virtual address) pair that matches multiple entries.

• Let SU be a set of (virtual) memory addresses allocated for use by the untrusted code,
and TU a set of otype values allocated for use by the untrusted code.

• The set of virtual addresses SU does not contain an address that maps (under the TLB
state mentioned above) into any of the memory addresses reserved for use by the trusted
code’s code, stack or data segments.

• The set of virtual addresses SU does not contain an address that maps (under the TLB
state mentioned above) into the physical address used by a memory-mapped I/O device.
(If this property is weakened to allow some I/O devices to be memory-mapped by un-
trusted code, then the security proof has to show that the I/O device can’t be used to break
the security property, e.g. by causing the I/O device to DMA into a region of memory
outside of SU ).

• The set of virtual addresses SU are all mapped to cached memory. (A load-linked op-
eration on uncached memory is defined as unpredictable in the MIPS ISA. While this
probably can’t be used to attack a real system, any unpredictable behavior has to prevent
for provable security).

• All capability registers have base + length ≤ 264 or tag = false.

• The above is also true of all capabilities contained within the set of memory addresses
SU .

• All capability registers are either (a) reserved registers; (b) have tag = false; (c) are sealed
with an otype not in TU ; or do not grant Access_System_Registers permission.

• The above is also true of all capabilities contained within the set of memory addresses
SU .

• All capability registers are either (a) reserved registers; (b) have tag = false; (c) are sealed
with an otype not in TU ; or do not grant access to a region of virtual addresses outside of
SU .

• The above is also true of all capabilities contained within the set of memory addresses
SU .

• All capability registers are either (a) reserved registers; (b) have tag = false; (c) are sealed
with an otype not in TU ; or do not grant access to a region of the otype space outside of
TU .

• The above is also true of all capabilities contained within the set of memory addresses
SU .
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• If the current instruction is in a branch delay slot, then the above restrictions on capability
registers also apply to the PCC value that is the target of the branch. That is, SecureState
is not true if the trusted code does a CJR that grants privilege and then runs the first
instruction of the untrusted code in the branch delay slot.

Let the predicate TCBEntryState refer to a state in which the trusted code has been reentered
at one of a small number of known entry points.

We assume that SecureState is true initially (i.e., a requirement of the trusted code is that
it puts the CPU into this state before calling the untrusted code). We then wish to show that
SecureState⇒ X (SecureState or TCBEntryState) (where X is the next operator in linear tem-
poral logic). By induction on states, SecureState⇒ TCBEntryState R SecureState (where R is
the release operator in linear temporal logic).

The argument that SecureState ⇒ X (SecureState or TCBEntryState) can be summarized
as:

• Given that CP0.Status.KSU 6= 0, CP0.Status.CU0 = false, CP0.Status.EXL = false and
CP0.Status.ERL = false, all instructions will either raise an exception (X TCBEntryS-
tate) or leave CP0 registers unchanged, leaving this part of the SecureState invariant
unchanged.

• Given that CP0.Status.KSU 6= 0 (etc.), all instructions will either raise an exception or
leave the TLB unchanged, preserving the parts of SecureState relating to the TLB.

• Given that the TLB is in the state given by SecureState, load and store operations will not
result in “undefined” or “unpredictable” behavior due to multiple matches in the TLB.

• Given that CP0.Status.KSU 6= 0 (etc.), and the TLB is in the state described above, no
instruction can result in behavior that is “undefined” according to the MIPS ISA. (The
MIPS ISA specification makes a distinction between “undefined” and “unpredictable”,
but our model in the L3 language combines the two).

• However, instructions can still result in behavior that is “unpredictable” according to the
MIPS ISA. These cases can be dealt with by providing a CHERI-specific refinement of
the MIPS ISA (i.e. describing what CHERI does in these cases).

• The capability instructions preserve the part of SecureState that relates to the capability
registers and to capabilities within SU .

• Given that the capability registers (apart from reserved registers) do not grant access
to any memory addresses outside of SU , store instructions might raise an exception (X
TCBEntryState), but they will not modify locations outside of SU ; thus, the trusted code’s
data, code and stack segments will be unmodified.

• Given that the capability registers (apart from the reserved registers) do not grant Ac-
cess_System_Registers permission, the reserved registers will not be modified.
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The theorem SecureState ⇒ TCBEntryState R SecureState uses the R operator, which is
a weak form of “until”: the system might continue in SecureState indefinitely. Sometimes
it is desirable to have the stronger property that TCBEntryState is guaranteed to be reached
eventually. This can be ensured by having the trusted code enable timer interrupts, and use a
timer interrupt to force return to TCBEntryState if the untrusted code takes too long.

More formally, the following properties are added to SecureState to make a new predicate,
SecureStateTimer:

• CP0.Status.IE = true

• CP0.Status.IM(7) = true

Given that CP0.Status.KSU 6= 0 (etc.), it follows that these properties are also preserved,
i.e. SecureStateTimer⇒ TCBEntryState R SecureStateTimer.

As CP0.Count increases by at least one for every instruction, a timer interrupt will eventu-
ally be triggered. (If Compare is 2, for example, and Count increments from 1 to 3 without ever
going through the intervening value of 2, a timer interrupt is still triggered). As CP0.KSU 6= 0,
CP0.Status.EXL = false, CP0.Status.ERL = false, CP0.Status.IE = true and CP0.Status.IM(7)
= true, the interrupt will be enabled and return to TCBEntryState will occur:

SecureStateTimer⇒ F TCBEntryState
It then follows that SecureStateTimer ⇒ SecureStateTimer U TCBEntryState, where U is

the until operator in linear temporal logic.

Illicit Information Flows

Using an argument similar to the one in the preceding section, it ought to be possible to formally
prove confidentiality properties of the CHERI ISA. However, proofs of confidentiality suffer
from the “refinement paradox”: confidentiality properties are not preserved by refinement. If
there is any non-determinism in a specification, a refinement of it might leak secret information
via values that were originally left unspecified.

In more concrete terms, an implementation of the CHERI ISA might leak secret information
due to security problems at the microarchitectural level.

The Common Criteria [52] uses the term “covert channel” (alternatively, “illicit information
flow”) for cases where it is possible to use features of the implementation to signal information
in a way that is prohibited by the security policy.

The most obvious potential source of a covert channel in CHERI is using the memory
caches as a timing channel. Meltdown [71] and Spectre [61] are examples of realistic attacks
against a CPU’s memory protection using the cache as a timing channel. Subsequently, the
related Foreshadow attacks have been reported [120, 149].

To reduce the risk of an attack similar to Meltdown, implementations of CHERI should per-
form MMU and capability permissions checks before a store or load, rather than speculatively
executing the load and store before all capability checks have completed: tag violation, bounds
check, permissions check, seal check, and so on.
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9.6 CIFV
The initial effort begun under CTSRD on applying formal methods to the CHERI instruction-
set architecture has been superceded by the I2O-funded MTO CIFV project (CHERI ISA For-
mal Verification). CIFV is currently scheduled to end in early 2021, in order to track certain
CHERI variants being developed under the ECATS project (Extending the CHERI Architecture
for Trustworthiness in SSITH) – notably, CHERI-RISC-V. However, early results are expected
later in 2019, and during 2020.



Chapter 10

Research Approach

In this chapter, we describe the research approach and methodology, grounded initially in
hardware-software co-design and now in hardware-software-formal co-design, used to develop
the CHERI protection model and CHERI-MIPS ISA.

10.1 Motivation
The CHERI protection model provides a sound and formally based architectural foundation
for the principled development of highly trustworthy systems. The CHERI approach builds on
and extends decades of research into hardware and operating-system security.1 However, some
of the historic approaches that CHERI incorporates (especially capability architectures) have
not been adopted in commodity hardware designs. In light of these past transition failures, a
reasonable question is “Why now?” What has changed that could allow CHERI to succeed
where so many previous efforts have failed? Several factors have motivated our decision to
begin and carry out this project:

• Dramatic changes in threat models, resulting from ubiquitous connectivity and pervasive
uses of computer technology in many diverse and widely used applications such as wire-
less mobile devices, automobiles, and critical infrastructure. In addition, cloud comput-
ing and storage, robotics, software-defined networking. safety of autonomous systems,
and the Internet of Things have significantly widened the range of vulnerabilities that can
be exploited.

• An extended “arms race” of inevitable vulnerabilities and novel new attack mechanisms
has led to a cycle of “patch and pray”: systems will be found vulnerable, and have little
underlying robustness to attackers should even a single vulnerability be found. Defend-
ers must race to patch systems as vulnerabilities are announced – and vulnerabilities may
have long half-lives in the field, especially unpublicized ones. There is a strong need for

1Levy’s Capability-Based Computer Systems [68] provides a detailed history of segment- and capability-based
designs through the early 1990s [68]. However, it leaves off just as the transition to microkernel-based capability
systems such as Mach [3], L4 [69], and, later, seL4 [60], as well as capability-influenced virtual machines such as
the Java Virtual Machine [40], begins. Chapter 11 discuss historical influences on our work in greater detail.
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underlying architectures that offer stronger inherent immunity to attacks; when success-
ful attacks occur, robust architectures should yield fewer rights to attackers, minimize
gained attack surfaces, and increase the work factor for attackers.

• New opportunities for research into (and possible revisions of) hardware-software in-
terfaces, brought about by programmable hardware (especially FPGA soft cores) and
complete open-source software stacks such as FreeBSD [77] and LLVM [66].

• An increasing trend towards exposing inherent hardware parallelism through virtual ma-
chines and explicit software multi-programming, and an increasing awareness of infor-
mation flow for reasons of power and performance that may align well with the require-
ments of security.

• Emerging advances in programming languages, such as the ability to map language struc-
tures into protection parameters to more easily express and implement various policies.

• Reaching the tail end of a “compatibility at all costs” trend in CPU design, due to prox-
imity to physical limits on clock rates and trends towards heterogeneous and distributed
computing. While “Wintel” remains entrenched on desktops, mobile systems – such as
phones and tablet PCs, as well as appliances and embedded devices – are much more
diverse, running on a wide variety of instruction set architectures (especially ARM and
MIPS).

• Similarly, new diversity in operating systems has arisen, in which commercial prod-
ucts such as Apple’s iOS and Google’s Android extend open-source systems such as
FreeBSD, Mach [3], and Linux. These new platforms abandon many traditional con-
straints, requiring that rewritten applications conform to new security models, program-
ming languages, hardware architectures, and user-input modalities.

• Development of hybrid capability-system models (notably Capsicum [131]) that inte-
grate capability-system design tenets into current operating-system and language designs.
With CHERI, we are transposing this design philosophy into the instruction-set architec-
ture. Hybrid design is a key differentiator from prior capability-system processor designs
that have typically required ground-up software-architecture redesign and reimplementa-
tion.

• Significant changes in the combination of hardware, software, and formal methods to
enhance assurance (such as those noted above) now make possible the development of
trustworthy system architectures that previously were simply too far ahead of their times.

10.1.1 C-Language Trusted Computing Bases (TCBs)

Contemporary client-server and cloud computing are based on highly distributed applications,
with end-user components executing in rich execution substrates such as POSIX applications
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on UNIX, or AJAX in web browsers. However, even thin clients are not thin in most practi-
cal senses: as with client-server computer systems, they are built from commodity operating-
system kernels, hundreds of user-space libraries, window servers, language runtime environ-
ments, and web browsers, which themselves include scripting language interpreters, virtual ma-
chines, and rendering engines. Both server and embedded systems likewise depend on complex
(and quite similar) software stacks. All require confluence of competing interests, representing
multiple sites, tasks, and end users in unified computing environments.

Whereas higher-layer applications are able to run on top of type-safe or constrained exe-
cution environments, such as JavaScript interpreters, lower layers of the system must provide
the link to actual execution on hardware. As a result, almost all such systems are written in the
C programming language; collectively, this Trusted Computing Base (TCB) consists of many
tens of millions of lines of trusted (but not trustworthy) C and C++ code. Coarse hardware, OS,
and language security models mean that much of this code is security-sensitive: a single flaw,
such as an errant NULL pointer dereference in the kernel, can expose all rights held by users
of a system to an attacker or to malware.

The consequences of compromise are serious, and include loss of data, release of personal
or confidential information, damage to system and data integrity, and even total subversion of a
user’s online presence and experience by the attacker (or even accidentally without any attacker
presence!). These problems are compounded by the observation that the end-user systems are
also an epicenter for multi-party security composition, where a single web browser or office
suite (which manages state, user interface, and code execution for countless different security
domains) must simultaneously provide strong isolation and appropriate sharing. The results
present not only significant risks of compromise that lead to financial loss or disruption of
critical infrastructure, but also frequent occurrences of such events.

Software vulnerabilities appear inevitable; indeed, an arms race has arisen in new (often
probabilistic) software-based mitigation techniques and exploit techniques that bypass them.
Even if low-level escalation techniques (such as arbitrary code injection and code reuse at-
tacks) could be prevented, logical errors and supply-chain attacks will necessarily persist. Past
research has shown that compartmentalizing applications into components executed in isolated
sandboxes can mitigate exploited vulnerabilities (sometimes referred to as privilege separation).
Only the rights held by a compromised component are accessible to a successful attacker. This
technique is effectively applied in Google’s Chromium web browser, placing HTML rendering
and JavaScript interpretation into sandboxes isolated from the global file system. Compart-
mentalization exploits the principle of least privilege: if each software element executes with
only the rights required to perform its task, then attackers lose access to most all-or-nothing
toeholds; vulnerabilities may be significantly or entirely mitigated, and attackers must identify
many more vulnerabilities to accomplish their goals.

10.1.2 The Software Compartmentalization Problem

The compartmentalization problem arises from attempts to decompose security-critical soft-
ware into components running in different security domains: the practical application of the
principle of least privilege to software. Historically, compartmentalization of TCB components
such as operating system kernels and central system services has caused significant difficulty



306 CHAPTER 10. RESEARCH APPROACH

for software developers – which limits its applicability for large-scale, real-world applications,
and leads to the abandonment of promising research such as 1990s microkernel projects. A
recent resurgence of compartmentalization, applied in userspace to system software and appli-
cations such as OpenSSH [101] and Chromium [103], and more recently in our own Capsicum
project [131], has been motivated by a critical security need; however it has seen success only
at very coarse separation granularity due to the challenges involved. A more detailed history of
work in this area can be found in Chapter 11.

On current conventional hardware, native applications must be converted to employ mes-
sage passing between address spaces (or processes) rather than using a unified address space
for communication, sacrificing programmability and performance by transforming a local pro-
gramming problem into a distributed systems problem. As a result, large-scale compartmen-
talized programs are difficult to design, write, debug, maintain, and extend; this raises serious
questions about correctness, performance, and most critically, security.

These problems occur because current hardware provides strong separation only at coarse
granularity via rings and virtual address spaces, making the isolation of complete applications
(or even multiple operating systems) a simple task, but complicates efficient and easily ex-
pressed separation between tightly coupled software components. Three closely related prob-
lems arise:

Performance is sacrificed. Creating and switching between process-based security domains
is expensive due to reliance on software and hardware address-space infrastructure – such as
a quickly overflowed Translation Look-aside Buffer (TLB) and large page-table sizes that can
lead to massive performance degradation. Also, above an extremely low threshold, perfor-
mance overhead from context switching between security domains tends to go from simply
expensive to intolerable: each TLB entry is an access-control list, with each object (page) re-
quiring multiple TLB entries, one for each authorized security domain.

High-end server CPUs typically have TLB entries in the low hundreds, and even recent net-
work embedded devices reach the low thousands; the TLB footprint of fine-grained, compart-
mentalized software increases with the product of in-flight security domains and objects due to
TLB aliasing, which may easily require tens or hundreds of thousands of spheres of protection.
The transition to CPU multi-threading has not only failed to relieve this burden, but actively
made it worse: TLBs are implemented using ternary content-addressable memory (TCAMs) or
other expensive hardware lookup functions, and are often shared between hardware threads in
a single core due to their expense.

Similar scalability critiques apply to page tables, the tree-oriented in-memory lookup tables
used to fill TLB entries. As physical memory sizes increase, and reliance on independent virtual
address spaces for separation grows, these tables also grow – competing for cache and memory
space.

In comparison, physically indexed general-purpose CPU caches are several orders of mag-
nitude larger than TLBs, scaling instead with the working set of code paths explored or the
memory footprint of data actively being used. If the same data is accessed by multiple security
domains, it shares data or code cache (but not TLB entries) with current CPU designs.
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Programmability is sacrificed. Within a single address space, programmers can easily and
efficiently share memory between program elements using pointers from a common names-
pace. The move to multiple processes frequently requires the adoption of a distributed pro-
gramming model based on explicit message passing, making development, debugging, and
testing more difficult. RPC systems and higher-level languages are able to mask some (al-
though usually not all) of these limitations, but are poorly suited for use in TCBs – RPC sys-
tems and programming language runtimes are non-trivial, security-critical, and implemented
using weaker lower-level facilities.2

Security is sacrificed. Current hardware is intended to provide robust shared memory com-
munication only between mutually trusting parties, or at significant additional expense; gran-
ularity of delegation is limited and its primitives expensive, leading to programmer error and
extremely limited use of granular separation. Poor programmability contributes directly to poor
security properties.

10.2 Methodology
Despite half a century of research into computer systems and software design, it is clear that
security remains a challenging problem – and an increasingly critical problem as computer-
based technologies find ever expanding deployment in all aspects of contemporary life, from
mobile communications devices to self-driving cars and medical equipment. There are many
contributing factors to this problem, including the asymmetric advantage held by attackers over
defenders (which cause minor engineering mistakes to lead to undue vulnerability), the diffi-
culties in assessing – and comparing – the security of systems, and market pressures to deliver
products sooner rather than in a well-engineered state. Perhaps most influential is the pressure
for backward compatibility, required to allow current software stacks to run undisturbed on new
generations of systems, as well as to move seamlessly across devices (and vendors), locking in
least-common-denominator design choices, and preventing the deployment of more disruptive
improvements that serve security.

Both the current state, and worse, the current direction, support a view that today’s com-
puter architectures (which underlie phenomenal growth of computer-based systems) are fun-
damentally “unfit for purpose”: Rather than providing a firm foundation on which higher-level
technologies can rest, they undermine attempts to build secure systems that depend on them.
To address this problem, we require designs that mitigate, rather than emphasize, inevitable
bugs, and offer strong and well-understood protections on which larger-scale systems can be
built. Such technologies can be successful only if transparently adoptable by end users – and,
ideally, also many software developers. On the other hand, the resulting improvement must be
dramatic to justify adopting substantive architectural change, and while catering to short-term

2Through extreme discipline, a programming model can be constructed that maintains synchronized mappings
of multiple address spaces, while granting different rights on memory between different processes. This leads
to even greater TLB pressure and expensive context switch operations, as the layouts of address spaces must be
managed using cross-address-space communication. Bittau has implemented this model via sthreads, an OS prim-
itive that tightly couples UNIX processes via shared memory associated with data types – a promising separation
approach constrained by the realities of current CPU design [13].
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problems, must also offer a longer-term architectural vision able to support further benefit as
greater investment is made.

10.2.1 Technical Objectives and Implementation
From a purely technical perspective, the aim of the CHERI project is to introduce architectural
support for the principle of least privilege in order to encourage its direct utilization at all lev-
els of the software stack. Current computer architectures make this extremely difficult as they
impose substantial performance, robustness, compatibility, and complexity penalties in doing
so – strongly disincentivizing adoption of such approaches in off-the-shelf system designs de-
spite the potential to mitigate broad classes of known (and also as-yet unknown) vulnerability
classes.

Low-level Trusted Computing Bases (TCBs) are typically written in memory-unsafe lan-
guages such as C and C++, which do not offer compatible or performant protection against
pointer corruption, buffer overflows, or other vulnerabilities arising from that lack of safety not
offered directly by the architecture. Similarly, software compartmentalization, which mitigates
both low-level vulnerabilities grounded in program representation and high-level application
vulnerabilities grounded in logical bugs, is poorly supported by current MMUs, leading to
substantial (crippling) loss of programmability and performance as the technique is deployed.

CHERI also seeks to minimize disruption of current designs, in order to support incre-
mental adoption with significant transparency: Ideally, CHERI could be “slid under” current
software stacks (such as Apple’s iOS ecosystem, or Google’s Android ecosystem), allowing
non-disruptive introduction, yet providing an immediate reward for adoption. This requires
supporting current low-level languages such as C and C++ more safely, but also cleanly supple-
menting MMU-based programming models required to support current operating systems and
virtualization techniques. These goals have directed many key design choices in the CHERI-
MIPS ISA.

10.2.2 Hardware-Software-Formal Co-Design Methodology
Changes to the hardware-software interface are necessarily disruptive. The ISA is a “narrow
waist” abstraction that allows hardware designers to pursue sophisticated optimization strate-
gies (e.g., to exploit parallelism), while software developers can simultaneously depend on a
(largely unchanging) interface to build successively larger and more complex artifacts. Stable
ISAs have allowed the development of operating systems and application suites that can op-
erate successfully on a range of systems, and that outlast the specific platforms on which they
were developed.

This structure is inherently predisposed to non-disruption, as platforms that incur lower
adoption costs will be preferred to those that have higher costs. However, substantive changes
in underlying program representation, such as to support greater memory safety or fine-grained
compartmentalization required to dramatically improve security, require changes to the ISA.
We therefore aimed to:

• Iteratively explore disruptions to the ISA, projecting changes both up into the software
stack including operating systems, compilers, and applications (to assess impact on com-
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patibility and security), as well as down into microarchitecture (assessing impact on per-
formance and viability).

• Start with a conventional and well-established 64-bit RISC ISA, rather than re-invent the
wheel for general-purpose computation, to benefit from existing mature software stacks
that could then be used for validation.

• Employ realistic open-source software artifacts, including the FreeBSD operating sys-
tem, Clang/LLVM compiler suite, and an open-source application corpus, to ensure that
experiments were run with suitable scale, complexity, performance footprint, and id-
iomatic use.

• Employ realistic hardware artifacts, developing multiple FPGA soft-core based processor
prototypes able to validate key questions about integration with components such as the
pipeline and memory hierarchy, as well as support performance validation for the full
stack including software.

• Employ formal models of the ISA, to provide an executable gold model for testing, from
which tests can be automatically generated, and against which theorem proving can be
deployed to ensure that key properties relied on for software security actually hold.

• Pursue the hypothesis that historic capability-system models, designed to support im-
plementation of the principle of least privilege, can be hybridized with current software
approaches to support compatible and efficient fine-grained memory protection and com-
partmentalization.

• Take an initially purist capability-system view, incrementally adapting that model to-
wards one able to efficiently yet safely support the majority of current software use. This
approach allowed us to retain well-understood monotonicity and encapsulation proper-
ties, as well as pursue capturing notions of explicit valid provenance enforcement and
intentional use not well characterized in prior capability-system work. Appropriately but
uncompromisingly represented, these properties have proven to align remarkably well
with current OS and language designs.

• Aim specifically to cleanly compose with conventional MMUs and MMU-based software
designs by providing an in-address-space protection model, as well as be able to represent
C-language pointers as capabilities.

• Support incremental adoption, allowing significant benefit to be gained through mod-
est efforts (such as re-compiling) for selected software, while not disrupting binary-
compatible execution of legacy applications. Likewise, support incremental deployment
of more disruptive compartmentalization into key software through greater (but selective)
investment.

• Provide primitives that offer immediate short-term benefit (e.g., invulnerability to com-
mon pointer-based exploit techniques, scalable sandboxing of libraries in key software
packages), while also offering a longer-term vision for future software structure grounded
in strong memory safety and fine-grained compartmentalization.
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10.3 Research and Development

Table 10.1: CHERI ISA revisions and major development phases
Year(s) Version Description

2010- ISAv1 RISC capability-system model w/64-bit MIPS
2012 Capability registers and tagged memory

Guarded manipulation of registers
2012 ISAv2 Extended tagging to capability registers

Capability-aware exception handling
MMU-based OS with CHERI support

2014 ISAv3 [138] Fat pointers + capabilities, compiler
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4 [141] MMU-CHERI integration (TLB permissions)
ISA support for compressed capabilities
Hardware-accelerated domain switching
Multicore instructions: LL/SC variants

2016 ISAv5 [142] CHERI-128 compressed capability model
Improved generated code efficiency
Initial in-kernel privilege limitations

2017 ISAv6 [140] Mature kernel privilege limitations
Further generated code efficiency
CHERI-x86 and CHERI-RISC-V sketches
Jump-based protection-domain transition

2019 ISAv7 [139] Architecture-neutral protection model
A more complete CHERI-RISC-V elaboration
Compartment IDs for side-channel resistance
64-bit capabilities for 32-bit architectures
Architectural temporal memory safety
CHERI Concentrate compressed capabilities

Between 2010 and 2019, six major versions of the CHERI-MIPS ISA developed a ma-
ture hybridization of conventional RISC architecture with a strong (but software-compatible)
capability-system model. Key research and development milestones can be found in Fig-
ure 10.1 including major publications. The major ISA versions, with their development fo-
cuses, are described in Table 10.3. This work occurred in several major overlapping phases as
aspects of the approach were proposed, refined, and stabilized through a blend of ISA design,
integrated hardware and software prototyping, and validation of the combined stack.

2010–2015: Composing the MMU with a capability-system model
A key early design choice was that the capability-system model would be largely orthogonal
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to the current MMU-based virtual-memory model, yet also compose with it cleanly [153].
We chose to place the capability-system model “before” the MMU, causing capabilities to be
interpreted with respect to the virtual, rather than physical, address space. This reflected the
goal of providing fine-grained memory protection and compartmentalization within address
spaces – i.e., with respect to the application-programmer model of memory.

Capabilities therefore protect and implement virtual addresses dereferenced in much the
same way that integer pointers are interpreted in conventional architectures. Exceptions allow
controlled escape from the capability model by providing access to privileged capability regis-
ters, and execution in privileged rings grants the ability to manipulate the virtual address space,
controlling the interpretation of virtual addresses embedded in capabilities.

This approach tightly integrates the capability-system model with the pipeline and regis-
ter file, requiring that capabilities be first-class primitives managed by the compiler, held in
registers, and so on. In order to protect capabilities in the virtual address space, we chose
to physically tag them, distinguishing strongly protected pointers from ordinary data, in turn
extending the implementation of physical memory, but also making that protection entirely
independent from (and non-bypassable by) the MMU mechanism.

2012–2014: Composing C pointers with the capability-system mode
Another key early design choice was the goal of using capabilities to implement C-language
pointers – initially discretionarily (i.e., as annotated in the language), and later ubiquitously
(i.e., for all virtual addresses in a more-secure program). This required an inevitable negotia-
tion between C-language semantics and the capability-system model, in order to ensure strong
compatibility with current software [21, 79].

For example, C embeds a strong notion that pointers point within buffers. This requires
that CHERI capabilities distinguish the notion of current virtual address from the bounds of the
containing buffer – while also still providing strong integrity protection to the virtual address.
This led us to compose fat-pointer [53, 87, 90] and capability semantics as the capability-system
model evolved.

Similarly, we wished to allow all pointers to be represented as capabilities – including
those embedded within other data structures – leading naturally to a choice to mandatorily tag
pointers in memory. A less obvious implication of this approach is that operations such as
memory copying must be capability-oblivious, maintaining the tag across pointer-propagating
memory operations, requiring that data and capabilities not only be intermingled in memory,
but also in register representation. Capability registers are therefore also tagged, allowing them
to hold data or capabilities, preserving provenance transparently.

As part of this work, we also assisted with the development of new formal semantics for
the C programming language, ensuring that we met the practical requirements of C programs,
but also assisting in formalizing the protection properties we offer (e.g., strong protection of
provenance validity grounded in an implied pointer provenance model in C).

CHERI should be viewed as providing primitives to support strong C-language pointer
protection, rather than as directly implementing that protection: it is the responsibility of the
compiler (and also operating system and runtime) to employ capabilities to enforce protections
where desired – whether by specific memory type, based on language annotations, or more
universally. The compiler can also perform analyses to trade off source-code and binary com-
patibility, enforcing protection opportunistically in responding to various potential policies on
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tolerance to disruption.

2014–2015: Fine-grained compartmentalization
A key goal of our approach was to differentiate virtualization (requiring table-based lookups,
and already implemented by the MMU) from protection (now implemented as a constant-time
extension to the pointer primitive), which would avoid table-oriented overheads being imposed
on protection. This applies to C-language protection, but also to the implementation of higher-
level security constructs such as compartmentalization [146, 143].

Compartmentalization depends on two underlying elements: strong isolation and controlled
communication bridging that isolation. Underlying monotonicity in capabilities – i.e., that a
delegated reference to a set of rights cannot be broadened to include additional rights – directly
supports the construction of confined components within address spaces. Using this approach,
we can place code in execution with only limited access to virtual memory, constructing “sand-
boxes” (and other more complex structures) within conventional processes. The CHERI ex-
ception model permits transition to a more privileged component – e.g., the operating-system
kernel or language runtime – allowing the second foundation, controlled communication, to be
implemented.

Compartmentalization is facilitated by further extensions to the capability model, includ-
ing a notion of “sealed” (or encapsulated capabilities). In CHERI, this is implemented as a
software-defined capability: one that has no hardware interpretation (i.e., cannot be derefer-
enced), and also strong encapsulation (i.e., whose fields are immutable). Other aspects of the
model include a type mechanism allowing sealed code and data capabilities to be inextricably
linked; pairs of sealed code capabilities and data capabilities can then be used to efficiently
describe protection domains via an object-capability model. We provide some hardware assis-
tance for protection-domain switching, providing straightforward parallel implementation of
key checks, but leave the implementation of higher-level aspects of switching to the software
implementation.

Here, as with C-language integration, it is critical that CHERI provide a general-purpose
mechanism rather than enforce a specific policy: the sealed capability primitive can be used
in a broad variety of ways to implement various compartmentalization models with a range
of implied communication and event models for software. We have experimented with sev-
eral such models, including a protection-domain crossing primitive modeled on a simple (but
now strongly protected) function call, and also on asynchronous message passing. Our key
performance goal was fixed (low) overhead similar to a function call, avoiding overheads that
scale with quantity of memory shared (e.g., as is the case with table-oriented memory sharing
configured using the MMU).

2015–2017: Architectural and microarchitectural efficiency
Side-by-side with development of a mature capability-based architectural model, we also ex-
plored the implications on performance. This led to iterative refinement of the ISA to improve
generated code, but also substantive efforts to ensure that there was an efficient in-memory rep-
resentation of capabilities, as well as microarchitectural implementations of key instructions.

A key goal was to maintain the principle of a load-store architecture by avoiding combining
computations with memory accesses – already embodied by both historic and contemporary
RISC architectures. While pointers are no longer conflated with integer values, a natural com-
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position of the capability model and ISA maintains that structural goal without difficulty.
One important effort lay in the reduction from a 256-bit capability (capturing the require-

ments of software for 64-bit pointer, 64-bit upper bound, and 64-bit lower bound, as well as
additional metadata such as permissions) to a 128-bit compressed representation. We took
substantial inspiration from published work in pointer compression [62], but found that our
C-language compatibility requirements imposed a quite different underlying model and repre-
sentation. For example, it is strictly necessary to support the common C-language idiom of
permitting out-of-bounds pointers (but not dereference), which had been precluded by many
proposed schemes [21, 79, 28]. Similarly, the need to support sealed capabilities led to ef-
forts to characterize the tradeoff between the type space (the number of unique classes that can
be in execution in a CHERI address space) and bounds precision (the alignment requirements
imposed on sealed references).

Another significant effort lay in providing in-memory tags, which are not directly supported
by current DRAM layouts [54, 55]. In our initial implementation, we relied on a flat tag table
(supported by a dedicated tag cache). This imposed a uniform (and quite high) overhead in
additional DRAM accesses across all memory of roughly 10%. We have developed new mi-
croarchitectural techniques to improve emulated tag performance, based on a hierarchical table
exploiting sparse use of pointers in memory, to reduce this overhead to < 2% even with very
high pointer density (e.g., in language runtimes).

2016–2017: Kernel Compartmentalization
Our initial design focus was on supporting fine-grained memory protection within the user
virtual address space, and implicitly, also compartmentalization. Beyond an initial microkernel
brought up to validate early capability model variants, kernel prototypes through much of our
project have eschewed use of capability-aware code in the kernel due to limitations of the
compiler, but also because of a focus on large userspace TCBs such as compression libraries,
language runtimes, web browsers, and so on, which are key attack surfaces.

We have more recently returned to in-kernel memory protection and compartmentalization,
where the CHERI model in general carries through without change – code executing in the
kernel is not fundamentally different from code executing in userspace. The key exception is
a set of management instructions available to the kernel, able to manipulate the MMU (and
hence the interpretation of capabilities), as well as control features such as interrupt delivery
and exception handling. We are now extending CHERI to allow the capability mechanism to
control access to these features so that code can be compartmentalized within the kernel. We are
also pursuing changes to the exception-based domain-transition mechanism used in earlier ISA
revisions that shift towards a jump-based model, which will avoid exception-related overheads
in the microarchitecture.

10.3.1 CHERI ISAv7: Beyond MIPS, Temporal Safety, and Efficiency
As we wrap up work on CHERI ISAv7, we are looking beyond the 64-bit MIPS ISA on which
we based our hardware-software co-design effort towards further ISAs. These range from the
still-developing open-source RISC-V ISA (which strongly resembles the MIPS ISA and hence
to which most CHERI ideas will apply with minor translation) to the widely used Intel x86-
64 instruction set (which is quite far from the RISC foundations in which we have developed
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CHERI). This exploration has allowed us to derive a more general CHERI protection model
from our work, rather than seeing CHERI as simply an extension to MIPS. We have focused
on developing portable software-facing primitives and abstractions potentially supported by a
variety of architectural expressions. We take some inspiration from the diverse range of MMU
semantics and interfaces providing a common virtual-memory abstraction, and process model,
across a broad range of architectures.

We have also turned our attention to temporal memory safety. CHERI’s tagging features
have supported deterministic sweeping revocation and garbage collection from early versions of
the ISA. However, these require substantial dynamic memory overhead. In CHERI ISAv7, we
have introduced instructions to allow more efficient scanning for tagged values in memory using
non-temporal tag-loading instructions, as well as subset-testing instructions. These accompany
a research effort to explore efficient system-software implementation of capability tracking
(e.g., through capability-dirty bits in the page table), further reducing revocation costs. We
have included these new instructions as experimental features in this ISA version.

CHERI ISAv7 includes a number of both production and experimental features to improve
code density, including immediate-extended versions of instructions that are frequently used
with compile-time constants, such as bounds-setting for stack allocations and pointer arith-
metic. These have resulted in substantial improvements for a variety of workloads including
language runtimes. CHERI Concentrate, our revised capability compression format, makes
substantially better use of the available space within capabilities, offering greater precision for
a lower bit investment.

New versions of the ISA specification also explore in much greater detail how architecture
protection can be exploited by operating systems and compilers to reinforce program structure
and mitigate vulnerabilities.

10.4 A Hybrid Capability-System Architecture

Unlike past research into capability systems, CHERI allows traditional address-space separa-
tion, implemented using a memory management unit (MMU), to coexist with granular decom-
position of software within each address space. Similarly, we have aimed to model CHERI
capability behavior not only on strong capability semantics (e.g., monotonicity), but also to
be compatible with C-language pointer semantics. As a result, fine-grained memory protec-
tion and compartmentalization can be applied selectively throughout existing software stacks
to provide an incremental software migration path. We envision early deployment of CHERI
extensions in selected components of the TCB’s software stack: separation kernels, operat-
ing system kernels, programming language runtimes, sensitive libraries such as those involved
in data compression or encryption, and network applications such as web browsers and web
servers.

CHERI addresses current limitations on memory protection and compartmentalization by
extending virtual memory-based separation with hardware-enforced, fine-grained protection
within address spaces. Granular memory protection mitigates a broad range of previously
exploitable bugs by coercing common memory-related failures into exceptions that can be han-
dled by the application or operating system, rather than yielding control to the attacker. The
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CHERI approach also restores a single address-space programming model for compartmental-
ized (sandboxed) software, facilitating efficient, programmable, and robust separation through
the capability model.

We have selected this specific composition of traditional virtual memory with an in-address-
space security model to facilitate technology transition: in CHERI, existing C-based software
can continue to run within processes, and even integrate with capability-enhanced software
within a single process, to provide improved robustness for selected software components –
and perhaps over time, all software components. For example, a sensitive library (perhaps used
for image processing) might employ capability features while executing as part of a CHERI-
unaware web browser. Likewise, a CHERI-enabled application can sandbox and instantiate
multiple copies of unmodified libraries, to efficiently and easily gate access to the rest of appli-
cation memory of the host execution environment.

10.5 A Long-Term Capability-System Vision
While we have modeled CHERI as a hybrid capability-system architecture, and in particular
described a well-defined and practical composition with MMU-based designs, CHERI can also
support more “pure” capability-oriented hardware and software designs. At one extreme in this
spectrum, we have begun early experimentation with an MMU-free processor design offering
solely CHERI-based protection for software use. We are able to layer a CHERI-specific mi-
crokernel over this design, which executes all programs within a single address-space object-
capability model. This approach might be appropriate to microcontroller-scale systems, to
avoid the cost of an MMU, and in which conventional operating systems might be inappropri-
ate. The approach might also be appropriate to very large-scale systems, in which an MMU
is unable to provide granular protection and isolation due to TLB pressure requiring a shift to
very large page sizes.

However, in retaining our primary focus on a hybridization between MMU- and capability-
based approaches, software designs can live at a variety of points in a spectrum between pure
MMU-based and solely CHERI-based models. A CHERI-based microkernel might be used,
for example, within a conventional operating-system kernel to compartmentalize the kernel –
while retaining an MMU-based process model. A CHERI-based microkernel might similarly
be used within an MMU-based process to compartmentalize a large application. Finally, the
CHERI-based microkernel might be used to host solely CHERI-based software, much as in an
MMU-less processor design, leaving the MMU dormant, or restricted to specific uses such as
full-system virtualization – a task for which the MMU is particularly well suited.

10.6 Threat Model
CHERI protections constrain code “in execution” and allow fine-grained management of priv-
ilege within a framework for controlled separation and communication. Code in execution can
represent the focus of many potentially malicious parties: subversion of legitimate code in vio-
lation of security policies, injection of malicious code via back doors, Trojan horses, and mal-
ware, and also denial-of-service attacks. CHERI’s fine-grained memory protection mitigates
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many common attack techniques by implementing bounds and permission checks, reducing
opportunities for the conflation of code and data, corruption of control flow, and also catches
many common exploitable programmer bugs; compartmentalization constrains successful at-
tacks via pervasive observance of the principle of least privilege.

Physical attacks on CHERI-based systems are explicitly excluded from our threat model, al-
though CHERI CPUs might easily be used in the context of tamper-evident or tamper-resistant
systems. Similarly, no special steps have been taken in our design to counter undesired leakage
of electromagnetic emanations and certain other side channels such as acoustic inferences: we
take for granted the presence of an electronic foundation on which CHERI can run. CHERI
will provide a supportive framework for a broad variety of security-sensitive activities; while
not itself a distributed system, CHERI could form a sound foundation for various forms of
distributed trustworthiness.

CHERI is an ISA-level protection model that does not address increasingly important CPU-
or bus-level covert and side-channel attacks, relying on the micro-architecture to limit implicit
data flows. In some sense, CHERI in fact increases exposure: the greater the offers of protection
within a system, the greater the potential impact of unauthorized communication channels.
As such, we hope side-channel attacks are a topic that we will be able to explore in future
work. Overall, we believe that our threat model is realistic and will lead to systems that can
be substantially more trustworthy than today’s commodity systems – while recognizing that
ISA-level protections must be used in concert with other protections suitable to different threat
models.

10.7 Formal Methodology
Throughout this project, we apply formal semantics and reasoning techniques to help avoid
system vulnerabilities. We are (judiciously) applying formal methodology in five areas:

1. Early in the project, we developed a formal semantics for the CHERI-MIPS ISA de-
scribed in SRI’s Prototype Verification System (PVS) – an automated theorem-proving
and model-checking toolchain – which can be used to verify the expressibility of the ISA,
but also to prove properties of critical code. For example, we are interested in proving
the correctness of software-based address-space management and domain transitions. We
are likewise able to automatically generate ISA-level test suites from formal descriptions
of instructions, which are applied directly to our hardware implementation.

2. We developed extensions to the BSV compiler to export an HDL description to SRI’s
PVS and SAL model checker. We also developed a new tool (Smten) for efficient SMT
(Satisfiability Modulo Theories) modeling of designs (using SRI’s Yices), and another
tool for automated extraction of key properties from larger designs in the BSV language,
both of which greatly simplify formal analysis.

3. We then developed more complete CHERI-MIPS ISA models, incorporating both MIPS
and CHERI instructions, first using the L3 and then the Sail instruction-set description
languages (both of which support automatic generation of executable emulators from
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formal definitions). We have used these as the “golden model” of instruction behavior,
against which our test suite is validated, software implementations can be tested in order
to generate traces of correct processor execution, and so on. We have used the L3 and Sail
models to identify a number of bugs in multiple hardware implementations of CHERI-
MIPS, as well as to discover software dependences on undefined instruction-set behavior.

4. We have used these L3 and Sail models also as a basis for mechanised proof of key archi-
tectural security properties. L3 and Sail support automatic generation of versions of the
models in the definition languages of (variously) the HOL4, Isabelle, and Coq theorem
provers. Key architectural verification goals including proving not just low-level proper-
ties, such as the monotonicity of each individual instruction and properties of the CHERI
capability compression schemes, but also higher-level goals such as compartment mono-
tonicity, in which arbitrary code sequences isolated within a compartment are unable to
construct additional rights beyond those reachable either directly via the register file or
indirectly via loadable capabilities. We have proven a number of such properties about
the CHERI-MIPS ISA, to be documented in future papers and reports.

5. From Sail, we also automatically generate SMT problems, which we have used to check
properties of our capability compression schemes.

6. We have explored how CHERI impacts a formal specification of C-language semantics,
improving a number of aspects of our C-language compatibility (e.g., as relates to con-
formant handling of the intptr_t type).

10.8 Protection Model and Architecture
As our work on CHERI has proceeded, we have transitioned from a view in which CHERI is an
ISA extension to 64-bit MIPS to one in which CHERI is a general protection model that can be
expressed through a variety of approaches and mappings into multiple underlying ISAs. This
report describes a software-facing protection model (Chapter 2) focused on operating systems
and compilers, specific mapping into the 64-bit MIPS ISA for the purposes of experimenta-
tion and evaluation (Chapters 3, 4 and 7), and architectural sketches for potential integration
into other ISAs (Chapters 5 and 6). However, we have taken a “ground-up” approach utiliz-
ing hardware-software co-design to ensure that at least one complete concrete mapping exists
that satisfies the practical engineering requirements of architecture, microarchitecture, com-
piler, operating system, and applications, and hence define a specific CHERI-MIPS ISA that
embodies those goals.

Our selection of RISC as a foundation for the CHERI capability extensions is motivated by
two factors. First, simple instruction set architectures are easier to reason about, extend, and
implement. Second, RISC architectures (such as ARM and MIPS) are widely used in network
embedded and mobile device systems such as firewalls, routers, smart phones, and tablets –
markets with the perceived flexibility to adopt new CPU facilities, and also an immediate and
pressing need for improved security. CHERI’s new security primitives would also be useful in
workstation and server environments, which face similar security challenges.
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In its current incarnation, we have prototyped CHERI as an extension to the 64-bit MIPS
ISA. However, our approach – and more generally the CHERI protection model – is intended
to easily support other similar ISAs, such as 64-bit ARM and 64-bit RISC-V. The design prin-
ciples would also apply to other non-RISC ISAs, such as 32-bit and 64-bit Intel and AMD, but
require significantly more adaptation work, as well as careful consideration of the implications
of the diverse set of CPU features found in more CISC-like architectures.

It is not impossible to imagine pure-software implementations of the CHERI protection
model – not least, because we use these daily in our work through both cycle-accurate pro-
cessor simulations, and a higher-performance but less microarchitecturally realistic Qemu im-
plementation. Further, compiler-oriented approaches employing a blend of static checking
and dynamic enforcement could also approximate or implement CHERI protection seman-
tics (e.g., along the lines of software fault isolation techniques [121] or Google Native Client
(NaCl) [158]). We do, however, hypothesize that these implementations would be difficult
to accomplish without hardware assistance: for example, continuous checking of program-
counter and default data capability bounds, as well as atomic clearing of tags for in-memory
pointers during arbitrary memory writes might come at substantial expense in software, yet
being “free” in supporting hardware.

10.9 Hardware and Software Prototypes

As a central part of this research, we have developed reference prototypes of the CHERI ISA via
several CHERI processor designs. These prototypes allow us to explore, validate, evaluate, and
demonstrate the CHERI approach through realistic hardware properties and real-world software
stacks. A detailed description of the current prototypes, both from architectural and practical
use perspectives, may be found in our companion papers and technical reports, described in
Section 1.8.

Our first prototype (CHERI1) is based on Cambridge’s MAMBA research processor, and is
a single-threaded, multi-core implementation intended to allow us to explore ISA design trade-
offs with moderate microarchitectural realism. This prototype is implemented in the BSV HDL,
a high-level functional programming language for hardware design. CHERI1 is a pipelined
baseline processor implementing the 64-bit MIPS ISA, and incorporates an initial prototype of
the CHERI-MIPS capability coprocessor that includes capability registers and a basic capabil-
ity instruction set.

Exploring, and iterating over, a substantial instruction-set design space has been consider-
ably eased by our use of the Bluespec SystemVerilog [14] (BSV) Hardware Description Lan-
guage (the BSV HDL) in prototyping. BSV has allowed rapid redesigns as our understanding
of architectural, microarchitectural, and software requirements evolved – resulting from its use
of modular abstractions, encapsulation, and hierarchicalization.

Using the BSV hardware specification language and its Bluespec SystemVerilog, we are
able to run the CPU in simulation, and synthesize the CHERI design to execute in field-
programmable gate arrays (FPGAs). In our development work, we are targeting an Altera
FPGAs on Terasic development boards. However, in our companion MRC2 project we have
also targeted CHERI at the second-generation NetFPGA 10G and SUME research and teaching
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boards, which we hope to use in ongoing research into datacenter network fabrics. That work
includes the development of Blueswitch, a BSV language implementation of an OpenFlow
switch that can operate as a tightly coupled CHERI coprocessor. In the future, should it be-
come desirable, we will be able to construct an ASIC design from the same BSV specification.
We have released the CHERI soft core as open-source hardware, making it available for more
widespread use in research. This should allow others, especially in the research community, to
reproduce and extend our results.

We have also developed a second prototype (CHERI2), which is compatible with CHERI1
but has additional CPU features including fine-grained multi-threading. We have used this as
a platform for early exploration of the synergy between compartmentalization and parallelism
in multi-threaded processor designs. CHERI2 also employs a more stylized form of the BSV
language that is intended to considerably enhance our formal analysis of the hardware archi-
tecture.

In addition to the CHERI1 and CHERI2 implementations in BSV, we have implemented an
executable model of CHERI in the L3 ISA modeling language [37], and a high-performance
emulation in QEMU. The L3 and QEMU implementations support 256-bit capabilities and
multiple forms of 128-bit capabilities including compressed capabilities and “magic” uncom-
pressed capabilities, which are identical to 256-bit capabilities except for size. While intended
primarily for formal modeling and use as a test oracle, we have also found the L3 ISA modeling
language invaluable in practical design-space exploration.

As the CHERI security model is necessarily a hardware-software model, we have also
performed substantial experimentation with software stacks targeting the CHERI-MIPS ISA.
We have created an adaptation of the commodity open-source FreeBSD operating system,
CheriBSD, that supports a wide variety of peripherals on the Terasic tPad and DE4 FPGA
development boards; we use these boards in both mobile tablet-style and network configu-
rations. CheriBSD is able to manage the capability coprocessor, maintain additional thread
state for capability-aware user applications, expose both hybrid and pure-capability system-
call interfaces, and, increasingly, to use capability features for self protection against mali-
cious userspace software. CheriBSD also implements exception-handler support for object-
capability invocation, signal delivery when protection faults occur (allowing language runtimes
to catch and handle protection violations), and error recovery for in-process sandboxes. We
have adapted the Clang and LLVM compiler suite to allow language-level annotations in C to
direct capability use in a hybrid ABI. Additionally, we have implemented a pure-capability
compilation mode where all C pointers are capabilities. Using a mix of hybrid and pure-
capability ABIs, we have developed a number of capability-enhanced applications to demon-
strate fine-grained memory protection and in-process compartmentalization – to explore secu-
rity, performance, and programmability tradeoffs.



Chapter 11

Historical Context and Related Work

As with many aspects of contemporary computer and operating-system design, many of the
origins of operating-system security can be found at the world’s leading research universities –
especially the Massachusetts Institute of Technology (MIT), the University of Cambridge, and
Carnegie Mellon University. MIT’s Project MAC, which began with MIT’s Compatible Time
Sharing System (CTSS) [23], and continued over the next decade with MIT’s Multics project
(joint with Honeywell, and originally Bell Labs), described many central tenets of computer
security [24, 44]. Dennis and Van Horn’s 1965 Programming Semantics for Multiprogrammed
Computations [30] laid out principled hardware and software approaches to concurrency, ob-
ject naming, and security for multi-programmed computer systems – or, as they are known
today, multi-tasking and multi-user computer systems. Multics implemented a coherent, uni-
fied architecture for processes, virtual memory, and protection, integrating new ideas such as
capabilities, unforgeable tokens of authority, and principals, the end users with whom authen-
tication takes place and to whom resources are accounted [110].

In 1975, Saltzer and Schroeder surveyed the rapidly expanding vocabulary of computer se-
curity in The Protection of Information in Computer Systems [111]. They enumerated design
principles such as the principle of least privilege (which demands that computations run with
only the privileges they require) and the core security goals of protecting confidentiality, in-
tegrity, and availability. The tension between fault tolerance and security (a recurring debate
in systems literature) saw its initial analysis in Lampson’s 1974 Redundancy and Robustness
in Memory Protection [63], which considered ways in which hardware memory protection ad-
dressed accidental and intentional types of failure: e.g., if it is not reliable, it will not be secure,
and if it is not secure, it will not be reliable! Intriguingly, recent work by Nancy Leveson and
William Young has unified security and human safety as overarching emergent system proper-
ties [67], and allows the threat model to fall out of the top-down analysis, rather than driving
it. This work in some sense unifies a long thread of work that considers trustworthiness as
a property encompassing security, integrity, reliability, survivability, human safety, and so on
(e.g., [91, 93], among others).

The Security Research community also blossomed outside of MIT: Wulf’s HYDRA oper-
ating system at Carnegie Mellon University (CMU) [155, 22], Needham and Wilkes’ CAP
Computer at Cambridge [150], SRI’s Provably Secure Operating System (PSOS) [36, 93]
hardware-software co-design that included strongly typed object capabilities, Rushby’s secu-
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rity kernels supported by formal methods at Newcastle [109], and Lampson’s work on formal
models of security protection at the Berkeley Computer Corporation all explored the structure
of operating-system access control, and especially the application of capabilities to the pro-
tection problem [64, 65]. Another critical offshoot from the Multics project was Ritchie and
Thompson’s UNIX operating system at Bell Labs, which simplified concepts from Multics, and
became the basis for countless directly and indirectly derived products such as today’s Solaris,
FreeBSD, Mac OS X, and Linux operating systems [107].

The creation of secure software went hand in hand with analysis of security flaws: Ander-
son’s 1972 US Air Force Computer Security Technology Planning Study not only defined new
security structures, such as the reference monitor, but also analyzed potential attack method-
ologies such as Trojan horses and inference attacks [5]. Karger and Schell’s 1974 report on a
security analysis of the Multics system similarly demonstrated a variety of attacks that bypass
hardware and OS protection [58]. In 1978, Bisbey and Hollingworth’s Protection Analysis:
Project final report at ISI identified common patterns of security vulnerability in operating
system design, such as race conditions and incorrectly validated arguments at security bound-
aries [12]. Adversarial analysis of system security remains as critical to the success of security
research as principled engineering and formal methods.

Almost fifty years of research have explored these and other concepts in great detail, bring-
ing new contributions in hardware, software, language design, and formal methods, as well as
networking and cryptography technologies that transform the context of operating system secu-
rity. However, the themes identified in those early years remain topical and highly influential,
structuring current thinking about systems design.

Over the next few sections, we consider three closely related ideas that directly influence
our thinking for CTSRD: capability security, microkernel OS design, and language-based con-
straints. These apparently disparate areas of research are linked by a duality, observed by
Jim Morris in 1973, between the enforcement of data types and safety goals in programming
languages on one hand, and the hardware and software protection techniques explored in oper-
ating systems [85] on the other hand. Each of these approaches blends a combination of limits
defined by static analysis (perhaps at compile-time), limits on expression on the execution
substrate (such as what programming constructs can even be represented), and dynamically
enforced policy that generates runtime exceptions (often driven by the need for configurable
policy and labeling not known until the moment of access). Different systems make different
uses of these techniques, affecting expressibility, performance, and assurance.

11.1 Capability Systems

Throughout the 1970s and 1980s, high-assurance systems were expected to employ a capability-
oriented design that would map program structure and security policy into hardware enforce-
ment; for example, Lampson’s BCC design exploited this linkage to approximate least privi-
lege [64, 65].

Systems such as the CAP Computer at Cambridge [150] and Ackerman’s DEC PDP-1 ar-
chitecture at MIT [4] attempted to realize this vision through embedding notions of capabili-
ties in the memory management unit of the CPU, an approach described by Dennis and Van
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Horn [30]. Levy provides a detailed exploration of segment- and capability-oriented computer
system design through the mid-1980s in Capability-Based Computer Systems [68].

Ackerman’s architecture [4] in particular seems to have been the first to realize the impor-
tance of allowing subsystems to construct multiple, differentiated entry capabilities, to corre-
spond to different permitted requests (e.g., invoking different methods on different logical tar-
gets within the same subsystem). A six-bit field, the “transmitted word,” was provided within
the entry capability, immune from influence of the bearer but made available to the subsystem
itself on entry. Similar facilities have been found in almost all subsequent capability systems.
CHERI lacks such a field within its capabilities; however, the CCall mechanism can be used to
similar effect (recall Section 2.3.8).

11.2 Microkernels
Denning has argued that the failures of capability hardware projects were classic failures of
large systems projects, an underestimation of the complexity and cost of reworking an entire
system design, rather than fundamental failures of the capability model [29]. However, the
benefit of hindsight suggests that the earlier demise of hardware capability systems was a result
of three related developments in systems research: microkernel OS design, a related interest
from the security research community in security kernel design, and Patterson and Sequin’s
Reduced Instruction-Set Computers (RISC) [99].

However, with a transition from complex instruction set computers (CISC) to reduced in-
struction set computers (RISC), and a shift away from microcode toward operating system
implementation of complex CPU functionality, the attention of security researchers turned to
microkernels.

Carnegie Mellon’s HYDRA [22, 156] embodied this approach, in which microkernel mes-
sage passing between separate tasks stood in for hardware-assisted security domain crossings
at capability invocation. HYDRA developed a number of ideas, including the relationship be-
tween capabilities and object references, refined the object-capability paradigm, and further
pursued the separation of policy and mechanism.1 Jones and Wulf argue through the HYDRA
design that the capability model allows the representation of a broad range of system policies
as a result of integration with the OS object model, which in turn facilitates interposition as a
means of imposing policies on object access [56].

Successors to HYDRA at CMU include Accent and Mach [102, 3], both microkernel sys-
tems intended to explore the decomposition of a large and decidedly un-robust operating system
kernel. In microkernel designs, traditional OS services, such as the file system, are migrated out
of ring 0 and into user processes, improving debuggability and independence of failure modes.
They are also based on mapping of capabilities as object references into IPC pipes (ports), in
which messages on ports represent methods on objects. This shift in operating system design
went hand in hand with a related analysis in the security community: Lampson’s model for ca-
pability security was, in fact, based on pure message passing between isolated processes [65].
This further aligned with proposals by Andrews [6] and Rushby [109] for a security kernel,

1Miller has expanded on the object-capability philosophy in considerable depth in his 2006 PhD dissertation,
Robust composition: towards a unified approach to access control and concurrency control [81]
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whose responsibility lies solely in maintaining isolation, rather than the provision of higher-
level services such as file systems. Unfortunately, the shift to message passing also invalidated
Fabry’s semantic argument for capability systems, namely, that by offering a single names-
pace shared by all protection domains, the distributed system programming problem could be
avoided [35].

A panel at the 1974 National Computer Conference and Exposition (AFIPS) chaired by
Lipner brought the design goals and choices for microkernels and security kernels clearly into
focus: microkernel developers sought to provide flexible platforms for OS research with an eye
towards protection, while security kernel developers aimed for a high assurance platform for
separation, supported by hardware, software, and formal methods [70].

The notion that the microkernel, rather than the hardware, is responsible for implement-
ing the protection semantics of capabilities also aligned well with the simultaneous research
(and successful technology transfer) of RISC designs, which eschewed microcode by shifting
complexity to the compiler and operating system. Without microcode, the complex C-list pere-
grinations of CAP’s capability unit, and protection domain transitions found in other capability-
based systems, become less feasible in hardware. Virtual memory designs based on fixed-size
pages and simple semantics have since been standardized throughout the industry.

Security kernel designs, which combine a minimal kernel focused entirely on correctly im-
plementing protection, and rigorous application of formal methods, formed the foundation for
several secure OS projects during the 1970s. Schiller’s security kernel for the PDP-11/45 [112]
and Neumann’s Provably Secure Operating System [39] design study were ground-up oper-
ating system designs based soundly in formal methodology.2 In contrast, Schroeder’s MLS
kernel design for Multics [113], the DoD Kernelized Secure Operating System (KSOS) [76],
and Bruce Walker’s UCLA UNIX Security Kernel [122] attempted to slide MLS kernels un-
derneath existing Multics and UNIX system designs. Steve Walker’s 1980 survey of the state
of the art in trusted operating systems provides a summary of the goals and designs of these
high-assurance security kernel designs [123].

The advent of CMU’s Mach microkernel triggered a wave of new research into security ker-
nels. TIS’s Trusted Mach (TMach) project extended Mach to include mandatory access control,
relying on enforcement in the microkernel and a small number of security-related servers to im-
plement the TCB to accomplish sufficient assurance for a TCSEC B3 evaluation [15]. Secure
Computing Corporation (SCC) and the National Security Agency (NSA) adapted PSOS’s type
enforcement from LoCK (LOgical Coprocessor Kernel) for use in a new Distributed Trusted
Mach (DTMach) prototype, which built on the TMach approach while adding new flexibil-
ity [114]. DTMach, adopting ideas from HYDRA, separates mechanism (in the microkernel)
from policy (implemented in a userspace security server) via a new reference monitor frame-
work, FLASK [119]. A significant focus of the FLASK work was performance: an access
vector cache is responsible for caching access control decisions throughout the OS to avoid
costly up-calls and message passing (with associated context switches) to the security server.
NSA and SCC eventually migrated FLASK to the FLUX microkernel developed by the Univer-
sity of Utah in the search for improved performance. Invigorated by the rise of microkernels
and their congruence with security kernels, this flurry of operating system security research

2PSOS’s ground-up design included ground-up hardware, whereas Schiller’s design revised only the software
stack.
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also faced the limitations (and eventual rejection) of the microkernel approach by the computer
industry – which perceived the performance overheads as too great.

Microkernels and mandatory access control have seen another experimental composition in
the form of Decentralized Information Flow Control (DIFC). This model, proposed by Myers,
allows applications to assign information flow labels to OS-provided objects, such as commu-
nication channels, which are propagated and enforced by a blend of static analysis and runtime
OS enforcement, implementing policies such as taint tracking [86] – effectively, a composition
of mandatory access control and capabilities in service to application security. This approach is
embodied by Efstathopoulos et al.’s Asbestos [34] and Zeldovich et al.’s Histar [160] research
operating systems.

Despite the decline of both hardware-oriented and microkernel capability system design,
capability models continue to interest both research and industry. Inspired by the proprietary
KeyKOS system [48], Shapiro’s EROS [116] (now CapROS) and Coyotos [115] continued the
investigation of higher-assurance software capability designs, and seL4 [60], a formally veri-
fied, capability-oriented microkernel, has also continued along this avenue. General-purpose
systems also have adopted elements of the microkernel capability design philosophy, such as
Apple’s Mac OS X [7] (which uses Mach interprocess communication (IPC) objects as capa-
bilities) and Cambridge’s Capsicum [131] research project (which attempts to blend capability-
oriented design with UNIX).

More influentially, Morris’s suggestion of capabilities at the programming language level
has seen widespread deployment. Gosling and Gong’s Java security model blends language-
level type safety with a capability-based virtual machine [42, 41]. Java maps language-level
constructs (such as object member and method protections) into execution constraints enforced
by a combination of a pre-execution bytecode verification and expression constraints in the
bytecode itself. Java has seen extensive deployment in containing potentially (and actually) ma-
licious code in the web browser environment. Miller’s development of a capability-oriented E
language [81], Wagner’s Joe-E capability-safe subset of Java [80], and Miller’s Caja capability-
safe subset of JavaScript continue a language-level exploration of capability security [82].

11.3 Language and Runtime Approaches

Direct reliance on hardware for enforcement (which is central to both historic and current sys-
tems) is not the only approach to isolation enforcement. The notion that limits on expressibility
in a programming language can be used to enforce security properties is frequently deployed
in contemporary systems to supplement coarse and high-overhead operating-system process
models. Two techniques are widely used: virtual-machine instruction sets (or perhaps physi-
cal machine instruction subsets) with limited expressibility, and more expressive languages or
instruction sets combined with type systems and formal verification techniques.

The Berkeley Packet Filter (BPF) is one of the most frequently cited examples of the vir-
tual machine approach: user processes upload pattern matching programs to the kernel to avoid
data copying and context switching when sniffing network packet data [75]. These programs
are expressed in a limited packet-filtering virtual-machine instruction set capable of expressing
common constructs, such as accumulators, conditional forward jumps, and comparisons, but
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are incapable of expressing arbitrary pointer arithmetic that could allow escape from confine-
ment, or control structures such as loops that might lead to unbounded execution time. Similar
approaches have been used via the type-safe Modula 3 programming language in SPIN [11],
and the DTrace instrumentation tool that, like BPF, uses a narrow virtual instruction set to
implement the D language [17].

Google’s Native Client (NaCl) model edges towards a verification-oriented approach, in
which programs must be implemented using a ‘safe’ (and easily verified) subset of the x86 or
ARM instruction sets, which would allow confinement properties to be validated [159]. NaCl
is closely related to Software Fault Isolation (SFI) [121], in which safety properties of machine
code are enforced through instrumentation to ensure no unsafe access, and Proof-Carrying
Code (PCC), in which the safe properties of code are demonstrated through attached and easily
verifiable proofs [89]. As mentioned in the previous section, the Java Virtual Machine (JVM)
model is similar; it combines runtime execution constraints of a restricted, capability-oriented
bytecode with a static verifier run over Java classes before they can be loaded into the execution
environment; this ensures that only safe accesses have been expressed. C subsets, such as
Cyclone [53], and type-safe languages such as Ruby [108], offer similar safety guarantees,
which can be leveraged to provide security confinement of potentially malicious code without
hardware support.

These techniques offer a variety of trade-offs relative to CPU enforcement of the process
model. For example, some (BPF, D) limit expressibility that may prevent potentially useful
constructs from being used, such as loops bounded by invariants rather than instruction limits;
in doing so, this can typically impose potentially significant performance overhead. Systems
such as FreeBSD often support just-in-time compilers (JITs) that convert less efficient virtual-
machine bytecode into native code subject to similar constraints, addressing performance but
not expressibility concerns [77].

Systems like PCC that rely on proof techniques have had limited impact in industry, and
often align poorly with widely deployed programming languages (such as C) that make for-
mal reasoning difficult. Type-safe languages have gained significant ground over the last
decade, with widespread use of JavaScript and increasing use of functional languages such
as OCaML [106]; they offer many of the performance benefits with improved expressibility,
yet have had little impact on operating system implementations. However, an interesting twist
on this view is described by Wong in Gazelle, in which the observation is made that a web
browser is effectively an operating system by virtue of hosting significant applications and en-
forcing confinement between different applications [124]. Web browsers frequently incorporate
many of these techniques including Java Virtual Machines and a JavaScript interpreter.

11.4 Bounds Checking and Fat Pointers

In contrast to prior capability systems, a key design goal for CHERI was to support mapping
C-language pointers into capabilities. In earlier prototypes, we did this solely through base
and bounds fields within capabilities, which worked well but required substantial changes to
existing C software that often contained programming idioms that violated monotonic rights
decrease for pointers. In later versions of the ISA, we adopt ideas from the C fat-pointer
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literature, which differentiate the idea of a delegated region from a current pointer: while the
base and bounds are subject to guarded manipulation rules, we allow the offset to float within
and beyond the delegated region. Only on dereference are protections enforced, allowing a
variety of imaginative pointer operations to be supported. Many of these ideas originate with
the type-safe C dialect Cyclone [53], and see increasing adaptation to off-the-shelf C programs
with work such as Softbound [87], Hardbound [31], and CCured [90]. This flexibility permits
a much broader range of common C idiom to be mapped into the capability-based memory-
protection model.

11.5 Capabilities In Hardware

Capability systems manifested as computing hardware must have some mechanism to distin-
guish capabilities from non-capability data or, equivalently, for determining the semantic type
assigned to bits being accessed by the instruction stream. Broadly speaking, two approaches
have emerged: making the type distinction intrinsically associated with the bits in question or
associating the type with the accees path taken to those bits.

Systems choosing the former option are generally said to be “tagged architectures” or to
have “tagged memory:” at least one bit is associated with a granule of memory no larger than
a capability, which indicates whether the associated granule contains capability-typed bits or
data-typed bits. CHERI is such a design, with one bit per capability-sized and suitably-aligned
piece of memory. The IBM System/38 uses four bits per capability-sized piece of memory
and requires that they all be set when attempting to decode a suitably-aligned bit pattern as a
capability.

The second variety of systems seem to lack a similarly punchy moniker, but we may, at
the risk of further overloading an already burdened term, call them “segmented architectures.”
In these systems, it is usually the (memory-referencing) capabilities themselves that describe
the type of the bits to be found therein; integrity of the capability representations is ensured
by software’s careful avoidance of overlapping capabilities. In simplest manifestation, a capa-
bility to memory designates, in addition to bounds and permissions, the type of all bits found
therein. Such capabilities are often described with terms such as “C-type” or “D-type” (as in
the Cambridge CAP family), emphasising the homogeneous nature of the segment of mem-
ory referenced. Some other segmented architectures have bifurcated segments, wherein each
segment is effectively two: one containing capabilities and one containing data; capabilities
specify the midpoint and length of both segments.

11.5.1 Tagged-Memory Architectures

Perhaps the most well-known tagged machine design these days is that of the Burroughs Large
systems, starting with the B5000, designed in 1961. Both contemporaneous [26, 25, 98] and
retrospective [73, 9] material about this family of machines is available for the curious reader,
as is an interesting report of a concerted penetration test against Burroughs’ operating system
[151]. For present purposes, however, we focus on its memory model and, in particular, its use
of tags and descriptors. In the B5000, each word was equipped with a bit distinguishing its
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intended use as either data or instructions. The later B6500 moved to a three-bit tag; we may
(very) roughly summarize this latter taxonomy as differentiating between data words, program
instructions, and pointers of various sorts. In several cases, the tags were used to convey type
information to the CPU, so that, for example, the unique addition instruction would operate on
single-precision words or double-precision word pairs depending on the data tag of its operands
[98, p. 97], or the processor’s “step and branch” instruction can manipulate a “step index word”
containing all of the current value, increment, and limit of iteration [25, p. 7-5]. More naturally
(to a CHERI-minded reader, at least), loads and stores and indirect transfers of control required
their operands to be properly tagged, and subroutine entry generates tagged return addresses on
the stack [25, ch. 7].

While concerned mostly with detection of software bugs, rather than any consideration of
system security, Gumpertz’s Error Detection with Memory Tags [47] deserves mention. The
tags in this work are not used to determine operations (as they might have been in the Burroughs
B5000) but rather as additional checks on tag-independent operations. Gumpertz’s design fo-
cuses on light-weight checks, performed in parallel with CPU operations and makes it “possible
to check an arbitrary number of assertions using only a small tag of fixed size” [47, p. i], which
is similar to CHERI’s imbuing of an arbitrary number of bits (i.e., the width of a capability)
with architectural semantics using a single, external tag bit.

11.5.2 Segmented Architectures
Cambridge CAP Computer

The family of Cambridge CAP computer designs3 [150] are, at their core, capability-based re-
finements of earlier, base-and-length memory segmentation schemes. In these earlier schemes,
the CPU computes offsets within a segment and then dereferences memory as a pair of an offset
and an index into a segment table; on dereference, the offset is checked to be in bounds, and the
indirection between segment and memory—usually just an addition operation—is performed
to yield the "linear" (or "physical") address used to communicate with the memory subsys-
tem. Programs running on the CAP computer similarly have a virtual address space consisting
of pairs of indices into a capability table and offsets within those capabilities. While the ex-
act interpretation and mechanisms of the capabilities of each CAP design differed, there are
commonalities across the family.

The CAP computers interpreted virtual addresses, held in arithmetic registers, as pairs of a
capability specifier and a 16-bit index to a word within that capability. On the CAP computers,
capabilities are interpreted only after a virtual address has been dispatched from the CPU. This
separation of construction and interpretation violates our principle of intensional use and en-
ables certain kinds of confusion. To wit, overflowing the offset results in a potentially in-bound
offset within a different capability. This is in stark contrast to a pure-capability CHERI design,
wherein capabilities supplant virtual addresses and are directly manipulated while in registers,
making it impossible for operations on a capability’s offset to change to which capability the
offset is relative.4

3The CAP experiment seems to have produced one physical, heavily microprogrammed CPU design and at
least three different microcode programs.

4Though CHERI does have its IDC mechanism for compatibility with non-capability programs. Similar con-
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11.6 Influences of Our Own Past Projects

Our CHERI capability hardware design responds to all these design trends – and their prob-
lems. Reliance on traditional paged virtual memory for strong address-space separation, as used
in Mach, EROS, and UNIX, comes at significant cost: attempts to compartmentalize system
software and applications sacrifice the programmability benefits of a language-based capabil-
ity design (a point made convincingly by Fabry [35]), and introduce significant performance
overhead to cross-domain security boundaries. However, running these existing software de-
signs is critical to improve the odds of technology transfer, and to allow us to incrementally
apply ideas in CHERI to large-scale contemporary applications such as office suites. CHERI’s
hybrid approach allows a gradual transition from virtual address separation to capability-based
separation within a single address space, thus restoring programmability and performance so
as to facilitate fine-grained compartmentalization throughout the system and its applications.

We consider some of our own past system designs in greater detail, especially as they relate
to CTSRD:

Multics The Multics system incorporated many new concepts in hardware, software, and
programming [97, 27]. The Multics hardware provided independent virtual memory segments,
paging, interprocess and intra-process separation, and cleanly separated address spaces. The
Multics software provided symbolically named files that were dynamically linked for efficient
execution, rings of protection providing layers of security and system integrity, hierarchical di-
rectories, and access-control lists. Input-output was also symbolically named and dynamically
linked, with separation of policy and mechanism, and separation of device independence and
device dependence. A subsequent redevelopment of the two inner-most rings enabled Mul-
tics to support multilevel security in the commercial product [113]. Multics was implemented
in a stark subset (EPL) of PL/I that considerably diminished the likelihood of many common
programming errors. In addition, the stack discipline inherently avoided buffer overflows.

PSOS SRI’s Provably Secure Operating System hardware-software design was formally spec-
ified in a single language (SPECIAL), with encapsulated modular abstraction, interlayer state
mappings, and abstract programs relating each layer to those on which it depended [93, 94].
The hardware design provided tagged, typed, unforgeable capabilities required for every opera-
tion, with identifiers that were unique for the lifetime of the system. In addition to a few primi-
tive types, application-specific object types could be defined and their properties enforced with
the hardware assistance provided by the capability-based access controls. The design allowed
application layers to efficiently execute instructions, with object-oriented capability-based ad-
dressing directly to the hardware – despite appearing at a much higher layer of abstraction in
the design specifications.

fusion is possible in hybrid applications if an offset intended to be relative to one capability is instead used with
another, for example, due to improper management of IDC. Historically, similar confusion can arise in the more
common segmentation models, as seen in, for example, Intel’s X86 CPUs, in which segment table indices (“seg-
ment selectors”) are held in dedicated registers and only combined with offsets (held in arithmetic registers) by
the instruction stream.
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MAC Framework The MAC Framework is an OS reference-monitor framework used in
FreeBSD, also adopted in Mac OS X and iOS, as well as other FreeBSD-descended operat-
ing systems such as Juniper Junos and McAfee Sidewinder [130]. Developed in the DARPA
CHATS program, the MAC Framework allows static and dynamic extension of the kernel’s
access-control model, supporting implementation of security localization – that is, the adapta-
tion of the OS security to product and deployment-specific requirements. The MAC Framework
(although originally targeted at classical mandatory access control models) found significant
use in application sandboxing, especially in Junos, Mac OS X, and iOS. One key lesson from
this work is the importance of longer-term thinking about security-interface design, including
interface stability and support for multiple policy models; these are especially important in
instruction-set design. Another important lesson is the increasing criticality of extensibility of
not just the access-control model, but also the means by which remote principals are identified
and execute within local systems: not only is consideration of classical UNIX users inadequate,
but also there is a need to allow widely varying policies and notions of remote users executing
local code across systems. These lessons are taken to heart in capability systems, which care-
fully separate policy and enforcement, but also support extensible policy through executable
code.

Capsicum Capsicum is a lightweight OS capability and sandbox framework included in
FreeBSD 9.x and later [131, 128]. Capsicum extends (rather than replaces) UNIX APIs, and
provides new kernel primitives (sandboxed capability mode and capabilities) and a userspace
sandbox API. These tools support compartmentalization of monolithic UNIX applications into
logical applications, an increasingly common goal supported poorly by discretionary and manda-
tory access controls. This approach was demonstrated by adapting core FreeBSD utilities and
Google’s Chromium web browser to use Capsicum primitives; it showed significant simplicity
and robustness benefits to Capsicum over other confinement techniques. Capsicum provides
both inspiration and motivation for CHERI: its hybrid capability-system model is transposed
into the ISA to provide compatibility with current software designs, and its demand for finer-
grained compartmentalization motivates CHERI’s exploration of more scalable approaches.

11.7 A Fresh Opportunity for Capabilities

Despite an extensive research literature exploring the potential of capability-system approaches,
and limited transition to date, we believe that the current decade has been the time to revisit
these ideas, albeit through the lens of contemporary problems and with insight gained through
decades of research into security and systems design. As described in Chapter 1, a transformed
threat environment deriving from ubiquitous computing and networking, and the practical real-
ity of widespread exploitation of software vulnerabilities, both provide a strong motivation to
investigate improved processor foundations for software security. This change in environment
has coincided with improved and more rapid hardware prototyping techniques and higher-level
hardware-definition languages that facilitate academic hardware-software system research at
larger scales; without them we would have been unable to explore the CHERI approach in such
detail. Simultaneously, our understanding of operating-system and programming-language se-
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curity has been vastly enhanced by several decades of research; in particular, recent develop-
ment of the hybrid capability-system Capsicum model suggests a strong alignment between
capability-based techniques and successful mitigation approaches that can be translated into
processor design choices.
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Chapter 12

Conclusion

The CTSRD project (of which CHERI is just one element) is now in the final stages of com-
pleted its ninth year – an evolution described in detail in Chapter 10. The final few years
of CTSRD included the CSTT task for software technology transfer. CTSRD’s productivity
has also been extended by our MRC2 (now completed), CIFV (in progress), and ECATS (in
progress) projects to further consider topics such as multiprocessing, software-stack maturity,
formal modeling and verification, and full System-on-Chip (SoC) implications for CHERI. Our
focuses to date have been in several areas:

1. Develop the CHERI protection model and reference CHERI-MIPS Instruction-Set Archi-
tecture that offer low-overhead fine-grained memory protection and support scalable soft-
ware compartmentalization based on a hybrid capability model. Over several generations
of the ISA, refine integration with a conventional RISC ISA, compose the capability-
system model with the MMU, pursue strong C-language compatibility, develop com-
partmentalization features based on an object-capability model, refine the architecture
to improve performance and adoptability through features such as compressed 128-bit
capabilities, and develop the notion of a portable protection model that can be applied to
further ISAs (such as RISC-V and x86-64). Explore the implications of CHERI on 32-
bit microcontroller architectures that do not have MMUs, giving capabilities a physical
interpretation, and also taking into account common microcontroller microarchitectural
choices.

2. Employ increasingly complete formal models of the protection model and ISA seman-
tics. We began by using PVS/SAL formal models of the ISA to analyze expressivity
and security. Subsequently, and in close collaboration with the University of Cam-
bridge’s EPSRC-funded Rigorous Engineering of Mainstream Systems (REMS) Project
and DARPA-funded CHERI Instruction-set Formal Verification (CIFV), we developed
L3 and Sail formal models suitable to act as a gold model for testing, to use in automated
test generation, and as inputs to formal verification tools to prove ISA-level security
properties. We have also used formal modeling to explore how CHERI interacts with
C-language semantics. In the future, we hope to employ these models in support of
hardware and software verification.

333
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3. Elaborate the ISA feature set in CHERI to support a real-world operating system – pri-
marily, this has consisted of adding support for the MIPS system management copro-
cessor, CP0, which includes the MMU and exception model, but also features such as a
programmable interrupt controller (PIC). We have also spent considerable time refining
successive versions of the ISA intended to better support high levels of MMU-based
operating-system and C-language compatibility, as well as automatic use by compil-
ers. This work has incorporated ideas from, but also gone substantially beyond, the
C-language fat-pointer and software compartmentalization research literature.

4. Port the FreeBSD operating system first to a capability-free version of CHERI, known as
BERI. This is known as FreeBSD/BERI, and this support has been upstreamed such that
new releases of FreeBSD support the BERI processor and its peripheral devices.

5. Prototype, test, and refine CHERI-MIPS ISA extensions, which are incorporated via a
new capability coprocessor, CP2. We have open-sourced the reference BERI and CHERI
processor designs, and Qemu ISA-level emulator, in order to allow reproducible experi-
mentation with our approach, as well as to act as an open-source platform for other future
hardware-software research projects.

6. Adapt FreeBSD to make use of CHERI features. Key areas of work included adapting
the kernel and userspace runtime (including system library and runtime linker) to support
tagged memory, capability state, strongly enforced valid pointer provenance, and bound-
s/permissions reduction. This is known as CheriBSD. We developed a hardware-software
in-address-space object-capability model rested on architectural capabilities. We have
also developed a pure-capability system-call ABI and process environment known as
CheriABI, which pushes to an extreme point the use of capabilities to represent all point-
ers (and implied virtual addresses, such as return addresses) in user code generation and
in interaction with a conventional kernel. We are currently pursuing a pure-capability
CheriBSD kernel. While open sourced, these changes remain outside of the upstream
FreeBSD repository, due to their experimental nature.

7. Adapt the Clang/LLVM compiler suite to be able to generate CHERI ISA instructions
as directed by C-language annotations, exploring a variety of language models, code-
generation models, and ABIs. We have explored two new C-language models and asso-
ciated code generation: a hybrid in which explicitly annotated or automatically inferred
pointers are compiled as capabilities; and a pure-capability model in which all pointers
and implied virtual addresses are compiled as capabilities. Similarly, we have begun
an exploration of how CHERI affects program linkage, with early prototype integration
with the compile-time and run-time linkers. These collectively provide strong spatial
and pointer protection for both data and code pointers. We have upstreamed substantial
improvements to Clang/LLVM MIPS support, as well as changes making it easier to sup-
port ISA features such as extra-wide pointers utilized in the CHERI ISA. We have also
begun to explore how CHERI can support higher-level language protection, such as by
using it to reinforce memory safety and security for native code running under the Java
Native Interface (JNI).
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8. Begin to develop semi-automated techniques to assist software developers in compart-
mentalizing applications using Capsicum and CHERI features. This is a subproject
known as Security-Oriented Analysis of Application Programs (SOAAP), and performed
in collaboration with Google.

9. Develop FPGA-based demonstration platforms, including an early prototype on the Tera-
sic tPad, and more mature server-style and tablet-style prototypes based on the Terasic
DE4 board. We have also made use of CHERI on the NetFGPA 10G board.

Collectively, these accomplishments have validated our research hypotheses: that a hy-
brid capability-system architecture and viable supporting microarchitecture can support low-
overhead memory protection and fine-grained software compartmentalization while maintain-
ing strong compatibility with current RISC, MMU-based, and C-language software stacks, as
well as an incremental software adoption path to additional trustworthiness. Further, the re-
sulting protection model, co-designed around a specific ISA and concrete extensions, is in fact
a generalizable and portable protection model that can be applied to other ISAs; it is suitable
for a multitude of implementations in architecture and microarchitecture. Formal methodol-
ogy deployed judiciously throughout the design and implementation process has increased our
confidence that the resulting design can support robust and resilient software designs.

12.1 Future Work
We have made a strong beginning, but clearly there is still much to do in our remaining CTSRD
efforts. Our ongoing key areas of research include:

• Continuing to refine performance with respect to both the architecture (e.g., models for
capability compression) and microarchitecture (e.g., as relates to efficient implementa-
tions of compression and tagged memory).

• Exploring how CHERI’s features might be scaled up (e.g., to superscalar processor de-
signs), down (e.g., to 32-bit microcontrollers without MMUs), and to other compute
types (e.g., DMA engines, GPUs, and so on). Also, looking at how CHERI interacts with
other emerging hardware technologies such as non-volatile memory, where CHERI may
support more rapid, robust, and secure adoption.

• Continuing to elaborate how CHERI should affect the design of operating systems (whether
hybrid systems such as CheriBSD, or clean-slate designs), languages (e.g., C, C++, Java,
and so on), and runtimes (e.g., system libraries, run-time linking, and higher-level lan-
guage runtimes).

• Continuing to explore how CHERI affects software tracing and debugging; for example,
through capability-aware software debuggers.

• Continuing to explore potential models for software compartmentalization, such as clean-
slate microkernel-style message passing grounded in CHERI’s object-capability features,
but not hybridized with conventional OS designs. In addition, continuing to investigate
potential approaches to semi- or fully automated software compartmentalization.
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• Continuing our efforts to develop and utilize formal models of the microarchitecture,
architecture, operating system, linkage model, language properties, compilation, and
higher-level applications. This will help us understand (and ensure) the protection bene-
fits of CHERI up and down the hardware-software stack.



Appendix A

CHERI ISA Version History

This appendix contains a detailed version history of the CHERI Instruction-Set Architecture.
This report was previously made available as the CHERI Architecture Document, but is now
the CHERI Instruction-Set Architecture.

1.0 This first version of the CHERI architecture document was prepared for a six-month deliv-
erable to DARPA. It included a high-level architectural description of CHERI, motiva-
tions for our design choices, and an early version of the capability instruction set.

1.1 The second version was prepared in preparation for a meeting of the CTSRD External
Oversight Group (EOG) in Cambridge during May 2011. The update followed a week-
long meeting in Cambridge, UK, in which many aspects of the CHERI architecture were
formalized, including details of the capability instruction set.

1.2 The third version of the architecture document came as the first annual reports from the
CTSRD project were in preparation, including a decision to break out formal-methods
appendices into their own CHERI Formal Methods Report for the first time. With an
in-progress prototype of the CHERI capability unit, we significantly refined the CHERI
ISA with respect to object capabilities, and matured notions such as a trusted stack and
the role of an operating system supervisor. The formal methods portions of the document
was dramatically expanded, with proofs of correctness for many basic security properties.
Satisfyingly, many ‘future work’ items in earlier versions of the report were becoming
completed work in this version!

1.3 The fourth version of the architecture document was released while the first functional
CHERI prototype was in testing. It reflects on initial experiences adapting a microkernel
to exploit CHERI capability features. This led to minor architectural refinements, such as
improvements to instruction opcode layout, some additional instructions (such as allow-
ing CGetPerm retrieve the unsealed bit), and automated generation of opcode descriptions
based on our work in creating a CHERI-enhanced MIPS assembler.

1.4 This version updated and clarified a number of aspects of CHERI following a prototype
implementation used to demonstrate CHERI in November 2011. Changes include up-
dates to the CHERI architecture diagram; replacement of the CDecLen instruction with
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CSetLen, addition of a CMove instruction; improved descriptions of exception generation;
clarification of the in-memory representation of capabilities and byte order of permis-
sions; modified instruction encodings for CGetLen, CMove, and CSetLen; specification of
reset state for capability registers; and clarification of the CIncBase instruction.

1.5 This version of the document was produced almost two years into the CTSRD project. It
documented a significant revision (version 2) to the CHERI ISA, which was motivated
by our efforts to introduce C-language extensions and compiler support for CHERI, with
improvements resulting from operating system-level work and restructuring the BSV
hardware specification to be more amenable to formal analysis. The ISA, programming
language, and operating system sections were significantly updated.

1.6 This version made incremental refinements to version 2 of the CHERI ISA, and also intro-
duced early discussion of the CHERI2 prototype.

1.7 Roughly two and a half years into the project, this version clarified and extended docu-
mentation of CHERI ISA features such as CCall/CReturn and its software emulation, Per-
mit_Set_Type, the CMove pseudo-op, new load-linked and instructions for store-conditional
relative to capabilities, and several bug fixes such as corrections to sign extension for
several instructions. A new capability-coprocessor cause register, retrieved using a new
CGetCause, was added to allow querying information on the most recent CP2 exception
(e.g., bounds-check vs type-check violations); priorities were provided, and also clarified
with respect to coprocessor exceptions vs. other MIPS ISA exceptions (e.g., unaligned
access). This was the first version of the CHERI Architecture Document released to early
adopters.

1.8 Less than three and a half years into the project, this version refined the CHERI ISA based
on experience with compiler, OS, and userspace development using the CHERI model.
To improve C-language compatibility, new instructions CToPtr and CFromPtr were de-
fined. The capability permissions mask was extended to add user-defined permissions.
Clarifications were made to the behavior of jump/branch instructions relating to branch-
delay slots and the program counter. CClearTag simply cleared a register’s tag, not its
value. A software-defined capability-cause register range was made available, with a
new CSetCause instruction letting software set the cause for testing or control-flow rea-
sons. New CCheckPerm and CCheckType instructions were added, letting software ob-
ject methods explicitly test for permissions and the types of arguments. TLB permis-
sion bits were added to authorize use of loading and storing tagged values from pages.
New CGetDefault and CSetDefault pseudo-ops have become the preferred way to control
MIPS ISA memory access. CCall/CReturn calling conventions were clarified; CCall now
pushes the incremented version of the program counter, as well as stack pointer, to the
trusted stack.

1.9 - UCAM-CL-TR-850 The document was renamed from the CHERI Architecture Docu-
ment to the CHERI Instruction-Set Architecture. This version of the document was made
available as a University of Cambridge Technical Report. The high-level ISA description
and ISA reference were broken out into separate chapters. A new rationale chapter was
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added, along with more detailed explanations throughout about design choices. Notes
were added in a number of places regarding non-MIPS adaptations of CHERI and 128-
bit variants. Potential future directions, such as capability cursors, are discussed in more
detail. Further descriptions of the memory-protection model and its use by operating
systems and compilers was added. Throughout, content has been updated to reflect more
recent work on compiler and operating-system support for CHERI. Bugs have been fixed
in the specification of the CJR and CJALR instructions. Definitions and behavior for user-
defined permission bits and OS exception handling have been clarified.

1.10 This version of the Instruction-Set Architecture is timed for delivery at the end of the
fourth year of the CTSRD Project. It reflects a significant further revision to the ISA
(version 3) focused on C-language compatibility, better exception-handling semantics,
and reworking of the object-capability mechanism.

The definition of the NULL capability has been revised such that the memory represen-
tation is now all zeroes, and with a zeroed tag. This allows zeroed memory (e.g., ELF
BSS segments) to be interpreted as being filled with NULL capabilities. To this end, the
tag is now defined as unset, and the Unsealed bit has now been inverted to be a Sealed
bit; the CGetUnsealed instruction has been renamed to CGetSealed.

A new offset field has been added to the capability, which converts CHERI from a sim-
ple base/length capability to blending capabilities and fat pointers that associate a base
and bounds with an offset. This approach learns from the extensive fat-pointer research
literature to improve C-language compatibility. The offset can take on any 64-bit value,
and is added to the base on dereference; if the resulting pointer does not fall within the
base and length, then an exception will be thrown. New instructions are added to read
(CGetOffset) and write (CSetOffset) the field, and the semantics of memory access and
other CHERI instructions (e.g., CIncBase) are updated for this new behavior.

A new CPtrCmp instruction has been added, which provides C-friendly comparison of
capabilities; the instruction encoding supports various types of comparisons including
‘equal to’, ‘not equal to’, and both signed and unsigned ‘less than’ and ‘less than or
equal to’ operators.

CGetPCC now returns PC as the offset field of the returned PCC rather than storing it to
a general-purpose integer register. CJR and CJALR now accept target PC values via the
offsets of their jump-target capability arguments rather than via explicit general-purpose
integer registers. CJALR now allows specification of the return-program-counter capability
register in a manner similar to return-address arguments to the MIPS JALR instruction.

CCall and CReturn are updated to save and restore the saved PC in the offset field of the
saved EPCC rather than separately. EPCC now incorporates the saved exception PC
in its offset field. The behavior of EPCC and expectations about software-supervisor
behavior are described in greater detail. The security implications of exception cause-
code precedence as relates to alignment and the emulation of unaligned loads and stores
are clarified. The behavior of CSetCause has been clarified to indicate that the instruc-
tion should not raise an exception unless the check for Access_EPCC fails. When an
exception is raised due to the state of an argument register for an instruction, it is now
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defined which register will be named as the source of the exception in the capability
cause register.

The object-capability type field is now 24-bit; while a relationship to addresses is main-
tained in order to allow delegation of type allocation, that relationship is deemphasized.
It is assumed that the software type manager will impose any required semantics on the
field, including any necessary uniqueness for the software security model. The CSetType

instruction has been removed, and a single CSeal instruction replaces the previous sepa-
rate CSealCode and CSealData instructions.

The validity of capability fields accessed via the ISA is now defined for untagged capa-
bilities; the undefinedness of the in-memory representation of capabilities is now explicit
in order to permit ‘non-portable’ micro-architectural optimizations.

There is now a structured description of the pseudocode language used in defining in-
structions. Format numbers have now been removed from instruction descriptions.

Ephemeral capabilities are renamed to ‘local capabilities,’ and non-ephemeral capabili-
ties are renamed to ‘global capabilities’; the semantics are unchanged.

1.11 - UCAM-CL-TR-864 This version of the CHERI ISA has been prepared for publication
as a University of Cambridge technical report. It includes a number of refinements to
CHERI ISA version 3 based on further practical implementation experience with both
C-language memory protection and software compartmentalization.

There are a number of updates to the specification reflecting introduction of the off-
set field, including discussion of its semantics. A new CIncOffset instruction has been
added, which avoids the need to read the offset into a general-purpose integer register for
frequent arithmetic operations on pointers.

Interactions between EPC and EPCC are now better specified, including that use of un-
tagged capabilities has undefined behavior. CBTS and CBTU are now defined to use branch-
delay slots, matching other MIPS-ISA branch instructions. CJALR is defined as suitably
incrementing the returned program counter, along with branch-delay slot semantics. Ad-
ditional software-path pseudocode is present for CCall and CReturn.

CAndPerm and CGetPerm use of argument-register or return-register permission bits has
been clarified. Exception priorities and cause-code register values have been defined,
clarified, or corrected for CClearTag, CGetPCC, CSC, and CSeal. Sign or zero extension for
immediates and offsets are now defined CL, CS, and other instructions.

Exceptions caused due to TLB bits controlling loading and storing of capabilities are
now CP2 rather than TLB exceptions, reducing code-path changes for MIPS exception
handlers. These TLB bits now have modified semantics: LC now discards tag bits on the
underlying line rather than throwing an exception; SC will throw an exception only if a
tagged store would result, rather than whenever a write occurs from a capability register.
These affect CLC and CSC.

Pseudocode definitions now appear earlier in the chapter, and have now been extended to
describe EPCC behavior. The ISA reference has been sorted alphabetically by instruc-
tion name.
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1.12 This is an interim release as we begin to grapple with 128-bit capabilities. This requires
us to better document architectural assumptions, but also start to propose changes to the
instruction set to reflect differing semantics (e.g., exposing more information to potential
capability compression). A new CSetBounds instruction is proposed, which allows both
the base and length of a capability to be set in a single instruction, which may allow the
micro-architecture to reduce potential loss of precision. Pseudocode is now provided for
both the pure-exception version of the CCall instruction, and also hardware-accelerated
permission checking.

1.13 This is an interim release as our 128-bit capability format (and general awareness of
imprecision) evolves; this release also makes early infrastructural changes to support an
optional converging of capability and general-purpose integer register files.

Named constants, rather than specific sizes (e.g., 256-bit vs. 128-bit) are now used
throughout the specification. Reset state for permissions is now relative to available per-
missions. Two variations on 128-bit capabilities are defined, employing two variations
on capability compression. Throughout the specification, the notion of “representable”
is now explicitly defined, and non-representable values must now be handled.

The definitions of CIncOffset, CSetOffset, and CSeal have been modified to reflect the
potential for imprecision. In the event of a loss of precision, the capability base, rather
than offset, will be preserved, allowing the underlying memory object to continue to be
accurately represented.

Saturating behavior is now defined when a compressed capability’s length could repre-
sent a value greater than the maximum value for a 64-bit MIPS integer register.

EPCC behavior is now defined when a jump or branch target might push the offset of
PCC outside of the representable range for EPCC.

CIncBase and CSetLen are deprecated in favor of CSetBounds, which presents changes to
base and bounds to the hardware atomically. The CMove pseudo-operation is now imple-
mented using CIncOffset rather than CIncBase. CFromPtr has been modified to behave
more like CSetOffset: only the offset, not the base, is modified. Bug fixes have been
applied to the definitions of CSetBounds and CUnseal.

Several bugs in the specification of CLC, CLLD, CSC, and CSD, relating to omissions during
the update to capability offsets, have been fixed. CLC’s description has been updated to
properly reflect its immediate argument.

New instructions CClearHi and CClearLo have been added to accelerate register clearing
during protection-domain switches.

New pseudo-ops CGetEPCC, CSetEPCC, CGetKCC, CSetKCC, CGetKDC, and CSetKDC have been
defined, in the interests of better supporting a migration of ‘special’ registers out of the
capability register file – which facilitates a convergence of capability and general-purpose
integer register files.

1.14 Two new chapters have been added, one describing the abstract CHERI protection model
in greater detail (and independent from concrete ISA changes), and the second explor-
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ing the composition of CHERI’s ISA-level features in supporting higher-level software
protection models.

The value of the NULL capability is now centrally defined (all fields zero; untagged).

ClearLo and ClearHi instructions are now defined for clearing general-purpose integer
registers, supplementing CClearHi and CClearLo. All four instructions are described to-
gether under CClearRegs.

A new CSetBoundsExact instruction is defined, allowing an exception to be thrown if an
attempt to narrow bounds cannot occur precisely. This is intended for use in memory
allocators where it is a software invariant that bounds are always exact. A new exception
code is defined for this case.

A full range of data widths are now support for capability-relative load-linked, store
conditional: CLLB, CLLH, CLLW, CLLD, CSCB, CSCH, CSCW, and CSCD (as well as unsigned load-
linked variations). Previously, only a doubleword variation was defined, but cannot be
used to emulate the narrower widths as fine-grained bounds around a narrow type would
throw a bounds-check exception. Existing load-linked, store-conditional variations for
capabilities (CLLC, CSCC) have been updated, including with respect to opcode assign-
ments.

A new ‘candidate three’ variation on compressed capabilities has been defined, which
differentiates sealed and unsealed formats. The unsealed variation invests greater num-
bers of bits in bounds accuracy, and has a full 64-bit cursor, but does not contain a broader
set of software-defined permissions or an object-type field. The sealed variation also has
a full 64-bit cursor, but has reduced bounds accuracy in return for a 20-bit object-type
field and a set of software-defined permissions.

‘Candidate two’ of compressed capabilities has been updated to reflect changes in the
hardware prototype by reducing toBase and toBound precision by one bit each.

Explicit equations have been added explaining how bounds are calculated from each of
the 128-bit compressed capability candidates, as well as their alignment requirements.

Exception priorities have been documented (or clarified) for a number of instructions
including CJALR, CLC, CLLD, CSC, CSCC, CSetLen, CSeal, CUnSeal, and CSetBounds.

The behavior of CPtrCmp is now defined when an undefined comparison type is used.

It is clarified that capability store failures due to TLB-enforced limitations on capability
stores trigger a TLB, rather than a CP2, exception.

A new capability comparison instruction, CEXEQ, checks whether all fields in the capabil-
ity are equal; the previous CEQ instruction checked only that their offsets pointed at the
same location.

A new capability instruction, CSUB, allows the implementation of C-language pointer sub-
traction semantics with the atomicity properties required for garbage collection.

The list of BERI- and CHERI-related publications, including peer-reviewed conference
publications and technical reports, has been updated.
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1.15 - UCAM-CL-TR-876 This version of the CHERI ISA, CHERI ISAv4, has been prepared
for publication as a University of Cambridge technical report.

The instructions CIncBase and CSetLen (deprecated in version 1.13 of the CHERI ISA)
have now been removed in favor of CSetBounds (added in version 1.12 of the CHERI
ISA). The new instruction was introduced in order to atomically expose changes to both
upper and lower bounds of a capability, rather than requiring them to be updated sepa-
rately, required to implement compressed capabilities.

The design rationale has been updated to better describe our ongoing exploration of
whether special registers (such as KCC) should be in the capability register file, and
the potential implications of shifting to a userspace exception handler for CCall/CReturn.

1.16 This is an interim update of the instruction-set specification in which aspects of the 128-
bit capability model are clarified and extended.

The “candidate 3” unsealed 128-bit compressed capability representation has been to in-
crease the exponent field (e) to 6 bits from 4, and the baseBits and topBits fields have
been reduced to 20 bits each from the 22 bits. perms has been increased from 11 to 15 to
allow for a larger set of software-defined permissions. The sealed representation has also
been updated similarly, with a total of 10 bits for otype (split over otypeLow and otype-
High), 10 bits each for baseBits and topBits, and a 6-bit exponent. The algorithm for
decompressing a compressed capability has been changed to better utilize the encoding
space, and to more clearly differentiate representable from in-bounds values. A variety
of improvements and clarifications have been made to the compression model and its
description.

Differences between, and representations of, permissions for 128-bit and 256-bit capa-
bility are now better described.

Capability unrepresentable exceptions will now be thrown in various situations where the
result of a capability manipulation or operation cannot be represented. For manipulations
such as CSeal and CFromPtr, an exception will be thrown. For operations such as CBTU and
CBTS, the exception will be thrown on the first instruction fetch following a branch to an
unrepresentable target, rather than on the branch instruction itself. CHERI1 and CHERI2
no longer differ on how out-of-bounds exceptions are thrown for capability branches: it
uniformly occurs on fetching the target instruction.

The ISA specification makes it more clear that CEQ, CNE, CL[TE]U, and CEXEQ are forms of
the CPtrCmp instruction.

The ISA todo list has been updated to recommend a capability conditional-move (CCMove)
instruction.

There is now more explicit discussion of the MIPS n64 ABI, Hybrid ABI, and Pure-
Capability ABI. Conventions for capability-register have been updated and clarified – for
example, register assignments for the stack capability, jump register, and link register.
The definition that RCC, the return code capability, is register C24 has been updated to
reflect our use of C17 in actual code generation.
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Erroneous references to an undefined instruction CSetBase, introduced during removal of
the CIncBase instruction, have been corrected to refer to CSetBounds.

1.17 This is an interim update of the instruction-set architecture enhancing (and specifying in
more detail) the CHERI-128 “compressed” 128-bit capability format, better aligning the
128-bit and 256-bit models, and adding capability-related instructions required for more
efficient code generation. This is a draft release of what will be considered CHERI ISAv5.

The chapter on ISA design now includes a section describing “deep” versus “surface”
aspects of the CHERI model as mapped into the ISA. For example, use of tagged capa-
bilities is a core aspect of the model, but the particular choice to have a separate capability
register file, rather than extending general-purpose integer registers to optionally hold ca-
pabilities, is a surface design choice in that the operating system and compiler can target
the same software-visible protection model against both. Likewise, although CHERI-128
specifies a concrete compression model, a range of compression approaches are accepted
by the CHERI model.

A new chapter has been added describing some of our assumptions about how capabil-
ities will be used to build secure systems, for example, that untrusted code will not be
permitted to modify TLB state – which permits changing the interpretation of capabilities
relative to virtual addresses.

The rationale chapter has been updated to more thoroughly describe our capability com-
pression design space.

A new CHERI ISA quick-reference appendix has been added to the specification, docu-
menting both current and proposed instruction encodings.

Sections of the introduction on historical context have been shifted to a stand-alone chap-
ter.

Descriptions in the introduction have been updated relating to our hardware and software
prototypes.

References to PhD dissertations on CHERI have been added to the publications section
of the introduction.

A clarification has been added: the use of the term “capability coprocessor” relates to
CHERI’s utilization of the MIPS ISA coprocessor opcode space, and is not intended to
suggest substantial decoupling of capability-related processing from the processor de-
sign.

Compressed capability “candidate 3” is now CHERI-128. The baseBits, topBits and
cursor fields have been renamed respectively B, T and a (following the terminology
used in the micro paper). When sealed, only the top 8 bits of the B and T fields are
preserved, and the bottom 12 bits are zeroes, which implies stronger alignment require-
ments for sealed capabilities. The exponent e field remains a 6-bit field, but its bottom
2 bits are ignored, as it is believed that coarser granularity is acceptable, and making the
hardware simpler. The otype field benefits from the shorter B and T fields and is now
24 bits – which is the same as the otype for 256-bit CHERI. Finally, the representable
region associated with a capability has changed from being centred around the described
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object to an asymmetric region with more space above the object than below. The full
description is available in Section 3.4.4.

Alignment requirements for software allocators (such as stack and heap allocators) in the
presence of capability compression are now more concisely described.

The immediate operands to various load and store instructions, including CLC, CSC, CL[BHWD][U],
and CS[BHWD] are now “scaled” by the width of the data being stored (with the exception
of capability stores, where scaling is by 16 bytes regardless of in-memory capability size).
This extends the range of capability-relative loads and stores, permitting a far greater pro-
portion of stack spills to be expressed without additional stack-pointer modification. This
is a binary-incompatible change to the ISA.

The textual description of the CSeal instruction has been updated to match the pseu-
docode in using >= rather than > in selecting an exception code.

A redundant check has been removed in the definition of the CUnseal instruction, and an
explanation added.

Opcodes have now been specified for the CSetBoundsExact and CSub instructions.

To improve code generation when constructing a PCC-relative capability as a jump tar-
get, a new CGetPCCSetOffset instruction has been added. This instruction has the com-
bined effects of performing sequential CGetPCC and CSetOffset operations.

A broader set of opcode rationalizations and cleanups have been applied across the ISA,
to facilitate efficient decoding and future use of the opcode space. This includes changes
to CGetPCC.

C25 is no longer reserved for exception-handler use, as C27 and C28 are already reserved
for this purpose. It is therefore available for ABI use.

The 256-bit architectural capability model has been updated to use a single system per-
mission, Access_System_Registers, to control access to exception-handling and privi-
leged ISA state, rather than splitting it over multiple permissions. This brings the per-
mission models in 128-bit and 256-bit representations back into full alignment from a
software perspective. This also simplifies permission checking for instructions such
as CClearRegs. The permission numbering space has been rationalized as part of this
change. Similarly, the set of exceptions has been updated to reflect a single system per-
mission. The descriptions of various instructions (such as CClearRegs have been updated
with respect to revised protections for special registers and exception handling.

The descriptions of CCall and CReturn now include an explanation of additional software-
defined behavior such as capability control-flow based on the local/global model.

The common definition of privileged registers (included in the definitions of instructions)
has been updated to explicitly include EPCC.

Future ISA additions are proposed to add testing of branch instructions for NULL and
non-NULL capabilities.

1.18 - UCAM-CL-TR-891 This version of the CHERI ISA, CHERI ISAv5, has been prepared
for publication as a University of Cambridge technical report.
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The chapter on the CHERI protection model has been refined and extending, including
adding more information on sealed capabilities, the link between memory allocation and
the setting of bounds and permissions, more detailed coverage of capability flow control,
and interactions with MMU-based models.

A new chapter has been added exploring assumptions that must be made when building
high-assurance software for CHERI.

The detailed ISA version history has shifted from the introduction to a new appendix;
a summary of key versions is maintained in the introduction, along with changes in the
current document version.

A glossary of key terms has been added.

The term “coprocessor” is deemphasized, as, while it refers correctly to CHERI’s use
of the MIPS opcode extension space, some readers found it suggestive of an indepen-
dent hardware unit rather than tight integration into the processor pipeline and memory
subsystem.

A reference has been added to Robert Norton’s PhD dissertation on optimized CHERI
domain switching.

A reference has been added to our PLDI 2016 paper on C-language semantics and their
interaction with the CHERI model.

The object-type field in both 128-bit and 256-bit capabilities is now 24 bits, with Top
and Bottom fields reduced to 8 bits for sealed capabilities. This reflects a survey of
current object-oriented software systems, suggesting that 24 bits is a more reasonable
upper bound than 20 bits.

The assembly arguments to CJALR have been swapped for greater consistency with jump-
and-link register instructions in the MIPS ISA.

We have reduced the number of privileged permissions in the 256-bit capability model
to a single privileged permission, Access_System_Registers, to match 128-bit CHERI.
This is a binary-incompatible change.

We have improved the description of the CHERI-128 model in a number of ways, includ-
ing a new section on the CHERI-128 representable bounds check.

The architecture chapter contains a more detailed discussion of potential ways to reduce
the overhead of CHERI by reducing the number of capability registers, converging the
general-purpose integer and capability register files, capability compression, and so on.

We have extended our discussion of “deep” vs “shallow” aspects of the CHERI model.

New sections describe potential non-pointer uses of capabilities, as well as possible uses
as primitives supporting higher-level languages.

Instructions that convert from integers to capabilities now share common int_to_cap

pseudocode.

The notes on CBTS have been synchronized to those on CBTU.
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Use of language has generally been improved to differentiate the architectural 256-bit
capability model (e.g., in which its fields are 64-bit) from the 128-bit and 256-bit in-
memory representations. This includes consideration of differing representations of ca-
pability permissions in the architectural interface (via instructions) and the microarchi-
tectural implementation.

A number of descriptions of features of, and motivations for, the CHERI design have
been clarified, extended, or otherwise improved.

It is clarified that when combining immediate and register operands with the base and
offset, 64-bit wrap-around is permitted in capability-relative load and store instructions
– rather than throwing an exception. This is required to support sound optimizations in
frequent compiler-generated load/store sequences for C-language programs.

1.19 This release of the CHERI Instruction-Set Architecture (ISA) Specification is an interim
version intended for submission to DARPA/AFRL to meet the requirements of CTSRD
deliverable A015.

The behavior of CToPtr in the event that the pointer of one capability is to the base of the
containing capability has been clarified.

The Access_System_Registers permission is extended to cover non-CHERI ISA priv-
ileges, such as use of MIPS TLB-management, interrupt-control, exception-handling,
and cache-control instructions available in the kernel ring. The aim of these in-progress
changes is to allow the compartmentalization of kernel code.

1.20 - UCAM-CL-TR-907 This version of the CHERI ISA, CHERI ISAv6, has been prepared
for publication as University of Cambridge technical report UCAM-CL-TR-907.

Chapter 1 has been substantially reformulated, providing brief introductions to both the
CHERI protection model and CHERI-MIPS ISA, with much remaining content on our
research methodology now shifted to its own new chapter, Chapter 10. Our architec-
tural and application-level least-privilege motivations are now more clearly described, as
well as hybrid aspects of the CHERI approach. Throughout, better distinction is made
between the CHERI protection model and the CHERI-MIPS ISA, which is a specific in-
stantiation of the model with respect to 64-bit MIPS. The research methodology chapter
now provides a discussion of our overall approach, more detailed descriptions of vari-
ous phases of our research and development cycle, and describes major transitions in our
approach as the project proceeded.

Chapter 2 on the software-facing CHERI protection model has been improved to pro-
vide more clear explanations of our approach as well as additional illustrations. The
chapter now more clearly enunciates two guiding principles underlying the CHERI ISA
design: the principle of least privilege, and the principle of intentional use. The former
has been widely considered in the security literature, and motivates privilege reduction
in the CHERI ISA. The latter has not previously described, and is supports the use of
explicitly named rights, rather than implicitly selected ones, wherever possible in order
to avoid ‘confused deputy’ problems. Both contribute to vulnerability mitigation effects.
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New sections have been added on revocation and garbage collection. The role and im-
plementation of monotonicity (and also non-monotonicity) in the ISA are more clearly
described.

A chapter on architectural sketches has been added, describing how the CHERI protec-
tion model might be introduced in the RISC-V and x86-64 ISAs. In doing so, we identify
a number of key aspects of the CHERI model that are required regardless of the under-
lying ISA. We argue that the CHERI protection model is a portable model that can be
implemented consistently across a broad range of underlying ISAs and concrete integra-
tions with those ISAs. One implication of this argument is that portable CHERI-aware
software can be implemented across underlying architectural implementations.

Chapter 3 now describes, at a high level, CHERI’s expectations for tagged memory.

We in general now prefer the phrase “control-flow robustness” to “control-flow integrity”
when talking about capability protection for code pointers, in order to avoid confusion
with conventional CFI.

The descriptions of software-defined aspects of the CCall and CReturn instructions have
been removed from the description and pseudocode of each instruction. They are instead
part of an expanded set of notes on potential software use for these instructions.

A new CCall selector 1 has been added that provides a jump-like domain transition with-
out use of an architectural exception. In this mode of operation, CCall unseals the sealed
code and data capabilities to enter the new domain, offering a different set of hardware
and software tradeoffs from the existing selector-0 semantics. For example, complex
exception-related mechanism is avoided in hardware for domain switches, with the po-
tential to substantially improve performance. Software would most likely use this mech-
anism to branch into a trusted intermediary capability of supporting safe and controlled
switching to a new object.

To support the new CCall selector 1, a new permission, Permit_CCall is defined autho-
rizing use of the selector on sealed capabilities. The permission must be present on both
sealed code and data capabilities.

To support the new CCall selector 1, a new CP2 exception cause code, Permit_CCall
Violation is defined to report a lack of the Permit_CCall permission on sealed code or
data capabilities passed to CCall.

New experimental instructions CBuildCap (import a capability), CCopyType (import the
otype field of a capability), and CCSeal (conditionally seal a capability) have been added
to the ISA to be used when re-internalizing capabilities that have been written to non-
capability-aware memory or storage. This instruction is intended to satisfy use cases
such as swapping to disk, migrating processes, migrating virtual machines, and run-time
linking. A suitable authorizing capability is required in order to restore the tag. As these
instructions are considered experimental, they are documented in Appendix D rather than
the main specification.

The CGetType instruction now returns −1 when used on an unsealed capability, in order
to allow it to be more easily used with CCSeal.
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Two new conditional-move instructions are added to the CHERI-MIPS ISA: CMOVN (con-
ditionally move capability on non-zero), and CMOVZ (conditionally move capability on
zero). These complement existing conditional-move instructions in the 64-bit MIPS ISA,
allowing more efficient generated code.

The CJR (capability jump register) and CJALR (capability jump and link register) have been
changed to accept non-global capability jump targets.

The CLC (capability load capability) and CLLC (capability load-linked conditional) in-
structions will now strip loaded tags, rather than throwing an exception, if the Per-
mit_Load_Capability permission is not present.

The CToPtr (capability to pointer) instruction now checks that the source register is not
sealed, and performs comparative range checks of the two source capabilities. More
detailed rationale has been provided for the design of the CToPtr instruction in Chapter 8.

The pseudocode for the CCheckType (capability check type) instruction has been corrected
to test uperm as well as perm. The pseudocode for CCheckType has been corrected to test
the sealed bit on both source capabilities. An encoding error for CCheckType in the ISA
quick reference has been corrected.

The pseudocode for the CGetPerm (capability get permissions) instruction has been up-
dated to match syntax used in the CGetType and CGetCause instructions.

The pseudocode for the CUnseal (capability unseal) instruction has been corrected to
avoid an aliasing problem when the source and destination register are the same.

The description of the CSeal (capability seal) instruction has been clarified to explain that
precision cannot be lost in the case where bounds are no longer precisely representable,
as an exception will be thrown.

The description of the fast representability check for compressed capabilities has been
improved.

CHERI-related exception handling behavior is now clarified with respect to the MIPS
EXL status bit, with the aim of ensuring consistent behavior. Regardless of bounds set
on KCC, a suitable offset is selected so that the standard MIPS exception vector will be
executed via the exception PCC.

The section on CHERI control in Chapter 4 has been clarified to more specifically iden-
tify 64-bit MIPS privileged instructions, KSU bits, and general operation modified by the
Access_System_Registers permission. The section now also more specifically described
privileged behaviors not controlled by the permission, such as use of specific exception
vectors. A corresponding rationale section has been added to Chapter 8.

A number of potential future instruction-set improvements relating to capability com-
pression, control flow, and instruction variants with immediates have been added to the
future ISA changes list in Chapter 3.

Opcode-space reservations for the previously removed CIncBase and CSetLen instructions
have also been removed.
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C25, which had its hard-coded ISA use removed in CHERI ISAv5, has now been made
a caller-save capability register in the ABI.

Citations to further CHERI research publications have been added.

1.21 This release of the CHERI Instruction-Set Architecture is an interim version intended for
submission to DARPA/AFRL to meet the requirements of CTSRD deliverable A001, and
contains the following changes relative to CHERI ISAv6:

The ISA encoding reference has been updated for new experimental instructions.

A new CNExEq instruction has been added, which provides a more efficient implementa-
tion of a test for negative exact inequality than utilizing CExEq and inverting the result.

Specify that when a TLB exception results from attempting to store a tagged capability
via a TLB entry that does not authorize tagged store, the MIPS EntryHi register will be
set correspondingly.

7.0-ALPHA1 This release of the CHERI Instruction-Set Architecture is an interim version in-
tended for submission to DARPA/AFRL to meet the requirements of CTSRD deliverable
A001:

• The CHERI ISA specification version numbering scheme has changed to include
the target major version in the draft version number.

• A significant refactoring of early chapters in the report has taken place: there is now
a more clear distinction between architecture-neutral aspects of CHERI, and those
that are architecture specific. The CHERI-MIPS ISA is now its own chapter distinct
from architecture-neutral material. We have aimed to maximize architecture-neutral
content – e.g., capability semantics and contents, in-memory representation, com-
pression, etc. – using the architecture-specific chapters to address only architecture-
specific aspects of the mapping of CHERI into the specific architecture – e.g., as re-
lates to register-file integration, exception handling, and the Memory Management
Unit (MMU). In some areas, content must be split between architecture-neutral
and architecture-specific chapters, such as behavior on reset, handling of the Sys-
tem_Access_Registers permission and its role in controlling architecture-specific
behavior, and the integration of CHERI with virtual memory, where the goals are
largely architecture neutral but mechanism is architecture specific.

• There are now dedicated chapters for each of our applications of CHERI to each
of three ISAs: 64-bit MIPS (Chapter 4), 64-bit RISC-V (Chapter 5), and x86-64
(Chapter 6).

• Our CHERI-RISC-V prototype has been substantially elaborated, and now includes
an experimental encoding in Appendix C. We have somewhat further elaborated our
x86-64 model, including addressing topics such as new page-table bits for CHERI,
including a hardware-managed capability dirty bit. We also consider potential im-
plications for RISC-V compressed instructions.
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• We have completed an opcode renumbering for CHERI-MIPS. The “proposed new
encoding” from CHERI ISAv6 has now become the established encodings; the prior
encodings are now documented as “deprecated encodings”.

• Substantial improvements have been made to descriptive text around memory pro-
tection, with the concept of “pointer protection” – i.e., as implemented via tags –
more clearly differentiated from memory protection.

• We now more clearly describe how terms like “lower bound” and “upper bound”
relate to the base, offset, and length fields.

• We now more clearly differentiate language-level capability semantics from capa-
bility use in code generation and the ABI, considering pure-capability and hybrid
C as distinct from pure-capability and hybrid code generation. We explain that dif-
ferent language-level integer interpretations of capabilities are supportable by the
architecture, depending on compiler code-generation choices.

• Potential software policies for revocation, garbage collection, and capability flow
control based on CHERI primitives are described in greater detail.

• Monotonicity is more clearly described, as are the explicit opportunities for non-
monotonicity around exception handling and CCall Selector 1. Handling of disal-
lowed requests for non-monotonicity or bypass of guarded manipulation by soft-
ware is more explicitly discussed, including the opportunities for both exception
throwing and tag stripping to maintain CHERI’s invariants.

• Further notes have been added regarding the in-memory representation of capabil-
ities, including the storage of NULL capabilities, virtual addresses for non-NULL
capabilities, and how to store integer values in untagged capability registers. These
values now appear in the bottom 64 bits of the in-memory representation. Topics
such as endianness are also considered.

• NULL capabilities are now defined as having a base of 0x0, the maximum length
supported in a particular representation (264 for 128-bit capabilities, and 264− 1 for
256-bit capabilities), and no granted permissions. NULL capabilities continue to
have an all zeros in-memory representation. This allows integers to be stored in the
offset of an untagged capability without concern that they may hold values that are
unrepresentable with respect to capability bounds.

• New instructions CReadHwr and CWriteHwr have been added. These have allowed us
to migrate special capability registers (SCRs) out of the general-purpose capability
register file, including DDC, the new user TLS register (CULR), the new privileged
TLS register (CPLR), KR1C, KR2C, KCC, KDC, and EPCC. Access to privi-
leged special registers continues to be authorized by the Access_System_Registers
permission on PCC.

• With this migration, C0 is now available to use as a NULL capability register, which
is more consistent with the baseline MIPS ISA in which R0 is the zero register. The
only exception to this is in capability-relative load and store instructions, and the
CTestSubset instruction, in which an operand of C0 specifies that DDC should be
used.
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• Various instruction pseudo-ops to access special registers, such as CGetDefault, now
expand to special capability register access instructions instead of capability move
instructions.

• With consideration of merged rather than split integer and capability register files
for RISC-V and x86-64, and a separation between general-purpose capability regis-
ters and special capability registers (SCRs) on 64-bit MIPS, we avoid describing the
integer register file as the “general-purpose register file”. We describe a number of
tradeoffs around ISA design relating to using a split vs. merged register file; avoid-
ing the use of specific capability registers as special registers assists in supporting
both register-file approaches.

• The CPU reset state of various capability registers is now more clearly defined.
Most capability registers are initialized to NULL on reset, with the exception of
DDC, PCC, KCC, and EPCC. These defaults authorize initial access to memory
for the boot process, and are designed to allow CHERI-unaware code to operate
oblivious to the capability-system feature set.

• We more clearly describe design choices around failure-mode choices, including
throwing exceptions and clearing tag bits. Here, concerns in conclude stylistic con-
sistency with the host architecture, potential use cases, and interactions with the
compiler and operating system.

• In general, we now refer to software-defined permissions rather than user-defined
permissions, as these permissions without an architectural interpretation may be
used in any ring.

• Permission numbering has been rationalized so that 128-bit and 256-bit microarchi-
tectural permission numbers consistently start at 15.

• The existing permission Permit_Seal, which authorized sealing and explicit unseal-
ing of sealed capabilities, has now been broken out into two separate permissions:
Permit_Seal, which authorizes sealing, and Permit_Unseal, which authorizes ex-
plicit unsealing. This will allow privilege to be reduced where unsealing is desir-
able (e.g., within object implementations, or in C++ vtable use) by not requiring
that permission to seal for the object type is also granted.

• The ISA quick reference has been updated to reflect new instructions, as well as to
more correctly reflect endianness.

• We have added a reference to a new technical report, Capability Hardware En-
hanced RISC Instructions (CHERI): Notes on the Meltdown and Spectre Attacks [147],
which considers the potential interactions between CHERI and the recently an-
nounced Spectre and Meltdown microarchitectural side-channel attacks. CHERI
offers substantial potential to assist in mitigating aspects of these attacks, as long
as the microarchitecture performs required capability checks before performing any
speculative memory accesses.

• We have added two new instructions, Get the architectural Compartment ID (CGetCID)
and Set the architectural Compartment ID (CSetCID), which allow information on
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compartments to be passed to via architecture to microarchitecture in order to sup-
port mitigation of side-channel attacks. This could be used to tag branch-predictor
entries to control the compartments in which they can be used, for example. A new
Permit_Set_CID permission allows capabilities to delegate use of ranges of CIDs.

• Bugs have been fixed in the definitions of capability-relative load and store in-
structions: permission checks involving the Permit_Load, Permit_Load_Cap, Per-
mit_Store, and Permit_Store_Cap permissions were not properly updated from our
shift from an untagged capability register file to a tagged register file. All loads
now require Permit_Load. If Permit_Load_Cap is also present, then tags will not
be stripped when loading into a capability register. All stores now require Per-
mit_Store. If Permit_Store_Cap is also present, then storing a tagged capability
will not generate an exception.

• New Capability Set Bounds From Immediate (CSetBoundsImm) and Capability In-
crement Offset From Immediate (CIncOffsetImm) instructions have been added.
These instructions optimize global-variable setup and stack allocations by reduc-
ing the number of instructions and registers required to adjust pointer values and
set bounds.

• New Capability Branch if Not NULL (CBNZ) and Capability Branch if NULL (CBEZ)
instructions have been added, which optimize pointer comparisons to NULL.

• A new Capability to Address (CGetAddr) instruction allows the direct retrieval of a
capability’s virtual address, rather than requiring the base and offset to be separately
retrieved and added together. This facilitates efficient implementation of a CHERI C
variant in which all casts of capabilities to integers have virtual-address rather than
offset interpretation. A capability’s virtual address is now more directly defined
when we specify capability fields.

• We more clearly describe CCall Selector 1 as “exception-free domain transition”
rather than “userspace domain transition”, as it is also intended to be used in more
privileged rings.

• We have shifted to more consistently throwing an exception at jump instructions
(e.g., CJR) that go out of bounds, rather than throwing the exception when fetching
the first instruction at the target address. This provides more debugging informa-
tion when using compressed capabilities, as otherwise EPCC might have unrep-
resentable bounds in the event that the jump target is outside of the representable
region.

• The exception vectors use during failures of Selector 0 and Selector 1 CCall have
been clarified. The general-purpose exception vector is used for all failure modes
with CCall Selector 1.

• New experimental instruction Test that Capability is a Subset of Another (CTestSubset)
has been added. This instruction is intended to be used by garbage collectors that
need to rapidly test whether a capability points into the range of another capability.

• A new experimental 64-bit capability format for 32-bit virtual addresses has been
added (Section D.7).
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• A description of an experimental linear capability model has been added (Sec-
tion D.10). This model introduces the concept that a capability may be linear – i.e.,
that it can only be moved rather copied in memory-to-register, register-to-register,
and register-to-memory operations. This introduces two new instructions, Linear
Load Capability Register (LLCR) and Linear Store Capability Register (LSCR). This
functionality has not yet been fully specified.

• An experimental appendix considers possible implementations of indirect capabil-
ities, in which a capability value points at an actual capability to utilize, allowing
table-based capability lookups (Section D.11).

• An experimental appendix considering potential forms of compression for capabil-
ity permissions has been added (Section D.8).

• We have added a reference to our ICCD 2017 paper, Efficient Tagged Memory,
which describes how to efficiently implement tagged memory in memory subsys-
tems not supporting inline tags directly in DRAM [54].

7.0-ALPHA2 This version of the CHERI Instruction-Set Architecture is an interim version
distributed for review by DARPA and our collaborators:

• We have removed the range check from the CToPtr specification, as this has proven
microarchitecturally challenging. We anticipate that current consumers requiring
this range check can use the new CTestSubset instruction alongside CToPtr.

• Use of a branch-delay slot with CCall Selector 1 has been removed.

• With the addition of CReadHwr and CWriteHwr and shifting of special capability reg-
isters out of the general-purpose capability register file, we have now removed the
check for the Access_System_Registers permission for all registers in the general-
purpose capability register file.

• A new CCheckTag instruction is added, which throws an exception if the tag is not
set on the operand capability. This instruction could be used by a compiler to shift
capability-related exception behavior from invalid dereference to calculation of an
invalid capability via a non-exception-throwing manipulation.

• We have added a new CLCBI instruction that allows capability-relative loads of ca-
pabilities to be performed using a substantially larger immediate (but without a
general-purpose integer-register operand). This substantially accelerates perfor-
mance in the presence of CHERI-aware linkage by avoiding multi-instruction se-
quences to load capabilities for global variables.

• We have added new discussion relating to microarchitectural side channels such as
Spectre and Meltdown (Section 2.5).

• We have added a reference to our ASPLOS 2019 paper, CheriABI: Enforcing Valid
Pointer Provenance and Minimizing Pointer Privilege in the POSIX C Run-time
Environment, which describes how to adapt a full MMU-based OS design to support
ubiquitous use of capabilities to implement C and C++ pointers in userspace [28].
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• We have added a reference to our POPL 2019 paper, ISA Semantics for ARMv8-
A, RISC-V, and CHERI-MIPS, which describes a formal modeling approach for
instruction-set architectures, as well as a formal model of the CHERI-MIPS ISA [8].

• We have added a reference to our POPL 2019 paper, Exploring C Semantics and
Pointer Provenance, which describes a formal model for C pointer provenance, and
is evaluated in part using pure-capability CHERI code [78].

• We have added a description of an experimental compact capability coloring scheme,
a possible candidate to replace our Local-Global capability flow-control model
(Section D.13). In the proposed scheme, a series of orthogonal “colors” can be
set or cleared on capabilities, authorized by a color space implemented in a style
similar to the sealed-capability object-type space using a single permission. For a
single color implementing the Local-Global model, two bits are still used. How-
ever, for further colors, only a single bit is used. This could make available further
colors to use for kernel-user separation, inter-process isolation, and so on.

• An experimental Permit_Recursive_Mutable_Load permission is described, which,
if not present, causes further capabilities loaded via that capability to be loaded
without store permissions (see Section D.6).

• We have added a new experimental CLoadTags instruction that allows tags to be
loaded for a cache line without pulling data into the cache.

• A new experimental sealed entry capability feature is described, which permits en-
try via jump but otherwise do not allow dereferencing (Section D.12). These are
similar to enter capabilities from the M-Machine [18], and could provide utility in
providing further constraints on capability use for the purposes of memory protec-
tion – e.g., in the implementation of C++ v-tables.

• A new experimental memory type token feature is described, which provides an al-
ternative mechanism to object types within pairs of sealed capabilities (Section D.14).

7.0-ALPHA3 This version of the CHERI Instruction-Set Architecture is an interim version
distributed for review by DARPA and our collaborators:

• The CHERI Concentrate capability compression format is now documented, with a
more detailed rationale section than the prior CHERI-128 section.

• The CLCBI (Capability Load Capability with Big Immediate) instruction, which ac-
celerates position-independent access to global variables, is no longer considered
experimental.

• The architecture-neutral description of tagged memory has been clarified.

• The maximum supported lengths for both compressed and uncompressed capabili-
ties has been updated: 264 for 128-bit +capabilities, and 264− 1 for 256-bit capabil-
ities.

• It is clarified that CLoadTags instruction must provide cache coherency consistent
with other load instructions. We recommend “non-temporal” behavior, in which
unnecessary cache-line fills are avoided to limit cache pollution during revocation.
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• We now define the object type for unsealed capabilities, returned by the CGetType

instruction, as 264 − 1 rather than 0.

• An experimental section has been added on how CHERI capabilities might com-
pose with memory-versioning schemes such as Sparc ADI and Arm MTE (see Sec-
tion D.9).

• Pseudocode throughout the CHERI ISA specification is now generated from our
Sail formal model of the CHERI-MIPS ISA [8].

• The Glossary has been updated for CHERI ISAv7 changes including CHERI-RISC-
V, split vs. merged register files, capabilities for physical addresses, and special
capability registers.

• Capability exception codes are now shared across architectures.

• CHERI-RISC-V now includes capability-relative floating-point load and store in-
structions. We have clarified that existing RISC-V floating-point load and store
instructions are constrained by DDC.

• CHERI-RISC-V now throws exceptions, rather than clearing tags, when non-mono-
tonic register-to-register capability operations are attempted.

• While a specific encoding-mode transition mechanism is not yet specified for CHERI-
RISC-V, candidate schemes are described and compared in greater detail.

• CHERI-RISC-V’s “capability encoding mode” now has different impacts for un-
compressed instructions vs. compressed instructions: In the compressed ISA, jump
instructions also become capability relative.

• CHERI-RISC-V page-table entries now contain a “capability dirty bit” to assist
with tracking the propagation of capabilities.

• Throwing an exception on an out-of-bounds capability-relative jump rather than
on the target fetch is now more clearly explained: This improves debuggability
by maintaining precise information about context state on jump, whereas after the
jump, bounds may not be representable due to capability compression. When an
inappropriate EPCC is installed, the exception will still be thrown on instruction
fetch.

• A new ErrorEPCC special register has been defined, to assist with exceptions
thrown within exception handlers; its behavior is modeled on the existing MIPS
ErrorEPC special register.

7.0-ALPHA4 This version of the CHERI Instruction-Set Architecture is an interim version
distributed for review by DARPA and our collaborators:

• We have added new instructions CSetAddr (Set capability address to value from
register), CAndAddr (Mask address of capability – experimental), and CGetAndAddr

(Move capability address to an integer register, with mask – experimental), which
optimize common virtual-address-related operations in language runtimes such as
WebKit’s Javascript engine. These instructions cater better to a language mapping
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from C’s intptr_t type to the virtual address, rather than offset, of a capability,
which has been our focus previously. These complement the previously added
CGetAddr that allows easier compiler access to a capability’s virtual address.

• We have added two new experimental instructions, CRAM (Retrieve Mask to Align
Capabilities to Precisely Representable Address) and CRRL (Round to Next Precisely
Representable Value), which allow software to retrieve alignment information for
the base and length for a proposed set of bounds.

• CMove, which was previously an assembler pseudo-operation for CIncOffset, is now
a stand-alone instruction. This avoids the need to special case sealed capabilities
when CIncOffset is used solely to move, not to modify, a capability.

• The names of the instructions CSetBoundsImmediate and CIncOffsetImmediate have
been shortened to CSetBoundsImm and CIncOffsetImm.

• The instructions CCheckType and CCheckPerm have been deprecated, as they have not
proven to be particularly useful in implementing multi-protection-domain systems.

• We have added a new pseudo-operation, CAssertInBounds, described in Section 7.5.5,
allows an exception to be thrown if the address of a capability is not within bounds.

• The instruction CCheckTag has now been assigned an opcode.

• We have revised the encodings of many instructions in our draft CHERI-RISC-V
specification in Appendix C.

• We more clearly specify that when a special register write occurs to EPC, the result
is similar to CSetOffset but with the tag bit stripped, in the event of a failure, rather
than an exception being thrown.

• We have added a reference to our TaPP 2018 paper, Pointer Provenance in a Ca-
pability Architecture, which describes how architectural traces of pointer behavior,
visible through the CHERI instruction set, can be analyzed to understand software
and structure.

• We have added a reference to our ICCD 2018 paper, CheriRTOS: A Capability
Model for Embedded Devices, which describes an embedded variant of CHERI us-
ing 64-bit capabilities for 32-bit addresses, and how embedded real-time operating
systems might utilize CHERI features.

• We have revised our description of conventions for capability values, including
when used as pointers, to hold integers, and for NULL value, to more clearly de-
scribe their use. We more clearly describe the requirements for the in-memory rep-
resentation of capabilities, such as a zeroed NULL capability so that BSS behaves as
desired. We provide more clear architecture-neutral explanations of pointer deref-
erencing, capability permissions and their composition, the namespaces protected
by capability permissions, exception handling, exception priorities, virtual mem-
ory, and system reset. These definitions appear in Chapter 3. Chapter 4, which
describes CHERI-MIPS, has been shortened as a variety of content has been made
architectural neutral.
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• More detailed rationale is provided for our composition of CHERI with MIPS ex-
ception handling.

• We are more careful to use the term “pointer” to refer to the C-language type, verses
integer or capability values that maybe used by the compiler to implement pointers.

• With the advent of ISA variations utilizing a merged register file, we are more
careful to differentiate integer registers from general-purpose registers, as general-
purpose registers may also hold capabilities.

• We more clearly define the terms “upper bound” and “lower bound”.

• We now more clearly describe the effects of our principle of intentionality on capability-
aware instruction design in Section 3.6.

• We better describe the rationale for tagged capabilities in registers and memory, in
contrast to cryptographic and probabilistic protections, in Section 8.2.

• We have made a number of improvements to the CHERI-x86-64 sketch, described
in Chapter 6, to improve realism around trap handling and instruction design.

• We have rewritten our description of the interaction between CHERI and Direct
Memory Access (DMA) in Section 3.8.4. to more clearly describe tag-stripping
and capability-aware DMA options.

7.0 This version of the CHERI Instruction-Set Architecture is a full release of the Version 7
specification:

• We have now deprecated the CHERI-128 capability compression format, in favor
of CHERI Concentrate.

• The RISC-V AUIPC instruction now returns a PCC-relative capability in the capa-
bility encoding mode.

• Capabilities now contain a flags field, which will hold state that can be changed
without affecting privilege. Corresponding experimental CGetFlags and CSetFlags

instructions have been added. These are described in greater detail in Section D.1.

• The capability encoding-mode bit in CHERI-RISC-V is specified as a bit in the
flags field of a capability. The current mode is defined as the flag bit in the currently
installed PCC. Design considerations and other potential options are described in
Chapter 8.

• We now more explicitly describe the reset states of special and general-purpose
capability registers for CHERI-MIPS and CHERI-RISC-V.

• Compressed capabilities now contain a dedicated otype field that always holds an
object type (see sections 2.3.7 and 3.3.1), rather than stealing bounds bits for object
type when sealing. Now, any representable capability may be sealed. Several object
type values are reserved for architectural experimentation (see table 3.2).

• More detail is provided regarding the integration of CHERI Concentrate with spe-
cial registers, its alignment requirements, and so on.
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• Initial discussion of a disjoint capability tree for physical addresses and hardware fa-
cilities using these has been added to the experimental appendix, in appendix D.16.

• Initial discussion of a hybrid 64/128-bit capability design has been added to the
experimental appendix, in appendix D.15.

• We have added formal Sail instruction semantics for CHERI-RISC-V; this is cur-
rently in Appendix C.

• We have added a reference to our IEEE TC 2019 paper, CHERI Concentrate: Prac-
tical Compressed Capabilities, which describes our current approach to capability
compression.

• We have added a reference to Alexandre Joannou’s PhD dissertation, High-perform-
ance memory safety: optimizing the CHERI capability machine, which describes
approaches to improving the efficiency of capability compression and tagged mem-
ory.



360 APPENDIX A. CHERI ISA VERSION HISTORY



Appendix B

CHERI-MIPS ISA Quick Reference

This appendix provides a quick reference for CHERI-MIPS instruction encodings excluding
experimental instructions (see Appendix D).

B.1 Current Encodings

The following encodings are correct for implementations that exist at the time of this docu-
ment’s publication.

B.1.1 Capability-Inspection Instructions
056101115162021252631

0x12 0x0 rd cb 0x0 0x3f CGetPerm rd, cb

0x12 0x0 rd cb 0x1 0x3f CGetType rd, cb

0x12 0x0 rd cb 0x2 0x3f CGetBase rd, cb

0x12 0x0 rd cb 0x3 0x3f CGetLen rd, cb

0x12 0x0 rd cb 0x4 0x3f CGetTag rd, cb

0x12 0x0 rd cb 0x5 0x3f CGetSealed rd, cb

0x12 0x0 rd cb 0x6 0x3f CGetOffset rd, cb

0x12 0x0 cd 0x0 0x1f 0x3f CGetPCC cd

0x12 0x0 cd rs 0x7 0x3f CGetPCCSetOffset cd, rs

0x12 0x0 rd cb 0xf 0x3f CGetAddr rd, cb

0x12 0x0 rd cb rs 0x23 CGetAndAddr rd, cb, rs
056101115162021252631

0x12 0x0 rd cb 0x12 0x3f CGetFlags rd, cb
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B.1.2 Capability-Modification Instructions
056101115162021252631

0x12 0x0 cd cs ct 0xb CSeal cd, cs, ct

0x12 0x0 cd cs ct 0xc CUnseal cd, cs, ct

0x12 0x0 cd cs rt 0xd CAndPerm cd, cs, rt

0x12 0x0 cd cs rt 0xe CSetFlags cd, cs, rt

0x12 0x0 cd cs rt 0xf CSetOffset cd, cs, rt

0x12 0x0 cd cs rt 0x8 CSetBounds cd, cs, rt

0x12 0x0 cd cs rt 0x9 CSetBoundsExact cd, cs, rt

0x12 0x14 cd cb length CSetBoundsImm cd, cb, length

0x12 0x0 cd cb 0xb 0x3f CClearTag cd, cb

0x12 0x0 cd cb rt 0x11 CIncOffset cd, cb, rt

0x12 0x13 cd cb increment CIncOffsetImm cd, cb, increment

0x12 0x0 cd cb ct 0x1d CBuildCap cd, cb, ct

0x12 0x0 cd cb ct 0x1e CCopyType cd, cb, ct

0x12 0x0 cd cs ct 0x1f CCSeal cd, cs, ct

0x12 0x0 cd cs rs 0x22 CSetAddr cd, cs, rs

0x12 0x0 cd cb rs 0x24 CAndAddr cd, cb, rs

B.1.3 Pointer-Arithmetic Instructions
056101115162021252631

0x12 0x0 rd cb cs 0x12 CToPtr rd, cb, cs

0x12 0x0 cd cb rs 0x13 CFromPtr cd, cb, rs

0x12 0x0 rt cb cs 0xa CSub rt, cb, cs

0x12 0x0 cd cs 0xa 0x3f CMove cd, cs

0x12 0x0 cd cs rs 0x1b CMOVZ cd, cs, rs

0x12 0x0 cd cs rs 0x1c CMOVN cd, cs, rs

B.1.4 Pointer-Comparison Instructions
056101115162021252631

0x12 0x0 rd cb cs 0x14 CEQ rd, cb, cs
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0x12 0x0 rd cb cs 0x15 CNE rd, cb, cs

0x12 0x0 rd cb cs 0x16 CLT rd, cb, cs

0x12 0x0 rd cb cs 0x17 CLE rd, cb, cs

0x12 0x0 rd cb cs 0x18 CLTU rd, cb, cs

0x12 0x0 rd cb cs 0x19 CLEU rd, cb, cs

0x12 0x0 rd cb cs 0x21 CNEXEQ rd, cb, cs

0x12 0x0 rd cb cs 0x1a CEXEQ rd, cb, cs

B.1.5 Exception-Handling Instructions
056101115162021252631

0x12 0x0 rd 0x1 0x1f 0x3f CGetCause rd

0x12 0x0 rs 0x2 0x1f 0x3f CSetCause rs

B.1.6 Control-Flow Instructions
0151625 2021252631

0x12 0x9 cd offset CBTU cd, offset

0x12 0xa cd offset CBTS cd, offset

0x12 0x11 cd offset CBEZ cd, offset

0x12 0x12 cd offset CBNZ cd, offset

056101115162021252631

0x12 0x0 cb 0x3 0x1f 0x3f CJR cb

0x12 0x0 cd cb 0xc 0x3f CJALR cd, cb

0101115162021252631

0x12 0x05 cs cb selector CCall cs, cb[, selector]

0x12 0x05 0x0 0x0 0x7ff CReturn ; pseudo

B.1.7 Assertion Instructions
056101115162021252631

0x12 0x0 cs rt 0x8 0x3f CCheckPerm cs, rt

0x12 0x0 cs cb 0x9 0x3f CCheckType cs, cb

0x12 0x0 cs 0x6 0x1f 0x3f CCheckTag cs

0x12 0x0 rd cb ct 0x20 CTestSubset rd, cb, ct



364 APPENDIX B. CHERI-MIPS ISA QUICK REFERENCE

B.1.8 Special-Purpose Register access Instructions

0x12 0x0 cd sel 0xd 0x3f CReadHwr cd, selector

0x12 0x0 cb sel 0xe 0x3f CWriteHwr cb, selector

B.1.9 Fast Register-Clearing Instructions
015162021252631

0x12 0xf 0x0 mask ClearLo mask

0x12 0xf 0x1 mask ClearHi mask

0x12 0xf 0x2 mask CClearLo mask

0x12 0xf 0x3 mask CClearHi mask

0x12 0xf 0x4 mask FPClearLo mask

0x12 0xf 0x5 mask FPClearHi mask

B.1.10 Adjusting to Compressed Capability Precision Instructions
056101115162021252631

0x12 0x0 rt rs 0x10 0x3f CRoundRepresentableLength rs, rd

0x12 0x0 rt rs 0x11 0x3f CRepresentableAlignmentMask rs, rd

B.1.11 Memory-Access Instructions
0101115162021252631

0x3e cs cb rt offset CSC cs, rt, offset(cb)

0x36 cs cb rt offset CLC cd, rt, offset(cb)

0x1d cs cb offset CLCBI cd, offset(cb)

0123101115162021252631

0x32 rd cb rt offset s t CLx rd, rt, offset(cb)

0x32 rd cb rt offset 1 0 CLB rd, rt, offset(cb)

0x32 rd cb rt offset 1 1 CLH rd, rt, offset(cb)

0x32 rd cb rt offset 1 2 CLW rd, rt, offset(cb)

0x32 rd cb rt offset 0 0 CLBU rd, rt, offset(cb)

0x32 rd cb rt offset 0 1 CLHU rd, rt, offset(cb)

0x32 rd cb rt offset 0 2 CLWU rd, rt, offset(cb)
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0x32 rd cb rt offset 0 3 CLD rd, rt, offset(cb)

0x3a rs cb rt offset 0 t CSx rs, rt, offset(cb)

0x3a rs cb rt offset 0 0 CSB rs, rt, offset(cb)

0x3a rs cb rt offset 0 1 CSH rs, rt, offset(cb)

0x3a rs cb rt offset 0 2 CSW rs, rt, offset(cb)

0x3a rs cb rt offset 0 3 CSD rs, rt, offset(cb)

B.1.12 Atomic Memory-Access Instructions
01236101115162021252631

0x12 0x10 cd cb 0xf CLLC cd, cb

0x12 0x10 cs cb rd 0x7 CSCC rd, cs, cb

0x12 0x10 rd cb 1 s t CLLx rd, cb

0x12 0x10 rd cb 1 1 0 CLLB rd, cb

0x12 0x10 rd cb 1 1 1 CLLH rd, cb

0x12 0x10 rd cb 1 1 2 CLLW rd, cb

0x12 0x10 rd cb 1 0 0 CLLBU rd, cb

0x12 0x10 rd cb 1 0 1 CLLHU rd, cb

0x12 0x10 rd cb 1 0 2 CLLWU rd, cb

0x12 0x10 rd cb 1 0 3 CLLD rd, cb

0x12 0x10 rs cb rd 0 t CSCx rd, cb

0x12 0x10 rs cb rd 0 0 CSCB rd, cb

0x12 0x10 rs cb rd 0 1 CSCH rd, cb

0x12 0x10 rs cb rd 0 2 CSCW rd, cb

0x12 0x10 rs cb rd 0 3 CSCD rd, cb

B.1.13 Encoding Summary

All three-register-operand, non-memory-accessing CHERI-MIPS instructions use the follow-
ing encoding:

056101115162021252631

0x12 0x0 r1 r2 r3 func
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000 001 010 011 100 101 110 111
000 CGetPerm* CGetType* CGetBase* CGetLen* CGetCause* CGetTag* CGetSealed* CGetPCC*
001 CSetBounds CSetBoundsExact CSub CSeal CUnseal CAndPerm CSetFlags CSetOffset
010 UNUSED CIncOffset CToPtr CFromPtr CEQ CNE CLT CLE
011 CLTU CLEU CEXEQ CMovN** CMovZ** CBuildCap CCopyType CCSeal
100 CTestSubset CNEXEQ CSetAddr** CGetAndAddr** CAndAddr** UNUSED UNUSED UNUSED
101 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
110 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
111 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED Two Op†

* Deprecated encoding for instruction

** Reserved instruction slot for future opcode

† This value is used for two-operand instructions.

All two-operand instructions are of the following form:
056101115162021252631

0x12 0x0 r1 r2 func 0x3f

000 001 010 011 100 101 110 111
00 CGetPerm CGetType CGetBase CGetLen CGetTag CGetSealed CGetOffset CGetPCCSetOffset
01 CCheckPerm CCheckType CMove CClearTag CJALR CReadHwr CWriteHwr CGetAddr
10 CRRL CRAM CGetFlags UNUSED UNUSED UNUSED UNUSED UNUSED
11 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED CLoadTags* One Op†

* This instruction accesses tag memory.

† This value is used for one-operand instructions.

All one-operand instructions are of the following form:
056101115162021252631

0x12 0x0 r1 func 0x1f 0x3f

000 001 010 011 100 101 110 111
00 CGetPCC CGetCause CSetCause CJR CGetCID† CSetCID† CCheckTag UNUSED
01 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
10 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
11 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED

† Opcode may change

B.2 Deprecated Encodings
The following encodings were present in prior CHERI ISA versions, but have been deprecated.

B.2.1 Capability-Inspection Instructions
023101115162021252631

0x12 0x0 rd cb 0x0 CGetPerm rd, cb

0x12 0x0 rd cb 0x1 CGetType rd, cb
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0x12 0x0 rd cb 0x2 CGetBase rd, cb

0x12 0x0 rd cb 0x3 CGetLen rd, cb

0x12 0x0 rd cb 0x5 CGetTag rd, cb

0x12 0x0 rd cb 0x6 CGetSealed rd, cb

0x12 0x0d rd cb 0x2 CGetOffset rd, cb

0x12 0x0 cd 0x0 0x1f 0x3f CGetPCC cd

0x12 0x0 cd rs 0x7 0x3f CGetPCCSetOffset cd, rs

B.2.2 Capability-Modification Instructions
056101115162021252631

0x12 0x02 cd cs ct CSeal cd, cs, ct

0x12 0x03 cd cs ct CUnseal cd, cs, ct

02356101115162021252631

0x12 0x04 cd cb rt 0x0 CAndPerm cd, cb, rt

0x12 0x04 cd cb 0x5 CClearTag cd, cb

0x12 0x0d cd cb rt 0x0 CIncOffset cd, cb, rt

0x12 0x13 cd cb increment CIncOffsetImm cd, cb, increment

0x12 0x0d cd cb rt 0x1 CSetOffset cd, cb, rt

0x12 0x01 cd cb rt CSetBounds cd, cb, rt

0x12 0x0 cd cb rt 0x9 CSetBoundsExact cd, cb, rt

0x12 0x14 cd cb length CSetBoundsImm cd, cb, length

B.2.3 Pointer-Arithmetic Instructions
056101115162021252631

0x12 0x0c rd cb ct CToPtr rd, cb, ct

0x12 0x04 cd cb rt 0x7 CFromPtr cd, cb, rt

0x12 0x0 rt cb ct 0xa CSub rt, cb, ct

B.2.4 Pointer-Comparison Instructions
02356101115162021252631

0x12 0x0e rd cb ct 0 CEQ rd, cb, ct
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0x12 0x0e rd cb ct 1 CNE rd, cb, ct

0x12 0x0e rd cb ct 2 CLT rd, cb, ct

0x12 0x0e rd cb ct 3 CLE rd, cb, ct

0x12 0x0e rd cb ct 4 CLTU rd, cb, ct

0x12 0x0e rd cb ct 5 CLEU rd, cb, ct

0x12 0x0e rd cb ct 6 CEXEQ rd, cb, ct

B.2.5 Exception-Handling Instructions
02356101115162021252631

0x12 0x0 rd 0x0 0x4 CGetCause rd

0x12 0x04 0x0 0x0 rt 0x4 CSetCause rd

B.2.6 Control-Flow Instructions
0151625 2021252631

0x12 0x09 cd offset CBTU cd, offset

0x12 0x0a cd offset CBTS cd, offset

0x12 0x11 cd offset CBEZ cd, offset

0x12 0x12 cd offset CBNZ cd, offset
056101115162021252631

0x12 0x08 cb CJR cb

0x12 0x07 cd cb CJALR cd, cb

0101115162021252631

0x12 0x05 cs cb selector CCall cs, cb[, selector]

0x12 0x06 CReturn

B.2.7 Assertion Instructions
02356101115162021252631

0x12 0x0b cs rt 0x0 CCheckPerm cs, rt

0x12 0x0b cs cb 0x1 CCheckType cs, cb

B.2.8 Fast Register-Clearing Instructions
015162021252631

0x12 0xf 0x0 mask ClearLo mask
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0x12 0xf 0x1 mask ClearHi mask

0x12 0xf 0x2 mask CClearLo mask

0x12 0xf 0x3 mask CClearHi mask

0x12 0xf 0x4 mask FPClearLo mask

0x12 0xf 0x5 mask FPClearHi mask

B.2.9 Deprecated and Removed Instructions
0151625 2021252631

0x32 rd cb rt offset 1 3 CLLD rd, rt, offset(cb)

0x3a rs cb rt offset 1 3 CSCD rs, rt, offset(cb)
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Appendix C

CHERI-RISC-V ISA Quick Reference
(Draft)

C.1 Primary New Instructions
The RISC-V specification reserves 4 major opcodes for extensions: 11 (0xb / 0b0001011),
43 (0x2b / 0b0101011), 91 (0x5b / 0b1011011), and 123 (0x7b / 0b1111011). The proposed
CHERI encodings use major opcode 0x5b for all capability instructions.
All register-register operations use the RISC-V R-type format.

C.1.1 Capability-Inspection Instructions
067111214151920242531

0x7f 0x0 cs1 0 rd 0x5b CGetPerm rd, cs1

0x7f 0x1 cs1 0 rd 0x5b CGetType rd, cs1

0x7f 0x2 cs1 0 rd 0x5b CGetBase rd, cs1

0x7f 0x3 cs1 0 rd 0x5b CGetLen rd, cs1

0x7f 0x4 cs1 0 rd 0x5b CGetTag rd, cs1

0x7f 0x5 cs1 0 rd 0x5b CGetSealed rd, cs1

0x7f 0x6 cs1 0 rd 0x5b CGetOffset rd, cs1

0x7f 0x7 cs1 0 rd 0x5b CGetFlags rd, cs1

0x7f 0xf cs1 0 rd 0x5b CGetAddr rd, cs1

C.1.2 Capability-Modification Instructions
067111214151920242531

0xb cs2 cs1 0 cd 0x5b CSeal cd, cs1, cs2

0xc rs2 cs1 0 cd 0x5b CUnseal cd, cs1, rs2
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0xd rs2 cs1 0 cd 0x5b CAndPerm cd, cs1, rs2

0xe rs2 cs1 0 cd 0x5b CSetFlags cd, cs1, rs2

0xf rs2 cs1 0 cd 0x5b CSetOffset cd, cs1, rs2

0x11 rs2 cs1 0 cd 0x5b CIncOffset cd, cs1, rs2

increment cs1 1 cd 0x5b CIncOffsetImm cd, cs1, increment

0x8 rs2 cs1 0 cd 0x5b CSetBounds cd, cs1, rs2

0x9 rs2 cs1 0 cd 0x5b CSetBoundsExact cd, cs1, rs2

length cs1 2 cd 0x5b CSetBoundsImm cd, cs1, length

0x7f 0xb cs1 0 cd 0x5b CClearTag cd, cs1

0x1d cs2 cs1 0 cd 0x5b CBuildCap cd, cs1, cs2

0x1e cs2 cs1 0 cd 0x5b CCopyType cd, cs1, cs2

0x1f cs2 cs1 0 cd 0x5b CCSeal cd, cs1, cs2

C.1.3 Pointer-Arithmetic Instructions
067111214151920242531

0x12 cs2 cs1 0 rd 0x5b CToPtr rd, cs1, cs2

0x13 rs2 cs1 0 cd 0x5b CFromPtr cd, cs1, rs2

0x14 cs2 cs1 0 rd 0x5b CSub rd, cs1, cs2

0x7f 0xa cs1 0 cd 0x5b CMove cd, cs1

0x1 idx cs1 0 cd 0x5b CSpecialRW cd, cs1, idx

C.1.4 Control-Flow Instructions

0x7f 0xc cs1 0 cd 0x5b CJALR cd, cs1

0x7e cs2 cs1 0 selector 0x5b CCall cs1, cs2[, selector]

0x7e cs2 cs1 0 0x1F 0x5b CReturn ; pseudo

C.1.5 Assertion Instructions

0x20 cs2 cs1 0 rd 0x5b CTestSubset rd, cs1, cs2
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C.1.6 Fast Register-Clearing Instructions
0671112141517181920242531

0x7f 0xd q m[7:5] 0 m[4:0] 0x5b Clear q(uarter), m(ask)

0x7f 0x10 q m[7:5] 0 m[4:0] 0x5b FPClear q(uarter), m(ask)

C.1.7 Memory Loads with Explicit Address Type Instructions
These memory load instructions explicitly expect either capability addresses or integer offsets
to DDC, with bounds coming either from cb or DDC respectively. For non-reserved loads,
the encoding of bits 24 to 20 tries to follow the standard RISC-V mapping for the width and
signedness of the memory access:

bit 24 0 to indicate non-reserved load.

bit 23 When 0, the load is DDC relative. Explicit capability is provided otherwise.

bit 22 When 0, the result of the load is sign-extended, and zero-extended otherwise.

bit 21-20 00 loads a byte, 01 loads a half-word, 10 loads a word, 11 loads a double-word.

For reserved loads (which require the A extension), the encoding of bits 24 to 20 tries to follow
the standard RISC-V mapping for the width of the memory access:

bit 24 1 to indicate LR version of the load.

bit 23 When 0, the load is DDC relative. Explicit capability is provided otherwise.

bit 22-20 000 loads a byte, 001 loads a half-word, 010 loads a word, 011 loads a double-word,
100 loads a quad-word/capability.

Note that the RISC-V A extension (atomic) does not add unsigned versions of the LR instruc-
tion.
Note that the LQ{ddc, cap} instructions do not strictly follow this pattern.

067111214151920242531

0x7d 0x00 rs1 0 rd 0x5b LBddc rd, rs1

0x7d 0x01 rs1 0 rd 0x5b LHddc rd, rs1

0x7d 0x02 rs1 0 rd 0x5b LWddc rd, rs1

0x7d 0x03 rs1 0 rd 0x5b LDddc rd, rs1

0x7d 0x17 rs1 0 {rd, cd} 0x5b LQddc {rd, cd}, rs1

0x7d 0x04 rs1 0 rd 0x5b LBUddc rd, rs1

0x7d 0x05 rs1 0 rd 0x5b LHUddc rd, rs1
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0x7d 0x06 rs1 0 rd 0x5b LWUddc rd, rs1

0x7d 0x07 rs1 0 rd 0x5b LDUddc rd, rs1

0x7d 0x08 cb 0 rd 0x5b LBcap rd, cb

0x7d 0x09 cb 0 rd 0x5b LHcap rd, cb

0x7d 0x0a cb 0 rd 0x5b LWcap rd, cb

0x7d 0x0b cb 0 rd 0x5b LDcap rd, cb

0x7d 0x1f cb 0 {rd, cd} 0x5b LQcap {rd, cd}, cb

0x7d 0x0c cb 0 rd 0x5b LBUcap rd, cb

0x7d 0x0d cb 0 rd 0x5b LHUcap rd, cb

0x7d 0x0e cb 0 rd 0x5b LWUcap rd, cb

0x7d 0x0f cb 0 rd 0x5b LDUcap rd, cb

0x7d 0x10 rs1 0 rd 0x5b LRddc.B rd, rs1

0x7d 0x11 rs1 0 rd 0x5b LRddc.H rd, rs1

0x7d 0x12 rs1 0 rd 0x5b LRddc.W rd, rs1

0x7d 0x13 rs1 0 rd 0x5b LRddc.D rd, rs1

0x7d 0x14 rs1 0 {rd, cd} 0x5b LRddc.Q {rd, cd}, rs1

0x7d 0x18 cb 0 rd 0x5b LRcap.B rd, cb

0x7d 0x19 cb 0 rd 0x5b LRcap.H rd, cb

0x7d 0x1a cb 0 rd 0x5b LRcap.W rd, cb

0x7d 0x1b cb 0 rd 0x5b LRcap.D rd, cb

0x7d 0x1c cb 0 {rd, cd} 0x5b LRcap.Q {rd, cd}, cb

C.1.8 Memory Stores with Explicit Address Type Instructions
These memory store instructions explicitly expect either capability addresses or integer offsets
to DDC, with bounds coming either from cb or DDC respectively. The encoding of bits 11 to
7 tries to follow the standard RISC-V mapping for the width of the memory access:

bit 11 When 1 with the A extension, SC version of the store.

bit 10 When 0, the store is DDC relative. Explicit capability is provided otherwise.

bit 9-7 000 stores a byte, 001 stores a half-word, 010 stores a word, 011 stores a double-word,
100 stores a quad-word/capability.
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067111214151920242531

0x7c rs2 rs1 0 0x00 0x5b SBddc rs2, rs1

0x7c rs2 rs1 0 0x01 0x5b SHddc rs2, rs1

0x7c rs2 rs1 0 0x02 0x5b SWddc rs2, rs1

0x7c rs2 rs1 0 0x03 0x5b SDddc rs2, rs1

0x7c {rs2, cs} rs1 0 0x04 0x5b SQddc {rs2, cs}, rs1

0x7c rs2 cb 0 0x08 0x5b SBcap rs2, cb

0x7c rs2 cb 0 0x09 0x5b SHcap rs2, cb

0x7c rs2 cb 0 0x0a 0x5b SWcap rs2, cb

0x7c rs2 cb 0 0x0b 0x5b SDcap rs2, cb

0x7c {rs2, cs} cb 0 0x0c 0x5b SQcap {rs2, cs}, cb

0x7c rs2 rs1 0 0x10 0x5b SCddc.B rs2, rs1

0x7c rs2 rs1 0 0x11 0x5b SCddc.H rs2, rs1

0x7c rs2 rs1 0 0x12 0x5b SCddc.W rs2, rs1

0x7c rs2 rs1 0 0x13 0x5b SCddc.D rs2, rs1

0x7c {rs2, cs} rs1 0 0x14 0x5b SCddc.Q {rs2, cs}, rs1

0x7c rs2 cb 0 0x18 0x5b SCcap.B rs2, cb

0x7c rs2 cb 0 0x19 0x5b SCcap.H rs2, cb

0x7c rs2 cb 0 0x1a 0x5b SCcap.W rs2, cb

0x7c rs2 cb 0 0x1b 0x5b SCcap.D rs2, cb

0x7c {rs2, cs} cb 0 0x1c 0x5b SCcap.Q {rs2, cs}, cb

C.2 Memory-Access via Capability with Offset Instructions

C.2.1 Memory-Access Instructions

067111214151920242531

offset rs1 0x2 cd 0xf LC cd, rs1, offset

off[11:5] cs2 rs1 0x4 off[0:4] 0x23 SC cs2, rs1, offset
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C.2.2 Atomic Memory-Access Instructions
06710111214151619202425262731

0 acrl 0 cb 0 0x3 0 cd 0xb CLR.C cd, cb

0 acrl cs cb 1 0x3 0 rd 0xb CSC.C rd, cs, cb

C.3 Encoding Summary
CHERI-RISC-V general-purpose instructions use the 0x5b major opcode and most use the
R instruction format. CHERI-RISC-V uses the funct3 field from bits 14-12 as a top-level
opcode, and funct7 as a secondary opcode for standard 3-register operand instructions. Two-
register operand instructions and single-register operand instructions are a subset of the 3-
register operand encodings.

Top-level encoding allocation (funct3 field)
000 001 010 011 100 101 110 111

Three Op CIncOffsetImm CSetBoundsImm UNUSED UNUSED UNUSED UNUSED UNUSED

Three-operand encoding allocation (funct7 field)
All three-register-operand CHERI-RISC-V instructions use the RISC-V R encoding format,
with the same funct field stored in funct7 and a 0 value in funct3.

0xfunc rs1,cs2 cs1 0 cd 0x5b

000 001 010 011 100 101 110 111
0000 UNUSED CSpecialRW UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
0001 CSetBounds CSetBoundsExact UNUSED CSeal CUnseal CAndPerm CSetFlags CSetOffset
0010 UNUSED CIncOffset CToPtr CFromPtr CSub UNUSED UNUSED UNUSED
0011 UNUSED UNUSED UNUSED UNUSED UNUSED CBuildCap CCopyType CCSeal
0100 CTestSubset UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
0101 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
0110 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
0111 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
1000 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
1001 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
1010 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
1011 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
1100 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
1101 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
1110 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
1111 UNUSED UNUSED UNUSED UNUSED Stores Loads CCall Source & Dest

Stores encoding allocation (rd field)
Store instructions are of the following form:

067111214151920242531

0x7c {rs2, cs} {rs1, cb} 0 func 0x5b
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000 001 010 011 100 101 110 111
00 SBddc SHddc SWddc SDddc SQddc UNUSED UNUSED UNUSED
01 SBcap SHcap SWcap SDcap SQcap UNUSED UNUSED UNUSED
10 SCddc.B† SCddc.H† SCddc.W† SCddc.D† SCddc.Q† UNUSED UNUSED UNUSED
11 SCcap.B† SCcap.H† SCcap.W† SCcap.D† SCcap.Q† UNUSED UNUSED UNUSED

† The SC{ddc, cap}.{B, H, W, D, Q} instructions are only available when the RISC-V A extension (atomic) is present.

Loads encoding allocation (rs2 field)

Load instructions are of the following form:
067111214151920242531

0x7d func {rs1, cb} 0 {rd, cd} 0x5b

000 001 010 011 100 101 110 111
00 LBddc LHddc LWddc LDddc LBUddc LHUddc LWUddc LDUddc‡
01 LBcap LHcap LWcap LDcap LBUcap LHUcap LWUcap LDUcap‡
10 LRddc.B† LRddc.H† LRddc.W† LRddc.D† LRddc.Q† UNUSED UNUSED LQddc
11 LRcap.B† LRcap.H† LRcap.W† LRcap.D† LRcap.Q† UNUSED UNUSED LQcap

† The LR{ddc, cap}.{B, H, W, D, Q} instructions are only available when the RISC-V A extension (atomic) is present.

‡ LDU{ddc, cap} instructions are only available in RV128.

Source & Dest encoding allocation (rs2 field)

Source & Dest instructions are of the following form:
067111214151920242531

0x7f 0xfunc cs1 0 rd 0x5b

000 001 010 011 100 101 110 111
00 CGetPerm CGetType CGetBase CGetLen CGetTag CGetSealed CGetOffset CGetFlags
01 UNUSED UNUSED CMove CClearTag CJALR Clear UNUSED CGetAddr
10 FPClear UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
11 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED One Op†
† This value is used for one-operand instructions.

One-operand encoding allocation (rs1 field)

We do not currently have any one-register-operand instructions, but any future one-operand
instructions will be of the following form:

067111214151920242531

0x7f 0x1f 0xfunc 0 rd 0x5b

000 001 010 011 100 101 110 111
00 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
01 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
10 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
11 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
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C.4 CHERI-RISC-V Sail definitions
This section contains Sail definitions for the CHERI-RISC-V instructions. It is mostly identical
to the CHERI-MIPS definitions except for some differences in style and naming to accommo-
date the existing RISC-V model.

C.4.1 Capability Inspection

CGetPerm
let capVal = readCapReg(cb);

X(rd) = EXTZ(getCapPerms(capVal));

RETIRE_SUCCESS

CGetType
let capVal = readCapReg(cb);

X(rd) = if capVal.sealed

then EXTZ(capVal.otype)

else 0xffffffffffffffff;

RETIRE_SUCCESS

CGetBase
let capVal = readCapReg(cb);

X(rd) = to_bits(64, getCapBase(capVal));

RETIRE_SUCCESS

CGetLen
let capVal = readCapReg(cb);

let len65 = getCapLength(capVal);

X(rd) = to_bits(64, if len65 > MAX_U64 then MAX_U64 else len65);

RETIRE_SUCCESS

CGetTag
let capVal = readCapReg(cb);

X(rd) = EXTZ(capVal.tag);

RETIRE_SUCCESS

CGetSealed
let capVal = readCapReg(cb);

X(rd) = EXTZ(capVal.sealed);

RETIRE_SUCCESS



C.4. CHERI-RISC-V SAIL DEFINITIONS 379

CGetOffset
let capVal = readCapReg(cb);

X(rd) = to_bits(64, getCapOffset(capVal));

RETIRE_SUCCESS

CGetFlags
let capVal = readCapReg(cb);

X(rd) = EXTZ(getCapFlags(capVal));

RETIRE_SUCCESS

CGetAddr
let capVal = readCapReg(cb);

X(rd) = to_bits(64, getCapCursor(capVal));

RETIRE_SUCCESS

C.4.2 Capability Modification

CAndPerm
let cb_val = readCapReg(cb);

let rt_val = X(rt);

if not (cb_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cb);

RETIRE_FAIL

} else if cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else {

let perms = getCapPerms(cb_val);

let newCap = setCapPerms(cb_val, (perms & rt_val[30..0]));

writeCapReg(cd, newCap);

RETIRE_SUCCESS

}

CClearTag
let cb_val = readCapReg(cb);

writeCapReg(cd, {cb_val with tag=false});

RETIRE_SUCCESS
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CSetFlags
let cb_val = readCapReg(cb);

let rt_val = X(rt);

if cb_val.tag & cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else {

let newCap = setCapFlags(cb_val, truncate(rt_val, num_flags));

writeCapReg(cd, newCap);

RETIRE_SUCCESS

}

CSetOffset
let cb_val = readCapReg(cb);

let rt_val = X(rt);

if cb_val.tag & cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else {

let (success, newCap) = setCapOffset(cb_val, rt_val);

if success then

writeCapReg(cd, newCap)

else

writeCapReg(cd, int_to_cap(to_bits(64, getCapBase(cb_val)) + rt_val));

RETIRE_SUCCESS

}

CIncOffset
let cb_val = readCapReg(cb);

let rt_val = X(rt);

if cb_val.tag & cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else {

let (success, newCap) = incCapOffset(cb_val, rt_val);

if success then

writeCapReg(cd, newCap)

else

writeCapReg(cd, int_to_cap(cb_val.address + rt_val));

RETIRE_SUCCESS

}
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CIncOffsetImmediate
let cb_val = readCapReg(cb);

let imm64 : bits(64) = EXTS(imm);

if cb_val.tag & cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else {

let (success, newCap) = incCapOffset(cb_val, imm64);

if success then

writeCapReg(cd, newCap)

else

writeCapReg(cd, int_to_cap(cb_val.address + imm64));

RETIRE_SUCCESS

}

CSetBounds
let cb_val = readCapReg(cb);

let rt_val = unsigned(X(rt));

let cursor = getCapCursor(cb_val);

let base = getCapBase(cb_val);

let top = getCapTop(cb_val);

let newTop = cursor + rt_val;

if not (cb_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cb);

RETIRE_FAIL

} else if cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else if cursor < base then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else if newTop > top then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else {

let (_, newCap) = setCapBounds(cb_val, to_bits(64, cursor), to_bits(65, newTop));

writeCapReg(cd, newCap); /* ignore exact */

RETIRE_SUCCESS

}
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CSetBoundsExact
let cb_val = readCapReg(cb);

let rt_val = unsigned(X(rt));

let cursor = getCapCursor(cb_val);

let base = getCapBase(cb_val);

let top = getCapTop(cb_val);

let newTop = cursor + rt_val;

if not (cb_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cb);

RETIRE_FAIL

} else if cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else if cursor < base then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else if newTop > top then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else {

let (exact, newCap) = setCapBounds(cb_val, to_bits(64, cursor), to_bits(65,

newTop));

if not (exact) then {

handle_cheri_reg_exception(CapEx_InexactBounds, cb);

RETIRE_FAIL

} else {

writeCapReg(cd, newCap);

RETIRE_SUCCESS

}

}
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CSetBoundsImmediate
let cb_val = readCapReg(cb);

let immU = unsigned(imm);

let cursor = getCapCursor(cb_val);

let base = getCapBase(cb_val);

let top = getCapTop(cb_val);

let newTop = cursor + immU;

if not (cb_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cb);

RETIRE_FAIL

} else if cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else if cursor < base then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else if newTop > top then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else {

let (_, newCap) = setCapBounds(cb_val, to_bits(64, cursor), to_bits(65, newTop));

writeCapReg(cd, newCap); /* ignore exact */

RETIRE_SUCCESS

}
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CSeal
let cs_val = readCapReg(cs);

let ct_val = readCapReg(ct);

let ct_cursor = getCapCursor(ct_val);

let ct_top = getCapTop(ct_val);

let ct_base = getCapBase(ct_val);

if not (cs_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cs);

RETIRE_FAIL

} else if not (ct_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, ct);

RETIRE_FAIL

} else if cs_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cs);

RETIRE_FAIL

} else if ct_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, ct);

RETIRE_FAIL

} else if not (ct_val.permit_seal) then {

handle_cheri_reg_exception(CapEx_PermitSealViolation, ct);

RETIRE_FAIL

} else if ct_cursor < ct_base then {

handle_cheri_reg_exception(CapEx_LengthViolation, ct);

RETIRE_FAIL

} else if ct_cursor >= ct_top then {

handle_cheri_reg_exception(CapEx_LengthViolation, ct);

RETIRE_FAIL

} else if ct_cursor > max_otype then {

handle_cheri_reg_exception(CapEx_LengthViolation, ct);

RETIRE_FAIL

} else {

let (success, newCap) = sealCap(cs_val, to_bits(24, ct_cursor));

if not (success) then {

handle_cheri_reg_exception(CapEx_InexactBounds, cs);

RETIRE_FAIL

} else {

writeCapReg(cd, newCap);

RETIRE_SUCCESS

}

}



C.4. CHERI-RISC-V SAIL DEFINITIONS 385

CUnseal
let cs_val = readCapReg(cs);

let ct_val = readCapReg(ct);

let ct_cursor = getCapCursor(ct_val);

if not (cs_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cs);

RETIRE_FAIL

} else if not (ct_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, ct);

RETIRE_FAIL

} else if not (cs_val.sealed) then {

handle_cheri_reg_exception(CapEx_SealViolation, cs);

RETIRE_FAIL

} else if ct_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, ct);

RETIRE_FAIL

} else if ct_cursor != unsigned(cs_val.otype) then {

handle_cheri_reg_exception(CapEx_TypeViolation, ct);

RETIRE_FAIL

} else if not (ct_val.permit_unseal) then {

handle_cheri_reg_exception(CapEx_PermitUnsealViolation, ct);

RETIRE_FAIL

} else if ct_cursor < getCapBase(ct_val) then {

handle_cheri_reg_exception(CapEx_LengthViolation, ct);

RETIRE_FAIL

} else if ct_cursor >= getCapTop(ct_val) then {

handle_cheri_reg_exception(CapEx_LengthViolation, ct);

RETIRE_FAIL

} else {

writeCapReg(cd, {unsealCap(cs_val) with

global=(cs_val.global & ct_val.global)

});

RETIRE_SUCCESS

}
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CBuildCap
let cb_val = readCapRegDDC(cb);

let ct_val = readCapReg(ct);

let cb_base = getCapBase(cb_val);

let ct_base = getCapBase(ct_val);

let cb_top = getCapTop(cb_val);

let ct_top = getCapTop(ct_val);

let cb_perms = getCapPerms(cb_val);

let ct_perms = getCapPerms(ct_val);

let ct_offset = getCapOffset(ct_val);

if not (cb_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cb);

RETIRE_FAIL

} else if cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else if ct_base < cb_base then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else if ct_top > cb_top then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else if ct_base > ct_top then { /* check for length < 0 - possible because ct

might be untagged */

handle_cheri_reg_exception(CapEx_LengthViolation, ct);

RETIRE_FAIL

} else if (ct_perms & cb_perms) != ct_perms then {

handle_cheri_reg_exception(CapEx_UserDefViolation, cb);

RETIRE_FAIL

} else {

let (exact, cd1) = setCapBounds(cb_val, to_bits(64, ct_base), to_bits(65, ct_top)

);

let (representable, cd2) = setCapOffset(cd1, to_bits(64, ct_offset));

let cd3 = setCapPerms(cd2, ct_perms);

{

assert(exact, "CBuildCap: setCapBounds was not exact"); /* base and top came

from ct originally so will be exact */

assert(representable, "CBuildCap: offset was not representable"); /* similarly

offset should be representable XXX except for fastRepCheck */

writeCapReg(cd, cd3);

RETIRE_SUCCESS

}

}
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CCopyType
let cb_val = readCapReg(cb);

let ct_val = readCapReg(ct);

let cb_base = getCapBase(cb_val);

let cb_top = getCapTop(cb_val);

let ct_otype = unsigned(ct_val.otype);

if not (cb_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cb);

RETIRE_FAIL

} else if cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else if ct_val.sealed then {

if ct_otype < cb_base then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else if ct_otype >= cb_top then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else {

let (success, cap) = setCapOffset(cb_val, to_bits(64, ct_otype - cb_base));

assert(success, "CopyType: offset is in bounds so should be representable");

writeCapReg(cd, cap);

RETIRE_SUCCESS

}

} else {

writeCapReg(cd, int_to_cap(0xffffffffffffffff));

RETIRE_SUCCESS

}
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CCSeal
let cs_val = readCapReg(cs);

let ct_val = readCapReg(ct);

let ct_cursor = getCapCursor(ct_val);

let ct_top = getCapTop(ct_val);

let ct_base = getCapBase(ct_val);

if not (cs_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cs);

RETIRE_FAIL

} else if not (ct_val.tag) | (getCapCursor(ct_val) == MAX_U64) then {

writeCapReg(cd, cs_val);

RETIRE_SUCCESS

} else if cs_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cs);

RETIRE_FAIL

} else if ct_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, ct);

RETIRE_FAIL

} else if not (ct_val.permit_seal) then {

handle_cheri_reg_exception(CapEx_PermitSealViolation, ct);

RETIRE_FAIL

} else if ct_cursor < ct_base then {

handle_cheri_reg_exception(CapEx_LengthViolation, ct);

RETIRE_FAIL

} else if ct_cursor >= ct_top then {

handle_cheri_reg_exception(CapEx_LengthViolation, ct);

RETIRE_FAIL

} else if ct_cursor > max_otype then {

handle_cheri_reg_exception(CapEx_LengthViolation, ct);

RETIRE_FAIL

} else {

let (success, newCap) = sealCap(cs_val, to_bits(24, ct_cursor));

if not (success) then {

handle_cheri_reg_exception(CapEx_InexactBounds, cs);

RETIRE_FAIL

} else {

writeCapReg(cd, newCap);

RETIRE_SUCCESS

}

}
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C.4.3 Pointer Arithmetic

CToPtr
let ct_val = readCapRegDDC(ct);

let cb_val = readCapReg(cb);

if not (ct_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, ct);

RETIRE_FAIL

} else if cb_val.tag & cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else {

let ctBase = getCapBase(ct_val);

/* Note: returning zero for untagged values breaks magic constants such as SIG_IGN

*/

X(rd) = if not (cb_val.tag) then

zeros()

else

to_bits(64, getCapCursor(cb_val) - ctBase);

RETIRE_SUCCESS

}

CFromPtr
let cb_val = readCapRegDDC(cb);

let rt_val = X(rt);

if rt_val == 0x0000000000000000 then {

writeCapReg(cd, null_cap);

RETIRE_SUCCESS

} else if not (cb_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cb);

RETIRE_FAIL

} else if cb_val.sealed then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else {

let (success, newCap) = setCapOffset(cb_val, rt_val);

if success then

writeCapReg(cd, newCap)

else

writeCapReg(cd, int_to_cap(to_bits(64, getCapBase(cb_val)) + rt_val));

RETIRE_SUCCESS

}
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CSub
let ct_val = readCapReg(ct);

let cb_val = readCapReg(cb);

X(rd) = to_bits(64, getCapCursor(cb_val) - getCapCursor(ct_val));

RETIRE_SUCCESS

CMove
writeCapReg(cd) = readCapReg(cb);

RETIRE_SUCCESS

AUIPCC (AUIPC in capability mode)
let ret = setCapAddrOrNull(PCC, PC + off);

writeCapReg(rd, ret);

RETIRE_SUCCESS
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C.4.4 Control-Flow

CJALR
let cb_val = readCapReg(cb);

let newPC = [cb_val.address with 0 = bitzero]; /* clear bit zero as for RISCV JALR

*/

let newPC_int = unsigned(newPC);

let (cb_base, cb_top) = getCapBounds(cb_val);

if not (cb_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cb);

RETIRE_FAIL

} else if (cb_val.sealed) then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else if not (cb_val.permit_execute) then {

handle_cheri_reg_exception(CapEx_PermitExecuteViolation, cb);

RETIRE_FAIL

} else if newPC_int < cb_base then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else if (newPC_int + min_instruction_bytes ()) > cb_top then {

handle_cheri_reg_exception(CapEx_LengthViolation, cb);

RETIRE_FAIL

} else if newPC[1] & ~(haveRVC()) then {

handle_mem_exception(newPC, E_Fetch_Addr_Align);

RETIRE_FAIL

} else {

let (success, linkCap) = setCapAddr(PCC, nextPC); /* Note that nextPC accounts for

compressed instrucitons */

assert(success, "Link cap should always be representable.");

writeCapReg(cd, linkCap);

nextPC = newPC;

nextPCC = cb_val;

RETIRE_SUCCESS

};
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CCall
/* Partial implementation of CCall with checks in hardware, but raising a trap to

perform trusted stack manipulation */

let cs_val = readCapReg(cs);

let cb_val = readCapReg(cb);

let cs_cursor = getCapCursor(cs_val);

if not (cs_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cs);

RETIRE_FAIL

} else if not (cb_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cb);

RETIRE_FAIL

} else if not (cs_val.sealed) then {

handle_cheri_reg_exception(CapEx_SealViolation, cs);

RETIRE_FAIL

} else if not (cb_val.sealed) then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else if cs_val.otype != cb_val.otype then {

handle_cheri_reg_exception(CapEx_TypeViolation, cs);

RETIRE_FAIL

} else if not (cs_val.permit_execute) then {

handle_cheri_reg_exception(CapEx_PermitExecuteViolation, cs);

RETIRE_FAIL

} else if cb_val.permit_execute then {

handle_cheri_reg_exception(CapEx_PermitExecuteViolation, cb);

RETIRE_FAIL

} else if cs_cursor < getCapBase(cs_val) then {

handle_cheri_reg_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if cs_cursor >= getCapTop(cs_val) then {

handle_cheri_reg_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else {

handle_cheri_reg_exception(CapEx_CallTrap, cs);

RETIRE_FAIL

}
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CCallFast

/* Jump-like implementation of CCall that unseals arguments */

let cs_val = readCapReg(cs);

let cb_val = readCapReg(cb);

let newPC = [cs_val.address with 0 = bitzero]; /* clear bit zero as for RISCV JALR

*/

let newPC_int = unsigned(newPC);

let (cs_base, cs_top) = getCapBounds(cs_val);

if not (cs_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cs);

RETIRE_FAIL

} else if not (cb_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cb);

RETIRE_FAIL

} else if not (cs_val.sealed) then {

handle_cheri_reg_exception(CapEx_SealViolation, cs);

RETIRE_FAIL

} else if not (cb_val.sealed) then {

handle_cheri_reg_exception(CapEx_SealViolation, cb);

RETIRE_FAIL

} else if cs_val.otype != cb_val.otype then {

handle_cheri_reg_exception(CapEx_TypeViolation, cs);

RETIRE_FAIL

} else if not (cs_val.permit_ccall) then {

handle_cheri_reg_exception(CapEx_PermitCCallViolation, cs);

RETIRE_FAIL

} else if not (cb_val.permit_ccall) then {

handle_cheri_reg_exception(CapEx_PermitCCallViolation, cb);

RETIRE_FAIL

} else if not (cs_val.permit_execute) then {

handle_cheri_reg_exception(CapEx_PermitExecuteViolation, cs);

RETIRE_FAIL

} else if cb_val.permit_execute then {

handle_cheri_reg_exception(CapEx_PermitExecuteViolation, cb);

RETIRE_FAIL

} else if newPC_int < cs_base then {

handle_cheri_reg_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if (newPC_int + min_instruction_bytes ()) > cs_top then {

handle_cheri_reg_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if newPC[1] & ~(haveRVC()) then {

handle_mem_exception(newPC, E_Fetch_Addr_Align);

RETIRE_FAIL

} else {

C26 = unsealCap(cb_val);
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nextPC = newPC;

nextPCC = unsealCap(cs_val);

RETIRE_SUCCESS

}

CReturn
handle_cheri_reg_exception(CapEx_ReturnTrap, 0b11111); /* XXX what should correct

reg number be? */

RETIRE_FAIL

C.4.5 Miscellaneous

CTestSubset
let cb_val = readCapRegDDC(cb);

let ct_val = readCapReg(ct);

let ct_top = getCapTop(ct_val);

let ct_base = getCapBase(ct_val);

let ct_perms = getCapPerms(ct_val);

let cb_top = getCapTop(cb_val);

let cb_base = getCapBase(cb_val);

let cb_perms = getCapPerms(cb_val);

let result = if cb_val.tag != ct_val.tag then

0b0

else if ct_base < cb_base then

0b0

else if ct_top > cb_top then

0b0

else if (ct_perms & cb_perms) != ct_perms then

0b0

else

0b1;

X(rd) = EXTZ(result);

RETIRE_SUCCESS
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CSpecialRW

let (specialExists, ro, priv, needASR) : (bool, bool, Privilege, bool) = match idx {

0 => (true, true, User, false),

1 => (true, false, User, false),

4 => (true, false, User, true),

5 => (true, false, User, true),

6 => (true, false, User, true),

7 => (true, false, User, true),

12 => (true, false, Supervisor, true),

13 => (true, false, Supervisor, true),

14 => (true, false, Supervisor, true),

15 => (true, false, Supervisor, true),

28 => (true, false, Machine, true),

29 => (true, false, Machine, true),

30 => (true, false, Machine, true),

31 => (true, false, Machine, true),
_ => (false, true, Machine, true)

};

if (not(specialExists)) then {

handle_illegal();

RETIRE_FAIL

} else if (ro & cs != 0) |

(cur_privilege <_u priv) |

(needASR & not(pcc_access_system_regs())) then {

handle_cheri_cap_exception(CapEx_AccessSystemRegsViolation, 0b1 @ idx);

RETIRE_FAIL

} else {

let cs_val = readCapReg(cs);

if (cd != 0) then {

// read special cap

let special_val : Capability = match idx {

0 => {

let (success, pcc) = setCapAddr(PCC, PC);

assert (success, "PCC with offset PC should always be representable");

pcc

},

1 => DDC,

4 => UTCC,

5 => UTDC,

6 => UScratchC,

7 => UEPCC, /* XXX should mask offset as per uepc etc? */

12 => STCC,

13 => STDC,

14 => SScratchC,

15 => SEPCC,

28 => MTCC,
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29 => MTDC,

30 => MScratchC,

31 => MEPCC,
_ => {assert(false, "unreachable"); undefined}

};

writeCapReg(cd, special_val);

};

if (cs != 0) then {

// write special cap

match idx {

1 => DDC = cs_val,

4 => UTCC = cs_val, /* XXX should legalize mode? */

5 => UTDC = cs_val,

6 => UScratchC = cs_val,

7 => UEPCC = cs_val, /* XXX should legalize offset as per uepc etc? */

12 => STCC = cs_val,

13 => STDC = cs_val,

14 => SScratchC = cs_val,

15 => SEPCC = cs_val,

28 => MTCC = cs_val,

29 => MTDC = cs_val,

30 => MScratchC = cs_val,

31 => MEPCC = cs_val,
_ => assert(false, "unreachable")

}

};

RETIRE_SUCCESS

}

ClearRegs
/*
if ((regset == CLo) | (regset == CHi)) then

checkCP2usable();

*/

foreach (i from 0 to 7)

if (m[i]) then

match regset {

GPRegs => X(8 * unsigned(q) + i) = zeros(),

FPRegs => () /* XXX no F regs yet */

};

RETIRE_SUCCESS
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C.4.6 Loads
Loads of data share the following common logic:
function handle_load_data_via_cap(rd, cs, cap_val, vaddrBits, is_unsigned, width) =

{

let (base, top) = getCapBounds(cap_val);

let vaddr = unsigned(vaddrBits);

let size = word_width_bytes(width);

let aq : bool = false;

let rl : bool = false;

if not(cap_val.tag) then {

handle_cheri_cap_exception(CapEx_TagViolation, cs);

RETIRE_FAIL

} else if cap_val.sealed then {

handle_cheri_cap_exception(CapEx_SealViolation, cs);

RETIRE_FAIL

} else if not (cap_val.permit_load) then {

handle_cheri_cap_exception(CapEx_PermitLoadViolation, cs);

RETIRE_FAIL

} else if (vaddr + size) > top then {

handle_cheri_cap_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if vaddr < base then {

handle_cheri_cap_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if check_misaligned(vaddrBits, width) then {

handle_mem_exception(vaddrBits, E_Load_Addr_Align);

RETIRE_FAIL

} else match translateAddr(vaddrBits, Read, Data) {

TR_Failure(e) => { handle_mem_exception(vaddrBits, e); RETIRE_FAIL },

TR_Address(addr) => process_load(rd, vaddrBits, mem_read(addr, size, aq, rl,

false), is_unsigned)

}

}

L[BHWD][U]ddc
let ddc_val = DDC;

let vaddr = ddc_val.address + X(rs);

handle_load_data_via_cap(rd, DDC_IDX, ddc_val, vaddr, is_unsigned, width)

L[BHWD][U]cap
let cap_val = readCapReg(cs);

let vaddr = cap_val.address;

handle_load_data_via_cap(rd, 0b0 @ cs, cap_val, vaddr, is_unsigned, width)
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Loads of capabilities share the following common logic:
function handle_load_cap_via_cap(rd, cs, cap_val, vaddrBits) = {

let (base, top) = getCapBounds(cap_val);

let vaddr = unsigned(vaddrBits);

let aq : bool = false;

let rl : bool = false;

if not(cap_val.tag) then {

handle_cheri_cap_exception(CapEx_TagViolation, cs);

RETIRE_FAIL

} else if cap_val.sealed then {

handle_cheri_cap_exception(CapEx_SealViolation, cs);

RETIRE_FAIL

} else if not (cap_val.permit_load) then {

handle_cheri_cap_exception(CapEx_PermitLoadViolation, cs);

RETIRE_FAIL

} else if (vaddr + cap_size) > top then {

handle_cheri_cap_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if vaddr < base then {

handle_cheri_cap_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if not(is_aligned_addr(vaddrBits, cap_size)) then {

handle_mem_exception(vaddrBits, E_Load_Addr_Align);

RETIRE_FAIL

} else match translateAddr(vaddrBits, Read, Data) {

TR_Failure(e) => { handle_mem_exception(vaddrBits, e); RETIRE_FAIL },

TR_Address(addr) => {

let c = mem_read_cap(addr, aq, rl, false);

match c {

MemValue(v) => {writeCapReg(rd, v); RETIRE_SUCCESS},

MemException(e) => {handle_mem_exception(vaddrBits, e); RETIRE_FAIL }

}

}

}

}

LQddc
let ddc_val = DDC;

let vaddr = ddc_val.address + X(rs);

handle_load_cap_via_cap(rd, DDC_IDX, ddc_val, vaddr)

LQcap
let cap_val = readCapReg(cs);

let vaddr = cap_val.address;

handle_load_cap_via_cap(rd, 0b0 @ cs, cap_val, vaddr)
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LC
let offset : xlenbits = EXTS(off12);

let (cap_val, vaddr, cause_regno) = get_cheri_cap_addr(rs1, offset);

handle_load_cap_via_cap(cd, cause_regno, cap_val, vaddr)

The following function selects between capability and DDC relative addressing in above, ac-
cording to the capability mode flag:
function get_cheri_cap_addr (base_reg : regidx, offset : xlenbits) = {

if (PCC.flag_cap_mode) then

let base_cap = readCapReg(base_reg) in

(base_cap, base_cap.address + offset, 0b0 @ base_reg)

else

let ddc = DDC in

(ddc, ddc.address + X(base_reg) + offset, DDC_IDX);

}



400 APPENDIX C. CHERI-RISC-V ISA QUICK REFERENCE (DRAFT)

C.4.7 Stores

Stores of data use the following common logic:

function handle_store_data_via_cap(rs, cs, cap_val, vaddrBits, width) = {

let (base, top) = getCapBounds(cap_val);

let vaddr = unsigned(vaddrBits);

let size = word_width_bytes(width);

let aq : bool = false;

let rl : bool = false;

if not(cap_val.tag) then {

handle_cheri_cap_exception(CapEx_TagViolation, cs);

RETIRE_FAIL

} else if cap_val.sealed then {

handle_cheri_cap_exception(CapEx_SealViolation, cs);

RETIRE_FAIL

} else if not (cap_val.permit_store) then {

handle_cheri_cap_exception(CapEx_PermitStoreViolation, cs);

RETIRE_FAIL

} else if (vaddr + size) > top then {

handle_cheri_cap_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if vaddr < base then {

handle_cheri_cap_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if check_misaligned(vaddrBits, width) then {

handle_mem_exception(vaddrBits, E_SAMO_Addr_Align);

RETIRE_FAIL

} else match translateAddr(vaddrBits, Write, Data) {

TR_Failure(e) => { handle_mem_exception(vaddrBits, e); RETIRE_FAIL },

TR_Address(addr) => {

let eares : MemoryOpResult(unit) = mem_write_ea(addr, size, aq, rl, false);

match (eares) {

MemException(e) => { handle_mem_exception(addr, e); RETIRE_FAIL },

MemValue(_) => {

let rs_val = X(rs);

let res : MemoryOpResult(bool) = match width {

BYTE => mem_write_value(addr, 1, rs_val[7..0], aq, rl, false),

HALF => mem_write_value(addr, 2, rs_val[15..0], aq, rl, false),

WORD => mem_write_value(addr, 4, rs_val[31..0], aq, rl, false),

DOUBLE => mem_write_value(addr, 8, rs_val, aq, rl, false)

};

match (res) {

MemValue(true) => RETIRE_SUCCESS,

MemValue(false) => internal_error("store got false from mem_write_value"

),

MemException(e) => { handle_mem_exception(addr, e); RETIRE_FAIL }

}
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}

}

}

}

}

S[BHWD]ddc
let ddc_val = DDC;

let vaddr = ddc_val.address + X(rs);

handle_store_data_via_cap(rd, DDC_IDX, ddc_val, vaddr, width)

S[BHWD]cap
let cap_val = readCapReg(cs);

let vaddr = cap_val.address;

handle_store_data_via_cap(rs, 0b0 @ cs, cap_val, vaddr, width)
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Stores of capabilities use the following common logic:
function handle_store_cap_via_cap(rs, cs, cap_val, vaddrBits) = {

let (base, top) = getCapBounds(cap_val);

let vaddr = unsigned(vaddrBits);

let aq : bool = false;

let rl : bool = false;

if not(cap_val.tag) then {

handle_cheri_cap_exception(CapEx_TagViolation, cs);

RETIRE_FAIL

} else if cap_val.sealed then {

handle_cheri_cap_exception(CapEx_SealViolation, cs);

RETIRE_FAIL

} else if not (cap_val.permit_store) then {

handle_cheri_cap_exception(CapEx_PermitStoreViolation, cs);

RETIRE_FAIL

} else if (vaddr + cap_size) > top then {

handle_cheri_cap_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if vaddr < base then {

handle_cheri_cap_exception(CapEx_LengthViolation, cs);

RETIRE_FAIL

} else if not(is_aligned_addr(vaddrBits, cap_size)) then {

handle_mem_exception(vaddrBits, E_SAMO_Addr_Align);

RETIRE_FAIL

} else match translateAddr(vaddrBits, Write, Data) {

TR_Failure(e) => { handle_mem_exception(vaddrBits, e); RETIRE_FAIL },

TR_Address(addr) => {

let eares : MemoryOpResult(unit) = mem_write_ea_cap(addr, aq, rl, false);

match (eares) {

MemException(e) => { handle_mem_exception(addr, e); RETIRE_FAIL },

MemValue(_) => {

let rs_val = readCapReg(rs);

let res : MemoryOpResult(bool) = mem_write_cap(addr, rs_val, aq, rl,

false);

match (res) {

MemValue(true) => RETIRE_SUCCESS,

MemValue(false) => internal_error("store got false from mem_write_value"

),

MemException(e) => { handle_mem_exception(addr, e); RETIRE_FAIL }

}

}

}

}

}

}

SQddc
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let ddc_val = DDC;

let vaddr = ddc_val.address + X(rs);

handle_store_cap_via_cap(rd, DDC_IDX, ddc_val, vaddr)

SQcap
let cap_val = readCapReg(cs);

let vaddr = cap_val.address;

handle_store_cap_via_cap(rs, 0b0 @ cs, cap_val, vaddr)

SC
let offset : xlenbits = EXTS(off12);

let (cap_val, vaddr, cause_regno) = get_cheri_cap_addr(rs1, offset);

handle_store_cap_via_cap(cs2, cause_regno, cap_val, vaddr)
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Appendix D

Experimental Features and Instructions

This appendix describes experimental features and instructions proposed for possible inclusion
in later versions of the CHERI ISA. These items for consideration include optimizations, new
permissions, new compression formats, and overhauls of existing CHERI mechanisms. Some
are relatively mature, and we anticipate their achieving a non-experimental status in the next
version of the CHERI ISA specification (e.g., capability flags and temporal memory safety).
Others arose as part of our more general design-space exploration, and we document these
alternative approaches (e.g., indirect capabilities) or potential future avenues of investigation
(e.g., linear capabilities). We present them here in roughly increasing order of complexity.
The body of the appendix describes the rationale and approach for each experimental feature;
specific instruction encodings and semantics may be found in Section D.18.

D.1 Capability Flags
We define two new experimental instructions, cgetflags and csetflags, to get and set bitwise
flags on a capability. These flags are intended to affect the semantics of access, rather than
impose access control, and thus (unlike bounds and permissions) do not have monotonicity
properties. Currently, only one flag is defined: the capability encoding-mode flag for CHERI-
RISC-V, which controls what interpretation opcodes are given when fetched via PCC. In the
future, we may wish to use these flag fields for other purposes, such as to hint as to cache
interactions for shared-memory rings, or to control the behavior of operations such as capability
equality testing.

D.2 Capability Address and Length Rounding
Capability compression requires stronger alignment as allocation sizes increase. For infrequent
allocations of large memory mappings, the software cost of calculating suitable alignment is
small. However, stack allocations occur frequently and have less tolerance for arithmetic over-
heads. Further, it may be desirable for an architecture to support a range of compression pa-
rameters – for example, the bits invested in exponents, top, and bottom fields. In this case,
having the architecture calculate requirements based on its specific parameterization would be

405
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beneficial. We propose two new instructions that allow the architecture to provide information
to memory allocators regarding precision effects:

CRepresentableAlignmentMask (CRAM) The CRAM instruction accepts a proposed bounds
length, and returns a mask suitable for use in aligning down the address of an allocation.

CRoundRepresentableLength (CRRL) The CRRL instruction accepts a proposed bounds length,
and returns a rounded-up size that will be accepted by CSetBoundsExact without throwing
an exception.

Collectively, these instructions can be used to efficiently calculate suitable base and length
alignment, to permit exception-free bounds setting using CSetBoundsExact. They are intended
to be well suited for use with dynamic stack allocation – e.g., using alloca, but also other types
of allocation.

D.3 Fast Capability Subset Testing
When implementing revocation or garbage collection requiring fast scanning of memory for
matching capabilities, significant numbers of instructions would be used to check whether a
tested capability is a subset of a reference capability. We propose a new CTestSubset instruction
that reduces this instruction count substantially; see page 458 for details.

D.4 Loading Multiple Tags Without Corresponding Data
Occasionally, one may wish to have access to tags without, or before, loading capabilities to
registers. This would be potentially useful when paging to disk, for example, where one may
wish to use DMA to transfer memory contents to the disk, but yet one must separately store the
corresponding tags. In the absence of direct (i.e., read) access to the tags, the only alternative
would be to involve the CPU in the bulk data copy and CLC all of the memory to be paged.
Separately, when sweeping memory for revocation or garbage collection, being able to skip
contiguous spans of non-capabilities in memory could dramatically reduce the DRAM traffic
involved in sweeping.
Towards these ends, we introduce a CLoadTags instruction, which takes a capability to memory
and loads several tag bits into a target register. The least-significant bit corresponds to the tag
for the memory at the capability cursor; more significant bits correspond to tags of memory at
larger addresses. The instruction requires that the capability bears Permit_Load_Capability
and Permit_Load rights, that its cursor be suitably aligned, and that its bounds include all of
the memory whose tags are to be read.
The design of our cache fabric allows us to instantiate this instruction with an efficient load of
the tag bits from one cache-line worth of memory, or, for CHERI Concentrate, 8 tags at once.
However, the width of the load is not architecturally specified – save that it must be a power of
two, at least 1, and no more than the width of the registers. Software can easily discover the
width used by any implementation by constructing an aligned array of capabilities in memory
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and observing the result of CLoadTags;1 such probes need be done only rarely, at system or
allocator startup. For multi-core or multi-processor systems with cache fabrics wherein cache
lines are of different sizes, CLoadTags must behave as if all cores view the memory subsystem
through the smallest cache line in the system.
Full details of the CLoadTags instruction may be found on page 452.

D.5 Capability Reconstruction
These additional experimental instructions can be used to efficiently reconstruct capabilities
(e.g., when a program has been paged out to disk and then paged back in, and the operating
system needs to reconstruct the capabilities that were originally in its address space). They also
reduce the need for software to inspect the in-memory representation of capabilities, making
software more robust to format changes.
Software should store or transit tags separately from the corresponding capability-sized and
capability-aligned memory via a trustworthy medium. The ISA requires that tags be restored
using a suitable authorizing capability through which it should have been possible to derive the
same resulting tagged capability – that is, without violating capability monotonicity. A security
review of these instructions is still in progress, and so they should not yet be considered part of
the ISA or safe to implement. These instructions serve two purposes:

1. They allow efficient internalization of capabilities that have been stored or transferred via
media that do not preserve tags. This functionality might be utilized when tags must be
restored by the kernel’s swap or compressed-memory pager, when migrating the memory
of a virtual machine, when restoring a process snapshot, or by an in-address-space run-
time linker.

2. They allow tags to be restored on capabilities in a manner that maintains architectural
abstraction: software restoring tags need not encode the specifics of the in-memory ca-
pability representation, making that software less fragile in the presence of future use of
reserved fields or changed semantics.

Capabilities can also be reconstructed using the current CGetBase, CGetLen, etc., instructions,
examining those fields and then recreating them utilizing the corresponding CSetBounds instruc-
tion, and so on, but with reduced abstraction and substantially less efficiency.
Details of the proposed CBuildCap, CCopyType, and CCSeal instructions are deferred to ap-
pendix D.18.

D.6 Recursive Mutable Load Permission
Several software capability systems have exploited the use of immutable data structured to
facilitate safe sharing (e.g., Joe-E [80]). CHERI capabilities can provide references through

1For a CHERI instantiation with 256-bit capability representations and 64-bit integer registers, the maximal
alignment requirement for these probes is 512 bytes.
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which stores are not permitted; however, because they can be refined and distributed throughout
the system, simply holding a read-only reference is not sufficient to allow a consumer to ensure
that no simultaneous access can occur to the same memory via another capability. Further,
passing a read-only reference to memory does not ensure that further loads of capabilities from
within that memory provide only read-only access to ‘deep’ data structures – e.g., linked lists.
Various software-level invariants could be used to improve confidence for both callers and
callees. For example, the software runtime might make use of read-only MMU mappings for
immutable data, and provide capabilities that clearly provide an indication that they refer to
those read-only mappings – e.g., via use of a software-defined permission bit set only for such
references, via use of reserved portions of the address space, sealed via a certain type, or check-
able via a dynamic service operating in a trustworthy protection domain. In addition, memory
could be allocated as mutable and its MMU mapping later modified to ‘freeze’ the contents,
or by performing a revocation-like sweep to convert any extant store-enabled capabilities into
load-only capabilities.
However, providing strong architectural invariants to software offers significant value. One
idea we have considered is a new permission, Permit_Recursive_Mutable_Load, which if not
present, clears store permissions and the recursive mutable load permission, on any capability
loaded via a capability with this permission present.2 A module may clear the store permissions
and also clear Permit_Recursive_Mutable_Load on a capability before passing it to another
module. Having done so, the originator is guaranteed that this passed capability could not
then be used to mutate memory it directly describes (lacking store permissions) or memory
transitively referenced therefrom, even if the latter capabilities, authorizing transitive access,
bear some store permissions. This would not prevent temporal vulnerabilities associated with
reallocation of the memory; subject to other invariants and safety properties, it might make it
easier to construct safe references. In particular, this mechanism is likely to be of great utility
to systems wishing to enforce the ‘*-property’ (‘no write down’) of the model of Bell and La
Padula [10].3

D.7 CHERI-64
Modern OSes and large-scale systems adopt 64-bit virtual address space to accommodate large
applications, and to ease address space management and address randomization. However, 32-
bit address space is still predominant for embedded systems, IoT devices, peripherals, DMA
engines, etc., and 128-bit capabilities are without doubt not acceptable. To deploy CHERI

2The concept of such transitively read-only capabilities appears to have been first developed in KeyKOS, where
such capabilities were termed ‘sensory keys’ [48]. While sensory keys were necessarily read-only, the descendent
notion of the ‘weak’ access modifier in EROS could be applied to both read and write operations. When modifying
reads, it behaves as described so far; attempts to store some input capability through a weak write-permitting
capability resulted in a weakened version of the input capability being stored [116]. In the successor system
Coyotos, ‘weak’ was once again made to imply read-only access [32, 117].

3Readers may be familiar with the infamous proof of Boebert [33] that “an unmodified capability machine” is
unable to enforce this property. As CHERI distinguishes between capabilities and data, the proof is not directly
applicable [84], and, indeed, one could imagine using trusted intermediate software to emulate the effects of
Permit_Recursive_Mutable_Load, as proposed by Miller [83]. Despite that, Permit_Recursive_Mutable_Load is
still of practical utility, as it is a light-weight, architecturally enforceable mechanism that avoids indirection.
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in such systems, we have prototyped and developed the CHERI-64 format. In order to reuse
some of the existing toolchain and software stack and to maintain compatibility, the encoding
of CHERI-64 now is mostly a low-precision version for CHERI-128. In the future when the
usage models change, the encoding might also change correspondingly.

D.7.1 CHERI-64 Encoding
Below are the encodings for 64-bit unsealed and sealed capabilities.

031

µperms’12 e’5 0 B’6 T’6

a’32

}
64 bits

Figure D.1: Unsealed CHERI-64 memory representation of a capability

031

µperms’12 e’5 1 B[5:3] otype_hi’3 T[5:3] otype_lo’3

a’32

}
64 bits

Figure D.2: Sealed CHERI-64 memory representation of a capability

For unsealed capabilities, the precision of T&B drops to 6 bits, and sealed capabilities further
lose 3 bits for otype, making a total otype count of 64. There are still 2 unused bits available
for expansion. To maintain compatibility, the hardware permission fields are the same with
CHERI-128, while the software permission field is reduced to only one bit.

D.7.2 CHERI-64/MIPS-n32 ABI
CHERI-64 does not reuse the MIPS-n64 ABI since ABIs with 64-bit address space do not
function well with the 32-bit address field in CHERI-64; for smaller devices and embedded
systems, there is no need to move on to 64-bit. Instead, MIPS-n32 is the base ABI for CHERI-
64 as n32 reduces the pointer size to 32 bits. However, please note that n32 is not the original
o32 ABI, and the difference is not trivial. The major difference is that o32 is a native 32-
bit ABI, whereas n32 runs on 64-bit MIPS but with limited address space. Except for the
difference in the size of the address space, n32 shares more similarities with n64, both having
the same calling convention, size of registers, stack alignment, etc. The handbook [38] provides
a detailed tutorial of the n32 ABI.
Although n32 works within 32-bit address space, it still has access to 64-bit arithmetic instruc-
tions and 64-bit general-purpose integer registers. Therefore, CHERI-64 with n32 has a better
opportunity to implement a merged register file, because merging the two register files does not
increase the size; under CHERI-128 the width of the general-purpose integer register file needs
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to be doubled to accommodate capabilities if merged, and non-CHERI instructions cannot ac-
cess the top half of the bits in the register file – as there is currently no 128-bit integer types in
the 64-bit ISA.

D.8 Compressed Permission Representations

The model of Section 3.3.1 describes each permission as a separate bit. This has certain ad-
vantages, including the ability to describe the all-powerful capability, a uniform presentation,
wherein the monotonic non-increase of rights is directly encoded by the monotonic operation of
bitwise and, and a fast operational test for a given permission. However, in use and interpreta-
tion, the permission bits are not orthogonal, so one could aim for a compressed representation,
freeing up bits for use as user permissions, or reserving them for future expansion of the ISA.
We do not fully develop this story; instead, we merely indicate examples of redundancy in the
abstract model, which may be useful to architects wishing to squeeze every last bit out of any
particular representation.
The Global attribute, despite being enumerated as a permission, does not describe permissions
to the memory or objects designated by a capability. Instead, it interacts with data storage per-
missions of other capabilities (via Permit_Store_Local_Capability). As such, it truly is orthog-
onal to the rest of the permission bits (though it remains ‘monotonic’ in the sense that clearing
the Global permission results in a capability capable of participating in fewer operations).
Broadly speaking, there are three spaces of identifiers described within the CHERI capabil-
ity system: virtual addresses, object types, and compartment identifiers. Rights concerning
executability, loads, and stores apply only to capabilities describing virtual addresses, while
the rights to (un)seal an object apply only to capabilities describing object types. The Per-
mit_Set_CID permission applies only to capabilities describing compartment identifiers. This
permits some reduction of encoding space.
Similar reduction in encoding space may be realized if one mandates that certain user per-
mission bits are similarly applicable only to novel non-architectural spaces of identifiers (e.g.,
UNIX file descriptors). However, at present we consider the sealing mechanism more useful
and flexible for the construction of such spaces of identifiers, as typically such identifiers are
ultimately given meaning by some bytes in virtual memory, to which one may gain access by
unsealing an object capability used as a reference.4 However, the notion of other spaces is not
entirely out of the question; physical addresses may prove to be a compelling example on some
systems.
While Permit_CCall is checked only as part of CCall’s operation on sealed (i.e., object) capa-
bilities, it is inherited from these sealed capabilities’ precursors. That is, the present CHERI
architecture permits the creation of regions of virtual address space that can be (subdivided
and) sealed, but for which these derived object capabilities are not useful with CCall (just with
CUnseal). The utility of such regions is perhaps not readily apparent, but any shift to make Per-
mit_CCall apply only to object capabilities would require modification of the CSeal instruction

4Sadly, while sealed capabilities are almost exactly what one wants for file descriptors, because UNIX chose
to type file descriptors as int, the conversion to use sealed capabilities will be broadly invasive, even if most of
the changes will simply be to change the types.
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and would slightly change the capability ontology.
Within the virtual-address-specific permissions, one finds several opportunities for compressing
representations. First, many architectures consider writable-and-executable to be too dangerous
to permit; applying this to CHERI’s taxonomy would mean that the presence of Permit_Execute
implied the absence of Permit_Store, Permit_Store_Capability, and Permit_Store_Local_Capability
(see below). Further, granting Permit_Load_Capability effectively implies granting Permit_Load:
CLC and CLLC would trap without the latter, but more substantially, a capability load of an un-
tagged (in memory or via the paging hardware) ‘should’ result in a load of data transferred in to
a capability register, albeit with the tag cleared. On the store side, Permit_Store_Local_Capability
implies Permit_Store_Capability, which, in turn, implies Permit_Store. Taking all of these
implications into consideration, one finds that there are 15 consistent states of the six virtual-
address-space rights (Permit_Execute, Permit_Load, Permit_Load_Capability, Permit_Store,
Permit_Store_Capability, Permit_Store_Local_Capability) considered, enabling a four-bit com-
pressed representation.
Consider the powerful Access_System_Registers permission. Because this bit is meaningful
only on capabilities used as a program counter, at the very least its presence rather directly
implies Permit_Execute. Moreover, because this bit gates access to other architectural protec-
tion mechanisms, including those, such as the paging hardware, involved in interpreting (other)
capabilities, it seems likely that this bit implies the ability to at least read, and likely mutate
(or cause the mutation of), any other capability present in the system. (Admittedly, perhaps
the ability to synthesize new capabilities from whole cloth would remain beyond the reach of
code executing with Access_System_Registers, but given the far-reaching powers potentially
conveyed, this hardly seems worth nitpicking.) As such, one may be justified in considering
Access_System_Registers to be a single value in one’s encoding of capability permissions,
rather than an orthogonal bit.

D.8.1 A Worked Example of Type Segregation

Pushing a bit further on the ‘spaces of identifiers’ concept above, we can describe an alternative
use of the 15 bits of µperms available in the 128-bit encoding scheme of Section E.3.1. We
continue to leave the 18-bit otype field where it stands, and we claim no new use of any reserved
bits. Diagrams of the bit representations may be found in Figure D.3.
In all capabilities, we reserve three bits for uninterpreted user permissions, and four bits for
the flow control detailed in Section D.13. One more bit distinguishes between virtual-address
capabilities and all other types. We have thus far consumed 8 of the 15 permission bits.
For virtual-address capabilities (subsequently to be abbreviated as ‘VA capabilities’), the re-
maining seven bits correspond one-to-one with memory-specific permissions. Specifically, they
are: Permit_Execute (Ex), Permit_Load (L), Permit_Store (St), Permit_Load_Capability (LC),
Permit_Store_Capability (SC), Permit_CCall (CC),5 and Access_System_Registers (ASR). We
have made no effort to eliminate redundancy in this particular segment of the encoding, but all
the observations made above about these bits continue to hold.

5While any capability type can, in principle, be sealed and could be unsealed at CCall time, the fast CCall
mechanism unseals only two capabilities, installing them as PCC and IDC. As such, it seems sensible to restrict
CCall to operating only on VA capabilities, and so Permit_CCall is defined only therein.
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Type Bit layout

Virtual Address 1 ASR CC SC LC St L Ex user perms’3

Architectural Control 0 1 CID Se U user perms’3

Guarded word 0 0 user perms’9

Figure D.3: Bit-level representations of a type-segregated metadata-bit-packing scheme.

For non-virtual-address capabilities, we take one bit to distinguish architectural control capa-
bilities from guarded-word capabilities. The latter are as might be expected: they are simply
bounded (as per usual with CHERI capabilities) integers, protected by architectural provenance,
monotonicity, and nonforgeability. Guarded-word capabilities confer no architectural author-
ity, but may be of use to system software (e.g., for describing file descriptors). The remaining
six bits are all permission-like (and are subject to manipulation via CAndPerm), but are otherwise
uninterpreted by the hardware.6

Architectural control capabilities include the ability to seal and unseal particular object types,
set the compartment identifier, and manipulate colors (again, as detailed in Section D.13). The
remaining six bits are, again, all permission-like. Three are reserved for future use (not cur-
rently interpreted), while the other three correspond to the current Permit_Unseal (U), Per-
mit_Seal (Se), and Permit_Set_CID (CID). No attempt has been made to further refine the type
space, so we continue to architecturally conflate object types and compartment identifiers and
rely on system software to maintain proper partitioning.
In this scheme, three primordial architectural roots should be created at system reset: one for
virtual addresses, one for architectural control, and one for guarded words. All primordial
capabilities should be unsealed, have all defined and user permission bits asserted, and cover
the full space of their respective identifiers.

D.8.2 Type-segregation and Multiple Sealed Forms
Experiments with CheriOS have found that the increased alignment requirements for sealed ca-
pabilities induced by the original 128-bit compressed format are awkward (recall Section E.3.1).
In particular, there is a desire to pass small sealed memory objects, with size (and so, ideal
alignment) well below the requisite alignment size for sealing. Subsequent work has defined
a different CHERI Concentrate form with a dedicated otype field, no need of a sealed bit, and
no increased alignment requirements to make room or the otype bits. And so, the remainder of
this subsection is largely mooted: all capabilities may be sealed in the new CHERI Concentrate
format. We retain it in this document for interest and its possible applicability to implementers
considering different capability encoding options.

6It may seem odd to deliberately create architecturally ‘useless’ tagged integers; it may seem as though they
could simply be VA capabilities with all permission bits cleared. However, just because an agent has some rights
to memory address 0x1234 does not imply that they have rights to the integer 0x1234, but monotonic action on
a capability authorizing the former could result in one authorizing the latter in this hypothetical ‘all-permission-
bits-zero’ encoding. The separate provenance tree of guarded-word capabilities distinguishes these: there is no
monotonic mechanism to transmute one into the other.
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Type Bit layout

Unsealed VA 1 0 0 ASR CC SC LC St L Ex user perms’3

Sealed VA 1 1 SV ASR CC SC LC St L Ex user perms’3

Architectural Control 1 0 1 CID Se U user perms’3

Unsealed guarded word 0 0 0 user perms’10

Sealed guarded word 0 1 0 user perms’10

Reserved 0 1

Figure D.4: A variant of packed metadata including multiple sealed forms.

The small objects passed by CheriOS are never sealed as interior pointers. That is, the sealed
forms are guaranteed to have offset zero (i.e., equal cursor and base addresses). This permits 10
bits of the B field to be transferred to the T field, offering much smaller alignment requirements.
(Byte alignment remains possible until objects approach 1 mibibyte in length. Offsets need
not be zero, but must be small, in the sense that they must be below 2e.) The experimental
architectural encoding presently requires stealing one of the two bits described in this document
as reserved within a capability representation. Given the possible utility of this additional sealed
form to the other provenance trees discussed above, it seems worthwhile to present a possible
unified story.
For this example, we drop the ability to seal architectural control capabilities, as we do not
think these will be passed as tokens; instead, we believe, should system programmers desire
similar policies, they are free to indirect, i.e., to place architectural control capabilities into
small regions of memory, seal the rights thereto, and pass that sealed capability instead of a
sealed architectural control capability. This further removes concerns around the encoding of
otypes and capability color changing permissions (to be discussed).
This illustrative encoding uses 17 bits: 15 from the former µperms, 1 from the former sealed
flag, and 1 formerly reserved. Bit-field representations are shown in Figure D.4. For VA
capabilities, the new ‘Sealed Variant’ (SV) flag, which is not a permission bit (and so not subject
to manipulation by CAndPerm), distinguishes between the form with both T and B specified and
the form with only T specified. We expect an architecture using this form to have two CSeal-
like instructions, each generating one of the variants. For sealed guarded-word capabilities,
we permit only the latter form, as we believe sealed guarded words are more likely to be used
as tokens than as regions of integers. One-fourth of our type encoding values are reserved for
future expansion.

D.8.3 W^X Saves A Bit

W^X (‘W xor X’) is a shorthand for the notion that no block of memory should be, at the same
time, both writable and executable. Most implementations in hardware work within the MMU,
and rely on the operating system to enforce the exclusivity of write and execute permissions.
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From the view of application software, this means that a given pointer value has additional
hidden state beyond its being mapped or unmapped. Applications on CHERI could, instead,
structure the permissions within capabilities to enforce exclusivity of write and execute per-
missions, trading the stateful MMU protection for having multiple capabilities representing the
two different rights.
Were we to push W^X on CHERI to an extreme, it could become a property of the capability
encoding itself and, thereby, allow for more compact encoding of permissions. The existing
eight-bit architectural permission field,

ASR CC SLC SC LC St L Ex

could instead be re-coded as a 7-bit field, making the W^X explicit:

RX capability: 0 CC ASR LC Ex L

RW capability: 1 CC SLC SC LC St L

As in the type-segregation proposals, this design creates yet another split of architectural prove-
nance roots: there must be two capabilities present at system startup, granting separate read-
write and read-execute regions. Similarly, a single capability then could not express the total set
of permissions that may be granted by, e.g., the *nix mmap() call; the API and consumers must
be revised. (One hopes that relatively few consumers initially request (or later transition, via
mprotect(), to having) both write and execute permissions.) It is not yet clear what additional
challenges this split imposes on our goal of C compatibility.
There is some redundancy yet in this encoding, in that either RX or RW capabilities can be
monotonically turned into read-only capabilities. One could imagine further segregation into a
R^W^X taxonomy, but this seems especially likely to complicate C compatibility. Moreover, the
obvious utility of RW capabilities and popularity of data constants adjacent to executable code
(and thereby reachable using relative offsets from the instruction pointer) argue for permitting
read permissions in both write and execute forms.
When and if combined with the compact coloring proposal below, the Permit_Store_Local_Cap
(SLC) bit and its unused slot in the RX form would vanish.

D.9 Memory-Capability Versioning
Several existing architectures have responded to temporal safety issues in software by propos-
ing to ‘version’ memory, embed versions into pointers, and require that the versions of the
pointer and target match on each dereference. Two prominent examples are Oracle’s SPARC’s
ADI/SSM [2] and ARM’s MTE [1]. We conjecture that the combination of these ideas with
CHERI would enhance both and continue to have reasonable performance overheads. Between
these mechanisms, we can offer an attractive secure mitigation of temporal safety violations in
untrusted code.
Specifically, we propose to use approximately four of the reserved bits in the capability meta-
data word in each memory-authorizing capability, together with an equal number of bits per
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‘granule’ of physical memory, which we suggest to be roughly 64 bytes. (The proposed val-
ues give a spatial overhead equivalent to CHERI’s capability tags: one bit per 16 bytes.) This
scheme leaves all virtual address bits in memory-authorizing capabilities intact, and thus does
not reduce the application’s address space. To ensure that untrusted code cannot inappropri-
ately re-version memory granules, we provide a simple model of authorization that does not
require the intervention of supervisor software.
We divide memory-authorizing capabilities into two classes, versioned and unversioned, and
introduce an instruction that derives a versioned capability from an unversioned one. The core
of this protection mechanism is this: if a versioned capability is used to access a granule, the
access succeeds only if (in addition to the existing CHERI permissions and bounds checks’
passing) the granule and intra-capability versions are equal. In the case of mismatch, an im-
plementation must, at a minimum, cause data fetches to return 0, capability fetches to return
untagged NULLs, stores to fail silently, and instruction fetches to trap. To improve the debug-
ging experience, implementations may provide optional or mandatory traps on these fetch and
stores as well.
Only unversioned capabilities can authorize the re-versioning of memory granules. Addition-
ally, unversioned capabilities potentially authorize access regardless of the version of the gran-
ule being accessed. We expect that these will become closely held within subsystems that then
exchange derived versioned capabilities with other subsystems; in general, the only subsystems
holding unversioned capabilities are likely to appear to be allocators.
Versions are ‘sticky,’ in that any capability monotonically derived from a versioned progenitor
will have the same version. Dually, derivations from unversioned capabilities are unversioned,
unless the version is explicitly branded into the progeny.

D.9.1 Instructions
• CStoreVersion sets the version bits of a memory granule to the value given in a register

operand; the authorizing capability must be unversioned and must authorize stores of
both data and capabilities to the entire target granule. Setting the granule’s version to 0
will cause it to be accessible only to unversioned capabilities.

• CFetchVersion fetches the version bits of a memory granule; the authorizing capability
must be unversioned, and must authorize data fetches from the entire target granule. A
return of 0 indicates that the granule is accessible only via unversioned capabilities.

• CGetVersion copies the version field of a capability into a register. It is useful mostly for
debugging and for maintaining an abstract interface to capabilities despite the encoded
form bits’ being accessible to software.

• CSetVersion derives a versioned capability from an unversioned capability and a version
value from a register operand. Attempting to set the version to 0 will trap. No other
fields are modified in the derived copy. Attempting to make a versioned capability from
a versioned one may succeed only if the desired and existing versions are equal, otherwise
the result will have its tag cleared.7

7It may be sensible to always clear the tag or always trap, as well. We do not have a use case for the tagged



416 APPENDIX D. EXPERIMENTAL FEATURES AND INSTRUCTIONS

D.9.2 Use With System Software

Because there are only finitely many versions available, we envision that the system software
will provide a revocation mechanism to de-tag all capabilities with mismatching versions. To
minimize the testing required by this facility, it will test only the granule containing the base of
each versioned capability it encounters; software engaging in version-based revocation should,
nevertheless, re-version all (partially) contained granules so that derived capabilities with offset
bases are also revoked. In a sense, granules exist because they are a sufficient and straightfor-
ward mechanism to capture spans of version information, not because we expect individual
granules within a single segment authorized by a capability to be changed. Dually, objects with
different lifetimes should not share granules; this results in much stronger alignment require-
ments for allocators, but the practical impact remains to be measured.
We do not specify the shape of the interface exposed for this facility; a traditional system call to
the (privileged) kernel is one possibility for implementation, but more ‘autonomic’ approaches
are feasible as well. We envision a global ‘epoch’ counter maintained by the kernel, stepping
after every revocation pass. If software remembered the counter’s value at the time each alloca-
tion came to have its current version, that software would know when all capabilities with their
base in that allocation and of the wrong version had necessarily been destroyed: in the second
epoch after re-versioning. Such a scheme would permit sharing work across many allocators
desiring revocation within the same address space.
Because revocation may be done in the background, versions are intended to be used once
between revocations. That is, software should not assume that it can restore an earlier version
to re-authorize an existing capability, because at any moment the mismatched capability may
have become de-tagged.
Whereas we conjecture that the minimum requirements given above for mismatched versions
for loads and stores are sufficient to eliminate temporal safety issues, there remains the possi-
bility of apparently inducing bugs in programs running under our new semantics. For example,
if software attempts to (re)initialize an object using a stale capability, the memory will not be
updated and may be reused in inconsistent state. Trapping on version mismatch would better
expose such issues.

D.9.3 Microarchitectural Impact

The cache fabric must now store the version of each granule in each cache line (which, in the
proposal above, is one, given 64-byte cache lines). Dereference operations must forward the
capability’s version field down to the cache fabric as well. The minimum requirements for
version mismatch are, however, intended to remove the need to track store requests through the
memory hierarchy. While precise traps on stores would require essentially a full read-modify-
write cycle, the cache fabric may be able to raise imprecise traps well after accepting a store
by tracking the tentative version bits until they can be checked against the authoritative version
table.

result when-equal case.
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D.10 Linear Capabilities
Linear capabilities are intended to support the implementation of operating-system and language-
level linearity features, which ensure that at most one reference to an object is held at a time.
This feature might be used to help support efficient memory reuse – e.g., by requiring that a
reference to stack memory be ‘returned’ before a caller is able to reuse the memory. Archi-
tectural linearity does not prevent destruction of the reference, which may require slow-path
behavior such as garbage collection, but can support strong invariants that would help avoid
that behavior in the presence of compliant software. This architectural proposal has not yet
been validated through implementation in architecture, microarchitecture, or software.

D.10.1 Capability Linearity in Architecture
We propose to add a new bit to the capability format marking a capability as linear. It could be
that this is a permission (e.g., Permit_Non_Linear). However, as this feature changes a number
of other aspects of capability behavior, we recommend not conflating this behavior with the
permission mechanism, instead adding a new field.
Two new linear move instructions would be added:

Linear Load Capability Register (LLCR) This instruction loads a capability from memory into
a register, atomically clearing the memory location [regardless of whether it loaded a lin-
ear capability?].

Linear Store Capability Register (LSCR) This instruction stores a capability from a register
into memory, atomically clearing the register when a successful store takes place (e.g., if
it does not trigger a page fault) [regardless of whether it stored a linear capability?].

The reason to introduce an explicit linear load is to avoid taking the cost of an atomic operation
for every capability load dependent on whether the loaded capability is linear. A separate
linear store instruction is not motivated by this concern, but would add symmetry, avoiding the
need for store instructions to vary their behavior based on capability type.
A new Permit_Linear_Override permission is added, which controls how existing capability
load and store instructions (e.g., CLC and CSC) interact with linear capabilities. If the permission
is not present, then loaded linear capabilities will have their tag cleared when written into a
register, and stored linear capabilities will have their tag cleared when written to memory. This
behavior maintains linearity without changing the register or memory write-back behaviors of
these instructions.
If Permit_Linear_Override is present on the capability being used to load or store non-linear
capabilities, then linearity is violated, allowing both the in-register and in-memory capabilities
to continue to be valid and marked as linear. This permission allows for privileged system
software to violate linearity when, for example, implementing mechanisms such as Copy-on-
Write (COW) in the the OS virtual-memory subsystem or debugging features.
To save instruction encoding space, we might limit these memory access instructions to be
R-type with only a register-specified offset. This may be adequate if the instructions are infre-
quently used.
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For register-to-register instructions, there are several options – in particular, when implement-
ing capability-manipulation instructions such as CIncOffset and CSetOffset:

• We might make existing instructions remove the tag in register write back for linear
capabilities, enforcing linearity by preventing duplication of linear capabilities.

• We might require that, when existing instructions operate on linear capabilities, they
write back to their source register, enforcing linearity by avoiding duplication to a second
register. This might be simplest microarchitecturally.

• We might add new explicitly linear variants of some existing instructions, which would
enforce linearity by clearing the source register, preventing duplication.

In general, ensuring write-back to the same register is easy and cheap to check dynamically; it
avoids the need to introduce a large number of new instructions offering near-identical behavior.
It also avoids increasing the number of registers that must be written back by instructions.
Additional concerns exist around the implementation of PCC as relates to CGetPCC, which nor-
mally duplicates a capability. Although undesirable, the natural design choice is to strip the tag
when writing to the target register, if PCC is linear.

D.10.2 Capability Linearity in Software
The above architectural behavior means that, on the whole, software must be aware when han-
dling linear capabilities; code must be generated specifically to use new linear load and store
instructions, and to utilize other register-to-register instructions in a manner consistent with
linearity. There are several specific implications that must be taken into account when writing
system software or compilers:

• Linear capabilities must be explicitly identified via the source language – e.g., via types
or qualifiers – so as to guide code generation. It might be desirable to utilize techniques
such as symbol mangling to prevent accidents.

• Linear values cannot be properly preserved by ordinary stack loads and spills, so the
compiler must take explicit action to prevent this from being necessary. This might also
require static limitations on use of capabilities in the language.

• When linear capabilities are used and manipulated as pointers, it may be necessary to
generate code quite differently, or to limit expressiveness. For example, implied pointer
arithmetic when iterating using a pointer requires that the original pointer be destroyed,
or that the pointer be left unmodified but accessed using an integer-register index. It is
not yet clear to what extent this would interact with common C-language idioms.

• Some systems code must be linearity-oblivious, such as context-switching or VM code,
and can employ Permit_Linear_Override to load and store ordinary and linear capabilities
using non-linear loads and stores. However, it must assuredly not violate invariants of
affected software, or else linearity may not be enforced.
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• Many current C-language OS and library APIs may be linearity-unfriendly, as they fre-
quently accept an existing pointer as an argument, but do not ‘return’ it to the caller. It
may be desirable to have a specific set of extended APIs that are linearity-friendly – e.g.,
variants of memcpy that copy data into and out of linearly referenced memory. It is unclear
whether this would extend to a broader suite of APIs, such as OS read and write system
calls – and perhaps would imply polyinstantiation.

• Debugging tools would need to become aware of linearity so as to accurately display
information about linear capabilities found in registers or memory. They might use Per-
mit_Linear_Override to gain access to the full contents of the register with tag, but must
still inspect capability fields suitably, and avoid the need to spill values. It is not clear
how this would interact with current debugger internals.

In general, when linearity is violated, it will lead to loss of tags, preventing dereferences that
violate invariants. It is not clear to what extent this would be easily debuggable. We can
imagine having non-linear sequences generate an exception, but in some cases this may be
microarchitecturally awkward.
Overall, it is not clear to what extent this proposal can interact well with real-world software
designs, or to what extent it usefully supports new software behaviors. Key use cases motivating
this design typically involve garbage collection avoidance: e.g., passing an stack pointer across
protection-domain boundaries and checking that it is ‘returned’ before continuing, avoiding the
need for a GC to sweep the recipient domain. But this does not necessarily alleviate the need
to implement more complex behaviors such as GC in the event that the invariant is violated.

D.10.3 Related Work in Linear Capabilities
Skorstengaard et al. have concurrently developed ideas about linear capabilities [118], which
focus on how to produce a memory-safe execution substrate over a CHERI-derived abstract
capability instruction set. They are able to use linear capabilities to construct a temporally
safe stack calling convention against the model. This allows formal proof of well-bracketed
control flow and stack-frame encapsulation. However, their approach also relies on two further
instructions not present in our current sketch: capability split and splice instructions allowing
linear capabilities for stack subsets to be separated, delegated, returned, and rejoined. It is not
yet clear to us whether these additional instructions are microarchitecturally realistic, especially
in the presence of compressed capabilities.
The creators of the SAFE architecture [19] also propose that linear pointers could contribute
to reasoning about concurrent memory use.

D.11 Indirect Capabilities
Indirect capabilities could support revocable or relocatable objects without modification of ap-
plication executables. An indirect capability would be identified by the hardware as a pointer
to the pointer to the data. That is, a load that takes as an address a capability that is marked as
an indirect capability would load a capability from the base address of the indirect capability,
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and then would apply any offset to the loaded capability before dereferencing and placing the
returned data in the destination register. Therefore, a single load that finds an indirect capability
as its address would perform two loads, a pointer access, and then a data access.

D.11.1 Indirect Capabilities in Architecture
We propose to add a new bit to the capability format, marking a capability as indirect. We
recommend not conflating this behavior with the permission mechanism, instead adding a new
field.
One new instruction would be added:

Make Indirect (CMI) This instruction makes an ordinary capability into an indirect capability
such that any future dereference will effectively dereference the capability pointed to by
this indirect capability. The bounds of the capability must be at least the size of one
capability, and will be effectively truncated to this length by CMI, though the original
bounds will be preserved and applied to the pointer on data access.

The CMI instruction makes a capability indirect, but no instruction can make an indirect capa-
bility direct again. As a result, delegating an indirect capability does not delegate access to the
pointer that is dereferenced, but only to the data being pointed to.
Capability-manipulation instructions such as CIncOffset and CSetOffset would transform the
offset of the indirect capability, but this offset would be applied to the pointer on data access.
The pointer access will always use the base of the indirect capability. In addition, CSetBounds
will transform the bounds of the indirect capability, but these bounds will be applied to the
pointer on data access. The final access must be both within the length of the indirect capabil-
ity, which may contain program-narrowed bounds, and the bounds of the object pointer. The
bounds of the indirect capability would be implicitly the size of one capability, and would not
need to be stored. This behavior allows pointer arithmetic to work as expected on indirect
capabilities, to allow programs expecting standard capabilities to work unmodified.

D.11.2 Indirect Capabilities in Software
The above architectural behavior means that, on the whole, that software need not be aware
when handling indirect capabilities, but only code that performs allocation or delegation would
construct indirect capabilities, maintaining pointer tables.
Indirect capabilities might be used for general revocation between compartments. A buffer
passed to another compartment could be passed as an indirect capability, with a word allocated
by the caller to hold the pointer. On return, this pointer capability will be invalidated, and no
further use of the indirect capability will succeed.
Indirect capabilities might be used to achieve memory safety for the heap in C. Every allocation
could return an indirect capability, and generate a new entry in a pointer table. A call to free
would invalidate the entry in the pointer table, and memory could be reused immediately with
a new allocation in the pointer table. Sweeping revocation may eventually be necessary to free
virtual memory space consumed by freed segments of the pointer table.
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Indirect capabilities might be used for a copying garbage collector. Relocation of allocated
objects would be facilitated by all references being indirected through a single pointer. When
an object is moved, a single pointer could be updated. While an object is being moved, the
pointer could be made invalid, with any use causing a trap that could be caught and handled
appropriately.

D.12 Sealed Enter Capabilities
The existing sealing mechanism has three ultimate consumers of sealed capabilities: software
may

• compare sealed capabilities for equality, using them as tokens created by components
holding capabilities bearing Permit_Seal of the tokens’ type;

• unseal a sealed capability, provided access to a capability bearing Permit_Unseal for the
correct type;

• CCall a type-matched pair of code and data capabilities.

Should one wish to grant the right to invoke a sequence of instructions at a particular entry
point, the mechanisms available are to pass a ‘dummy’ sealed data capability for use with CCall,
or to use a trusted intermediate (probably also entered with CCall) to unseal the instruction
pointer and jump.
Other capability architectures, notably the M-machine [18], have enter capabilities, residing
somewhere between CHERI’s unsealed and sealed Permit_Execute-bearing capabilities.8 Sim-
ilar to sealed capabilities, enter capabilities are immutable by their bearer and do not authorize
memory loads or stores. Like unsealed capabilities, the bearer may directly jump to the enter
capability to begin executing the instructions it references. The jump instruction (e.g., CJR or
CJALR) atomically makes the enter capability into an unsealed capability and installs it to the
program counter capability register. The dual-purposing of the architecture’s indirect transfer
instructions means that code can be oblivious to whether it is jumping through an ordinary code
capability or an enter capability.
In this system, sealing to create enter capabilities is taken to be an ambient monotonic action. It
should require no additional permission to construct an enter capability than to have a capabil-
ity bearing Permit_Execute in the first place. We propose a CSealEnter instruction that derives
an enter capability from any Permit_Execute-bearing VA capability, otherwise preserving per-
missions, bounds, and cursor. Enter capabilities take otype of 264 − 2 (truncated as required
by the implementation; recall table 3.2) but are not intended to be unsealable within general
system software9 except by entry of control flow.10

8Because they act in tandem with CHERI’s sealing mechanism and describe function entry points, we some-
times refer to CHERI’s enter capabilities as ‘sealed entry’ or ‘sentry’ capabilities. We use ‘enter capabilities’
herein to emphasize similarity with extant literature.

9While it would be ideal if the permission to unseal otype 264 − 2 (and 264 − 1) were excluded from the
primordial capability set, instead we imagine that early boot code can enforce this when it partitions its boot
capabilities into the provenance roots it uses in the steady state.

10Of course, one could create a ‘self-unsealing enter capability’ that transferred PCC to the return value (ca-
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instance 1 read-write region read-only region instance 2 read-write region

instance 1 PLT instance 2 PLT

Figure D.5: PLT-style multiple instantiation showing capability reachability. The RO region is
referenced with a subset of execute and load (data and capability) permissions by the PLT. The
PLT references its corresponding RW region with any desired set of permissions. The PLT is
referenced using enter capabilities by the outside world. The RW instance region may also hold
references to the corresponding PLT with additional permissions (dotted lines); such references
are required when the object’s methods are not leafs of the control graph.

D.12.1 Per-Library Globals Pointers

Such capabilities are useful for multiply instantiated objects (e.g., shared libraries), as schemat-
ically shown in figure D.5. We wish to guarantee that any transfer of control into the read-only
region is guaranteed to have a capability to some instance’s read-write section in a register. In
the case of a shared library, this may be a capability to the library instance’s global .data and
.bss segments, and so one sometimes hears the name ‘globals register’ for this register use.
More generally, the capability may be likened to C++’s this.
In order to achieve this effect, the loader should, at instantiation time, create a Procedure Link-
age Table (PLT) per instance; the PLT contains dedicated trampoline code, together with capa-
bilities to the read-only and per-instance read-write regions. For efficiency, we would like the
caller to affect as direct a transfer of control as possible, yet we wish to guard against frame-
shifted entry to the trampoline code. Moreover, the trampoline must arrange for the invoked
code to have the correct state capability (e.g., to a library’s global variables), and yet the caller
of the library must not directly hold this capability. The atomic unseal-and-jump behavior of
enter capabilities is ideal: the PLT may contain the capability to the state, and the enter ca-
pability can authorize its (PC-relative) load once it has been entered, yet the user can neither
fetch or manipulate capabilities through the enter capability nor enter the instruction stream at
an incorrect offset.
In order to continue to ensure that the code runs with the correct capability in the globals
register after return from a transfer of control outside the library, re-entry must also be gated
by similar PLT stubs. That is, the return addresses must themselves be given PLT entries and
direct control transfers must not be used to call out from the library. Instead, return addresses
(in addition to the usual function entry points) should be given appropriate PLT stubs and enter
capabilities to those stubs must be used as the return address given to the callee.
The contents of the stack and register file are otherwise shared with the callee; the stack may
still be visible to the caller, as well. This mechanism is therefore not suitable for distrust-

pability) register and then returned control to the caller. While this particular gadget is unlikely to be more than
a niche party trick, it demonstrates the need to manage, and (in particular) clear, capabilities derived from the
unsealed PCC before yielding control.
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ing inter-domain calls, but we believe it affords a reasonable amount of control flow integrity
assurance within a domain, acting as a defense against return- or jump-oriented techniques.
This technique relies very little on architectural mechanism: PC-relative loads of capabilities
and enter capabilities. Moreover, it is likely simple to explain to a traditional dynamic linker.
However, it requires dedicated trampolines per instance of the object (library) under study, and
does not completely guarantee control flow: for example, code called by our enter-capability-
guarded library instance may engage in non-stack-discipline control flow and skip its return.

D.12.2 Environment Calls via Enter Capabilities

Enter capabilities are also useful for sandboxing. While sandboxed code can be made to look
like a library to the calling environment, a more interesting observation is that the reverse is
also possible and that enter capabilities are also viable for calls from the sandbox back to a
single-threaded supervisor environment. On sandbox construction, the environment allocates
space for its state closure (a longjmp buffer and (pointers to) other state) and builds a set of
PLT-like stubs for this new sandbox that will ensure that a capability to this closure is passed
to the functions invoked, just as the PLT stubs above ensured that the global pointer is passed.
Whenever the environment calls into the sandbox, it must update its state closure as part of
preparing the register file for entry to the sandbox. The return address given to the sandbox
should, as discussed above, also be an enter capability pointing to one of the constructed PLT-
like stubs.
In the case of multiple threads calling into the sandbox, the environment must demultiplex
its closure pointers, as it cannot necessarily depend on the sandbox to not use the return enter
capability from one thread within another thread’s execution. The trampoline code for invoking
or returning to the environment will, ultimately, involve asking the environment’s environment
for the notion of ‘current thread’ and using that information to retrieve the appropriate closure
state. In the case that the environment is running under a kernel, demultiplexing may avail
itself of a system call or fetch from VDSO to retrieve the current thread identifier or thread
local storage capability. In the case that the environment is the kernel, it must use privileged
architectural state (e.g., a saved stack pointer) to distinguish threads (and so the enter capability
itself must bear Permit_Access_System_Registers or have access to another capability that
does).

D.12.3 Bit Representation

In the past, enter capabilities used a now-again-reserved bit to indicate that a sealed capability
could be unsealed by entry of control flow. We believe the current proposal, which uses a
dedicated otype value, to be superior.

D.13 Compact Capability Coloring
As noted above, the Global permission described in the model of Section 3.3.1 is semantically
not parallel to the other permissions. It is a one-bit attribute of the capability itself, a concept
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we term a color, borrowing from the information-flow analysis community [100]. Capabilities
without the Global color (called Local) have their flow constrained, in that they can be stored
only through a capability (of any color) bearing the Permit_Store_Local_Capability permission
(as well as Permit_Store_Capability and Permit_Store). These two bits, one color and one
permission, are leveraged by the existing runtime system to ensure that pointers to the stack
can be stored only to the stack (and not the heap). That is, excepting capabilities within the
TCB, all capabilities authorizing access to stack memory are colored Local, and all capabilities
bearing the Permit_Store_Local_Capability permission authorize access only to stack memory.
While the model permits a capability to stack memory (which must, per the above restriction,
be Local) to be without the Permit_Store_Local_Capability permission, such capabilities are
not deliberately constructed (unless they lack Permit_Store_Capability and/or Permit_Store as
well, i.e., as part of a read-only view).
To recapitulate, then, we have the following four states of being for capabilities:

Color Permit_Store_Local_Capability Use
Global Yes TCB only
Global No Heap memory
Local Yes Stack memory
Local No Unused

The last configuration may be created (even outside its read-only utility) by monotonic action
from any of the other configurations. These colorings and permissions capture the following
intended flow policy:

Capability type... Stored through type... Permitted
Stack Stack Yes
Heap Stack Yes
Stack Heap No
Heap Heap Yes

In this policy, stack-type capabilities are universal authorizers of stores (‘universal recipients’, if
you will) and heap-type capabilities are universally authorized to be stored (‘universal donors’).
(The TCB-only, Global capabilities with Permit_Store_Local_Capability may be stored to and
may authorize any capability store; the unused state can be stored only to TCB- or stack-state
capabilities, and may authorize storage only of TCB- or heap-state capabilities.)
Neglecting the TCB state for a moment, we see that a single bit should be sufficient to encode
our desired policy, using a material conditional: if the capability being stored is stack-type,
then the capability authorizing this store must also be stack-stated (or, equivalently, phrased
as the contrapositive, if the capability authorizing the store is heap-stated, the capability being
stored must also be heap-stated). Similar flow policies also exist for flows across permission
rings (the kernel may hold its own and user capabilities, but user programs may hold only user
capabilities) and for flows through garbage-collector-managed memory regions (capabilities
to managed memory may be stored only in managed memory, so that the collector must be
notified of roots escaping). This suggests that we are justified in carving out several bits for
orthogonal colorations; we suggest at least three, for the cases just considered, and perhaps no
more than six, for reasons we will discuss below.



D.13. COMPACT CAPABILITY COLORING 425

To abstract over the several colors, we adopt the terms ‘positively colored’ and ‘negatively
colored’ to refer to the two possible states of a color. The flow policy is the logical and of
the conditional for each color: “if the capability being stored is positively colored, then the
capability authorizing the store must also be positively colored” or, equivalently, “if the capa-
bility authorizing the store is negatively colored, the capability being stored must be negatively
colored.” Positively colored capabilities are the ‘universal recipients’, and negatively colored
capabilities are the ‘universal donors’.11

The two-bit color-and-permission scheme described at the start of the section has a simple an-
swer to the ‘primordial’ coloring of capabilities, and to the recoloring of capabilities into target
states: the maximally permissive TCB state may be monotonically transformed with CAndPerm

into any other state. Subsequent (monotonic) actions will never convert a heap-type capability
into a stack-type one, or vice-versa. Given only a single bit for our color, any primordial capa-
bility must have some color, not a dedicated TCB-only ‘colorless’ choice. Further, our one-bit
scheme must not ambiently permit conversion, in either direction, between the two states. We
therefore propose that color bits are separate from permissions, immune to the action of the am-
biently available CAndPerm instruction. We suggest that, primordially, capabilities be positively
colored in all colors, so that, having explicitly changed the color of some memory capabilities,
the software may not accidentally store into these now negatively colored regions.
What remains to be spelled out, then, is the selective authority to alter colors. Towards this
end, we conceptually introduce yet another ‘space’ of identifiers guarded by capabilities and
introduce a ‘color-change authority’ capability, which moves about the system as any other
(and itself bears colors). The primordial capability authorizes any change to any color of any
capability anywhere in memory. Such authority may be monotonically shed, coming to autho-
rize only some changes (e.g., creating stacks from heap memory, but not the reverse) to some
colors (e.g., changing only the stack/heap color but not the kernel/user color).12

Variant 1 We introduce a new instruction, CChangeColor, which takes a capability register
containing the source capability, another for the destination, and a third for the authority capa-
bility. This instruction carries out all authorized transitions to produce a target that differs from
the source only in its colors. We might have preferred a four-parameter instruction, which ad-
ditionally specified which color to change from the authorized set, but this would likely require
too many bits; in practice, we believe that color-change-authorizing capabilities would be few
and relatively static, so the cost of tailoring to uses would be small.
An initial encoding of such color-change authority capabilities, backwards-compatible with the
existing capability encoding described in this document, is to use a capability that

11Another dimension of generalization would be to have load-side color checking. That is, we could imagine
enforcing policies of the form “if the capability authorizing a load is positively colored, then the capability loaded
must also be positively colored (and if not, the result is not a capability).” We have no immediate use for such
policies, but for somewhat related considerations, see Section D.6.

12In principle, one could also monotonically confine color changes to capabilities located in particular parts of
memory or, perhaps more usefully, to memory capabilities referencing particular parts of memory. Encoding a
restricted notion of change authority for non-memory capabilities such as sealing, compartment, or color-change
capabilities is less obvious. We are not yet sure how to proceed in this dimension of monotonicity, and do not so
here. Our color-change capabilities will always authorize changes to any capability anywhere, but, of course, the
would-be authorized agent needs access to the source capability in the first place.
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• Bears no permissions other than a new Permit_Change_Color permission. (Ideally, this
would be encoded as the type of the capability, and not consume an entire permission
bit.)

• Has a base of zero and a limit of the top of the address space.

• Stores in its offset a bitmask authorizing color changes as follows: color n may be tran-
sitioned from its current value cn to its negation if bit 2n+ cn is set.

It is immaterial which of ‘0’ or ‘1’ one assigns to the different color choices. However, the sys-
tem must pick one; we suggest using ‘1’, commonly read as ‘true’, for the ‘positively colored’
choice, in keeping with the presentation above. In this encoding, the offset-adjusting instruc-
tions must be modified to permit only bitwise and operations on the offsets of these capabilities.
(If one is conflating capability types, as we do at present, the appropriate guard is that only Per-
mit_Change_Color is set.) This is perhaps the most awkward feature of this design, though we
believe the checks can be added without impacting timing. (In a world where capability types
were explicit and separate from permission bits, we could reuse the permission bits, already
subject to manipulation only by CAndPerm to carry our permission bitmask, assuming there are
at most half as many colors as permission bits.)

Variant 2 Perhaps a more natural encoding would instead have capabilities that enact exactly
one color change when cited (but may authorize more than one). Here, we propose that the
space of integers from 0 to 2C, with C being the number of color bits available in the system,
be another ‘identifier space’ for capabilities. A color-change capability holding value 2n + cn
requests toggling color n < C from cn to its negation when used as the authorizing capability
with the CChangeColor instruction. In this scheme, there would be no need for any fiddly bit ma-
nipulations of capability offsets, but at the cost of more capabilities held by agents authorized
to perform some, but not all, color changes.

Variant 3 In fact, there is no need to introduce an entirely new capability type, permission bit,
or instruction. Because sealing object types (otype), in practice, are only at most 24 bits wide,
and there are very few colors, we could reuse invalid encoding space for sealing capabilities
to also authorize color changes: values x in the range of 224 to 224 + C could be defined
as colors rather than invalid otypes and the existing use of Permit_Seal and Permit_Unseal
bits could control setting the target capability’s color number x − 224 to become positively or
negatively colored. The existing CSeal and CUnseal instructions could be used in lieu of any
new CChangeColor. This shares with variant 2 the need to have many capabilities held by agents
authorized to change multiple colors if they are not contiguous or authorize different transition
directions.

D.14 Sealing With In-Memory Tokens
Deciding on the number of otype bits within a sealed capability has been challenging, be-
cause the bits come at the expense of bits for precision of bounds, permissions, and colors. In
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this section, we propose that virtual addresses can play double-duty as type identifiers, either
supplanting or reducing the need for in-capability otype bits. The design of this section is a
somewhat invasive change to CHERI, but appears promising.

D.14.1 Mechanism Overview
We propose that sealed objects have their type not in the referring capability, but rather in
a tagged capability-sized structure at the base of the object in memory. This structure is
termed a ‘type token’ and it contains a virtual address (and metadata) but does not confer
any permissions, to its contained address or otherwise, to its bearer; in fact, as a defensive
posture, we do not permit tagged type tokens to be loaded into registers unless PCC has Per-
mit_Access_System_Registers.13 In addition to creating a sealed reference capability, sealing
an object would store a suitable type token to memory, derived from the capability used to au-
thorize the seal. Unsealing fetches and verifies this type token against the capability authorizing
the unsealing.

D.14.2 Shared VTables with Enter Capabilities and Type Tokens

class code

unsealing right
method 1 guard
method 2 guard

method 1 enter
method 2 enter

VTable:
type token

instance data

VTable capability
sealed RW

data capability

Per instance

constructor guard
sealing capability

Per class

constructor enter
object capability

Held by caller

Figure D.6: Schematic representation of a shared VTable design for a base class. The user
directly holds an enter capability to the object constructor guard, which uses the adjacent
Permit_Create_Type_Token-bearing capability to stamp object instances. Each object in-
stance is held by the user through a Permit_Load_Capability-bearing capability and has a two-
capability header, consisting of a Permit_Load_Capability-bearing capability to the VTable and
a sealed capability bearing load and store permissions to the object instance data. The VTable
itself is an array of enter capabilities pointing at method guards, which in turn verify the ob-
ject instance’s type token against their unsealing right before invoking the actual class method
handler.

13This means that a sealed object cannot simply be copied via memmove; a copy or move constructor must be
invoked to reconstruct the type tag on the target memory. This does not seem to be an especially high burden.
In fact, even the Permit_Access_System_Registers caveat can be removed if an alternative mechanism for tag
reconstruction is made available to the kernel; for example, capability reconstruction as per appendix D.5 could
gain the ability to reconstruct tags given the sealing authority.
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Enter capabilities (recall appendix D.12) give software the ability to ensure that control flow
can enter a given region at a particular address: the bearer of an enter capability can jump to it
but cannot adjust its offset. However, unlike the existing CCall mechanism, enter capabilities
when invoked transition only the PCC register. To transition other registers as a function of the
instance, we propose a PLT-like scheme using dedicated trampolines to load unsealed capabil-
ities that were nevertheless beyond the reach of the caller, due to the sealed nature of the enter
capability held.
In-memory type tokens allow software the ability to mimic the existing CHERI sealing mech-
anism, trading one capability in memory to not need the otype bits in referring capabilities.
(This does come with the additional cost that sealing a region of memory under multiple seals
will require the use of several tokens in memory with successively larger bounds in the refer-
ring capabilities.) In figure D.6 we show a schematic representation of using in-memory type
tokens to guard method invocation of a multiply instantiated (C++) object.
Combined with enter capabilities, an object’s shared code can now securely verify that its first
argument is indeed a sealed capability to a data region resulting from this object’s constructor.
The constructor is made available as an enter capability to a region containing a capability bear-
ing Permit_Seal. The non-constructor capabilities in the VTable are enter capabilities pointing
within a region bearing corresponding Permit_Unseal rights. These three regions (the construc-
tor guard code, the method guard code, and the VTable) are created once, when the object class
is loaded, and will never be written to thereafter. Conveniently, the object-class code location
can be used as its own type token value, there is no need for a separate pool of virtual addresses
for type token values. The separation of unsealing rights is not essential and is another defense
in depth: the non-constructor methods will not necessarily come to hold, even transitively, a
capability bearing Permit_Seal for this object type.

D.14.3 The Mechanism in More Detail

Type tokens are created directly into memory with a new CSealTyT instruction, stored at the base
address of the capability being sealed, which must be capability-aligned (and the to-be-sealed
capability must authorize an at-least-one-capability-sized segment of memory). CSealTyT re-
quires that the capability to be sealed bear Permit_Load and Permit_Store and that the invoca-
tion reference an in-bounds Permit_Seal-bearing14 capability whose cursor will form the type
tag.15 Software must ensure that the store done as part of sealing is visible to other processors
before publishing the sealed capability anywhere it may be read by another core. Immediate
fencing is not always required, and so we suggest it not be intrinsic to the CSealTyT instruction.
The sealed capability resulting from CSealTyT will have its otype set to 264 − 3, truncated as
required by the implementation.
Attempting to load a type token via CLC will succeed, but will strip the tag. The resulting
register contents need not be particularly well specified; in particular, we should no more ex-

14For compatibility with CHERI-MIPS, we exclude from CSealTyT’s domain sealing capabilities referencing
the bottom of memory, from 0 and to the maximum otype value, interpreted as an unsigned integer, available to
the implementation, inclusive. These are reserved for use with the existing CSeal instruction.

15It is not clear whether CSealTyT should permit the clearing of Permit_Load and/or Permit_Store in the
resulting sealed capability, despite requiring them on input.
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pect sensible results from the capability-observing instructions here than if we had loaded an
arbitrary untagged region of memory.
Token-mediated unsealing is done by a new CUnsealTyT that takes a sealed capability (with
otype of 264− 3) and an in-bounds authorizing capability bearing Permit_Unseal. If the cursor
of the authorizing capability matches the virtual address stored in the type token at the base
of the sealed object,16 then CUnsealTyT produces an unsealed version of the sealed capability.
Microarchitecturally, CTyTUnseal is somewhat akin to a compare-and-swap whose store-back
is into the register file rather than memory.
It might be helpful to software to add a CGetTypeTyT instruction that somewhat mirrors the
CGetType instruction. CGetTypeTyT would fetch from the base address of a sealed capability (of
the right otype) and store the virtual address from the type token back to a general-purpose
integer register. We propose that, if an exception is not desirable, that the value 264− 1 be used
if the memory at the base is not a type token.

D.14.4 Unseal-Once Type Tokens
It is likely useful to have a version of unsealing that atomically prevents any future attempts.
Rather than merely fetch the type token, this instruction would carry out a CAS-like update of
the type token in memory.

D.14.5 User Permissions For Type-Sealed VA Capabilities
Because type tokens are capability-sized structures used only for their contained virtual ad-
dresses, there are many spare bits in the structure (in fact, a few type-tagging bits shy of an
entire machine word’s worth). One especially attractive possibility, if it can be demonstrated
to be sufficiently secure, is to push the architecturally defined permission bits within the sealed
capability into the type token. This would permit the use of the intra-capability permission bits
as user permissions, subject to the action of CAndPerm despite the sealed nature of the capa-
bility. We would then be able to use capability permission bits to help arbitrate permissions to
methods within an object, as is typical of other capability systems, rather than, as suggested
by the design in appendix D.14.2 above, having one enter capability per procedure and gating
permission by possession of the procedure’s guard’s enter capability. CUnsealTyT would use
the bits from the type token in its output capability, and software would be able to inspect the
permission bits of the input object reference (i.e., there would be no need for a second register
storeback in CUnsealTyT).
In this scheme, should an object wish to be able to grant sealed references with one of several
sets of architectural permissions, it suffices to place an array of type tokens at the beginning of
instance memory and adjust the base of the (to be sealed) capability, while leaving the cursor
to point at the start of the object’s data. Any type tokens within reach confer no authority,
even after we have moved architectural permission bits into them. Further, because type tokens
cannot be created in memory except by CSealTyT or highly privileged software, aliasing of the
memory containing the type token cannot de novo amplify architectural access (but may be
vulnerable to confusion within suitably authorized control flow).

16This load is why CSealTyT required Permit_Load of its to-be-sealed capability.
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D.14.6 Token-mediated CCall

CCall poses something of a challenge for in-memory type tags: a single instruction must, seem-
ingly, perform two fetches from memory and then do a comparison on the loaded values. How-
ever, because the instruction cares only about the equality, it seems that we can turn this into a
fetch from one capability’s base and then a CAS-style comparison against the other’s. In fact,
this combines nicely with unseal-once type tokens: if CCall fetches from the sealed code capa-
bility first, it is then in a position to issue the appropriate CAS against the sealed data capability.
In CHERI-MIPS, CCall is already a two-cycle instruction, occupying two successive stages of
the pipeline, and so we conjecture that the changes requisite to support token-mediation are
small.

D.14.7 Hybridization

This scheme uses one otype value for its sealed capabilities; the remaining values are still
available for the rest of the system’s use. It is our hope that most users of otype values can
be rearchitected to use this in-memory scheme and that the otype field can be reduced in size.
However, the otype field should not be entirely eliminated: its existence allows us avoid some
of the overhead of this design in the innermost ring of the system.17 Such otype bits would also
let software create sealed objects other than enter capabilities without memory footprint.

D.15 Chaperoned Short Capabilities

An frequent initial objection to CHERI is that even the 128-bit compressed form of capabilities
occupies too much space, especially for pointer-heavy workloads. However, when discussing a
64-bit virtual address space, it seems plausible that 128 bits is the best we can do: the metadata
CHERI requires vastly outstrips any ‘spare’ bits in the address, and any size that was not a
power of two bits would be awkward, at best. One way out, would be to imagine that one
could mix 128-bit and 64-bit capabilities within an address space, with the caveat that the 64-
bit capabilities could address only a 32-bit address space (i.e., they would have a 4 GiB reach)
and would have a smaller set of permission bits, fewer flag bits, and fewer bits for object types.
While we could limit all 64-bit capabilities to referencing a particular, fixed 4 GiB region of
the larger addess space (e.g., the first 4 GiB), a better design, if we could get it, would be to
allow the 4 GiB window to be chosen by a 128-bit capability.
The design we detail here treats these 64-bit capabilities as specialized representations of 128-
bit capabilities. Importantly, this design does not modify the representation or semantics of
capabilities within the register file: the bulk of the system’s operation is unimpacted. We
introduce new, purpose-made instructions for loading and storing these short representations of
capabilities; stores especially may fail if translation is not possible.

17Because the innermost ring is presumably the kernel’s TCB, a hypervisor, or ‘nanokernel’– effectively mi-
crocode – the resulting system has some similarities to the Intel 432 / BiiN / i960MX lineage, which had a few
architecturally understood special types of capabilities – but relied on software interpretation for the rest.
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D.15.1 Chaperoning Capabilities

Because 64-bit capabilities operate only within a 4 GiB window of the address space, when
fetching a 64-bit capability from memory, we fill in the implied upper 32 bits of the full 64-bit
address from the cursor of the capability authorizing the fetch. This straightforward operation
is provided by the CLShC instruction.
When attempting to (encode and) store a capability to a short form in memory, the store will fail
unless all three of the following addresses agree on their top 32 bits: the computed destination
address of the store and the base and limit of the capability being stored; the cursor of the
capability to be stored is permitted to be within either adjacent 4 GiB window (but must still be
representable).18 19 All of this is provided by the CSShC instruction.
A consequence of this design is that short capabilities (transitively reached through short ca-
pabilities) are always interpreted within the 4 GiB window specified by the initial reference
through a full capability. These capabilities may be stored as short capabilities anywhere within
this window (or as full capabilities anywhere in the address space). Because capabilities in reg-
isters always have their full 64-bit virtual address cursor and bounds, it is impossible to use a
short capability in one 4 GiB window to derive a capability to any part of a different window:
the dereferencable region is always contained within the original window whence the capability
was loaded, and so attempted stores to another window will fail.20

D.15.2 Restrictions Within Short Capabilities

In order to reduce the space required for metadata within short capabilities, we suggest several
restrictions.
Within the permissions field, we suggest that short capabilities be limited to expressing virtual
address space, so that Permit_Seal, Permit_Unseal, and Permit_SetCID are implicitly false for
any short capability. This seems reasonable, as these gate fundamentally new facilities offered
by CHERI and seem like they will be relatively rare even in fully CHERI-fied software stacks,
so the requirement to use a 128-bit capability should not be onerous. Further, because we
intend short capabilities to be used mostly for sandboxes within a larger ecosystem, we think
it reasonable to imply that Permit_Access_System_Registers is also false. Similarly, we do
not foresee the utility of the Local/Global distinction for short capabilities, and so propose
implying Permit_Store_Local_Capability to be false.21 All told, these implications eliminate

18To expand on the meaning of “fail” here: it would be sufficient to store a de-tagged word, but trapping is more
likely programmer friendly. However, this is a data-dependent action, as it requires a comparison between the
(untranslated, virtual address) and the address from the register file. However, this is not the only data dependence
in the short capability store instruction.

19Alternatively, it would suffice to ensure that, on decoding, any access beyond the limits of the 4-GiB-aligned
region had been shed. Because short capabilities are never used directly, there is some flexibility in enforcement
here.

20If ever direct memory-to-memory capability copies become possible, it would be necessary to explicitly check
that copied short capabilities are not being replicated in ways that would change their decoding.

21We could also imply the Global permission bit to be true, but then we would need to fail attempts to
encode local capabilities into short forms. While we do not anticipate the use of capabilities bearing Per-
mit_Store_Local_Capability outside trusted software, it nevertheless seems simpler to leave Global within the
short capability encoding.
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five existing permission bits from short capabilities’ representations.
We suggest a reduced object type range for short capabilities, as well. This will have implica-
tions in the software stack: ‘small’ object types will be somewhat precious, and so may need
to have special handling in the allocator(s) thereof. The utility of sealed short capabilities, and
especially of architecturally defined sealing object types to short capabilities, remains an open
question.
Bound metadata may also be subject to pressure, and so short capabilities may face stricter
alignment requirements for large objects than full, 128-bit capabilities. While this would not
be great, it may be that references to large objects are relatively sparse, and so software may
find it easier to fall back to full capabilities rather than insist that all capabilities should be short
whenever possible.

D.15.3 Tag Bits and Representation

Given such a system with mixed capability widths, we require more bits for distinguishing
capabilities from data. In a 128-bit-sized and -aligned region of memory, there are five possible
options: 1 One 128-bit capability. 2 Two 64-bit capabilities. 3 One 64-bit capability, followed
by data. 4 One 64-bit capability, preceded by data. 5 Only data. There are several ways that
we could arrange to distinguish these possibilities, but two seem especially attractive. Perhaps
the simplest approach is to use three out-of-band tag bits rather than the one per 128-bit granule
of memory that CHERI now imposes; this would leave us with three values reserved for future
expansion. One could slightly tamp down on the need for tag bits by tagging entire cache lines
instead: eight sets of 5-way discrimination, corresponding to 128-bit cache lines, takes only 19
bits rather than the more straightforward 24, at the cost of more complex decoding logic (likely
in the LLC).
However, we may be better served by the use of two out-of-band tags and one bit in the ca-
pability encodings themselves, effectively giving us somewhere between two and four bits of
metadata, depending on the scenario. One possible encoding is shown in table D.1. Forbidden
states should trigger machine check exceptions or something similarly indicative of catastro-
phe. This scheme is relatively straight foward to operate, but requires a little awkward handling
of the inherent asymmetry between the upper and lower 64 bits within a 128-bit granule. A
load of a full capability must verify that both out of band tag bits and thi are all asserted. A load
of a short capability from the upper position must verify that Thi is asserted and thi is clear. A
load of a short capability from the lower position must verify that Tlow is asserted, that tlow is
clear, and that either Thi or thi is clear. Data stores always clear the corresponding out-of-band
bit; stores to the lower half of a capability granule must additionally access Thi and, if Thi is
asserted, then access thi to determine whether Thi should be cleared as well (to avoid the for-
bidden states marked with †). Fortunately, all of this state machine logic is localized within a
cache line and its tag bits.
Similar considerations hold should we wish to mix all of 64-, 128-, and 256-bit capability
forms. In such a system, there are 26 states for every 256-bit granule of memory: each 128-bit
granule may be in each of the 5 states given above, or an adjacent pair may hold a 256-bit
capability.
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Thi Tlow thi tlow Meaning
0 0 X X Two data words
0 1 X 0 64 bits of data above a 64-bit capability
0 1 X 1 Forbidden
1 0 0 X A 64-bit capability above 64 bits of data
1 0 1 X Forbidden†

1 1 0 0 Two 64-bit capabilities
1 1 1 X A 128-bit capability

Table D.1: A possible hybrid out-of-band and in-band tagging scheme for mixing 128-bit and
64-bit capabilities. thi and tlow are the intra-capability tag bits for the upper and lower 64-bit
regions, respectively, while Thi and Tlow denote the corresponding two out-of-band tag bits. X
indicates ‘don’t care’ and stands for either bit value.

D.15.4 SoCs With Mixed-Size Capabilities

It is frequently the case that Systems on Chip (SoCs) contain 64-bit application cores and
also 32-bit microcontrollers. One potential further use for this approach is to allow bridging
between those two worlds: 64-bit cores with 128-bit capabilites that are able to load and store
64-bit capabilities used by 32-bit cores connected to the same memory fabric. Care would be
required to ensure that capabilities originating on one core were derefenced only with a suitable
address space on a second core able to access them.

D.16 Capabilities For Physical Addresses

D.16.1 Motivation

CHERI capabilities that authorize access to memory are typically interpreted in combination
with an ambient virtual address translation configuration. That is, the addresses authorized by a
CHERI memory capability are taken to be virtual addresses, which are then translated to phys-
ical addresses by the core’s MMU. The MMU configuration defines a virtual address space;
it is, ultimately, in all modern, mainstream architectures, described by integers.22 The use of
provenance-free integers to describe such configurations carries risks, just as with pointers.
Necessarily, the ability to configure the MMU must be confined to privileged, and necessarily
trusted, software; this software must enforce its intended policies concerning permitted access
to the core’s view of physical memory and it must do so with no architectural safeguards.
Moreover, a (software) system may, as part of timesharing the CPU core, reprogram the MMU
to achieve isolation (and, possibly, controlled non-isolation) between different ‘process con-
texts’. Further, these contexts may be dynamic, reshaping their associated MMU configurations
across time. CHERI capabilities are not explicitly associated with a particular context and/or

22In architectures with hardware page table walkers, such as ARM and RISC-V, these integers are arranged
in defined, tabular format. In architectures without, such as MIPS, the analogous structures are defined only in
software, but the soft-loaded TLB is programmed using integer values written to architecturally specified registers.
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time. As a result, software must ensure that capabilities are not transmissible improperly23 from
one context to another, nor retained improperly as context mappings evolve. Thus, the direct
mechanisms available for capability passing within a single context (including between CHERI
compartments therein) are likely not available for cross-context communication.
A similar story plays out in hardware: ‘physical’ addresses are meaningful only when paired
with a location, as bus bridges may remap addresses in transit from one port to another. When
devices or cores wish to communicate, they must model the action of the intermediate fabric
and generate (integer) addresses that may not be meaningful locally but will be at the remote
endpoint, across the bus fabric. Again, all the problems with integer addresses resurface and
are exacerbated by the relatively minimal protection mechanisms available at the physical bus
layer.
For this section, we focus on two cases: software on a CHERI core seeking to escalate its privi-
lege, and peripheral devices wishing to attack the core (possibly in cooperation with software).
In both cases, the intended victim of the attack(s) will be taken to be the CHERI core’s trusted
computing base (e.g., a hypervisor). We restrict our attention to steady-state operation rather
than attacks against the initial bootstrap; that is, we assume that any would-be attacker was
not present during the load of said TCB and that the core itself is trusted to faithfully execute
instructions.

D.16.2 Capability-Mediated CPU Physical Memory Protection

RISC-V has a notion of a Physical Memory Protection (PMP) unit that validates every (post-
virtual-address-translation) memory request issued by a processor core. Roughly, for each
request, an n-way associative lookup against a table of (region, permissions) pairs is performed,
and the request is authorized only if the table contains a region containing the requested address
and the request is of a type permitted by that region. For details, see the RISC-V Privileged
Architecture specification [127, §3.6].
The control interface to the PMP is, as might be imagined, based on integers: coarsely speaking,
machine-mode code is able to write arbitrary bits to the PMP table through the core’s CSR
interface. Supervisor and user mode code are not permitted access to the table. Thus, any
code in machine mode can alter restrictions imposed on supervisor or user memory access, and
so a confused deputy attack on the machine mode could result in privilege escalation for the
supervisor or user programs. We would prefer to have a more ‘least authority’-friendly option.
We propose a ‘capability-mediated PMP’ (CPMP). Its control interface will permit table entries
to be populated only from valid (tagged) capabilities. We imagine using a pair of a CSR and a
special capability register to provide row-by-row access to the augmented table.
Because machine-mode code on RISC-V has explicit control over whether address translation
is enabled, a baseline capability-mediated PMP implementation could repurpose the existing
CHERI capability mechanisms and rely on software to track the distinction between capabilities
intended for use as physical addresses and those intended for use as virtual addresses. Such

23The simplest and most restrictive policy is to entirely prevent transmission of capabilities between contexts.
However, if contexts have common identically interpreted regions of their address spaces, one could imagine
utility in passing capabilities referencing only these spaces. Such passing would, in CHERI’s design, necessarily
have to go via a software intermediate rather than more direct passing through the shared region itself.
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an approach runs slightly against the grain of our design principles, and has limitations; for
example, sealed forms must be used if these capabilities are to be given to supervisor (or user)
code.
For these reasons, and to enable a wider series of uses, we envision creating a new capability
provenance root. Capabilities derived from this root are distinct from existing CHERI capa-
bilities (by, say, having a bit immutably set that the existing capabilities maintain cleared) and
denote ranges of physical addresses, even in the presence of paging. Accesses via these capa-
bilities bypass any paging mechanism and, dually, we can now make accesses via the existing
CHERI capabilities that always go via address translation, even in machine mode.24 These ca-
pabilities may have their born authority decreased as with any other CHERI capability, and may
flow to non-machine-mode code to enable (for example) light-weight partitioning of physical
resources between multiple supervisors.

D.16.3 Capability-Mediated DMA Physical Memory Protection

Whereas RISC-V considers PMPs only in the context of a CPU core, nearly identical hardware
can be used to gate peripheral DMA requests. Here, the PMP’s control interface is exposed to
the CPU, most likely as a memory-mapped region, and the direction of requests is backwards,
but the operation of the device is fundamentally the same. When presented with a memory
request by the peripheral, such a gate performs an associative scan of the configured table and
either permits the request to enter the bus or rejects the request. We tentatively call such a gate
an IOPMP.
Whereas IOPMPs could be programmed using integers (as in the RISC-V PMPs), or using
existing CHERI capabilities transported over the memory bus, the story is much more credible
if they can require physical-address capabilities. So equipped, we reduce the risk of confusion
or misbehavior of machine-mode code but, more excitingly, we gain the possibility of directly
exposing peripheral IOPMPs to non-machine-mode code for efficient device pass-through.
This story is fairly satisfying for the control of the IOPMP itself; however, there remains a
challenge of translating the authority carried by the CHERI CPU core into an address suitable
for comprehension by the peripheral. That is, because the peripheral continues to speak in in-
teger addresses in its control messages, software on the core could easily treat the peripheral as
a confused deputy, causing it to DMA to regions authorized by, for example, other (software)
compartments. It may be necessary to limit sharing of peripherals this way, or more directly
involve the IOPMPs in device control. One could imagine, for example, that the IOPMP could
‘back-translate’ core-originated capabilities in control messages into integers for the periph-
eral’s consumption, perhaps with a tag.

D.16.4 Capability-Based Page Tables

Traditionally, hypervisors must deny the supervisors they oversee the ability to directly con-
trol the memory translation tables. Towards the ‘paravirtualization’ end of the spectrum, the
hypervisors require that the guests make hypercalls to manipulate the page tables. Towards

24This obviates the RISC-V mstatus MPRV mechanism for toggling address translation.
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the ‘hardware-assisted’ end, the CPU’s MMU will use ‘nested translation’: the ‘guest physi-
cal’ addresses manipulated by the guest are subject to re-translation, through tables controlled
by the hypervisor, before becoming ‘host physical’ addresses and exiting the CPU core. Both
approaches have substantial costs.
A more radical approach would have us change the traditional memory management unit
(MMU) page tables. Instead of mapping virtual addresses to integer physical addresses, the
page tables would yield a physical capability for a virtual address. We envision repurposing
the capability permission bits for the PTE permission bits, and extending the flags field of ap-
pendix D.1 to encompass non-authority flags of PTEs, notably including accessed, dirty, and
global flags.
To simplify the system, we may require that physical capabilities installed in page tables have
offset zero and length at least a full page (of the appropriate level of the tree). This allows
us to skip a capability bounds check when translating a virtual address but retains proof of
provenance of the authority to access a given region of physical addresses.

D.16.5 Capability-Based Page Tables in IOMMUs

As with the PMPs, this new facility also finds use in guarding peripherals. Rather than the
associative table scans of the IOPMPs above, we could have capability-mediated IOMMUs
whose page-table entires, again, contain physical-address capabilities. Of course, there is no
reason that an IOPMP expose a 64-bit address space to the peripheral, nor that it use hierarchical
pages. For many peripherals, a single page-sized aperature (or even smaller) may suffice. The
concern of integer addresses in peripheral control messages continues to apply.

D.16.6 Exposing Capabilities Directly To Peripherals

Both IOPMPs and IOMMUs, mediated by capabilities or not, continue to expose an integer
address space to the peripheral. While the peripheral may be using CHERI for its internal
computations, its interface with the host remains capability-less. In some cases of mutually
distrusting peers, this may suffice, and each side may have capability-mediating devices under
its control to guard the interconnect.
However, in other cases the host may wish to extend the tagged memory bus all the way to
the peripheral, and then grant capabilities directly to the device as though it were a software
process. In such cases, we expect that an IOPMP- or IOMMU-like guarding device will still be
useful, to prevent a malicious or errant device from synthesizing or retaining (and subsequently
using) capabilities that the host does not intend. All capabilities transiting the guard would
be checked to be a subset of a capability in the guard’s table. We note, in passing, that such
guard devices are also useful for the case of direct peripheral-to-peripheral access, not merely
the case of peripheral-to-memory as we have generally focused upon here. The details of the
control interface to such a device, as well as its internal operation, are left to future work.
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D.17 Distributed Capabilities For Peripherals And Acceler-
ators

CHERI’s design focuses on the ’main’ CPU core(s), in which there is a single operating system,
and capabilities are used within virtual address spaces, mediated via an MMU and a memory-
coherency system.
Many systems are composed of distributed compute elements that share memory. In various
contexts these are termed ‘peripherals’, ‘DMA engines’, ‘accelerators’ or ‘remote DMA net-
work cards’. These may be on a single system-on-chip using fabrics such as AXI, or across
interconnect such as PCI Express, Thunderbolt or Infiniband.
When capabilities are used in such a system, there is a requirement to protect them from in-
appropriate modification by cores that might be outside the purview of the primary operating
system. Additionally, it would be advantageous for such cores to use capabilities for their
own code and data, without having to mediate them from centralized authority. Furthermore,
such systems frequently use multiple levels of address translation – not just a virtual address
space (as capabilities in this document primarily refer to), but a patchwork of multiple physical
address spaces (including the guest physical address spaces used by hypervisors), as well as
virtual address spaces used by accelerators and other cores.
There are two challenges: first, preventing a core from modifying a capability it does not own,
and second, handling the case that capabilities can alias if they refer to an incorrect address
space.
To achieve these goals, we propose several architectural features.

D.17.1 Scope and threat model

This feature assumes that peripherals are capability-aware, in that they are able to load, store
and manipulate capabilities and their tags. A number of scenarios with trustworthy hardware
and software, untrustworthy software on trustworthy hardware, or untrustworthy hardware and
software may be envisaged. Hardware that is not capability-aware and uses integers as point-
ers is out of scope for this extension, although it may be constrained or otherwise capability-
wrapped by some other structure.

D.17.2 Address-space coloring

We deconstruct systems into regions of address-space colors (ASCs). A region with a common
color has addresses with a single unambiguous meaning. Generalizing, a color could apply to
an application’s virtual address space, the system’s hardware physical address space, the guest
physical address space of a virtual machine, or a piece of memory on a peripheral. A Processing
Element (PE – processor, DMA engine or other core) is assigned a color based on its physical
location in the system topography.
Colors also represent single regions of authority. Within a colored region, it is assumed that
every device that can synthesize a capability has rights to do so. If a device is untrustworthy, it
should be segmented into a different colored region.
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An address space may be connected to a different address space via an Address Translation and
Protection Unit (ATPU). Examples of ATPUs might be MMUs, IOMMUs, and hypervisor page
translation, but also more limited cases such as PCI BAR mapping or driving upper address
bits from a page register. An ATPU may provide no translation between mutually distrusting
hardware that happens to share an address space, but still apply protection between them.
We generalize an ATPU as a bridge by which requests come in from one address space and
are dispatched into another. The ATPU may itself make memory requests to determine the
translation, such as when walking page tables. These would potentially occur in an address
space of a third color.

D.17.3 Capability coloring
Capabilities refer to addresses in particular address spaces, hence capabilities are given a color
that is stored within the capability. It is now possible to disambiguate the address within a
capability with the address space to which it refers.

Representation

We describe architecturally the notion of address space color without specifying the specific
representation. However microarchitecturally we expect that the otype field in a capability
would be reused, based on a tagging scheme to distinguish them from a software-defined otype.
Given the limited number of bits available in the otype for the otype-color, it may be impossible
to represent all the colors within these bits. It is not necessary for the otype-color field to be
unique, only that it is possible to disambiguate which address space region is referred by a
capability. For example, the upper bits of the address may be used to distinguish two regions
with the same otype-color field which are each smaller than 64-bit addressing. Architecturally
such regions would be thought of as having different colors.

otype reuse Since 128-bit capabilities are constrained by size, we propose using the otype
field to represent some or all of the ASC. To disambiguate from the softwaredefined otype, the
data structure should be tagged.
To avoid reducing the bits for the otype, we propose a variable-length tag. This also allows
embedding one instance of a variety of other metadata in the otype field. For example:

0x_xxxx_xxxx_xxxx_xxxx: Software-defined otype (17 bits)

10_xxxx_xxxx_xxxx_xxxx: Metadata type A (16 bits)

11_0xxx_xxxx_xxxx_xxxx: Metadata type B (15 bits)

...

11_1110_cccx_xxxx_xxxx: Metadata type E (8 alternatives of 9 bits each)

D.17.4 Operations on colored capabilities
Colors are used to enforce policy by processing elements and ATPUs. A processing element
has, in its hardware, an awareness of the color of its local address space.
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In this area exist a number of possibilities, subject to further research.
Most conservatively, a PE could deal only with capabilities of its own color. A capability
with another color is treated as if the tag is cleared. This would allow PEs to use capabilities
internally, without sharing between them. A privileged process (boot loader, management pro-
cessor, hypervisor, operating system on an application core) is used to generate initial colored
capabilities for each PE, from where they are used internally.
In this scenario, capability conversion between colors would be minimal or require a call to
the privileged process. Conversion would require translation between address spaces, with
a chance that a capability could not be directly represented in the target address space (if it
represents disparate physical pages, for instance).
Other approaches are possible. For instance, colored capabilities could be treated as sealed.
This would enable devices to be given ’handles’ to memory in another address space that they
cannot access, but can pass around to other data structures. For instance, networking data
structures might contain linked list pointers in network stack address space – the NIC can build
its own linked list, without the ability to access the data being pointed to. Much care would be
required here to avoid confused deputy attacks.

D.17.5 Enforcement
Both PEs and system bridges are tasked with enforcing the capability model:

Bridges enforce operations on colored capabilities. For example, a bridge may disallow capa-
bilities of other colors to pass through it. Bridges are viewed as more trustworthy than devices
they connect, although a hierarchy exists – bridges closer to DRAM are able to disallow ca-
pabilities that are accepted by bridges further away. Bridges have an awareness of whether
hardware might be untrustworthy (for instance, plugged in to a motherboard slot or external
port) and apply external enforcement of properties where the hardware might be untrustworthy.
ATPUs could also transform capabilities that pass through them according to their address
space remapping – e.g., allowing a PE to store capabilities with its local address space, but
remap them to physical addresses when storing to DRAM.

PEs are tasked with enforcing the capability model within their local software. Bridges en-
force colors, but PEs enforce the remainder of the capability model (monotonicity, tagging,
etc). An untrustworthy PE may corrupt its own capabilities, but since the coloring is enforced
by the bridge it will only have detrimental effects on its own software.

D.18 Details of Proposed Instructions
The following instructions are described using the same syntax and approach as those in Chap-
ter 7.
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CAndAddr: Mask Address of Capability
Format

CAndAddr cd, cb, rs
056101115162021252631

0x12 0x0 cd cb rs 0x24

Description

cd is set to cb with cb.a logically ANDed with rs. If the new address causes the capability to
become unrepresentable then an untagged capability with address set to the masked address is
returned.

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

let rt_val = rGPR(rt);

if cb_val.tag & cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else

{

let newAddr = cb_val.address & rt_val;

let (representable, newCap) = setCapAddr(cb_val, newAddr);

if representable then

writeCapReg(cd, newCap)

else

writeCapReg(cd, int_to_cap(newAddr));

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is set and cb is sealed.

Notes

• This instruction may be appropriate for use cases in which C is masking pointers before
use, for example when the lower bits are used to store additional metadata in a pointer
with known alignment.

• This instructions also allows more efficient aligning down (and up) of capabilities. In
C source code this will almost always be a compile time constant so we might discover
that we need a version of this instruction that takes an immediate operand. Using a 5-bit
immediate field we could encode align-down/align-up masks from 2 to 232.
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• This instruction is also useful in order to create precisely representable bounds for heap
and stack allocations.
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CBuildCap: Import a Capability
Format

CBuildCap cd, cb, ct
056101115162021252631

0x12 0x0 cd cb ct 0x1d

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Description

CBuildCap attempts to interpret the contents of ct as if it were a valid capability (even though
ct.tag is not required to be set and so ct might contain any bit pattern) and extracts its base,
length, offset, perms and uperms fields. If the bounds of ct cannot be extracted because the
bit pattern in ct does not correspond to a permitted value of the capability type (e.g. length is
negative), then an exception is raised.
If the extracted bounds of ct are within the bounds of cb, and the permissions of ct are within the
permissions of cb, then cd is set equal to cb with the base, length, offset, perms and uperms
of ct.
If ct is sealed, this instruction does not copy its otype into cd. With compressed capabilities,
a different representation may be used for the bounds of sealed and unsealed capabilities. If
ct is sealed, CBuildCap will change the representation of the bounds so that their values are
preserved.
Because ct.tag is not required to be set, there is no guarantee that the bounds of ct will be
in canonical form. CBuildCap may convert the bounds into canonical form rather than simply
copying their bit representation.
CBuildCap does not copy the fields of ct that are reserved for future use.
CBuildCap can be used to set the tag bit on a capability (e.g., one whose non-tag contents has
previously been swapped to disk and than reloaded into memory, or during dynamic linking
as untagged capability values are relocated and tagged after being loaded from a file). This
provides both improved efficiency relative to manual rederivation of the tagged capability via a
series of instructions, and also provides improved architectural abstraction by avoiding embed-
ding the rederivation sequence in code.

Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

let ct_val = readCapReg(ct);

let cb_base = getCapBase(cb_val);

let ct_base = getCapBase(ct_val);

let cb_top = getCapTop(cb_val);

let ct_top = getCapTop(ct_val);

let cb_perms = getCapPerms(cb_val);
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let ct_perms = getCapPerms(ct_val);

let ct_offset = getCapOffset(ct_val);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if ct_base < cb_base then

raise_c2_exception(CapEx_LengthViolation, cb)

else if ct_top > cb_top then

raise_c2_exception(CapEx_LengthViolation, cb)

else if ct_base > ct_top then /* check for length < 0 - possible because ct might

be untagged */

raise_c2_exception(CapEx_LengthViolation, ct)

else if (ct_perms & cb_perms) != ct_perms then

raise_c2_exception(CapEx_UserDefViolation, cb)

else

{

let (exact, cd1) = setCapBounds(cb_val, to_bits(64, ct_base), to_bits(65,

ct_top));

let (representable, cd2) = setCapOffset(cd1, to_bits(64, ct_offset));

let cd3 = setCapPerms(cd2, ct_perms);

{

assert(exact, "CBuildCap: setCapBounds was not exact"); /* base and top came

from ct originally so will be exact */

assert(representable, "CBuildCap: offset was not representable"); /* similarly

offset should be representable XXX except for fastRepCheck */

writeCapReg(cd, cd3);

}

}

Exceptions

A coprocessor 2 exception is raised if:

• cd, cb or ct is a reserved register and PCC.perms does not grant
Permit_Access_System_Registers.

• cb.tag is not set.

• cb is sealed.

• The bounds of ct are outside the bounds of cb.

• The values of base and length found in ct are not within the range permitted for a capa-
bility with its tag bit set.

• ct.perms grants a permission that is not granted by cb.perms.

• ct.uperms grants a permission that is not granted by cb.uperms.
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Notes

• This instruction acts both as an optimization, and to provide architectural abstraction in
the face of future change to the capability model. A similar effect, albeit with reduced
abstraction, could be achieved by using CGetBase, CGetLen and CGetPerm to query ct, and
then using CSetBounds and CAndPerm to set the bounds and perms of cd.

• Despite the description of its intended use above, CBuildCap does not actually require that
ct have an unset tag.

• ct might be a sealed capability that has had its tag bit cleared. In this case (assuming
an exception is not raised for another reason), cd will be unsealed and the bit represen-
tation of the base and length fields might be changed to take account of the differing
compressed representations for sealed and unsealed capabilities.

• This instruction can not be used to break security properties of the capability mechanism
(such as monotonicity) because cb must be a valid capability and the instruction cannot
be used to create a capability that grants rights that were not granted by cb.

• As the tag bit on ct does not need to be set, there is no guarantee that the bit pattern in
ct was created by clearing the tag bit on a valid capability. It might be an arbitrary bit
pattern that was created by other means. As a result, there is no guarantee that the bit
pattern in ct corresponds to the encoding of a valid value of the capability type, especially
when capability compression is in use. Fields might have values outside of their defined
range, and invariants such as base ≥ 0, base + length ≤ 264 or length ≥ 0 might not
be true. In addition, fields might not be in a canonical (normalized) form. CBuildCap

checks that the base and length fields are within the permitted range for the type and
satisfy the above invariants, raising a length exception if they are not. If the fields are not
in normalized form, CBuildCap may renormalize them rather than simply copying the bit
pattern from ct into cd.

• The type constraint cd.tag =⇒ cd.base ≥ 0 is guaranteed to be satisfied because
cb.base ≥ 0 and an exception would be raised if ct.base ≤ cb.base.

• The type constraint cd.tag =⇒ cd.base + cd.length ≤ 264 is guaranteed to be satis-
fied because this constraint is true for cb, and an exception would be raised if ct.base+
ct.length > cb.base + cb.length.

• Is the value of cd guaranteed to be representable? If ct was created by clearing the tag
bit on a capability, then its bounds can be represented exactly and there will be no loss of
precision. If ct is sealed, then there is a potential issue that the values of the bounds that
are representable in a sealed capability are not the same as the range of bounds that are
representable in an unsealed capability. We rely on a property of the existing capability
formats that if a value of the bounds is representable in a sealed capability, then it is also
representable in an unsealed capability.

• As CBuildCap is not able to restore the seal on a re-tagged capability, it is intended to be
used alongside CCSeal, which will conditionally seal a capability based on a otype value
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extracted with CCopyType. These instructions will normally be used in sequence to (i)
re-tag a capability with CBuildCap, (ii) extract a possible object type from the untagged
value with CCopyType, and (iii) conditionally seal the resulting capability with CCSeal.

• The typical use of CBuildCap assumes that there is a single capability cb whose bounds
include every capability value that is expected to be encountered in ct (with out of range
values being an error). The following are two examples of situations where this is not
the case, and the sequence of instructions to recreate a capability might need to decide
which capability to use as cb: (a) The operating system has enforced a “write xor exe-
cute” policy, and the program attempting to recreate ct has a capability with Permit_Write
permission and a capability with Permit_Execute permission, but does not have a capa-
bility with both permissions. (b) The capability in ct might be a capability that authorizes
sealing with the Permit_Seal permission, and the program attempting to recreate it has a
capability for a range of memory addresses and a capability for a range of otype values,
but does not have a single capability that includes both ranges.
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CCopyType: Import the otype field of a Capability

Format

CCopyType cd, cb, ct

056101115162021252631

0x12 0x0 cd cb ct 0x1e

Description

CCopyType attempts to interpret the contents of ct as if it were a valid capability (even though
ct.tag is not required to be set, and so might contain any bit pattern), and extracts its otype
field. If ct is sealed, cd is set to cb with its offset field set to ct.otype − cb.base. If ct is not
sealed, cd is set to the NULL capability with its base + offset fields set to −1.

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

let ct_val = readCapReg(ct);

let cb_base = getCapBase(cb_val);

let cb_top = getCapTop(cb_val);

let ct_otype = unsigned(ct_val.otype);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if ct_val.sealed then

{

if ct_otype < cb_base then

raise_c2_exception(CapEx_LengthViolation, cb)

else if ct_otype >= cb_top then

raise_c2_exception(CapEx_LengthViolation, cb)

else

{

let (success, cap) = setCapOffset(cb_val, to_bits(64, ct_otype - cb_base));

assert(success, "CopyType: offset is in bounds so should be representable");

writeCapReg(cd, cap);

}

}

else

writeCapReg(cd, int_to_cap(0xffffffffffffffff))

Exceptions

A coprocessor 2 exception is raised if:
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• cd, cb or ct are reserved registers and PCC does not grant Access_System_Registers
permission.

• cb.tag is not set.

• cb is sealed.

• ct.otype is outside the bounds of cb.

Notes

• The intended use case for this instruction is as part of a routine for resetting the tag bit on
a capability that has had its tag bit cleared (e.g. by being swapped out to disk and then
back into memory).

It is a requirement of this specification that if a capability has its tag bit cleared (either
with CClearTag or by copying it as data), and CCopyType is used to extract the otype field
of the result, then cd.base + cd.offset will be equal to the otype of the original capability
if it was sealed, and cd.offset will be -1 if the original capability was not sealed.

• Typical usage of this instruction will be to use CBuildCap to extract the bounds and per-
missions of a capability, CCopyType to extract the otype, and then use CCSeal to seal the
result of the first step with the correct otype.

• This instruction is an optimization. A similar effect could be achieved by using CGetType

to get ct.otype and then CSetOffset to set cd.offset.

• -1 is not a valid value for the otype field, so the result distinguishes between the case
when ct was sealed and the case when it was not sealed.

• If ct is sealed and an exception is not raised, then the result is guaranteed to be repre-
sentable, because the bounds checks ensure that cd’s cursor is within its bounds.

• If ct.otype is outside of the bounds of ct, this is an error condition (attempting to recon-
struct a capability that cb does not give you permission to create). In order to catch this
error condition near to where the problem occurred, we raise an exception. This also has
the benefit of avoiding the case where changing cb’s offset results in a value that is not
representable, as explained in the previous note.
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CCSeal: Conditionally Seal a Capability
Format

CCSeal cd, cs, ct
056101115162021252631

0x12 0x0 cd cs ct 0x1f

Description

If ct.tag is false or ct.base + ct.offset = −1, cs is copied into cd. Otherwise, capability register
cs is sealed with an otype of ct.base + ct.offset and the result is placed in cd as follows:

• cd is sealed with cd.otype set to ct.base + ct.offset;

• and the other fields of cd are copied from cs.

ct must grant Permit_Seal permission, and the new otype of cd must be between ct.base and
ct.base + ct.length − 1.

Semantics

checkCP2usable();

let cs_val = readCapReg(cs);

let ct_val = readCapReg(ct);

let ct_cursor = getCapCursor(ct_val);

let ct_top = getCapTop(ct_val);

let ct_base = getCapBase(ct_val);

if not (cs_val.tag) then

raise_c2_exception(CapEx_TagViolation, cs)

else if not (ct_val.tag) | (getCapCursor(ct_val) == MAX_U64) then

writeCapReg(cd, cs_val)

else if cs_val.sealed then

raise_c2_exception(CapEx_SealViolation, cs)

else if ct_val.sealed then

raise_c2_exception(CapEx_SealViolation, ct)

else if not (ct_val.permit_seal) then

raise_c2_exception(CapEx_PermitSealViolation, ct)

else if ct_cursor < ct_base then

raise_c2_exception(CapEx_LengthViolation, ct)

else if ct_cursor >= ct_top then

raise_c2_exception(CapEx_LengthViolation, ct)

else if ct_cursor > max_otype then

raise_c2_exception(CapEx_LengthViolation, ct)

else

{

let (success, newCap) = sealCap(cs_val, to_bits(24, ct_cursor));
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if not (success) then

raise_c2_exception(CapEx_InexactBounds, cs)

else

writeCapReg(cd, newCap)

}

Exceptions

A coprocessor 2 exception is raised if:

• cs.tag is not set.

• cs is sealed.

• ct.tag is set and ct is sealed.

• ct.perms.Permit_Seal is not set.

• ct.tag and ct.offset ≥ ct.length

• ct.tag and ct.base + ct.offset > max_otype

• The bounds of cb cannot be represented exactly in a sealed capability.

Notes

• If capability compression is in use, the range of possible (base, length, offset) values
might be smaller for sealed capabilities than for unsealed capabilities. This means that
CCSeal can fail with an exception in the case where the bounds are no longer precisely
representable.

• This instruction provides two means of indicating that the capability should not be sealed:
either clearing the tag bit on ct or setting ct’s cursor to −1. A potential problem with
just using a cursor of −1 (rather than clearing the tag bit) to disable sealing is that,
depending on ct’s base and offset, setting ct’s cursor to −1 might have a result that is
not representable. However, the NULL capability has tag clear and can always have its
cursor set to −1. (We implement casts from int to int_cap_t by setting the cursor of
NULL to the value of the integer, and so this can hold a value of −1.) Directly clearing
ct’s tag to indicate that sealing should not be performed will work, because it is always
possible to clear the tag bit. Setting ct’s cursor to −1 with CSetOffset to indicate that
sealing should not be performed will also work, because this will either set the cursor to
−1 or (if the result would not be representable) both clear the tag bit and set the cursor
to −1. The latter method may be preferred in a code sequence that extracts the otype of
a capability with CGetType, getting a value of −1 if the capability is not sealed, setting
the cursor of ct to the result, and then using CCSeal to seal a new capability to the same
otype as the original.



450 APPENDIX D. EXPERIMENTAL FEATURES AND INSTRUCTIONS

CGetAndAddr: Get Address of Capability with mask
Format

CGetAndAddr rd, cb, rs
056101115162021252631

0x12 0x0 rd cb rs 0x23

Description

rd is set to cb.a logically ANDed with rs.

Semantics

checkCP2usable();

let capVal = readCapReg(cb);

let rs_val = rGPR(rs);

wGPR(rd) = capVal.address & rs_val;

Notes

• This instruction may be useful when C is using the lower bits of a pointer with known
alignment to store additional metadata.

• This instruction is also useful when using a capability type as a union of pointers, integers
and floating pointer numbers using a NaN-boxing representation.

• In a merged register file this instruction would not be necessary since the integer bitwise-
and could be used instead.
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CGetFlags: Move Flags to an Integer Register
Format

CGetFlags rd, cb
056101115162021252631

0x12 0x0 rd cb 0x12 0x3f

Description

The least significant bits of integer register rd are set equal to the flags field of capability register
cb. The other bits of rd are set to zero.

Semantics

checkCP2usable();

let capVal = readCapReg(cb);

wGPR(rd) = zero_extend(getCapFlags(capVal));
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CLoadTags: Read Multiple Tags to Integer Register
Format

CLoadTags rd, cb

056101115162021252631

0x12 0x00 rd cb 0x1E 0x3F

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Description

The tags from memory referenced by cb are loaded to rd, with bit significance increasing with
memory address. The result of this instruction must be coherent with other processors, as
if the corresponding data memory words had been loaded. The number of tags loaded is an
implementation-defined constant but is constrained to be a power of two, at least 1, and no
more than the width of rd.
Capability register cb must contain a capability that grants permission to load capabilities.
The virtual address cb.base + cb.offset must be suitably aligned; the precise requirements are,
again, implementation defined, but must equal the width of memory corresponding to the tags
loaded. If any tag to be loaded corresponds to memory out of bounds of cb, a length violation
is indicated.

Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

if not (cb_val.tag) then

raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_load) then

raise_c2_exception(CapEx_PermitLoadViolation, cb)

else if not (cb_val.permit_load_cap) then

raise_c2_exception(CapEx_PermitLoadViolation, cb)

else

{

let vAddr = getCapCursor(cb_val);

let vAddr64 = to_bits(64, getCapCursor(cb_val));

if (vAddr + caps_per_cacheline * cap_size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)

else if not(vAddr % (cap_size * caps_per_cacheline) == 0) then

SignalExceptionBadAddr(AdEL, vAddr64)
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else

{

let pAddr = TLBTranslate(vAddr64, LoadData);

x : bits(64) = zeros();

foreach(i from 0 to (caps_per_cacheline - 1)) {

let (tag, _) = MEMr_tagged(pAddr + i*cap_size, cap_size);

x[i] = tag;

};

wGPR(rd) = x;

}

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb.tag is clear.

• cb is sealed.

• cb.perms.Permit_Load is not set.

• cb.base + cb.offset + n ∗ capability_size > cb.base + cb.length, where n is the number
of capabilities to be fetched (caps_per_cacheline in the Sail code).

• cb.base + cb.offset < cb.base.

An address error during load (AdEL) exception is raised if:

• The virtual address addr is not n ∗ capability_size aligned.

Notes

• In practice, the number of tags loaded is likely less arbitrary than it may appear. Usually,
the implementation’s cache fabric determines the minimum granularity of coherency and
already tracks tag bits along with each cache line, and so this instruction fetches the tag
bits from the cache line indicated by cb.base + cb.offset. Of course, additional com-
plexity in the cache and tag cache fabric could allow this instruction to retrieve more tags
than in a cache line. Also, the number of tags this instruction loads should be a power-of-
two to avoid alignment issues and to preserve page divisibility in systems with MMUs.
In order to reduce DRAM traffic, it is desirable that this tag fetch not require loading
the corresponding data and not necessarily evict other lines from caches. (However, a
non-zero result is probably a reasonable hint that a capability load is likely to follow.)
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CLShC: Load Short Capability via Capability
Format

CLShC cd, rt, offset(cb)
CLShCR cd, rt(cb)
CLShCI cd, offset(cb)

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Description

Capability register cd is loaded with the decoded form of the short capability located at the
memory location specified by addr ∆

= cb.base + cb.offset + rt + 8 ∗ offset, provided this
address is suitably aligned for short capabilities. Capability register cb must contain a capability
that grants permission to load capabilities.
The tag bit associated with cd is set if the tag bits associated with addr indicate that this ad-
dress contain a short capability and cb bears Permit_Load_Capability. See appendix D.15 for
possible tag representations.

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cb.perms.Permit_Load is not set.

• addr + short_capability_size > cb.base + cb.length.

• addr < cb.base.

An address error during load (AdEL) exception is raised if:

• The virtual address addr is not capability_size aligned.

Notes

• offset is interpreted as a signed integer.

• The CLShCI mnemonic is equivalent to CLShC with cb being the zero register ($zero). The
CLShCR mnemonic is equivalent to CLShC with offset set to zero.

• Although the short_capability_size may vary, the offset is always in multiples of 8 bytes
(64 bits).

• See appendix D.15 for details of short capabilities. In particular, note that several per-
missions are not transported in short capabilities.



D.18. DETAILS OF PROPOSED INSTRUCTIONS 455

CSetFlags: Set Flags
Format

CSetFlags cd, cb, rt
056101115162021252631

0x12 0x0 cd cs rt 0xe

Description

Capability register cd is replaced with the contents of capability register cb with the flags field
set to bits 0 .. max_flags of integer register rd.

Semantics

checkCP2usable();

let cb_val = readCapReg(cb);

let rt_val = rGPR(rt);

if cb_val.tag & cb_val.sealed then

raise_c2_exception(CapEx_SealViolation, cb)

else

{

let newCap = setCapFlags(cb_val, truncate(rt_val, num_flags));

writeCapReg(cd, newCap);

}

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.
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CSShC: Store Short Capability via Capability
Format

CSShC cs, rt, offset(cb)
CSShCR cs, rt(cb)
CSShCI cs, offset(cb)

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Description

Capability register cs is encoded to a short capability form and stored at the memory location
specified by addr ∆

= cb.base + cb.offset + rt + 16 ∗ offset, provided addr is suitably aligned
for short capabilities. Capability register cb must contain a capability that grants permission
to store capabilities. The bits in the tag memory associated with addr are updated to indicate
a short capability resides at this location if cs.tag is set and encoding was successful. See
appendix D.15 for possible tag representations.

Encoding

As per appendix D.15, several properties must hold of the capabilities given to CSShC for a
successful store to take place:

• cs may be out of bounds by strictly less than 4 GiB.

• The bounds of cs must be representable in short capabilities.

• If cs is sealed, its otype must be representable in short capabilities.

If any of the above tests fail, the store will take place but will update the tags corresponding to
addr to indicate that the memory contains data.
Further, the following permission bits may not be stored in the short capability format, and may
read back (via CLShC) as false:

• Permit_Seal

• Permit_Unseal

• Permit_SetCID

• Permit_Access_System_Registers

• Permit_Store_Local_Capability.

Software must, however, not depend on CSShC to clear these bits; an CAndPerm must be used to
ensure that these rights are discarded.
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Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is sealed.

• cb.perms.Permit_Store is not set.

• cb.perms.Permit_Store_Capability is not set.

• cb.perms.Permit_Store_Local is not set and cs.tag is set and cs.perms.Global is not set.

• addr + short_capability_size > cb.base + cb.length.

• addr < cb.base.

• cs.base, cs.base + cs.length, and the store’s target memory location computed above
differ in their top 32 bits.

A TLB Store exception is raised if:

• cs.tag is set and the S bit in the TLB entry for the page containing addr is not set.

An address error during store (AdES) exception is raised if:

• The virtual address addr is not short_capability_size aligned.

Notes

• If the address alignment check fails and one of the security checks fails, a coprocessor 2
exception (and not an address error exception) is raised. The priority of the exceptions
is security-critical, because otherwise a malicious program could use the type of the
exception that is raised to test the bottom bits of a register that it is not permitted to
access.

• offset is interpreted as a signed integer.

• The CSShCI mnemonic is equivalent to CSShC with cb being the zero register ($zero). The
CSShCR mnemonic is equivalent to CSShC with offset set to zero.

• Although the short_capability_size can vary, the offset is always in multiples of 8 bytes
(64 bits).



458 APPENDIX D. EXPERIMENTAL FEATURES AND INSTRUCTIONS

CTestSubset: Test that Capability is a Subset of Another

Format

CTestSubset rd, cb, ct

056101115162021252631

0x12 0x0 rd cb ct 0x20

Note: If the encoded value of cb is zero, this instruction will use DDC as the cb operand

Description

CTestSubset tests if the bounds of ct are within the bounds of cb, and the permissions of ct are
within the permissions of cb, setting rd to 1 if so, and 0 if not.

Semantics

checkCP2usable();

let cb_val = readCapRegDDC(cb);

let ct_val = readCapReg(ct);

let ct_top = getCapTop(ct_val);

let ct_base = getCapBase(ct_val);

let ct_perms = getCapPerms(ct_val);

let cb_top = getCapTop(cb_val);

let cb_base = getCapBase(cb_val);

let cb_perms = getCapPerms(cb_val);

let result = if cb_val.tag != ct_val.tag then

0b0

else if ct_base < cb_base then

0b0

else if ct_top > cb_top then

0b0

else if (ct_perms & cb_perms) != ct_perms then

0b0

else

0b1;

wGPR(rd) = zero_extend(result);

Exceptions

A coprocessor 2 exception is raised if:

• cd, cb or ct is a reserved register and PCC.perms does not grant
Permit_Access_System_Registers.
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Notes

• This instruction was originally motivated as an additional check for CToPtr. A conversion
of a capability to a pointer with respect to a default capability would normally expect that
the entire capability is accessible within the default capability with (at least) the original
permissions. CTestSubset can perform this assertion, and a CMove instruction can replace
the result of the CToPtr with NULL upon failure.

• Another use case for this instruction is in garbage collection. For this application, we
want to be able to test if one capability is a subset of the other even if one is sealed and
the other is not. (For the purposes of garbage collection, a sealed reference to a region of
memory is still a reference to that region of memory). With compressed capabilities, the
bounds are represented differently for sealed and unsealed capabilities, but CTestSubset
is still able to perform the subset check.
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CRepresentableAlignmentMask: Retrieve Mask to Align Capabilities to
Precisely Representable Address
Format

CRepresentableAlignmentMask rt, rs
056101115162021252631

0x12 0x0 rt rs 0x11 0x3f

Description

rt is set to a mask that can be used to align down addresses to a value that is sufficiently aligned
to set precise bounds for the nearest representable length of rs (as obtained by
CRoundRepresentableLength).

Notes

• The result of CRepresentableAlignmentMask can be used as the mask argument for CAndAddr
to create a capability with an address that is sufficiently aligned to perform CSetBoundsExact.
This CSetBoundsExact is guarenteed to succeed if the size is rounded using
CRoundRepresentableLength.

• The required alignment of an allocation of size rs can be computed by negating rt and
adding one.

• Combined with CRoundRepresentableLength this instruction can be used in memory al-
locators to guarantee non-overlapping allocations.

• This instruction can be useful to adjust the stack pointer to an address that is suitably
aligned for dynamic allocations.

• An alternative to this instruction is the use of count-leading-zeroes and count-trailing-
zeros instructions followed by shifting and masking. However, this requires encoding
knowledge of the underlying precision in the resulting binary and can therefore result in
incompatibilities with future architectures that use a different compression algorithm.
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CRoundRepresentableLength: Round to Next Precisely Representable Length
Format

CRoundRepresentableLength rt, rs
056101115162021252631

0x12 0x0 rt rs 0x10 0x3f

Description

rt is set to the smallest value greater or equal to rs that can be used by CSetBoundsExact without
trapping (assuming a suitably aligned base).

Exceptions

Notes

• This instruction is useful when implementing allocators to round up allocation sizes to a
size that can be precisely bounded (and will therefore not overlap with any other alloca-
tions). It is also useful when using mmap(), since the requested size must be a precisely
representable length.

• An alternative to this instruction is the use of count-leading-zeroes and count-trailing-
zeros instructions followed by shifting and masking. However, this requires encoding
knowledge of the underlying precision in the resulting binary and can therefore result in
incompatibilities with future architectures that use a different compression algorithm.
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Appendix E

CHERI-128 Compression (Deprecated)

On the path to developing our current capability compression scheme, CHERI Concentrate (see
Section 3.4.5), we developed three earlier 128-bit formats based on floating-point compression
of bounds relative to the virtual address in a capability. We present those techniques here to
explore potential tradeoffs in their designs and potential alternative approaches.

E.1 CHERI-128 candidate 1

063

perms’23 e’6 toBase’16 toBound’16 s

otype’16 cursor’48

}
128
bits

Figure E.1: CHERI-128 c1 memory representation of a capability

s The s flag is set if the capability is sealed and is clear otherwise. See the discussion of otype
below.

e The 6-bit e field gives an exponent for the toBase and toBound fields. The exponent is the
number of bits that toBase and toBound should be shifted before being added to cursor when
performing bounds checking.

toBase This 16-bit field contains a signed integer that is to be shifted by e and added to cursor
(with the lower bits set to 0) to give the base of the capability. This field must be adjusted upon
any update to cursor to preserve the base of the capability.

mask = −1 << e

base = (toBase << e) + cursor&mask

463
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perms The 23-bit perms field contains precisely the same 15-bits of permissions as the 256-
bit version. The perms field has 8-bits of software-defined permissions at the top, down from
16-bits in the 256-bit version.

toBound This 16-bit field contains a signed integer that is to be shifted by e and added to
cursor (with the lower bits set to 0) to give the bound of the capability. The length of the
capability is reported by subtracting base from the resulting bound. This field must be adjusted
upon any update to cursor to preserve the length of the capability.

base + length = (toBound << e) + cursor&mask

otype The 16-bit otype field corresponds directly to the otype bit vector but is defined only
when the capability is sealed. If s is cleared, the architectural otype is 264 − 1 but and the bits
devoted to object type representation are instead an extension of cursor.

cursor The 64-bit cursor value holds a 48-bit absolute virtual address that is equal to the ar-
chitectural base + offset. The address in cursor is the full 64-bit MIPS virtual address when the
capability is unsealed, and it holds a compressed virtual address when the capability is sealed.
The compression format places the 5 bits of the address segment in bits [47:42], replacing un-
used bits of the virtual address. When the capability is unsealed, the segment bits are placed at
the top of a 64-bit address and the rest are “sign" extended.

cursor = base + offset

Compression Notes When CSetBounds is not supplied with a length that can be expressed
with byte precision, the resulting capability has an e that is non-zero and toBase and toBound
describe units of size 2e. e is selected such that the pointer can wander outside of the bounds
by at least the entire size of the capability both below the base and above the bound without
becoming unrepresentable. As a result, a 16-bit toBase and toBound require both a sign bit
and a bit for additional range that cannot contribute to the size of representable objects. The
greatest length that can be represented with byte granularity for a 16-bit toBase and toBound
is 214 = 16KiB. The resulting alignment in bytes required for an allocation can be derived
from the length by rounding to the nearest power of two and dividing by this number.

alignment_bits = dlog2(X)e − 14

E.2 CHERI-128 candidate 2 (Low-fat pointer inspired)
baseBits This 16-bit field gives bits to be inserted into cursor[e+15:e], with the lower bits
set to 0, to produce the base of the capability.

base = {cursor[63 : e + 16] + correction,baseBits} � e
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perms’23 e’6 baseBits’16 topBits’16 s

otype’16 cursor’48

}
128
bits

Figure E.2: CHERI-128 c2 memory representation of a capability

The bits above (e + 16) in cursor may differ from base by at most 1, i.e.

correction = f(baseBits, topBits, cursor[e + 15 : e]) = (1, 0, or − 1)

063

cursor[63:e + 16] + correction ’(48-e) topBits ’16 0 ’e

Figure E.3: CHERI-128 c2 base construction

topBits This 16-bit field gives bits to be inserted into the bits of cursor at e to produce the
representable top of the capability equal to (top - 1024). To compute the top, a circuit must
insert topBits at e, set the lower bits to 0, subtract 1024, and add a potential carry bit. The carry
bit is implied if topBits is less than baseBits, as the top will never be less than the bottom of
an object.

top = {cursor[63 : e + 16] + correction, topBits, 0}
The bits above (e + 16) in cursor may differ from top by at most 1:

correction = f(baseBits, topBits, cursor[e + 15 : e]) = (1, 0, or − 1)

063

cursor[63:e + 16] + correction ’(48-e) topBits ’16 0 ’e

Figure E.4: CHERI-128 c2 top bound construction

Candidate 2 Notes Candidate 2 is inspired by “Low-fat pointers" [62], which insert selected
bits into the pointer to produce the bounds. The Low-fat pointer representation does not allow
a pointer to go out of bounds, but we observe that cursor could wander out of bounds without
causing base and top to become ambiguous as long as these three remain within the same
2(e+16)-sized region. Candidate 2 sets the edges of this range to a fixed 1024e bytes beyond
each bound, and encodes these in the top and bottom fields to allow high-speed access during
pointer arithmetic.
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E.3 CHERI-128 candidate 3
After substantial exploration, we developed a third compression model, CHERI-128, which is
somewhat similar to candidate 2 with two improvements:

• Condense hardware and software permissions, making room for larger baseBits and top-
Bits fields in the unsealed capability format.

• A new sealed capability format, which reduces the size of baseBits and topBits to make
room for a larger otype and software-defined permissions. otype no longer aliases bits
of cursor but rather the bounds metadata.

Subsequent refinement of CHERI-128 gave rise to our current compression scheme, CHERI
Concentrate [152], detailed in Section 3.4.5.

Alternative exponents The CHERI-128 scheme treats the exponent (e) as a 2e multiplier,
though we note that in our current implementation the bottom two bits of e are forced to be
zero, so the exponent is actually 16e[5:2]. Clearly we could chose different precision for the
exponent, trading precision for hardware cost and bits in the capability format.

Alternative precision for T and B Currently we use 20-bits to represent top and bottom
bounds (T and B). This gives us a great deal of precision; however, reducing these bit widths
may well be workable for a broad range of software. In particular, we may wish to reduce
the size of these fields in the sealed capability format since sealed objects are a new concept
and introducing strong alignment requirements does not appear to have significant penalty.
Similarly, the bit widths could be increased for better precision.

Alternative otype size We may wish to adjust the field widths for the sealed capability format
to allow a larger otype, thereby allowing more sandboxes without risk of otype reuse.

Alternative perms We may wish to adjust field widths to increase the number of permission
bits.

E.3.1 Implementation
This section describes the compressed capability format known as CHERI-128 [55]. The com-
pressed in-memory formats for CHERI-128 unsealed and sealed capabilities are depicted in
Figures E.5 and E.6.

µperms Hardware permissions for this format are trimmed from those listed in Table 3.1 by con-
solidating system registers. The condensed format is listed in Table E.1

e Is an exponent for both the top (T) and bottom (B) bits — see calculations below. Cur-
rently the bottom two bits of e are zero.
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µperms’15 e’6 0 B’20 T’20

a’64

}
128 bits

Figure E.5: Unsealed CHERI-128 memory representation of a capability
063

µperms’15 e’6 1 B[19:12] otype_hi’12 T[19:12] otype_lo’12

a’64

}
128 bits

Figure E.6: Sealed CHERI-128 memory representation of a capability

s Indicates if a capability is sealed or not, listed simply as 0 or 1 in Figures E.5 and E.6
respectively due to each format being specific to the state of the sealed bit.

a A 64-bit value holding a virtual address equal to the architectural base + offset.

B A 20-bit value used to reconstruct the architectural base. When deriving a capability
with a requested base_req and rlength, we have:

B =

⌊
base_req

2e

⌋
mod 220

Which can be rewritten as a bit-manipulation:

B = base_req[19 + e : e]

architectural bit# µperms bit# Name

perms[0] 0 Global
perms[1] 1 Permit_Execute
perms[2] 2 Permit_Load
perms[3] 3 Permit_Store
perms[4] 4 Permit_Load_Capability
perms[5] 5 Permit_Store_Capability
perms[6] 6 Permit_Store_Local_Capability
perms[7] 7 Permit_Seal
perms[8] 8 Permit_CCall
perms[9] 9 Permit_Unseal
perms[10] 10 Access_System_Registers
uperms[15–18] 11–14 Software-defined permissions

Table E.1: Permission bit mapping
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For sealed capabilities, B[11 : 0] = 0

T A 20-bit value used to reconstruct the architectural top (base+ length). When deriving
a capability with a requested base_req and rlength, we have:

T =

⌈
base_req + rlength

2e

⌉
mod 220

Rewritten as bit manipulations:

T =

{
(base_req + rlength)[19 + e : e], if (base_req + rlength)[e− 1 : 0] = 0

(base_req + rlength)[19 + e : e] + 1, otherwise

otype The 24-bit otype field (concatenation of the two otype fields of Figure E.6) corresponds
to the least-significant 24 bits of the architectural otype bit vector. These bits are not
allocated in an unsealed capability, and the otype of an unsealed capability is 264−1; the
encoded value 224 − 1 is reserved.

The hardware computes e according to the following formula:

e =

⌈
plog2

(
(rlength) · (1 + 2−6)

220

)⌉
whereplog2(x) =

{
0, if x < 1

log2(x), otherwise

which is equivalent to the following bit manipulation:

e = idxMSNZ((rlength + (rlength� 6))� 19)

where:

• idxMSNZ(x) returning the index of the most significant bit set in x

• (rlength + (rlength� 6)) being a 65-bit result

Note that:

• e is rounded up to the nearest representable value. In the current implementation the
bottom two bits of e are zero. For example, the above e calculation returned the value 1,
then it would be rounded up to 4.

• rlength is artificially inflated in the computation of e in such a way that:

rlength + 8KiB ≤ 2e+20

to ensure that there is a representable region which is at least one page above and below
the base and bound. This allows pointers to stray up to a page beyond the base and bound
without causing an exception, a feature which is necessary to run much legacy C-code.

• e is computed in such a way that loss of precision due to alignment requirements is
minimized, i.e., e is the smallest natural n satisfying:

maxLength(n) ≥ rlengthwheremaxLength(n) =

⌊
2n+20

1 + 2−6

⌋
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E.3.2 Representable Bounds Check
When a is incremented (or decremented) we need to ascertain whether the resulting capability
is representable. We do not check to see if the capability is within bounds at this point, which
is done only on dereference (load/store instructions).
We first ascertain if we are inRange and then if we are inLimits. The inRange test determines
whether an inspection of only the lower bits of the pointer and increment can yield a definitive
answer. The inLimits test assumes the success of the inRange test, and determines whether the
update to amid could take it beyond the limits of the representable space.
The increment i is inRange if its absolute value is less than s, the size of the representable
region:

inRange = −s < i < s

This reduces to a test that all the bits of Itop (i[63 : e + 20]) are the same. For inLimits, we
need only amid (a[19 + e : e]), Imid (i[e + 19 : e]), and the sign of i to ensure that we have not
crossed either R (B− 212), the limits of the representable region:

inLimits =

{
Imid < (R− amid − 1), if i ≥ 0

Imid ≥ (R− amid) ∧R 6= amid, if i < 0

When we are incrementing upwards, we must conservatively subtract one from the repre-
sentable limit to account for any carry that may propagate up from the lower bits of the full
pointer add. When the increment is negative, we must conservatively disallow any operation
where amid begins at the representable limit as the standard test would spuriously allow any
negative offset.
One final test is required that ensures that, if e ≥ 44, any increment is representable. This
handles a number of corner cases related to T , B, and amid describing bits beyond the top of
the pointer. Our final fast representable check composes these three tests:

representable = (inRange ∧ inLimits) ∨ (e ≥ 44)

E.3.3 Decompressing Capabilities
When producing the architectural base of a capability, the value is computed by inserting B
into a[19+e:e], inserting zeros in a[e-1:0], and adding a potential correction cb to a[63:20+e]
as defined in Table E.2:

base[63 : 20 + e] = a[63 : 20 + e] + cb

base[19 + e : e] = B

base[e− 1 : 0] = 0

When producing the architectural top (= base+length) of a capability, the value is computed
by inserting T into a[19+e:e], inserting zeros in a[e-1:0], and adding a potential correction ct
to a[63:20+e] as defined in Table E.2:

top[64 : 20 + e] = a[63 : 20 + e] + ct

top[19 + e : e] = T

top[e− 1 : 0] = 0
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Note that top is a 65-bit quantity to allow the upper bound to be larger than the address space.
For example, this is used at reset to allow the default data capability to address all of the virtual
address space, because top must be one byte more than the top address. In this special case,
e ≥ 45.
For sealed capabilities, B[11 : 0] = 0 and T[11 : 0] = 0.

We define
amid = a[19 + e : e]

R = B− 212

amid < R B < R cb amid < R T < R ct

0 0 0 0 0 0
0 1 +1 0 1 +1
1 0 −1 1 0 −1
1 1 0 1 1 0

Table E.2: Calculating cb and ct

E.3.4 Bounds Alignment Requirements
Unsealed capabilities: Compressed capabilities impose bounds alignment requirements on
software if precise bounds are required. The calculation of e determines the alignment require-
ment (see Section E.3.1):

alignment = 2e

where e is determined by the requested length of the region (rlength). Note that in the current
implementation the bottom two bits of e are zero, so the value is rounded up.
Since the calculation of e is a little complicated, it can be convenient to have a conservative
approximation:

rlength < 2e · 3
4
MiB

So the conservative approximation of e can be computed as follows (or the precise version used
from Section E.3.1), noting that e is also rounded up to ensure the bottom two bits are zero:

e =

⌈
plog2

(
rlength

3
4
MiB

)⌉
i.e. for an object length less than 3

4
MiB you get byte alignment (since e=0 so alignment = 1).

You then go to 16-byte alignment for objects less than 24 · 3
4
MiB = 12MiB, etc. Page alignment

(4 KiB pages) is required only when objects are between 1 GiB and 3 GiB.
Note that the actual length of the region covered will be rounded up to the nearest alignment
boundary.

Sealed capabilities have more restrictive alignment requirements due to fewer bits available
to represent T and B. The hardware will raise an exception when sealing an unsealed capability
where the bottom 12 bits of T and B are not zero. As a consequence, the alignment becomes:

alignment = 2e+12
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The relationship between rlength and e remains the same, but the actual length of the region
covered will be rounded up to the new alignment. Thus, for small regions alignment is on
4 KiB (page) boundaries and the length of the region protected is a multiple of pages up to 3

4

MiB. Length of region up to 24 · 3
4
= 12 MiB are aligned on 64 KiB boundaries. Similarly, a

region of length 1 GiB to 3 GiB will be 16 MiB aligned.
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Glossary

abstract capability Abstract capabilities are a conceptual abstraction that overlays the con-
crete capabilities of the architecture to describe the intended maintenance of capability
lifespan across operations that violate architectural capability provenance. For example,
if an OS kernel swaps a page containing a capability to and from disk, it will have to
have its capability tag restored through re-derivation, so there is no longer an architec-
tural provenance relationship between the two, but for application-level reasoning it is
sometimes useful to regard there to be one.

address An integer address suitable for dereference within an address space. In CHERI-MIPS,
capabilities are always interpreted in terms of virtual addresses. In CHERI-RISC-V, ca-
pabilities may be interpreted as virtual addresses – or physical addresses when operating
in Machine Mode.

capability A capability contains an address, capability bounds describing a range of bytes
within which addresses may be dereferenced, capability permissions controlling the forms
of dereference that may be permitted (e.g., load or store), a capability tag protecting ca-
pability validity (integrity and capability provenance), and a capability object type indi-
cating whether it is a sealed capability (and, if so, under which capability object type they
are sealed) or unsealed capability. The address embedded within a capability may be a
virtual address or a physical addresses depending on the current addressing mode; when
used to authorize (un)sealing, the address is instead a capability object type.

In CHERI, capabilities are used to implement pointers with additional protections in aid
of fine-grained memory protection, control-flow robustness, and other higher-level pro-
tection models such as software compartmentalization. Unlike a fat pointer, capabilities
are subject to capability provenance, ensuring that they are derived from a prior valid
capability only via valid manipulations, and capability monotonicity, which ensures that
manipulation can lead only to non-increasing rights. CHERI capabilities provide strong
compatibility with C-language pointers and Memory Management Unit (MMU)-based
system-software designs, by virtue of its hybrid capability model.

Architecturally, a capability can be viewed as an address equal to the sum of the capability
base and capability offset, as well as associated metadata. Dereferencing a capability is
done relative to that address. The size of an in-memory capability may be smaller than
the sum of its architectural fields (such as base, offset, and permissions) if a compressed
capability mechanism, such as CHERI Concentrate, is used.

473
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In the ISA, capabilities may be used explicitly via capability-based instructions, an appli-
cation of the principle of intentional use, but also implicitly using legacy load and store
instructions via the default data capability (DDC), and instruction fetch via the program-
counter capability (PCC). A capability is either sealed or unsealed, controlling whether
it has software-defined or instruction-set-defined behavior, and whether or not its fields
are immutable.

Capabilities may be held in a capability register in a dedicated capability register file, a
merged register file, or a suitably aligned tagged memory.

capability base The lower of the two capability bounds, from which the address of a capability
can be calculated by using the capability offset.

capability bounds Upper and lower bounds, associated with each capability, describing a
range of addresss that may be dereferenced via the capability. Architecturally, bounds
are with respect to the capability base, which provides the lower bound, and capability
length, which provides the upper bound when added to the base. The bounds may be
empty, connoting no right to dereference at any address. The address of a capability may
float outside of the dereferenceable bounds; with a compressed capability, it may not be
possible to represent all possible out-of-bounds addresses. Bounds may be manipulated
subject to capability monotonicity using capability-based instructions.

capability length The distance between the lower and upper capability bounds.

capability monotonicity Capability monotonicity is a property of the instruction set that any
requested manipulation of a capability, whether in a capability register or in memory,
either leads to strictly non-increasing rights, clearing of the capability tag, or a hardware
exception. Controlled violation of monotonicity can be achieved via the exception
delivery mechanism, which grants rights to additional capability register, and also by
the CCall instruction, which may deliver an exception or unseal (and jump to) suitably
checked sealed capabilities. .

capability object type In addition to fat-pointer metadata such as capability bounds and ca-
pability permissions, a sealed capability also contains an integer object type. The object
type is set during a sealing operation to the address of the sealing capability. Object types
can be used to link a sealed code capability and a sealed data capability when used with
CCall to implement a software object model.

capability offset The distance between capability base and the address accessed when the ca-
pability is used as a pointer.

capability permissions A bitmask, associated with each capability, describing a set of ISA-
or software-defined operations that may be performed via the capability. ISA-defined
permissions include load data, store data, instruction fetch, load capability, and store
capability. Permissions may be manipulated subject to capability monotonicity using
capability-based instructions.
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capability provenance The property that a valid-for-use capability can only be constructed by
deriving it from another valid capability using a valid capability operation. Provenance is
implemented using a capability tag combined with capability monotonicity, irrespective
of whether a capability is held in a capability register or tagged memory.

capability register A capability register is an architectural register able to hold a capabil-
ity including its capability tag, address, other fat-pointer metadata such as its capability
bounds and capability permissions, and optional capability object type. Capability regis-
ters may be held in a capability register file, a merged register file, or be a special capabil-
ity register accessed by dedicated instructions. A capability register might be a dedicated
register intended primarily for capability-related operations (e.g., the capability registers
described in CHERI-MIPS), or a general-purpose integer register that has been extended
with capability metadata (such as the program-counter capability (PCC), or the capabil-
ity registers described in CHERI-RISC-V when using a merged register file). Capability
registers must be used to retain tag bits on capabilities transiting through memory, as only
capability-based instructions enforce capability provenance and capability monotonicity.

capability register file The capability register file is a register file dedicated to holding general-
purpose capabilities, in contrast to a merged register file, in which general-purpose inte-
ger registers are extended to be able to hold tagged capabilities. Some general-purpose
capability registers have well-known conventions for their use in software, including the
return capability and the stack capability.

capability tag A capability tag is a 1-bit integrity tag associated with each capability register,
and also with each capability-sized, capability-aligned location in memory. If the tag is
set, the capability is valid and can be dereferenced via the ISA. If the tag is clear, then the
capability is invalid and cannot be dereferenced via the ISA. Tags are preserved by ISA
operations that conform to capability provenance and capability monotonicity rules – for
example, that any attempted modification of capability bounds leads to non-increasing
bounds, and that in-memory capabilities are written only via capability stores, not data
stores – otherwise, tags are cleared.

capability validity A capability is valid if its capability tag is set, which permits use of the
capability subject to its capability bounds, capability permissions, and so on. Attempts
to dereference a capability without a tag set will lead to a hardware exception.

capability-based instructions These instructions accept capabilities as operands, allowing ca-
pabilities to be loaded from and stored memory, manipulated subject to capability prove-
nance and capability monotonicity rules, and used for a variety of operations such as
loading and storing data and capabilities, as branch targets, and to retrieve and manipu-
late capability fields – subject to capability permissions.

CCall The CCall instruction is a source of controlled non-monotonicity in the CHERI-MIPS
and CHERI-RISC-V ISAs. It has two modes of operation determined by an opcode
selector field: a trapping mode, similar to a system call, that allows a privileged software
exception handler to perform a domain transition; and a jump-like mode in which sealed



476 Glossary

operands are unsealed to provide access to additional rights to allow userspace code to
perform operations in a different domain.

The trapping mode, similar to a system call, is intended to support invoking objects ex-
pressed as a pair of sealed capabilities, representing a code capability and a data capabil-
ity. The exception code generated depends on whether or not the two operand capabilities
have valid capability tags, suitable capability permissions, are both sealed, have match-
ing capability object types, and other requirements associated with joint invocation. The
software exception handler is expected to implement software-defined aspects of the ob-
ject model, including any necessary unsealing of the operand capabilities, storing of any
return information (e.g., via a trusted stack), and handle any exceptions reporting fail-
ures of ISA-implemented checks. To facilitate optimized software implementations, a
separate CCall/CReturn exception vector is used.

The jump-like mode can directly enter any userspace domain described by a pair of
sealed capabilities with the Permit_CCall permission set. In particular, it can safely en-
ter userspace domain-transition code described by the sealed code capability while also
unsealing the sealed data capability. As with the trapping mode, the sealed operand capa-
bility registers are checked for suitable properties and correspondence, and the userspace
domain-transition routine can store any return information, perform further error check-
ing, and so on.

CHERI Concentrate CHERI Concentrate is a specific compressed capability format that rep-
resents a 64-bit address with full precision, and capability bounds relative to that address
with reduced precision. Bounds have a floating-point representation, requiring that as
the size of a bounded object increases, greater alignment of its capability base and ca-
pability length are required. CHERI Concentrate is the successor compression format to
CHERI-128.

CHERI-128 CHERI-128 is a specific compressed capability format that represents a 64-bit
address with full precision, and capability bounds relative to that address with reduced
precision. Bounds have a floating-point representation, requiring that as the size of a
bounded object increases, greater alignment of its capability base and capability length
are required. CHERI-128 has been replaced with CHERI Concentrate.

CHERI-MIPS An application of the CHERI protection model to the 64-bit MIPS ISA.

CHERI-RISC-V An application of the CHERI protection model to the RISC-V ISA.

CHERI-x86-64 An application of the CHERI protection model to the x86-64 ISA.

code capability A capability whose capability permissions have been configured to permit
instruction fetch (i.e., execute) rights; typically, write permission will not be granted via
an executable capability, in contrast to a data capability. Code capabilities are used to
implement control-flow robustness by constraining the available branch and jump targets.

compressed capability A capability whose capability bounds are compressed with respect to
its address, allowing its in-memory footprint to be reduced – e.g., to 128 bits, rather than
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the architectural 256 bits visible to the instruction set when a capability is loaded into
a register file. Certain architecturally valid out-of-bounds addresses may not be repre-
sentable with capability compression; operations leading to unrepresentable capabilities
will clear the capability tag or throw an exception in order to ensure continuing capability
monotonicity. CHERI-128 and CHERI Concentrate are specific compressed capability
models that select particular points in the tradeoff space around in-memory capability
size, bounds alignment requirements, and representability.

control-flow robustness The use of code capabilities to constrain the set of available branch
and jump targets for executing code, such that the potential for attacker manipulation of
the program-counter capability (PCC) to simulate injection of arbitrary code is severely
constrained; a form of vulnerability mitigation implemented via the principle of least
privilege.

CReturn A trapping instruction, similar to a system call, intended to support returning from
an object invoked via the trapping mode of the CCall instruction. Unlike CCall, in-ISA
checks are not performed, leaving any required functionality to software – for example,
popping an entry off of a trusted stack. To facilitate optimized software implementations,
a separate CCall/CReturn exception vector is used.

data capability A capability whose capability permissions have been configured to permit
data load and store, but not instruction fetch (i.e., execute) rights; in contrast to a code
capability.

default data capability (DDC) A special capability register constraining legacy non-capability-
based instructions that load and store data without awareness of the capability model.
Any attempts to load and store will be relocated relative to the default data capability’s
capability base and capability offset, and controlled by its capability bounds and capa-
bility permissions. Use of the default data capability violates the principle of intentional
use, but permits compatibility with legacy software. A suitably configured default data
capability will prevent the use of non-capability-based load and store instructions.

dereference Dereferencing a address means that it is the target address for a load, store, or
instruction fetch. A capability may be dereferenced only subject to it being valid – i.e.,
that its capability tag is present – and is also subject to appropriate checks of its capa-
bility bounds, capability permissions, and so on. Dereference may occur as a result of
explicit use of a capability via capability-based instructions, or implicitly as a result of
the program-counter capability (PCC) or default data capability (DDC).

exception program-counter capability (EPCC) A special capability register into which the
running program-counter capability (PCC) will be moved into on an exception, and
whose value will be moved back into the program-counter capability on exception re-
turn.

fat pointer A pointer (address) that has been extended with additional metadata such as capa-
bility bounds and capability permissions. In conventional fat-pointer designs, fat pointers
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to not have a notion of sealing (i.g., as in sealed capabilities and unsealed capabilities),
nor rules implementing capability provenance and capability monotonicity.

fine-grained memory protection The granular description of available code and data in which
capability bounds and capability permissions are made as small as possible, in order to
limit the potential effects of software bugs and vulnerabilities. This approach applies both
to code capabilities and data capabilities, offering effective vulnerability mitigation via
techniques such as control-flow robustness, as well as supporting higher-level mitigation
techniques such as software compartmentalization. Fine-grained memory protection will
typically be driven by the goal of implementing the principle of least privilege.

hybrid capability model A capability model in which not all interfaces to use or manipulate
capabilities conform to the principle of intentional use, such that legacy software is able
to execute around, or within, capability-constrained environments, as well as other fea-
tures required to improve compatibility with conventional software designs permitting
easier incremental adoption of a capability-system model. In CHERI, composition of
the capability-system model with the conventional Memory Management Unit (MMU),
the support for legacy instructions via the program-counter capability (PCC) and default
data capability (DDC), and strong compatibility with the C-language pointer model, all
constitute hybrid aspects of its design, in comparison to a more pure capability-system
model that might elide those behaviors at a cost to compatibility and adoptability.

invoked data capability (IDC) A capability register reserved by convention to hold the un-
sealed data capability on the callee side of CCall, and to be saved from the caller context
on CCall, to be restored by CReturn. Typically, for the caller side, this will point at a
frame on the caller stack sufficient to safely restore any caller state. On the callee side,
the invoked data capability will be a data capability describing the objects internal state.

kernel code capability (KCC) A special capability register reserved to hold a privileged code
capability for use by the kernel during exception handling. This value will be installed in
the program-counter capability (PCC) on exception entry, with the previous value of the
program-counter capability stored in the exception program-counter capability (EPCC).

kernel data capability (KDC) A special capability register reserved to hold a privileged data
capability for use by the kernel during exception handling. Typically, this will refer either
to the data segment for a microkernel intended to field exceptions, or for the full kernel.
Kernels compiled to primarily use legacy instructions might install this in the default data
capability (DDC) for the duration of kernel execution. Use of this register is controlled
by capability permissions on the currently executing program-counter capability (PCC).

kernel reserved capabilities These capabilities, modeled on the MIPS kernel reserved reg-
isters, are set aside for use by a CHERI-MIPS operating-system kernel in exception
handling – in particular, in allowing userspace registers to be saved so that the kernel
context can be installed. As with the MIPS registers, the userspace ABI is not able
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to use capability registers set aside for kernel use; unlike the MIPS registers, the ker-
nel reserved capabilities are available for use in the ISA only with a suitably autho-
rized program-counter capability (PCC) installed. Due to a different exception-handling
model in CHERI-RISC-V, that ISA does not have kernel reserved capabilities.

legacy instructions Legacy instructions are those that accept integer addresses, rather than
capabilities, as their operands, requiring use of the default data capability (DDC) for
loads and stores, or that explicitly set the program counter to a address, rather than doing
setting the program-counter capability (PCC). These instructions allow legacy binaries
(those compiled without CHERI awareness) to execute, but only without the benefits of
fine-grained memory protection, granular control-flow robustness, or more efficient soft-
ware compartmentalization. While still constrained, these instructions do not conform to
the principle of intentional use.

merged register file A single general-purpose register file able to hold both integer and tagged
capability values. In CHERI-MIPS, a dedicated capability register file is used, separate
from the general-purpose integer register file. In CHERI-RISC-V, a merged register file
is supported, reducing the amount of control logic required for a separate register file.

out of bounds When a capability’s capability offset falls outside of its capability bounds, it is
out of bounds, and cannot be dereferenced. Even if a capability’s offset is in bounds, the
width of a data access may cause a load, store, or instruction fetch to fall out of bounds, or
the further offset introduced via a register index or immediate operand to an instruction.
With 256-bit capabilities, all out-of-bounds pointers are representable capabilities. With
compressed capabilities, if an instruction shifts the offset too far out of bounds, this may
result in an unrepresentable capability, leading to the capability tag being cleared, or an
exception being thrown.

physical address An address that is passed directly to the memory hierarchy without virtual-
address translation. In CHERI-MIPS, capabilities contain only virtual addresses. In
CHERI-RISC-V, capabilities addresses may be interpreted as physical addresses in Ma-
chine Mode.

pointer A pointer is a language-level reference to a memory object. In conventional ISAs, a
pointer is typically represented as an address. In CHERI, pointers can be represented
either as an address indirected via the default data capability (DDC) or program-counter
capability (PCC), or as a capability. In the latter cases, its integrity and capability prove-
nance are protected by the capability tag, and its use is limited by capability bounds and
capability permissions. Capability-based instructions preserve the tag as required across
both capability registers and tagged memory, and also enforce capability monotonicity:
legitimate operations on the pointer cannot broaden the set of rights described by the
capability.

principle of intentional use A design principle in capability systems in which rights are al-
ways explicitly, rather than implicitly exercised. This arises in the CHERI instruction set
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through explicit capability operands to capability-based instructions, which contributes to
the effectiveness of fine-grained memory protection and control-flow robustness. When
applied, the principle limits not just the rights available in the presence of a software
vulnerability, but the extent to which software can be manipulated into using rights in an
unintended (and exploitable) manner.

principle of least privilege A principle of software design in which the set of rights available
to running code is minimized to only those required for it to function, often with the
aim of vulnerability mitigation. In CHERI, this concept applies via fine-grained memory
protection for both data and code, and also higher-level software compartmentalization.

program-counter capability (PCC) A special capability register that extends the existing pro-
gram counter to include capability metadata such as a capability tag, capability bounds,
and capability permissions. The program-counter capability ensures that instruction fetch
occurs only subject to capability protections. When an exception fires, the value of the
program-counter capability will be moved to the exception program-counter capability
(EPCC), and the value of the kernel data capability (KDC) moved into the program-
counter capability. On exception return, the value of the exception program-counter ca-
pability will be moved into the program-counter capability.

representable capability A compressed capability whose capability offset is representable
with respect to its capability bounds; this does not imply that the offset is “within bounds”,
but does require that it be within some broader window around the bounds.

return capability A capability designated as the destination for the return address when using
a capability jump-and-link instruction. A degree of control-flow robustness is provided
due to capability bounds, capability permissions, and the capability tag on the resulting
capability, which limits sites that may be jumped back to using the return capability.

sealed capability A sealed capability is one whose capability object type is set (i.e., is not
the reserved value 264 − 1). A sealed capability’s address, capability bounds, capability
permissions, and other fields are immutable – i.e., cannot be modified using capability-
based instructions. Sealed capabilities also have a capability object type derived from
their sealing capabilities’s address. CHERI’s sealing feature allows capabilities to be
used to describe software-defined objects, permitting implementation of encapsulation.
A sealed capability cannot be directly dereferenced using the instruction set. Unsealing
can be performed using a jump-based CCall instruction, or using the CUnseal instruction
combined with a suitable sealing capability. Sealed capabilities provide the necessary
architectural encapsulation support to implement fine-grained compartmentalization via
both object-oriented and non-object-centric models.

sealing capability A sealing capability is one with the Permit_Seal permission, allowing it
to be used to create sealed capabilities using a capability object type set to the sealing
capability’s address, and subject to its bounds.



Glossary 481

software compartmentalization The configuration of code capabilities and data capabilities
available via the capability register file or merged register file, accessible special capa-
bility registers, and tagged memory such that software components can be isolated from
one another, enabling vulnerability mitigation via the application of the principle of least
privilege at the application layer. One approach to implementing software compartmen-
talization on CHERI is to use sealed capabilities to represent security domains, which
can be safely invoked using a suitably crafted CCall exception handler, providing mutual
distrust. Another uses the jump-based CCall semantics to jump into sealed code and data
capabilities describing a trusted intermediary and destination protection domain.

special capability register Special capability registers have special architectural meanings,
and include the program-counter capability (PCC), the default data capability (DDC), the
exception program-counter capability (EPCC), the kernel code capability (KCC), and
the kernel data capability (KDC). Not all registers are accessible at all times; for example,
some may be available only in certain rings, or when PCC has the Access_System_Registers
permission set.

stack capability A capability referring to the current stack, whose capability bounds are suit-
ably configured to allow access only to the remaining stack available to allocate at a given
point in execution.

tagged memory Tagged memory associates a 1-bit capability tag with each capability-aligned,
capability-sized word in memory. Capability-based instructions that load and store ca-
pabilities maintain the tag as the capability transits between memory and the capabil-
ity register file, tracking capability provenance. When data stores (i.e., stores of non-
capabilities), the tag on the memory location will be atomically cleared, ensuring the
integrity of in-memory capabilities.

Trusted Computing Base (TCB) The subset of hardware and software that is critical to the
security of a system; in secure system designs, there is often a goal to minimize the size
of the TCB in order to minimize the opportunity for exploitable software vulnerabilities.

trusted stack Some software-defined object-capability models offer strong call-return seman-
tics – i.e., that if a return is issued by an invoked object, or an uncaught exception is
generated, then the appropriate caller will be returned to – exactly once. This can be
implemented via a trusted stack, maintained by the software Trusted Computing Base
(TCB) via CCall and CReturn exception handlers. A trusted stack for an object-oriented
model will likely maintain at least the caller’s program-counter capability (PCC) and
invoked data capability (IDC) to be restored on return.

unrepresentable capability A compressed capability whose capability offset is sufficiently
outside of its capability bounds that the combined pointer value and bounds cannot be
represented in the compressed format; constructing an unrepresentable capability will
lead to the tag being cleared (and information loss) or an exception, rather than a violation
of capability provenance or capability monotonicity.
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unsealed capability An unsealed capability is one whose capability object type is unset (i.e.,
is the reserved value 264−1). Its remaining capability fields are mutable, subject to capa-
bility provenance and capability monotonicity rules. These capabilities have hardware-
defined behaviors – i.e., subject to capability bounds, capability permissions, and so on,
can be dereferenced.

virtual address An integer address translated by the Memory Management Unit (MMU) into
a physical address for the purposes of load, store, and instruction fetch. Capabilities
embed an address, represented in the instruction set as the sum of the capability base
and capability offset, as well as capability bounds relative to the address. The integer
addresses passed to legacy load and store instructions that would previously have been
interpreted as virtual addresses are, with CHERI, transformed (and checked) using the
default data capability (DDC). Similarly, the integer addresses passed to legacy branch
and jump instructions are transformed (and checked) using the program-counter capa-
bility (PCC). This in effect introduces a further relocation of legacy addresses prior to
virtual address translation.

vulnerability mitigation A set of techniques limiting the effectiveness of the attacker to ex-
ploit a software vulnerability, typically achieved through use of the principle of least
privilege to constrain injection of arbitrary code, control of the program-counter capabil-
ity (PCC) via control-flow robustness using code capabilities, minimization of data rights
granted via available data capabilities, and higher-level software compartmentalization.
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