Constructible Functions

A complexity class such as $\mathsf{TIME}(f(n))$ can be very unnatural, if f(n) is.

From now on, we restrict our bounding functions f(n) to be proper functions:

Definition

A function $f : \mathbb{N} \to \mathbb{N}$ is *constructible* if:

- f is non-decreasing, i.e. $f(n+1) \ge f(n)$ for all n; and
- there is a deterministic machine M which, on any input of length n, replaces the input with the string $0^{f(n)}$, and M runs in time O(n + f(n)) and uses O(f(n)) work space.

```
Anuj Dawar
```

Complexity Theory

124

March 3, 2004

Using Constructible Functions

Recall $\mathsf{NTIME}(f(n))$ is defined as the class of those languages L accepted by a *nondeterministic* Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length at most O(f(n)).

If f is a constructible function then any language in $\mathsf{NTIME}(f(n))$ is accepted by a machine for which all computations are of length at most O(f(n)).

Also, given a Turing machine M and a constructible function f, we can define a machine that simulates M for f(n) steps.

Provable Intractability

Our aim now is to show that there are languages (or, equivalently, *decision problems*) that we can prove are not in P.

This is done by showing that, for every *reasonable* function f, there is a language that is not in $\mathsf{TIME}(f(n))$.

The proof is based on the diagonal method, as in the proof of the undecidability of the halting problem.

All of the following functions are constructible:

- $\lceil \log n \rceil;$
- n^2 :
- *n*;
- 2^n .

If f and q are constructible functions, then so are f+g, $f \cdot g$, 2^f and f(g) (this last, provided that f(n) > n). 123

Time Hierarchy Theorem

 $H_f = \{ [M], x \mid M \text{ accepts } x \text{ in } f(|x|) \text{ steps} \}$

where [M] is a description of M in some fixed encoding scheme.

For any constructible function $f(n) \ge n$, $\mathsf{TIME}(f(n))$ is properly

For any constructible function f, with $f(n) \ge n$, define the

f-bounded *halting language* to be:

 $H_f \in \mathsf{TIME}(f(n)^3)$ and $H_f \notin \mathsf{TIME}(f(|n/2|))$

Then, we can show

Time Hierarchy Theorem

contained in $\mathsf{TIME}(f(2n+1)^3)$.

Strong Hierarchy Theorems

For any constructible function $f(n) \ge n$, $\mathsf{TIME}(f(n))$ is properly contained in $\mathsf{TIME}(f(n)(\log f(n)))$.

Space Hierarchy Theorem

For any pair of constructible functions f and g, with f = O(g) and $g \neq O(f)$, there is a language in SPACE(g(n)) that is not in SPACE(f(n)).

Similar results can be established for nondeterministic time and space classes.

Anuj Dawar	March 3, 2004	Anuj Dawar	March 3, 2004
Complexity Theory	127	Complexity Theory	128
Consequences		P-complete Problems	
• For each k , $TIME(n^k) \neq TIME(n^{k+1})$.		It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P .	
• $P \neq EXP$.		There are problems that are complete for P with respect to	
• $L \neq PSPACE$.		<i>logarithmic space</i> reductions \leq_L . One example is CVP—the circuit value problem.	
• Any language that is EXP -complete is not in P .		• If $CVP \in L$ then $L = P$.	
• There are no problems in P that are complete under linear time reductions.		• If $CVP \in NL$ then $NL = P$.	

