[sabelle/CTT — Constructive Type Theory
with extensional equality and without universes

Larry Paulson

January 18, 2026

Contents
1 Constructive Type Theory: axiomatic basis 1
1.1 Tactics and derived rules for Constructive Type Theory . .. 6
1.2 Tactics for type checking 7
1.3 Simplification oo oo 7
1.4 The elimination rules for fst/snd 8
2 The two-element type (booleans and conditionals) 8
2.1 Derivation of rules for the type Bool 8
3 Elementary arithmetic 9
3.1 Arithmetic operators and their definitions 9
3.2 Proofs about elementary arithmetic: addition, multiplication,
etC. . . L e 9
3.2.1 Addition. 9
3.2.2 Multiplication oL 10
3.2.3 Difference 10
3.3 Simplification oo 10
3.4 Addition 11
3.5 Multiplication oo 11
3.6 Difference 12
3.7 Absolute differenceo 12
3.8 Remainder and Quotient, 13
4 FEasy examples: type checking and type deduction 14
4.1 Single-step proofs: verifying that a type is well-formed 14
4.2 Multi-step proofs: Type inference 14
5 Examples with elimination rules 15
6 Equality reasoning by rewriting 18

7 Synthesis examples, using a crude form of narrowing 19

theory CTT
imports Pure
begin

1 Constructive Type Theory: axiomatic basis
(ML)

typedecl i
typedecl ¢
typedecl o

consts
— Judgments
Type =t = prop (<(¢notation=<postfix Typer>- type)s [10] &)
Eqtype :: [t,t]=prop («(<notation=<infix Eqtyper»- =/ -)» [10,10] 5)
Elem 2[4, t]=prop (<(<notation=<infix Elem»>- /: -)» [10,10] 5)
Egelem :: [i,i,t]=prop («(<notation=¢mizfix Egelems»»- =/ -:/ -)» [10,10,10]
J)

Reduce :: [i,i]=prop («Reducel-,-]»)
— Types for truth values

F wt

T it — F is empty, T contains one element
contr =

tt g

— Natural numbers

N wt

Zero g (x0»)

suce n =1

rec (4, 4, [4d]=1] = 4

— Binary sum

Plus = [6t]=t (infixr <+» 40)
inl =1

mr e

when : [i, (=1, i=i]=1

— General sum and binary product

Sum n [t i=t=t

pair i [4,d)=1 («(vindent=1 notation=<mizfix pair»<-,/->))
fst =

snd =g

split— :x [4, [4,4d]=1] =i

— General product and function space

Prod n [t ==t

lambda == (i = i) = i (binder M\ 10)
app i [4,d])=1 (infix] <% 60)

— Equality type

Eq SRR RIES
eq g

Some inexplicable syntactic dependencies; in particular, "0" must be intro-
duced after the judgment forms.

syntax
-PROD :: [idt,t,t]=t (<(<indent=3 notation=<binder [»]]--./ -)» 10)
-SUM :: [idt,t)=t («(¢indent=3 notation=<binder > »> -~/ -)» 10)

syntax-consts
-PROD = Prod and
-SUM = Sum
translations
[[z:A. B = CONST Prod(A, \z. B)
> x:A. B= CONST Sum(A, \z. B)

abbreviation Arrow :: [t,{]=t (infixr <—> 30)
where A — B =][-A. B

abbreviation Times :: [t,t]=¢ (infixr (x> 50)
where A x B=>Y -A. B

Reduction: a weaker notion than equality; a hack for simplification. Re-
duce[a,b] means either that a = b : A for some A or else that a and b are
textually identical.

Does not verify a:A! Sound because only trans-red uses a Reduce premise.
No new theorems can be proved about the standard judgments.

axiomatization
where
refl-red: Na. Reduce[a,a] and
red-if-equal: Na b A. a = b : A = Reduce|a,b] and
trans-red: Na b ¢ A. Ja = b : A; Reduce[b,c]] = a = ¢ : A and
— Reflexivity

refl-type: NA. A type = A = A and
refl-elem: Na A. a: A = a = a: A and

— Symmetry

sym-type: NA B. A= B=— B = A and
sym-elem: NabA. a=b: A= b=a: A and

— Transitivity

trans-type: NA B C.[A=B;B=C(C] = A= C and
trans-elem: ANa bc A Ja=b: 4

equal-types: Na A B.[a: A; A= B] = a: B and

equal-typesL: Na b A B.Jla=b: A; A= B] = a=10: B and
— Substitution

type] = B(a) type and

subst-type: Na A B. [a: A; N\z. 22A = B(z)
22A = B(z) = D(2)] = B(a) =

subst-typeL: Na c A BD. [a=c: A Az
D(c¢) and

subst-elem: Na b A B. [a: A; Nz. 2A = b(2):B(2)] = b(a):B(a) and
subst-elemL:
(/l\a becdAB. Ja=c: A; N\z. 2A = b(2)=d(z) : B(z)] = b(a)=d(c) : B(a)

— The type N — natural numbers

NF: N type and

NIO: 0 : N and

Ni-succ: Na. a : N = succ(a) : N and

NI-succL: Nab.a=1b: N = succ(a) = suce(b) : N and

NE:
Ap abd C.[p: N;a: C(0); Nuwv. [u: N; v: C(u)] = b(u,v): C(succ(u))]
= rec(p, a, Au v. b(u,v)) : C(p) and

NEL:
ApgabedC.[p=gq:N;a=c: C(0);

Au v. Ju: N; v: C(u)] = b(u,v) = d(u,v): C(succ(u))]
= rec(p, a, Au v. b(u,v)) = rec(q,c,d) : C(p) and

NCO:
Na b C. Ja: C(0); Auv. Ju: N; v: C(u)] = b(u,v): C(suce(u))]
= rec(0, a, Au v. b(u,v)) = a: C(0) and

NC-succ:

Ap abd C.[p: N; a: C(0); Nuwv. [u: N5 v: C(u)] = b(u,v): C(suce(u))] =
rec(succ(p), a, Au v. b(u,v)) = b(p, rec(p, a, Au v. b(u,v))) : C(succ(p)) and
— The fourth Peano axiom. See page 91 of Martin-Lo6f’s book.

zero-ne-succ: N\a. [a: N; 0 = suce(a) : N = 0: F and

— The Product of a family of types
ProdF: NA B. [A type; N\z. ©:A = B(z) type] = [[x:A. B(z) type and
ProdFL:

NA B CD.[A=C; \z. :A = B(z) = D(z)] = [[=:A. B(z) =[] z:C.
D(z) and

ProdI:
Ab A B. [A type; Nz. 2:A = b(z):B(z)] = Az. b(z) : [[z:A. B(z) and

ProdIL: \b ¢ A B. [A type; Nz. ©:A = b(z) = ¢(z) : B(z)] =
Az. b(z) = Az. ¢(z) : [][2:A. B(z) and

ProdE: Apa A B.[p:[lz:4. B(z); a: A] = p‘a : B(a) and
ProdEL: A\p qa b A B. [p= ¢ [[z:A. Bz); a =b: A] = p‘a = ¢‘b: B(a)
and

ProdC: Na b A B. [a: A4; Nz. ©:A = b(z) : B(z)] = (Az. b(z)) ‘a = ba) :
B(a) and

ProdC2: Ap A B. p : [[x:A. B(z) = (Az. pz) = p: [[2:A. B(z) and

— The Sum of a family of types

SumF: AA B. [A type; Nz. ©:A = B(z) type] = > z:A. B(z) type and
SumFL: NA B CD. A= C; A\z. :A = B(z) = D(z)] = > x:A. B(z) =
> a:C. D(z) and

Suml: NabAB.[a: A; b: Bla)] = <a,b>: > 2:A. B(z) and
SumIL: NabecdAB. [a=c:A;b=d: Bla)] = <a,b> = <¢,d>: > x:A.
B(z) and

SumE: Ap ¢ A B C. [p: Y. z:A. B(z); Nz y. [#:4; y:B(z)] = c(z,y): C(<z,y>)]
= split(p, Az y. c(z,y)) : C(p) and

SumEL: Ap qcd ABC.[p=gq:> z:A B(x);
Nz y. [z:4; y:B(z)] = c(z,y)=d(z,y): C(<z,y>)]
= split(p, Az y. c(z,y)) = split(q, Az y. d(z,y)) : C(p) and

SumC: NabecA BC. [a: A; b: B(a); Az y. [2:4; y:B(z)] = c(z,y): C(<z,y>)]
= split(<a,b>, Az y. ¢(z,y)) = c(a,b) : C(<a,b>) and

fst-def: Aa. fst(a) = split(a, Az y.) and
snd-def: Aa. snd(a) = split(a, Az y. y) and
— The sum of two types

PlusF: NA B. [A type; B type] = A+B type and
PlusFL: NABCD.[A=C; B=D] = A+B = C+D and

Plusl-inl: Na A B. [a : A; B type] = inl(a) : A+B and
PlusI-inlL: Na ¢ A B. [a = ¢ : A; B type] = inl(a) = inl(c) : A+B and

PlusI-inr: \b A B. [A type; b : B] = inr(b) : A+B and
Plusl-inrL: ANb d A B. [A type; b = d : B] = inr(b) = inr(d) : A+B and

PlusE:
Ap cdA B C. [p: A+B;
Nz. ©:A = c(x): C(inl(z));
Ay. v:B = d(y): C(inr(y)) | = when(p, Az. c(x), Ay. d(y)) : C(p) and

PlusEL:
ANpqgcdefABC.[p=q: A+B;
Nz. 22 A = ¢(x) = e(z) : C(inl(x));
Ny- y: B = d(y) = f(y) : C(inr(y))]
= when(p, A\z. c(z), A\y. d(y)) = when(q, Az. e(z), Ay. f(y)) : C(p) and

PlusC-inl:
NacdABC. [a A
Nz, 2:A = c(z): C(inl(z));
Ny. y:B = d(y): C(inr(y)) |
= when(inl(a), A\z. ¢(z), A\y. d(y)) = c(a) : C(inl(a)) and
PlusC-inr:
NbcdABC.[b: B;
Nz. 2:A = c(z): C(inl(x));
Ny y:B = d(y): C(inr(y))]
= when(inr(d), Az. c¢(z), Ay. d(y)) = d(b) : C(inr(d)) and

— The type Eq

EqF: Na b A. [A type; a : A; b : A] = Eq(A,a,b) type and

EqFL: NabcdAB. [A=B;a=c: A;b=d: A] = Eq(4,a,b) = Eq(B,c,d)
and

Eql: N\abA.a=0b: A= eq: Fq(A,a,b) and

EgE: ApabA. p: Eq(Aa,b) = a=b: A and

— By equality of types, can prove C(p) from C(eq), an elimination rule
EqC: Ap ab A. p: Fq(A,a,b) = p = eq : Eq(A,a,b) and

— The type F

FF: F type and
FE: N\p C. [p: F; C type] = contr(p) : C and
FEL: Ap q C. [p = q: F; C type] = contr(p) = contr(q) : C and

— The type T
— Martin-L6f’s book (page 68) discusses elimination and computation. Elim-
ination can be derived by computation and equality of types, but with an extra

premise C(z) type z:T. Also computation can be derived from elimination.

TF: T type and
TI: tt : T and
TE:ApcC.[p: T;c: C(tt))] = c¢: C(p) and
TEL: ApqcdC.[p=q:T;c=d: C(tt))] = c=d: C(p) and
TC: N\p.p: T=p=1tt:T
1.1 Tactics and derived rules for Constructive Type Theory

Formation rules.

lemmas form-rls = NF ProdF SumF PlusF EqF FF TF
and formL-rls = ProdFL SumFL PlusF'L EqFL

Introduction rules. OMITTED:

e Fql, because its premise is an egelem, not an elem.

lemmas intr-rls = NIO NI-succ Prodl Suml Plusl-inl Plusl-inr TI
and intrL-rls = NI-succL ProdIL SumlIL Plusl-inlL Plusl-inrL

Elimination rules. OMITTED:

e FqF, because its conclusion is an eqelem, not an elem

e TFE, because it does not involve a constructor.
lemmas elim-rls = NE ProdE SumFE PlusE FE

and elimL-rls = NEL ProdEL SumFEL PlusEL FEL

OMITTED: eqC are TC because they make rewriting loop: p = un = un

lemmas comp-rlis = NCO NC-succ ProdC SumC' PlusC-inl PlusC-inr

Rules with conclusion a:A, an elem judgment.

lemmas element-rls = intr-rls elim-ris

Definitions are (meta)equality axioms.

lemmas basic-defs = fst-def snd-def

Compare with standard version: B is applied to UNSIMPLIFIED expression!

lemma SumlIL2: [¢c = a: A; d = b: B(a)] = <c¢,d> = <a,b> : Sum(A,B)
{proof)

lemmas intrL2-rls = NI-succL ProdIL SumlIL2 Plusl-inlL Plusl-inrL

Exploit p: Prod(A,B) to create the assumption z:B(a). A more natural form
of product elimination.

lemma subst-prodFE:
assumes p: Prod(A,B)
and a: A
and Az. z: B(a) = ¢(2): C(2)
shows ¢(p‘a): C(p‘a)
(proof)

1.2 Tactics for type checking
(ML)

For simplification: type formation and checking, but no equalities between
terms.

lemmas routine-ris = form-rls formL-rls refi-type element-rls
(ML)

1.3 Simplification

To simplify the type in a goal.

lemma replace-type: [B = A; a: A] = a: B
(proof)

Simplify the parameter of a unary type operator.

lemma subst-eqtyparg:
assumes I: a=c: A
and 2: A\z. z:A = B(z) type
shows B(a) = B(c)
(proof)

Simplification rules for Constructive Type Theory.

lemmas reduction-rls = comp-rls [THEN trans-elem)
(ML)

1.4 The elimination rules for fst/snd

lemma SumE-fst: p : Sum(A,B) = fst(p) : A
{proof)

The first premise must be p:Sum(A,B)!!.

lemma SumkFE-snd:
assumes major: p: Sum(A,B)
and A type
and Az. 2:A = B(z) type
shows snd(p) : B(fst(p))
(proof)

2 The two-element type (booleans and condition-
als)

definition Bool :: t
where Bool = T+T

definition true : ¢
where true = inl(tt)

definition false :: i
where false = inr(tt)

definition cond :: [i,i,i]=1
where cond(a,b,c) = when(a, A-. b, A-. ¢)

lemmas bool-defs = Bool-def true-def false-def cond-def

2.1 Derivation of rules for the type Bool

Formation rule.

lemma boolF": Bool type
(proof)

Introduction rules for true, false.
lemma booll-true: true : Bool

{proof)

lemma booll-false: false : Bool
(proof)

Elimination rule: typing of cond.

lemma boolE: [p:Bool; a : C(true); b : C(false)] = cond(p,a,b) : C(p)
(proof)

lemma boolEL: [p = q : Bool; a = ¢ : C(true); b = d : C(false)]
= cond(p,a,b) = cond(q,c,d) : C(p)
{proof)

Computation rules for true, false.
lemma boolC-true: [a : C(true); b : C(false)] = cond(true,a,b) = a : C(true)
(proof)

lemma boolC-false: [a : C(true); b : C(false)] = cond(false,a,b) = b : C(false)
(proof)

3 Elementary arithmetic

3.1 Arithmetic operators and their definitions
definition add :: [i,i]=¢ (infixr <#+> 65)

where a#+b = rec(a, b, Au v. succ(v))

definition diff :: [i,i]=4 (infixr «(— 65)
where a—b = rec(b, a, \u v. rec(v, 0, Az y. x))

definition absdiff :: [i,i]=4 (infixr <|—|> 65)
where a|—|b = (a—b) #+ (b—a)

definition mult :: [¢,i]=7 (infixr #x> 70)
where a#xb = rec(a, 0, Au v. b #+ v)

definition mod :: [i,i]=7 (infixr (mod> 70)
where a mod b = rec(a, 0, Au v. rec(succ(v) |—| b, 0, Az y. succ(v)))

definition div :: [i,7]=¢ (infixr <div> 70)
where a div b = rec(a, 0, A\u v. rec(succ(u) mod b, succ(v), Az y. v))

lemmas arith-defs = add-def diff-def absdiff-def mult-def mod-def div-def

3.2 Proofs about elementary arithmetic: addition, multipli-
cation, etc.

3.2.1 Addition

Typing of add: short and long versions.
lemma add-typing: [a:N; b:N] = a #+ b: N
(proof)

lemma add-typingL: J[a = ¢:N; b= d:N]| = a #+ b=c#+ d: N
(proof)

Computation for add: 0 and successor cases.

lemma addC0: b:N = 0 #+ b=b: N
(proof)

lemma addC-succ: [a:N; b:N]| = succ(a) #+ b = succ(a #+ b) : N
{proof)

3.2.2 Multiplication

Typing of mult: short and long versions.

lemma mult-typing: [a:N; b:N] = a #x b: N
(proof)

10

lemma mult-typingL: [a = ¢:N; b= d:N| = a#x b=c#*xd: N
(proof)

Computation for mult: 0 and successor cases.

lemma multCO: N = 0 #x b=0: N
(proof)

lemma multC-succ: [a:N; b:N]| = succ(a) #x b=b #+ (a #% b) : N
{proof)

3.2.3 Difference

Typing of difference.
lemma diff-typing: [a:N; bN] = a — b: N
{proof)

lemma diff-typingL: [a = ¢:N; b=d:N] = a—b=c—d: N
(proof)

Computation for difference: 0 and successor cases.

lemma diffCO0: a:N = a — 0 =a: N
(proof)

Note: rec(a, 0, Az w.z) is pred(a).

lemma diff-0-eq-0: b N — 0 —b=0: N
(proof)

Essential to simplify FIRST!! (Else we get a critical pair) succ(a) — succ(b)
rewrites to pred(succ(a) — b).

lemma diff-succ-succ: [a:N; b:N] = succ(a) — suce(b) = a — b: N
(proof)

3.3 Simplification

lemmas arith-typing-ris = add-typing mult-typing diff-typing
and arith-congr-rls = add-typingL mult-typingL diff-typingL

lemmas congr-rls = arith-congr-ris intrL2-rls elimL-rls

lemmas arithC-rls =
addC0 addC-succ
multCO multC-succ
diffCO diff-0-eq-0 diff-succ-succ

(ML)

11

3.4 Addition

Associative law for addition.
lemma add-assoc: [a:N; b:N; ¢:N| = (a #+ b) #+ c=a #+ (b #+ ¢): N
(proof)

Commutative law for addition. Can be proved using three inductions. Must
simplify after first induction! Orientation of rewrites is delicate.

lemma add-commute: [a:N; b:N] = a #+ b=b#+ a: N
{proof)

3.5 Multiplication

Right annihilation in product.

lemma mult-0-right: a:N = a #*x 0 = 0 : N
(proof)

Right successor law for multiplication.

lemma mult-succ-right: [a:N; b:N]| = a #x* succ(b) = a #+ (a #x b) : N
(proof)

Commutative law for multiplication.

lemma mult-commute: [a:N; bN] = a #x b=b#xa: N
(proof)

Addition distributes over multiplication.

lemma add-mult-distrib: [a:N; b:N; e:N| = (a #+ b) #*x ¢ = (a #x* ¢) #+ (b
#xc): N
{proof)

Associative law for multiplication.

lemma mult-assoc: Ja:N; b:N; e:N]| = (a #* b) #*x c = a #* (b #* ¢) : N
{proof)

3.6 Difference

Difference on natural numbers, without negative numbers

e a—b=0ifa<d

e a— b= succ(c)iff a > b

lemma diff-self-eq-0: a:N = a —a=0: N
{proof)

12

lemma add-0-right: [c : N; 0 : Ny ¢c: N = c#+ 0=c: N
(proof)

Addition is the inverse of subtraction: if b < z then b #+ (z — b) = x. An
example of induction over a quantified formula (a product). Uses rewriting
with a quantified, implicative inductive hypothesis.
schematic-goal add-diff-inverse-lemma:

b:N = %a : [[2:N. Eq(N, b—z, 0) — Eq(N, b #+ (z—b), x)

(proof)

Version of above with premise b — a = 0 i.e. a > b. Using ProdE does

not work — for ?B(%a) is ambiguous. Instead, add-diff-inverse-lemma states

the desired induction scheme; the use of THEN below instantiates Vars in

ProdE automatically.

lemma add-diff-inverse: [a:N; b:N; b — a =0 : N] = b #+ (a—b) =a: N
(proof)

3.7 Absolute difference

Typing of absolute difference: short and long versions.

lemma absdiff-typing: Ja:N; b:N] = a |-| b: N
(proof)

lemma absdiff-typingL: [a = ¢:N; b= d:N] = a|-|b=c|—| d: N
{proof)

lemma absdiff-self-eq-0: a:N = a |-| a=0: N

(proof)

lemma absdiff C0: a:N = 0 |-|a=a: N
(proof)

lemma absdiff-succ-suce: [a:N; b:N]| = succ(a) |—| succ(b) = a|—| b: N
{proof)

Note how easy using commutative laws can be? ...not always...

lemma absdiff-commute: Ja:N; b:N] = a |—-| b=b|—| a: N
(proof)

If a + b = 0 then a = 0. Surprisingly tedious.

schema>tic-goa1 add-eq0-lemma: [a:N; b:N] = ?c: Eq(N,a#+b,0) — Eq(N,a,0)
(proof

Version of above with the premise a + b = 0. Again, resolution instantiates
variables in ProdF.

lemma add-eq0: [a:N; b:N; a #+ b=0: N = a=0: N
(proof)

13

Here is a lemma to infer a — b = 0 and b — a = 0 from a |—| b = 0, below.

schematic-goal absdiff-eq0-lem:

[a:N; b:N; a |—| b= 0 : N] = ?a: Eq(N, a—b, 0) x Eq(N, b—a, 0)

{proof)
Ifa|-| b= 0then a=bproof:a —b=0andb—a=0s0b=a+ (b
—a)=a+ 0 =a.

lemma absdiff-eq0: [a |-| b= 0: N; a:N; bN] = a=10b: N
{proof)

3.8 Remainder and Quotient

Typing of remainder: short and long versions.
lemma mod-typing: [a:N; b:N] = a mod b : N
{proof)

lemma mod-typingL: [a = ¢:N; b = &:N] = a mod b = ¢ mod d : N
(proof)

Computation for mod: 0 and successor cases.

lemma modC0: b:N = 0 mod b = 0 : N
{proof)

lemma modC-succ: [a:N; b:N| =
succ(a) mod b = rec(succ(a mod b) |—| b, 0, Az y. succ(a mod b)) : N
{proof)

Typing of quotient: short and long versions.

lemma div-typing: [a:N; b:N] = a divb: N
{proof)

lemma div-typingL: J[a = ¢:N; b= d&:N] = adivb=cdivd : N
(proof)

lemmas div-typing-rls = mod-typing div-typing absdiff-typing

Computation for quotient: 0 and successor cases.
lemma divC0: b:N — 0 divb=0: N
(proof)

lemma divC-succ: [a:N; b:N|] =
succ(a) div b = rec(succ(a) mod b, succ(a div b), A\x y. a div b) : N
(proof)

Version of above with same condition as the mod one.

lemma divC-succ2: [a:N; b:N| =
succ(a) div b =rec(succ(a mod b) |—| b, succ(a div b), Az y. a div b) : N

14

{proof)

For case analysis on whether a number is 0 or a successor.

lemma iszero-decidable: a:N = rec(a, inl(eq), Aka kb. inr(<ka, eq>)) :
Eq(N,a,0) + (3 x:N. Eq(N,a, succ(z)))
{proof)

Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0.
lemma mod-div-equality: [a:N; b:N] = a mod b #+ (a div b) #x b=a: N
(proof)

end

4 FEasy examples: type checking and type deduc-
tion
theory Typechecking

imports ../CTT
begin

4.1 Single-step proofs: verifying that a type is well-formed

schematic-goal ?A type
(proof)

schematic-goal ?A type
(proof)

schematic-goal [[2z:?4 . N + ?B(z) type
(proof)

4.2 Multi-step proofs: Type inference

lemma [[w:N. N + N type
(proof)

schematic-goal <0, succ(0)> : 74
{proof)

schematic-goal [[w:N . Eq(?A,w,w) type
(proof)

schematic-goal [[z:N . [[y:N . Eq(?A,z,y) type
{proof)

typechecking an application of fst

schematic-goal (Au. split(u, Av w. v)) * <0, succ(0)> : ?4
{proof)

15

typechecking the predecessor function

schematic-goal An. rec(n, 0, Az y. z) : A
(proof)

typechecking the addition function

schematic-goal An. Am. rec(n, m, Az y. succ(y)) : ?4
{proof)

Proofs involving arbitrary types. For concreteness, every type variable left
over is forced to be N

(ML)

schematic-goal Aw. <w,w> : 74

{proof)

schematic-goal Az. Ay. z : 74
{proof)

typechecking fst (as a function object)
schematic-goal Ai. split(i, \j k. j) : ?A
(proof)

end

5 Examples with elimination rules

theory Elimination

imports ../CTT

begin

This finds the functions fst and snd!

schematic-goal [folded basic-defs]: A type = %a: (A x A) — A
{proof)

schematic-goal [folded basic-defs]: A type = %a : (A x A) — A
(proof)

Double negation of the Excluded Middle

schematic-goal 4 type = %a: (4 + (A—F)) — F) — F
(proof)

Experiment: the proof above in Isar

lemma

assumes A type shows (Af. f “inr(Ay. f “inl(y))) : (A + (A—F)) — F)
— I
(proof)

16

schematic-goal [A type; B type] = %a : (A x B) — (B x A)
(proof)

Binary sums and products

schematic-goal [A type; B type; Ctype] = %a: (A + B — C) — (A — ()
x (B — C)
(proof)

schematic-goal [A type; B type; C type] = %a: A x (B+ C) — (A x B +
A x C)
(proof)

schematic-goal
assumes A type
and A\z. ©:A = B(z) type
and A\z. ©:4A = C(x) type
shows ?a : (3> z:A. B(x) + C(z)) — (O_z:A. B(z)) + O_z:A. C(z))
(proof)

Construction of the currying functional

schematic-goal [A type; B type; C type] = ?a: (A x B— C) — (A — (B
— 0))
(proof)

schematic-goal
assumes A type
and A\z. 2:A = B(z) type
and Az. z: O x:A. B(z)) = C(z) type
shows ?a : [[f: ([[z: O_z:A . B(x)) . C(2)).
< . (I[z:A . [Jy:B(z) . C(<z,y>))
Proo.

Martin-Lof (1984), page 48: axiom of sum-elimination (uncurry)
schematic-goal [A type; B type; C type] = %a: (A — (B — C)) — (A X
B— ()

(proof)

schematic-goal
assumes A type
and A\z. ©:A = B(z) type
and Az z: O z:A . B(z)) = C(2) type
shows %a : ([[z:A . [[y:B(z) . C(<z,y>))
— (]2 : O_x:A . B(x)) . C(2)
(proof)

17

Function application

schematic-goal [A type; B type] = %a: (A — B) x A) — B
{proof)

Basic test of quantifier reasoning

schematic-goal

assumes A type

and B type

and Az y. [2:4; y:B] = C(z,y) type
shows

a: (O_y:B.[]xA. C(zy))

— ([[z:A . Y y:B . C(z,y))

(proof)

Martin-Lof (1984) pages 36-7: the combinator S

schematic-goal
assumes A type
and A\z. ©:A = B(z) type
and Az y. [z:4; y:B(z)] = C(z,y) type
shows %a : ([[z:A. [[y:B(z). C(z,y))
— (IIf: (I]=:A. B(z)). [[z:4. C(z, fz))
(proof)

Martin-Lof (1984) page 58: the axiom of disjunction elimination

schematic-goal
assumes A type
and B type
and Az. z: A+B = C(z) type
shows %a : ([[x:A. C(inl(z))) — (] y:B- C(inr(y)))
— ([12: A+B. C(2))
(proof)

schematic-goal [folded basic-defs]:
[A type; B type; C type] = %a: (A — B x C) — (A — B) x (A — ()
(proof)

AXIOM OF CHOICE! Delicate use of elimination rules

schematic-goal
assumes A type
and Az. 2:A = B(z) type
and Az y. [2:4; y:B(z)] = C(z,y) type
shows %a : ([[x:A. > y:B(z). C(z,y)) — O_f: ([[=:A. B(z)). [[z:A. C(=,
fx))
{proof)

A structured proof of AC

lemma Axiom-of-Choice:

18

assumes A type
and Az. ©:A = B(z) type
and Az y. [2:4; y:B(z)] = C(z,y) type
shows (Af. <Az. fst(fz), Az. snd(f'z)>)
< f> (ITz:A. Y y:B(z). C(z,y)) — O_f: (1 #:A. B(x)). [[=:A. C(x, fx))
Proo

Axiom of choice. Proof without fst, snd. Harder still!

schematic-goal [folded basic-defs]:
assumes A type
and Az. ©:A = B(z) type
and Az y. [2:4; y:B(z)] = C(z,y) type
shows %a : ([[x:A. Y. y:B(z). C(z,y)) — O_f: ([[=:A. B(z)). [[x:A. C(x,
fz))
(proof)

Example of sequent-style deduction

schematic-goal
assumes A type
and B type
and A\z. 224 x B = C(z) type
shows %a : (D) z:A x B. C(z)) — O wA. Y v:B. C(<u,v>))
(proof)

end

6 Equality reasoning by rewriting

theory Fquality
imports ../CTT
begin

lemma split-eq: p : Sum(A,B) = split(p,pair) = p : Sum(A,B)
(proof)

lemma when-eq: [A type; B type; p : A+B] = when(p,inl,inr) = p: A + B
(proof)

in the "rec" formulation of addition, 0 +n =n

lemma p:N = rec(p,0, \y z. succ(y)) =p: N
(proof)

the harder version, n 4+ 0 = n: recursive, uses induction hypothesis

lemma p:N = rec(p,0, Ay z. succ(z)) =p: N
{proof)

Associativity of addition
lemma [a:N; b:N; ¢:N]

19

= rec(rec(a, b, Az y. succ(y)), ¢, Az y. succ(y)) =
rec(a, rec(b, ¢, \x y. succ(y)), Az y. succ(y)) : N

(proof)

Martin-Lof (1984) page 62: pairing is surjective

lemma p : Sum(A,B) = <split(p,\z y. z), split(p,\z y. y)> = p : Sum(A,B)
(proof)

lemma [a: A; b : B] = (Au. split(u, v w.<w,v>)) ‘ <a,b> = <b,a>: > x:B.
A
{proof)

a contrived, complicated simplication, requires sum-elimination also

lemma (Af. Az. f(f2)) (Au. split(u, Av w.<w,v>)) =
< /\a]:[>a: : [Tz:QCy:N. N). (O y:N. N)
proo

end

7 Synthesis examples, using a crude form of nar-
rowing
theory Synthesis
imports ../CTT
begin
discovery of predecessor function

schematic-goal ?a : > pred:?A . Eq(N, pred0, 0) x (J[[n:N. Eq(N, pred *
suce(n), n))
(proof)

the function fst as an element of a function type

schematic-goal [folded basic-defs]:
A type = %a: > f:?B . [[i:A. [[4:A. Eq(A, [‘ <i,j>, i)
(proof)

An interesting use of the eliminator, when

schematic-goal ?a : [[i:N. Eq(?A, ?b(inl(7)), <0 , i>)
x Eq(?A, ?b(inr(1)), <succ(0), i>)
(proof)

schematic-goal ?a : [[#:N. Eq(?A(7), ?b(inl(i)), <0 , i>)
x Eq(?A(7), ?2b(inr(i)), <succ(0),i>)
(proof)

A tricky combination of when and split

20

schematic-goal [folded basic-defs]:
%a : []14:N. [14:N. Eq(?A, 2b(inl(<i,j>)), ©)
x Eq(?A, ?b(inr(<i,j>)), j)
(proof)

schematic-goal %a : [[4:N. [[j:N. Eq(?A(i,5), ?b(inl(<i,j>)), 1)
X Eq(?A(i.5), #b(inr(<i,j>)), 5)
{proof)

schematic-goal %a : [[#:N. [[j:N. Eq(N, ?b(inl(<i,j>)), 7)
X Eq(N, #b(inr(<i,j>)), j)
{proof)

Deriving the addition operator
schematic-goal [folded arith-defs]:
2c : [[n:N. Eq(N, ?f(0,n), n)
X ([[m:N. Eq(N, ?f(succ(m), n), succ(?f(m,n))))
(proof)

The addition function — using explicit lambdas

schematic-goal [folded arith-defs]:
Zc Y plus: ?A .
[T2:N. Eq(N, plus‘0‘z, x)
X ([Ty:N. Eq(N, plus‘succ(y) ‘z, succ(plus‘y‘r)))
(proof)

end

21

	Constructive Type Theory: axiomatic basis
	Tactics and derived rules for Constructive Type Theory
	Tactics for type checking
	Simplification
	The elimination rules for fst/snd

	The two-element type (booleans and conditionals)
	Derivation of rules for the type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Bool

	Elementary arithmetic
	Arithmetic operators and their definitions
	Proofs about elementary arithmetic: addition, multiplication, etc.
	Addition
	Multiplication
	Difference

	Simplification
	Addition
	Multiplication
	Difference
	Absolute difference
	Remainder and Quotient

	Easy examples: type checking and type deduction
	Single-step proofs: verifying that a type is well-formed
	Multi-step proofs: Type inference

	Examples with elimination rules
	Equality reasoning by rewriting
	Synthesis examples, using a crude form of narrowing

