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theory CTT
imports Pure
begin

1 Constructive Type Theory: axiomatic basis
(ML)

typedecl i
typedecl ¢
typedecl o

consts
— Judgments
Type =t = prop (<(¢notation=<postfix Typer>- type)s [10] &)
Eqtype  :: [t,t]=prop («(<notation=<infix Eqtyper»- =/ -)» [10,10] 5)
Elem 2[4, t]=prop (<(<notation=<infix Elem»>- /: -)» [10,10] 5)
Egelem  :: [i,i,t]=prop  («(<notation=¢mizfix Egelems»»- =/ -:/ -)» [10,10,10]
J)

Reduce  :: [i,i]=prop («Reducel-,-]»)
— Types for truth values

F wt

T it — F is empty, T contains one element
contr =

tt g

— Natural numbers

N wt

Zero g (x0»)

suce n =1

rec (4, 4, [4d]=1] = 4

— Binary sum

Plus = [6t]=t (infixr <+» 40)
inl =1

mr e

when  : [i, (=1, i=i]=1

— General sum and binary product

Sum n [t i=t=t

pair i [4,d)=1 («(vindent=1 notation=<mizfix pair»<-,/->))
fst =

snd =g

split— :x [4, [4,4d]=1] =i

— General product and function space

Prod n [t ==t

lambda == (i = i) = i (binder M\ 10)
app i [4,d])=1 (infix] <% 60)

— Equality type



Eq SRR RIES
eq g

Some inexplicable syntactic dependencies; in particular, "0" must be intro-
duced after the judgment forms.

syntax
-PROD :: [idt,t,t]=t (<(<indent=3 notation=<binder [ »]]--./ -)» 10)
-SUM  :: [idt,t )=t («(¢indent=3 notation=<binder > »> -~/ -)» 10)

syntax-consts
-PROD = Prod and
-SUM = Sum
translations
[[z:A. B = CONST Prod(A, \z. B)
> x:A. B= CONST Sum(A, \z. B)

abbreviation Arrow :: [t,{]=t (infixr <—> 30)
where A — B =][-A. B

abbreviation Times :: [t,t]=¢ (infixr (x> 50)
where A x B=>Y -A. B

Reduction: a weaker notion than equality; a hack for simplification. Re-
duce[a,b] means either that a = b : A for some A or else that a and b are
textually identical.

Does not verify a:A! Sound because only trans-red uses a Reduce premise.
No new theorems can be proved about the standard judgments.

axiomatization
where
refl-red: Na. Reduce[a,a] and
red-if-equal: Na b A. a = b : A = Reduce|a,b] and
trans-red: Na b ¢ A. Ja = b : A; Reduce[b,c]] = a = ¢ : A and
— Reflexivity

refl-type: NA. A type = A = A and
refl-elem: Na A. a: A = a = a: A and

— Symmetry

sym-type: NA B. A= B=— B = A and
sym-elem: NabA. a=b: A= b=a: A and

— Transitivity

trans-type: NA B C.[A=B;B=C(C] = A= C and
trans-elem: ANa bc A Ja=b: 4

equal-types: Na A B.[a: A; A= B] = a: B and



equal-typesL: Na b A B.Jla=b: A; A= B] = a=10: B and
— Substitution

type] = B(a) type and

subst-type:  Na A B. [a: A; N\z. 22A = B(z)
22A = B(z) = D(2)] = B(a) =

subst-typeL: Na c A BD. [a=c: A Az
D(c¢) and

subst-elem: Na b A B. [a: A; Nz. 2A = b(2):B(2)] = b(a):B(a) and
subst-elemL:
(/l\a becdAB. Ja=c: A; N\z. 2A = b(2)=d(z) : B(z)] = b(a)=d(c) : B(a)

— The type N — natural numbers

NF: N type and

NIO: 0 : N and

Ni-succ: Na. a : N = succ(a) : N and

NI-succL: Nab.a=1b: N = succ(a) = suce(b) : N and

NE:
Ap abd C.[p: N;a: C(0); Nuwv. [u: N; v: C(u)] = b(u,v): C(succ(u))]
= rec(p, a, Au v. b(u,v)) : C(p) and

NEL:
ApgabedC.[p=gq:N;a=c: C(0);

Au v. Ju: N; v: C(u)] = b(u,v) = d(u,v): C(succ(u))]
= rec(p, a, Au v. b(u,v)) = rec(q,c,d) : C(p) and

NCO:
Na b C. Ja: C(0); Auv. Ju: N; v: C(u)] = b(u,v): C(suce(u))]
= rec(0, a, Au v. b(u,v)) = a: C(0) and

NC-succ:

Ap abd C.[p: N; a: C(0); Nuwv. [u: N5 v: C(u)] = b(u,v): C(suce(u))] =
rec(succ(p), a, Au v. b(u,v)) = b(p, rec(p, a, Au v. b(u,v))) : C(succ(p)) and
— The fourth Peano axiom. See page 91 of Martin-Lo6f’s book.

zero-ne-succ: N\a. [a: N; 0 = suce(a) : N = 0: F and

— The Product of a family of types
ProdF: NA B. [A type; N\z. ©:A = B(z) type] = [[x:A. B(z) type and
ProdFL:

NA B CD.[A=C; \z. :A = B(z) = D(z)] = [[=:A. B(z) =[] z:C.
D(z) and



ProdI:
Ab A B. [A type; Nz. 2:A = b(z):B(z)] = Az. b(z) : [[z:A. B(z) and

ProdIL: \b ¢ A B. [A type; Nz. ©:A = b(z) = ¢(z) : B(z)] =
Az. b(z) = Az. ¢(z) : [][2:A. B(z) and

ProdE: Apa A B.[p:[lz:4. B(z); a: A] = p‘a : B(a) and
ProdEL: A\p qa b A B. [p= ¢ [[z:A. Bz); a =b: A] = p‘a = ¢‘b: B(a)
and

ProdC: Na b A B. [a: A4; Nz. ©:A = b(z) : B(z)] = (Az. b(z)) ‘a = ba) :
B(a) and

ProdC2: Ap A B. p : [[x:A. B(z) = (Az. pz) = p: [[2:A. B(z) and

— The Sum of a family of types

SumF: AA B. [A type; Nz. ©:A = B(z) type] = > z:A. B(z) type and
SumFL: NA B CD. A= C; A\z. :A = B(z) = D(z)] = > x:A. B(z) =
> a:C. D(z) and

Suml: NabAB.[a: A; b: Bla)] = <a,b>: > 2:A. B(z) and
SumIL: NabecdAB. [a=c:A;b=d: Bla)] = <a,b> = <¢,d>: > x:A.
B(z) and

SumE: Ap ¢ A B C. [p: Y. z:A. B(z); Nz y. [#:4; y:B(z)] = c(z,y): C(<z,y>)]
= split(p, Az y. c(z,y)) : C(p) and

SumEL: Ap qcd ABC.[p=gq:> z:A B(x);
Nz y. [z:4; y:B(z)] = c(z,y)=d(z,y): C(<z,y>)]
= split(p, Az y. c(z,y)) = split(q, Az y. d(z,y)) : C(p) and

SumC: NabecA BC. [a: A; b: B(a); Az y. [2:4; y:B(z)] = c(z,y): C(<z,y>)]
= split(<a,b>, Az y. ¢(z,y)) = c(a,b) : C(<a,b>) and

fst-def: Aa. fst(a) = split(a, Az y. ) and
snd-def: Aa. snd(a) = split(a, Az y. y) and
— The sum of two types

PlusF: NA B. [A type; B type] = A+B type and
PlusFL: NABCD.[A=C; B=D] = A+B = C+D and

Plusl-inl: Na A B. [a : A; B type] = inl(a) : A+B and
PlusI-inlL: Na ¢ A B. [a = ¢ : A; B type] = inl(a) = inl(c) : A+B and



PlusI-inr: \b A B. [A type; b : B] = inr(b) : A+B and
Plusl-inrL: ANb d A B. [A type; b = d : B] = inr(b) = inr(d) : A+B and

PlusE:
Ap cdA B C. [p: A+B;
Nz. ©:A = c(x): C(inl(z));
Ay. v:B = d(y): C(inr(y)) | = when(p, Az. c(x), Ay. d(y)) : C(p) and

PlusEL:
ANpqgcdefABC.[p=q: A+B;
Nz. 22 A = ¢(x) = e(z) : C(inl(x));
Ny- y: B = d(y) = f(y) : C(inr(y))]
= when(p, A\z. c(z), A\y. d(y)) = when(q, Az. e(z), Ay. f(y)) : C(p) and

PlusC-inl:
NacdABC. [a A
Nz, 2:A = c(z): C(inl(z));
Ny. y:B = d(y): C(inr(y)) |
= when(inl(a), A\z. ¢(z), A\y. d(y)) = c(a) : C(inl(a)) and
PlusC-inr:
NbcdABC.[b: B;
Nz. 2:A = c(z): C(inl(x));
Ny y:B = d(y): C(inr(y))]
= when(inr(d), Az. c¢(z), Ay. d(y)) = d(b) : C(inr(d)) and

— The type Eq

EqF: Na b A. [A type; a : A; b : A] = Eq(A,a,b) type and

EqFL: NabcdAB. [A=B;a=c: A;b=d: A] = Eq(4,a,b) = Eq(B,c,d)
and

Eql: N\abA.a=0b: A= eq: Fq(A,a,b) and

EgE: ApabA. p: Eq(Aa,b) = a=b: A and

— By equality of types, can prove C(p) from C(eq), an elimination rule
EqC: Ap ab A. p: Fq(A,a,b) = p = eq : Eq(A,a,b) and

— The type F

FF: F type and
FE: N\p C. [p: F; C type] = contr(p) : C and
FEL: Ap q C. [p = q: F; C type] = contr(p) = contr(q) : C and

— The type T
— Martin-L6f’s book (page 68) discusses elimination and computation. Elim-
ination can be derived by computation and equality of types, but with an extra



premise C(z) type z:T. Also computation can be derived from elimination.

TF: T type and
TI: tt : T and
TE:ApcC.[p: T;c: C(tt))] = c¢: C(p) and
TEL: ApqcdC.[p=q:T;c=d: C(tt))] = c=d: C(p) and
TC: N\p.p: T=p=1tt:T
1.1 Tactics and derived rules for Constructive Type Theory

Formation rules.

lemmas form-rls = NF ProdF SumF PlusF EqF FF TF
and formL-rls = ProdFL SumFL PlusF'L EqFL

Introduction rules. OMITTED:

e Fql, because its premise is an egelem, not an elem.

lemmas intr-rls = NIO NI-succ Prodl Suml Plusl-inl Plusl-inr TI
and intrL-rls = NI-succL ProdIL SumlIL Plusl-inlL Plusl-inrL

Elimination rules. OMITTED:

e FqF, because its conclusion is an eqelem, not an elem

e TFE, because it does not involve a constructor.
lemmas elim-rls = NE ProdE SumFE PlusE FE

and elimL-rls = NEL ProdEL SumFEL PlusEL FEL

OMITTED: eqC are TC because they make rewriting loop: p = un = un

lemmas comp-rlis = NCO NC-succ ProdC SumC' PlusC-inl PlusC-inr

Rules with conclusion a:A, an elem judgment.

lemmas element-rls = intr-rls elim-ris

Definitions are (meta)equality axioms.

lemmas basic-defs = fst-def snd-def

Compare with standard version: B is applied to UNSIMPLIFIED expression!

lemma SumlIL2: [¢c = a: A; d = b: B(a)] = <c¢,d> = <a,b> : Sum(A,B)
{proof)

lemmas intrL2-rls = NI-succL ProdIL SumlIL2 Plusl-inlL Plusl-inrL



Exploit p: Prod(A,B) to create the assumption z:B(a). A more natural form
of product elimination.

lemma subst-prodFE:
assumes p: Prod(A,B)
and a: A
and Az. z: B(a) = ¢(2): C(2)
shows ¢(p‘a): C(p‘a)
(proof)

1.2 Tactics for type checking
(ML)

For simplification: type formation and checking, but no equalities between
terms.

lemmas routine-ris = form-rls formL-rls refi-type element-rls
(ML)

1.3 Simplification

To simplify the type in a goal.

lemma replace-type: [B = A; a: A] = a: B
(proof )

Simplify the parameter of a unary type operator.

lemma subst-eqtyparg:
assumes I: a=c: A
and 2: A\z. z:A = B(z) type
shows B(a) = B(c)
(proof )

Simplification rules for Constructive Type Theory.

lemmas reduction-rls = comp-rls [THEN trans-elem)
(ML)

1.4 The elimination rules for fst/snd

lemma SumE-fst: p : Sum(A,B) = fst(p) : A
{proof)

The first premise must be p:Sum(A,B)!!.

lemma SumkFE-snd:
assumes major: p: Sum(A,B)
and A type
and Az. 2:A = B(z) type
shows snd(p) : B(fst(p))
(proof)



2 The two-element type (booleans and condition-
als)

definition Bool :: t
where Bool = T+T

definition true : ¢
where true = inl(tt)

definition false :: i
where false = inr(tt)

definition cond :: [i,i,i]=1
where cond(a,b,c) = when(a, A-. b, A-. ¢)

lemmas bool-defs = Bool-def true-def false-def cond-def

2.1 Derivation of rules for the type Bool

Formation rule.

lemma boolF": Bool type
(proof)

Introduction rules for true, false.
lemma booll-true: true : Bool

{proof)

lemma booll-false: false : Bool
(proof)

Elimination rule: typing of cond.

lemma boolE: [p:Bool; a : C(true); b : C(false)] = cond(p,a,b) : C(p)
(proof)

lemma boolEL: [p = q : Bool; a = ¢ : C(true); b = d : C(false)]
= cond(p,a,b) = cond(q,c,d) : C(p)
{proof)

Computation rules for true, false.
lemma boolC-true: [a : C(true); b : C(false)] = cond(true,a,b) = a : C(true)
(proof)

lemma boolC-false: [a : C(true); b : C(false)] = cond(false,a,b) = b : C(false)
(proof )



3 Elementary arithmetic

3.1 Arithmetic operators and their definitions
definition add :: [i,i]=¢ (infixr <#+> 65)

where a#+b = rec(a, b, Au v. succ(v))

definition diff :: [i,i]=4 (infixr «(— 65)
where a—b = rec(b, a, \u v. rec(v, 0, Az y. x))

definition absdiff :: [i,i]=4 (infixr <|—|> 65)
where a|—|b = (a—b) #+ (b—a)

definition mult :: [¢,i]=7 (infixr #x> 70)
where a#xb = rec(a, 0, Au v. b #+ v)

definition mod :: [i,i]=7 (infixr (mod> 70)
where a mod b = rec(a, 0, Au v. rec(succ(v) |—| b, 0, Az y. succ(v)))

definition div :: [i,7]=¢ (infixr <div> 70)
where a div b = rec(a, 0, A\u v. rec(succ(u) mod b, succ(v), Az y. v))

lemmas arith-defs = add-def diff-def absdiff-def mult-def mod-def div-def

3.2 Proofs about elementary arithmetic: addition, multipli-
cation, etc.

3.2.1 Addition

Typing of add: short and long versions.
lemma add-typing: [a:N; b:N] = a #+ b: N
(proof)

lemma add-typingL: J[a = ¢:N; b= d:N]| = a #+ b=c#+ d: N
(proof)

Computation for add: 0 and successor cases.

lemma addC0: b:N = 0 #+ b=b: N
(proof )

lemma addC-succ: [a:N; b:N]| = succ(a) #+ b = succ(a #+ b) : N
{proof)

3.2.2 Multiplication

Typing of mult: short and long versions.

lemma mult-typing: [a:N; b:N] = a #x b: N
(proof )

10



lemma mult-typingL: [a = ¢:N; b= d:N| = a#x b=c#*xd: N
(proof)

Computation for mult: 0 and successor cases.

lemma multCO: N = 0 #x b=0: N
(proof)

lemma multC-succ: [a:N; b:N]| = succ(a) #x b=b #+ (a #% b) : N
{proof)

3.2.3 Difference

Typing of difference.
lemma diff-typing: [a:N; bN] = a — b: N
{proof )

lemma diff-typingL: [a = ¢:N; b=d:N] = a—b=c—d: N
(proof )

Computation for difference: 0 and successor cases.

lemma diffCO0: a:N = a — 0 =a: N
(proof )

Note: rec(a, 0, Az w.z) is pred(a).

lemma diff-0-eq-0: b N — 0 —b=0: N
(proof )

Essential to simplify FIRST!! (Else we get a critical pair) succ(a) — succ(b)
rewrites to pred(succ(a) — b).

lemma diff-succ-succ: [a:N; b:N] = succ(a) — suce(b) = a — b: N
(proof)

3.3 Simplification

lemmas arith-typing-ris = add-typing mult-typing diff-typing
and arith-congr-rls = add-typingL mult-typingL diff-typingL

lemmas congr-rls = arith-congr-ris intrL2-rls elimL-rls

lemmas arithC-rls =
addC0 addC-succ
multCO multC-succ
diffCO diff-0-eq-0 diff-succ-succ

(ML)

11



3.4 Addition

Associative law for addition.
lemma add-assoc: [a:N; b:N; ¢:N| = (a #+ b) #+ c=a #+ (b #+ ¢): N
(proof)

Commutative law for addition. Can be proved using three inductions. Must
simplify after first induction! Orientation of rewrites is delicate.

lemma add-commute: [a:N; b:N] = a #+ b=b#+ a: N
{proof)

3.5 Multiplication

Right annihilation in product.

lemma mult-0-right: a:N = a #*x 0 = 0 : N
(proof)

Right successor law for multiplication.

lemma mult-succ-right: [a:N; b:N]| = a #x* succ(b) = a #+ (a #x b) : N
(proof)

Commutative law for multiplication.

lemma mult-commute: [a:N; bN] = a #x b=b#xa: N
(proof )

Addition distributes over multiplication.

lemma add-mult-distrib: [a:N; b:N; e:N| = (a #+ b) #*x ¢ = (a #x* ¢) #+ (b
#xc): N
{proof)

Associative law for multiplication.

lemma mult-assoc: Ja:N; b:N; e:N]| = (a #* b) #*x c = a #* (b #* ¢) : N
{proof)

3.6 Difference

Difference on natural numbers, without negative numbers

e a—b=0ifa<d

e a— b= succ(c)iff a > b

lemma diff-self-eq-0: a:N = a —a=0: N
{proof )

12



lemma add-0-right: [c : N; 0 : Ny ¢c: N = c#+ 0=c: N
(proof )

Addition is the inverse of subtraction: if b < z then b #+ (z — b) = x. An
example of induction over a quantified formula (a product). Uses rewriting
with a quantified, implicative inductive hypothesis.
schematic-goal add-diff-inverse-lemma:

b:N = %a : [[2:N. Eq(N, b—z, 0) — Eq(N, b #+ (z—b), x)

(proof )

Version of above with premise b — a = 0 i.e. a > b. Using ProdE does

not work — for ?B(%a) is ambiguous. Instead, add-diff-inverse-lemma states

the desired induction scheme; the use of THEN below instantiates Vars in

ProdE automatically.

lemma add-diff-inverse: [a:N; b:N; b — a =0 : N] = b #+ (a—b) =a: N
(proof)

3.7 Absolute difference

Typing of absolute difference: short and long versions.

lemma absdiff-typing: Ja:N; b:N] = a |-| b: N
(proof)

lemma absdiff-typingL: [a = ¢:N; b= d:N] = a|-|b=c|—| d: N
{proof)

lemma absdiff-self-eq-0: a:N = a |-| a=0: N

(proof )

lemma absdiff C0: a:N = 0 |-|a=a: N
(proof)

lemma absdiff-succ-suce: [a:N; b:N]| = succ(a) |—| succ(b) = a|—| b: N
{proof )

Note how easy using commutative laws can be? ...not always...

lemma absdiff-commute: Ja:N; b:N] = a |—-| b=b|—| a: N
(proof)

If a + b = 0 then a = 0. Surprisingly tedious.

schema>tic-goa1 add-eq0-lemma: [a:N; b:N] = ?c: Eq(N,a#+b,0) — Eq(N,a,0)
(proof

Version of above with the premise a + b = 0. Again, resolution instantiates
variables in ProdF.

lemma add-eq0: [a:N; b:N; a #+ b=0: N = a=0: N
(proof)

13



Here is a lemma to infer a — b = 0 and b — a = 0 from a |—| b = 0, below.

schematic-goal absdiff-eq0-lem:

[a:N; b:N; a |—| b= 0 : N] = ?a: Eq(N, a—b, 0) x Eq(N, b—a, 0)

{proof)
Ifa|-| b= 0then a=bproof:a —b=0andb—a=0s0b=a+ (b
—a)=a+ 0 =a.

lemma absdiff-eq0: [a |-| b= 0: N; a:N; bN] = a=10b: N
{proof)

3.8 Remainder and Quotient

Typing of remainder: short and long versions.
lemma mod-typing: [a:N; b:N] = a mod b : N
{proof )

lemma mod-typingL: [a = ¢:N; b = &:N] = a mod b = ¢ mod d : N
(proof)

Computation for mod: 0 and successor cases.

lemma modC0: b:N = 0 mod b = 0 : N
{proof )

lemma modC-succ: [a:N; b:N| =
succ(a) mod b = rec(succ(a mod b) |—| b, 0, Az y. succ(a mod b)) : N
{proof)

Typing of quotient: short and long versions.

lemma div-typing: [a:N; b:N] = a divb: N
{proof )

lemma div-typingL: J[a = ¢:N; b= d&:N] = adivb=cdivd : N
(proof )

lemmas div-typing-rls = mod-typing div-typing absdiff-typing

Computation for quotient: 0 and successor cases.
lemma divC0: b:N — 0 divb=0: N
(proof )

lemma divC-succ: [a:N; b:N|] =
succ(a) div b = rec(succ(a) mod b, succ(a div b), A\x y. a div b) : N
(proof)

Version of above with same condition as the mod one.

lemma divC-succ2: [a:N; b:N| =
succ(a) div b =rec(succ(a mod b) |—| b, succ(a div b), Az y. a div b) : N

14



{proof)

For case analysis on whether a number is 0 or a successor.

lemma iszero-decidable: a:N = rec(a, inl(eq), Aka kb. inr(<ka, eq>)) :
Eq(N,a,0) + (3 x:N. Eq(N,a, succ(z)))
{proof)

Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0.
lemma mod-div-equality: [a:N; b:N] = a mod b #+ (a div b) #x b=a: N
(proof)

end

4 FEasy examples: type checking and type deduc-
tion
theory Typechecking

imports ../CTT
begin

4.1 Single-step proofs: verifying that a type is well-formed

schematic-goal ?A type
(proof )

schematic-goal ?A type
(proof)

schematic-goal [[2z:?4 . N + ?B(z) type
(proof )

4.2 Multi-step proofs: Type inference

lemma [[w:N. N + N type
(proof )

schematic-goal <0, succ(0)> : 74
{proof)

schematic-goal [[ w:N . Eq(?A,w,w) type
(proof )

schematic-goal [[z:N . [[y:N . Eq(?A,z,y) type
{proof )

typechecking an application of fst

schematic-goal (Au. split(u, Av w. v)) * <0, succ(0)> : ?4
{proof)
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typechecking the predecessor function

schematic-goal An. rec(n, 0, Az y. z) : A
(proof )

typechecking the addition function

schematic-goal An. Am. rec(n, m, Az y. succ(y)) : ?4
{proof)

Proofs involving arbitrary types. For concreteness, every type variable left
over is forced to be N

(ML)

schematic-goal Aw. <w,w> : 74

{proof)

schematic-goal Az. Ay. z : 74
{proof )

typechecking fst (as a function object)
schematic-goal Ai. split(i, \j k. j) : ?A
(proof)

end

5 Examples with elimination rules

theory Elimination

imports ../CTT

begin

This finds the functions fst and snd!

schematic-goal [folded basic-defs]: A type = %a: (A x A) — A
{proof)

schematic-goal [folded basic-defs]: A type = %a : (A x A) — A
(proof )

Double negation of the Excluded Middle

schematic-goal 4 type = %a: (4 + (A—F)) — F) — F
(proof)

Experiment: the proof above in Isar

lemma

assumes A type shows (Af. f “inr(Ay. f “inl(y))) : (A + (A—F)) — F)
— I
(proof )
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schematic-goal [A type; B type] = %a : (A x B) — (B x A)
(proof)

Binary sums and products

schematic-goal [A type; B type; Ctype] = %a: (A + B — C) — (A — ()
x (B — C)
(proof )

schematic-goal [A type; B type; C type] = %a: A x (B+ C) — (A x B +
A x C)
(proof )

schematic-goal
assumes A type
and A\z. ©:A = B(z) type
and A\z. ©:4A = C(x) type
shows ?a : (3> z:A. B(x) + C(z)) — (O_z:A. B(z)) + O_z:A. C(z))
(proof)

Construction of the currying functional

schematic-goal [A type; B type; C type] = ?a: (A x B— C) — (A — (B
— 0))
(proof )

schematic-goal
assumes A type
and A\z. 2:A = B(z) type
and Az. z: O x:A. B(z)) = C(z) type
shows ?a : [[f: ([[z: O_z:A . B(x)) . C(2)).
< . (I[z:A . [Jy:B(z) . C(<z,y>))
Proo.

Martin-Lof (1984), page 48: axiom of sum-elimination (uncurry)
schematic-goal [A type; B type; C type] = %a: (A — (B — C)) — (A X
B— ()

(proof)

schematic-goal
assumes A type
and A\z. ©:A = B(z) type
and Az z: O z:A . B(z)) = C(2) type
shows %a : ([[z:A . [[y:B(z) . C(<z,y>))
— (]2 : O_x:A . B(x)) . C(2)
(proof )
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Function application

schematic-goal [A type; B type] = %a: (A — B) x A) — B
{proof)

Basic test of quantifier reasoning

schematic-goal

assumes A type

and B type

and Az y. [2:4; y:B] = C(z,y) type
shows

a:  (O_y:B.[]xA. C(zy))

— ([[z:A . Y y:B . C(z,y))

(proof )

Martin-Lof (1984) pages 36-7: the combinator S

schematic-goal
assumes A type
and A\z. ©:A = B(z) type
and Az y. [z:4; y:B(z)] = C(z,y) type
shows %a : ([[z:A. [[y:B(z). C(z,y))
— (IIf: (I]=:A. B(z)). [[z:4. C(z, fz))
(proof )

Martin-Lof (1984) page 58: the axiom of disjunction elimination

schematic-goal
assumes A type
and B type
and Az. z: A+B = C(z) type
shows %a : ([[x:A. C(inl(z))) — (] y:B- C(inr(y)))
— ([12: A+B. C(2))
(proof )

schematic-goal [folded basic-defs]:
[A type; B type; C type] = %a: (A — B x C) — (A — B) x (A — ()
(proof )

AXIOM OF CHOICE! Delicate use of elimination rules

schematic-goal
assumes A type
and Az. 2:A = B(z) type
and Az y. [2:4; y:B(z)] = C(z,y) type
shows %a : ([[x:A. > y:B(z). C(z,y)) — O_f: ([[=:A. B(z)). [[z:A. C(=,
fx))
{proof)

A structured proof of AC

lemma Axiom-of-Choice:
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assumes A type
and Az. ©:A = B(z) type
and Az y. [2:4; y:B(z)] = C(z,y) type
shows (Af. <Az. fst(fz), Az. snd(f'z)>)
< f> (ITz:A. Y y:B(z). C(z,y)) — O_f: (1 #:A. B(x)). [[=:A. C(x, fx))
Proo

Axiom of choice. Proof without fst, snd. Harder still!

schematic-goal [folded basic-defs]:
assumes A type
and Az. ©:A = B(z) type
and Az y. [2:4; y:B(z)] = C(z,y) type
shows %a : ([[x:A. Y. y:B(z). C(z,y)) — O_f: ([[=:A. B(z)). [[x:A. C(x,
fz))
(proof )

Example of sequent-style deduction

schematic-goal
assumes A type
and B type
and A\z. 224 x B = C(z) type
shows %a : (D) z:A x B. C(z)) — O wA. Y v:B. C(<u,v>))
(proof )

end

6 Equality reasoning by rewriting

theory Fquality
imports ../CTT
begin

lemma split-eq: p : Sum(A,B) = split(p,pair) = p : Sum(A,B)
(proof )

lemma when-eq: [A type; B type; p : A+B] = when(p,inl,inr) = p: A + B
(proof)

in the "rec" formulation of addition, 0 +n =n

lemma p:N = rec(p,0, \y z. succ(y)) =p: N
(proof )

the harder version, n 4+ 0 = n: recursive, uses induction hypothesis

lemma p:N = rec(p,0, Ay z. succ(z)) =p: N
{proof)

Associativity of addition
lemma [a:N; b:N; ¢:N]
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= rec(rec(a, b, Az y. succ(y)), ¢, Az y. succ(y)) =
rec(a, rec(b, ¢, \x y. succ(y)), Az y. succ(y)) : N

(proof )

Martin-Lof (1984) page 62: pairing is surjective

lemma p : Sum(A,B) = <split(p,\z y. z), split(p,\z y. y)> = p : Sum(A,B)
(proof )

lemma [a: A; b : B] = (Au. split(u, v w.<w,v>)) ‘ <a,b> = <b,a>: > x:B.
A
{proof)

a contrived, complicated simplication, requires sum-elimination also

lemma (Af. Az. f(f2))  (Au. split(u, Av w.<w,v>)) =
< /\a]:[>a: : [Tz:QCy:N. N). (O y:N. N)
proo

end

7 Synthesis examples, using a crude form of nar-
rowing
theory Synthesis
imports ../CTT
begin
discovery of predecessor function

schematic-goal ?a : > pred:?A . Eq(N, pred0, 0) x (J[[n:N. Eq(N, pred *
suce(n), n))
(proof)

the function fst as an element of a function type

schematic-goal [folded basic-defs]:
A type = %a: > f:?B . [[i:A. [[4:A. Eq(A, [ ‘ <i,j>, i)
(proof )

An interesting use of the eliminator, when

schematic-goal ?a : [[i:N. Eq(?A, ?b(inl(7)), <0 , i>)
x Eq(?A, ?b(inr(1)), <succ(0), i>)
(proof)

schematic-goal ?a : [[#:N. Eq(?A(7), ?b(inl(i)), <0 , i>)
x  Eq(?A(7), ?2b(inr(i)), <succ(0),i>)
(proof)

A tricky combination of when and split
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schematic-goal [folded basic-defs]:
%a : []14:N. [14:N. Eq(?A, 2b(inl(<i,j>)), ©)
x  Eq(?A, ?b(inr(<i,j>)), j)
(proof )

schematic-goal %a : [[4:N. [[j:N. Eq(?A(i,5), ?b(inl(<i,j>)), 1)
X Eq(?A(i.5), #b(inr(<i,j>)), 5)
{proof)

schematic-goal %a : [[#:N. [[j:N. Eq(N, ?b(inl(<i,j>)), 7)
X Eq(N, #b(inr(<i,j>)), j)
{proof)

Deriving the addition operator
schematic-goal [folded arith-defs]:
2c : [[n:N. Eq(N, ?f(0,n), n)
X ([[m:N. Eq(N, ?f(succ(m), n), succ(?f(m,n))))
(proof)

The addition function — using explicit lambdas

schematic-goal [folded arith-defs]:
Zc Y plus: ?A .
[T2:N. Eq(N, plus‘0‘z, x)
X ([Ty:N. Eq(N, plus‘succ(y) ‘z, succ(plus‘y‘r)))
(proof)

end
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