
Isabelle/CTT — Constructive Type Theory
with extensional equality and without universes

Larry Paulson

January 18, 2026

Contents
1 Constructive Type Theory: axiomatic basis 1

1.1 Tactics and derived rules for Constructive Type Theory . . . 6
1.2 Tactics for type checking . 7
1.3 Simplification . 7
1.4 The elimination rules for fst/snd 8

2 The two-element type (booleans and conditionals) 8
2.1 Derivation of rules for the type Bool 8

3 Elementary arithmetic 9
3.1 Arithmetic operators and their definitions 9
3.2 Proofs about elementary arithmetic: addition, multiplication,

etc. 9
3.2.1 Addition . 9
3.2.2 Multiplication . 10
3.2.3 Difference . 10

3.3 Simplification . 10
3.4 Addition . 11
3.5 Multiplication . 11
3.6 Difference . 12
3.7 Absolute difference . 12
3.8 Remainder and Quotient . 13

4 Easy examples: type checking and type deduction 14
4.1 Single-step proofs: verifying that a type is well-formed 14
4.2 Multi-step proofs: Type inference 14

5 Examples with elimination rules 15

6 Equality reasoning by rewriting 18

1

7 Synthesis examples, using a crude form of narrowing 19

theory CTT
imports Pure
begin

1 Constructive Type Theory: axiomatic basis
〈ML〉

typedecl i
typedecl t
typedecl o

consts
— Judgments
Type :: t ⇒ prop (‹(‹notation=‹postfix Type››- type)› [10] 5)
Eqtype :: [t,t]⇒prop (‹(‹notation=‹infix Eqtype››- =/ -)› [10 ,10] 5)
Elem :: [i, t]⇒prop (‹(‹notation=‹infix Elem››- /: -)› [10 ,10] 5)
Eqelem :: [i,i,t]⇒prop (‹(‹notation=‹mixfix Eqelem››- =/ - :/ -)› [10 ,10 ,10]

5)
Reduce :: [i,i]⇒prop (‹Reduce[-,-]›)
— Types for truth values
F :: t
T :: t — F is empty, T contains one element
contr :: i⇒i
tt :: i
— Natural numbers
N :: t
Zero :: i (‹0 ›)
succ :: i⇒i
rec :: [i, i, [i,i]⇒i] ⇒ i
— Binary sum
Plus :: [t,t]⇒t (infixr ‹+› 40)
inl :: i⇒i
inr :: i⇒i
when :: [i, i⇒i, i⇒i]⇒i
— General sum and binary product
Sum :: [t, i⇒t]⇒t
pair :: [i,i]⇒i (‹(‹indent=1 notation=‹mixfix pair››<-,/->)›)
fst :: i⇒i
snd :: i⇒i
split :: [i, [i,i]⇒i] ⇒i
— General product and function space
Prod :: [t, i⇒t]⇒t
lambda :: (i ⇒ i) ⇒ i (binder ‹λ› 10)
app :: [i,i]⇒i (infixl ‹‘› 60)
— Equality type

2

Eq :: [t,i,i]⇒t
eq :: i

Some inexplicable syntactic dependencies; in particular, "0" must be intro-
duced after the judgment forms.
syntax

-PROD :: [idt,t,t]⇒t (‹(‹indent=3 notation=‹binder
∏

››
∏

-:-./ -)› 10)
-SUM :: [idt,t,t]⇒t (‹(‹indent=3 notation=‹binder

∑
››
∑

-:-./ -)› 10)
syntax-consts

-PROD ⇀↽ Prod and
-SUM ⇀↽ Sum

translations∏
x:A. B ⇀↽ CONST Prod(A, λx. B)∑
x:A. B ⇀↽ CONST Sum(A, λx. B)

abbreviation Arrow :: [t,t]⇒t (infixr ‹−→› 30)
where A −→ B ≡

∏
-:A. B

abbreviation Times :: [t,t]⇒t (infixr ‹×› 50)
where A × B ≡

∑
-:A. B

Reduction: a weaker notion than equality; a hack for simplification. Re-
duce[a,b] means either that a = b : A for some A or else that a and b are
textually identical.
Does not verify a:A! Sound because only trans-red uses a Reduce premise.
No new theorems can be proved about the standard judgments.
axiomatization
where

refl-red:
∧

a. Reduce[a,a] and
red-if-equal:

∧
a b A. a = b : A =⇒ Reduce[a,b] and

trans-red:
∧

a b c A. [[a = b : A; Reduce[b,c]]] =⇒ a = c : A and

— Reflexivity

refl-type:
∧

A. A type =⇒ A = A and
refl-elem:

∧
a A. a : A =⇒ a = a : A and

— Symmetry

sym-type:
∧

A B. A = B =⇒ B = A and
sym-elem:

∧
a b A. a = b : A =⇒ b = a : A and

— Transitivity

trans-type:
∧

A B C . [[A = B; B = C]] =⇒ A = C and
trans-elem:

∧
a b c A. [[a = b : A; b = c : A]] =⇒ a = c : A and

equal-types:
∧

a A B. [[a : A; A = B]] =⇒ a : B and

3

equal-typesL:
∧

a b A B. [[a = b : A; A = B]] =⇒ a = b : B and

— Substitution

subst-type:
∧

a A B. [[a : A;
∧

z. z:A =⇒ B(z) type]] =⇒ B(a) type and
subst-typeL:

∧
a c A B D. [[a = c : A;

∧
z. z:A =⇒ B(z) = D(z)]] =⇒ B(a) =

D(c) and

subst-elem:
∧

a b A B. [[a : A;
∧

z. z:A =⇒ b(z):B(z)]] =⇒ b(a):B(a) and
subst-elemL:∧

a b c d A B. [[a = c : A;
∧

z. z:A =⇒ b(z)=d(z) : B(z)]] =⇒ b(a)=d(c) : B(a)
and

— The type N – natural numbers

NF : N type and
NI0 : 0 : N and
NI-succ:

∧
a. a : N =⇒ succ(a) : N and

NI-succL:
∧

a b. a = b : N =⇒ succ(a) = succ(b) : N and

NE :∧
p a b C . [[p: N ; a: C (0);

∧
u v. [[u: N ; v: C (u)]] =⇒ b(u,v): C (succ(u))]]

=⇒ rec(p, a, λu v. b(u,v)) : C (p) and

NEL:∧
p q a b c d C . [[p = q : N ; a = c : C (0);∧

u v. [[u: N ; v: C (u)]] =⇒ b(u,v) = d(u,v): C (succ(u))]]
=⇒ rec(p, a, λu v. b(u,v)) = rec(q,c,d) : C (p) and

NC0 :∧
a b C . [[a: C (0);

∧
u v. [[u: N ; v: C (u)]] =⇒ b(u,v): C (succ(u))]]

=⇒ rec(0 , a, λu v. b(u,v)) = a : C (0) and

NC-succ:∧
p a b C . [[p: N ; a: C (0);

∧
u v. [[u: N ; v: C (u)]] =⇒ b(u,v): C (succ(u))]] =⇒

rec(succ(p), a, λu v. b(u,v)) = b(p, rec(p, a, λu v. b(u,v))) : C (succ(p)) and

— The fourth Peano axiom. See page 91 of Martin-Löf’s book.
zero-ne-succ:

∧
a. [[a: N ; 0 = succ(a) : N]] =⇒ 0 : F and

— The Product of a family of types

ProdF :
∧

A B. [[A type;
∧

x. x:A =⇒ B(x) type]] =⇒
∏

x:A. B(x) type and

ProdFL:∧
A B C D. [[A = C ;

∧
x. x:A =⇒ B(x) = D(x)]] =⇒

∏
x:A. B(x) =

∏
x:C .

D(x) and

4

ProdI :∧
b A B. [[A type;

∧
x. x:A =⇒ b(x):B(x)]] =⇒ λx. b(x) :

∏
x:A. B(x) and

ProdIL:
∧

b c A B. [[A type;
∧

x. x:A =⇒ b(x) = c(x) : B(x)]] =⇒
λx. b(x) = λx. c(x) :

∏
x:A. B(x) and

ProdE :
∧

p a A B. [[p :
∏

x:A. B(x); a : A]] =⇒ p‘a : B(a) and
ProdEL:

∧
p q a b A B. [[p = q:

∏
x:A. B(x); a = b : A]] =⇒ p‘a = q‘b : B(a)

and

ProdC :
∧

a b A B. [[a : A;
∧

x. x:A =⇒ b(x) : B(x)]] =⇒ (λx. b(x)) ‘ a = b(a) :
B(a) and

ProdC2 :
∧

p A B. p :
∏

x:A. B(x) =⇒ (λx. p‘x) = p :
∏

x:A. B(x) and

— The Sum of a family of types

SumF :
∧

A B. [[A type;
∧

x. x:A =⇒ B(x) type]] =⇒
∑

x:A. B(x) type and
SumFL:

∧
A B C D. [[A = C ;

∧
x. x:A =⇒ B(x) = D(x)]] =⇒

∑
x:A. B(x) =∑

x:C . D(x) and

SumI :
∧

a b A B. [[a : A; b : B(a)]] =⇒ <a,b> :
∑

x:A. B(x) and
SumIL:

∧
a b c d A B. [[a = c : A; b = d : B(a)]] =⇒ <a,b> = <c,d> :

∑
x:A.

B(x) and

SumE :
∧

p c A B C . [[p:
∑

x:A. B(x);
∧

x y. [[x:A; y:B(x)]] =⇒ c(x,y): C (<x,y>)]]
=⇒ split(p, λx y. c(x,y)) : C (p) and

SumEL:
∧

p q c d A B C . [[p = q :
∑

x:A. B(x);∧
x y. [[x:A; y:B(x)]] =⇒ c(x,y)=d(x,y): C (<x,y>)]]

=⇒ split(p, λx y. c(x,y)) = split(q, λx y. d(x,y)) : C (p) and

SumC :
∧

a b c A B C . [[a: A; b: B(a);
∧

x y. [[x:A; y:B(x)]] =⇒ c(x,y): C (<x,y>)]]
=⇒ split(<a,b>, λx y. c(x,y)) = c(a,b) : C (<a,b>) and

fst-def :
∧

a. fst(a) ≡ split(a, λx y. x) and
snd-def :

∧
a. snd(a) ≡ split(a, λx y. y) and

— The sum of two types

PlusF :
∧

A B. [[A type; B type]] =⇒ A+B type and
PlusFL:

∧
A B C D. [[A = C ; B = D]] =⇒ A+B = C+D and

PlusI-inl:
∧

a A B. [[a : A; B type]] =⇒ inl(a) : A+B and
PlusI-inlL:

∧
a c A B. [[a = c : A; B type]] =⇒ inl(a) = inl(c) : A+B and

5

PlusI-inr :
∧

b A B. [[A type; b : B]] =⇒ inr(b) : A+B and
PlusI-inrL:

∧
b d A B. [[A type; b = d : B]] =⇒ inr(b) = inr(d) : A+B and

PlusE :∧
p c d A B C . [[p: A+B;∧

x. x:A =⇒ c(x): C (inl(x));∧
y. y:B =⇒ d(y): C (inr(y))]] =⇒ when(p, λx. c(x), λy. d(y)) : C (p) and

PlusEL:∧
p q c d e f A B C . [[p = q : A+B;∧

x. x: A =⇒ c(x) = e(x) : C (inl(x));∧
y. y: B =⇒ d(y) = f (y) : C (inr(y))]]

=⇒ when(p, λx. c(x), λy. d(y)) = when(q, λx. e(x), λy. f (y)) : C (p) and

PlusC-inl:∧
a c d A B C . [[a: A;∧

x. x:A =⇒ c(x): C (inl(x));∧
y. y:B =⇒ d(y): C (inr(y))]]

=⇒ when(inl(a), λx. c(x), λy. d(y)) = c(a) : C (inl(a)) and

PlusC-inr :∧
b c d A B C . [[b: B;∧

x. x:A =⇒ c(x): C (inl(x));∧
y. y:B =⇒ d(y): C (inr(y))]]

=⇒ when(inr(b), λx. c(x), λy. d(y)) = d(b) : C (inr(b)) and

— The type Eq

EqF :
∧

a b A. [[A type; a : A; b : A]] =⇒ Eq(A,a,b) type and
EqFL:

∧
a b c d A B. [[A = B; a = c : A; b = d : A]] =⇒ Eq(A,a,b) = Eq(B,c,d)

and
EqI :

∧
a b A. a = b : A =⇒ eq : Eq(A,a,b) and

EqE :
∧

p a b A. p : Eq(A,a,b) =⇒ a = b : A and

— By equality of types, can prove C (p) from C (eq), an elimination rule
EqC :

∧
p a b A. p : Eq(A,a,b) =⇒ p = eq : Eq(A,a,b) and

— The type F

FF : F type and
FE :

∧
p C . [[p: F ; C type]] =⇒ contr(p) : C and

FEL:
∧

p q C . [[p = q : F ; C type]] =⇒ contr(p) = contr(q) : C and

— The type T
— Martin-Löf’s book (page 68) discusses elimination and computation. Elim-

ination can be derived by computation and equality of types, but with an extra

6

premise C (x) type x:T. Also computation can be derived from elimination.

TF : T type and
TI : tt : T and
TE :

∧
p c C . [[p : T ; c : C (tt)]] =⇒ c : C (p) and

TEL:
∧

p q c d C . [[p = q : T ; c = d : C (tt)]] =⇒ c = d : C (p) and
TC :

∧
p. p : T =⇒ p = tt : T

1.1 Tactics and derived rules for Constructive Type Theory

Formation rules.
lemmas form-rls = NF ProdF SumF PlusF EqF FF TF

and formL-rls = ProdFL SumFL PlusFL EqFL

Introduction rules. OMITTED:

• EqI, because its premise is an eqelem, not an elem.

lemmas intr-rls = NI0 NI-succ ProdI SumI PlusI-inl PlusI-inr TI
and intrL-rls = NI-succL ProdIL SumIL PlusI-inlL PlusI-inrL

Elimination rules. OMITTED:

• EqE, because its conclusion is an eqelem, not an elem

• TE, because it does not involve a constructor.

lemmas elim-rls = NE ProdE SumE PlusE FE
and elimL-rls = NEL ProdEL SumEL PlusEL FEL

OMITTED: eqC are TC because they make rewriting loop: p = un = un
= . . .

lemmas comp-rls = NC0 NC-succ ProdC SumC PlusC-inl PlusC-inr

Rules with conclusion a:A, an elem judgment.
lemmas element-rls = intr-rls elim-rls

Definitions are (meta)equality axioms.
lemmas basic-defs = fst-def snd-def

Compare with standard version: B is applied to UNSIMPLIFIED expression!
lemma SumIL2 : [[c = a : A; d = b : B(a)]] =⇒ <c,d> = <a,b> : Sum(A,B)
〈proof 〉

lemmas intrL2-rls = NI-succL ProdIL SumIL2 PlusI-inlL PlusI-inrL

7

Exploit p:Prod(A,B) to create the assumption z:B(a). A more natural form
of product elimination.
lemma subst-prodE :

assumes p: Prod(A,B)
and a: A
and

∧
z. z: B(a) =⇒ c(z): C (z)

shows c(p‘a): C (p‘a)
〈proof 〉

1.2 Tactics for type checking
〈ML〉
For simplification: type formation and checking, but no equalities between
terms.
lemmas routine-rls = form-rls formL-rls refl-type element-rls

〈ML〉

1.3 Simplification

To simplify the type in a goal.
lemma replace-type: [[B = A; a : A]] =⇒ a : B
〈proof 〉

Simplify the parameter of a unary type operator.
lemma subst-eqtyparg:

assumes 1 : a=c : A
and 2 :

∧
z. z:A =⇒ B(z) type

shows B(a) = B(c)
〈proof 〉

Simplification rules for Constructive Type Theory.
lemmas reduction-rls = comp-rls [THEN trans-elem]

〈ML〉

1.4 The elimination rules for fst/snd
lemma SumE-fst: p : Sum(A,B) =⇒ fst(p) : A
〈proof 〉

The first premise must be p:Sum(A,B)!!.
lemma SumE-snd:

assumes major : p: Sum(A,B)
and A type
and

∧
x. x:A =⇒ B(x) type

shows snd(p) : B(fst(p))
〈proof 〉

8

2 The two-element type (booleans and condition-
als)

definition Bool :: t
where Bool ≡ T+T

definition true :: i
where true ≡ inl(tt)

definition false :: i
where false ≡ inr(tt)

definition cond :: [i,i,i]⇒i
where cond(a,b,c) ≡ when(a, λ-. b, λ-. c)

lemmas bool-defs = Bool-def true-def false-def cond-def

2.1 Derivation of rules for the type Bool

Formation rule.
lemma boolF : Bool type
〈proof 〉

Introduction rules for true, false.
lemma boolI-true: true : Bool
〈proof 〉

lemma boolI-false: false : Bool
〈proof 〉

Elimination rule: typing of cond.
lemma boolE : [[p:Bool; a : C (true); b : C (false)]] =⇒ cond(p,a,b) : C (p)
〈proof 〉

lemma boolEL: [[p = q : Bool; a = c : C (true); b = d : C (false)]]
=⇒ cond(p,a,b) = cond(q,c,d) : C (p)
〈proof 〉

Computation rules for true, false.
lemma boolC-true: [[a : C (true); b : C (false)]] =⇒ cond(true,a,b) = a : C (true)
〈proof 〉

lemma boolC-false: [[a : C (true); b : C (false)]] =⇒ cond(false,a,b) = b : C (false)
〈proof 〉

9

3 Elementary arithmetic
3.1 Arithmetic operators and their definitions
definition add :: [i,i]⇒i (infixr ‹#+› 65)

where a#+b ≡ rec(a, b, λu v. succ(v))

definition diff :: [i,i]⇒i (infixr ‹−› 65)
where a−b ≡ rec(b, a, λu v. rec(v, 0 , λx y. x))

definition absdiff :: [i,i]⇒i (infixr ‹|−|› 65)
where a|−|b ≡ (a−b) #+ (b−a)

definition mult :: [i,i]⇒i (infixr ‹#∗› 70)
where a#∗b ≡ rec(a, 0 , λu v. b #+ v)

definition mod :: [i,i]⇒i (infixr ‹mod› 70)
where a mod b ≡ rec(a, 0 , λu v. rec(succ(v) |−| b, 0 , λx y. succ(v)))

definition div :: [i,i]⇒i (infixr ‹div› 70)
where a div b ≡ rec(a, 0 , λu v. rec(succ(u) mod b, succ(v), λx y. v))

lemmas arith-defs = add-def diff-def absdiff-def mult-def mod-def div-def

3.2 Proofs about elementary arithmetic: addition, multipli-
cation, etc.

3.2.1 Addition

Typing of add: short and long versions.
lemma add-typing: [[a:N ; b:N]] =⇒ a #+ b : N
〈proof 〉

lemma add-typingL: [[a = c:N ; b = d:N]] =⇒ a #+ b = c #+ d : N
〈proof 〉

Computation for add: 0 and successor cases.
lemma addC0 : b:N =⇒ 0 #+ b = b : N
〈proof 〉

lemma addC-succ: [[a:N ; b:N]] =⇒ succ(a) #+ b = succ(a #+ b) : N
〈proof 〉

3.2.2 Multiplication

Typing of mult: short and long versions.
lemma mult-typing: [[a:N ; b:N]] =⇒ a #∗ b : N
〈proof 〉

10

lemma mult-typingL: [[a = c:N ; b = d:N]] =⇒ a #∗ b = c #∗ d : N
〈proof 〉

Computation for mult: 0 and successor cases.
lemma multC0 : b:N =⇒ 0 #∗ b = 0 : N
〈proof 〉

lemma multC-succ: [[a:N ; b:N]] =⇒ succ(a) #∗ b = b #+ (a #∗ b) : N
〈proof 〉

3.2.3 Difference

Typing of difference.
lemma diff-typing: [[a:N ; b:N]] =⇒ a − b : N
〈proof 〉

lemma diff-typingL: [[a = c:N ; b = d:N]] =⇒ a − b = c − d : N
〈proof 〉

Computation for difference: 0 and successor cases.
lemma diffC0 : a:N =⇒ a − 0 = a : N
〈proof 〉

Note: rec(a, 0 , λz w.z) is pred(a).
lemma diff-0-eq-0 : b:N =⇒ 0 − b = 0 : N
〈proof 〉

Essential to simplify FIRST!! (Else we get a critical pair) succ(a) − succ(b)
rewrites to pred(succ(a) − b).
lemma diff-succ-succ: [[a:N ; b:N]] =⇒ succ(a) − succ(b) = a − b : N
〈proof 〉

3.3 Simplification
lemmas arith-typing-rls = add-typing mult-typing diff-typing

and arith-congr-rls = add-typingL mult-typingL diff-typingL

lemmas congr-rls = arith-congr-rls intrL2-rls elimL-rls

lemmas arithC-rls =
addC0 addC-succ
multC0 multC-succ
diffC0 diff-0-eq-0 diff-succ-succ

〈ML〉

11

3.4 Addition

Associative law for addition.
lemma add-assoc: [[a:N ; b:N ; c:N]] =⇒ (a #+ b) #+ c = a #+ (b #+ c) : N
〈proof 〉

Commutative law for addition. Can be proved using three inductions. Must
simplify after first induction! Orientation of rewrites is delicate.
lemma add-commute: [[a:N ; b:N]] =⇒ a #+ b = b #+ a : N
〈proof 〉

3.5 Multiplication

Right annihilation in product.
lemma mult-0-right: a:N =⇒ a #∗ 0 = 0 : N
〈proof 〉

Right successor law for multiplication.
lemma mult-succ-right: [[a:N ; b:N]] =⇒ a #∗ succ(b) = a #+ (a #∗ b) : N
〈proof 〉

Commutative law for multiplication.
lemma mult-commute: [[a:N ; b:N]] =⇒ a #∗ b = b #∗ a : N
〈proof 〉

Addition distributes over multiplication.
lemma add-mult-distrib: [[a:N ; b:N ; c:N]] =⇒ (a #+ b) #∗ c = (a #∗ c) #+ (b
#∗ c) : N
〈proof 〉

Associative law for multiplication.
lemma mult-assoc: [[a:N ; b:N ; c:N]] =⇒ (a #∗ b) #∗ c = a #∗ (b #∗ c) : N
〈proof 〉

3.6 Difference

Difference on natural numbers, without negative numbers

• a − b = 0 iff a ≤ b

• a − b = succ(c) iff a > b

lemma diff-self-eq-0 : a:N =⇒ a − a = 0 : N
〈proof 〉

12

lemma add-0-right: [[c : N ; 0 : N ; c : N]] =⇒ c #+ 0 = c : N
〈proof 〉

Addition is the inverse of subtraction: if b ≤ x then b #+ (x − b) = x. An
example of induction over a quantified formula (a product). Uses rewriting
with a quantified, implicative inductive hypothesis.
schematic-goal add-diff-inverse-lemma:

b:N =⇒ ?a :
∏

x:N . Eq(N , b−x, 0) −→ Eq(N , b #+ (x−b), x)
〈proof 〉

Version of above with premise b − a = 0 i.e. a ≥ b. Using ProdE does
not work – for ?B(?a) is ambiguous. Instead, add-diff-inverse-lemma states
the desired induction scheme; the use of THEN below instantiates Vars in
ProdE automatically.
lemma add-diff-inverse: [[a:N ; b:N ; b − a = 0 : N]] =⇒ b #+ (a−b) = a : N
〈proof 〉

3.7 Absolute difference

Typing of absolute difference: short and long versions.
lemma absdiff-typing: [[a:N ; b:N]] =⇒ a |−| b : N
〈proof 〉

lemma absdiff-typingL: [[a = c:N ; b = d:N]] =⇒ a |−| b = c |−| d : N
〈proof 〉

lemma absdiff-self-eq-0 : a:N =⇒ a |−| a = 0 : N
〈proof 〉

lemma absdiffC0 : a:N =⇒ 0 |−| a = a : N
〈proof 〉

lemma absdiff-succ-succ: [[a:N ; b:N]] =⇒ succ(a) |−| succ(b) = a |−| b : N
〈proof 〉

Note how easy using commutative laws can be? ...not always...
lemma absdiff-commute: [[a:N ; b:N]] =⇒ a |−| b = b |−| a : N
〈proof 〉

If a + b = 0 then a = 0. Surprisingly tedious.
schematic-goal add-eq0-lemma: [[a:N ; b:N]] =⇒ ?c : Eq(N ,a#+b,0) −→ Eq(N ,a,0)
〈proof 〉

Version of above with the premise a + b = 0. Again, resolution instantiates
variables in ProdE.
lemma add-eq0 : [[a:N ; b:N ; a #+ b = 0 : N]] =⇒ a = 0 : N
〈proof 〉

13

Here is a lemma to infer a − b = 0 and b − a = 0 from a |−| b = 0, below.
schematic-goal absdiff-eq0-lem:
[[a:N ; b:N ; a |−| b = 0 : N]] =⇒ ?a : Eq(N , a−b, 0) × Eq(N , b−a, 0)
〈proof 〉

If a |−| b = 0 then a = b proof: a − b = 0 and b − a = 0, so b = a + (b
− a) = a + 0 = a.
lemma absdiff-eq0 : [[a |−| b = 0 : N ; a:N ; b:N]] =⇒ a = b : N
〈proof 〉

3.8 Remainder and Quotient

Typing of remainder: short and long versions.
lemma mod-typing: [[a:N ; b:N]] =⇒ a mod b : N
〈proof 〉

lemma mod-typingL: [[a = c:N ; b = d:N]] =⇒ a mod b = c mod d : N
〈proof 〉

Computation for mod: 0 and successor cases.
lemma modC0 : b:N =⇒ 0 mod b = 0 : N
〈proof 〉

lemma modC-succ: [[a:N ; b:N]] =⇒
succ(a) mod b = rec(succ(a mod b) |−| b, 0 , λx y. succ(a mod b)) : N
〈proof 〉

Typing of quotient: short and long versions.
lemma div-typing: [[a:N ; b:N]] =⇒ a div b : N
〈proof 〉

lemma div-typingL: [[a = c:N ; b = d:N]] =⇒ a div b = c div d : N
〈proof 〉

lemmas div-typing-rls = mod-typing div-typing absdiff-typing

Computation for quotient: 0 and successor cases.
lemma divC0 : b:N =⇒ 0 div b = 0 : N
〈proof 〉

lemma divC-succ: [[a:N ; b:N]] =⇒
succ(a) div b = rec(succ(a) mod b, succ(a div b), λx y. a div b) : N
〈proof 〉

Version of above with same condition as the mod one.
lemma divC-succ2 : [[a:N ; b:N]] =⇒

succ(a) div b =rec(succ(a mod b) |−| b, succ(a div b), λx y. a div b) : N

14

〈proof 〉

For case analysis on whether a number is 0 or a successor.
lemma iszero-decidable: a:N =⇒ rec(a, inl(eq), λka kb. inr(<ka, eq>)) :

Eq(N ,a,0) + (
∑

x:N . Eq(N ,a, succ(x)))
〈proof 〉

Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0.
lemma mod-div-equality: [[a:N ; b:N]] =⇒ a mod b #+ (a div b) #∗ b = a : N
〈proof 〉

end

4 Easy examples: type checking and type deduc-
tion

theory Typechecking
imports ../CTT
begin

4.1 Single-step proofs: verifying that a type is well-formed
schematic-goal ?A type
〈proof 〉

schematic-goal ?A type
〈proof 〉

schematic-goal
∏

z:?A . N + ?B(z) type
〈proof 〉

4.2 Multi-step proofs: Type inference
lemma

∏
w:N . N + N type

〈proof 〉

schematic-goal <0 , succ(0)> : ?A
〈proof 〉

schematic-goal
∏

w:N . Eq(?A,w,w) type
〈proof 〉

schematic-goal
∏

x:N .
∏

y:N . Eq(?A,x,y) type
〈proof 〉

typechecking an application of fst
schematic-goal (λu. split(u, λv w. v)) ‘ <0 , succ(0)> : ?A
〈proof 〉

15

typechecking the predecessor function
schematic-goal λn. rec(n, 0 , λx y. x) : ?A
〈proof 〉

typechecking the addition function
schematic-goal λn. λm. rec(n, m, λx y. succ(y)) : ?A
〈proof 〉

Proofs involving arbitrary types. For concreteness, every type variable left
over is forced to be N
〈ML〉

schematic-goal λw. <w,w> : ?A
〈proof 〉

schematic-goal λx. λy. x : ?A
〈proof 〉

typechecking fst (as a function object)
schematic-goal λi. split(i, λj k. j) : ?A
〈proof 〉

end

5 Examples with elimination rules
theory Elimination
imports ../CTT
begin

This finds the functions fst and snd!
schematic-goal [folded basic-defs]: A type =⇒ ?a : (A × A) −→ A
〈proof 〉

schematic-goal [folded basic-defs]: A type =⇒ ?a : (A × A) −→ A
〈proof 〉

Double negation of the Excluded Middle
schematic-goal A type =⇒ ?a : ((A + (A−→F)) −→ F) −→ F
〈proof 〉

Experiment: the proof above in Isar
lemma

assumes A type shows (λf . f ‘ inr(λy. f ‘ inl(y))) : ((A + (A−→F)) −→ F)
−→ F
〈proof 〉

16

schematic-goal [[A type; B type]] =⇒ ?a : (A × B) −→ (B × A)
〈proof 〉

Binary sums and products
schematic-goal [[A type; B type; C type]] =⇒ ?a : (A + B −→ C) −→ (A −→ C)
× (B −→ C)
〈proof 〉

schematic-goal [[A type; B type; C type]] =⇒ ?a : A × (B + C) −→ (A × B +
A × C)
〈proof 〉

schematic-goal
assumes A type

and
∧

x. x:A =⇒ B(x) type
and

∧
x. x:A =⇒ C (x) type

shows ?a : (
∑

x:A. B(x) + C (x)) −→ (
∑

x:A. B(x)) + (
∑

x:A. C (x))
〈proof 〉

Construction of the currying functional
schematic-goal [[A type; B type; C type]] =⇒ ?a : (A × B −→ C) −→ (A −→ (B
−→ C))
〈proof 〉

schematic-goal
assumes A type

and
∧

x. x:A =⇒ B(x) type
and

∧
z. z: (

∑
x:A. B(x)) =⇒ C (z) type

shows ?a :
∏

f : (
∏

z : (
∑

x:A . B(x)) . C (z)).
(
∏

x:A .
∏

y:B(x) . C (<x,y>))
〈proof 〉

Martin-Löf (1984), page 48: axiom of sum-elimination (uncurry)
schematic-goal [[A type; B type; C type]] =⇒ ?a : (A −→ (B −→ C)) −→ (A ×
B −→ C)
〈proof 〉

schematic-goal
assumes A type

and
∧

x. x:A =⇒ B(x) type
and

∧
z. z: (

∑
x:A . B(x)) =⇒ C (z) type

shows ?a : (
∏

x:A .
∏

y:B(x) . C (<x,y>))
−→ (

∏
z : (

∑
x:A . B(x)) . C (z))

〈proof 〉

17

Function application
schematic-goal [[A type; B type]] =⇒ ?a : ((A −→ B) × A) −→ B
〈proof 〉

Basic test of quantifier reasoning
schematic-goal

assumes A type
and B type
and

∧
x y. [[x:A; y:B]] =⇒ C (x,y) type

shows
?a : (

∑
y:B .

∏
x:A . C (x,y))

−→ (
∏

x:A .
∑

y:B . C (x,y))
〈proof 〉

Martin-Löf (1984) pages 36-7: the combinator S
schematic-goal

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows ?a : (

∏
x:A.

∏
y:B(x). C (x,y))

−→ (
∏

f : (
∏

x:A. B(x)).
∏

x:A. C (x, f‘x))
〈proof 〉

Martin-Löf (1984) page 58: the axiom of disjunction elimination
schematic-goal

assumes A type
and B type
and

∧
z. z: A+B =⇒ C (z) type

shows ?a : (
∏

x:A. C (inl(x))) −→ (
∏

y:B. C (inr(y)))
−→ (

∏
z: A+B. C (z))

〈proof 〉

schematic-goal [folded basic-defs]:
[[A type; B type; C type]] =⇒ ?a : (A −→ B × C) −→ (A −→ B) × (A −→ C)
〈proof 〉

AXIOM OF CHOICE! Delicate use of elimination rules
schematic-goal

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows ?a : (

∏
x:A.

∑
y:B(x). C (x,y)) −→ (

∑
f : (

∏
x:A. B(x)).

∏
x:A. C (x,

f‘x))
〈proof 〉

A structured proof of AC
lemma Axiom-of-Choice:

18

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows (λf . <λx. fst(f‘x), λx. snd(f‘x)>)

: (
∏

x:A.
∑

y:B(x). C (x,y)) −→ (
∑

f : (
∏

x:A. B(x)).
∏

x:A. C (x, f‘x))
〈proof 〉

Axiom of choice. Proof without fst, snd. Harder still!
schematic-goal [folded basic-defs]:

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows ?a : (

∏
x:A.

∑
y:B(x). C (x,y)) −→ (

∑
f : (

∏
x:A. B(x)).

∏
x:A. C (x,

f‘x))
〈proof 〉

Example of sequent-style deduction
schematic-goal

assumes A type
and B type
and

∧
z. z:A × B =⇒ C (z) type

shows ?a : (
∑

z:A × B. C (z)) −→ (
∑

u:A.
∑

v:B. C (<u,v>))
〈proof 〉

end

6 Equality reasoning by rewriting
theory Equality

imports ../CTT
begin

lemma split-eq: p : Sum(A,B) =⇒ split(p,pair) = p : Sum(A,B)
〈proof 〉

lemma when-eq: [[A type; B type; p : A+B]] =⇒ when(p,inl,inr) = p : A + B
〈proof 〉

in the "rec" formulation of addition, 0 + n = n

lemma p:N =⇒ rec(p,0 , λy z. succ(y)) = p : N
〈proof 〉

the harder version, n+ 0 = n: recursive, uses induction hypothesis
lemma p:N =⇒ rec(p,0 , λy z. succ(z)) = p : N
〈proof 〉

Associativity of addition
lemma [[a:N ; b:N ; c:N]]

19

=⇒ rec(rec(a, b, λx y. succ(y)), c, λx y. succ(y)) =
rec(a, rec(b, c, λx y. succ(y)), λx y. succ(y)) : N

〈proof 〉

Martin-Löf (1984) page 62: pairing is surjective
lemma p : Sum(A,B) =⇒ <split(p,λx y. x), split(p,λx y. y)> = p : Sum(A,B)
〈proof 〉

lemma [[a : A; b : B]] =⇒ (λu. split(u, λv w.<w,v>)) ‘ <a,b> = <b,a> :
∑

x:B.
A
〈proof 〉

a contrived, complicated simplication, requires sum-elimination also
lemma (λf . λx. f‘(f‘x)) ‘ (λu. split(u, λv w.<w,v>)) =

λx. x :
∏

x:(
∑

y:N . N). (
∑

y:N . N)
〈proof 〉

end

7 Synthesis examples, using a crude form of nar-
rowing

theory Synthesis
imports ../CTT

begin

discovery of predecessor function
schematic-goal ?a :

∑
pred:?A . Eq(N , pred‘0 , 0) × (

∏
n:N . Eq(N , pred ‘

succ(n), n))
〈proof 〉

the function fst as an element of a function type
schematic-goal [folded basic-defs]:

A type =⇒ ?a:
∑

f :?B .
∏

i:A.
∏

j:A. Eq(A, f ‘ <i,j>, i)
〈proof 〉

An interesting use of the eliminator, when
schematic-goal ?a :

∏
i:N . Eq(?A, ?b(inl(i)), <0 , i>)

× Eq(?A, ?b(inr(i)), <succ(0), i>)
〈proof 〉

schematic-goal ?a :
∏

i:N . Eq(?A(i), ?b(inl(i)), <0 , i>)
× Eq(?A(i), ?b(inr(i)), <succ(0),i>)

〈proof 〉

A tricky combination of when and split

20

schematic-goal [folded basic-defs]:
?a :

∏
i:N .

∏
j:N . Eq(?A, ?b(inl(<i,j>)), i)

× Eq(?A, ?b(inr(<i,j>)), j)
〈proof 〉

schematic-goal ?a :
∏

i:N .
∏

j:N . Eq(?A(i,j), ?b(inl(<i,j>)), i)
× Eq(?A(i,j), ?b(inr(<i,j>)), j)

〈proof 〉

schematic-goal ?a :
∏

i:N .
∏

j:N . Eq(N , ?b(inl(<i,j>)), i)
× Eq(N , ?b(inr(<i,j>)), j)

〈proof 〉

Deriving the addition operator
schematic-goal [folded arith-defs]:

?c :
∏

n:N . Eq(N , ?f (0 ,n), n)
× (

∏
m:N . Eq(N , ?f (succ(m), n), succ(?f (m,n))))

〈proof 〉

The addition function – using explicit lambdas
schematic-goal [folded arith-defs]:

?c :
∑

plus : ?A .∏
x:N . Eq(N , plus‘0‘x, x)

× (
∏

y:N . Eq(N , plus‘succ(y)‘x, succ(plus‘y‘x)))
〈proof 〉

end

21

	Constructive Type Theory: axiomatic basis
	Tactics and derived rules for Constructive Type Theory
	Tactics for type checking
	Simplification
	The elimination rules for fst/snd

	The two-element type (booleans and conditionals)
	Derivation of rules for the type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Bool

	Elementary arithmetic
	Arithmetic operators and their definitions
	Proofs about elementary arithmetic: addition, multiplication, etc.
	Addition
	Multiplication
	Difference

	Simplification
	Addition
	Multiplication
	Difference
	Absolute difference
	Remainder and Quotient

	Easy examples: type checking and type deduction
	Single-step proofs: verifying that a type is well-formed
	Multi-step proofs: Type inference

	Examples with elimination rules
	Equality reasoning by rewriting
	Synthesis examples, using a crude form of narrowing

