
Isabelle/CTT — Constructive Type Theory
with extensional equality and without universes

Larry Paulson

January 18, 2026

Contents
1 Constructive Type Theory: axiomatic basis 1

1.1 Tactics and derived rules for Constructive Type Theory . . . 6
1.2 Tactics for type checking . 7
1.3 Simplification . 8
1.4 The elimination rules for fst/snd 11

2 The two-element type (booleans and conditionals) 11
2.1 Derivation of rules for the type Bool 11

3 Elementary arithmetic 12
3.1 Arithmetic operators and their definitions 12
3.2 Proofs about elementary arithmetic: addition, multiplication,

etc. 13
3.2.1 Addition . 13
3.2.2 Multiplication . 13
3.2.3 Difference . 13

3.3 Simplification . 14
3.4 Addition . 15
3.5 Multiplication . 15
3.6 Difference . 16
3.7 Absolute difference . 17
3.8 Remainder and Quotient . 18

4 Easy examples: type checking and type deduction 20
4.1 Single-step proofs: verifying that a type is well-formed 20
4.2 Multi-step proofs: Type inference 20

5 Examples with elimination rules 22

6 Equality reasoning by rewriting 26

1

7 Synthesis examples, using a crude form of narrowing 27

theory CTT
imports Pure
begin

1 Constructive Type Theory: axiomatic basis
ML-file ‹∼∼/src/Provers/typedsimp.ML›
setup Pure-Thy.old-appl-syntax-setup

typedecl i
typedecl t
typedecl o

consts
— Judgments
Type :: t ⇒ prop (‹(‹notation=‹postfix Type››- type)› [10] 5)
Eqtype :: [t,t]⇒prop (‹(‹notation=‹infix Eqtype››- =/ -)› [10 ,10] 5)
Elem :: [i, t]⇒prop (‹(‹notation=‹infix Elem››- /: -)› [10 ,10] 5)
Eqelem :: [i,i,t]⇒prop (‹(‹notation=‹mixfix Eqelem››- =/ - :/ -)› [10 ,10 ,10]

5)
Reduce :: [i,i]⇒prop (‹Reduce[-,-]›)
— Types for truth values
F :: t
T :: t — F is empty, T contains one element
contr :: i⇒i
tt :: i
— Natural numbers
N :: t
Zero :: i (‹0 ›)
succ :: i⇒i
rec :: [i, i, [i,i]⇒i] ⇒ i
— Binary sum
Plus :: [t,t]⇒t (infixr ‹+› 40)
inl :: i⇒i
inr :: i⇒i
when :: [i, i⇒i, i⇒i]⇒i
— General sum and binary product
Sum :: [t, i⇒t]⇒t
pair :: [i,i]⇒i (‹(‹indent=1 notation=‹mixfix pair››<-,/->)›)
fst :: i⇒i
snd :: i⇒i
split :: [i, [i,i]⇒i] ⇒i
— General product and function space
Prod :: [t, i⇒t]⇒t
lambda :: (i ⇒ i) ⇒ i (binder ‹λ› 10)
app :: [i,i]⇒i (infixl ‹‘› 60)

2

— Equality type
Eq :: [t,i,i]⇒t
eq :: i

Some inexplicable syntactic dependencies; in particular, "0" must be intro-
duced after the judgment forms.
syntax

-PROD :: [idt,t,t]⇒t (‹(‹indent=3 notation=‹binder
∏

››
∏

-:-./ -)› 10)
-SUM :: [idt,t,t]⇒t (‹(‹indent=3 notation=‹binder

∑
››
∑

-:-./ -)› 10)
syntax-consts

-PROD ⇀↽ Prod and
-SUM ⇀↽ Sum

translations∏
x:A. B ⇀↽ CONST Prod(A, λx. B)∑
x:A. B ⇀↽ CONST Sum(A, λx. B)

abbreviation Arrow :: [t,t]⇒t (infixr ‹−→› 30)
where A −→ B ≡

∏
-:A. B

abbreviation Times :: [t,t]⇒t (infixr ‹×› 50)
where A × B ≡

∑
-:A. B

Reduction: a weaker notion than equality; a hack for simplification. Re-
duce[a,b] means either that a = b : A for some A or else that a and b are
textually identical.
Does not verify a:A! Sound because only trans-red uses a Reduce premise.
No new theorems can be proved about the standard judgments.
axiomatization
where

refl-red:
∧

a. Reduce[a,a] and
red-if-equal:

∧
a b A. a = b : A =⇒ Reduce[a,b] and

trans-red:
∧

a b c A. [[a = b : A; Reduce[b,c]]] =⇒ a = c : A and

— Reflexivity

refl-type:
∧

A. A type =⇒ A = A and
refl-elem:

∧
a A. a : A =⇒ a = a : A and

— Symmetry

sym-type:
∧

A B. A = B =⇒ B = A and
sym-elem:

∧
a b A. a = b : A =⇒ b = a : A and

— Transitivity

trans-type:
∧

A B C . [[A = B; B = C]] =⇒ A = C and
trans-elem:

∧
a b c A. [[a = b : A; b = c : A]] =⇒ a = c : A and

3

equal-types:
∧

a A B. [[a : A; A = B]] =⇒ a : B and
equal-typesL:

∧
a b A B. [[a = b : A; A = B]] =⇒ a = b : B and

— Substitution

subst-type:
∧

a A B. [[a : A;
∧

z. z:A =⇒ B(z) type]] =⇒ B(a) type and
subst-typeL:

∧
a c A B D. [[a = c : A;

∧
z. z:A =⇒ B(z) = D(z)]] =⇒ B(a) =

D(c) and

subst-elem:
∧

a b A B. [[a : A;
∧

z. z:A =⇒ b(z):B(z)]] =⇒ b(a):B(a) and
subst-elemL:∧

a b c d A B. [[a = c : A;
∧

z. z:A =⇒ b(z)=d(z) : B(z)]] =⇒ b(a)=d(c) : B(a)
and

— The type N – natural numbers

NF : N type and
NI0 : 0 : N and
NI-succ:

∧
a. a : N =⇒ succ(a) : N and

NI-succL:
∧

a b. a = b : N =⇒ succ(a) = succ(b) : N and

NE :∧
p a b C . [[p: N ; a: C (0);

∧
u v. [[u: N ; v: C (u)]] =⇒ b(u,v): C (succ(u))]]

=⇒ rec(p, a, λu v. b(u,v)) : C (p) and

NEL:∧
p q a b c d C . [[p = q : N ; a = c : C (0);∧

u v. [[u: N ; v: C (u)]] =⇒ b(u,v) = d(u,v): C (succ(u))]]
=⇒ rec(p, a, λu v. b(u,v)) = rec(q,c,d) : C (p) and

NC0 :∧
a b C . [[a: C (0);

∧
u v. [[u: N ; v: C (u)]] =⇒ b(u,v): C (succ(u))]]

=⇒ rec(0 , a, λu v. b(u,v)) = a : C (0) and

NC-succ:∧
p a b C . [[p: N ; a: C (0);

∧
u v. [[u: N ; v: C (u)]] =⇒ b(u,v): C (succ(u))]] =⇒

rec(succ(p), a, λu v. b(u,v)) = b(p, rec(p, a, λu v. b(u,v))) : C (succ(p)) and

— The fourth Peano axiom. See page 91 of Martin-Löf’s book.
zero-ne-succ:

∧
a. [[a: N ; 0 = succ(a) : N]] =⇒ 0 : F and

— The Product of a family of types

ProdF :
∧

A B. [[A type;
∧

x. x:A =⇒ B(x) type]] =⇒
∏

x:A. B(x) type and

ProdFL:∧
A B C D. [[A = C ;

∧
x. x:A =⇒ B(x) = D(x)]] =⇒

∏
x:A. B(x) =

∏
x:C .

4

D(x) and

ProdI :∧
b A B. [[A type;

∧
x. x:A =⇒ b(x):B(x)]] =⇒ λx. b(x) :

∏
x:A. B(x) and

ProdIL:
∧

b c A B. [[A type;
∧

x. x:A =⇒ b(x) = c(x) : B(x)]] =⇒
λx. b(x) = λx. c(x) :

∏
x:A. B(x) and

ProdE :
∧

p a A B. [[p :
∏

x:A. B(x); a : A]] =⇒ p‘a : B(a) and
ProdEL:

∧
p q a b A B. [[p = q:

∏
x:A. B(x); a = b : A]] =⇒ p‘a = q‘b : B(a)

and

ProdC :
∧

a b A B. [[a : A;
∧

x. x:A =⇒ b(x) : B(x)]] =⇒ (λx. b(x)) ‘ a = b(a) :
B(a) and

ProdC2 :
∧

p A B. p :
∏

x:A. B(x) =⇒ (λx. p‘x) = p :
∏

x:A. B(x) and

— The Sum of a family of types

SumF :
∧

A B. [[A type;
∧

x. x:A =⇒ B(x) type]] =⇒
∑

x:A. B(x) type and
SumFL:

∧
A B C D. [[A = C ;

∧
x. x:A =⇒ B(x) = D(x)]] =⇒

∑
x:A. B(x) =∑

x:C . D(x) and

SumI :
∧

a b A B. [[a : A; b : B(a)]] =⇒ <a,b> :
∑

x:A. B(x) and
SumIL:

∧
a b c d A B. [[a = c : A; b = d : B(a)]] =⇒ <a,b> = <c,d> :

∑
x:A.

B(x) and

SumE :
∧

p c A B C . [[p:
∑

x:A. B(x);
∧

x y. [[x:A; y:B(x)]] =⇒ c(x,y): C (<x,y>)]]
=⇒ split(p, λx y. c(x,y)) : C (p) and

SumEL:
∧

p q c d A B C . [[p = q :
∑

x:A. B(x);∧
x y. [[x:A; y:B(x)]] =⇒ c(x,y)=d(x,y): C (<x,y>)]]

=⇒ split(p, λx y. c(x,y)) = split(q, λx y. d(x,y)) : C (p) and

SumC :
∧

a b c A B C . [[a: A; b: B(a);
∧

x y. [[x:A; y:B(x)]] =⇒ c(x,y): C (<x,y>)]]
=⇒ split(<a,b>, λx y. c(x,y)) = c(a,b) : C (<a,b>) and

fst-def :
∧

a. fst(a) ≡ split(a, λx y. x) and
snd-def :

∧
a. snd(a) ≡ split(a, λx y. y) and

— The sum of two types

PlusF :
∧

A B. [[A type; B type]] =⇒ A+B type and
PlusFL:

∧
A B C D. [[A = C ; B = D]] =⇒ A+B = C+D and

PlusI-inl:
∧

a A B. [[a : A; B type]] =⇒ inl(a) : A+B and
PlusI-inlL:

∧
a c A B. [[a = c : A; B type]] =⇒ inl(a) = inl(c) : A+B and

5

PlusI-inr :
∧

b A B. [[A type; b : B]] =⇒ inr(b) : A+B and
PlusI-inrL:

∧
b d A B. [[A type; b = d : B]] =⇒ inr(b) = inr(d) : A+B and

PlusE :∧
p c d A B C . [[p: A+B;∧

x. x:A =⇒ c(x): C (inl(x));∧
y. y:B =⇒ d(y): C (inr(y))]] =⇒ when(p, λx. c(x), λy. d(y)) : C (p) and

PlusEL:∧
p q c d e f A B C . [[p = q : A+B;∧

x. x: A =⇒ c(x) = e(x) : C (inl(x));∧
y. y: B =⇒ d(y) = f (y) : C (inr(y))]]

=⇒ when(p, λx. c(x), λy. d(y)) = when(q, λx. e(x), λy. f (y)) : C (p) and

PlusC-inl:∧
a c d A B C . [[a: A;∧

x. x:A =⇒ c(x): C (inl(x));∧
y. y:B =⇒ d(y): C (inr(y))]]

=⇒ when(inl(a), λx. c(x), λy. d(y)) = c(a) : C (inl(a)) and

PlusC-inr :∧
b c d A B C . [[b: B;∧

x. x:A =⇒ c(x): C (inl(x));∧
y. y:B =⇒ d(y): C (inr(y))]]

=⇒ when(inr(b), λx. c(x), λy. d(y)) = d(b) : C (inr(b)) and

— The type Eq

EqF :
∧

a b A. [[A type; a : A; b : A]] =⇒ Eq(A,a,b) type and
EqFL:

∧
a b c d A B. [[A = B; a = c : A; b = d : A]] =⇒ Eq(A,a,b) = Eq(B,c,d)

and
EqI :

∧
a b A. a = b : A =⇒ eq : Eq(A,a,b) and

EqE :
∧

p a b A. p : Eq(A,a,b) =⇒ a = b : A and

— By equality of types, can prove C (p) from C (eq), an elimination rule
EqC :

∧
p a b A. p : Eq(A,a,b) =⇒ p = eq : Eq(A,a,b) and

— The type F

FF : F type and
FE :

∧
p C . [[p: F ; C type]] =⇒ contr(p) : C and

FEL:
∧

p q C . [[p = q : F ; C type]] =⇒ contr(p) = contr(q) : C and

— The type T
— Martin-Löf’s book (page 68) discusses elimination and computation. Elim-

6

ination can be derived by computation and equality of types, but with an extra
premise C (x) type x:T. Also computation can be derived from elimination.

TF : T type and
TI : tt : T and
TE :

∧
p c C . [[p : T ; c : C (tt)]] =⇒ c : C (p) and

TEL:
∧

p q c d C . [[p = q : T ; c = d : C (tt)]] =⇒ c = d : C (p) and
TC :

∧
p. p : T =⇒ p = tt : T

1.1 Tactics and derived rules for Constructive Type Theory

Formation rules.
lemmas form-rls = NF ProdF SumF PlusF EqF FF TF

and formL-rls = ProdFL SumFL PlusFL EqFL

Introduction rules. OMITTED:

• EqI, because its premise is an eqelem, not an elem.

lemmas intr-rls = NI0 NI-succ ProdI SumI PlusI-inl PlusI-inr TI
and intrL-rls = NI-succL ProdIL SumIL PlusI-inlL PlusI-inrL

Elimination rules. OMITTED:

• EqE, because its conclusion is an eqelem, not an elem

• TE, because it does not involve a constructor.

lemmas elim-rls = NE ProdE SumE PlusE FE
and elimL-rls = NEL ProdEL SumEL PlusEL FEL

OMITTED: eqC are TC because they make rewriting loop: p = un = un
= . . .

lemmas comp-rls = NC0 NC-succ ProdC SumC PlusC-inl PlusC-inr

Rules with conclusion a:A, an elem judgment.
lemmas element-rls = intr-rls elim-rls

Definitions are (meta)equality axioms.
lemmas basic-defs = fst-def snd-def

Compare with standard version: B is applied to UNSIMPLIFIED expression!
lemma SumIL2 : [[c = a : A; d = b : B(a)]] =⇒ <c,d> = <a,b> : Sum(A,B)

by (rule sym-elem) (rule SumIL; rule sym-elem)

lemmas intrL2-rls = NI-succL ProdIL SumIL2 PlusI-inlL PlusI-inrL

7

Exploit p:Prod(A,B) to create the assumption z:B(a). A more natural form
of product elimination.
lemma subst-prodE :

assumes p: Prod(A,B)
and a: A
and

∧
z. z: B(a) =⇒ c(z): C (z)

shows c(p‘a): C (p‘a)
by (rule assms ProdE)+

1.2 Tactics for type checking
ML ‹
local

fun is-rigid-elem Const- ‹Elem for a -› = not(is-Var (head-of a))
| is-rigid-elem Const- ‹Eqelem for a - -› = not(is-Var (head-of a))
| is-rigid-elem Const- ‹Type for a› = not(is-Var (head-of a))
| is-rigid-elem - = false

in

(∗Try solving a:A or a=b:A by assumption provided a is rigid!∗)
fun test-assume-tac ctxt = SUBGOAL (fn (prem, i) =>

if is-rigid-elem (Logic.strip-assums-concl prem)
then assume-tac ctxt i else no-tac)

fun ASSUME ctxt tf i = test-assume-tac ctxt i ORELSE tf i

end
›

For simplification: type formation and checking, but no equalities between
terms.
lemmas routine-rls = form-rls formL-rls refl-type element-rls

ML ‹
fun routine-tac rls ctxt prems =

ASSUME ctxt (Bires.filt-resolve-from-net-tac ctxt 4 (Bires.build-net (prems @
rls)));

(∗Solve all subgoals A type using formation rules. ∗)
val form-net = Bires.build-net @{thms form-rls};
fun form-tac ctxt =
REPEAT-FIRST (ASSUME ctxt (Bires.filt-resolve-from-net-tac ctxt 1 form-net));

(∗Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. ∗)
fun typechk-tac ctxt thms =

let val tac =
Bires.filt-resolve-from-net-tac ctxt 3

8

(Bires.build-net (thms @ @{thms form-rls} @ @{thms element-rls}))
in REPEAT-FIRST (ASSUME ctxt tac) end

(∗Solve a:A (a flexible, A rigid) by introduction rules.
Cannot use stringtrees (filt-resolve-tac) since
goals like ?a:SUM (A,B) have a trivial head−string ∗)

fun intr-tac ctxt thms =
let val tac =

Bires.filt-resolve-from-net-tac ctxt 1
(Bires.build-net (thms @ @{thms form-rls} @ @{thms intr-rls}))

in REPEAT-FIRST (ASSUME ctxt tac) end

(∗Equality proving: solve a=b:A (where a is rigid) by long rules. ∗)
fun equal-tac ctxt thms =

REPEAT-FIRST
(ASSUME ctxt
(Bires.filt-resolve-from-net-tac ctxt 3

(Bires.build-net (thms @ @{thms form-rls element-rls intrL-rls elimL-rls
refl-elem}))))
›

method-setup form = ‹Scan.succeed (fn ctxt => SIMPLE-METHOD (form-tac
ctxt))›
method-setup typechk = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(typechk-tac ctxt ths))›
method-setup intr = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(intr-tac ctxt ths))›
method-setup equal = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(equal-tac ctxt ths))›

1.3 Simplification

To simplify the type in a goal.
lemma replace-type: [[B = A; a : A]] =⇒ a : B

apply (rule equal-types)
apply (rule-tac [2] sym-type)
apply assumption+

done

Simplify the parameter of a unary type operator.
lemma subst-eqtyparg:

assumes 1 : a=c : A
and 2 :

∧
z. z:A =⇒ B(z) type

shows B(a) = B(c)
apply (rule subst-typeL)
apply (rule-tac [2] refl-type)
apply (rule 1)

apply (erule 2)
done

9

Simplification rules for Constructive Type Theory.
lemmas reduction-rls = comp-rls [THEN trans-elem]

ML ‹
(∗Converts each goal e : Eq(A,a,b) into a=b:A for simplification.

Uses other intro rules to avoid changing flexible goals.∗)
val eqintr-net = Bires.build-net @{thms EqI intr-rls}
fun eqintr-tac ctxt =
REPEAT-FIRST (ASSUME ctxt (Bires.filt-resolve-from-net-tac ctxt 1 eqintr-net))

(∗∗ Tactics that instantiate CTT−rules.
Vars in the given terms will be incremented!
The (rtac EqE i) lets them apply to equality judgments. ∗∗)

fun NE-tac ctxt sp i =
TRY (resolve-tac ctxt @{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctxt [(((p, 0), Position.none), sp)] [] @{thm NE} i

fun SumE-tac ctxt sp i =
TRY (resolve-tac ctxt @{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctxt [(((p, 0), Position.none), sp)] [] @{thm SumE} i

fun PlusE-tac ctxt sp i =
TRY (resolve-tac ctxt @{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctxt [(((p, 0), Position.none), sp)] [] @{thm PlusE} i

(∗∗ Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ .
∗∗)

(∗Finds f :Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) ∗)
fun add-mp-tac ctxt i =

resolve-tac ctxt @{thms subst-prodE} i THEN assume-tac ctxt i THEN as-
sume-tac ctxt i

(∗Finds P−→Q and P in the assumptions, replaces implication by Q ∗)
fun mp-tac ctxt i = eresolve-tac ctxt @{thms subst-prodE} i THEN assume-tac
ctxt i

(∗safe when regarded as predicate calculus rules∗)
val safe-brls = sort Bires.subgoals-ord

[(true, @{thm FE}), (true,asm-rl),
(false, @{thm ProdI}), (true, @{thm SumE}), (true, @{thm PlusE})]

val unsafe-brls =
[(false, @{thm PlusI-inl}), (false, @{thm PlusI-inr}), (false, @{thm SumI}),
(true, @{thm subst-prodE})]

(∗0 subgoals vs 1 or more∗)
val (safe0-brls, safep-brls) =

10

List.partition Bires.no-subgoals safe-brls

fun safestep-tac ctxt thms i =
form-tac ctxt ORELSE
resolve-tac ctxt thms i ORELSE
biresolve-tac ctxt safe0-brls i ORELSE mp-tac ctxt i ORELSE
DETERM (biresolve-tac ctxt safep-brls i)

fun safe-tac ctxt thms i = DEPTH-SOLVE-1 (safestep-tac ctxt thms i)

fun step-tac ctxt thms = safestep-tac ctxt thms ORELSE ′ biresolve-tac ctxt un-
safe-brls

(∗Fails unless it solves the goal!∗)
fun pc-tac ctxt thms = DEPTH-SOLVE-1 o (step-tac ctxt thms)
›

method-setup eqintr = ‹Scan.succeed (SIMPLE-METHOD o eqintr-tac)›
method-setup NE = ‹
Scan.lift Parse.embedded-inner-syntax >> (fn s => fn ctxt => SIMPLE-METHOD ′

(NE-tac ctxt s))
›
method-setup pc = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD ′

(pc-tac ctxt ths))›
method-setup add-mp = ‹Scan.succeed (SIMPLE-METHOD ′ o add-mp-tac)›

ML-file ‹rew.ML›
method-setup rew = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(rew-tac ctxt ths))›
method-setup hyp-rew = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(hyp-rew-tac ctxt ths))›

1.4 The elimination rules for fst/snd
lemma SumE-fst: p : Sum(A,B) =⇒ fst(p) : A

unfolding basic-defs
apply (erule SumE)
apply assumption
done

The first premise must be p:Sum(A,B)!!.
lemma SumE-snd:

assumes major : p: Sum(A,B)
and A type
and

∧
x. x:A =⇒ B(x) type

shows snd(p) : B(fst(p))
unfolding basic-defs
apply (rule major [THEN SumE])
apply (rule SumC [THEN subst-eqtyparg, THEN replace-type])

11

apply (typechk assms)
done

2 The two-element type (booleans and condition-
als)

definition Bool :: t
where Bool ≡ T+T

definition true :: i
where true ≡ inl(tt)

definition false :: i
where false ≡ inr(tt)

definition cond :: [i,i,i]⇒i
where cond(a,b,c) ≡ when(a, λ-. b, λ-. c)

lemmas bool-defs = Bool-def true-def false-def cond-def

2.1 Derivation of rules for the type Bool

Formation rule.
lemma boolF : Bool type

unfolding bool-defs by typechk

Introduction rules for true, false.
lemma boolI-true: true : Bool

unfolding bool-defs by typechk

lemma boolI-false: false : Bool
unfolding bool-defs by typechk

Elimination rule: typing of cond.
lemma boolE : [[p:Bool; a : C (true); b : C (false)]] =⇒ cond(p,a,b) : C (p)

unfolding bool-defs
apply (typechk; erule TE)
apply typechk

done

lemma boolEL: [[p = q : Bool; a = c : C (true); b = d : C (false)]]
=⇒ cond(p,a,b) = cond(q,c,d) : C (p)
unfolding bool-defs
apply (rule PlusEL)

apply (erule asm-rl refl-elem [THEN TEL])+
done

Computation rules for true, false.

12

lemma boolC-true: [[a : C (true); b : C (false)]] =⇒ cond(true,a,b) = a : C (true)
unfolding bool-defs
apply (rule comp-rls)

apply typechk
apply (erule-tac [!] TE)
apply typechk

done

lemma boolC-false: [[a : C (true); b : C (false)]] =⇒ cond(false,a,b) = b : C (false)
unfolding bool-defs
apply (rule comp-rls)

apply typechk
apply (erule-tac [!] TE)
apply typechk

done

3 Elementary arithmetic
3.1 Arithmetic operators and their definitions
definition add :: [i,i]⇒i (infixr ‹#+› 65)

where a#+b ≡ rec(a, b, λu v. succ(v))

definition diff :: [i,i]⇒i (infixr ‹−› 65)
where a−b ≡ rec(b, a, λu v. rec(v, 0 , λx y. x))

definition absdiff :: [i,i]⇒i (infixr ‹|−|› 65)
where a|−|b ≡ (a−b) #+ (b−a)

definition mult :: [i,i]⇒i (infixr ‹#∗› 70)
where a#∗b ≡ rec(a, 0 , λu v. b #+ v)

definition mod :: [i,i]⇒i (infixr ‹mod› 70)
where a mod b ≡ rec(a, 0 , λu v. rec(succ(v) |−| b, 0 , λx y. succ(v)))

definition div :: [i,i]⇒i (infixr ‹div› 70)
where a div b ≡ rec(a, 0 , λu v. rec(succ(u) mod b, succ(v), λx y. v))

lemmas arith-defs = add-def diff-def absdiff-def mult-def mod-def div-def

3.2 Proofs about elementary arithmetic: addition, multipli-
cation, etc.

3.2.1 Addition

Typing of add: short and long versions.
lemma add-typing: [[a:N ; b:N]] =⇒ a #+ b : N

unfolding arith-defs by typechk

13

lemma add-typingL: [[a = c:N ; b = d:N]] =⇒ a #+ b = c #+ d : N
unfolding arith-defs by equal

Computation for add: 0 and successor cases.
lemma addC0 : b:N =⇒ 0 #+ b = b : N

unfolding arith-defs by rew

lemma addC-succ: [[a:N ; b:N]] =⇒ succ(a) #+ b = succ(a #+ b) : N
unfolding arith-defs by rew

3.2.2 Multiplication

Typing of mult: short and long versions.
lemma mult-typing: [[a:N ; b:N]] =⇒ a #∗ b : N

unfolding arith-defs by (typechk add-typing)

lemma mult-typingL: [[a = c:N ; b = d:N]] =⇒ a #∗ b = c #∗ d : N
unfolding arith-defs by (equal add-typingL)

Computation for mult: 0 and successor cases.
lemma multC0 : b:N =⇒ 0 #∗ b = 0 : N

unfolding arith-defs by rew

lemma multC-succ: [[a:N ; b:N]] =⇒ succ(a) #∗ b = b #+ (a #∗ b) : N
unfolding arith-defs by rew

3.2.3 Difference

Typing of difference.
lemma diff-typing: [[a:N ; b:N]] =⇒ a − b : N

unfolding arith-defs by typechk

lemma diff-typingL: [[a = c:N ; b = d:N]] =⇒ a − b = c − d : N
unfolding arith-defs by equal

Computation for difference: 0 and successor cases.
lemma diffC0 : a:N =⇒ a − 0 = a : N

unfolding arith-defs by rew

Note: rec(a, 0 , λz w.z) is pred(a).
lemma diff-0-eq-0 : b:N =⇒ 0 − b = 0 : N

unfolding arith-defs
by (NE b) hyp-rew

Essential to simplify FIRST!! (Else we get a critical pair) succ(a) − succ(b)
rewrites to pred(succ(a) − b).
lemma diff-succ-succ: [[a:N ; b:N]] =⇒ succ(a) − succ(b) = a − b : N

14

unfolding arith-defs
apply hyp-rew
apply (NE b)

apply hyp-rew
done

3.3 Simplification
lemmas arith-typing-rls = add-typing mult-typing diff-typing

and arith-congr-rls = add-typingL mult-typingL diff-typingL

lemmas congr-rls = arith-congr-rls intrL2-rls elimL-rls

lemmas arithC-rls =
addC0 addC-succ
multC0 multC-succ
diffC0 diff-0-eq-0 diff-succ-succ

ML ‹
structure Arith-simp = TSimpFun(

val refl = @{thm refl-elem}
val sym = @{thm sym-elem}
val trans = @{thm trans-elem}
val refl-red = @{thm refl-red}
val trans-red = @{thm trans-red}
val red-if-equal = @{thm red-if-equal}
val default-rls = @{thms arithC-rls comp-rls}
val routine-tac = routine-tac @{thms arith-typing-rls routine-rls}

)

fun arith-rew-tac ctxt prems =
make-rew-tac ctxt (Arith-simp.norm-tac ctxt (@{thms congr-rls}, prems))

fun hyp-arith-rew-tac ctxt prems =
make-rew-tac ctxt

(Arith-simp.cond-norm-tac ctxt (prove-cond-tac ctxt, @{thms congr-rls},
prems))
›

method-setup arith-rew = ‹
Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD (arith-rew-tac ctxt

ths))
›

method-setup hyp-arith-rew = ‹
Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD (hyp-arith-rew-tac

ctxt ths))
›

15

3.4 Addition

Associative law for addition.
lemma add-assoc: [[a:N ; b:N ; c:N]] =⇒ (a #+ b) #+ c = a #+ (b #+ c) : N

by (NE a) hyp-arith-rew

Commutative law for addition. Can be proved using three inductions. Must
simplify after first induction! Orientation of rewrites is delicate.
lemma add-commute: [[a:N ; b:N]] =⇒ a #+ b = b #+ a : N

apply (NE a)
apply hyp-arith-rew

apply (rule sym-elem)
prefer 2
apply (NE b)

prefer 4
apply (NE b)

apply hyp-arith-rew
done

3.5 Multiplication

Right annihilation in product.
lemma mult-0-right: a:N =⇒ a #∗ 0 = 0 : N

apply (NE a)
apply hyp-arith-rew

done

Right successor law for multiplication.
lemma mult-succ-right: [[a:N ; b:N]] =⇒ a #∗ succ(b) = a #+ (a #∗ b) : N

apply (NE a)
apply (hyp-arith-rew add-assoc [THEN sym-elem])

apply (assumption | rule add-commute mult-typingL add-typingL intrL-rls refl-elem)+
done

Commutative law for multiplication.
lemma mult-commute: [[a:N ; b:N]] =⇒ a #∗ b = b #∗ a : N

apply (NE a)
apply (hyp-arith-rew mult-0-right mult-succ-right)

done

Addition distributes over multiplication.
lemma add-mult-distrib: [[a:N ; b:N ; c:N]] =⇒ (a #+ b) #∗ c = (a #∗ c) #+ (b
#∗ c) : N

apply (NE a)
apply (hyp-arith-rew add-assoc [THEN sym-elem])

done

Associative law for multiplication.

16

lemma mult-assoc: [[a:N ; b:N ; c:N]] =⇒ (a #∗ b) #∗ c = a #∗ (b #∗ c) : N
apply (NE a)

apply (hyp-arith-rew add-mult-distrib)
done

3.6 Difference

Difference on natural numbers, without negative numbers

• a − b = 0 iff a ≤ b

• a − b = succ(c) iff a > b

lemma diff-self-eq-0 : a:N =⇒ a − a = 0 : N
apply (NE a)

apply hyp-arith-rew
done

lemma add-0-right: [[c : N ; 0 : N ; c : N]] =⇒ c #+ 0 = c : N
by (rule addC0 [THEN [3] add-commute [THEN trans-elem]])

Addition is the inverse of subtraction: if b ≤ x then b #+ (x − b) = x. An
example of induction over a quantified formula (a product). Uses rewriting
with a quantified, implicative inductive hypothesis.
schematic-goal add-diff-inverse-lemma:

b:N =⇒ ?a :
∏

x:N . Eq(N , b−x, 0) −→ Eq(N , b #+ (x−b), x)
apply (NE b)

— strip one "universal quantifier" but not the "implication"
apply (rule-tac [3] intr-rls)
— case analysis on x in succ(u) ≤ x −→ succ(u) #+ (x − succ(u)) = x
prefer 4
apply (NE x)

apply assumption
— Prepare for simplification of types – the antecedent succ(u) ≤ x

apply (rule-tac [2] replace-type)
apply (rule-tac [1] replace-type)
apply arith-rew

— Solves first 0 goal, simplifies others. Two sugbgoals remain. Both follow by
rewriting, (2) using quantified induction hyp.

apply intr — strips remaining
∏

s
apply (hyp-arith-rew add-0-right)

apply assumption
done

Version of above with premise b − a = 0 i.e. a ≥ b. Using ProdE does
not work – for ?B(?a) is ambiguous. Instead, add-diff-inverse-lemma states
the desired induction scheme; the use of THEN below instantiates Vars in
ProdE automatically.

17

lemma add-diff-inverse: [[a:N ; b:N ; b − a = 0 : N]] =⇒ b #+ (a−b) = a : N
apply (rule EqE)
apply (rule add-diff-inverse-lemma [THEN ProdE , THEN ProdE])

apply (assumption | rule EqI)+
done

3.7 Absolute difference

Typing of absolute difference: short and long versions.
lemma absdiff-typing: [[a:N ; b:N]] =⇒ a |−| b : N

unfolding arith-defs by typechk

lemma absdiff-typingL: [[a = c:N ; b = d:N]] =⇒ a |−| b = c |−| d : N
unfolding arith-defs by equal

lemma absdiff-self-eq-0 : a:N =⇒ a |−| a = 0 : N
unfolding absdiff-def by (arith-rew diff-self-eq-0)

lemma absdiffC0 : a:N =⇒ 0 |−| a = a : N
unfolding absdiff-def by hyp-arith-rew

lemma absdiff-succ-succ: [[a:N ; b:N]] =⇒ succ(a) |−| succ(b) = a |−| b : N
unfolding absdiff-def by hyp-arith-rew

Note how easy using commutative laws can be? ...not always...
lemma absdiff-commute: [[a:N ; b:N]] =⇒ a |−| b = b |−| a : N

unfolding absdiff-def
by (rule add-commute) (typechk diff-typing)

If a + b = 0 then a = 0. Surprisingly tedious.
schematic-goal add-eq0-lemma: [[a:N ; b:N]] =⇒ ?c : Eq(N ,a#+b,0) −→ Eq(N ,a,0)

apply (NE a)
apply (rule-tac [3] replace-type)
apply arith-rew

apply intr — strips remaining
∏

s
apply (rule-tac [2] zero-ne-succ [THEN FE])

apply (erule-tac [3] EqE [THEN sym-elem])
apply (typechk add-typing)

done

Version of above with the premise a + b = 0. Again, resolution instantiates
variables in ProdE.
lemma add-eq0 : [[a:N ; b:N ; a #+ b = 0 : N]] =⇒ a = 0 : N

apply (rule EqE)
apply (rule add-eq0-lemma [THEN ProdE])

apply (rule-tac [3] EqI)
apply typechk

done

18

Here is a lemma to infer a − b = 0 and b − a = 0 from a |−| b = 0, below.
schematic-goal absdiff-eq0-lem:
[[a:N ; b:N ; a |−| b = 0 : N]] =⇒ ?a : Eq(N , a−b, 0) × Eq(N , b−a, 0)
unfolding absdiff-def
apply intr
apply eqintr
apply (rule-tac [2] add-eq0)

apply (rule add-eq0)
apply (rule-tac [6] add-commute [THEN trans-elem])

apply (typechk diff-typing)
done

If a |−| b = 0 then a = b proof: a − b = 0 and b − a = 0, so b = a + (b
− a) = a + 0 = a.
lemma absdiff-eq0 : [[a |−| b = 0 : N ; a:N ; b:N]] =⇒ a = b : N

apply (rule EqE)
apply (rule absdiff-eq0-lem [THEN SumE])

apply eqintr
apply (rule add-diff-inverse [THEN sym-elem, THEN trans-elem])

apply (erule-tac [3] EqE)
apply (hyp-arith-rew add-0-right)

done

3.8 Remainder and Quotient

Typing of remainder: short and long versions.
lemma mod-typing: [[a:N ; b:N]] =⇒ a mod b : N

unfolding mod-def by (typechk absdiff-typing)

lemma mod-typingL: [[a = c:N ; b = d:N]] =⇒ a mod b = c mod d : N
unfolding mod-def by (equal absdiff-typingL)

Computation for mod: 0 and successor cases.
lemma modC0 : b:N =⇒ 0 mod b = 0 : N

unfolding mod-def by (rew absdiff-typing)

lemma modC-succ: [[a:N ; b:N]] =⇒
succ(a) mod b = rec(succ(a mod b) |−| b, 0 , λx y. succ(a mod b)) : N
unfolding mod-def by (rew absdiff-typing)

Typing of quotient: short and long versions.
lemma div-typing: [[a:N ; b:N]] =⇒ a div b : N

unfolding div-def by (typechk absdiff-typing mod-typing)

lemma div-typingL: [[a = c:N ; b = d:N]] =⇒ a div b = c div d : N
unfolding div-def by (equal absdiff-typingL mod-typingL)

19

lemmas div-typing-rls = mod-typing div-typing absdiff-typing

Computation for quotient: 0 and successor cases.
lemma divC0 : b:N =⇒ 0 div b = 0 : N

unfolding div-def by (rew mod-typing absdiff-typing)

lemma divC-succ: [[a:N ; b:N]] =⇒
succ(a) div b = rec(succ(a) mod b, succ(a div b), λx y. a div b) : N
unfolding div-def by (rew mod-typing)

Version of above with same condition as the mod one.
lemma divC-succ2 : [[a:N ; b:N]] =⇒

succ(a) div b =rec(succ(a mod b) |−| b, succ(a div b), λx y. a div b) : N
apply (rule divC-succ [THEN trans-elem])

apply (rew div-typing-rls modC-succ)
apply (NE succ (a mod b) |−|b)

apply (rew mod-typing div-typing absdiff-typing)
done

For case analysis on whether a number is 0 or a successor.
lemma iszero-decidable: a:N =⇒ rec(a, inl(eq), λka kb. inr(<ka, eq>)) :

Eq(N ,a,0) + (
∑

x:N . Eq(N ,a, succ(x)))
apply (NE a)

apply (rule-tac [3] PlusI-inr)
apply (rule-tac [2] PlusI-inl)
apply eqintr

apply equal
done

Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0.
lemma mod-div-equality: [[a:N ; b:N]] =⇒ a mod b #+ (a div b) #∗ b = a : N

apply (NE a)
apply (arith-rew div-typing-rls modC0 modC-succ divC0 divC-succ2)

apply (rule EqE)
— case analysis on succ(u mod b) |−| b

apply (rule-tac a1 = succ (u mod b) |−| b in iszero-decidable [THEN PlusE])
apply (erule-tac [3] SumE)
apply (hyp-arith-rew div-typing-rls modC0 modC-succ divC0 divC-succ2)
— Replace one occurrence of b by succ(u mod b). Clumsy!

apply (rule add-typingL [THEN trans-elem])
apply (erule EqE [THEN absdiff-eq0 , THEN sym-elem])
apply (rule-tac [3] refl-elem)
apply (hyp-arith-rew div-typing-rls)

done

end

20

4 Easy examples: type checking and type deduc-
tion

theory Typechecking
imports ../CTT
begin

4.1 Single-step proofs: verifying that a type is well-formed
schematic-goal ?A type

by (rule form-rls)

schematic-goal ?A type
apply (rule form-rls)
back
apply (rule form-rls)

apply (rule form-rls)
done

schematic-goal
∏

z:?A . N + ?B(z) type
apply (rule form-rls)
apply (rule form-rls)

apply (rule form-rls)
apply (rule form-rls)

apply (rule form-rls)
done

4.2 Multi-step proofs: Type inference
lemma

∏
w:N . N + N type

by form

schematic-goal <0 , succ(0)> : ?A
apply intr done

schematic-goal
∏

w:N . Eq(?A,w,w) type
apply typechk done

schematic-goal
∏

x:N .
∏

y:N . Eq(?A,x,y) type
apply typechk done

typechecking an application of fst
schematic-goal (λu. split(u, λv w. v)) ‘ <0 , succ(0)> : ?A

apply typechk done

typechecking the predecessor function
schematic-goal λn. rec(n, 0 , λx y. x) : ?A

apply typechk done

21

typechecking the addition function
schematic-goal λn. λm. rec(n, m, λx y. succ(y)) : ?A

apply typechk done

Proofs involving arbitrary types. For concreteness, every type variable left
over is forced to be N
method-setup N =
‹Scan.succeed (fn ctxt => SIMPLE-METHOD (TRYALL (resolve-tac ctxt @{thms

NF})))›

schematic-goal λw. <w,w> : ?A
apply typechk
apply N
done

schematic-goal λx. λy. x : ?A
apply typechk
apply N

done

typechecking fst (as a function object)
schematic-goal λi. split(i, λj k. j) : ?A

apply typechk
apply N

done

end

5 Examples with elimination rules
theory Elimination
imports ../CTT
begin

This finds the functions fst and snd!
schematic-goal [folded basic-defs]: A type =⇒ ?a : (A × A) −→ A
apply pc
done

schematic-goal [folded basic-defs]: A type =⇒ ?a : (A × A) −→ A
apply pc
back
done

Double negation of the Excluded Middle
schematic-goal A type =⇒ ?a : ((A + (A−→F)) −→ F) −→ F

apply intr

22

apply (rule ProdE)
apply assumption

apply pc
done

Experiment: the proof above in Isar
lemma

assumes A type shows (λf . f ‘ inr(λy. f ‘ inl(y))) : ((A + (A−→F)) −→ F)
−→ F
proof intr

fix f
assume f : f : A + (A −→ F) −→ F
with assms have inr(λy. f ‘ inl(y)) : A + (A −→ F)

by pc
then show f ‘ inr(λy. f ‘ inl(y)) : F

by (rule ProdE [OF f])
qed (rule assms)+

schematic-goal [[A type; B type]] =⇒ ?a : (A × B) −→ (B × A)
apply pc
done

Binary sums and products
schematic-goal [[A type; B type; C type]] =⇒ ?a : (A + B −→ C) −→ (A −→ C)
× (B −→ C)

apply pc
done

schematic-goal [[A type; B type; C type]] =⇒ ?a : A × (B + C) −→ (A × B +
A × C)

by pc

schematic-goal
assumes A type

and
∧

x. x:A =⇒ B(x) type
and

∧
x. x:A =⇒ C (x) type

shows ?a : (
∑

x:A. B(x) + C (x)) −→ (
∑

x:A. B(x)) + (
∑

x:A. C (x))
apply (pc assms)
done

Construction of the currying functional
schematic-goal [[A type; B type; C type]] =⇒ ?a : (A × B −→ C) −→ (A −→ (B
−→ C))

apply pc
done

23

schematic-goal
assumes A type

and
∧

x. x:A =⇒ B(x) type
and

∧
z. z: (

∑
x:A. B(x)) =⇒ C (z) type

shows ?a :
∏

f : (
∏

z : (
∑

x:A . B(x)) . C (z)).
(
∏

x:A .
∏

y:B(x) . C (<x,y>))
apply (pc assms)
done

Martin-Löf (1984), page 48: axiom of sum-elimination (uncurry)
schematic-goal [[A type; B type; C type]] =⇒ ?a : (A −→ (B −→ C)) −→ (A ×
B −→ C)

apply pc
done

schematic-goal
assumes A type

and
∧

x. x:A =⇒ B(x) type
and

∧
z. z: (

∑
x:A . B(x)) =⇒ C (z) type

shows ?a : (
∏

x:A .
∏

y:B(x) . C (<x,y>))
−→ (

∏
z : (

∑
x:A . B(x)) . C (z))

apply (pc assms)
done

Function application
schematic-goal [[A type; B type]] =⇒ ?a : ((A −→ B) × A) −→ B

apply pc
done

Basic test of quantifier reasoning
schematic-goal

assumes A type
and B type
and

∧
x y. [[x:A; y:B]] =⇒ C (x,y) type

shows
?a : (

∑
y:B .

∏
x:A . C (x,y))

−→ (
∏

x:A .
∑

y:B . C (x,y))
apply (pc assms)
done

Martin-Löf (1984) pages 36-7: the combinator S
schematic-goal

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows ?a : (

∏
x:A.

∏
y:B(x). C (x,y))

−→ (
∏

f : (
∏

x:A. B(x)).
∏

x:A. C (x, f‘x))

24

apply (pc assms)
done

Martin-Löf (1984) page 58: the axiom of disjunction elimination
schematic-goal

assumes A type
and B type
and

∧
z. z: A+B =⇒ C (z) type

shows ?a : (
∏

x:A. C (inl(x))) −→ (
∏

y:B. C (inr(y)))
−→ (

∏
z: A+B. C (z))

apply (pc assms)
done

schematic-goal [folded basic-defs]:
[[A type; B type; C type]] =⇒ ?a : (A −→ B × C) −→ (A −→ B) × (A −→ C)
apply pc
done

AXIOM OF CHOICE! Delicate use of elimination rules
schematic-goal

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows ?a : (

∏
x:A.

∑
y:B(x). C (x,y)) −→ (

∑
f : (

∏
x:A. B(x)).

∏
x:A. C (x,

f‘x))
apply (intr assms)
prefer 2 apply add-mp
prefer 2 apply add-mp
apply (erule SumE-fst)

apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)
apply (rule-tac [4] SumE-snd)

apply (typechk SumE-fst assms)
done

A structured proof of AC
lemma Axiom-of-Choice:

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows (λf . <λx. fst(f‘x), λx. snd(f‘x)>)

: (
∏

x:A.
∑

y:B(x). C (x,y)) −→ (
∑

f : (
∏

x:A. B(x)).
∏

x:A. C (x, f‘x))
proof (intr assms)

fix f a
assume f : f :

∏
x:A. Sum(B(x), C (x)) and a : A

then have fa: f‘a : Sum(B(a), C (a))
by (rule ProdE)

25

then show fst(f ‘ a) : B(a)
by (rule SumE-fst)

have snd(f ‘ a) : C (a, fst(f ‘ a))
by (rule SumE-snd [OF fa]) (typechk SumE-fst assms ‹a : A›)

moreover have (λx. fst(f ‘ x)) ‘ a = fst(f ‘ a) : B(a)
by (rule ProdC [OF ‹a : A›]) (typechk SumE-fst f)

ultimately show snd(f‘a) : C (a, (λx. fst(f ‘ x)) ‘ a)
by (intro replace-type [OF subst-eqtyparg]) (typechk SumE-fst assms ‹a : A›)

qed

Axiom of choice. Proof without fst, snd. Harder still!
schematic-goal [folded basic-defs]:

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows ?a : (

∏
x:A.

∑
y:B(x). C (x,y)) −→ (

∑
f : (

∏
x:A. B(x)).

∏
x:A. C (x,

f‘x))
apply (intr assms)

apply (rule ProdE [THEN SumE])
apply assumption

apply assumption
apply assumption

apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)
apply (erule-tac [4] ProdE [THEN SumE])
apply (typechk assms)

apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)

apply (typechk assms)
apply assumption
done

Example of sequent-style deduction
schematic-goal

assumes A type
and B type
and

∧
z. z:A × B =⇒ C (z) type

shows ?a : (
∑

z:A × B. C (z)) −→ (
∑

u:A.
∑

v:B. C (<u,v>))
apply (rule intr-rls)
apply (tactic ‹biresolve-tac context safe-brls 2 ›)

apply (rule-tac [2] a = y in ProdE)
apply (typechk assms)

apply (rule SumE , assumption)
apply intr

defer 1

26

apply assumption+
apply (typechk assms)
done

end

6 Equality reasoning by rewriting
theory Equality

imports ../CTT
begin

lemma split-eq: p : Sum(A,B) =⇒ split(p,pair) = p : Sum(A,B)
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew
done

lemma when-eq: [[A type; B type; p : A+B]] =⇒ when(p,inl,inr) = p : A + B
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew

done

in the "rec" formulation of addition, 0 + n = n

lemma p:N =⇒ rec(p,0 , λy z. succ(y)) = p : N
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew

done

the harder version, n+ 0 = n: recursive, uses induction hypothesis
lemma p:N =⇒ rec(p,0 , λy z. succ(z)) = p : N

apply (rule EqE)
apply (rule elim-rls, assumption)
apply hyp-rew

done

Associativity of addition
lemma [[a:N ; b:N ; c:N]]
=⇒ rec(rec(a, b, λx y. succ(y)), c, λx y. succ(y)) =

rec(a, rec(b, c, λx y. succ(y)), λx y. succ(y)) : N
apply (NE a)

apply hyp-rew
done

Martin-Löf (1984) page 62: pairing is surjective
lemma p : Sum(A,B) =⇒ <split(p,λx y. x), split(p,λx y. y)> = p : Sum(A,B)

27

apply (rule EqE)
apply (rule elim-rls, assumption)
apply (tactic ‹DEPTH-SOLVE-1 (rew-tac context [])›)
done

lemma [[a : A; b : B]] =⇒ (λu. split(u, λv w.<w,v>)) ‘ <a,b> = <b,a> :
∑

x:B.
A

by rew

a contrived, complicated simplication, requires sum-elimination also
lemma (λf . λx. f‘(f‘x)) ‘ (λu. split(u, λv w.<w,v>)) =

λx. x :
∏

x:(
∑

y:N . N). (
∑

y:N . N)
apply (rule reduction-rls)

apply (rule-tac [3] intrL-rls)
apply (rule-tac [4] EqE)
apply (erule-tac [4] SumE)

apply rew
done

end

7 Synthesis examples, using a crude form of nar-
rowing

theory Synthesis
imports ../CTT

begin

discovery of predecessor function
schematic-goal ?a :

∑
pred:?A . Eq(N , pred‘0 , 0) × (

∏
n:N . Eq(N , pred ‘

succ(n), n))
apply intr

apply eqintr
apply (rule-tac [3] reduction-rls)

apply (rule-tac [5] comp-rls)
apply rew

done

the function fst as an element of a function type
schematic-goal [folded basic-defs]:

A type =⇒ ?a:
∑

f :?B .
∏

i:A.
∏

j:A. Eq(A, f ‘ <i,j>, i)
apply intr
apply eqintr
apply (rule-tac [2] reduction-rls)

apply (rule-tac [4] comp-rls)
apply typechk

28

now put in A everywhere

apply assumption+
done

An interesting use of the eliminator, when
schematic-goal ?a :

∏
i:N . Eq(?A, ?b(inl(i)), <0 , i>)

× Eq(?A, ?b(inr(i)), <succ(0), i>)
apply intr
apply eqintr
apply (rule comp-rls)

apply rew
done

schematic-goal ?a :
∏

i:N . Eq(?A(i), ?b(inl(i)), <0 , i>)
× Eq(?A(i), ?b(inr(i)), <succ(0),i>)

oops

A tricky combination of when and split
schematic-goal [folded basic-defs]:

?a :
∏

i:N .
∏

j:N . Eq(?A, ?b(inl(<i,j>)), i)
× Eq(?A, ?b(inr(<i,j>)), j)

apply intr
apply eqintr
apply (rule PlusC-inl [THEN trans-elem])

apply (rule-tac [4] comp-rls)
apply (rule-tac [7] reduction-rls)

apply (rule-tac [10] comp-rls)
apply typechk

done

schematic-goal ?a :
∏

i:N .
∏

j:N . Eq(?A(i,j), ?b(inl(<i,j>)), i)
× Eq(?A(i,j), ?b(inr(<i,j>)), j)

oops

schematic-goal ?a :
∏

i:N .
∏

j:N . Eq(N , ?b(inl(<i,j>)), i)
× Eq(N , ?b(inr(<i,j>)), j)

oops

Deriving the addition operator
schematic-goal [folded arith-defs]:

?c :
∏

n:N . Eq(N , ?f (0 ,n), n)
× (

∏
m:N . Eq(N , ?f (succ(m), n), succ(?f (m,n))))

apply intr
apply eqintr
apply (rule comp-rls)

29

apply rew
done

The addition function – using explicit lambdas
schematic-goal [folded arith-defs]:

?c :
∑

plus : ?A .∏
x:N . Eq(N , plus‘0‘x, x)

× (
∏

y:N . Eq(N , plus‘succ(y)‘x, succ(plus‘y‘x)))
apply intr

apply eqintr
apply (tactic resolve-tac context [TSimp.split-eqn] 3)
apply (tactic SELECT-GOAL (rew-tac context []) 4)

apply (tactic resolve-tac context [TSimp.split-eqn] 3)
apply (tactic SELECT-GOAL (rew-tac context []) 4)

apply (rule-tac [3] p = y in NC-succ)

apply rew
done

end

30

	Constructive Type Theory: axiomatic basis
	Tactics and derived rules for Constructive Type Theory
	Tactics for type checking
	Simplification
	The elimination rules for fst/snd

	The two-element type (booleans and conditionals)
	Derivation of rules for the type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Bool

	Elementary arithmetic
	Arithmetic operators and their definitions
	Proofs about elementary arithmetic: addition, multiplication, etc.
	Addition
	Multiplication
	Difference

	Simplification
	Addition
	Multiplication
	Difference
	Absolute difference
	Remainder and Quotient

	Easy examples: type checking and type deduction
	Single-step proofs: verifying that a type is well-formed
	Multi-step proofs: Type inference

	Examples with elimination rules
	Equality reasoning by rewriting
	Synthesis examples, using a crude form of narrowing

