[sabelle/CTT — Constructive Type Theory
with extensional equality and without universes

Larry Paulson

January 18, 2026

Contents

1 Constructive Type Theory: axiomatic basis
1.1 Tactics and derived rules for Constructive Type Theory . . .
1.2 Tactics for type checking
1.3 Simplification oo oo
1.4 The elimination rules for fst/snd

2 The two-element type (booleans and conditionals)
2.1 Derivation of rules for the type Bool

3 Elementary arithmetic
3.1 Arithmetic operators and their definitions
3.2 Proofs about elementary arithmetic: addition, multiplication,

321 Addition.
3.2.2 Multiplication oL
3.2.3 Difference
3.3 Simplification oo
3.4 Addition
3.5 Multiplication oo
3.6 Difference
3.7 Absolute difference L.
3.8 Remainder and Quotient,

4 FEasy examples: type checking and type deduction
4.1 Single-step proofs: verifying that a type is well-formed
4.2 Multi-step proofs: Type inference

5 Examples with elimination rules

6 Equality reasoning by rewriting

11
11

12
12

13
13
13
13
14
15
15
16
17
18

20
20
20

22

26

7 Synthesis examples, using a crude form of narrowing 27

theory CTT
imports Pure
begin

1 Constructive Type Theory: axiomatic basis

ML-file <~ /src/ Provers/typedsimp. ML)
setup Pure-Thy.old-appl-syntaz-setup

typedecl
typedecl ¢
typedecl o
consts
— Judgments
Type it = prop (<(<notation=<postfix Type>>- type)> [10] 5)
Eqtype :: [t,t]=prop (<(<notation=<infix Eqtyper>- =/ -)» [10,10] 5)
Elem 2[4, t]=prop (<(«notation=<infiz Elem»- /: -)» [10,10] 5)
Egelem :: [i,i,t]=prop («(<notation=<mizfix Egelems»»- =/ -:/ -)» [10,10,10]
5)
Reduce :: [i,i]=prop («Reducel-,-])
— Types for truth values
F wt
T ot — F is empty, T contains one element
contr e
tt n
— Natural numbers
N it
Zero) (x0»)
succ n =1
rec (4, 4, [4d]=1] = 0
— Binary sum
Plus w [t E]=t (infixr <+» 40)
inl e
mr =1
when : [i, (=1, i=i]=1
— General sum and binary product
Sum n [t i=t]=t
pair i [4,d)=1 (<(<indent=1 notation=¢mizfix pair»><-,/->))
fst =
snd =1
split i, [4,i]=1] =i
— General product and function space
Prod a [ty =t
lambda == (i = i) = i (binder <\ 10)
app i [4,d])=1 (infix] <% 60)

— Equality type
Eq w[t1,d] =t
eq g

Some inexplicable syntactic dependencies; in particular, "0" must be intro-
duced after the judgment forms.

syntax
-PROD :: [idt,tt]=t («(vindent=3 notation=<binder [[»[[--./ -)» 10)
-SUM :: [ide,tt]=t (<(<indent=3 notation=<binder > »> -~/ -)» 10)

syntax-consts
-PROD = Prod and
-SUM = Sum
translations
[[z:A. B = CONST Prod(A, M\z. B)
> x:A. B = CONST Sum(A, \z. B)

abbreviation Arrow :: [t,t]=t (infixr (—> 30)
where A — B =][-A. B

abbreviation Times :: [t,t]=t (infixr <x) 50)
where A x B=) -A. B

Reduction: a weaker notion than equality; a hack for simplification. Re-
duce|a,b] means either that a = b : A for some A or else that a and b are
textually identical.

Does not verify a:A! Sound because only trans-red uses a Reduce premise.
No new theorems can be proved about the standard judgments.

axiomatization
where
refl-red: Na. Reducela,a] and
red-if-equal: Na b A. a = b : A = Reduce|a,b] and
trans-red: Na b ¢ A. Ja = b : A; Reduce[b,c]] = a = ¢ : A and

— Reflexivity

refl-type: NA. A type = A = A and
refl-elem: Na A. a : A = a=a: A and

— Symmetry

sym-type: NA B. A= B=— B = A and
sym-elem: NabA a=b: A= b=a:Aand

— Transitivity

=

trans-type: NA B C.[A=B; B=C
b: A

— A = C and
trans-elem: Aa b c A. Ja = b=c:A]

a=—c: Aand

w

equal-types: Na A B.[a: A; A= B] = a: B and
equal-typesL: Na b A B.[a=1b: A; A= B] = a=15: B and

— Substitution

subst-type: Aa A B. [a : A; Nz. 22:A = B(z) type] = B(a) type and
subst-typeL: Na c A BD.[a=c: A N\z. A = B(z) = D(z)] = B(a) =
D(c) and

subst-elem: Na b A B. [a: A; Nz. 224 = b(2):B(z)] = b(a):B(a) and
subst-elemL:
(/1\a becdAB. [Ja=c: A; Nz. 2A = b(2)=d(z) : B(z)] = b(a)=d(c) : B(a)

— The type N — natural numbers

NF: N type and

NIO: 0 : N and

NI-succ: Na. a : N = succ(a) : N and

NI-succL: Nab.a =1b: N = succ(a) = suce(b) : N and

NE:
Ap ad C.[p: N;a: C(0); Nuwv. [u: N; v: C(u)] = b(u,v): C(succ(u))]
= rec(p, a, \u v. b(u,v)) : C(p) and

NEL:
ApgqabedC.[p=q:N;a=c: C(0)

Au v. [u: N5 v: C(u)] = b(u,v) = d(u,v): C(succ(u))]
= rec(p, a, A\u v. b(u,v)) = rec(q,¢,d) : C(p) and

NCO:
Na b C. Ja: C(0); Auwv. Ju: N; v: C(u)] = b(u,v): C(suce(w))]
= rec(0, a, Au v. b(u,v)) = a: C(0) and

NC-succe:

Ap abd C.[p: N; a: C(0); Nuw. [u: N; v: C(u)] = b(u,v): C(succ(u))]

w))] =
rec(suce(p), a, Au v. b(u,v)) = b(p, rec(p, a, Au v. b(u,v))) : C(succ(p)) and

— The fourth Peano axiom. See page 91 of Martin-Lof’s book.
zero-ne-succ: Na. [a: N; 0 = suce(a) : N| = 0: F and
— The Product of a family of types

ProdF: NA B. [A type; \x. ©:A = B(z) type] = [[x:A. B(z) type and

ProdFL:
NA B CD.[A=C; A\z. :A = B(z) = D(z)] = [[=:A. B(z) =[] =:C.

D(z) and

ProdlI:
Ab A B. [A type; N\z. 2:A = b(2):B(z)] = Az. b(z) : [[z:A. B(z) and

ProdIL: \b ¢ A B. [A type; Nz. ©:A = b(z) = ¢(z) : B(z)] =
Az. b(z) = Az. ¢(z) : []z:A. B(z) and

ProdE: Ap a A B.[p:]]z:A. B(z); a: A] = p‘a: B(a) and
ProdEL: Ap qab A B. [p=q [[:A. Bz); a =b: A] = p‘a = ¢‘b: B(a)
and

ProdC: Na b A B. [a: A4; Nz. 2:A = b(z) : B(z)] = (Az. b(z)) ‘a = ba) :
B(a) and

ProdC2: Ap A B. p : [[x:A. B(z) = (Az. pz) = p: [[2:A. B(z) and

— The Sum of a family of types

SumF: AA B. [A type; Nz. ©:A = B(z) type] = > z:A. B(z) type and
SumFL: NA B CD. A= C; N\z. :A = B(z) = D(z)] = > x:A. B(z) =
> x:C. D(z) and

Suml: NabAB.[a: A;b: Bla)] = <a,b>:) 2:A. B(z) and
SumIL: NAabecdAB. [a=c:A;b=d: Bla)] = <a,b> = <¢,d>: > x:A.
B(z) and

SumE: Ap ¢ A B C. [p: > z:A. B(z); Nz y. [2:4; v:B(z)] = c(z,y): C(<z,y>)]
= split(p, Az y. c¢(z,y)) : C(p) and

SumEL: Ap qcd ABC.[p=gq:> z:A B(z);
Nz y. [z:4; y:B(2)] = c(zy)=d(z,y): C(<z,y>)]
= split(p, Az y. c(z,y)) = split(q, Az y. d(z,y)) : C(p) and

SumC: NabcABC.[a: A; b: B(a); Az y. [2:4; y:B(z)] = c(z,y): C(<z,y>)]
= split(<a,b>, Az y. c¢(z,y)) = c(a,b) : C(<a,b>) and

fst-def: Aa. fst(a) = split(a, Az y. x) and
snd-def: Aa. snd(a) = split(a, Az y. y) and

— The sum of two types

PlusF: NA B. [A type; B type] = A+ B type and
PlusFL: NkA B CD. [A = C; B= D] = A+B = C+D and

PlusI-inl: Na A B. [a : A; B type] = inl(a) : A+B and
PlusI-inlL: Na ¢ A B. [a = ¢ : A; B type] = inl(a) = inl(c) : A+B and

Plusl-inr: \b A B. [A type; b : B] = inr(b) : A+B and
PlusI-inrL: A\b d A B. [A type; b = d : B] = inr(b) = inr(d) : A+B and

PlusE:
Ap cdABC. [p: A+B;
Nz. ©:A = c(z): C(inl(z));
Ny. y:B = d(y): C(inr(y)) | = when(p, Az. c(z), Ay. d(y)) : C(p) and

PlusEL:
ANpqgcdefABC.[p=q: A+B;
Nz. 22 A = ¢(z) = e(z) : C(inl(z));
Ny- y: B = d(y) = f(y) : Clinr(y))]
= when(p, A\z. ¢(z), A\y. d(y)) = when(q, Az. e(x), Ay. f(y)) : C(p) and

PlusC-inl:
NacdA BC. [a: 4
Nz. 2:A = ¢(z): C(inl(x));
C

Ny y:B = d(y): C(inr(y)) |
= when(inl(a), Az. ¢(z), A\y. d(y)) = ¢(a) : C(inl(a)) and
PlusC-inr:
NbcdABC. [b: B
Nz. 2:A = ¢(z): C(inl(x));
Ny- y:B = d(y): C(inr(y))]

= when(inr(b), A\z. c(z), A\y. d(y)) = d(b) : C(inr(d)) and

— The type Eq

EqF: Na b A. [A type; a : A; b : A] = Eq(A,a,b) type and

EqFL: NabcdAB. [A=B;a=c: A;b=d: A] = Eq(4,a,b) = Eq(B,c,d)
and

Eql: N\abA. a=0b: A= eq: Fq(A,a,b) and

EqE: Ap ab A. p: Eq(A,a,b) = a=b: A and

— By equality of types, can prove C(p) from C(egq), an elimination rule
EqC: ApabA. p: Eq(A,a,b) = p = eq : Eq(A,a,b) and

— The type F

FF: F type and

FE: N\p C. [p: F; C type] = contr(p) : C and
FEL: Ap q C. [p = q : F; C type] = contr(p) = contr(q) : C and

— The type T
— Martin-L6f’s book (page 68) discusses elimination and computation. Elim-

ination can be derived by computation and equality of types, but with an extra
premise C(z) type z:T. Also computation can be derived from elimination.

TF: T type and

TI: tt : T and

TE:ApcC.[p:T;c: C(tt)] =

TEL: ApqcdC.[p=q:T;c=

TC: N\p.p: T=p=1tt:T
1.1 Tactics and derived rules for Constructive Type Theory

Formation rules.

lemmas form-rls = NF ProdF SumF PlusF EqF FF TF
and formL-rls = ProdFL SumFL PlusFL EqFL

Introduction rules. OMITTED:

e FEql, because its premise is an egelem, not an elem.

lemmas intr-rls = NIQ0 NI-succ Prodl Sumli Plusl-inl Plusl-inr TI
and intrL-rls = NI-succL ProdIL SumlIL Plusl-inlL Plusl-inrL

Elimination rules. OMITTED:

o FEqF, because its conclusion is an eqelem, not an elem

e TE, because it does not involve a constructor.

lemmas elim-rls = NE ProdE SumE PlusE FE
and elimL-rls = NEL ProdEL SumEL PlusEL FEL

OMITTED: eqC are TC because they make rewriting loop: p = un = un

lemmas comp-rls = NCO NC-succ ProdC SumC PlusC-inl PlusC-inr

Rules with conclusion a:A, an elem judgment.

lemmas celement-rls = intr-ris elim-ris

Definitions are (meta)equality axioms.

lemmas basic-defs = fst-def snd-def

Compare with standard version: B is applied to UNSIMPLIFIED expression!

lemma SumlIL2: [c = a: A; d = b: B(a)] = <c¢,d> = <a,b> : Sum(A,B)
by (rule sym-elem) (rule SumlIL; rule sym-elem)

lemmas intrL2-rls = NI-succL ProdIL SumlIL2 Plusl-inlL Plusl-inrL

Exploit p: Prod(A,B) to create the assumption z:B(a). A more natural form
of product elimination.

lemma subst-prodFE:
assumes p: Prod(A,B)
and a: A
and Az. z: B(a) = ¢(2): C(2)
shows ¢(p‘a): C(p‘a)
by (rule assms ProdE)+

1.2 Tactics for type checking

ML «
local

fun is-rigid-elem Const- (Elem for a -» = not(is-Var (head-of a))
| is-rigid-elem Const- «Egelem for a - -» = not(is-Var (head-of a))
| is-rigid-elem Const- < Type for a> = not(is-Var (head-of a))
| is-rigid-elem - = false

n

(xTry solving a:A or a=b:A by assumption provided a is rigid!*)
fun test-assume-tac ctzt = SUBGOAL (fn (prem, i) =>

if is-rigid-elem (Logic.strip-assums-concl prem)

then assume-tac ctzt i else no-tac)

fun ASSUME ctxt tf i = test-assume-tac ctzt i ORELSE tf i

end
)

For simplification: type formation and checking, but no equalities between
terms.

lemmas routine-ris = form-rls formL-rls refi-type element-rls

ML «
fun routine-tac ris ctxt prems =
ASSUME ctat (Bires.filt-resolve-from-net-tac ctxt 4 (Bires.build-net (prems Q

rls)));

(xSolve all subgoals A type using formation rules. x)
val form-net = Bires.build-net Q{thms form-ris};
fun form-tac ctxt =
REPEAT-FIRST (ASSUME ctxt (Bires. filt-resolve-from-net-tac ctat 1 form-net));

(x Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *)
fun typechk-tac ctxt thms =
let val tac =
Bires.filt-resolve-from-net-tac ctxt 3

(Bires.build-net (thms @ @Q{thms form-ris} @ Q{thms element-ris}))
in REPEAT-FIRST (ASSUME ctxt tac) end

(xSolve a:A (a flexible, A rigid) by introduction rules.
Cannot use stringtrees (filt-resolve-tac) since
goals like 2a:SUM(A,B) have a trivial head—string *)
fun intr-tac ctat thms =
let val tac =
Bires.filt-resolve-from-net-tac ctxt 1
(Bires.build-net (thms @Q @Q{thms form-ris} @ @Q{thms intr-ris}))
in REPEAT-FIRST (ASSUME ctzt tac) end

(xEquality proving: solve a=b:A (where a is rigid) by long rules. *)
fun equal-tac ctxt thms =
REPEAT-FIRST
(ASSUME ctut
(Bires.filt-resolve-from-net-tac ctxt 3
(Bires.build-net (thms @Q @{thms form-rls element-rls intrL-rls elimL-rls

refl-clem})))

>

method-setup form = <Scan.succeed (fn ctat => SIMPLE-METHOD (form-tac
ctzt))»

method-setup typechk = <Attrib.thms >> (fn ths => fn ctet => SIMPLE-METHOD
(typechk-tac ctxt ths))

method-setup intr = <Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(intr-tac ctxzt ths))»

method-setup equal = <Attrib.thms >> (fn ths => fn ctat => SIMPLE-METHOD
(equal-tac ctat ths))»

1.3 Simplification

To simplify the type in a goal.

lemma replace-type: [B = A; a: A] = a: B
apply (rule equal-types)
apply (rule-tac [2] sym-type)
apply assumption+
done

Simplify the parameter of a unary type operator.

lemma subst-eqtyparg:
assumes 1: a=c: A
and 2: A\z. z:A = B(z) type
shows B(a) = B(c)
apply (rule subst-typeL)
apply (rule-tac [2] refl-type)
apply (rule 1)
apply (erule 2)
done

Simplification rules for Constructive Type Theory.

lemmas reduction-rls = comp-ris [THEN trans-elem)

ML «
(x Converts each goal e : Eq(A,a,b) into a=b:A for simplification.
Uses other intro rules to avoid changing flexible goals.x)
val egintr-net = Bires.build-net @{thms Eql intr-ris}
fun egintr-tac ctzt =
REPEAT-FIRST (ASSUME ctxt (Bires. filt-resolve-from-net-tac ctat 1 eqintr-net))

(xx Tactics that instantiate CTT —rules.
Vars in the given terms will be incremented!
The (rtac EqE i) lets them apply to equality judgments. %x)

fun NE-tac ctxt sp i =
TRY (resolve-tac ctzt Q{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctat [(((p, 0), Position.none), sp)] [| @{thm NE} i

fun SumE-tac ctzt sp i =
TRY (resolve-tac ctzt @{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctxt [(((p, 0), Position.none), sp)] [|] @{thm SumE} i

fun PlusE-tac ctxt sp i =
TRY (resolve-tac ctat @{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctat [(((p, 0), Position.none), sp)] [| @{thm PlusE} i

(% Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ.

ok)

(xFinds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *)
fun add-mp-tac ctzt i =

resolve-tac ctrt Q{thms subst-prodE} i THEN assume-tac ctzt i THEN as-
sume-tac ctat ¢

(%Finds P— @ and P in the assumptions, replaces implication by Q *)
fun mp-tac ctat i = eresolve-tac ctzt Q{thms subst-prodE} i THEN assume-tac
ctxt ¢

(xsafe when regarded as predicate calculus rulesx)
val safe-brls = sort Bires.subgoals-ord
[(true, @{thm FE?}), (true,asm-rl),
(false, @Q{thm Prodl}), (true, @{thm SumE}), (true, @{thm PlusE}) |

val unsafe-brls =
[(false, @{thm Plusl-inl}), (false, @{thm Plusl-inr}), (false, @{thm SumlI}),
(true, Q{thm subst-prodE})]

(x0 subgoals vs 1 or morex)
val (safe0-brls, safep-brls) =

10

List.partition Bires.no-subgoals safe-brls

fun safestep-tac ctxt thms i =
form-tac ctzt ORELSE
resolve-tac ctxt thms ¢ ORELSE
biresolve-tac ctxt safe0-brls i ORELSE mp-tac ctzt i ORELSE
DETERM (biresolve-tac ctxt safep-bris i)

fun safe-tac ctat thms i = DEPTH-SOLVE-1 (safestep-tac ctxt thms i)

fun step-tac ctxt thms = safestep-tac ctzt thms ORELSE’ biresolve-tac ctxt un-
safe-brls

(xFails unless it solves the goallx)
fun pe-tac ctet thms = DEPTH-SOLVE-1 o (step-tac ctxt thms)
)

method-setup egintr = «Scan.succeed (SIMPLE-METHOD o egintr-tac)»
method-setup NE = «

Scan.lift Parse.embedded-inner-syntax >> (fn s => fn ctat => SIMPLE-METHOD'
(NE-tac ctzt s))
)
method-setup pc = <Attrib.thms >> (fn ths => fn ctaet => SIMPLE-METHOD'
(pe-tac ctxt ths))»
method-setup add-mp = <Scan.succeed (SIMPLE-METHOD' o add-mp-tac)»

ML-file <rew.ML»

method-setup rew = (Attrib.thms >> (fn ths => fn ctat => SIMPLE-METHOD
(rew-tac ctxt ths))»

method-setup hyp-rew = <Attrib.thms >> (fn ths => fn ctat => SIMPLE-METHOD
(hyp-rew-tac ctxt ths))»

1.4 The elimination rules for fst/snd

lemma SumE-fst: p : Sum(A,B) = fst(p) : A
unfolding basic-defs
apply (erule SumkFE)
apply assumption
done

The first premise must be p:Sum(A,B)!!.

lemma SumkFE-snd:
assumes major: p: Sum(A,B)
and A type
and A\z. 2:A = B(z) type
shows snd(p) : B(fst(p))
unfolding basic-defs
apply (rule major [THEN SumkFE))
apply (rule SumC [THEN subst-eqtyparg, THEN replace-type])

11

apply (typechk assms)
done

2 The two-element type (booleans and condition-
als)

definition Bool :: ¢
where Bool = T+ T

definition true :: ¢
where true = inl(tt)

definition false :: ¢
where false = inr(it)

definition cond :: [i,i,i]=i
where cond(a,b,c) = when(a, A-. b, A-. ¢)

lemmas bool-defs = Bool-def true-def false-def cond-def

2.1 Derivation of rules for the type Bool

Formation rule.

lemma boolF': Bool type
unfolding bool-defs by typechk

Introduction rules for true, false.

lemma booll-true: true : Bool
unfolding bool-defs by typechk

lemma booll-false: false : Bool
unfolding bool-defs by typechk

Elimination rule: typing of cond.

lemma boolE: [p:Bool; a : C(true); b : C(false)] = cond(p,a,b) : C(p)
unfolding bool-defs
apply (typechk; erule TFE)
apply typechk
done

lemma boolEL: [p = q : Bool; a = ¢ : C(true); b = d : C(false)]
= cond(p,a,b) = cond(q,c,d) : C(p)
unfolding bool-defs
apply (rule PlusEL)
apply (erule asm-rl refl-elem [THEN TEL])+
done

Computation rules for true, false.

12

lemma boolC-true: [a : C(true); b : C(false)] = cond(true,a,b) = a : C(true)
unfolding bool-defs
apply (rule comp-rls)

apply typechk
apply (erule-tac [!] TE)

apply typechk
done

lemma boolC-false: [a : C(true); b : C(false)] = cond(false,a,b) = b : C(false)
unfolding bool-defs
apply (rule comp-rls)

apply typechk
apply (erule-tac || TE)

apply typechk
done

3 Elementary arithmetic

3.1 Arithmetic operators and their definitions
definition add :: [i,i]=¢ (infixr #+> 65)

where a#+b = rec(a, b, A\u v. succ(v))

definition diff :: [i,i]=¢ (infixr <—> 65)
where a—b = rec(b, a, \u v. rec(v, 0, Az y. x))

definition absdiff :: [i,i]=¢ (infixr ¢|—|» 65)
where a|—|b = (a—b) #+ (b—a)

definition mult :: [i,i]=¢ (infixr #© 70)
where a#xb = rec(a, 0, Au v. b #+ v)

definition mod :: [i,i]=¢ (infixr ¢mod> 70)
where a mod b = rec(a, 0, \u v. rec(succ(v) |—| b, 0, Az y. succ(v)))

definition div :: [¢,i]={ (infixr «div> 70)
where a div b = rec(a, 0, Au v. rec(succ(u) mod b, succ(v), Az y. v))

lemmas arith-defs = add-def diff-def absdiff-def mult-def mod-def div-def

3.2 Proofs about elementary arithmetic: addition, multipli-
cation, etc.

3.2.1 Addition

Typing of add: short and long versions.

lemma add-typing: [a:N; b:N] = a #+ b: N
unfolding arith-defs by typechk

13

lemma add-typingL: Ja = ¢:N; b= d:N] = a #+ b=c#+ d: N
unfolding arith-defs by equal

Computation for add: 0 and successor cases.

lemma addC0: N = 0 #+ b=b: N
unfolding arith-defs by rew

lemma addC-succ: [a:N; b:N]| = succ(a) #+ b = succ(a #+ b) : N
unfolding arith-defs by rew

3.2.2 Multiplication

Typing of mult: short and long versions.
lemma mult-typing: [a:N; b:N] = a #x b : N
unfolding arith-defs by (typechk add-typing)

lemma mult-typingL: [a = ¢:N; b= d:N| = a #x b=c#xd: N
unfolding arith-defs by (equal add-typingL)

Computation for mult: 0 and successor cases.

lemma multCO: N = 0 #x b=0: N
unfolding arith-defs by rew

lemma multC-succ: [a:N; b:N] = succ(a) #*x b= b #+ (a #*x b) : N
unfolding arith-defs by rew

3.2.3 Difference

Typing of difference.
lemma diff-typing: [a:N; b:N] = a — b: N
unfolding arith-defs by typechk

lemma diff-typingL: J[a = ¢:N; b=d:N] = a—b=c—d: N
unfolding arith-defs by equal

Computation for difference: 0 and successor cases.

lemma diff C0: a:N =— a — 0 = a: N
unfolding arith-defs by rew

Note: rec(a, 0, Az w.z) is pred(a).

lemma diff-0-eq-0: b N — 0 —b=0: N
unfolding arith-defs
by (NE b) hyp-rew

Essential to simplify FIRST!! (Else we get a critical pair) succ(a) — succ(b)
rewrites to pred(succ(a) — b).

lemma diff-succ-succ: [a:N; b:N| = succ(a) — suce(b) =a — b: N

14

unfolding arith-defs
apply hyp-rew
apply (NE b)

apply hyp-rew
done

3.3 Simplification

lemmas arith-typing-ris = add-typing mult-typing diff-typing
and arith-congr-rls = add-typingL mult-typingL diff-typingL

lemmas congr-ris = arith-congr-rls intrL2-rls elimL-rls

lemmas arithC-rls =
addC0 addC-succ
multCO multC-succ
diffCO diff-0-eq-0 diff-succ-succ

ML ¢

structure Arith-simp = TSimpFun(
val refl = @Q{thm refl-elem}
val sym = @Q{thm sym-elem}
val trans = Q{thm trans-elem}
val refl-red = Q{thm refl-red}
val trans-red = Q{thm trans-red}
val red-if-equal = Q{thm red-if-equal}
val default-rls = Q{thms arithC-rls comp-ris}
val routine-tac = routine-tac @Q{thms arith-typing-rls routine-ris}

)

fun arith-rew-tac ctxt prems =
make-rew-tac ctzt (Arith-simp.norm-tac ctzt (Q{thms congr-ris}, prems))

fun hyp-arith-rew-tac ctxt prems =
make-rew-tac ctxt
(Arith-simp.cond-norm-tac ctxt (prove-cond-tac ctxt, Q{thms congr-ris},
prems))
)

method-setup arith-rew = <

Attrib.thms >> (fn ths => fn ctet => SIMPLE-METHOD (arith-rew-tac ctxt
ths))
)

method-setup hyp-arith-rew = «

Attrib.thms >> (fn ths => fn ctat => SIMPLE-METHOD (hyp-arith-rew-tac
ctzt ths))
)

15

3.4 Addition

Associative law for addition.

lemma add-assoc: [a:N; b:N; e:N| = (a #+ b) #+ c=a #+ (b#+ ¢): N
by (NE a) hyp-arith-rew

Commutative law for addition. Can be proved using three inductions. Must
simplify after first induction! Orientation of rewrites is delicate.

lemma add-commute: [a:N; b:N] = a #+ b=b#+ a: N

apply (NE a)

apply hyp-arith-rew
apply (rule sym-elem)
prefer 2
apply (NE b)

prefer j

apply (NE b)

apply hyp-arith-rew

done

3.5 Multiplication

Right annihilation in product.
lemma mult-0-right: a:N = a #*x 0 = 0 : N
apply (NE a)
apply hyp-arith-rew
done

Right successor law for multiplication.
lemma mult-succ-right: [a:N; b:N]| = a #x* succ(b) = a #+ (a #x b) : N
apply (NE a)
apply (hyp-arith-rew add-assoc [THEN sym-elem))

apply (assumption | rule add-commaute mult-typingL add-typingL intrL-ris refl-elem)-+
done

Commutative law for multiplication.
lemma mult-commute: [a:N; b:N] = a #x b=b #x a: N
apply (NE a)
apply (hyp-arith-rew mult-0-right mult-succ-right)
done

Addition distributes over multiplication.

lemma add-mult-distrib: [a:N; b:N; e:N]| = (a #+ b) #* ¢ = (a #x* ¢) #+ (b
#xc): N
apply (NE a)
apply (hyp-arith-rew add-assoc [THEN sym-elem))
done

Associative law for multiplication.

16

lemma mult-assoc: Ja:N; b:N; e:N]| = (a #* b) #*x c = a #* (b #* ¢) : N
apply (NE a)
apply (hyp-arith-rew add-mult-distrib)
done

3.6 Difference

Difference on natural numbers, without negative numbers
e a—b=0iffa<b

e a— b= succ(c)iff a > b

lemma diff-self-eq-0: a:N = a —a=0: N
apply (NE a)
apply hyp-arith-rew
done

lemma add-0-right: [c : N; 0 : N;¢c: N = c#+ 0=c: N
by (rule addC0O [THEN [3] add-commute [THEN trans-eleml]])

Addition is the inverse of subtraction: if b < x then b #+ (z — b) = 2. An
example of induction over a quantified formula (a product). Uses rewriting
with a quantified, implicative inductive hypothesis.

schematic-goal add-diff-inverse-lemma:
b:N = %a: [[a:N. Eq(N, b—z, 0) — Eq(N, b #+ (z—0), z)
apply (NE b)
— strip one "universal quantifier' but not the "implication"
apply (rule-tac [3] intr-rls)
— case analysis on z in succ(u) < £ — succ(u) #+ (x — succ(u)) = z
prefer j
apply (NE z)
apply assumption
— Prepare for simplification of types — the antecedent succ(u) < z
apply (rule-tac [2] replace-type)
apply (rule-tac [1] replace-type)
apply arith-rew
— Solves first 0 goal, simplifies others. Two sugbgoals remain. Both follow by
rewriting, (2) using quantified induction hyp.
apply intr — strips remaining []s
apply (hyp-arith-rew add-0-right)
apply assumption
done

Version of above with premise b — a = 0 i.e. a > b. Using ProdE does
not work — for ?B(%a) is ambiguous. Instead, add-diff-inverse-lemma states
the desired induction scheme; the use of THEN below instantiates Vars in
ProdFE automatically.

17

lemma add-diff-inverse: [a:N; b:N; b — a=0: N] = b #+ (a—b) =a: N
apply (rule EqE)
apply (rule add-diff-inverse-lemma [THEN ProdE, THEN ProdE))
apply (assumption | rule Eql)+
done

3.7 Absolute difference

Typing of absolute difference: short and long versions.

lemma absdiff-typing: Ja:N; b:N] = a |-| b: N
unfolding arith-defs by typechk

lemma absdiff-typingL: [a = ¢:N; b= d:N] = a|-|b=c|—| d: N
unfolding arith-defs by equal

lemma absdiff-self-eq-0: a:N = a |-| a=0: N
unfolding absdiff-def by (arith-rew diff-self-eq-0)

lemma absdiff C0: a:N = 0 |-|a=a: N
unfolding absdiff-def by hyp-arith-rew

lemma absdiff-succ-suce: [a:N; b:N]| = succ(a) |—| succ(b) = a|—| b: N
unfolding absdiff-def by hyp-arith-rew

Note how easy using commutative laws can be? ...not always...

lemma absdiff-commute: [a:N; bN] = a |—-| b=b|—| a: N
unfolding absdiff-def
by (rule add-commute) (typechk diff-typing)

If a + b = 0 then a = 0. Surprisingly tedious.

schematic-goal add-eq0-lemma: [a:N; b:N] = ?c: Eq(N,a#+b,0) — Eq(N,a,0)
apply (NE a)
apply (rule-tac [3] replace-type)
apply arith-rew
apply intr — strips remaining []s
apply (rule-tac [2] zero-ne-succ [THEN FE])
apply (erule-tac [3] EqE [THEN sym-elem))
apply (typechk add-typing)
done

Version of above with the premise a + b = 0. Again, resolution instantiates
variables in ProdFE.
lemma add-eq0: [a:N; b:N; a #+ b=0: N] = a=0: N
apply (rule EqF)
apply (rule add-eq0-lemma [THEN ProdE])
apply (rule-tac [3] Eql)

apply typechk
done

18

Here is a lemma to infer a — b = 0 and b — a = 0 from a |—| b = 0, below.

schematic-goal absdiff-eq0-lem:
[a:N; b:N; a |—| b= 0 : N] = ?a: Eq(N, a—b, 0) x Eq(N, b—a, 0)
unfolding absdiff-def
apply intr
apply eqintr
apply (rule-tac [2] add-eq0)
apply (rule add-eq0)
apply (rule-tac [6] add-commute [THEN trans-elem])
apply (typechk diff-typing)
done

Ifa|-| b= 0thena=bproofia—b=0andb—a=0,s0b=a+ (b
—a)=a+ 0 = a
lemma absdiff-eq0: a |-| b= 0: N; a:N; bN] = a=0b: N
apply (rule EqE)
apply (rule absdiff-eq0-lem [THEN SumE))
apply egintr
apply (rule add-diff-inverse [THEN sym-elem, THEN trans-elem])
apply (erule-tac [3] EqF)
apply (hyp-arith-rew add-0-right)
done

3.8 Remainder and Quotient

Typing of remainder: short and long versions.
lemma mod-typing: [a:N; b:N] = a mod b : N
unfolding mod-def by (typechk absdiff-typing)

lemma mod-typingL: [a = ¢:N; b = &:N] = a mod b = ¢ mod d : N
unfolding mod-def by (equal absdiff-typingL)

Computation for mod: 0 and successor cases.

lemma modC0O: N = 0 mod b =0 : N
unfolding mod-def by (rew absdiff-typing)

lemma modC-succ: [a:N; b:N| =
succ(a) mod b = rec(succ(a mod b) |—| b, 0, Az y. succ(a mod b)) : N
unfolding mod-def by (rew absdiff-typing)

Typing of quotient: short and long versions.

lemma div-typing: [a:N; b:N] = a divb: N
unfolding div-def by (typechk absdiff-typing mod-typing)

lemma div-typingL: [a = ¢:N; b= d&:N] = adivb=cdivd: N
unfolding div-def by (equal absdiff-typingLl mod-typingL)

19

lemmas div-typing-ris = mod-typing div-typing absdiff-typing

Computation for quotient: 0 and successor cases.

lemma divC0: N = 0 divb=0: N
unfolding div-def by (rew mod-typing absdiff-typing)

lemma divC-succ: [a:N; b:N|] =
succ(a) div b = rec(succ(a) mod b, succ(a div b), A\x y. a div b) : N
unfolding div-def by (rew mod-typing)

Version of above with same condition as the mod one.

lemma divC-succ2: [a:N; b:N| =
succ(a) div b =rec(succ(a mod b) |—| b, succ(a div b), Az y. a div b) : N
apply (rule divC-succ [THEN trans-elem))
apply (rew div-typing-ris modC-succ)
apply (NE succ (a mod b) |—|b)
apply (rew mod-typing div-typing absdiff-typing)
done

For case analysis on whether a number is 0 or a successor.

lemma iszero-decidable: a:N = rec(a, inl(eq), Aka kb. inr(<ka, eqg>)) :

Eq(N,a,0) + . x:N. Eq(N,a, succ(z)))
apply (NE a)

apply (rule-tac [3] Plusl-inr)

apply (rule-tac [2] Plusl-inl)

apply egintr

apply equal

done

Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0.

lemma mod-div-equality: [a:N; b:N] = a mod b #+ (a div b) #x b=a: N
apply (NE a)
apply (arith-rew div-typing-rls modC0O modC-succ divC0 divC-succ2)
apply (rule EqF)
— case analysis on succ(u mod b) |—| b
apply (rule-tac al = succ (u mod b) |—| b in iszero-decidable [THEN PlusFE))
apply (erule-tac [3] SumkE)
apply (hyp-arith-rew div-typing-rls modC0O modC-succ divC0 divC-succ2)
— Replace one occurrence of b by succ(u mod b). Clumsy!
apply (rule add-typingl, [THEN trans-elem))
apply (erule EqE [THEN absdiff-eq0, THEN sym-elem])
apply (rule-tac [3] refi-elem)
apply (hyp-arith-rew div-typing-rls)
done

end

20

4 FEasy examples: type checking and type deduc-
tion

theory Typechecking
imports ../CTT
begin

4.1 Single-step proofs: verifying that a type is well-formed

schematic-goal ?A type
by (rule form-rls)

schematic-goal ?A type
apply (rule form-ris)
back
apply (rule form-rls)
apply (rule form-rls)
done

schematic-goal [[2:24 . N + ?B(z) type
apply (rule form-rls)
apply (rule form-rls)
apply (rule form-rls)
apply (rule form-rls)
apply (rule form-ris)
done

4.2 Multi-step proofs: Type inference
lemma [[Jw:N. N + N type
by form

schematic-goal <0, succ(0)> : 74
apply intr done

schematic-goal [[w:N . Fq(?A,w,w) type
apply typechk done

schematic-goal [[z:N . [[y:N . Eq(?A,z,y) type
apply typechk done

typechecking an application of fst

schematic-goal (Au. split(u, Av w. v)) ‘<0, succ(0)> : ?4
apply typechk done

typechecking the predecessor function

schematic-goal An. rec(n, 0, Az y. z) : A
apply typechk done

21

typechecking the addition function

schematic-goal An. Am. rec(n, m, Az y. succ(y)) : 24
apply typechk done

Proofs involving arbitrary types. For concreteness, every type variable left

over is forced to be N

method-setup N =

«Scan.succeed (fn ctat => SIMPLE-METHOD (TRYALL (resolve-tac ctxt @{thms

NF})))

schematic-goal Aw. <w,w> : ?A
apply typechk
apply N
done

schematic-goal Az. Ay. z : 74
apply typechk
apply N
done

typechecking fst (as a function object)

schematic-goal \i. split(i, \j k. j) : ?A
apply typechk
apply N
done

end

5 Examples with elimination rules

theory Elimination
imports ../CTT
begin

This finds the functions fst and snd!

schematic-goal [folded basic-defs]: A type = %a: (A x A) — A

apply pc
done

schematic-goal [folded basic-defs]: A type = %a: (A x A) — A

apply pc
back
done

Double negation of the Excluded Middle

schematic-goal 4 type = %a: (A + (A—F)) — F) — F

apply intr

22

apply (rule ProdE)
apply assumption
apply pc

done

Experiment: the proof above in Isar

lemma
assumes A type shows (Af. f “inr(Ay. f “ inl(y))) : (A + (A—F)) — F)
— F
proof intr
fix f
assume f: f: A+ (A— F) — F
with assms have inr(Ay. f “inl(y)) : A+ (A — F)
by pc
then show f “inr(Ay. f < inl(y)) : F
by (rule ProdE [OF f])
qed (rule assms)+

schematic-goal [A4 type; B type] = %a: (A x B) — (B x A)

apply pc
done

Binary sums and products
schematic-goal [A type; B type; Ctype] = %a: (A + B — C) — (A — ()
x (B — C)

apply pc
done

schematic-goal [A type; B type; C type] = %a : A x (B+ C) — (A x B +
A x CO)
by pc

schematic-goal
assumes A type
and Az. ©:A = B(z) type
and A\z. ©:4A = C(x) type
shows %a : (> x:A. B(z) + C(x)) — (O xz:A. B(z)) + O] x:A. C(x))
apply (pc assms)
done

Construction of the currying functional

schematic-goal [A type; B type; C type] = ?a: (A x B— C) — (A — (B
— 0))

apply pc
done

23

schematic-goal
assumes A type
and Az. ©:A = B(z) type
and Az z: (O x:A. B(z)) = C(z) type
shows %a : [[f: (J[z: O xz:A . B(x)) . C(z)).
(IT=z:A . [Ty:B(z) . C(<z,y>))
apply (pc assms)
done

Martin-Lof (1984), page 48: axiom of sum-elimination (uncurry)

schematic-goal [A type; B type; C type] = %a: (A — (B — C)) — (A x
B— C)

apply pc

done

schematic-goal
assumes A type
and Az. 2:A = B(z) type
and Az z: (O x:A . B(z)) = C(z) type
shows ?a : ([[=:A . [[y:B(z) . C(<z,y>))
— (I]z: O_x:A . B(z)) . C(2))
apply (pc assms)
done

Function application

schematic-goal [A type; B type] = %a : (A — B) x A) — B

apply pc
done

Basic test of quantifier reasoning

schematic-goal

assumes A type

and B type

and Az y. [:4; y:B] = C(x,y) type
shows

%a: (O y:B.]]xA. Czy))

— (J[x:A . Y y:B . C(z,y))

apply (pc assms)
done

Martin-Lof (1984) pages 36-7: the combinator S

schematic-goal
assumes A type
and A\z. 2:A = B(z) type
and Az y. [2:4; y:B(z)] = C(z,y) type
shows %a : ([[z:A. [Ty:B(z). C(z,y))
— (IIf: (I z:A4. B(z)). [[z:A. C(z, fx))

24

apply (pc assms)
done

Martin-Lof (1984) page 58: the axiom of disjunction elimination

schematic-goal
assumes A type
and B type
and Az. z: A+B = C(z) type
shows ?a : ([[z:A. C(inl(z))) — ([y:B. C(inr(y)))
— (J] #: A+B. C(2))
apply (pc assms)
done

schematic-goal [folded basic-defs]:
[A type; B type; C type] = %a: (A — B x C) — (A — B) x (A — ()
apply pc
done

AXIOM OF CHOICE! Delicate use of elimination rules

schematic-goal
assumes A type
and A\z. ©:A = B(x) type
and Az y. [z:4; y:B(z)] = C(z,y) type
shows %a : (J[[x:A. > y:B(z). C(z,y)) — O_f: ([[=:A. B(z)). [[x:A. C(x,
fx))
apply (intr assms)
prefer 2 apply add-mp
prefer 2 apply add-mp
apply (erule SumE-fst)
apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)
apply (rule-tac [4] SumE-snd)
apply (typechk SumE-fst assms)
done

A structured proof of AC

lemma Aziom-of-Choice:
assumes A type
and Az. 2:A = B(z) type
and Az y. [z:4; y:B(z)] = C(z,y) type
shows (Af. <Az. fst(fz), Az. snd(fz)>)
s ([Ta:A. > y:B(x). C(z,y)) — O_f: ([[x:A. B(z)). [[x:A. C(z, fr))
proof (intr assms)
fix fa
assume f: f : [[2:A. Sum(B(z), C(z)) and a : A
then have fa: f‘a : Sum(B(a), C(a))
by (rule ProdE)

25

then show fst(f ‘ a) : B(a)
by (rule SumE-fst)
have snd(f ‘ a) : C(a, fst(f ‘ a))
by (rule SumE-snd [OF fa)) (typechk SumE-fst assms <a : A»)
moreover have (Az. fst(f ‘z)) ‘a = fst(f ‘ a) : B(a)
by (rule ProdC [OF <a : Ay]) (typechk SumE-fst f)
ultimately show snd(f‘a) : C(a, (Az. fst(f ‘ z)) ‘a)

by (intro replace-type [OF subst-eqtyparg]) (typechk SumE-fst assms <a : A»)
qed

Axiom of choice. Proof without fst, snd. Harder still!

schematic-goal [folded basic-defs]:
assumes A type
and Az. 2:A = B(z) type
and Az y. [2:4; y:B(z)] = C(z,y) type
shows %a : ([[z:4. > y:B(z). C(x,y)) — O f: (J[x:A. B(z)). [[x:A. C(z,
fz))
apply (intr assms)

apply (rule ProdE [THEN SumkE]))
apply assumption
apply assumption
apply assumption
apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)
apply (erule-tac [4] ProdE [THEN SumE))
apply (typechk assms)
apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)
apply (typechk assms)
apply assumption
done

Example of sequent-style deduction

schematic-goal
assumes A type
and B type
and A\z. 224 x B = C(z) type
shows %a : (D z:A x B. C(z)) — O wA. Y v:B. C(<u,v>))
apply (rule intr-ris)
apply (tactic <biresolve-tac context safe-bris 2)

apply (rule-tac [2] a = y in ProdE)
apply (typechk assms)
apply (rule SumE, assumption)
apply intr
defer 71

26

apply assumption—+
apply (typechk assms)
done

end

6 Equality reasoning by rewriting

theory Fquality
imports ../CTT
begin

lemma split-eq: p : Sum(A,B) = split(p,pair) = p : Sum(A,B)
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew
done

lemma when-eq: [A type; B type; p : A+B] = when(p,inlinr) = p: A + B
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew
done

in the "rec" formulation of addition, 0 +n =n

lemma p:N = rec(p,0, Ay z. succ(y)) = p: N
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew
done

the harder version, n + 0 = n: recursive, uses induction hypothesis
lemma p:N = rec(p,0, Ay z. succ(z)) = p: N

apply (rule EqF)

apply (rule elim-rls, assumption)

apply hyp-rew

done
Associativity of addition

lemma [a:N; b:N; ¢:N]
= rec(rec(a, b, Az y. succ(y)), ¢, Az y. succ(y)) =
rec(a, rec(b, ¢, Az y. succ(y)), Az y. succ(y)) : N
apply (NE a)

apply hyp-rew
done

Martin-Lof (1984) page 62: pairing is surjective
lemma p : Sum(A,B) = <split(p,\z y. z), split(p,\z y. y)> = p : Sum(A,B)

27

apply (rule EqE)

apply (rule elim-rls, assumption)

apply (tactic <DEPTH-SOLVE-1 (rew-tac context [|)»)
done

lemma [Ja : A4; b: B] = (Au. split(u, v w.<w,v>)) ‘ <a,b> = <b,a>: > x:B.
A
by rew

a contrived, complicated simplication, requires sum-elimination also

lemma (Af. Az. f(fz)) ¢ (Au. split(u, \v w.<w,v>)) =
Az.z : JJx:(>y:N. N). 3 y:N. N)
apply (rule reduction-rls)
apply (rule-tac [3] intrL-rls)
apply (rule-tac [4] EqFE)
apply (erule-tac [4] SumkE)

apply rew
done

end

7 Synthesis examples, using a crude form of nar-
rowing

theory Synthesis
imports ../CTT
begin

discovery of predecessor function

schematic-goal %a : Y pred:?A . Eq(N, pred‘0, 0) x ([[n:N. Eq(N, pred
suce(n), n))
apply intr
apply egintr
apply (rule-tac [3] reduction-rls)
apply (rule-tac [5] comp-rls)
apply rew
done

the function fst as an element of a function type

schematic-goal [folded basic-defs]:
A type = %a: > f:?B . [[i:A. [[4:A. Eq(A4, [‘ <ij>, Q)
apply intr
apply eqintr
apply (rule-tac [2] reduction-rls)
apply (rule-tac [4] comp-rls)
apply typechk

28

now put in A everywhere

apply assumption+
done

An interesting use of the eliminator, when

schematic-goal ?a : [[i:N. Eq(?A, 2b(inl(3)), <0 , i>)
x Eq(?A, ?b(inr(1)), <succ(0), i>)
apply intr
apply eqintr
apply (rule comp-ris)
apply rew
done

schematic-goal ?a : [[#:N. Eq(?A(7), ?b(inl(i)), <0 , i>)
x Eq(2A(7), 2b(inr(7)), <succ(0),i>)
oops

A tricky combination of when and split

schematic-goal [folded basic-defs]:
%a : []4:N. [[j:N. Eq(?4, 2b(inl(<i,j>)), ©)
x Eq(?A, ?b(inr(<i,j>)), j)
apply intr
apply eqintr
apply (rule PlusC-inl [THEN trans-elem])
apply (rule-tac [4] comp-rls)
apply (rule-tac [7] reduction-rls)
apply (rule-tac [10] comp-rls)
apply typechk
done

schematic-goal ?a : [Té:N. [Tj:N. Eq(?A(i.j), #b(inl(<i,j>)), ©)
X Eq(?A(i,5), #b(inr(<i,j>)), j)
oops

schematic-goal %a : [[4:N. [[j:N. Eq(N, ?b(inl(<i,j>)), 7)
X Bq(N, #b(inr(<i,j>)), j)
oops

Deriving the addition operator

schematic-goal [folded arith-defs]:
2c : [[n:N. Eq(N, ?f(0,n), n)
X ([[m:N. Eq(N, ?f(succ(m), n), succ(?f(m,n))))
apply intr
apply egintr
apply (rule comp-rls)

29

apply rew
done

The addition function — using explicit lambdas

schematic-goal [folded arith-defs]:
2c: > plus : 74 .
[T2:N. Eq(N, plus‘0‘z, x)
X ([Ty:N. Eq(N, plus‘succ(y) ‘z, succ(plus‘y‘r)))
apply intr
apply eqintr
apply (tactic resolve-tac context [TSimp.split-eqn] 3)
apply (tactic SELECT-GOAL (rew-tac context []) 4)
apply (tactic resolve-tac context [TSimp.split-eqn] 3)
apply (tactic SELECT-GOAL (rew-tac context []) 4)
apply (rule-tac [3] p = y in NC-succ)

apply rew
done

end

30

	Constructive Type Theory: axiomatic basis
	Tactics and derived rules for Constructive Type Theory
	Tactics for type checking
	Simplification
	The elimination rules for fst/snd

	The two-element type (booleans and conditionals)
	Derivation of rules for the type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Bool

	Elementary arithmetic
	Arithmetic operators and their definitions
	Proofs about elementary arithmetic: addition, multiplication, etc.
	Addition
	Multiplication
	Difference

	Simplification
	Addition
	Multiplication
	Difference
	Absolute difference
	Remainder and Quotient

	Easy examples: type checking and type deduction
	Single-step proofs: verifying that a type is well-formed
	Multi-step proofs: Type inference

	Examples with elimination rules
	Equality reasoning by rewriting
	Synthesis examples, using a crude form of narrowing

