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theory CTT
imports Pure
begin

1 Constructive Type Theory: axiomatic basis
ML-file ‹∼∼/src/Provers/typedsimp.ML›
setup Pure-Thy.old-appl-syntax-setup

typedecl i
typedecl t
typedecl o

consts
— Judgments
Type :: t ⇒ prop (‹(‹notation=‹postfix Type››- type)› [10 ] 5 )
Eqtype :: [t,t]⇒prop (‹(‹notation=‹infix Eqtype››- =/ -)› [10 ,10 ] 5 )
Elem :: [i, t]⇒prop (‹(‹notation=‹infix Elem››- /: -)› [10 ,10 ] 5 )
Eqelem :: [i,i,t]⇒prop (‹(‹notation=‹mixfix Eqelem››- =/ - :/ -)› [10 ,10 ,10 ]

5 )
Reduce :: [i,i]⇒prop (‹Reduce[-,-]›)
— Types for truth values
F :: t
T :: t — F is empty, T contains one element
contr :: i⇒i
tt :: i
— Natural numbers
N :: t
Zero :: i (‹0 ›)
succ :: i⇒i
rec :: [i, i, [i,i]⇒i] ⇒ i
— Binary sum
Plus :: [t,t]⇒t (infixr ‹+› 40 )
inl :: i⇒i
inr :: i⇒i
when :: [i, i⇒i, i⇒i]⇒i
— General sum and binary product
Sum :: [t, i⇒t]⇒t
pair :: [i,i]⇒i (‹(‹indent=1 notation=‹mixfix pair››<-,/->)›)
fst :: i⇒i
snd :: i⇒i
split :: [i, [i,i]⇒i] ⇒i
— General product and function space
Prod :: [t, i⇒t]⇒t
lambda :: (i ⇒ i) ⇒ i (binder ‹λ› 10 )
app :: [i,i]⇒i (infixl ‹‘› 60 )
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— Equality type
Eq :: [t,i,i]⇒t
eq :: i

Some inexplicable syntactic dependencies; in particular, "0" must be intro-
duced after the judgment forms.
syntax

-PROD :: [idt,t,t]⇒t (‹(‹indent=3 notation=‹binder
∏

››
∏

-:-./ -)› 10 )
-SUM :: [idt,t,t]⇒t (‹(‹indent=3 notation=‹binder

∑
››
∑

-:-./ -)› 10 )
syntax-consts

-PROD ⇀↽ Prod and
-SUM ⇀↽ Sum

translations∏
x:A. B ⇀↽ CONST Prod(A, λx. B)∑
x:A. B ⇀↽ CONST Sum(A, λx. B)

abbreviation Arrow :: [t,t]⇒t (infixr ‹−→› 30 )
where A −→ B ≡

∏
-:A. B

abbreviation Times :: [t,t]⇒t (infixr ‹×› 50 )
where A × B ≡

∑
-:A. B

Reduction: a weaker notion than equality; a hack for simplification. Re-
duce[a,b] means either that a = b : A for some A or else that a and b are
textually identical.
Does not verify a:A! Sound because only trans-red uses a Reduce premise.
No new theorems can be proved about the standard judgments.
axiomatization
where

refl-red:
∧

a. Reduce[a,a] and
red-if-equal:

∧
a b A. a = b : A =⇒ Reduce[a,b] and

trans-red:
∧

a b c A. [[a = b : A; Reduce[b,c]]] =⇒ a = c : A and

— Reflexivity

refl-type:
∧

A. A type =⇒ A = A and
refl-elem:

∧
a A. a : A =⇒ a = a : A and

— Symmetry

sym-type:
∧

A B. A = B =⇒ B = A and
sym-elem:

∧
a b A. a = b : A =⇒ b = a : A and

— Transitivity

trans-type:
∧

A B C . [[A = B; B = C ]] =⇒ A = C and
trans-elem:

∧
a b c A. [[a = b : A; b = c : A]] =⇒ a = c : A and
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equal-types:
∧

a A B. [[a : A; A = B]] =⇒ a : B and
equal-typesL:

∧
a b A B. [[a = b : A; A = B]] =⇒ a = b : B and

— Substitution

subst-type:
∧

a A B. [[a : A;
∧

z. z:A =⇒ B(z) type]] =⇒ B(a) type and
subst-typeL:

∧
a c A B D. [[a = c : A;

∧
z. z:A =⇒ B(z) = D(z)]] =⇒ B(a) =

D(c) and

subst-elem:
∧

a b A B. [[a : A;
∧

z. z:A =⇒ b(z):B(z)]] =⇒ b(a):B(a) and
subst-elemL:∧

a b c d A B. [[a = c : A;
∧

z. z:A =⇒ b(z)=d(z) : B(z)]] =⇒ b(a)=d(c) : B(a)
and

— The type N – natural numbers

NF : N type and
NI0 : 0 : N and
NI-succ:

∧
a. a : N =⇒ succ(a) : N and

NI-succL:
∧

a b. a = b : N =⇒ succ(a) = succ(b) : N and

NE :∧
p a b C . [[p: N ; a: C (0 );

∧
u v. [[u: N ; v: C (u)]] =⇒ b(u,v): C (succ(u))]]

=⇒ rec(p, a, λu v. b(u,v)) : C (p) and

NEL:∧
p q a b c d C . [[p = q : N ; a = c : C (0 );∧

u v. [[u: N ; v: C (u)]] =⇒ b(u,v) = d(u,v): C (succ(u))]]
=⇒ rec(p, a, λu v. b(u,v)) = rec(q,c,d) : C (p) and

NC0 :∧
a b C . [[a: C (0 );

∧
u v. [[u: N ; v: C (u)]] =⇒ b(u,v): C (succ(u))]]

=⇒ rec(0 , a, λu v. b(u,v)) = a : C (0 ) and

NC-succ:∧
p a b C . [[p: N ; a: C (0 );

∧
u v. [[u: N ; v: C (u)]] =⇒ b(u,v): C (succ(u))]] =⇒

rec(succ(p), a, λu v. b(u,v)) = b(p, rec(p, a, λu v. b(u,v))) : C (succ(p)) and

— The fourth Peano axiom. See page 91 of Martin-Löf’s book.
zero-ne-succ:

∧
a. [[a: N ; 0 = succ(a) : N ]] =⇒ 0 : F and

— The Product of a family of types

ProdF :
∧

A B. [[A type;
∧

x. x:A =⇒ B(x) type]] =⇒
∏

x:A. B(x) type and

ProdFL:∧
A B C D. [[A = C ;

∧
x. x:A =⇒ B(x) = D(x)]] =⇒

∏
x:A. B(x) =

∏
x:C .
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D(x) and

ProdI :∧
b A B. [[A type;

∧
x. x:A =⇒ b(x):B(x)]] =⇒ λx. b(x) :

∏
x:A. B(x) and

ProdIL:
∧

b c A B. [[A type;
∧

x. x:A =⇒ b(x) = c(x) : B(x)]] =⇒
λx. b(x) = λx. c(x) :

∏
x:A. B(x) and

ProdE :
∧

p a A B. [[p :
∏

x:A. B(x); a : A]] =⇒ p‘a : B(a) and
ProdEL:

∧
p q a b A B. [[p = q:

∏
x:A. B(x); a = b : A]] =⇒ p‘a = q‘b : B(a)

and

ProdC :
∧

a b A B. [[a : A;
∧

x. x:A =⇒ b(x) : B(x)]] =⇒ (λx. b(x)) ‘ a = b(a) :
B(a) and

ProdC2 :
∧

p A B. p :
∏

x:A. B(x) =⇒ (λx. p‘x) = p :
∏

x:A. B(x) and

— The Sum of a family of types

SumF :
∧

A B. [[A type;
∧

x. x:A =⇒ B(x) type]] =⇒
∑

x:A. B(x) type and
SumFL:

∧
A B C D. [[A = C ;

∧
x. x:A =⇒ B(x) = D(x)]] =⇒

∑
x:A. B(x) =∑

x:C . D(x) and

SumI :
∧

a b A B. [[a : A; b : B(a)]] =⇒ <a,b> :
∑

x:A. B(x) and
SumIL:

∧
a b c d A B. [[ a = c : A; b = d : B(a)]] =⇒ <a,b> = <c,d> :

∑
x:A.

B(x) and

SumE :
∧

p c A B C . [[p:
∑

x:A. B(x);
∧

x y. [[x:A; y:B(x)]] =⇒ c(x,y): C (<x,y>)]]
=⇒ split(p, λx y. c(x,y)) : C (p) and

SumEL:
∧

p q c d A B C . [[p = q :
∑

x:A. B(x);∧
x y. [[x:A; y:B(x)]] =⇒ c(x,y)=d(x,y): C (<x,y>)]]

=⇒ split(p, λx y. c(x,y)) = split(q, λx y. d(x,y)) : C (p) and

SumC :
∧

a b c A B C . [[a: A; b: B(a);
∧

x y. [[x:A; y:B(x)]] =⇒ c(x,y): C (<x,y>)]]
=⇒ split(<a,b>, λx y. c(x,y)) = c(a,b) : C (<a,b>) and

fst-def :
∧

a. fst(a) ≡ split(a, λx y. x) and
snd-def :

∧
a. snd(a) ≡ split(a, λx y. y) and

— The sum of two types

PlusF :
∧

A B. [[A type; B type]] =⇒ A+B type and
PlusFL:

∧
A B C D. [[A = C ; B = D]] =⇒ A+B = C+D and

PlusI-inl:
∧

a A B. [[a : A; B type]] =⇒ inl(a) : A+B and
PlusI-inlL:

∧
a c A B. [[a = c : A; B type]] =⇒ inl(a) = inl(c) : A+B and
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PlusI-inr :
∧

b A B. [[A type; b : B]] =⇒ inr(b) : A+B and
PlusI-inrL:

∧
b d A B. [[A type; b = d : B]] =⇒ inr(b) = inr(d) : A+B and

PlusE :∧
p c d A B C . [[p: A+B;∧

x. x:A =⇒ c(x): C (inl(x));∧
y. y:B =⇒ d(y): C (inr(y)) ]] =⇒ when(p, λx. c(x), λy. d(y)) : C (p) and

PlusEL:∧
p q c d e f A B C . [[p = q : A+B;∧

x. x: A =⇒ c(x) = e(x) : C (inl(x));∧
y. y: B =⇒ d(y) = f (y) : C (inr(y))]]

=⇒ when(p, λx. c(x), λy. d(y)) = when(q, λx. e(x), λy. f (y)) : C (p) and

PlusC-inl:∧
a c d A B C . [[a: A;∧

x. x:A =⇒ c(x): C (inl(x));∧
y. y:B =⇒ d(y): C (inr(y)) ]]

=⇒ when(inl(a), λx. c(x), λy. d(y)) = c(a) : C (inl(a)) and

PlusC-inr :∧
b c d A B C . [[b: B;∧

x. x:A =⇒ c(x): C (inl(x));∧
y. y:B =⇒ d(y): C (inr(y))]]

=⇒ when(inr(b), λx. c(x), λy. d(y)) = d(b) : C (inr(b)) and

— The type Eq

EqF :
∧

a b A. [[A type; a : A; b : A]] =⇒ Eq(A,a,b) type and
EqFL:

∧
a b c d A B. [[A = B; a = c : A; b = d : A]] =⇒ Eq(A,a,b) = Eq(B,c,d)

and
EqI :

∧
a b A. a = b : A =⇒ eq : Eq(A,a,b) and

EqE :
∧

p a b A. p : Eq(A,a,b) =⇒ a = b : A and

— By equality of types, can prove C (p) from C (eq), an elimination rule
EqC :

∧
p a b A. p : Eq(A,a,b) =⇒ p = eq : Eq(A,a,b) and

— The type F

FF : F type and
FE :

∧
p C . [[p: F ; C type]] =⇒ contr(p) : C and

FEL:
∧

p q C . [[p = q : F ; C type]] =⇒ contr(p) = contr(q) : C and

— The type T
— Martin-Löf’s book (page 68) discusses elimination and computation. Elim-
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ination can be derived by computation and equality of types, but with an extra
premise C (x) type x:T. Also computation can be derived from elimination.

TF : T type and
TI : tt : T and
TE :

∧
p c C . [[p : T ; c : C (tt)]] =⇒ c : C (p) and

TEL:
∧

p q c d C . [[p = q : T ; c = d : C (tt)]] =⇒ c = d : C (p) and
TC :

∧
p. p : T =⇒ p = tt : T

1.1 Tactics and derived rules for Constructive Type Theory

Formation rules.
lemmas form-rls = NF ProdF SumF PlusF EqF FF TF

and formL-rls = ProdFL SumFL PlusFL EqFL

Introduction rules. OMITTED:

• EqI, because its premise is an eqelem, not an elem.

lemmas intr-rls = NI0 NI-succ ProdI SumI PlusI-inl PlusI-inr TI
and intrL-rls = NI-succL ProdIL SumIL PlusI-inlL PlusI-inrL

Elimination rules. OMITTED:

• EqE, because its conclusion is an eqelem, not an elem

• TE, because it does not involve a constructor.

lemmas elim-rls = NE ProdE SumE PlusE FE
and elimL-rls = NEL ProdEL SumEL PlusEL FEL

OMITTED: eqC are TC because they make rewriting loop: p = un = un
= . . .

lemmas comp-rls = NC0 NC-succ ProdC SumC PlusC-inl PlusC-inr

Rules with conclusion a:A, an elem judgment.
lemmas element-rls = intr-rls elim-rls

Definitions are (meta)equality axioms.
lemmas basic-defs = fst-def snd-def

Compare with standard version: B is applied to UNSIMPLIFIED expression!
lemma SumIL2 : [[c = a : A; d = b : B(a)]] =⇒ <c,d> = <a,b> : Sum(A,B)

by (rule sym-elem) (rule SumIL; rule sym-elem)

lemmas intrL2-rls = NI-succL ProdIL SumIL2 PlusI-inlL PlusI-inrL
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Exploit p:Prod(A,B) to create the assumption z:B(a). A more natural form
of product elimination.
lemma subst-prodE :

assumes p: Prod(A,B)
and a: A
and

∧
z. z: B(a) =⇒ c(z): C (z)

shows c(p‘a): C (p‘a)
by (rule assms ProdE)+

1.2 Tactics for type checking
ML ‹
local

fun is-rigid-elem Const- ‹Elem for a -› = not(is-Var (head-of a))
| is-rigid-elem Const- ‹Eqelem for a - -› = not(is-Var (head-of a))
| is-rigid-elem Const- ‹Type for a› = not(is-Var (head-of a))
| is-rigid-elem - = false

in

(∗Try solving a:A or a=b:A by assumption provided a is rigid!∗)
fun test-assume-tac ctxt = SUBGOAL (fn (prem, i) =>

if is-rigid-elem (Logic.strip-assums-concl prem)
then assume-tac ctxt i else no-tac)

fun ASSUME ctxt tf i = test-assume-tac ctxt i ORELSE tf i

end
›

For simplification: type formation and checking, but no equalities between
terms.
lemmas routine-rls = form-rls formL-rls refl-type element-rls

ML ‹
fun routine-tac rls ctxt prems =

ASSUME ctxt (Bires.filt-resolve-from-net-tac ctxt 4 (Bires.build-net (prems @
rls)));

(∗Solve all subgoals A type using formation rules. ∗)
val form-net = Bires.build-net @{thms form-rls};
fun form-tac ctxt =
REPEAT-FIRST (ASSUME ctxt (Bires.filt-resolve-from-net-tac ctxt 1 form-net));

(∗Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. ∗)
fun typechk-tac ctxt thms =

let val tac =
Bires.filt-resolve-from-net-tac ctxt 3
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(Bires.build-net (thms @ @{thms form-rls} @ @{thms element-rls}))
in REPEAT-FIRST (ASSUME ctxt tac) end

(∗Solve a:A (a flexible, A rigid) by introduction rules.
Cannot use stringtrees (filt-resolve-tac) since
goals like ?a:SUM (A,B) have a trivial head−string ∗)

fun intr-tac ctxt thms =
let val tac =

Bires.filt-resolve-from-net-tac ctxt 1
(Bires.build-net (thms @ @{thms form-rls} @ @{thms intr-rls}))

in REPEAT-FIRST (ASSUME ctxt tac) end

(∗Equality proving: solve a=b:A (where a is rigid) by long rules. ∗)
fun equal-tac ctxt thms =

REPEAT-FIRST
(ASSUME ctxt
(Bires.filt-resolve-from-net-tac ctxt 3

(Bires.build-net (thms @ @{thms form-rls element-rls intrL-rls elimL-rls
refl-elem}))))
›

method-setup form = ‹Scan.succeed (fn ctxt => SIMPLE-METHOD (form-tac
ctxt))›
method-setup typechk = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(typechk-tac ctxt ths))›
method-setup intr = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(intr-tac ctxt ths))›
method-setup equal = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(equal-tac ctxt ths))›

1.3 Simplification

To simplify the type in a goal.
lemma replace-type: [[B = A; a : A]] =⇒ a : B

apply (rule equal-types)
apply (rule-tac [2 ] sym-type)
apply assumption+

done

Simplify the parameter of a unary type operator.
lemma subst-eqtyparg:

assumes 1 : a=c : A
and 2 :

∧
z. z:A =⇒ B(z) type

shows B(a) = B(c)
apply (rule subst-typeL)
apply (rule-tac [2 ] refl-type)
apply (rule 1 )

apply (erule 2 )
done
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Simplification rules for Constructive Type Theory.
lemmas reduction-rls = comp-rls [THEN trans-elem]

ML ‹
(∗Converts each goal e : Eq(A,a,b) into a=b:A for simplification.

Uses other intro rules to avoid changing flexible goals.∗)
val eqintr-net = Bires.build-net @{thms EqI intr-rls}
fun eqintr-tac ctxt =
REPEAT-FIRST (ASSUME ctxt (Bires.filt-resolve-from-net-tac ctxt 1 eqintr-net))

(∗∗ Tactics that instantiate CTT−rules.
Vars in the given terms will be incremented!
The (rtac EqE i) lets them apply to equality judgments. ∗∗)

fun NE-tac ctxt sp i =
TRY (resolve-tac ctxt @{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctxt [(((p, 0 ), Position.none), sp)] [] @{thm NE} i

fun SumE-tac ctxt sp i =
TRY (resolve-tac ctxt @{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctxt [(((p, 0 ), Position.none), sp)] [] @{thm SumE} i

fun PlusE-tac ctxt sp i =
TRY (resolve-tac ctxt @{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctxt [(((p, 0 ), Position.none), sp)] [] @{thm PlusE} i

(∗∗ Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ .
∗∗)

(∗Finds f :Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) ∗)
fun add-mp-tac ctxt i =

resolve-tac ctxt @{thms subst-prodE} i THEN assume-tac ctxt i THEN as-
sume-tac ctxt i

(∗Finds P−→Q and P in the assumptions, replaces implication by Q ∗)
fun mp-tac ctxt i = eresolve-tac ctxt @{thms subst-prodE} i THEN assume-tac
ctxt i

(∗safe when regarded as predicate calculus rules∗)
val safe-brls = sort Bires.subgoals-ord

[ (true, @{thm FE}), (true,asm-rl),
(false, @{thm ProdI}), (true, @{thm SumE}), (true, @{thm PlusE}) ]

val unsafe-brls =
[ (false, @{thm PlusI-inl}), (false, @{thm PlusI-inr}), (false, @{thm SumI}),
(true, @{thm subst-prodE}) ]

(∗0 subgoals vs 1 or more∗)
val (safe0-brls, safep-brls) =
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List.partition Bires.no-subgoals safe-brls

fun safestep-tac ctxt thms i =
form-tac ctxt ORELSE
resolve-tac ctxt thms i ORELSE
biresolve-tac ctxt safe0-brls i ORELSE mp-tac ctxt i ORELSE
DETERM (biresolve-tac ctxt safep-brls i)

fun safe-tac ctxt thms i = DEPTH-SOLVE-1 (safestep-tac ctxt thms i)

fun step-tac ctxt thms = safestep-tac ctxt thms ORELSE ′ biresolve-tac ctxt un-
safe-brls

(∗Fails unless it solves the goal!∗)
fun pc-tac ctxt thms = DEPTH-SOLVE-1 o (step-tac ctxt thms)
›

method-setup eqintr = ‹Scan.succeed (SIMPLE-METHOD o eqintr-tac)›
method-setup NE = ‹
Scan.lift Parse.embedded-inner-syntax >> (fn s => fn ctxt => SIMPLE-METHOD ′

(NE-tac ctxt s))
›
method-setup pc = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD ′

(pc-tac ctxt ths))›
method-setup add-mp = ‹Scan.succeed (SIMPLE-METHOD ′ o add-mp-tac)›

ML-file ‹rew.ML›
method-setup rew = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(rew-tac ctxt ths))›
method-setup hyp-rew = ‹Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(hyp-rew-tac ctxt ths))›

1.4 The elimination rules for fst/snd
lemma SumE-fst: p : Sum(A,B) =⇒ fst(p) : A

unfolding basic-defs
apply (erule SumE)
apply assumption
done

The first premise must be p:Sum(A,B)!!.
lemma SumE-snd:

assumes major : p: Sum(A,B)
and A type
and

∧
x. x:A =⇒ B(x) type

shows snd(p) : B(fst(p))
unfolding basic-defs
apply (rule major [THEN SumE ])
apply (rule SumC [THEN subst-eqtyparg, THEN replace-type])
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apply (typechk assms)
done

2 The two-element type (booleans and condition-
als)

definition Bool :: t
where Bool ≡ T+T

definition true :: i
where true ≡ inl(tt)

definition false :: i
where false ≡ inr(tt)

definition cond :: [i,i,i]⇒i
where cond(a,b,c) ≡ when(a, λ-. b, λ-. c)

lemmas bool-defs = Bool-def true-def false-def cond-def

2.1 Derivation of rules for the type Bool

Formation rule.
lemma boolF : Bool type

unfolding bool-defs by typechk

Introduction rules for true, false.
lemma boolI-true: true : Bool

unfolding bool-defs by typechk

lemma boolI-false: false : Bool
unfolding bool-defs by typechk

Elimination rule: typing of cond.
lemma boolE : [[p:Bool; a : C (true); b : C (false)]] =⇒ cond(p,a,b) : C (p)

unfolding bool-defs
apply (typechk; erule TE)
apply typechk

done

lemma boolEL: [[p = q : Bool; a = c : C (true); b = d : C (false)]]
=⇒ cond(p,a,b) = cond(q,c,d) : C (p)
unfolding bool-defs
apply (rule PlusEL)

apply (erule asm-rl refl-elem [THEN TEL])+
done

Computation rules for true, false.
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lemma boolC-true: [[a : C (true); b : C (false)]] =⇒ cond(true,a,b) = a : C (true)
unfolding bool-defs
apply (rule comp-rls)

apply typechk
apply (erule-tac [!] TE)
apply typechk

done

lemma boolC-false: [[a : C (true); b : C (false)]] =⇒ cond(false,a,b) = b : C (false)
unfolding bool-defs
apply (rule comp-rls)

apply typechk
apply (erule-tac [!] TE)
apply typechk

done

3 Elementary arithmetic
3.1 Arithmetic operators and their definitions
definition add :: [i,i]⇒i (infixr ‹#+› 65 )

where a#+b ≡ rec(a, b, λu v. succ(v))

definition diff :: [i,i]⇒i (infixr ‹−› 65 )
where a−b ≡ rec(b, a, λu v. rec(v, 0 , λx y. x))

definition absdiff :: [i,i]⇒i (infixr ‹|−|› 65 )
where a|−|b ≡ (a−b) #+ (b−a)

definition mult :: [i,i]⇒i (infixr ‹#∗› 70 )
where a#∗b ≡ rec(a, 0 , λu v. b #+ v)

definition mod :: [i,i]⇒i (infixr ‹mod› 70 )
where a mod b ≡ rec(a, 0 , λu v. rec(succ(v) |−| b, 0 , λx y. succ(v)))

definition div :: [i,i]⇒i (infixr ‹div› 70 )
where a div b ≡ rec(a, 0 , λu v. rec(succ(u) mod b, succ(v), λx y. v))

lemmas arith-defs = add-def diff-def absdiff-def mult-def mod-def div-def

3.2 Proofs about elementary arithmetic: addition, multipli-
cation, etc.

3.2.1 Addition

Typing of add: short and long versions.
lemma add-typing: [[a:N ; b:N ]] =⇒ a #+ b : N

unfolding arith-defs by typechk
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lemma add-typingL: [[a = c:N ; b = d:N ]] =⇒ a #+ b = c #+ d : N
unfolding arith-defs by equal

Computation for add: 0 and successor cases.
lemma addC0 : b:N =⇒ 0 #+ b = b : N

unfolding arith-defs by rew

lemma addC-succ: [[a:N ; b:N ]] =⇒ succ(a) #+ b = succ(a #+ b) : N
unfolding arith-defs by rew

3.2.2 Multiplication

Typing of mult: short and long versions.
lemma mult-typing: [[a:N ; b:N ]] =⇒ a #∗ b : N

unfolding arith-defs by (typechk add-typing)

lemma mult-typingL: [[a = c:N ; b = d:N ]] =⇒ a #∗ b = c #∗ d : N
unfolding arith-defs by (equal add-typingL)

Computation for mult: 0 and successor cases.
lemma multC0 : b:N =⇒ 0 #∗ b = 0 : N

unfolding arith-defs by rew

lemma multC-succ: [[a:N ; b:N ]] =⇒ succ(a) #∗ b = b #+ (a #∗ b) : N
unfolding arith-defs by rew

3.2.3 Difference

Typing of difference.
lemma diff-typing: [[a:N ; b:N ]] =⇒ a − b : N

unfolding arith-defs by typechk

lemma diff-typingL: [[a = c:N ; b = d:N ]] =⇒ a − b = c − d : N
unfolding arith-defs by equal

Computation for difference: 0 and successor cases.
lemma diffC0 : a:N =⇒ a − 0 = a : N

unfolding arith-defs by rew

Note: rec(a, 0 , λz w.z) is pred(a).
lemma diff-0-eq-0 : b:N =⇒ 0 − b = 0 : N

unfolding arith-defs
by (NE b) hyp-rew

Essential to simplify FIRST!! (Else we get a critical pair) succ(a) − succ(b)
rewrites to pred(succ(a) − b).
lemma diff-succ-succ: [[a:N ; b:N ]] =⇒ succ(a) − succ(b) = a − b : N

14



unfolding arith-defs
apply hyp-rew
apply (NE b)

apply hyp-rew
done

3.3 Simplification
lemmas arith-typing-rls = add-typing mult-typing diff-typing

and arith-congr-rls = add-typingL mult-typingL diff-typingL

lemmas congr-rls = arith-congr-rls intrL2-rls elimL-rls

lemmas arithC-rls =
addC0 addC-succ
multC0 multC-succ
diffC0 diff-0-eq-0 diff-succ-succ

ML ‹
structure Arith-simp = TSimpFun(

val refl = @{thm refl-elem}
val sym = @{thm sym-elem}
val trans = @{thm trans-elem}
val refl-red = @{thm refl-red}
val trans-red = @{thm trans-red}
val red-if-equal = @{thm red-if-equal}
val default-rls = @{thms arithC-rls comp-rls}
val routine-tac = routine-tac @{thms arith-typing-rls routine-rls}

)

fun arith-rew-tac ctxt prems =
make-rew-tac ctxt (Arith-simp.norm-tac ctxt (@{thms congr-rls}, prems))

fun hyp-arith-rew-tac ctxt prems =
make-rew-tac ctxt

(Arith-simp.cond-norm-tac ctxt (prove-cond-tac ctxt, @{thms congr-rls},
prems))
›

method-setup arith-rew = ‹
Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD (arith-rew-tac ctxt

ths))
›

method-setup hyp-arith-rew = ‹
Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD (hyp-arith-rew-tac

ctxt ths))
›
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3.4 Addition

Associative law for addition.
lemma add-assoc: [[a:N ; b:N ; c:N ]] =⇒ (a #+ b) #+ c = a #+ (b #+ c) : N

by (NE a) hyp-arith-rew

Commutative law for addition. Can be proved using three inductions. Must
simplify after first induction! Orientation of rewrites is delicate.
lemma add-commute: [[a:N ; b:N ]] =⇒ a #+ b = b #+ a : N

apply (NE a)
apply hyp-arith-rew

apply (rule sym-elem)
prefer 2
apply (NE b)

prefer 4
apply (NE b)

apply hyp-arith-rew
done

3.5 Multiplication

Right annihilation in product.
lemma mult-0-right: a:N =⇒ a #∗ 0 = 0 : N

apply (NE a)
apply hyp-arith-rew

done

Right successor law for multiplication.
lemma mult-succ-right: [[a:N ; b:N ]] =⇒ a #∗ succ(b) = a #+ (a #∗ b) : N

apply (NE a)
apply (hyp-arith-rew add-assoc [THEN sym-elem])

apply (assumption | rule add-commute mult-typingL add-typingL intrL-rls refl-elem)+
done

Commutative law for multiplication.
lemma mult-commute: [[a:N ; b:N ]] =⇒ a #∗ b = b #∗ a : N

apply (NE a)
apply (hyp-arith-rew mult-0-right mult-succ-right)

done

Addition distributes over multiplication.
lemma add-mult-distrib: [[a:N ; b:N ; c:N ]] =⇒ (a #+ b) #∗ c = (a #∗ c) #+ (b
#∗ c) : N

apply (NE a)
apply (hyp-arith-rew add-assoc [THEN sym-elem])

done

Associative law for multiplication.
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lemma mult-assoc: [[a:N ; b:N ; c:N ]] =⇒ (a #∗ b) #∗ c = a #∗ (b #∗ c) : N
apply (NE a)

apply (hyp-arith-rew add-mult-distrib)
done

3.6 Difference

Difference on natural numbers, without negative numbers

• a − b = 0 iff a ≤ b

• a − b = succ(c) iff a > b

lemma diff-self-eq-0 : a:N =⇒ a − a = 0 : N
apply (NE a)

apply hyp-arith-rew
done

lemma add-0-right: [[c : N ; 0 : N ; c : N ]] =⇒ c #+ 0 = c : N
by (rule addC0 [THEN [3 ] add-commute [THEN trans-elem]])

Addition is the inverse of subtraction: if b ≤ x then b #+ (x − b) = x. An
example of induction over a quantified formula (a product). Uses rewriting
with a quantified, implicative inductive hypothesis.
schematic-goal add-diff-inverse-lemma:

b:N =⇒ ?a :
∏

x:N . Eq(N , b−x, 0 ) −→ Eq(N , b #+ (x−b), x)
apply (NE b)

— strip one "universal quantifier" but not the "implication"
apply (rule-tac [3 ] intr-rls)
— case analysis on x in succ(u) ≤ x −→ succ(u) #+ (x − succ(u)) = x
prefer 4
apply (NE x)

apply assumption
— Prepare for simplification of types – the antecedent succ(u) ≤ x

apply (rule-tac [2 ] replace-type)
apply (rule-tac [1 ] replace-type)
apply arith-rew

— Solves first 0 goal, simplifies others. Two sugbgoals remain. Both follow by
rewriting, (2) using quantified induction hyp.

apply intr — strips remaining
∏

s
apply (hyp-arith-rew add-0-right)

apply assumption
done

Version of above with premise b − a = 0 i.e. a ≥ b. Using ProdE does
not work – for ?B(?a) is ambiguous. Instead, add-diff-inverse-lemma states
the desired induction scheme; the use of THEN below instantiates Vars in
ProdE automatically.
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lemma add-diff-inverse: [[a:N ; b:N ; b − a = 0 : N ]] =⇒ b #+ (a−b) = a : N
apply (rule EqE)
apply (rule add-diff-inverse-lemma [THEN ProdE , THEN ProdE ])

apply (assumption | rule EqI )+
done

3.7 Absolute difference

Typing of absolute difference: short and long versions.
lemma absdiff-typing: [[a:N ; b:N ]] =⇒ a |−| b : N

unfolding arith-defs by typechk

lemma absdiff-typingL: [[a = c:N ; b = d:N ]] =⇒ a |−| b = c |−| d : N
unfolding arith-defs by equal

lemma absdiff-self-eq-0 : a:N =⇒ a |−| a = 0 : N
unfolding absdiff-def by (arith-rew diff-self-eq-0 )

lemma absdiffC0 : a:N =⇒ 0 |−| a = a : N
unfolding absdiff-def by hyp-arith-rew

lemma absdiff-succ-succ: [[a:N ; b:N ]] =⇒ succ(a) |−| succ(b) = a |−| b : N
unfolding absdiff-def by hyp-arith-rew

Note how easy using commutative laws can be? ...not always...
lemma absdiff-commute: [[a:N ; b:N ]] =⇒ a |−| b = b |−| a : N

unfolding absdiff-def
by (rule add-commute) (typechk diff-typing)

If a + b = 0 then a = 0. Surprisingly tedious.
schematic-goal add-eq0-lemma: [[a:N ; b:N ]] =⇒ ?c : Eq(N ,a#+b,0 ) −→ Eq(N ,a,0 )

apply (NE a)
apply (rule-tac [3 ] replace-type)
apply arith-rew

apply intr — strips remaining
∏

s
apply (rule-tac [2 ] zero-ne-succ [THEN FE ])

apply (erule-tac [3 ] EqE [THEN sym-elem])
apply (typechk add-typing)

done

Version of above with the premise a + b = 0. Again, resolution instantiates
variables in ProdE.
lemma add-eq0 : [[a:N ; b:N ; a #+ b = 0 : N ]] =⇒ a = 0 : N

apply (rule EqE)
apply (rule add-eq0-lemma [THEN ProdE ])

apply (rule-tac [3 ] EqI )
apply typechk

done
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Here is a lemma to infer a − b = 0 and b − a = 0 from a |−| b = 0, below.
schematic-goal absdiff-eq0-lem:
[[a:N ; b:N ; a |−| b = 0 : N ]] =⇒ ?a : Eq(N , a−b, 0 ) × Eq(N , b−a, 0 )
unfolding absdiff-def
apply intr
apply eqintr
apply (rule-tac [2 ] add-eq0 )

apply (rule add-eq0 )
apply (rule-tac [6 ] add-commute [THEN trans-elem])

apply (typechk diff-typing)
done

If a |−| b = 0 then a = b proof: a − b = 0 and b − a = 0, so b = a + (b
− a) = a + 0 = a.
lemma absdiff-eq0 : [[a |−| b = 0 : N ; a:N ; b:N ]] =⇒ a = b : N

apply (rule EqE)
apply (rule absdiff-eq0-lem [THEN SumE ])

apply eqintr
apply (rule add-diff-inverse [THEN sym-elem, THEN trans-elem])

apply (erule-tac [3 ] EqE)
apply (hyp-arith-rew add-0-right)

done

3.8 Remainder and Quotient

Typing of remainder: short and long versions.
lemma mod-typing: [[a:N ; b:N ]] =⇒ a mod b : N

unfolding mod-def by (typechk absdiff-typing)

lemma mod-typingL: [[a = c:N ; b = d:N ]] =⇒ a mod b = c mod d : N
unfolding mod-def by (equal absdiff-typingL)

Computation for mod: 0 and successor cases.
lemma modC0 : b:N =⇒ 0 mod b = 0 : N

unfolding mod-def by (rew absdiff-typing)

lemma modC-succ: [[a:N ; b:N ]] =⇒
succ(a) mod b = rec(succ(a mod b) |−| b, 0 , λx y. succ(a mod b)) : N
unfolding mod-def by (rew absdiff-typing)

Typing of quotient: short and long versions.
lemma div-typing: [[a:N ; b:N ]] =⇒ a div b : N

unfolding div-def by (typechk absdiff-typing mod-typing)

lemma div-typingL: [[a = c:N ; b = d:N ]] =⇒ a div b = c div d : N
unfolding div-def by (equal absdiff-typingL mod-typingL)
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lemmas div-typing-rls = mod-typing div-typing absdiff-typing

Computation for quotient: 0 and successor cases.
lemma divC0 : b:N =⇒ 0 div b = 0 : N

unfolding div-def by (rew mod-typing absdiff-typing)

lemma divC-succ: [[a:N ; b:N ]] =⇒
succ(a) div b = rec(succ(a) mod b, succ(a div b), λx y. a div b) : N
unfolding div-def by (rew mod-typing)

Version of above with same condition as the mod one.
lemma divC-succ2 : [[a:N ; b:N ]] =⇒

succ(a) div b =rec(succ(a mod b) |−| b, succ(a div b), λx y. a div b) : N
apply (rule divC-succ [THEN trans-elem])

apply (rew div-typing-rls modC-succ)
apply (NE succ (a mod b) |−|b)

apply (rew mod-typing div-typing absdiff-typing)
done

For case analysis on whether a number is 0 or a successor.
lemma iszero-decidable: a:N =⇒ rec(a, inl(eq), λka kb. inr(<ka, eq>)) :

Eq(N ,a,0 ) + (
∑

x:N . Eq(N ,a, succ(x)))
apply (NE a)

apply (rule-tac [3 ] PlusI-inr)
apply (rule-tac [2 ] PlusI-inl)
apply eqintr

apply equal
done

Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0.
lemma mod-div-equality: [[a:N ; b:N ]] =⇒ a mod b #+ (a div b) #∗ b = a : N

apply (NE a)
apply (arith-rew div-typing-rls modC0 modC-succ divC0 divC-succ2 )

apply (rule EqE)
— case analysis on succ(u mod b) |−| b

apply (rule-tac a1 = succ (u mod b) |−| b in iszero-decidable [THEN PlusE ])
apply (erule-tac [3 ] SumE)
apply (hyp-arith-rew div-typing-rls modC0 modC-succ divC0 divC-succ2 )
— Replace one occurrence of b by succ(u mod b). Clumsy!

apply (rule add-typingL [THEN trans-elem])
apply (erule EqE [THEN absdiff-eq0 , THEN sym-elem])
apply (rule-tac [3 ] refl-elem)
apply (hyp-arith-rew div-typing-rls)

done

end
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4 Easy examples: type checking and type deduc-
tion

theory Typechecking
imports ../CTT
begin

4.1 Single-step proofs: verifying that a type is well-formed
schematic-goal ?A type

by (rule form-rls)

schematic-goal ?A type
apply (rule form-rls)
back
apply (rule form-rls)

apply (rule form-rls)
done

schematic-goal
∏

z:?A . N + ?B(z) type
apply (rule form-rls)
apply (rule form-rls)

apply (rule form-rls)
apply (rule form-rls)

apply (rule form-rls)
done

4.2 Multi-step proofs: Type inference
lemma

∏
w:N . N + N type

by form

schematic-goal <0 , succ(0 )> : ?A
apply intr done

schematic-goal
∏

w:N . Eq(?A,w,w) type
apply typechk done

schematic-goal
∏

x:N .
∏

y:N . Eq(?A,x,y) type
apply typechk done

typechecking an application of fst
schematic-goal (λu. split(u, λv w. v)) ‘ <0 , succ(0 )> : ?A

apply typechk done

typechecking the predecessor function
schematic-goal λn. rec(n, 0 , λx y. x) : ?A

apply typechk done
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typechecking the addition function
schematic-goal λn. λm. rec(n, m, λx y. succ(y)) : ?A

apply typechk done

Proofs involving arbitrary types. For concreteness, every type variable left
over is forced to be N
method-setup N =
‹Scan.succeed (fn ctxt => SIMPLE-METHOD (TRYALL (resolve-tac ctxt @{thms

NF})))›

schematic-goal λw. <w,w> : ?A
apply typechk
apply N
done

schematic-goal λx. λy. x : ?A
apply typechk
apply N

done

typechecking fst (as a function object)
schematic-goal λi. split(i, λj k. j) : ?A

apply typechk
apply N

done

end

5 Examples with elimination rules
theory Elimination
imports ../CTT
begin

This finds the functions fst and snd!
schematic-goal [folded basic-defs]: A type =⇒ ?a : (A × A) −→ A
apply pc
done

schematic-goal [folded basic-defs]: A type =⇒ ?a : (A × A) −→ A
apply pc
back
done

Double negation of the Excluded Middle
schematic-goal A type =⇒ ?a : ((A + (A−→F)) −→ F) −→ F

apply intr
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apply (rule ProdE)
apply assumption

apply pc
done

Experiment: the proof above in Isar
lemma

assumes A type shows (λf . f ‘ inr(λy. f ‘ inl(y))) : ((A + (A−→F)) −→ F)
−→ F
proof intr

fix f
assume f : f : A + (A −→ F) −→ F
with assms have inr(λy. f ‘ inl(y)) : A + (A −→ F)

by pc
then show f ‘ inr(λy. f ‘ inl(y)) : F

by (rule ProdE [OF f ])
qed (rule assms)+

schematic-goal [[A type; B type]] =⇒ ?a : (A × B) −→ (B × A)
apply pc
done

Binary sums and products
schematic-goal [[A type; B type; C type]] =⇒ ?a : (A + B −→ C ) −→ (A −→ C )
× (B −→ C )

apply pc
done

schematic-goal [[A type; B type; C type]] =⇒ ?a : A × (B + C ) −→ (A × B +
A × C )

by pc

schematic-goal
assumes A type

and
∧

x. x:A =⇒ B(x) type
and

∧
x. x:A =⇒ C (x) type

shows ?a : (
∑

x:A. B(x) + C (x)) −→ (
∑

x:A. B(x)) + (
∑

x:A. C (x))
apply (pc assms)
done

Construction of the currying functional
schematic-goal [[A type; B type; C type]] =⇒ ?a : (A × B −→ C ) −→ (A −→ (B
−→ C ))

apply pc
done
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schematic-goal
assumes A type

and
∧

x. x:A =⇒ B(x) type
and

∧
z. z: (

∑
x:A. B(x)) =⇒ C (z) type

shows ?a :
∏

f : (
∏

z : (
∑

x:A . B(x)) . C (z)).
(
∏

x:A .
∏

y:B(x) . C (<x,y>))
apply (pc assms)
done

Martin-Löf (1984), page 48: axiom of sum-elimination (uncurry)
schematic-goal [[A type; B type; C type]] =⇒ ?a : (A −→ (B −→ C )) −→ (A ×
B −→ C )

apply pc
done

schematic-goal
assumes A type

and
∧

x. x:A =⇒ B(x) type
and

∧
z. z: (

∑
x:A . B(x)) =⇒ C (z) type

shows ?a : (
∏

x:A .
∏

y:B(x) . C (<x,y>))
−→ (

∏
z : (

∑
x:A . B(x)) . C (z))

apply (pc assms)
done

Function application
schematic-goal [[A type; B type]] =⇒ ?a : ((A −→ B) × A) −→ B

apply pc
done

Basic test of quantifier reasoning
schematic-goal

assumes A type
and B type
and

∧
x y. [[x:A; y:B]] =⇒ C (x,y) type

shows
?a : (

∑
y:B .

∏
x:A . C (x,y))

−→ (
∏

x:A .
∑

y:B . C (x,y))
apply (pc assms)
done

Martin-Löf (1984) pages 36-7: the combinator S
schematic-goal

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows ?a : (

∏
x:A.

∏
y:B(x). C (x,y))

−→ (
∏

f : (
∏

x:A. B(x)).
∏

x:A. C (x, f‘x))
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apply (pc assms)
done

Martin-Löf (1984) page 58: the axiom of disjunction elimination
schematic-goal

assumes A type
and B type
and

∧
z. z: A+B =⇒ C (z) type

shows ?a : (
∏

x:A. C (inl(x))) −→ (
∏

y:B. C (inr(y)))
−→ (

∏
z: A+B. C (z))

apply (pc assms)
done

schematic-goal [folded basic-defs]:
[[A type; B type; C type]] =⇒ ?a : (A −→ B × C ) −→ (A −→ B) × (A −→ C )
apply pc
done

AXIOM OF CHOICE! Delicate use of elimination rules
schematic-goal

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows ?a : (

∏
x:A.

∑
y:B(x). C (x,y)) −→ (

∑
f : (

∏
x:A. B(x)).

∏
x:A. C (x,

f‘x))
apply (intr assms)
prefer 2 apply add-mp
prefer 2 apply add-mp
apply (erule SumE-fst)

apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)
apply (rule-tac [4 ] SumE-snd)

apply (typechk SumE-fst assms)
done

A structured proof of AC
lemma Axiom-of-Choice:

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows (λf . <λx. fst(f‘x), λx. snd(f‘x)>)

: (
∏

x:A.
∑

y:B(x). C (x,y)) −→ (
∑

f : (
∏

x:A. B(x)).
∏

x:A. C (x, f‘x))
proof (intr assms)

fix f a
assume f : f :

∏
x:A. Sum(B(x), C (x)) and a : A

then have fa: f‘a : Sum(B(a), C (a))
by (rule ProdE)
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then show fst(f ‘ a) : B(a)
by (rule SumE-fst)

have snd(f ‘ a) : C (a, fst(f ‘ a))
by (rule SumE-snd [OF fa]) (typechk SumE-fst assms ‹a : A›)

moreover have (λx. fst(f ‘ x)) ‘ a = fst(f ‘ a) : B(a)
by (rule ProdC [OF ‹a : A›]) (typechk SumE-fst f )

ultimately show snd(f‘a) : C (a, (λx. fst(f ‘ x)) ‘ a)
by (intro replace-type [OF subst-eqtyparg]) (typechk SumE-fst assms ‹a : A›)

qed

Axiom of choice. Proof without fst, snd. Harder still!
schematic-goal [folded basic-defs]:

assumes A type
and

∧
x. x:A =⇒ B(x) type

and
∧

x y. [[x:A; y:B(x)]] =⇒ C (x,y) type
shows ?a : (

∏
x:A.

∑
y:B(x). C (x,y)) −→ (

∑
f : (

∏
x:A. B(x)).

∏
x:A. C (x,

f‘x))
apply (intr assms)

apply (rule ProdE [THEN SumE ])
apply assumption

apply assumption
apply assumption

apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)
apply (erule-tac [4 ] ProdE [THEN SumE ])
apply (typechk assms)

apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)

apply (typechk assms)
apply assumption
done

Example of sequent-style deduction
schematic-goal

assumes A type
and B type
and

∧
z. z:A × B =⇒ C (z) type

shows ?a : (
∑

z:A × B. C (z)) −→ (
∑

u:A.
∑

v:B. C (<u,v>))
apply (rule intr-rls)
apply (tactic ‹biresolve-tac context safe-brls 2 ›)

apply (rule-tac [2 ] a = y in ProdE)
apply (typechk assms)

apply (rule SumE , assumption)
apply intr

defer 1
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apply assumption+
apply (typechk assms)
done

end

6 Equality reasoning by rewriting
theory Equality

imports ../CTT
begin

lemma split-eq: p : Sum(A,B) =⇒ split(p,pair) = p : Sum(A,B)
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew
done

lemma when-eq: [[A type; B type; p : A+B]] =⇒ when(p,inl,inr) = p : A + B
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew

done

in the "rec" formulation of addition, 0 + n = n

lemma p:N =⇒ rec(p,0 , λy z. succ(y)) = p : N
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew

done

the harder version, n+ 0 = n: recursive, uses induction hypothesis
lemma p:N =⇒ rec(p,0 , λy z. succ(z)) = p : N

apply (rule EqE)
apply (rule elim-rls, assumption)
apply hyp-rew

done

Associativity of addition
lemma [[a:N ; b:N ; c:N ]]
=⇒ rec(rec(a, b, λx y. succ(y)), c, λx y. succ(y)) =

rec(a, rec(b, c, λx y. succ(y)), λx y. succ(y)) : N
apply (NE a)

apply hyp-rew
done

Martin-Löf (1984) page 62: pairing is surjective
lemma p : Sum(A,B) =⇒ <split(p,λx y. x), split(p,λx y. y)> = p : Sum(A,B)
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apply (rule EqE)
apply (rule elim-rls, assumption)
apply (tactic ‹DEPTH-SOLVE-1 (rew-tac context [])›)
done

lemma [[a : A; b : B]] =⇒ (λu. split(u, λv w.<w,v>)) ‘ <a,b> = <b,a> :
∑

x:B.
A

by rew

a contrived, complicated simplication, requires sum-elimination also
lemma (λf . λx. f‘(f‘x)) ‘ (λu. split(u, λv w.<w,v>)) =

λx. x :
∏

x:(
∑

y:N . N ). (
∑

y:N . N )
apply (rule reduction-rls)

apply (rule-tac [3 ] intrL-rls)
apply (rule-tac [4 ] EqE)
apply (erule-tac [4 ] SumE)

apply rew
done

end

7 Synthesis examples, using a crude form of nar-
rowing

theory Synthesis
imports ../CTT

begin

discovery of predecessor function
schematic-goal ?a :

∑
pred:?A . Eq(N , pred‘0 , 0 ) × (

∏
n:N . Eq(N , pred ‘

succ(n), n))
apply intr

apply eqintr
apply (rule-tac [3 ] reduction-rls)

apply (rule-tac [5 ] comp-rls)
apply rew

done

the function fst as an element of a function type
schematic-goal [folded basic-defs]:

A type =⇒ ?a:
∑

f :?B .
∏

i:A.
∏

j:A. Eq(A, f ‘ <i,j>, i)
apply intr
apply eqintr
apply (rule-tac [2 ] reduction-rls)

apply (rule-tac [4 ] comp-rls)
apply typechk
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now put in A everywhere

apply assumption+
done

An interesting use of the eliminator, when
schematic-goal ?a :

∏
i:N . Eq(?A, ?b(inl(i)), <0 , i>)

× Eq(?A, ?b(inr(i)), <succ(0 ), i>)
apply intr
apply eqintr
apply (rule comp-rls)

apply rew
done

schematic-goal ?a :
∏

i:N . Eq(?A(i), ?b(inl(i)), <0 , i>)
× Eq(?A(i), ?b(inr(i)), <succ(0 ),i>)

oops

A tricky combination of when and split
schematic-goal [folded basic-defs]:

?a :
∏

i:N .
∏

j:N . Eq(?A, ?b(inl(<i,j>)), i)
× Eq(?A, ?b(inr(<i,j>)), j)

apply intr
apply eqintr
apply (rule PlusC-inl [THEN trans-elem])

apply (rule-tac [4 ] comp-rls)
apply (rule-tac [7 ] reduction-rls)

apply (rule-tac [10 ] comp-rls)
apply typechk

done

schematic-goal ?a :
∏

i:N .
∏

j:N . Eq(?A(i,j), ?b(inl(<i,j>)), i)
× Eq(?A(i,j), ?b(inr(<i,j>)), j)

oops

schematic-goal ?a :
∏

i:N .
∏

j:N . Eq(N , ?b(inl(<i,j>)), i)
× Eq(N , ?b(inr(<i,j>)), j)

oops

Deriving the addition operator
schematic-goal [folded arith-defs]:

?c :
∏

n:N . Eq(N , ?f (0 ,n), n)
× (

∏
m:N . Eq(N , ?f (succ(m), n), succ(?f (m,n))))

apply intr
apply eqintr
apply (rule comp-rls)
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apply rew
done

The addition function – using explicit lambdas
schematic-goal [folded arith-defs]:

?c :
∑

plus : ?A .∏
x:N . Eq(N , plus‘0‘x, x)

× (
∏

y:N . Eq(N , plus‘succ(y)‘x, succ(plus‘y‘x)))
apply intr

apply eqintr
apply (tactic resolve-tac context [TSimp.split-eqn] 3 )
apply (tactic SELECT-GOAL (rew-tac context []) 4 )

apply (tactic resolve-tac context [TSimp.split-eqn] 3 )
apply (tactic SELECT-GOAL (rew-tac context []) 4 )

apply (rule-tac [3 ] p = y in NC-succ)

apply rew
done

end
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