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theory CTT
imports Pure
begin

1 Constructive Type Theory: axiomatic basis

ML-file <~ /src/ Provers/typedsimp. ML)
setup Pure-Thy.old-appl-syntaz-setup

typedecl
typedecl ¢
typedecl o
consts
— Judgments
Type it = prop (<(<notation=<postfix Type>>- type)> [10] 5)
Eqtype  :: [t,t]=prop (<(<notation=<infix Eqtyper>- =/ -)» [10,10] 5)
Elem 2[4, t]=prop (<(«notation=<infiz Elem»- /: -)» [10,10] 5)
Egelem  :: [i,i,t]=prop  («(<notation=<mizfix Egelems»»- =/ -:/ -)» [10,10,10]
5)
Reduce  :: [i,i]=prop («Reducel-,-])
— Types for truth values
F wt
T ot — F is empty, T contains one element
contr e
tt n
— Natural numbers
N it
Zero ) (x0»)
succ n =1
rec (4, 4, [4d]=1] = 0
— Binary sum
Plus w [t E]=t (infixr <+» 40)
inl e
mr =1
when  : [i, (=1, i=i]=1
— General sum and binary product
Sum n [t i=t]=t
pair i [4,d)=1 (<(<indent=1 notation=¢mizfix pair»><-,/->))
fst =
snd =1
split i, [4,i]=1] =i
— General product and function space
Prod a [ty =t
lambda == (i = i) = i (binder <\ 10)
app i [4,d])=1 (infix] <% 60)



— Equality type
Eq w[t1,d] =t
eq g

Some inexplicable syntactic dependencies; in particular, "0" must be intro-
duced after the judgment forms.

syntax
-PROD :: [idt,tt]=t («(vindent=3 notation=<binder [[ »[[--./ -)» 10)
-SUM  :: [ide,tt]=t (<(<indent=3 notation=<binder > »> -~/ -)» 10)

syntax-consts
-PROD = Prod and
-SUM = Sum
translations
[[z:A. B = CONST Prod(A, M\z. B)
> x:A. B = CONST Sum(A, \z. B)

abbreviation Arrow :: [t,t]=t (infixr (—> 30)
where A — B =][-A. B

abbreviation Times :: [t,t]=t (infixr <x) 50)
where A x B=) -A. B

Reduction: a weaker notion than equality; a hack for simplification. Re-
duce|a,b] means either that a = b : A for some A or else that a and b are
textually identical.

Does not verify a:A! Sound because only trans-red uses a Reduce premise.
No new theorems can be proved about the standard judgments.

axiomatization
where
refl-red: Na. Reducela,a] and
red-if-equal: Na b A. a = b : A = Reduce|a,b] and
trans-red: Na b ¢ A. Ja = b : A; Reduce[b,c]] = a = ¢ : A and

— Reflexivity

refl-type: NA. A type = A = A and
refl-elem: Na A. a : A = a=a: A and

— Symmetry

sym-type: NA B. A= B=— B = A and
sym-elem: NabA a=b: A= b=a:Aand

— Transitivity

=

trans-type: NA B C.[A=B; B=C
b: A

— A = C and
trans-elem: Aa b c A. Ja = b=c:A]

a=—c: Aand

w



equal-types: Na A B.[a: A; A= B] = a: B and
equal-typesL: Na b A B.[a=1b: A; A= B] = a=15: B and

— Substitution

subst-type:  Aa A B. [a : A; Nz. 22:A = B(z) type] = B(a) type and
subst-typeL: Na c A BD.[a=c: A N\z. A = B(z) = D(z)] = B(a) =
D(c) and

subst-elem: Na b A B. [a: A; Nz. 224 = b(2):B(z)] = b(a):B(a) and
subst-elemL:
(/1\a becdAB. [Ja=c: A; Nz. 2A = b(2)=d(z) : B(z)] = b(a)=d(c) : B(a)

— The type N — natural numbers

NF: N type and

NIO: 0 : N and

NI-succ: Na. a : N = succ(a) : N and

NI-succL: Nab.a =1b: N = succ(a) = suce(b) : N and

NE:
Ap ad C.[p: N;a: C(0); Nuwv. [u: N; v: C(u)] = b(u,v): C(succ(u))]
= rec(p, a, \u v. b(u,v)) : C(p) and

NEL:
ApgqabedC.[p=q:N;a=c: C(0)

Au v. [u: N5 v: C(u)] = b(u,v) = d(u,v): C(succ(u))]
= rec(p, a, A\u v. b(u,v)) = rec(q,¢,d) : C(p) and

NCO:
Na b C. Ja: C(0); Auwv. Ju: N; v: C(u)] = b(u,v): C(suce(w))]
= rec(0, a, Au v. b(u,v)) = a: C(0) and

NC-succe:

Ap abd C.[p: N; a: C(0); Nuw. [u: N; v: C(u)] = b(u,v): C(succ(u))]

w))] =
rec(suce(p), a, Au v. b(u,v)) = b(p, rec(p, a, Au v. b(u,v))) : C(succ(p)) and

— The fourth Peano axiom. See page 91 of Martin-Lof’s book.
zero-ne-succ: Na. [a: N; 0 = suce(a) : N| = 0: F and
— The Product of a family of types

ProdF: NA B. [A type; \x. ©:A = B(z) type] = [[x:A. B(z) type and

ProdFL:
NA B CD.[A=C; A\z. :A = B(z) = D(z)] = [[=:A. B(z) =[] =:C.



D(z) and

ProdlI:
Ab A B. [A type; N\z. 2:A = b(2):B(z)] = Az. b(z) : [[z:A. B(z) and

ProdIL: \b ¢ A B. [A type; Nz. ©:A = b(z) = ¢(z) : B(z)] =
Az. b(z) = Az. ¢(z) : []z:A. B(z) and

ProdE: Ap a A B.[p:]]z:A. B(z); a: A] = p‘a: B(a) and
ProdEL: Ap qab A B. [p=q [[:A. Bz); a =b: A] = p‘a = ¢‘b: B(a)
and

ProdC: Na b A B. [a: A4; Nz. 2:A = b(z) : B(z)] = (Az. b(z)) ‘a = ba) :
B(a) and

ProdC2: Ap A B. p : [[x:A. B(z) = (Az. pz) = p: [[2:A. B(z) and

— The Sum of a family of types

SumF: AA B. [A type; Nz. ©:A = B(z) type] = > z:A. B(z) type and
SumFL: NA B CD. A= C; N\z. :A = B(z) = D(z)] = > x:A. B(z) =
> x:C. D(z) and

Suml: NabAB.[a: A;b: Bla)] = <a,b>: ) 2:A. B(z) and
SumIL: NAabecdAB. [a=c:A;b=d: Bla)] = <a,b> = <¢,d>: > x:A.
B(z) and

SumE: Ap ¢ A B C. [p: > z:A. B(z); Nz y. [2:4; v:B(z)] = c(z,y): C(<z,y>)]
= split(p, Az y. c¢(z,y)) : C(p) and

SumEL: Ap qcd ABC.[p=gq:> z:A B(z);
Nz y. [z:4; y:B(2)] = c(zy)=d(z,y): C(<z,y>)]
= split(p, Az y. c(z,y)) = split(q, Az y. d(z,y)) : C(p) and

SumC: NabcABC.[a: A; b: B(a); Az y. [2:4; y:B(z)] = c(z,y): C(<z,y>)]
= split(<a,b>, Az y. c¢(z,y)) = c(a,b) : C(<a,b>) and

fst-def: Aa. fst(a) = split(a, Az y. x) and
snd-def:  Aa. snd(a) = split(a, Az y. y) and

— The sum of two types

PlusF: NA B. [A type; B type] = A+ B type and
PlusFL: NkA B CD. [A = C; B= D] = A+B = C+D and

PlusI-inl: Na A B. [a : A; B type] = inl(a) : A+B and
PlusI-inlL: Na ¢ A B. [a = ¢ : A; B type] = inl(a) = inl(c) : A+B and



Plusl-inr: \b A B. [A type; b : B] = inr(b) : A+B and
PlusI-inrL: A\b d A B. [A type; b = d : B] = inr(b) = inr(d) : A+B and

PlusE:
Ap cdABC. [p: A+B;
Nz. ©:A = c(z): C(inl(z));
Ny. y:B = d(y): C(inr(y)) | = when(p, Az. c(z), Ay. d(y)) : C(p) and

PlusEL:
ANpqgcdefABC.[p=q: A+B;
Nz. 22 A = ¢(z) = e(z) : C(inl(z));
Ny- y: B = d(y) = f(y) : Clinr(y))]
= when(p, A\z. ¢(z), A\y. d(y)) = when(q, Az. e(x), Ay. f(y)) : C(p) and

PlusC-inl:
NacdA BC. [a: 4
Nz. 2:A = ¢(z): C(inl(x));
C

Ny y:B = d(y): C(inr(y)) |
= when(inl(a), Az. ¢(z), A\y. d(y)) = ¢(a) : C(inl(a)) and
PlusC-inr:
NbcdABC. [b: B
Nz. 2:A = ¢(z): C(inl(x));
Ny- y:B = d(y): C(inr(y))]

= when(inr(b), A\z. c(z), A\y. d(y)) = d(b) : C(inr(d)) and

— The type Eq

EqF: Na b A. [A type; a : A; b : A] = Eq(A,a,b) type and

EqFL: NabcdAB. [A=B;a=c: A;b=d: A] = Eq(4,a,b) = Eq(B,c,d)
and

Eql: N\abA. a=0b: A= eq: Fq(A,a,b) and

EqE: Ap ab A. p: Eq(A,a,b) = a=b: A and

— By equality of types, can prove C(p) from C(egq), an elimination rule
EqC: ApabA. p: Eq(A,a,b) = p = eq : Eq(A,a,b) and

— The type F

FF: F type and

FE: N\p C. [p: F; C type] = contr(p) : C and
FEL: Ap q C. [p = q : F; C type] = contr(p) = contr(q) : C and

— The type T
— Martin-L6f’s book (page 68) discusses elimination and computation. Elim-



ination can be derived by computation and equality of types, but with an extra
premise C(z) type z:T. Also computation can be derived from elimination.

TF: T type and

TI: tt : T and

TE:ApcC.[p:T;c: C(tt)] =

TEL: ApqcdC.[p=q:T;c=

TC: N\p.p: T=p=1tt:T
1.1 Tactics and derived rules for Constructive Type Theory

Formation rules.

lemmas form-rls = NF ProdF SumF PlusF EqF FF TF
and formL-rls = ProdFL SumFL PlusFL EqFL

Introduction rules. OMITTED:

e FEql, because its premise is an egelem, not an elem.

lemmas intr-rls = NIQ0 NI-succ Prodl Sumli Plusl-inl Plusl-inr TI
and intrL-rls = NI-succL ProdIL SumlIL Plusl-inlL Plusl-inrL

Elimination rules. OMITTED:

o FEqF, because its conclusion is an eqelem, not an elem

e TE, because it does not involve a constructor.

lemmas elim-rls = NE ProdE SumE PlusE FE
and elimL-rls = NEL ProdEL SumEL PlusEL FEL

OMITTED: eqC are TC because they make rewriting loop: p = un = un

lemmas comp-rls = NCO NC-succ ProdC SumC PlusC-inl PlusC-inr

Rules with conclusion a:A, an elem judgment.

lemmas celement-rls = intr-ris elim-ris

Definitions are (meta)equality axioms.

lemmas basic-defs = fst-def snd-def

Compare with standard version: B is applied to UNSIMPLIFIED expression!

lemma SumlIL2: [c = a: A; d = b: B(a)] = <c¢,d> = <a,b> : Sum(A,B)
by (rule sym-elem) (rule SumlIL; rule sym-elem)

lemmas intrL2-rls = NI-succL ProdIL SumlIL2 Plusl-inlL Plusl-inrL



Exploit p: Prod(A,B) to create the assumption z:B(a). A more natural form
of product elimination.

lemma subst-prodFE:
assumes p: Prod(A,B)
and a: A
and Az. z: B(a) = ¢(2): C(2)
shows ¢(p‘a): C(p‘a)
by (rule assms ProdE)+

1.2 Tactics for type checking

ML «
local

fun is-rigid-elem Const- (Elem for a -» = not(is-Var (head-of a))
| is-rigid-elem Const- «Egelem for a - -» = not(is-Var (head-of a))
| is-rigid-elem Const- < Type for a> = not(is-Var (head-of a))
| is-rigid-elem - = false

n

(xTry solving a:A or a=b:A by assumption provided a is rigid!*)
fun test-assume-tac ctzt = SUBGOAL (fn (prem, i) =>

if is-rigid-elem (Logic.strip-assums-concl prem)

then assume-tac ctzt i else no-tac)

fun ASSUME ctxt tf i = test-assume-tac ctzt i ORELSE tf i

end
)

For simplification: type formation and checking, but no equalities between
terms.

lemmas routine-ris = form-rls formL-rls refi-type element-rls

ML «
fun routine-tac ris ctxt prems =
ASSUME ctat (Bires.filt-resolve-from-net-tac ctxt 4 (Bires.build-net (prems Q

rls)));

(xSolve all subgoals A type using formation rules. x)
val form-net = Bires.build-net Q{thms form-ris};
fun form-tac ctxt =
REPEAT-FIRST (ASSUME ctxt (Bires. filt-resolve-from-net-tac ctat 1 form-net));

(x Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *)
fun typechk-tac ctxt thms =
let val tac =
Bires.filt-resolve-from-net-tac ctxt 3



(Bires.build-net (thms @ @Q{thms form-ris} @ Q{thms element-ris}))
in REPEAT-FIRST (ASSUME ctxt tac) end

(xSolve a:A (a flexible, A rigid) by introduction rules.
Cannot use stringtrees (filt-resolve-tac) since
goals like 2a:SUM(A,B) have a trivial head—string *)
fun intr-tac ctat thms =
let val tac =
Bires.filt-resolve-from-net-tac ctxt 1
(Bires.build-net (thms @Q @Q{thms form-ris} @ @Q{thms intr-ris}))
in REPEAT-FIRST (ASSUME ctzt tac) end

(xEquality proving: solve a=b:A (where a is rigid) by long rules. *)
fun equal-tac ctxt thms =
REPEAT-FIRST
(ASSUME ctut
(Bires.filt-resolve-from-net-tac ctxt 3
(Bires.build-net (thms @Q @{thms form-rls element-rls intrL-rls elimL-rls

refl-clem})))

>

method-setup form = <Scan.succeed (fn ctat => SIMPLE-METHOD (form-tac
ctzt))»

method-setup typechk = <Attrib.thms >> (fn ths => fn ctet => SIMPLE-METHOD
(typechk-tac ctxt ths))

method-setup intr = <Attrib.thms >> (fn ths => fn ctxt => SIMPLE-METHOD
(intr-tac ctxzt ths))»

method-setup equal = <Attrib.thms >> (fn ths => fn ctat => SIMPLE-METHOD
(equal-tac ctat ths))»

1.3 Simplification

To simplify the type in a goal.

lemma replace-type: [B = A; a: A] = a: B
apply (rule equal-types)
apply (rule-tac [2] sym-type)
apply assumption+
done

Simplify the parameter of a unary type operator.

lemma subst-eqtyparg:
assumes 1: a=c: A
and 2: A\z. z:A = B(z) type
shows B(a) = B(c)
apply (rule subst-typeL)
apply (rule-tac [2] refl-type)
apply (rule 1)
apply (erule 2)
done



Simplification rules for Constructive Type Theory.

lemmas reduction-rls = comp-ris [THEN trans-elem)

ML «
(x Converts each goal e : Eq(A,a,b) into a=b:A for simplification.
Uses other intro rules to avoid changing flexible goals.x)
val egintr-net = Bires.build-net @{thms Eql intr-ris}
fun egintr-tac ctzt =
REPEAT-FIRST (ASSUME ctxt (Bires. filt-resolve-from-net-tac ctat 1 eqintr-net))

(xx Tactics that instantiate CTT —rules.
Vars in the given terms will be incremented!
The (rtac EqE i) lets them apply to equality judgments. %x)

fun NE-tac ctxt sp i =
TRY (resolve-tac ctzt Q{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctat [(((p, 0), Position.none), sp)] [| @{thm NE} i

fun SumE-tac ctzt sp i =
TRY (resolve-tac ctzt @{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctxt [(((p, 0), Position.none), sp)] [|] @{thm SumE} i

fun PlusE-tac ctxt sp i =
TRY (resolve-tac ctat @{thms EqE} i) THEN
Rule-Insts.res-inst-tac ctat [(((p, 0), Position.none), sp)] [| @{thm PlusE} i

(% Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ.

ok )

(xFinds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *)
fun add-mp-tac ctzt i =

resolve-tac ctrt Q{thms subst-prodE} i THEN assume-tac ctzt i THEN as-
sume-tac ctat ¢

(%Finds P— @ and P in the assumptions, replaces implication by Q *)
fun mp-tac ctat i = eresolve-tac ctzt Q{thms subst-prodE} i THEN assume-tac
ctxt ¢

(xsafe when regarded as predicate calculus rulesx)
val safe-brls = sort Bires.subgoals-ord
[ (true, @{thm FE?}), (true,asm-rl),
(false, @Q{thm Prodl}), (true, @{thm SumE}), (true, @{thm PlusE}) |

val unsafe-brls =
[ (false, @{thm Plusl-inl}), (false, @{thm Plusl-inr}), (false, @{thm SumlI}),
(true, Q{thm subst-prodE}) ]

(x0 subgoals vs 1 or morex)
val (safe0-brls, safep-brls) =

10



List.partition Bires.no-subgoals safe-brls

fun safestep-tac ctxt thms i =
form-tac ctzt ORELSE
resolve-tac ctxt thms ¢ ORELSE
biresolve-tac ctxt safe0-brls i ORELSE mp-tac ctzt i ORELSE
DETERM (biresolve-tac ctxt safep-bris i)

fun safe-tac ctat thms i = DEPTH-SOLVE-1 (safestep-tac ctxt thms i)

fun step-tac ctxt thms = safestep-tac ctzt thms ORELSE’ biresolve-tac ctxt un-
safe-brls

(xFails unless it solves the goallx)
fun pe-tac ctet thms = DEPTH-SOLVE-1 o (step-tac ctxt thms)
)

method-setup egintr = «Scan.succeed (SIMPLE-METHOD o egintr-tac)»
method-setup NE = «

Scan.lift Parse.embedded-inner-syntax >> (fn s => fn ctat => SIMPLE-METHOD'
(NE-tac ctzt s))
)
method-setup pc = <Attrib.thms >> (fn ths => fn ctaet => SIMPLE-METHOD'
(pe-tac ctxt ths))»
method-setup add-mp = <Scan.succeed (SIMPLE-METHOD' o add-mp-tac)»

ML-file <rew.ML»

method-setup rew = (Attrib.thms >> (fn ths => fn ctat => SIMPLE-METHOD
(rew-tac ctxt ths))»

method-setup hyp-rew = <Attrib.thms >> (fn ths => fn ctat => SIMPLE-METHOD
(hyp-rew-tac ctxt ths))»

1.4 The elimination rules for fst/snd

lemma SumE-fst: p : Sum(A,B) = fst(p) : A
unfolding basic-defs
apply (erule SumkFE)
apply assumption
done

The first premise must be p:Sum(A,B)!!.

lemma SumkFE-snd:
assumes major: p: Sum(A,B)
and A type
and A\z. 2:A = B(z) type
shows snd(p) : B(fst(p))
unfolding basic-defs
apply (rule major [THEN SumkFE))
apply (rule SumC [THEN subst-eqtyparg, THEN replace-type])

11



apply (typechk assms)
done

2 The two-element type (booleans and condition-
als)

definition Bool :: ¢
where Bool = T+ T

definition true :: ¢
where true = inl(tt)

definition false :: ¢
where false = inr(it)

definition cond :: [i,i,i]=i
where cond(a,b,c) = when(a, A-. b, A-. ¢)

lemmas bool-defs = Bool-def true-def false-def cond-def

2.1 Derivation of rules for the type Bool

Formation rule.

lemma boolF': Bool type
unfolding bool-defs by typechk

Introduction rules for true, false.

lemma booll-true: true : Bool
unfolding bool-defs by typechk

lemma booll-false: false : Bool
unfolding bool-defs by typechk

Elimination rule: typing of cond.

lemma boolE: [p:Bool; a : C(true); b : C(false)] = cond(p,a,b) : C(p)
unfolding bool-defs
apply (typechk; erule TFE)
apply typechk
done

lemma boolEL: [p = q : Bool; a = ¢ : C(true); b = d : C(false)]
= cond(p,a,b) = cond(q,c,d) : C(p)
unfolding bool-defs
apply (rule PlusEL)
apply (erule asm-rl refl-elem [THEN TEL])+
done

Computation rules for true, false.

12



lemma boolC-true: [a : C(true); b : C(false)] = cond(true,a,b) = a : C(true)
unfolding bool-defs
apply (rule comp-rls)

apply typechk
apply (erule-tac [!] TE)

apply typechk
done

lemma boolC-false: [a : C(true); b : C(false)] = cond(false,a,b) = b : C(false)
unfolding bool-defs
apply (rule comp-rls)

apply typechk
apply (erule-tac || TE)

apply typechk
done

3 Elementary arithmetic

3.1 Arithmetic operators and their definitions
definition add :: [i,i]=¢ (infixr #+> 65)

where a#+b = rec(a, b, A\u v. succ(v))

definition diff :: [i,i]=¢ (infixr <—> 65)
where a—b = rec(b, a, \u v. rec(v, 0, Az y. x))

definition absdiff :: [i,i]=¢ (infixr ¢|—|» 65)
where a|—|b = (a—b) #+ (b—a)

definition mult :: [i,i]=¢ (infixr #© 70)
where a#xb = rec(a, 0, Au v. b #+ v)

definition mod :: [i,i]=¢ (infixr ¢mod> 70)
where a mod b = rec(a, 0, \u v. rec(succ(v) |—| b, 0, Az y. succ(v)))

definition div :: [¢,i]={ (infixr «div> 70)
where a div b = rec(a, 0, Au v. rec(succ(u) mod b, succ(v), Az y. v))

lemmas arith-defs = add-def diff-def absdiff-def mult-def mod-def div-def

3.2 Proofs about elementary arithmetic: addition, multipli-
cation, etc.

3.2.1 Addition

Typing of add: short and long versions.

lemma add-typing: [a:N; b:N] = a #+ b: N
unfolding arith-defs by typechk

13



lemma add-typingL: Ja = ¢:N; b= d:N] = a #+ b=c#+ d: N
unfolding arith-defs by equal

Computation for add: 0 and successor cases.

lemma addC0: N = 0 #+ b=b: N
unfolding arith-defs by rew

lemma addC-succ: [a:N; b:N]| = succ(a) #+ b = succ(a #+ b) : N
unfolding arith-defs by rew

3.2.2 Multiplication

Typing of mult: short and long versions.
lemma mult-typing: [a:N; b:N] = a #x b : N
unfolding arith-defs by (typechk add-typing)

lemma mult-typingL: [a = ¢:N; b= d:N| = a #x b=c#xd: N
unfolding arith-defs by (equal add-typingL)

Computation for mult: 0 and successor cases.

lemma multCO: N = 0 #x b=0: N
unfolding arith-defs by rew

lemma multC-succ: [a:N; b:N] = succ(a) #*x b= b #+ (a #*x b) : N
unfolding arith-defs by rew

3.2.3 Difference

Typing of difference.
lemma diff-typing: [a:N; b:N] = a — b: N
unfolding arith-defs by typechk

lemma diff-typingL: J[a = ¢:N; b=d:N] = a—b=c—d: N
unfolding arith-defs by equal

Computation for difference: 0 and successor cases.

lemma diff C0: a:N =— a — 0 = a: N
unfolding arith-defs by rew

Note: rec(a, 0, Az w.z) is pred(a).

lemma diff-0-eq-0: b N — 0 —b=0: N
unfolding arith-defs
by (NE b) hyp-rew

Essential to simplify FIRST!! (Else we get a critical pair) succ(a) — succ(b)
rewrites to pred(succ(a) — b).

lemma diff-succ-succ: [a:N; b:N| = succ(a) — suce(b) =a — b: N

14



unfolding arith-defs
apply hyp-rew
apply (NE b)

apply hyp-rew
done

3.3 Simplification

lemmas arith-typing-ris = add-typing mult-typing diff-typing
and arith-congr-rls = add-typingL mult-typingL diff-typingL

lemmas congr-ris = arith-congr-rls intrL2-rls elimL-rls

lemmas arithC-rls =
addC0 addC-succ
multCO multC-succ
diffCO diff-0-eq-0 diff-succ-succ

ML ¢

structure Arith-simp = TSimpFun(
val refl = @Q{thm refl-elem}
val sym = @Q{thm sym-elem}
val trans = Q{thm trans-elem}
val refl-red = Q{thm refl-red}
val trans-red = Q{thm trans-red}
val red-if-equal = Q{thm red-if-equal}
val default-rls = Q{thms arithC-rls comp-ris}
val routine-tac = routine-tac @Q{thms arith-typing-rls routine-ris}

)

fun arith-rew-tac ctxt prems =
make-rew-tac ctzt (Arith-simp.norm-tac ctzt (Q{thms congr-ris}, prems))

fun hyp-arith-rew-tac ctxt prems =
make-rew-tac ctxt
(Arith-simp.cond-norm-tac ctxt (prove-cond-tac ctxt, Q{thms congr-ris},
prems))
)

method-setup arith-rew = <

Attrib.thms >> (fn ths => fn ctet => SIMPLE-METHOD (arith-rew-tac ctxt
ths))
)

method-setup hyp-arith-rew = «

Attrib.thms >> (fn ths => fn ctat => SIMPLE-METHOD (hyp-arith-rew-tac
ctzt ths))
)
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3.4 Addition

Associative law for addition.

lemma add-assoc: [a:N; b:N; e:N| = (a #+ b) #+ c=a #+ (b#+ ¢): N
by (NE a) hyp-arith-rew

Commutative law for addition. Can be proved using three inductions. Must
simplify after first induction! Orientation of rewrites is delicate.

lemma add-commute: [a:N; b:N] = a #+ b=b#+ a: N

apply (NE a)

apply hyp-arith-rew
apply (rule sym-elem)
prefer 2
apply (NE b)

prefer j

apply (NE b)

apply hyp-arith-rew

done

3.5 Multiplication

Right annihilation in product.
lemma mult-0-right: a:N = a #*x 0 = 0 : N
apply (NE a)
apply hyp-arith-rew
done

Right successor law for multiplication.
lemma mult-succ-right: [a:N; b:N]| = a #x* succ(b) = a #+ (a #x b) : N
apply (NE a)
apply (hyp-arith-rew add-assoc [THEN sym-elem))

apply (assumption | rule add-commaute mult-typingL add-typingL intrL-ris refl-elem)-+
done

Commutative law for multiplication.
lemma mult-commute: [a:N; b:N] = a #x b=b #x a: N
apply (NE a)
apply (hyp-arith-rew mult-0-right mult-succ-right)
done

Addition distributes over multiplication.

lemma add-mult-distrib: [a:N; b:N; e:N]| = (a #+ b) #* ¢ = (a #x* ¢) #+ (b
#xc): N
apply (NE a)
apply (hyp-arith-rew add-assoc [THEN sym-elem))
done

Associative law for multiplication.
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lemma mult-assoc: Ja:N; b:N; e:N]| = (a #* b) #*x c = a #* (b #* ¢) : N
apply (NE a)
apply (hyp-arith-rew add-mult-distrib)
done

3.6 Difference

Difference on natural numbers, without negative numbers
e a—b=0iffa<b

e a— b= succ(c)iff a > b

lemma diff-self-eq-0: a:N = a —a=0: N
apply (NE a)
apply hyp-arith-rew
done

lemma add-0-right: [c : N; 0 : N;¢c: N = c#+ 0=c: N
by (rule addC0O [THEN [3] add-commute [THEN trans-eleml]])

Addition is the inverse of subtraction: if b < x then b #+ (z — b) = 2. An
example of induction over a quantified formula (a product). Uses rewriting
with a quantified, implicative inductive hypothesis.

schematic-goal add-diff-inverse-lemma:
b:N = %a: [[a:N. Eq(N, b—z, 0) — Eq(N, b #+ (z—0), z)
apply (NE b)
— strip one "universal quantifier' but not the "implication"
apply (rule-tac [3] intr-rls)
— case analysis on z in succ(u) < £ — succ(u) #+ (x — succ(u)) = z
prefer j
apply (NE z)
apply assumption
— Prepare for simplification of types — the antecedent succ(u) < z
apply (rule-tac [2] replace-type)
apply (rule-tac [1] replace-type)
apply arith-rew
— Solves first 0 goal, simplifies others. Two sugbgoals remain. Both follow by
rewriting, (2) using quantified induction hyp.
apply intr — strips remaining []s
apply (hyp-arith-rew add-0-right)
apply assumption
done

Version of above with premise b — a = 0 i.e. a > b. Using ProdE does
not work — for ?B(%a) is ambiguous. Instead, add-diff-inverse-lemma states
the desired induction scheme; the use of THEN below instantiates Vars in
ProdFE automatically.

17



lemma add-diff-inverse: [a:N; b:N; b — a=0: N] = b #+ (a—b) =a: N
apply (rule EqE)
apply (rule add-diff-inverse-lemma [THEN ProdE, THEN ProdE))
apply (assumption | rule Eql)+
done

3.7 Absolute difference

Typing of absolute difference: short and long versions.

lemma absdiff-typing: Ja:N; b:N] = a |-| b: N
unfolding arith-defs by typechk

lemma absdiff-typingL: [a = ¢:N; b= d:N] = a|-|b=c|—| d: N
unfolding arith-defs by equal

lemma absdiff-self-eq-0: a:N = a |-| a=0: N
unfolding absdiff-def by (arith-rew diff-self-eq-0)

lemma absdiff C0: a:N = 0 |-|a=a: N
unfolding absdiff-def by hyp-arith-rew

lemma absdiff-succ-suce: [a:N; b:N]| = succ(a) |—| succ(b) = a|—| b: N
unfolding absdiff-def by hyp-arith-rew

Note how easy using commutative laws can be? ...not always...

lemma absdiff-commute: [a:N; bN] = a |—-| b=b|—| a: N
unfolding absdiff-def
by (rule add-commute) (typechk diff-typing)

If a + b = 0 then a = 0. Surprisingly tedious.

schematic-goal add-eq0-lemma: [a:N; b:N] = ?c: Eq(N,a#+b,0) — Eq(N,a,0)
apply (NE a)
apply (rule-tac [3] replace-type)
apply arith-rew
apply intr — strips remaining []s
apply (rule-tac [2] zero-ne-succ [THEN FE])
apply (erule-tac [3] EqE [THEN sym-elem))
apply (typechk add-typing)
done

Version of above with the premise a + b = 0. Again, resolution instantiates
variables in ProdFE.
lemma add-eq0: [a:N; b:N; a #+ b=0: N] = a=0: N
apply (rule EqF)
apply (rule add-eq0-lemma [THEN ProdE])
apply (rule-tac [3] Eql)

apply typechk
done
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Here is a lemma to infer a — b = 0 and b — a = 0 from a |—| b = 0, below.

schematic-goal absdiff-eq0-lem:
[a:N; b:N; a |—| b= 0 : N] = ?a: Eq(N, a—b, 0) x Eq(N, b—a, 0)
unfolding absdiff-def
apply intr
apply eqintr
apply (rule-tac [2] add-eq0)
apply (rule add-eq0)
apply (rule-tac [6] add-commute [THEN trans-elem])
apply (typechk diff-typing)
done

Ifa|-| b= 0thena=bproofia—b=0andb—a=0,s0b=a+ (b
—a)=a+ 0 = a
lemma absdiff-eq0: a |-| b= 0: N; a:N; bN] = a=0b: N
apply (rule EqE)
apply (rule absdiff-eq0-lem [THEN SumE))
apply egintr
apply (rule add-diff-inverse [THEN sym-elem, THEN trans-elem])
apply (erule-tac [3] EqF)
apply (hyp-arith-rew add-0-right)
done

3.8 Remainder and Quotient

Typing of remainder: short and long versions.
lemma mod-typing: [a:N; b:N] = a mod b : N
unfolding mod-def by (typechk absdiff-typing)

lemma mod-typingL: [a = ¢:N; b = &:N] = a mod b = ¢ mod d : N
unfolding mod-def by (equal absdiff-typingL)

Computation for mod: 0 and successor cases.

lemma modC0O: N = 0 mod b =0 : N
unfolding mod-def by (rew absdiff-typing)

lemma modC-succ: [a:N; b:N| =
succ(a) mod b = rec(succ(a mod b) |—| b, 0, Az y. succ(a mod b)) : N
unfolding mod-def by (rew absdiff-typing)

Typing of quotient: short and long versions.

lemma div-typing: [a:N; b:N] = a divb: N
unfolding div-def by (typechk absdiff-typing mod-typing)

lemma div-typingL: [a = ¢:N; b= d&:N] = adivb=cdivd: N
unfolding div-def by (equal absdiff-typingLl mod-typingL)
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lemmas div-typing-ris = mod-typing div-typing absdiff-typing

Computation for quotient: 0 and successor cases.

lemma divC0: N = 0 divb=0: N
unfolding div-def by (rew mod-typing absdiff-typing)

lemma divC-succ: [a:N; b:N|] =
succ(a) div b = rec(succ(a) mod b, succ(a div b), A\x y. a div b) : N
unfolding div-def by (rew mod-typing)

Version of above with same condition as the mod one.

lemma divC-succ2: [a:N; b:N| =
succ(a) div b =rec(succ(a mod b) |—| b, succ(a div b), Az y. a div b) : N
apply (rule divC-succ [THEN trans-elem))
apply (rew div-typing-ris modC-succ)
apply (NE succ (a mod b) |—|b)
apply (rew mod-typing div-typing absdiff-typing)
done

For case analysis on whether a number is 0 or a successor.

lemma iszero-decidable: a:N = rec(a, inl(eq), Aka kb. inr(<ka, eqg>)) :

Eq(N,a,0) + . x:N. Eq(N,a, succ(z)))
apply (NE a)

apply (rule-tac [3] Plusl-inr)

apply (rule-tac [2] Plusl-inl)

apply egintr

apply equal

done

Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0.

lemma mod-div-equality: [a:N; b:N] = a mod b #+ (a div b) #x b=a: N
apply (NE a)
apply (arith-rew div-typing-rls modC0O modC-succ divC0 divC-succ2)
apply (rule EqF)
— case analysis on succ(u mod b) |—| b
apply (rule-tac al = succ (u mod b) |—| b in iszero-decidable [THEN PlusFE))
apply (erule-tac [3] SumkE)
apply (hyp-arith-rew div-typing-rls modC0O modC-succ divC0 divC-succ2)
— Replace one occurrence of b by succ(u mod b). Clumsy!
apply (rule add-typingl, [THEN trans-elem))
apply (erule EqE [THEN absdiff-eq0, THEN sym-elem])
apply (rule-tac [3] refi-elem)
apply (hyp-arith-rew div-typing-rls)
done

end
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4 FEasy examples: type checking and type deduc-
tion

theory Typechecking
imports ../CTT
begin

4.1 Single-step proofs: verifying that a type is well-formed

schematic-goal ?A type
by (rule form-rls)

schematic-goal ?A type
apply (rule form-ris)
back
apply (rule form-rls)
apply (rule form-rls)
done

schematic-goal [[2:24 . N + ?B(z) type
apply (rule form-rls)
apply (rule form-rls)
apply (rule form-rls)
apply (rule form-rls)
apply (rule form-ris)
done

4.2 Multi-step proofs: Type inference
lemma [[Jw:N. N + N type
by form

schematic-goal <0, succ(0)> : 74
apply intr done

schematic-goal [[w:N . Fq(?A,w,w) type
apply typechk done

schematic-goal [[z:N . [[y:N . Eq(?A,z,y) type
apply typechk done

typechecking an application of fst

schematic-goal (Au. split(u, Av w. v)) ‘<0, succ(0)> : ?4
apply typechk done

typechecking the predecessor function

schematic-goal An. rec(n, 0, Az y. z) : A
apply typechk done
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typechecking the addition function

schematic-goal An. Am. rec(n, m, Az y. succ(y)) : 24
apply typechk done

Proofs involving arbitrary types. For concreteness, every type variable left

over is forced to be N

method-setup N =

«Scan.succeed (fn ctat => SIMPLE-METHOD (TRYALL (resolve-tac ctxt @{thms

NF})))

schematic-goal Aw. <w,w> : ?A
apply typechk
apply N
done

schematic-goal Az. Ay. z : 74
apply typechk
apply N
done

typechecking fst (as a function object)

schematic-goal \i. split(i, \j k. j) : ?A
apply typechk
apply N
done

end

5 Examples with elimination rules

theory Elimination
imports ../CTT
begin

This finds the functions fst and snd!

schematic-goal [folded basic-defs]: A type = %a: (A x A) — A

apply pc
done

schematic-goal [folded basic-defs]: A type = %a: (A x A) — A

apply pc
back
done

Double negation of the Excluded Middle

schematic-goal 4 type = %a: (A + (A—F)) — F) — F

apply intr
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apply (rule ProdE)
apply assumption
apply pc

done

Experiment: the proof above in Isar

lemma
assumes A type shows (Af. f “inr(Ay. f “ inl(y))) : (A + (A—F)) — F)
— F
proof intr
fix f
assume f: f: A+ (A— F) — F
with assms have inr(Ay. f “inl(y)) : A+ (A — F)
by pc
then show f “inr(Ay. f < inl(y)) : F
by (rule ProdE [OF f])
qed (rule assms)+

schematic-goal [A4 type; B type] = %a: (A x B) — (B x A)

apply pc
done

Binary sums and products
schematic-goal [A type; B type; Ctype] = %a: (A + B — C) — (A — ()
x (B — C)

apply pc
done

schematic-goal [A type; B type; C type] = %a : A x (B+ C) — (A x B +
A x CO)
by pc

schematic-goal
assumes A type
and Az. ©:A = B(z) type
and A\z. ©:4A = C(x) type
shows %a : (> x:A. B(z) + C(x)) — (O xz:A. B(z)) + O] x:A. C(x))
apply (pc assms)
done

Construction of the currying functional

schematic-goal [A type; B type; C type] = ?a: (A x B— C) — (A — (B
— 0))

apply pc
done
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schematic-goal
assumes A type
and Az. ©:A = B(z) type
and Az z: (O x:A. B(z)) = C(z) type
shows %a : [[f: (J[z: O xz:A . B(x)) . C(z)).
(IT=z:A . [Ty:B(z) . C(<z,y>))
apply (pc assms)
done

Martin-Lof (1984), page 48: axiom of sum-elimination (uncurry)

schematic-goal [A type; B type; C type] = %a: (A — (B — C)) — (A x
B— C)

apply pc

done

schematic-goal
assumes A type
and Az. 2:A = B(z) type
and Az z: (O x:A . B(z)) = C(z) type
shows ?a : ([[=:A . [[y:B(z) . C(<z,y>))
— (I]z: O_x:A . B(z)) . C(2))
apply (pc assms)
done

Function application

schematic-goal [A type; B type] = %a : (A — B) x A) — B

apply pc
done

Basic test of quantifier reasoning

schematic-goal

assumes A type

and B type

and Az y. [:4; y:B] = C(x,y) type
shows

%a: (O y:B.]]xA. Czy))

— (J[x:A . Y y:B . C(z,y))

apply (pc assms)
done

Martin-Lof (1984) pages 36-7: the combinator S

schematic-goal
assumes A type
and A\z. 2:A = B(z) type
and Az y. [2:4; y:B(z)] = C(z,y) type
shows %a : ([[z:A. [Ty:B(z). C(z,y))
— (IIf: (I z:A4. B(z)). [[z:A. C(z, fx))
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apply (pc assms)
done

Martin-Lof (1984) page 58: the axiom of disjunction elimination

schematic-goal
assumes A type
and B type
and Az. z: A+B = C(z) type
shows ?a : ([[z:A. C(inl(z))) — ([ y:B. C(inr(y)))
— (J] #: A+B. C(2))
apply (pc assms)
done

schematic-goal [folded basic-defs]:
[A type; B type; C type] = %a: (A — B x C) — (A — B) x (A — ()
apply pc
done

AXIOM OF CHOICE! Delicate use of elimination rules

schematic-goal
assumes A type
and A\z. ©:A = B(x) type
and Az y. [z:4; y:B(z)] = C(z,y) type
shows %a : (J[[x:A. > y:B(z). C(z,y)) — O_f: ([[=:A. B(z)). [[x:A. C(x,
fx))
apply (intr assms)
prefer 2 apply add-mp
prefer 2 apply add-mp
apply (erule SumE-fst)
apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)
apply (rule-tac [4] SumE-snd)
apply (typechk SumE-fst assms)
done

A structured proof of AC

lemma Aziom-of-Choice:
assumes A type
and Az. 2:A = B(z) type
and Az y. [z:4; y:B(z)] = C(z,y) type
shows (Af. <Az. fst(fz), Az. snd(fz)>)
s ([Ta:A. > y:B(x). C(z,y)) — O_f: ([[x:A. B(z)). [[x:A. C(z, fr))
proof (intr assms)
fix fa
assume f: f : [[2:A. Sum(B(z), C(z)) and a : A
then have fa: f‘a : Sum(B(a), C(a))
by (rule ProdE)
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then show fst(f ‘ a) : B(a)
by (rule SumE-fst)
have snd(f ‘ a) : C(a, fst(f ‘ a))
by (rule SumE-snd [OF fa)) (typechk SumE-fst assms <a : A»)
moreover have (Az. fst(f ‘z)) ‘a = fst(f ‘ a) : B(a)
by (rule ProdC [OF <a : Ay]) (typechk SumE-fst f)
ultimately show snd(f‘a) : C(a, (Az. fst(f ‘ z)) ‘a)

by (intro replace-type [OF subst-eqtyparg]) (typechk SumE-fst assms <a : A»)
qed

Axiom of choice. Proof without fst, snd. Harder still!

schematic-goal [folded basic-defs]:
assumes A type
and Az. 2:A = B(z) type
and Az y. [2:4; y:B(z)] = C(z,y) type
shows %a : ([[z:4. > y:B(z). C(x,y)) — O f: (J[x:A. B(z)). [[x:A. C(z,
fz))
apply (intr assms)

apply (rule ProdE [THEN SumkE]))
apply assumption
apply assumption
apply assumption
apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)
apply (erule-tac [4] ProdE [THEN SumE))
apply (typechk assms)
apply (rule replace-type)
apply (rule subst-eqtyparg)
apply (rule comp-rls)
apply (typechk assms)
apply assumption
done

Example of sequent-style deduction

schematic-goal
assumes A type
and B type
and A\z. 224 x B = C(z) type
shows %a : (D z:A x B. C(z)) — O wA. Y v:B. C(<u,v>))
apply (rule intr-ris)
apply (tactic <biresolve-tac context safe-bris 2)

apply (rule-tac [2] a = y in ProdE)
apply (typechk assms)
apply (rule SumE, assumption)
apply intr
defer 71
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apply assumption—+
apply (typechk assms)
done

end

6 Equality reasoning by rewriting

theory Fquality
imports ../CTT
begin

lemma split-eq: p : Sum(A,B) = split(p,pair) = p : Sum(A,B)
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew
done

lemma when-eq: [A type; B type; p : A+B] = when(p,inlinr) = p: A + B
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew
done

in the "rec" formulation of addition, 0 +n =n

lemma p:N = rec(p,0, Ay z. succ(y)) = p: N
apply (rule EqE)
apply (rule elim-rls, assumption)
apply rew
done

the harder version, n + 0 = n: recursive, uses induction hypothesis
lemma p:N = rec(p,0, Ay z. succ(z)) = p: N

apply (rule EqF)

apply (rule elim-rls, assumption)

apply hyp-rew

done
Associativity of addition

lemma [a:N; b:N; ¢:N]
= rec(rec(a, b, Az y. succ(y)), ¢, Az y. succ(y)) =
rec(a, rec(b, ¢, Az y. succ(y)), Az y. succ(y)) : N
apply (NE a)

apply hyp-rew
done

Martin-Lof (1984) page 62: pairing is surjective
lemma p : Sum(A,B) = <split(p,\z y. z), split(p,\z y. y)> = p : Sum(A,B)
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apply (rule EqE)

apply (rule elim-rls, assumption)

apply (tactic <DEPTH-SOLVE-1 (rew-tac context [|)»)
done

lemma [Ja : A4; b: B] = (Au. split(u, v w.<w,v>)) ‘ <a,b> = <b,a>: > x:B.
A
by rew

a contrived, complicated simplication, requires sum-elimination also

lemma (Af. Az. f(fz)) ¢ (Au. split(u, \v w.<w,v>)) =
Az.z : JJx:(>y:N. N). 3 y:N. N)
apply (rule reduction-rls)
apply (rule-tac [3] intrL-rls)
apply (rule-tac [4] EqFE)
apply (erule-tac [4] SumkE)

apply rew
done

end

7 Synthesis examples, using a crude form of nar-
rowing

theory Synthesis
imports ../CTT
begin

discovery of predecessor function

schematic-goal %a : Y pred:?A . Eq(N, pred‘0, 0) x ([[n:N. Eq(N, pred
suce(n), n))
apply intr
apply egintr
apply (rule-tac [3] reduction-rls)
apply (rule-tac [5] comp-rls)
apply rew
done

the function fst as an element of a function type

schematic-goal [folded basic-defs]:
A type = %a: > f:?B . [[i:A. [[4:A. Eq(A4, [ ‘ <ij>, Q)
apply intr
apply eqintr
apply (rule-tac [2] reduction-rls)
apply (rule-tac [4] comp-rls)
apply typechk
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now put in A everywhere

apply assumption+
done

An interesting use of the eliminator, when

schematic-goal ?a : [[i:N. Eq(?A, 2b(inl(3)), <0 , i>)
x Eq(?A, ?b(inr(1)), <succ(0), i>)
apply intr
apply eqintr
apply (rule comp-ris)
apply rew
done

schematic-goal ?a : [[#:N. Eq(?A(7), ?b(inl(i)), <0 , i>)
x  Eq(2A(7), 2b(inr(7)), <succ(0),i>)
oops

A tricky combination of when and split

schematic-goal [folded basic-defs]:
%a : []4:N. [[j:N. Eq(?4, 2b(inl(<i,j>)), ©)
x  Eq(?A, ?b(inr(<i,j>)), j)
apply intr
apply eqintr
apply (rule PlusC-inl [THEN trans-elem])
apply (rule-tac [4] comp-rls)
apply (rule-tac [7] reduction-rls)
apply (rule-tac [10] comp-rls)
apply typechk
done

schematic-goal ?a : [Té:N. [Tj:N. Eq(?A(i.j), #b(inl(<i,j>)), ©)
X Eq(?A(i,5), #b(inr(<i,j>)), j)
oops

schematic-goal %a : [[4:N. [[j:N. Eq(N, ?b(inl(<i,j>)), 7)
X Bq(N, #b(inr(<i,j>)), j)
oops

Deriving the addition operator

schematic-goal [folded arith-defs]:
2c : [[n:N. Eq(N, ?f(0,n), n)
X ([[m:N. Eq(N, ?f(succ(m), n), succ(?f(m,n))))
apply intr
apply egintr
apply (rule comp-rls)
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apply rew
done

The addition function — using explicit lambdas

schematic-goal [folded arith-defs]:
2c: > plus : 74 .
[T2:N. Eq(N, plus‘0‘z, x)
X ([Ty:N. Eq(N, plus‘succ(y) ‘z, succ(plus‘y‘r)))
apply intr
apply eqintr
apply (tactic resolve-tac context [TSimp.split-eqn] 3)
apply (tactic SELECT-GOAL (rew-tac context []) 4)
apply (tactic resolve-tac context [TSimp.split-eqn] 3)
apply (tactic SELECT-GOAL (rew-tac context []) 4)
apply (rule-tac [3] p = y in NC-succ)

apply rew
done

end
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