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1 Base of Zermelo-Fraenkel Set Theory

theory ZF-Base
imports FOL
begin

1.1 Signature

declare [[eta-contract = false]]

typedecl i
instance @ :: term (proof)

axiomatization mem :: [i, i] = o (infix]l <€» 50) — membership relation
and zero :: i (<0») — the empty set
and Pow :: i = i — power sets
and Inf :: ¢ — infinite set
and Union :: i = i («(<open-block notation=«prefiz |J»J-)» [90] 90)
and PrimReplace :: [i, [i, i] = o] = i

abbreviation not-mem :: [i, i| = o (infixl <¢> 50) — negated membership
relation
where z ¢ y = - (z € y)

1.2 Bounded Quantifiers

definition Ball :: [i, i = o] = o
where Ball(A, P) =Vz. z€¢ A — P(z)

definition Bez :: [i, i = o] = o
where Bex(A, P) = Jz. z€A A P(x)

syntax
-Ball :: [pttrn, i, o] = o («(<indent=3 notation=<binder ¥V env¥ -€-./ -)» 10)
-Bex :: [pttrn, i, o] = o («(<indent=3 notation=<binder 3€»3I-€-./ -)» 10)
syntax-consts
-Ball = Ball and
-Bex = Bez
translations
VzeA. P = CONST Ball(A, \z. P)
Jz€A. P = CONST Bex(A, \z. P)

1.3 Variations on Replacement
definition Replace :: [i, [i, i] = o] = i
where Replace(A,P) = PrimReplace(A, Az y. (3!2. P(z,2)) A P(z,y))

syntax
-Replace :: [pttrn, pttrn, i, o] = © («(cindent=1 notation=<mizfix relational
replacement»{- ./ - € -, -})»)
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syntax-consts
-Replace = Replace
translations
{y. z€A, Q} = CONST Replace(A, Az y. Q)

definition RepFun : [i, i = i = i
where RepFun(A,f) = {y . z€A, y=f(z)}

syntax
-RepFun :: [i, ptirn, i] = ¢ («(<indent=1 notation=<mixfiz functional replace-
ment»{-./ - € -})» [61,0,51))
syntax-consts
-RepFun = RepFun
translations
{b. z€ A} = CONST RepFun(A, Az. b)

definition Collect :: [i, i = o] = @
where Collect(A,P) = {y . z€A, z=y N P(z)}

syntax
-Collect :: [pttrn, i, o] = © («(<indent=1 notation=<mizfix set comprehension»{-
€-./ )
syntax-consts
-Collect = Collect
translations
{z€A. P} = CONST Collect(A, Az. P)

1.4 General union and intersection

definition Inter :: i = { («(<open-block notation=<prefiz ()»()-)> [90] 90)
where ((4) = { zeJ(4) . Vy€eA. zey}

syntax
-UNION :: [pttrn, i, i] = i (<(<indent=3 notation=<binder |JenlJ-€-./ -)» 10)
-INTER :: [pttrn, i, 9] = © (<(<indent=3 notation=<binder (€n()-€-./ -)» 10)
syntax-consts
-UNION == Union and
-INTER == Inter
translations
(Jz€eA. B == CONST Union({B. z€A})
(z€A. B == CONST Inter({B. z€A})

1.5 Finite sets and binary operations
definition Upair : [i, i] = i

where Upair(a,b) = {y. z€Pow(Pow(0)), (z=0 A y=a) | (z=Pow(0) A y=b)}
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definition Subset :: [i, i] = o (infix]l <C» 50) — subset relation
where subset-def: A C B=VazeA. z€B

definition Diff :: [{, {] = ¢ (infix]l «(— 65) — set difference
where A — B={ z€A . ~(z€B) }

definition Un : [i, i) = ¢ (infix] <U)» 65) — binary union
where A U B = |J(Upair(A,B))

definition Int :: [i, {] = ¢ (infix]l <0y 70) — binary intersection
where A N B = (| (Upair(A,B))

definition cons :: [i, {] = i
where cons(a,A) = Upair(a,a) U A

definition succ :: 1 = ¢
where succ(i) = cons(i, ©)

nonterminal is
syntax

mi=is ()

-Enum :: [i, is] = is (¢-,/ =)

-Finset :: is = i («(«indent=1 notation=<mizficr set enumeration»{-})»)
translations

{z, zs} == CONST cons(z, {zs})

{z} == CONST cons(z, 0)

1.6 Axioms

axiomatization

where
extension: A=B<+—+ ACBABCAand
Union-iff: A€ |J(C) +— (3BeC. AeB) and
Pow-iff: A € Pow(B) «+— A C B and

infinity: 0 € Inf N (Vyelnf. succ(y) € Inf) and

foundation: A =0V (Jz€A. Vyecrx. y¢A) and

replacement: (Vax€A.Vy z. P(z,y) A P(z,2) — y = 2) =
b € PrimReplace(A,P) «+— (Jz€A. P(x,b))

1.7 Definite descriptions — via Replace over the set "1"

definition The :: (i = 0) = ¢ (binder «THE » 10)
where the-def: The(P) = {y .z € {0}, P(y)})
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definition If :: o, i, {] = ¢ («(<notation=«mizfix if then elserrif (-)/ then (-)/
else (-))» [10] 10)
where if-def: if P then a else b= THE z. P A z=a | =P A z2=b

abbreviation (input)
old-if =2 [o, i, 1] = i («if "(--,-"))
where if (P,a,b) = If(P,a,b)

1.8 Ordered Pairing

definition Pair : [i, i] = i
where Pair(a,b) = {{a,a}, {a,b}}

definition fst :: ¢ = ¢
where fst(p) = THE a. 3b. p = Pair(a, b)

definition snd :: i = ¢
where snd(p) = THE b. 3a. p = Pair(a, b)

definition split :: [[4, 7] = 'a, i] = ‘a::{} — for pattern-matching
where split(c) = Ap. c(fst(p), snd(p))

nonterminal tuple-args
syntax
i = tuple-args (<))
-Tuple-args :: [i, tuple-args] = tuple-args (<-,/ -»)

-Tuple :: [i, tuple-args] = i («(xindent=1 notation=<mizfix tuple enumera-
tiony>(-,/ -))»)
translations

(z,y,2) == (z,(y, 2))

(z, y) == CONST Puair(z, y)

nonterminal patterns
syntax
-pattern :: patterns = pttrn («(<open-block notation=:<pattern tuple>{-))»)
i pttrn = patterns (<))
-patterns :: [pttrn, patterns| = patterns (s-,/-»)
syntax-consts
-pattern -patterns == split

translations
Maz,y,zs).b == CONST split(Az (y,zs).b)
Maz,y).b == CONST split(Az y. b)

definition Sigma :: [i, i = i = i
where Sigma(A,B) = |Jz€A. JyeB(z). {{(z,y)}

abbreviation cart-prod :: [i, i] = ¢ (infixr <x» 80) — Cartesian product
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where A x B = Sigma(A, A\-. B)

1.9 Relations and Functions

definition converse :: i = §
where converse(r) = {z. wer, Iz y. w=(z,y) N 2=(y,2)}

definition domain :: i = ¢
where domain(r) = {z. wer, Jy. w={(z,y)}

definition range :: i = i
where range(r) = domain(converse(r))

definition field :: i = i
where field(r) = domain(r) U range(r)

definition relation :: i = o — recognizes sets of pairs
where relation(r) = Vzer. Iz y. z = (z,y)
i = o — recognizes functions; can have non-pairs

definition function ::
where function(r) =Vzy. (z,y) € r — Vy' (z,y) € r — y =y’
definition Image :: [, 79 = ¢ (infix]l <9 90) — image
where image-def: v “ A = {y € range(r). Jz€A. (z,y) € r}
[7, 9] = ¢ (infix] <—‘% 90) — inverse image

definition vimage ::
where vimage-def: r —“ A = converse(r) ‘A

definition restrict :: [i, i] = i
where restrict(r,A) = {z € r. Jz€A. Jy. z = (z,y)}

definition Lambda :: [i, i = i] = i
where lam-def: Lambda(A,b) = {{(x,b(x)). z€A}
definition apply :: [i, {] = ¢ (infix]l <% 90) — function application
where f'a = | (f*{a})
definition Pi :: [i, i = i] = i
where Pi(A,B) = {fePow(Sigma(A,B)). ACdomain(f) A function(f)}

[7, 9] = ¢ (infixr <—> 60) — function space

abbreviation function-space
where A — B = Pi(A, A-. B)
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syntax

-PROD  :: [pttrn, i, i) = i («(<indent=3 notation=<mizfix [| €»]]-€-./
-)» 10)

-SUM = pttrn, 4, 1) = 4 («(<indent=3 notation=«<mizfix > €N -€-./
) 10)

-lam = [pttrn, 4, 9] = 4 («(xindent=3 notation=<mizfir AE»A-€-./ -)»
10)

syntax-consts
-PROD == Pi and
-SUM == Sigma and

-lam == Lambda
translations
[[z€A. B == CONST Pi(A, \z. B)
> x€A. B == CONST Sigma(A, A\z. B)
Az€A. f == CONST Lambda(A, \z. f)

1.10 ASCII syntax

notation (ASCII)
cart-prod (infixr <> 80) and

Int (infix] <Int> 70) and
Un (infixl «Un» 65) and
function-space (infixr <—>) 60) and
Subset (infix] «<=» 50) and
mem (infixl <» 50) and
not-mem (infix] - 50)

syntax (ASCII)
-Ball  :: [pttrn, i, o] = o (<(<indent=3 notation=<binder ALL:»»ALL -:-./
) 10)

-Bez : [pttrn, 4, o] = o («(<indent=3 notation=<binder EX:»EX -:-./
) 10)

-Collect :: [pttrn, i, o] = @ (<(<indent=1 notation=<mizfix set comprehen-
sionn{-: - ./ -})»)

-Replace :: [pttrn, ptirn, i, o] = ¢ («(<indent=1 notation=<mizfix relational
replacement)){- ./ - -, -})»)

-RepFun  :: [i, pttrn, @] = @ (<(<indent=1 notation=<mizfix functional

replacement»{- ./ - -})» [51,0,51])

-UNION : [pttrn, i, i = @ («(<indent=3 notation=<binder UN:»» UN -:-./
) 10)

-INTER  : [pttrn, i, i] = 1 (<(<indent=3 notation=<binder INT:»»INT
==/ =) 10)

-PROD  :: [pttrn, i, i] = 4 («(<indent=3 notation=<binder PROD:»» PROD
--./ =) 10)

-SUM = [pttrn, 4, 0] = i («(<indent=3 notation=<binder SUM:»»SUM
-~/ =) 10)

-lam = pttrn, 4, 0] = @ (<(<indent=3 notation=<binder lam:»lam -:-./
- 10)
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-Tuple  :: [i, tuple-args] = (<(<indent=1 notation=<mizfix tuple enumera-
tion»<-,/ ->)»)

-pattern :: patterns = pitrn (x<->»)
1.11 Substitution

lemma subst-elem: [b€A; a=b] = acA

(proof)

1.12 Bounded universal quantifier
lemma balll [introl]: [Az. x€A = P(x)] = Vz€A. P(z)
(proof)

lemmas strip = impl alll balll

lemma bspec [dest?): [Vz€A. P(z); x: A] = P(z)
(proof)

lemma rev-ballE [elim]:
[Vacd. Plz); o¢d — Q; P(s) = Q] = Q
(proof)

lemma ballE: [Vaz€A. P(z); P(z) = @; 2¢A = Q] = @
(proof )

lemma rev-bspec: [z: A; Vz€A. P(z)] = P(x)
(proof)

lemma ball-triv [simp]: (Vaz€A. P) +— ((3z. z€4) — P)
(proof)

lemma ball-cong [cong]:
[A=A" Az.z€A’= P(z) +— P'(z)] = (Vz€A. P(z)) +— (Vz€A'. P'(x))
(proof )

lemma atomize-ball:
(Az. 2 € A = P(z)) = Trueprop (Vz€A. P(x))
(proof)

lemmas [symmetric, rulify] = atomize-ball
and [symmetric, defn] = atomize-ball

1.13 Bounded existential quantifier

lemma bexl [intro]: [P(z); z: A] = Jz€A. P(x)
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(proof)

lemma rev-bexl: [z€A; P(z)] = Jz€A. P(x)

(proof)

lemma bexCI: [Vax€A. =P(z) = P(a); a: A] = Jz€A. P(x)
(proof)

lemma bezE [elim!]: [3z€A. P(z); Az. [z€4; P(z)] = Q] = @
(proof)

lemma bex-triv [simp]: (3z€A. P) +— ((3z. z€A) A P)
(proof)

lemma bex-cong [congl:
[A=A"; Az. z€ A’ = P(z) +— P'(2)]
= (Jz€d. P(z)) +— (z€A’. P'(z))
(proof)

1.14 Rules for subsets

lemma subsetl [introl]:
(Az. 2€6A = 2€B) = A C B
(proof)

lemma subsetD [elim]: [A C B; c€A] = c€B
{proof)

lemma subsetCE [elim]:
[ACB; ¢¢ A= P, ceB=—= P] =P
(proof)

lemma rev-subsetD: [c€A; ACB] = c€B

(proof)

lemma contra-subsetD: [A C B; c ¢ Bl = ¢ ¢ A
{proof)

lemma rev-contra-subsetD: [c ¢ B; AC Bl = c¢ A
{proof)

lemma subset-refl [simp]: A C A
{proof)
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lemma subset-trans: [ACB; BC(C] = ACC
(proof)

lemma subset-iff:
ACB +— (V. z€ A — z€B)

(proof)
For calculations

declare subsetD [trans] rev-subsetD [trans] subset-trans [trans

1.15 Rules for equality

lemma equalityl [intro]: [A C B; BC Al = A =B
(proof)

lemma equality-iffl: (Az. €A +— 2€B) = A =B
{proof)

lemmas equalityD1 = extension [THEN iffD1, THEN conjunctl)
lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2)

lemma equalityE: [A = B; [ACB; BCA] = P] = P
(proof)

lemma equalityCFE:
[A = B; [ceA; ceB] = P; [c¢4; ¢¢B] — P] = P
(proof)

lemma equality-iffD:

A=B= (A\z.z€ A+— z € B)
{proof)

1.16 Rules for Replace — the derived form of replacement

lemma Replace-iff:
be {y z€A, P(z,y)} +— (Fa€A. P(z,b) A Vy. P(z,y) — y=b))
(proof)

lemma Replacel [intro]:
[P(z,0); = A; Ay. Pz,y) = y=b] =
be {y z€A, P(z,y)}

(proof)

lemma ReplacekE:
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[b € {y. z€A, P(z,y)};
Nz. [z: A; P(z,b); Vy. P(z,y)—y=0] = R
]= R

(proof)

lemma ReplaceE2 [elim!]:
[b € {y. z€A, P(z,y)};
Az. [z: 4; P(z,b)] = R
=R

(proof)

lemma Replace-cong [congl:
[A=B; Azy. z€B = P(z,y) +— Q(z,y)] = Replace(A,P) = Replace(B,Q)
(proof)

1.17 Rules for RepFun

lemma RepFunl: a € A = f(a) € {f(z). z€A}
(proof)

lemma RepFun-eql [intro]: [b=f(a); a € A] = b € {f(z). z€A}
(proof)

lemma RepFunE [elim!]:
[b € {f(x). zcA};
Nz.[zed; b=f(z)] = P] =
P
{proof)

lemma RepFun-cong [cong]:
[A=B; Az. zeB = f(z)=g(z)] = RepFun(A.f) = RepFun(B,g)
(proof)

lemma RepFun-iff [simp]: b € {f(z). x€A} +— (Fz€A. b=f(x))
{proof)

lemma triv-RepFun [simp]: {z. z€A} = A
{proof)

1.18 Rules for Collect — forming a subset by separation

lemma separation [simp]: a € {z€A. P(z)} +— a€A A P(a)
{proof)

lemma Collect] [introl]: [a€A; P(a)] = a € {z€A. P(z)}
{proof)

lemma CollectE [eliml]: [a € {z€A. P(z)}; [a€4; P(a)] = R] = R
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{proof)

lemma CollectD1: a € {z€A. P(z)} = acA and CollectD2: a € {z€A. P(z)}
= P(a)
(proof)

lemma Collect-cong [cong]:
[A=B; Az. z€B = P(z) +— Q(z)]
= Collect(A, Az. P(z)) = Collect(B, \z. Q(z))
{proof)

1.19 Rules for Unions

declare Union-iff [simp]

lemma Unionl [intro]: [B: C; A: B] = A: |J(C)
{proof)

lemma UnionE [elim!]: [A € U(C); AB.J[A: B; B: C] = R] = R
(proof)
1.20 Rules for Unions of families

lemma UN-iff [simp]: b € (Jz€A. B(z)) +— (Fz€A. b € B(z))
{proof)

lemma UN-I: [a: A; b: B(a)] = b: (Jz€A. B(z))
{proof)

lemma UN-E [elim!]:
[be (UzeA. B(z)); Az.Jz: A; b: B(z)] = R] = R
{proof)

lemma UN-cong:
[<[A:§;> Nz. z€éB = C(2)=D(2)] = (Uz€A. C(z)) = (UzeB. D(z))
proo

1.21 Rules for the empty set

lemma not-mem-empty [simp]: a ¢ 0
(proof )

lemmas emptyE [elim!] = not-mem-empty [THEN notFE)

lemma empty-subset] [simp]: 0 C A
(proof )
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lemma equalsOI: [\y. y€¢A = Fualse] — A=0
{proof)

lemma equalsOD [dest]: A=0 — a ¢ A
{proof)

declare sym [THEN equalsOD, dest]

lemma not-emptyl: acA = A # 0
(proof)

lemma not-emptyE: [A # 0; Nz. 2€éA = R] = R
(proof)

1.22 Rules for Inter

lemma Inter-iff: A € (C) «— (VzeC. A: z) A C#0
{proof)

lemma Interl [intro!]:
[ANz. ©: C = A:z; CA0] = A e (CO)
{proof)

lemma InterD [elim, Pure.elim]: [A € ((C); Be C] = A€ B
{proof)

lemma InterE [elim]:
[AeN(C); B¢C = R; AeB— R] — R
{proof)

1.23 Rules for Intersections of families
lemma INT-iff: b € (N z€A. B(z)) «— (Vz€A. b € B(x)) N A£0
(proof )

lemma INT-I: [Az. z: A = b: B(z); A#0] = b: (Nz€A. B(z))
{proof)

lemma INT-E: [b € (N z€A. B(z)); a: A] = b € B(a)
{proof)

lemma INT-cong:

[<[A:§;> Nz. 2€ B = C(2)=D(2)] = (Nz€A. C(z)) = (N z€B. D(z))
proo
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1.24 Rules for Powersets

lemma Powl: A C B = A € Pow(B)

(proof)

lemma PowD: A € Pow(B) = ACB
{proof)

declare Pow-iff [iff]

lemmas Pow-bottom = empty-subset] [THEN PowlI] — 0 € Pow(B)
lemmas Pow-top = subset-refl [THEN Powl] — A € Pow(A)

1.25 Cantor’s Theorem: There is no surjection from a set to
its powerset.

lemma cantor: 35 € Pow(A). VzeA. b(z) # S
{proof)

end

2 Unordered Pairs

theory upair

imports ZF-Base
keywords print-tcset :: diag
begin

(ML)

2.1 Unordered Pairs: constant Upair

lemma Upair-iff [simp]: ¢ € Upair(a,b) +— (c=a | ¢=b)

(proof)

lemma Upairll: a € Upair(a,b)
(proof)

lemma Upairl2: b € Upair(a,b)
(proof)

lemma UpairE: [a € Upair(b,c); a=b = P; a=c = P] = P
(proof)

2.2 Rules for Binary Union, Defined via Upair

lemma Un-iff [simp]: c € AUB<+— (c€ A| c € B)

(proof)
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lemma Unll: c€ A= cc AUB
(proof)

lemma Unl2: c€e B=— ce€ AUB

(proof)

declare Unll [elim? Uni2 [elim?]

lemma UnE [elim!]: [c€e AUB;, c€ A= P; c€e B= P|= P

{(proof)

lemma UnE" [c€ AUB; c€ A= P; [c€ B; ¢¢A] = P] = P
(proof)

lemma UnCI [introl]: (c ¢ B=—= c€ A) = c€ AUB
(proof)
2.3 Rules for Binary Intersection, Defined via Upair

lemma Int-iff [simp]: c€ AN B+— (c€ AN cé€ B)
(proof)

lemma Intl [introl]: [c € A; c€ Bl = c€ AN B
(proof)

lemma IntD1: c€ ANB= cc A

(proof)

lemma IntD2: c€ ANB=— c€ B
(proof)

lemma IntE [elim!]: [c€ AN B; [c€ A;ce€ Bl = P] = P
(proof)

2.4 Rules for Set Difference, Defined via Upair

lemma Diff-iff [simp]: ¢ € A—B +— (¢ € A N\ ¢¢B)
(proof)

lemma Diffl [intro!]: [c € A; ¢c¢ Bl = c€ A - B
(proof)

lemma DiffDl: c€e A— B=cec A
(proof)

lemma DiffD2: c€ A — B= c ¢ B
(proof)
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lemma DiffE [elim!]: [c € A — B; [c € A; ¢¢B] = P] = P

(proof)

2.5 Rules for cons

lemma

cons-iff [simp]: a € cons(b,A) «— (a=b | a € A)

{proof)

lemma

(proof)

lemma

(proof)

lemma

(proof)

lemma
[a €

(proof)

lemma

(proof)

lemma

(proof)

consll [simp,TC]: a € cons(a,B)

consl2: a € B=> a € cons(b,B)

consE [elim!]: [a € cons(b,A); a=b=—= P; a € A= P] = P
consk”:
cons(b,A); a=b = P; [a € A; a#b] = P] = P

consCI [introl]: (a¢B = a=b) = a € cons(b,B)

cons-not-0 [simpl: cons(a,B) # 0

lemmas cons-neq-0 = cons-not-0 [THEN notFE)|

declare cons-not-0 [THEN not-sym, simp)

2.6 Singletons

lemma

(proof)

lemma

(proof)

singleton-iff: a € {b} +— a=b

singletonl [introl]: a € {a}

lemmas singletonE = singleton-iff [THEN iffD1, elim-format, elim!]

2.7 Descriptions

lemma

the-equality [intro]:

[P(a); Az. P(z) = z=a] = (THE z. P(z)) = a
{proof)

27



lemma the-equality2: [3!z. P(z); P(a)] = (THE z. P(z)) = a
(proof)

lemma thel: 3!z. P(x) = P(THE xz. P(x))
(proof)

lemma the-0: = (3!z. P(z)) = (THE z. P(z))=0
{proof)

lemma thel2:
assumes pl: = Q(0) = Ilz. P(x)
and p2: Az. P(z) = Q(z)
shows Q(THE z. P(z))
(proof)

lemma the-eq-trivial [simp]: (THE x. x = a) = a
(proof)

lemma the-eq-trivial2 [simpl: (THE z. a = z) = a

(proof)

2.8 Conditional Terms: if —then—else

lemma if-true [simp]: (if True then a else b) = a

(proof)

lemma if-false [simp: (if False then a else b) = b
(proof)

lemma if-cong:

[P—Q; Q = a=c¢; ~Q = b=d]

= (if P then a else b) = (if Q then c else d)
(proof)

lemma if-weak-cong: P<— Q) = (if P then z else y) = (if Q then z else y)
(proof)

lemma if-P: P = (if P then a else b) = a
(proof)
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lemma if-not-P: =P = (if P then a else b) = b
(proof)

lemma split-if [split]:

< 1}(>if Q then = else y) «— ((Q@ — P(z)) A (=Q — P(y)))
proo,

lemmas split-if-eq1 = split-if [of Az. x = b] for b
lemmas split-if-eq2 = split-if [of Az. a = z] for a

lemmas split-if-mem1 = split-if [of A\z. z € b] for b
lemmas split-if-mem2 = split-if [of A\z. a € z] for a

lemmas split-ifs = split-if-eq1 split-if-eq2 split-if-mem1 split-if-mem?2

lemma if-iff: a: (if P then z else y) «+— PANa €z | "PAa€y

(proof)

lemma if-type [TC]:
[P= a€ A; -P=be A] = (if P then a else b): A
(proof)

l<emr;t1§1 split-if-asm: P(if Q then x else y) «— (=((Q AN =P(z)) | (-Q A =P(y))))
Proo

lemmas if-splits = split-if split-if-asm
2.9 Consequences of Foundation

lemma mem-asym: [a € b =P = b€ a] = P
(proof)

lemma mem-irrefl: a € a = P

(proof)

lemma mem-not-refl: a ¢ a

(proof)

lemma mem-imp-not-eq: a € A = a # A
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(proof)

lemma eg-imp-not-mem: a=A = a ¢ A

(proof)

2.10 Rules for Successor

lemma succ-iff: i € succ(j) «— i=j | i €]
(proof)

lemma succll [simp]: i € succ(i)

(proof)

lemma succl2: i € j = i € succ(j)
(proof)

lemma succE [elim!]:

[¢ € suce(j); i=j = P; i€ j— P]= P

(proof)

lemma succCI [introl]: (i¢j = i=j) = i € succ(j)

(proof)

lemma succ-not-0 [simp]: succ(n) # 0
(proof)

lemmas succ-neq-0 = succ-not-0 [THEN notE, elim!]
declare succ-not-0 [THEN not-sym, simp)
declare sym [THEN succ-neq-0, elim!]

lemmas succ-subsetD = succll [THEN [2] subsetD]

lemmas succ-neq-self = succll [THEN mem-imp-not-eq, THEN not-sym)

lemma succ-inject-iff [simp]: succ(m) = succ(n) «— m=n
(proof)

lemmas succ-inject = succ-inject-iff [THEN iffD1, dest!]

2.11 Miniscoping of the Bounded Universal Quantifier

lemma ball-simpsi:

(VzeA. P(z) A Q) <+— (Vz€A. P(z)) A (A=0] Q)
(Vaed P(z) | Q) « ((¥reA. P(z)) ]| Q)

(VzeA. P(z) — Q) +— ((3z€A. P(z)) — Q)
(-(Vz€A. P(z))) +— (Fz€A. =P(x))



(Vze€0.P(z)) «— True

(Vz€suce(i).P(z)) +— (z) (Vzei. P(x))

(Vzecons(a,B).P(z)) «— P(a) A (VzeB. P(x))

(VmERepFun Af). P(z)) «+— (VyeA. P(f(y)))
o U )-PE) o (V5. Vo, Plo)
Proo

lemma ball-simps2:
(VzeA. P A Q(z)) +— (A=0] P) A (VzeA. Q(x))
(Vzed. P | Qz)) «— (P ( zeA. Q(z)))
< (V;UEA. P — Qz)) «— (P — (Vzed. Q(x)))
proof

lemma ball-simps3:
(VzeCollect(A,Q).P(z)) +— (VzeA. Q(z) — P(z))
(proof)

lemmas ball-simps [simp] = ball-simps1 ball-simps2 ball-simps3

lemma ball-conj-distrib:
< (Vx>€A. P(z) A Q) +— ((Vz€A. P(z)) A (VzeA. Q(x)))
proof

2.12 Miniscoping of the Bounded Existential Quantifier

lemma bez-simpsi:
(JzeA. P(z) N Q) +— ((z€A. P(z)) N Q)
(JzeA. P(z) | Q) «— (Fz€A. P(z)) | (A#0 A Q)
(JzeA. P(z) — Q) +— ((Vz€A. P(z)) — (A#0 A Q))
(3z€0.P(z)) +— False
(Fzesuce(i).P(z)) «— (z) | (3ze€i. P(x))
(Fzecons(a,B).P(z)) «— P(a) | (3z€B. P(z))
(FzeRepFun(A,f). P(z)) «— (FycA. P(f(y)))
(el (4).P(x)) «— (yed. Izey. P(z)
< (f>(EI z€A. P(x))) +— (VzeA. -P(z))
Proo

lemma bez-simps2:
(JzeA. P A Q(z)) +— (P A (BzeA. Q(z)))
(Jzed. P | Q(x)) +— 0
(Jzed. P — Q(z)) +— ((A
(proof)

lemma bez-simps3:
(FzeCollect(A,Q).P(z)) +— (Fz€A. Q(z) A P(z))
(proof)

lemmas bez-simps [simp] = bez-simpsl bex-simps2 bex-simpss
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lemma bez-disj-distrib:
< (HfQ;GA. P(z) | Q(z)) +— ((Fz€A. P(z)) | (z€A. Q(x)))
proo

lemma bez-triv-one-pointl [simp]: (3z€A. z=a) +— (a € A)
(proof)

lemma bez-triv-one-point2 [simp]: (3z€A. a=z) «— (a € A)

(proof)

lemma bex-one-pointl [simp]: (3z€A. z=a N P(z)) <— (a € A A P(a))

(proof)

lemma bex-one-point2 [simp|: (3z€A. a=z A P(z)) «— (a € A A P(a))
(proof)

lemma ball-one-point1 [simp]: (Vz€A. x=a — P(z)) +— (a € A — P(a))

(proof)

lemma ball-one-point2 [simp|: (Vz€A. a=z — P(z)) «— (e € A — P(a))
(proof)

2.13 Miniscoping of the Replacement Operator

These cover both Replace and Collect

lemma Rep-simps [simp]:

{z.y€ 0, R(z,y)} = 0

{re0. Plz)} =0

{z € A. Q} = (if Q then A else 0)

RepFun(0.f) = 0

RepFun(succ(),f) = cons(f(4), RepFun(i,f))

RepFun(cons(a,B),f) = cons(f(a), RepFun(B,f))
(proof)

2.14 Miniscoping of Unions

lemma UN-simps1:

(Uzel. cons(a, B(z))) = (if C=0 then 0 else cons(a, |JzeC. B(x)))
(if C=0 then 0 else (JzeC. A(z)) U B
(if C=0 then 0 else A’ U (JzeC. B(x)))
(UzeC. A(z)) N BY)
(A"'n (Uzel. B(x)))
(UzeC. A(z)) — BY)
(if C=0then 0 else A’ — ((z€C. B(z)))
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lemma UN-simps2:

(UzeU(4). B(x)) = (Uyed. Uzcy. B(z))
(Uze(Uzed. B(x)). C(2)) = (JzeA. JzeB(x). C(2))

(Uz€RepFun(A.f). B(z)) = (Ua€A. B(f(a)))
(proof)

lemmas UN-simps [simp] = UN-simpsl UN-simps2

Opposite of miniscoping: pull the operator out

lemma UN-extend-simps1:
(UzeC. A(z)) U B = (if C=0 then B else (|JzeC. A(z) U B))
(UzeC. A(z)) N B) = (JzeC. A(z) N B)

< (%JJTEC- A(z)) — B) = (UzeC. A(z) — B)

proo

lemma UN-extend-simps2:
cons(a, | JzeC. B(x)) = (if C=0 then {a} else (Jz€C. cons(a, B(x))))
AU (JzeC. B(z)) = (if C=0 then A else (JzeC. A U B(x)))
(AN (Jzel. B(z))) = (JzeC. AN B(x))
— (N=zeC. B(z)) = (if C=0then A else ((JzeC. A — B(x)))
(UyeA. Uzey. B(z)) = (Uzel(4). B(x))
< (JLCJ>a€A. B(f(a))) = (z€RepFun(A,f). B(x))
Proo

lemma UN-UN-extend:
< (%xEA. UzeB(z). C(2) = (Uze(zeA. B(x)). C(z2))
proo

lemmas UN-extend-simps = UN-extend-simpsl UN-extend-simps2 UN-UN-extend

2.15 Miniscoping of Intersections

lemma INT-simpsl1:

(NzeC. A(z) N B) = (NzeC. A(z)) N B

(NzeC. A(z) — B) = (NzeC. A(z)) — B

(NzeC. A(z) U B) = (if C=0 then 0 else ((z€C. A(z)) U B)
(proof)

lemma INT-simps2:
(NzeC. AN B(zx))
(NzeC. A — B(z)) (if C=0 then 0 else A — ((JzeC. B(x)))
B(x) (if C=0 then 0 else cons(a, ((z€C. B(x)))
)

= (if C=0 then 0 else A U ((zeC. B(x)))

= AN ([1z€C. B(z))
) =

(NzeC. cons(a,
(Nzel. AU B(m)

(proof)
lemmas INT-simps [simp] = INT-simps! INT-simps2

Opposite of miniscoping: pull the operator out

lemma INT-extend-simps1:
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(NzeC. A(z)) N B = (NzeC. A(z) N B)

(NzeC. A(z)) — B = (NzeC. A(z) — B)

(NzeC. A(z)) U B = (if C=0 then B else ((zeC. A(z) U B))
(proof)

lemma INT-extend-simps2:
An(NzeC. B(z)) = (NzeC. AN B(z))
A — (JzeC. B(x)) (if C=0 then A else (NzeC. A — B(z))
cons(a, (z€C. B(z)) = (if C=0 then {a} else ((z€C. cons(a, B(x))))
AU (NzeC. B(z)) = (if C=0 then A else (Nz€C. A U B(z)))

(proof)

lemmas INT-extend-simps = INT-extend-simpsl INT-extend-simps?2

2.16 Other simprules

lemma misc-simps [simp]:

0UA=A
AUuo=A
0NA=0
ANo0o=20
0—-—A=0
A-0=A
U) =0
U (cons(b,A4)) = b U J(4)
Ao} = b

(proof)

end

3 Ordered Pairs

theory pair imports upair
begin

(ML)

lemma singleton-eg-iff [iff]: {a} = {b} +— a=b
(proof)

lemma doubleton-eq-iff: {a,b} = {¢,d} +— (a=c A b=d) | (a=d A b=c)
(proof)

lemma Pair-iff [simp]: (a,b) = (¢,d) +— a=c N b=d
(proof)
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lemmas Pair-inject = Pair-iff [THEN iffD1, THEN conjE, elim!]

lemmas Pair-inject! = Pair-iff [THEN iffD1, THEN conjunctl]
lemmas Pair-inject2 = Pair-iff [THEN iffD1, THEN conjunct2]

lemma Pair-not-0: {(a,b) # 0
(proof)

lemmas Pair-neq-0 = Pair-not-0 [THEN notE, elim!]
declare sym [THEN Pair-neg-0, elim!]

lemma Pair-neg-fst: (a,b)=a = P
(proof)

lemma Pair-neg-snd: {a,b)=b — P

(proof)

3.1 Sigma: Disjoint Union of a Family of Sets

Generalizes Cartesian product

lemma Sigma-iff [simp]: (a,b): Sigma(A,B) «— a € A AN b € B(a)
(proof)

lemma Sigmal [TC,intro!]: [a € A; b € B(a)] = (a,b) € Sigma(A,B)
(proof)

lemmas SigmaD1 = Sigma-iff [THEN iffD1, THEN conjunctl]
lemmas SigmaD2 = Sigma-iff |[THEN iffD1, THEN conjunct2]

lemma SigmaFE [elim!]:
[c € Sigma(A,B);
Nz y.[z € 4; y € B(z); c=(z,y)] = P
|=P

(proof)

lemma SigmaE?2 [elim!]:
[(a,b) € Sigma(A,B);
la € A4; b€ B(a)] = P
|=r

(proof)

lemma Sigma-cong:
[A=A"; Az. 2z € A’ = B(z)=B'(z)] =
Sigma(A,B) = Sigma(A’,B’)

(proof)
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lemma Sigma-emptyl [simp]: Sigma(0,B) = 0
(proof)

lemma Sigma-empty2 [simp]: Ax0 = 0
(proof)

lemma Sigma-empty-iff: AxB=0 <— A=0 | B=0
(proof)

3.2 Projections fst and snd

lemma fst-conv [simp]: fst({a,b)) = a

(proof)

lemma snd-conv [simp]: snd({a,b)) = b
(proof)

lemma fst-type [TC]: p € Sigma(A,B) = fst(p) € A
(proof)

lemma snd-type [TC): p € Sigma(A,B) = snd(p) € B(fst(p))
(proof)

lemma Pair-fst-snd-eq: a € Sigma(A,B) = <fst(a),snd(a)> = a
(proof)

3.3 The Eliminator, split

lemma split [simp]: split(A\z y. c(z,y), (a,b)) = c(a,b)
(proof)

lemma split-type [TC:
[p € Sigma(A,B);
Ao yls € 4 y € B@)] = c(,9):0((.9))
]} =>f§plit(kw y. c(z.y), p) € C(p)
proo,

lemma expand-split:
u € AxB =
R(split(c,u)) +— (Vz€A. VyeB. v = (z,y) — R(c(z,y)))
(proof)

3.4 A version of split for Formulae: Result Type o

lemma splitl: R(a,b) = split(R, (a,b))
(proof)

lemma splitE:
[split(R,2); z € Sigma(A,B);
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Az y. [z = (z,y); R(zy)] = P
=P
(proof)

lemma splitD: split(R,{a,b)) = R(a,b)
(proof)

Complex rules for Sigma.

lemma split-paired-Bex-Sigma [simp):
(3z € Sigma(A,B). P(z)) «— (3z € A. 3y € B(z). P((z,y)))
(proof)

lemma split-paired-Ball-Sigma [simp]:
(Vz € Sigma(A,B). P(z)) «— (Vz € A. Yy € B(x). P((z,y)))
(proof)

end

4 Basic Equalities and Inclusions
theory equalities imports pair begin

These cover union, intersection, converse, domain, range, etc. Philippe de
Groote proved many of the inclusions.

lemma in-mono: ACB — z€ A — z€B

(proof)

lemma the-eq-0 [simp]: (THE x. False) = 0
(proof)

4.1 Bounded Quantifiers

The following are not added to the default simpset because (a) they duplicate
the body and (b) there are no similar rules for Int.

lemma ball-Un: (Vo € AUB. P(z)) +— (Vz € A. P(z)) A (VYz € B. P(x))
{proof)

lemma bex-Un: (32 € AUB. P(z)) «— (3z € A. P(x)) | (3z € B. P(x))
{proof)

lemma ball-UN: (Vz € (Jz€A. B(z)). P(2)) +— (Vz€A. Vz € B(x). P(z))
(proof)

lemma bex-UN: (3z € (Uz€A. B(x)). P(z)) +— (Fz€A. 3z€B(x). P(2))
{proof)
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4.2 Converse of a Relation

lemma converse-iff [simp]: (a,b)€ converse(r) <— (b,a)er

(proof)

lemma conversel [introl]: {a,b)er = (b,a)€ converse(r)
(proof)

lemma converseD: {(a,b) € converse(r) = (b,a) € r

(proof)

lemma converseE [elim!]:
[yz € converse(r);

/\CL‘ Y. [[y352<y7113>; <.Z',y>€7"]] = P]]
= P

(proof)

lemma converse-converse: rCSigma(A,B) = converse(converse(r)) = r
(proof )

lemma converse-type: rCAxB = converse(r)C BxA

(proof)

lemma converse-prod [simp]: converse(AxB) = BxA
(proof)

lemma converse-empty [simp]: converse(0) = 0

(proof)

lemma converse-subset-iff:
A C Sigma(X,Y) = converse(A) C converse(B) +— A C B

(proof)

4.3 Finite Set Constructions Using cons

lemma cons-subsetl: [acC; BCC| = cons(a,B) C C
(proof)

lemma subset-consl: B C cons(a,B)

(proof)

lemma cons-subset-iff [iff]: cons(a,B)CC +— acC N BCC
(proof)

lemmas cons-subsetE = cons-subset-iff [THEN iffD1, THEN conjE]

lemma subset-empty-iff: ACO +— A=0
(proof)
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lemma subset-cons-iff: CCcons(a,B) «— CCB | (acC N C—{a} C B)
(proof)

lemma cons-eq: {a} U B = cons(a,B)

(proof)

lemma cons-commute: cons(a, cons(b, C)) = cons(b, cons(a, C))
(proof)

lemma cons-absorb: a: B = cons(a,B) = B

(proof)

lemma cons-Diff: a: B => cons(a, B—{a}) = B

(proof)

lemma Diff-cons-eq: cons(a,B) — C = (if acC then B—C else cons(a,B—C))
(proof)

lemma equal-singleton: [a: C; Ny. y €C = y=b] = C = {b}
{proof)

lemma [simp]: cons(a,cons(a,B)) = cons(a,B)
(proof)

lemma singleton-subsetl: acC = {a} C C
(proof)

lemma singleton-subsetD: {a} C C = a€C

(proof)

lemma subset-succl: i C succ(i)

(proof)

lemma succ-subsetl: [i€j; iCj] = succ(i)Cj

(proof)

lemma succ-subsetE:
[succ(i) C j; [i€j; iCj] = P] = P
(proof)

lemma succ-subset-iff: succ(a) € B «— (a € B A a € B)

(proof)
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4.4 Binary Intersection

lemma Int-subset-iff: C CANB+— CCANCCB
(proof)

lemma Int-lowerl: AN BC A
(proof)

lemma Int-lower2: AN B C B

(proof)

lemma Int-greatest: [CCA; CCB]— CC ANB
(proof)

lemma Int-cons: cons(a,B) N C C cons(a, BN C)

(proof)

lemma Int-absord [simp]: AN A=A
(proof)

lemma Int-left-absorb: AN (AN B)=ANB
(proof)

lemma Int-commute: AN B=BNA
(proof)

lemma Int-left-commute: AN (BN C)=BnNn (AN C)
(proof)

lemma Int-assoc: (AN B)NC = AN (BnC)
(proof)

lemmas Int-ac= Int-assoc Int-left-absorb Int-commute Int-left-commute

lemma Int-absorbl: BC A — AN B=218
(proof )

lemma Int-absorb2: AC B— ANB=A
(proof)

lemma Int-Un-distrib: AN (BU C)=(ANB)U (AN C)
(proof)

lemma Int-Un-distrib2: (BU C)N A= (BN A) U (CnNA
(proof)

lemma subset-Int-iff: ACB<+— ANB=A
(proof )
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lemma subset-Int-iff2: ACB<+— BNA=A4
(proof )

lemma Int-Diff-eq: CCA = (A—B) N C = C-B
(proof)

lemma Int-cons-left:
cons(a,A) N B = (if a € B then cons(a, AN B) else AN B)

(proof)

lemma Int-cons-right:
A N cons(a, B) = (if a € A then cons(a, AN B) else AN B)

(proof)

lemma cons-Int-distrib: cons(z, A N B) = cons(z, A) N cons(z, B)

(proof)

4.5 Binary Union

lemma Un-subset-iff: AUBC C+— AC CANBCC
(proof)

lemma Un-upperl: AC AU B
(proof)

lemma Un-upper2: B C AU B
(proof)

lemma Un-least: [ACC; BCC] = AUBCC
(proof)

lemma Un-cons: cons(a,B) U C = cons(a, B U C)

(proof)

lemma Un-absorb [simp]: AU A=A
(proof)

lemma Un-left-absorb: AU (AU B) = AU B
(proof)

lemma Un-commute: AU B=BU A
(proof)

lemma Un-left-commute: AU (BU C) =B U (AU C)
(proof)

lemma Un-assoc: (AU B)U C = AU (BU ()
(proof)
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lemmas Un-ac = Un-assoc Un-left-absorb Un-commute Un-left-commute

lemma Un-absorbl: AC B=— AU B =B
(proof )

lemma Un-absorb2: BC A— AUB=A
(proof)

lemma Un-Int-distrib: (AN B)U C = (AU C)n (BU ()
(proof)

lemma subset-Un-iff: ACB+— AU B =B
(proof)

lemma subset-Un-iff2: ACB<+— BUA =B
(proof )

lemma Un-empty [iff|: (AUB=10)++— (A=0ANB=0)
(proof)

lemma Un-eq-Union: AU B = |J ({4, B})
(proof)

4.6 Set Difference

lemma Diff-subset: A—B C A
(proof)

lemma Diff-contains: [CCA; CNB=0]= CC A-B
(proof)

lemma subset-Diff-cons-iff: B C A — cons(¢,C) +— BCA-C A c¢ B
(proof)

lemma Diff-cancel: A — A =0
(proof )

lemma Diff-triv: A NB=0=— A - B=A
(proof)

lemma empty-Diff [simp]: 0 — A = 0
(proof)

lemma Diff-0 [simp]: A — 0= A
(proof)

lemma Diff-eq-0-iff: A— B=0+— ACB
(proof)
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lemma Diff-cons: A — cons(a,B) = A — B — {a}
(proof)

lemma Diff-cons2: A — cons(a,B) = A — {a} — B
(proof)

lemma Diff-disjoint: A N (B—A) = 0
(proof)

lemma Diff-partition: ACB = AU (B—A) =B
(proof)

lemma subset-Un-Diff: A C BU (A — B)
(proof)

lemma double-complement: [ACB; BC(C] = B—(C—A) = A
(proof)

lemma double-complement-Un: (A U B) — (B—A) = A
(proof )

lemma Un-Int-crazy:
(ANB)UBNC)U(CNA)=(AUBN(BUC)N(CUA)
(proof)

lemma Diff-Un: A — (BU C) = (A—-B) n (A-C)
(proof)

lemma Diff-Int: A — (BN C) = (A-B) U (A-C)
(proof)

lemma Un-Diff: (AUB) — C=(4A—-C)U (B-C)
(proof)

lemma Int-Diff: (AN B) — C=AnN (B - C)
(proof)

lemma Diff-Int-distrib: C N (A—B) = (C N A) — (C N B)
(proof)

lemma Diff-Int-distrib2: (A—B) N C = (AN C) — (Bn C)
(proof)

lemma Un-Int-assoc-iff: (AN B)UC=AN(BUC) «— CCA
(proof)
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4.7 Big Union and Intersection

lemma Union-subset-iff: |J(A) C C «— (Vz€A. z C C)

(proof)

lemma Union-upper: BEA = B C |J(A)

(proof)

lemma Union-least: [Az. 1€ A = 2CC] = |J(4) C C
(proof)

lemma Union-cons [simp]: |J (cons(a,B)) = a U |J(B)
(proof)

lemma Union-Un-distrib: |J(A U B) = J(4) U J(B)
(proof)

lemma Union-Int-subset: |J(A N B) C YU(A) N U(B)
(proof)

lemma Union-disjoint: |J(C) N A =0 «+— (VBeC. BN A =0)
(proof)

lemma Union-empty-iff: |J(A) = 0 +— (VB€A. B=0)
(proof)

lemma Int-Union2: |J(B) N A= (JCeB. C N A4)
(proof)

lemma Inter-subset-iff: A#0 — C C ((A) +— (Vz€A. C C z)
(proof)

lemma Inter-lower: BeA = ((4) C B
(proof)

lemma Inter-greatest: [A#0; Az. 1€ A = CCz] = C C N (A4)
(proof)

lemma INT-lower: 1€ A = ([ z€A. B(z)) C B(z)
(proof)

lemma INT-greatest: [A#0; Az. 1€ A = CCB(z)] = C C ((z€A. B(x))
(proof )

lemma Inter-0 [simp]: (\(0) = 0
(proof)
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lemma Inter-Un-subset:
[2€4; zeB] = N(4) UN(B) CN (AN B)
{proof)

lemma Inter-Un-distrib:
< [[}4>7é0; B#0] = N(AU B) =N (4) NN (B)
Proo,

lemma Union-singleton: |J ({b}) = b
(proof)

lemma Inter-singleton: (| ({b}) = b
(proof)

lemma Inter-cons [simp):
N (cons(a,B)) = (if B=0 then a else a N () (B))
(proof)

4.8 Unions and Intersections of Families

lemma subset-UN-iff-eq: A C (|Jiel. B(i)) +— A = (Ji€l. AN B(i))
(proof)

lemma UN-subset-iff: ({|Jz€A. B(z)) C C +— (Vz€A. B(z) C C)
(proof)

lemma UN-upper: x€é A = B(z) C (Jz€A. B(z))
(proof)

lemma UN-least: [A\z. z€¢ A = B(z)CC] = (Jz€A. B(z)) C C
(proof)

lemma Union-eq-UN: |J(4) = (Uz€A. z)
(proof)

lemma Inter-eq-INT: ((A) = (N z€A. )
(proof)

lemma UN-0 [simp]: (Ji€0. A(i)) = 0
(proof)

lemma UN-singleton: (|Jz€A. {z}) = A
(proof)

lemma UN-Un: (Jic AU B. (i) = (Jic A. (i) U (Ji€B. C(4))
(proof)
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lemma INT-Un: (i€l U J. A(Q)) =
(if I=0 then (N jeJ. A(j)
else if J=0 then (icl. A(%)
else ((Ni€l. A(i)) N (NjeJ. A(H))))
(proof)

l<emr}1§1 UN-UN-flatten: (Jz € (Uy€A. B(y)). C(z)) = (UyeA. Uze B(y). C(z))
proo

lemma Int-UN-distrib: B N (Jiel. A(7)) = (Jiel. BN A(Q))
(proof)

lemma Un-INT-distrib: I#0 = B U ([\i€l. A(i)) = (Ni€l. B U A(7))
(proof)

lemma Int-UN-distrib2:
< (JL£J>1'€I. A(d)) N (Ujed. B(j) = (Uiel. Ugjed. A(i) n B(j))
Proo,

lemma Un-INT-distrib2: [I#£0; J#0] =
< L(f(>] iel. A7) U (Njed. B(j)) = (Niel. Njed. A(i) U B(j))
proo

lemma UN-constant [simp]: (|Jy€A. ¢) = (if A=0 then 0 else c)
(proof)

lemma INT-constant [simp]: ((y€A. ¢) = (if A=0 then 0 else c)
(proof)

1<emr}1§1 UN-RepFun [simp]: (Jye RepFun(A,f). B(y)) = (Jz€A. B(f(x)))
proo,

l<emr}1§1 INT-RepFun [simp]: ((z€RepFun(A,f). B(z)) = (acA. B(f(a)))
proo

lemma INT-Union-eq:

< 0f>§§ A= (Nze U(A). B(z)) = (NyeA. Nzcy. B(x))
pTOO,

lemma INT-UN-eq:

(VzeA. B(z) # 0)
< ? (Nz€ (UzeA. B(x)). C(z)) = (Nz€A. N z€ B(z). C(z))
Proo

lemma UN-Un-distrib:
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(Uiel. A(7) U B(i)) = (Uiel. A(%)) U (Uiel. B(7))
(proof)

lemma INT-Int-distrib:
< 1;0 = (N iel. A(¢) N B(i)) = (Niel. A7) n (N i€l. B(i))
proo

lemma UN-Int-subset:
< (%ze[ NJ. A(z)) C (Jzel. A(z)) N (Uzed. A(2))
proo

lemma Diff-UN: I#0 = B — (Ji€l. A(i)) = (Ni€l. B — A(Q))
(proof)

lemma Diff-INT: [#0 = B — ((i€l. A(i)) = (Uiel. B — A(7))
(proof)

lemma Sigma-consi: Sigma(cons(a,B), C) = ({a}*C(a)) U Sigma(B,C)
(proof)

lemma Sigma-cons2: A * cons(b,B) = Ax{b} U AxB
(proof)

lemma Sigma-succl: Sigma(succ(A), B) = ({A}xB(A)) U Sigma(A,B)
(proof)

lemma Sigma-succ2: A * succ(B) = Ax{B} U AxB
(proof)

lemma SUM-UN-distrib1:

< (%x € (Uyed. C(y). B(z)) = (UyeAd. Yo zeC(y). B(z))
proo,

lemma SUM-UN-distrib2:
S iel. Ujed. C(ig) = (Ujed. Y iel. C(i,)))
(proof)

lemma SUM-Un-distrib1:
< (% el U J. C(1) = (O iel. C() U (D jed. C3))
Proo,

lemma SUM-Un-distrib2:
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< (fz> iel. A(i) U B(3)) = (Y iel. A(4)) U (X iel. B(i))
PToo.

lemma prod-Un-distrib2: I « (AU B) = IxA U IxB
(proof)

lemma SUM-Int-distrib1:
< (fz> eI N J. CH) = iel. C(H) n (O jed. C3))
Proo

lemma SUM-Int-distrib2:
: (% iel. A(i) N B(7)) = (O_iel. A(¢)) N (O iel. B(7))
Proo,

lemma prod-Int-distrib2: I x (AN B) = IxA N IxB
(proof)

lemma SUM-eq-UN: (> i€l. A(7)) = (Jiel. {i} = A(7))
(proof)

lemma times-subset-iff:
(A%B'C AsB) s (A'= 0| B'= 0 | (A'CA) A (B'CB))
(proof)

lemma Int-Sigma-eq:
< (%x e A Bx)Nn (O ze A Bx)= 0O ze€ A'n A. B'(z) N B(z))
proo

lemma domain-iff: a: domain(r) «+— (Fy. (a,y)€ 1)
(proof)

lemma domainl [intro]: (a,b)€ r => a: domain(r)

(proof)

lemma domainFE [elim!]:
[a € domain(r); Ay. (a,y)e r = P] = P

(proof)

lemma domain-subset: domain(Sigma(A,B)) C A
(proof)

lemma domain-of-prod: b€ B = domain(A*B) = A

(proof)
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lemma domain-0 [simp]: domain(0) = 0
(proof)

lemma domain-cons [simp]: domain(cons({a,b),r)) = cons(a, domain(r))

(proof)

lemma domain-Un-eq [simp]: domain(A U B) = domain(A4) U domain(B)
(proof)

lemma domain-Int-subset: domain(A N B) C domain(A) N domain(B)

(proof)

lemma domain-Diff-subset: domain(A) — domain(B) C domain(A — B)
(proof)

lemma domain-UN: domain(|Jz€A. B(z)) = (Jz€A. domain(B(x)))
(proof)

lemma domain-Union: domain(|J (A)) = (Jz€A. domain(zx))
(proof)

lemma rangel [intro]: (a,b)€ r = b € range(r)

(proof)

lemma rangeE [elim!]: [b € range(r); Az. (z,b)e r = P] = P
(proof)

lemma range-subset: range(AxB) C B
{proof)

lemma range-of-prod: ac A = range(AxB) = B
(proof)

lemma range-0 [simp]: range(0) = 0

(proof)

lemma range-cons [simp: range(cons({a,b),r)) = cons(b, range(r))
(proof)

lemma range-Un-eq [simp]: range(A U B) = range(A) U range(B)
(proof)

lemma range-Int-subset: range(A N B) C range(A) N range(B)

{(proof)

lemma range-Diff-subset: range(A) — range(B) C range(A — B)
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(proof)

lemma domain-converse [simp|: domain(converse(r)) = range(r)

(proof)

lemma range-converse [simp]: range(converse(r)) = domain(r)
(proof)

lemma fieldl1: (a,b)e r = a € field(r)
(proof)

lemma fieldI2: (a,b)e r = b € field(r)
(proof)

lemma fieldCI [intro|:
(= {(c,a)er = (a,b)e r) = a € field(r)
(proof )

lemma fieldE [elim!]:
[a € field(r);
Nz. (a,x)e r = P;
Nz. (z,a)€ r = P] = P

(proof)

lemma field-subset: field(AxB) C AU B
(proof)

lemma domain-subset-field: domain(r) C field(r)
{proof)

lemma range-subset-field: range(r) C field(r)
{proof)

lemma domain-times-range: r C Sigma(A,B) = r C domain(r)*range(r)

(proof)

lemma field-times-field: r C Sigma(A,B) = r C field(r)*field(r)
(proof)

lemma relation-field-times-field: relation(r) = r C field(r)xfield(r)

(proof)

lemma field-of-prod: field(AxA) = A
{proof )

lemma field-0 [simp]: field(0) = 0
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(proof)

lemma field-cons [simp): field(cons({a,b),r)) = cons(a, cons(b, field(r)))
(proof)

lemma field-Un-eq [simp]: field(A U B) = field(A) U field(B)

(proof)

lemma field-Int-subset: field(A N B) C field(A) N field(B)

(proof)

lemma field-Diff-subset: field(A) — field(B) C field(A — B)
(proof)

lemma field-converse [simp]: field(converse(r)) = field(r)

(proof)

lemma rel-Union: (Vz€S. 3A B. © C A*B) =
(oroof) U (S) © domain(U(5)) * range(U ()
Proo

lemma rel-Un: [r C AxB; s C CxD] = (rUs) C (AU C) x (BUD)
(proof)

lemma domain-Diff-eq: [(a,c) € r; c#b] = domain(r—{(a,b)}) = domain(r)

(proof)

lemma range-Diff-eq: [{c,b) € r; c#a] = range(r—{(a,b)}) = range(r)
(proof)

4.9 Image of a Set under a Function or Relation
lemma image-iff: b € r*A +— (Fz€A. (z,b)er)

(proof)

lemma image-singleton-iff: b € r*{a} <— (a,b)er
(proof)

lemma imagel [intro]: [(a,b)€ r; acA] = b € r*A

(proof)

lemma imageFE [elim!]:
[b: 7“4; Az.[{z,b)€ r; z€A] = P] = P
(proof)

lemma image-subset: 1 C AxB — r*C C B
(proof)
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lemma image-0 [simp]: 70 = 0
(proof)

lemma image-Un [simp]: (A U B) = (r*“A) U (r*‘B)
(proof)

lemma image-UN: r “ ((Jz€A. B(z)) = (Jzed. r ““ B(x))
(proof)

lemma Collect-image-eq:
< {;>€ Sigma(A,B). P(2)} “C = (Jz € A. {y € B(z). z € C AN P({z,y))})
proo

lemma image-Int-subset: r*(A N B) C (r*“A) N (r*B)
(proof)

lemma image-Int-square-subset: (r N AxA)“B C (r“B) N A
(proof)

lemma image-Int-square: BCA = (r N AxA)“B = (rB) N A
(proof)

lemma image-0-left [simp]: 0°A = 0
(proof)

lemma image-Un-left: (r U s)“A = (r“A) U (s“A4)
(proof)

lemma image-Int-subset-left: (r N s)“A C (r““A) N (s*“A)
(proof)

4.10 Inverse Image of a Set under a Function or Relation

lemma vimage-iff:
a € r—“B +— (JyeB. (a,y)er)
(proof)

lemma vimage-singleton-iff: a € r—*{b} +— (a,b)er

(proof)

lemma vimagel [intro]: [(a,b)€ r; beB] = a € r—“B

(proof)

lemma vimageE [elim!]:
[a: r—“B; Az.[(a,z)€ r; 2€éB] = P] = P
(proof)
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lemma vimage-subset: 1 C AxB — r—“C C A
(proof)

lemma vimage-0 [simp]: r— 0 = 0

(proof)

lemma vimage-Un [simp]: r— (A U B) = (r—*“A) U (r—“B)
(proof)

lemma vimage-Int-subset: r— (A N B) C (r—“4) N (r—“B)
(proof)

lemma vimage-eq-UN: f —“B = (JyeB. f—“{y})
(proof)

lemma function-vimage-Int:
function(f) = f—*(A 1 B) = (f=4) N (/—"B)
(proof)

lemma function-vimage-Diff: function(f) = f—‘“(A—B) = (f—“A) — (f—“B)
(proof)

lemma function-image-vimage: function(f) = f “ (f—“A) C A

(proof)

lemma vimage-Int-square-subset: (r N AxA)—“B C (r—“B) N A
(proof)

lemma vimage-Int-square: BCA = (r N AxA)—“B = (r—“B) N A
(proof)

lemma vimage-0-left [simp]: 0—“A = 0

(proof)

lemma vimage-Un-left: (r U s)—“A = (r—“A) U (s—“A)
(proof)

lemma vimage-Int-subset-left: (r N s)—“A C (r—“A) N (s—“A)
(proof)

lemma converse-Un [simp]: converse(A U B) = converse(A) U converse(B)
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(proof)

lemma converse-Int [simp]: converse(A N B) = converse(A) N converse(B)

(proof)

lemma converse-Diff [simp]: converse(A — B) = converse(A) — converse(B)
(proof)

lemma converse-UN [simp]: converse(|Jz€A. B(z)) = (Jz€A. converse(B(z)))

{(proof)

lemma converse-INT [simp]:
converse([z€A. B(z)) = ((z€A. converse(B(z)))

{proof)

4.11 Powerset Operator
lemma Pow-0 [simp]: Pow(0) = {0}
(proof)

lemma Pow-insert: Pow (cons(a,A)) = Pow(A) U {cons(a,X) . X: Pow(A)}
(proof)

lemma Un-Pow-subset: Pow(A) U Pow(B) C Pow(A U B)
(proof)

lemma UN-Pow-subset: (| Jz€A. Pow(B(x))) C Pow(|Jz€A. B(x))
(proof)

lemma subset-Pow-Union: A C Pow(|J (A))
(proof)

lemma Union-Pow-eq [simp]: | (Pow(A)) = A
(proof)

lemma Union-Pow-iff: | J (4) € Pow(B) <— A € Pow(Pow(B))
(proof)

lemma Pow-Int-eq [simp]: Pow(A N B) = Pow(A) N Pow(B)
(proof)

lemma Pow-INT-eq: A#0 = Pow((\z€A. B(z)) = (x€A. Pow(B(z)))
(proof)

4.12 RepFun

lemma RepFun-subset: [\z. 1€ A = f(z) € B] = {f(z). z€A} C B
(proof)
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lemma RepFun-eq-0-iff [simp]: {f(z).z€A}=0 «— A=0
(proof)

lemma RepFun-constant [simp]: {c. z€A} = (if A=0 then 0 else {c})
(proof)

4.13 Collect

lemma Collect-subset: Collect(A,P) C A
(proof)

lemma Collect-Un: Collect(A U B, P) = Collect(A,P) U Collect(B,P)
(proof )

lemma Collect-Int: Collect(A N B, P) = Collect(A,P) N Collect(B,P)
(proof)

lemma Collect-Diff: Collect(A — B, P) = Collect(A,P) — Collect(B,P)
(proof)

lemma Collect-cons: {z€cons(a,B). P(z)} =
< ScZ{ P(a) then cons(a, {z€B. P(z)}) else {z€B. P(z)})
proo,

lemma Int-Collect-self-eq: A N Collect(A,P) = Collect(A,P)
(proof)

lemma Collect-Collect-eq [simp):
Collect(Collect(A,P), Q) = Collect(A, \x. P(z) N Q(x))
(proof)

lemma Collect-Int-Collect-eq:
Collect(A,P) N Collect(A,Q) = Collect(A, Az. P(z) A Q(z))
(proof)

lemma Collect-Union-eq [simp]:
Collect(|Jz€A. B(z), P) = ([Jze€A. Collect(B(z), P))
(proof)

lemma Collect-Int-left: {x€A. P(z)} N B={z € AN B. P(z)}
(proof)

lemma Collect-Int-right: A N {z€B. P(z)} = {z € AN B. P(x)}
(proof)

lemma Collect-disj-eq: {x€A. P(z) | Q(x)} = Collect(A, P) U Collect(A, Q)
(proof)

lemma Collect-conj-eq: {z€A. P(z) N Q(z)} = Collect(A, P) N Collect(4, Q)

95



(proof)

lemmas subset-Sls = subset-refl cons-subsetl subset-consl
Union-least UN-least Un-least
Inter-greatest Int-greatest RepFun-subset
Un-upperl Un-upper2 Int-lower! Int-lower2

5 Least and Greatest Fixed Points; the Knaster-
Tarski Theorem

theory Fizedpt imports equalities begin
definition

bnd-mono :: [i,i=i]=0 where
bnd-mono(D,h) = h(D)<=D A (YW X. W<=X — X<=D — h(W) C
h(X))

definition
Ifp it [i,i=1i]=17 where
Ifp(D,h) = N ({X: Pow(D). h(X) C X})

definition
afp i [i,i=i]=i where
gfp(D,h) = |J({X: Pow(D). X C h(X)})

The theorem is proved in the lattice of subsets of D, namely Pow(D), with
Inter as the greatest lower bound.

5.1 Monotone Operators

lemma bnd-monol:
[A(D)<=D;
AW X. [W<=D; X<=D; W<=X] = h(W) C h(X)
] = bnd-mono(D,h)
{proof)

lemma bnd-monoD1: bnd-mono(D,h) = h(D) C D
{proof)

lemma bnd-monoD2: [bnd-mono(D,h); W<=X; X<=D] = h(W) C h(X)
(proof)

lemma bnd-mono-subset:
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[bnd-mono(D,h); X<=D] = h(X) C D
(proof)

lemma bnd-mono-Un:
[bnd-mono(D,h); A C D; B C D] = h(A) U h(B) C h(A U B)
(proof )

lemma bnd-mono-UN-:
[bnd-mono(D,h); Viel. A(i) C D]
i (UTED HA0) € MU a0
PToo

lemma bnd-mono-Int:
[bnd-mono(D,h); A C D; B C D] = h(A N B) C h(A4) N h(B)
(proof)

5.2 Proof of Knaster-Tarski Theorem using [fp

lemma [fp-lowerbound:
[h(A) C A; A<=D] = Iifp(D,h) C A
(proof)

lemma Ifp-subset: Ifp(D,h) C D
(proof)

lemma def-ifp-subset: A = Ifp(D,h) = A C D
(proof)

lemma [fp-greatest:
[(D) € D; AX.[h(X)C X; X<=D] = A<=X] = A C Ifp(D,h)
(proof)

lemma [fp-lemmal:
[bnd-mono(D,h); h(A)<=A; A<=D] = h(ifp(D,h)) C A
(proof)

lemma Ifp-lemmaZ2: bnd-mono(D,h) = h(ifp(D,h)) C ifp(D,h)
(proof)

lemma [fp-lemma3:
bnd-mono(D,h) = Ifp(D,h) C h(ifp(D,h))
(proof)

lemma Ifp-unfold: bnd-mono(D,h) = Ifp(D,h) = h(lfp(D,h))
(proof)
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lemma def-Ifp-unfold:
[A=ifp(D,h); bnd-mono(D,h)] = A = h(A)
(proof)

5.3 General Induction Rule for Least Fixedpoints

lemma Collect-is-pre-fizedpt:
[bnd-mono(D,h); Az. x € h(Collect(lfp(D,h),P)) = P(z)]
= h(Collect(lfp(D,h),P)) C Collect(ifp(D,h),P)

(proof)

lemma induct:
[bnd-mono(D,h); a € Ifp(D,h);
Nz. z € h(Collect(lfp(D,h),P)) = P(z)
| = P(a)
(proof)

lemma def-induct:
[A = Ifp(D,h); bnd-mono(D,h); a:A;
Az. z € h(Collect(A,P)) = P(x)
| = P(a)
(proof)

lemma [fp-Int-lowerbound:
[h(D N A) C A4; bnd-mono(D,h)] = Iifp(D,h) C A
(proof)

lemma [fp-mono:
assumes hmono: bnd-mono(D,h)
and imono: bnd-mono(E,7)
and subhi: AX. X<=D = h(X) C i(X)
shows Ifp(D,h) C Ifp(E,7)
(proof)

lemma [fp-mono2:
[¢(D) C D; ANX. X<=D = h(X) C i(X)] = Ifp(D,h) C Ifp(D,q7)
(proof)

lemma Ifp-cong:

[D=D" AX. X C D' = h(X) = h'(X)] = Ufp(D,h) = Ufp(D",1")
(proof)
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5.4 Proof of Knaster-Tarski Theorem using gfp

lemma gfp-upperbound: [A C h(A); A<=D] = A C g¢fp(D,h)
(proof)

lemma gfp-subset: gfp(D,h) C D
(proof)

lemma def-gfp-subset: A=gfp(D,h) = A C D
{proof)

lemma gfp-least:
[bnd-mono(D,h); AX.[X C h(X); X<=D] = X<=4] =
gfp(D;h) C A
(proof )

lemma gfp-lemmal:
[bnd-mono(D,h); A<=h(A); A<=D] = A C h(gfp(D,h))
(proof)

lemma gfp-lemma2: bnd-mono(D,h) = gfp(D,h) C h(gfp(D,h))
(proof)

lemma gfp-lemma3:
bnd-mono(D,h) => h(gfp(D,h)) S gfp(D,h)
(proof)

lemma gfp-unfold: bnd-mono(D,h) = gfp(D,h) = h(gfp(D,h))
(proof)

lemma def-gfp-unfold:
[A=gfp(D,h); bnd-mono(D,h)] = A = h(A)
(proof)

5.5 Coinduction Rules for Greatest Fixed Points

lemma weak-coinduct: Ja: X; X C h(X); X C D] = a € gfp(D,h)
(proof)

lemma coinduct-lemma:
[X C WX U gfp(D,h)); X C D; bnd-mono(D,h)] =
X U gfp(D;h) € h(X U gfp(D,h))

(proof)

lemma coinduct:
[bnd-mono(D,h); a: X; X C h(X U gfp(D,h)); X C D]
= a € gfp(D,h)
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(proof)

lemma def-coinduct:
[A = gfp(D,h); bnd-mono(D,h); a: X; X Ch(XUA); X C D] =
a€ A

(proof)

lemma def-Collect-coinduct:
[A = gfp(D, Aw. Collect(D,P(w))); bnd-mono(D, Aw. Collect(D,P(w)));
a:X; XCD; N2. 2 X = P(XUA, 2)] =
a€ A
(proof)

lemma gfp-mono:
[bnd-mono(D,h); D C E;
AX. X<=D = WX) C i(X)] = gfp(D,h) € gfp(E,i)
(proof)

end

6 Booleans in Zermelo-Fraenkel Set Theory
theory Bool imports pair begin

abbreviation
one (<1>) where
1 = suce(0)

abbreviation
two (<2>) where
2 = succ(1)

2 is equal to bool, but is used as a number rather than a type.
definition bool = {0,1}
definition cond(b,c,d) = if (b=1,¢,d)
definition not(b) = cond(b,0,1)
definition
and i [4,d)=1 (infix] <and> 70) where

a and b = cond(a,b,0)

definition

or i [4,4]=1 (infixl <or» 65) where
a or b = cond(a,1,b)
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definition
zor i [4,i]=1 (infixl «zor) 65) where
a zor b = cond(a,not(b),b)

lemmas bool-defs = bool-def cond-def

lemma singleton-0: {0} = 1

{(proof)

lemma bool-11I [simp,TC]: 1 € bool
(proof)

lemma bool-0I [simp,TC]: 0 € bool
(proof)

lemma one-not-0: 1#£0

(proof)

lemmas one-neq-0 = one-not-0 [THEN notE]

lemma boolE:
[e: bool; ¢=1 = P; ¢=0 = P] = P

(proof)

lemma cond-1 [simp]: cond(1,c,d) = ¢
(proof)

lemma cond-0 [simp]: cond(0,c,d) = d

(proof )

lemma cond-type [T'C]: [b: bool; c¢: A(1); d: A(0)] = cond(b,c,d): A(b)
(proof )

lemma cond-simple-type: [b: bool; c: A; d: A] = cond(b,c,d): A

(proof )

lemma def-cond-1: [A\b. j(b)=cond(b,c,d)] = j(1) = ¢
(proof)
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lemma def-cond-0: [A\b. j(b)=cond(b,c,d)] = §(0) = d
(proof)

lemmas not-1 = not-def [THEN def-cond-1, simp)
lemmas not-0 = not-def [THEN def-cond-0, simp]

lemmas and-1
lemmas and-0

and-def [THEN def-cond-1, simp]
and-def [THEN def-cond-0, simp]

lemmas or-1 = or-def [THEN def-cond-1, simp)
lemmas or-0 = or-def [THEN def-cond-0, simp)

lemmas zor-1 = zor-def [THEN def-cond-1, simp]
lemmas zor-0 = zor-def [THEN def-cond-0, simp]

lemma not-type [TC]: a:bool = not(a) € bool

(proof)

lemma and-type [TC]: [a:bool; b:bool] = a and b € bool
(proof)

lemma or-type [TC): [a:bool; b:bool] = a or b € bool
(proof)

lemma zor-type [TC]: [a:bool; b:bool] = a zor b € bool

(proof)

lemmas bool-typechecks = bool-11 bool-0I cond-type not-type and-type
or-type xor-type

6.1 Laws About ’not’

lemma not-not [simp]: a:bool = not(not(a)) = a

(proof)

lemma not-and [simp: a:bool = not(a and b) = not(a) or not(b)
(proof)

lemma not-or [simp]: a:bool = not(a or b) = not(a) and not(b)

(proof)

6.2 Laws About ’and’

lemma and-absord [simpl: a: bool => a and a = a
(proof)

lemma and-commute: [a: bool; b:bool] = a and b = b and a

(proof)

lemma and-assoc: a: bool = (a and b) and ¢ = a and (b and c)
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(proof)

lemma and-or-distrib: [a: bool; b:bool; c:bool] =
(a ord) and ¢ = (a and c) or (b and c)

(proof)

6.3 Laws About ’or’

lemma or-absorb [simp]: a: bool = a or a = a
(proof)

lemma or-commute: [a: bool; b:bool] = a or b =b or a

(proof)

lemma or-assoc: a: bool = (a or b) or ¢ = a or (b or c)

{(proof)

lemma or-and-distrib: [a: bool; b: bool; c: bool] =
(a and b) or ¢ = (a or ¢) and (b or ¢)

(proof)

definition
bool-of-0 :: 0=1 where
bool-of-o(P) = (if P then 1 else 0)

lemma [simp]: bool-of-o( True) = 1

(proof)

lemma [simp]: bool-of-o(False) = 0
(proof)

lemma [simp, TC]: bool-of-o(P) € bool
(proof)

lemma [simp]: (bool-of-o(P) = 1) +— P
(proof)

lemma [simp]: (bool-of-o(P) = 0) <— —P

(proof)

end

7 Disjoint Sums
theory Sum imports Bool equalities begin
And the "Part" primitive for simultaneous recursive type definitions

definition sum :: [i,i]=i (infixr <+> 65) where
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A+B = {0}xA U {1}xB

definition Inl :: i=7 where
Inl(a) = (0,a)

definition Inr :: i=17 where
Inr(b) = (1,b)

definition case :: [i=i, i=1, {]=7 where
case(c,d) = (My,2). cond(y, d(z), c(2))

definition Part :: [i,i=1i] = ¢ where
Part(Ah) = {z € A. 3z. z = h(2)}
7.1 Rules for the Part Primitive

lemma Part-iff:
a € Part(A,h) «— a € A A (Fy. a=h(y))
{proof )

lemma Part-eql [introl:
[a € 4; a=h(b)] = a € Part(4,h)
(proof )

lemmas Part] = refl [THEN [2] Part-eql]

lemma PartE [elim!]:

[a € Part(A,h); Az Ja € 4; a=h(z)] = P
|=r
(proof )

lemma Part-subset: Part(A,h) C A
(proof)

7.2 Rules for Disjoint Sums

lemmas sum-defs = sum-def Inl-def Inr-def case-def

lemma Sigma-bool: Sigma(bool,C) = C(0) + C(1)
(proof)

lemma Inll [introl,simp,TC]: a € A = Inl(a) € A+B
(proof )

lemma Inrl [introl,simp,TC]: b € B = Inr(b) € A+B
(proof)
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lemma sumkE [elim!]:
[u € A+B;
Nz. [z € A; u=Inl(z)] = P;
Ny ly € By u=Inr(y)] = P
=P
(proof )

lemma Inl-iff [iff]: Inl(a)=Inl(b) +— a=b
(proof)

lemma Inr-iff [iff]: Inr(a)=Inr(b) «— a=b
(proof)

lemma Inl-Inr-iff [simp]: Inl(a)=Inr(b) <— False
(proof)

lemma Inr-Inl-iff [simp]: Inr(b)=Inl(a) +— False

(proof)

lemma sum-empty [simp]: 0+0 = 0
(proof)

lemmas Inl-inject = Inl-iff [THEN iffD1]
lemmas Inr-inject = Inr-iff [THEN iffD1]
lemmas Inl-neq-Inr = Inl-Inr-iff [THEN iffD1, THEN FalseE, elim!]
lemmas Inr-neg-Inl = Inr-Inl-iff [THEN iffD1, THEN FualseE, eliml]

lemma IniD: Inl(a): A+B = a € A
(proof)

lemma InrD: Inr(b): A+B = b€ B
(proof)

lemma sum-iff: w € A+B +— (3z.z € AN u=Inl(z)) | 3y. y € B A u=Inr(y))
(proof)

lemma Inl-in-sum-iff [simp]: (Inl(z) € A+B) «— (z € A)
(proof)

lemma Inr-in-sum-iff [simp]: (Inr(y) € A+B) +— (y € B)
(proof)
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lemma sum-subset-iff: A+B C C+D +— A<=C AN B<=D
(proof )

lemma sum-equal-iff: A+B = C+D <— A=C A B=D
(proof)

lemma sum-eq-2-times: A+A = 2xA

(proof)

7.3 The Eliminator: case

lemma case-Inl [simp]: case(c, d, Inl(a)) = c(a)

(proof)

lemma case-Inr [simpl: case(c, d, Inr(b)) = d(b)
(proof)

lemma case-type [TC]:
[u € A+B;
Nz. z € A = ¢(z)
Ny. y € B = d(y)
| = case(c,d,u) € C(u)

(proof)

(Ini(x))

: C ;
: C(Inr(y))

lemma expand-case: u € A+B —
R(case(c,du)) «—
(VazeA. u = Inl(z) — R(c(z))) A
(VyeB. u = Inr(y) — R(d(y))))
(proof )

lemma case-cong:
[z € A+B;
Nz. z € A = c(z)=c'(2);

Ny-y € B = d(y)=d'(y)
] = case(e,d,z) = case(c’,d’,z)

(proof)

lemma case-case: z € A+B —>
case(c, d, case(Az. Inl(c'(x)), Ay. Inr(d'(y)), z)) =
case(Az. c¢(c'(x)), Ay. d(d'(y)), 2)

(proof)

7.4 More Rules for Part(A, h)

lemma Part-mono: A<=B = Part(A,h)<=Part(B,h)
(proof )

lemma Part-Collect: Part(Collect(A,P), h) = Collect(Part(A,h), P)
(proof)
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lemmas Part-CollectE =
Part-Collect [THEN equalityD1, THEN subsetD, THEN CollectE]

lemma Part-Inl: Part(A+B,Inl) = {Ini(z). x € A}
(proof)

lemma Part-Inr: Part(A+B,Inr) = {Inr(y). y € B}
(proof)

lemma PartD1: a € Part(A,h) = a € A
(proof)

lemma Part-id: Part(A z. z) = A
(proof)

lemma Part-Inr2: Part(A+B, Az. Inr(h(z))) = {Inr(y). y € Part(B,h)}
(proof)

lemma Part-sum-equality: C C A+B = Part(C,Inl) U Part(C,Inr) = C
(proof)

end

8 Functions, Function Spaces, Lambda-Abstraction

theory func imports equalities Sum begin

8.1 The Pi Operator: Dependent Function Space

lemma subset-Sigma-imp-relation: r C Sigma(A,B) = relation(r)

(proof)

lemma relation-converse-converse [simpl:
relation(r) = converse(converse(r)) = r

(proof)

lemma relation-restrict [simp]: relation(restrict(r,A))
(proof)

lemma Pi-iff:
f € Pi(A,B) «— function(f) N f<=Sigma(A,B) N A<=domain(f)
(proof)

lemma Pi-iff-old:
f € Pi(A,B) +— f<=Sigma(A,B) N (VzeA. Ily. (z,y): f)
(proof )

lemma fun-is-function: f € Pi(A,B) = function(f)
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(proof)

lemma function-imp-Pi:
[function(f); relation(f)] = f € domain(f) —> range(f)
(proof)

lemma functionl:
Nz vy’ [(z,y):r; <z,y>r] = y=y] = function(r)
(proof)

lemma fun-is-rel: f € Pi(A,B) = f C Sigma(A,B)
(proof)

lemma Pi-cong:
[A=A"; Az.z € A= B(z)=B'(z)] = Pi(A,B) = Pi(A’,B")
(proof)

lemma fun-weaken-type: [f € A—>B; B<=D] = f € A—>D
(proof )

8.2 Function Application

lemma apply-equality2: [{a,b): f; (a,c): f; f € Pi(A,B)] = b=c
(proof)

lemma function-apply-equality: [{a,b): f; function(f)] = fla= b
(proof)

lemma apply-equality: [{a,b): f; f € Pi(A,B)] = fla=1b
(proof )

lemma apply-0: a ¢ domain(f) = fla =0
(proof)

lemma Pi-memberD: [f € Pi(A,B); c € f] = Jz€A. ¢ = <z,fa>

(proof)

lemma function-apply-Pair: [function(f); a € domain(f)] = <a,f‘a>: f
(proof)

lemma apply-Pair: [f € Pi(A,B); a € A] = <a,f‘a>: f
(proof)
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lemma apply-type [TC]: [f € Pi(A,B); a € A] = f‘a € B(a)
(proof)

lemma apply-funtype: [f € A—>B; a € A] = f‘a € B
(proof)

lemma apply-iff: f € Pi(A,B) = (a,b): f +— a € AN fla=b
(proof)

lemma Pi-type: [f € Pi(A4,C); Nz.z € A= fz € B(z)] = f € Pi(4,B)
(proof)

lemma Pi-Collect-iff:

(f € Pi(A, Mx. {y € B(z). P(z,y)}))
«— f € Pi(A,B) N (Vz€A. P(z, fx))

(proof)
lemma Pi-weaken-type:

If € Pi(A,B); Nz.z € A= B(z)<=C(z)] = f € Pi(4,0)
(proof )

lemma domain-type: [{a,b) € f; f € Pi(A,B)] = a € A
(proof)

lemma range-type: [(a,b) € f; f € Pi(A,B)] = b € B(a)
(proof)

lemma Pair-mem-PiD: [{a,b): f; f € Pi(A,B)] = a€ ANb€E B(a) A fa=1b
(proof)

8.3 Lambda Abstraction

lemma laml: o € A = <a,b(a)> € (Az€A. b(z))
{proof)

lemma lamE:
[p: (A\zeA. b(z)); Az.fz € 4; p=<z,b(z)>] = P
|]= P

(proof)

lemma lamD: [{a,c): (Az€A. b(z))] = ¢ = b(a)
(proof)
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lemma lam-type [TC]:
[Az. z € A = b(z): B(z)] = (Az€A. b(z)) € Pi(A,B)
(proof)

lemma lam-funtype: (Az€A. b(z)) € A —> {b(x). z € A}
(proof)

lemma function-lam: function (Az€A. b(x))
(proof)

lemma relation-lam: relation (Az€A. b(z))

(proof)

lemma beta-if [simp]: (Az€A. b(z)) ‘a = (if a € A then b(a) else 0)
(proof)

lemma beta: a € A = (Az€A. b(z)) ‘a = b(a)
(proof)

lemma lam-empty [simp]: (Az€0. b(z)) = 0
(proof)

lemma domain-lam [simp]: domain(Lambda(A,b)) = A
(proof)

lemma lam-cong [cong|:
[A=A"; Az. 2z € A’ = b(z)=b'(z)] = Lambda(A,b) = Lambda(A',b’)
(proof)

lemma lam-thel:
(Az. z € A = Fly. Q(z,y)) = If. VaeA. Q(z, fz)
(proof)

lemma lam-egE: [(Az€A. f(z)) = (A\z€A. g(z)); o € A] = f(a)=g(a)
(proof)

lemma Pi-emptyl [simp]: Pi(0,A) = {0}
(proof)

lemma singleton-fun [simp|: {{a,b)} € {a} —> {b}
(proof)

lemma Pi-empty2 [simp]: (A—>0) = (if A=0 then {0} else 0)
(proof)
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lemma fun-space-empty-iff [iff]: (A—>X)=0 +— X=0 N (A # 0)
(proof)

8.4 Extensionality

lemma fun-subset:
[f € Pi(A,B); g € Pi(C,D); A<=C,
Ne.z € A = fo = g2] = f<=g
(proof)

lemma fun-extension:
[f € Pi(A,B); g € Pi(A,D);
Ne.z € A = fo = g2] = f=y
(proof)

lemma eta [simp: f € Pi(A,B) = (\z€A. fz) = f
(proof)

lemma fun-extension-iff:
[f € Pi(A,B); g € Pi(A,0)] = (Va€A. f‘a = g‘a) +— f=g
(proof )

lemma fun-subset-eq: [f € Pi(A,B); g € Pi(A,C)] = fCg+— (f=9)
(proof)

lemma Pi-lamFE:
assumes major: f € Pi(A,B)
and minor: A\b. [Vz€A. b(z):B(x); f = (Az€A. b(z))] = P
shows P

(proof)

8.5 Images of Functions

lemma image-lam: C C A = (Az€A. b(z)) “ C = {b(z). z € C}
(proof)

lemma Repfun-function-if:

function(f)
= {fz. z € C} = (if C C domain(f) then f*C else cons(0,f*C))

(proof)

lemma image-function:
[function(f); C C domain(f)] = f“C = {fz. v € C}
(proof)

lemma image-fun: [f € Pi(A,B); C C A] = f“C = {fz. z € C}
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(proof)

lemma image-eq-UN:
assumes f: f € Pi(A,B) C C A shows f“C = ((JzeC. {f ‘ z})
(proof)

lemma Pi-image-cons:
[f € Pi(A,B); z € Al = [ “ cons(z,y) = cons(fz, f*y)
(proof )

8.6 Properties of restrict(f, A)

lemma restrict-subset: restrict(f,A) C f

(proof)

lemma function-restricti:
function(f) = function(restrict(f,A))

(proof)

lemma restrict-type2: [f € Pi(C,B); A<=C] = restrict(f,A) € Pi(A,B)
(proof)

lemma restrict: restrict(f,A) ‘a = (if a € A then fa else 0)

(proof)

lemma restrict-empty [simp]: restrict(f,0) = 0
(proof)

lemma restrict-iff: z € restrict(r,A) «+— z € r A (Jz€A. Fy. z = (z, y))

(proof)

lemma restrict-restrict [simp]:
restrict(restrict(r,A),B) = restrict(r, A N B)
(proof)

lemma domain-restrict [simp]: domain(restrict(f,C)) = domain(f) N C
{proof)

lemma restrict-idem: f C Sigma(A,B) = restrict(f,A) = f

(proof)

lemma domain-restrict-idem:
[domain(r) C A; relation(r)] = restrict(r,A) = r

(proof)

lemma domain-restrict-lam [simp]: domain(restrict(Lambda(A,f),C)) = AN C
{proof)
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lemma restrict-if [simp]: restrict(f,A) ‘a = (if a € A then f‘a else 0)
(proof)

lemma restrict-lam-eq:
A<=C = restrict(AzeC. b(z), A) = (A\z€A. b(x))
(proof)

lemma fun-cons-restrict-eq:
f € cons(a, b)) —=> B = [ = cons(<a, f < a>, restrict(f, b))

(proof)

8.7 Unions of Functions

lemma function-Union:
[VzeS. function(z);
VzeS. Vyes. <=y | y<=1]
= function(|J (S))
(proof )

lemma fun-Union:
[VfeS.3CD. f e C—>D;
VfeS. Vyes. f<=y | y<=f] =
U (S) € domain(|J(S)) —> range(lJ (S))

(proof)

lemma gen-relation-Union:
(Nf. feF = relation(f)) = relation(lJ (F))
(proof)

lemmas Un-rls = Un-subset-iff SUM-Un-distrib1 prod-Un-distrib2
subset-trans [OF - Un-upperl |
subset-trans [OF - Un-upper2)

lemma fun-disjoint-Un:
[f e A—>B; g€ C—>D; AN C = 0]
= (fUg) e (AU C)—>(BUD)
(proof)

lemma fun-disjoint-applyl: a ¢ domain(g) = (f U g)‘a = fa
{proof )

lemma fun-disjoint-apply2: ¢ ¢ domain(f) = (f U g)‘c = g‘c
(proof)
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8.8 Domain and Range of a Function or Relation

lemma domain-of-fun: f € Pi(A,B) = domain(f)=A

(proof)

lemma apply-rangel: [f € Pi(A,B); a € A] = f‘a € range(f)
(proof)

lemma range-of-fun: f € Pi(A,B) = f € A—>range(f)
(proof)

8.9 Extensions of Functions

lemma fun-extend:
[f € A—>B; c¢A] = cons({c,b),f) € cons(c,A) —> cons(b,B)
(proof )

lemma fun-extend3:
[f € A—>B; c¢¢A; be B] = cons({c,b),f) € cons(c,A) —> B
(proof)

lemma extend-apply:
¢ ¢ domain(f) = cons({c,b),f)‘a = (if a=c then b else fa)
(proof)

lemma fun-extend-apply [simp]:
[f € A—>B; c¢¢A] = cons({c,b).f)‘a = (if a=c then b else f‘a)
(proof )

lemmas singleton-apply = apply-equality [OF singletonl singleton-fun, simp)

lemma cons-fun-eq:
c¢ A= cons(c,A) —> B = (Jf € A—>B. |JbeB. {cons({c,b), /)})
(proof)

lemma succ-fun-eq: succ(n) —> B = (Jf € n—>B. |JbeB. {cons({n,b), f)})
(proof)

8.10 Function Updates

definition
update :: [i,4,i]] = i where
update(f,a,b) = Ax€cons(a, domain(f)). if (x=a, b, fx)

nonterminal updbinds and updbind
syntax

-updbind  :: [i, {] = updbind («(<indent=2 notation=<infix updater>- =/ -))
:w updbind = updbinds (<))
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-updbinds  :: [updbind, updbinds] = updbinds (<-,/ -»)

-Update o [4, updbinds] = i (<(<open-block notation=<mizfix function up-
datersy-/"((-)")» [900,0] 900)
syntax-consts

-Update = update

translations
-Update (f, -updbinds(b,bs)) == -Update (-Update(f,b), bs)
flz:=y) == CONST update(f,z,y)

3

lemma update-apply [simp]: f(x:=y)
(proof)

z = (if z=x then y else f‘z)

lemma update-idem: [fc = y; f € Pi(A,B); z € A] = f(z:i=y) =f
(proof)

declare refl [THEN update-idem, simp)

lemma domain-update [simp: domain(f(z:=y)) = cons(z, domain(f))

(proof)

lemma update-type: [f € Pi(A,B); v € A; y € B(z)] = f(z:=y) € Pi(A, B)
{proof)
8.11 Monotonicity Theorems

8.11.1 Replacement in its Various Forms

lemma Replace-mono: A<=B = Replace(A,P) C Replace(B,P)
(proof)

lemma RepFun-mono: A<=B = {f(z). z € A} C {f(z). z € B}
(proof)

lemma Pow-mono: A<=B = Pow(A) C Pow(B)
(proof)

lemma Union-mono: A<=B = |J(A) C J(B)
(proof)

lemma UN-mono:
[A<=C; Az.z € A= B(z)<=D(z)] = (UJz€d. B(z)) C (JzeC. D(x))
(proof )

lemma Inter-anti-mono: [A<=B; A#0] = ((B) C ((4)
(proof)

lemma cons-mono: C<=D = cons(a,C) C cons(a,D)
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(proof)

lemma Un-mono: [A<=C; B<=D] = AUBC CUD
(proof)

lemma Int-mono: [A<=C; B<=D] = ANBCCND
(proof)

lemma Diff-mono: [A<=C; D<=B] = A-B C C-D
(proof)

8.11.2 Standard Products, Sums and Function Spaces

lemma Sigma-mono [rule-format]:
[A<=C; Az.z € A — B(z) C D(z)] = Sigma(A,B) C Sigma(C,D)
(proof)

lemma sum-mono: [A<=C; B<=D] = A+B C C+D
(proof )

lemma Pi-mono: B<=C =— A—>B C A—>C
(proof)

lemma lam-mono: A<=B = Lambda(A,c) C Lambda(B,c)
{proof)

8.11.3 Converse, Domain, Range, Field

lemma converse-mono: r<=s = converse(r) C converse(s)

(proof)

lemma domain-mono: r<=s => domain(r)<=domain(s)
(proof)

lemmas domain-rel-subset = subset-trans [OF domain-mono domain-subset]

lemma range-mono: r<=s = range(r)<=range(s)
(proof)

lemmas range-rel-subset = subset-trans [OF range-mono range-subset]

lemma field-mono: r<=s = field(r)<=field(s)
(proof)

lemma field-rel-subset: r C AxA = field(r) C A

(proof)
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8.11.4 Images
lemma image-pair-mono:

Az y. (z,y):r = (x,y):s; A<=B] = r“A C sB
(proof)

lemma vimage-pair-mono:
Az y. (z,y):r = (2,y):s; A<=B] = r—“A C s—“B
(proof )

lemma image-mono: [r<=s; A<=B] = r“A C 5B

(proof)

lemma vimage-mono: [r<=s; A<=B] = r—“A C s—“B

(proof)

lemma Collect-mono:
[A<=B; Az.z€ A= P(z) — Q(z)] = Collect(A,P) C Collect(B,Q)
(proof )

lemmas basic-monos = subset-refl imp-refl disj-mono conj-mono ex-mono
Collect-mono Part-mono in-mono

lemma bez-image-simp:
[f € Pi(X, Y); AC X] = (Fzef“A. P(z)) +— (Fz€A. P(fx))
(proof)

lemma ball-image-simp:
[f € Pi(X,Y); AC X] = (Vzef“A. P(x)) +— (Vz€A. P(fx))
(proof)

end

9 Quine-Inspired Ordered Pairs and Disjoint Sums

theory QPair imports Sum func begin
For non-well-founded data structures in ZF. Does not precisely follow Quine’s

construction. Thanks to Thomas Forster for suggesting this approach!

W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
1966.

definition
QPair [, i] = © («(<indent=1 notation=<mizfix Quine pair»<-;/ ->))
where <a;b> = a+b

definition
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qfst :: i = i where
gfst(p) = THE a. 3b. p=<a;b>

definition
gsnd :: i = i where
gsnd(p) = THE b. Ja. p=<a;b>

definition
gsplit = [[i, 7] = 'a, i]| = 'a::{} where
gsplit(c,p) = c(qfst(p), gsnd(p))
definition
gconverse :: i = ¢ where
geonverse(r) = {z. w € r, Iz y. w=<m;y> A 2=<y;z>}

definition
QSigma [, i = 9] = i where
QSigma(A,B) = JzeA. JyeB(z). {<z;y>}
syntax
-QSUM  :: [idt, i, i) = i (<(<indent=3 notation=<binder QSUME»» QSUM - €
-/ -)» 10)

syntax-consts
-QSUM = Q@QSigma
translations
QSUM z € A. B => CONST QSigma(A, A\z. B)

abbreviation
gprod (infixr <<x>) 80) where
A <x> B = QSigma(A, A\-. B)

definition
gsum  : [ii]=1 (infixr <<+>) 65) where
A<+>B = ({0} <x> A) U ({1} <x> B)
definition
QInl :: i=i where
QInl(a) = <0;a>
definition
QInr :: i=1i where
QInr(b) = <1;b>
definition
qease  :: [i=1, i=1, i|=7 where

gcase(c,d) = gsplit(\y z. cond(y, d(z), c(2)))
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9.1 Quine ordered pairing

lemma QPair-empty [simp]: <0;0> = 0

(proof)

lemma QPair-iff [simp]: <a;b> = <c¢;d> <— a=c A b=d
(proof)

lemmas QPair-inject = QPair-iff [THEN iffD1, THEN conjE, elim!]

lemma QPair-inject]: <a;b> = <c;d> = a=c

(proof)

lemma QPair-inject2: <a;b> = <c;d> = b=d

(proof)

9.1.1 QSigma: Disjoint union of a family of sets Generalizes Carte-
sian product

lemma QSigmal [introl]: [a € A; b € B(a)] = <a;b> € QSigma(A,B)
(proof)

lemma QSigmaFE [eliml]:
[c € QSigma(A,B);
Nz y.[z € 4; y € B(z); c=<z;y>] = P
|=r

(proof)

lemma QSigmaE2 [elim!]:
[<a;b>: QSigma(A,B); [a € A; b€ B(a)] = P] = P
(proof)

lemma QSigmaD1: <a;b> € QSigma(A,B) = a € A
(proof)

lemma QSigmaD2: <a;b> € QSigma(A,B) = b € B(a)
(proof)
lemma QSigma-cong:
[A=A"; Az. 2z € A’ = B(z)=B'(z)] =
QSigma(A,B) = QSigma(A’,B’)
(proof)

lemma QSigma-emptyl [simp]: QSigma(0,B) = 0
(proof)

lemma QSigma-empty2 [simpl: A <> 0 = 0
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(proof)

9.1.2 Projections: gfst, gsnd

lemma gfst-conv [simp]: q¢fst(<a;b>) = a

(proof)

lemma gsnd-conv [simp]: gsnd(<a;b>) = b

(proof)

lemma gfst-type [TC]: p € QSigma(A,B) = ¢fst(p) € A
(proof)

lemma gsnd-type [TC): p € QSigma(A,B) = qsnd(p) € B(qfst(p))
(proof)

lemma QPair-qfst-gsnd-eq: a € QSigma(A,B) = <qfst(a); gsnd(a)> = a
(proof)

9.1.3 Eliminator: gsplit

lemma gsplit [simpl: gsplit(Az y. c(z,y), <a;b>) = c(a,b)
(proof)

lemma gsplit-type [elim]]:
[p € QSigma(A,B);
Nz y.[z € A; y € B(z)] = c(z,y):C(<z;y>)
[ = gsplit(Az y. c(z,y), p) € C(p)
(proof)

lemma expand-gsplit:
u € A<x>B = R(gsplit(c,u)) «+— (Vz€A. VyeB. u = <z;y> — R(c(z,y)))
(proof)

9.1.4 (gsplit for predicates: result type o

lemma gsplitl: R(a,b) = g¢split(R, <a;b>)
(proof)

lemma ¢splitE:
[gsplit(R,z); z € QSigma(A,B);
Az y. [z = <z;y>; R(z,y)] = P
l= P

(proof)

lemma gsplitD: gsplit(R,<a;b>) = R(a,b)
(proof)
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9.1.5 (qconverse

lemma geonversel [introl]: <a;b>:r = <b;a>:qconverse(r)

(proof)

lemma gconverseD [elim!]: <a;b> € qeonverse(r) = <b;a> € r
(proof)

lemma gconverseE [eliml]:
[yz € geconverse(r);
Az y. [yr=<ya>; <wz;y>:r] = P
]=P
(proof)

lemma gconverse-gconverse: r<=QSigma(A,B) = qconverse(qconverse(r)) = r

(proof)

lemma gconverse-type: r C A <x> B = gconverse(r) C B <x> A
(proof)

lemma gconverse-prod: qconverse(A <x> B) = B <x> A

(proof)

lemma gconverse-empty: geconverse(0) = 0
(proof)

9.2 The Quine-inspired notion of disjoint sum

lemmas gsum-defs = qsum-def QInl-def QInr-def qcase-def

lemma QInll [intro!]: a € A = QInl(a) € A <+> B
(proof)

lemma QInrl [introl]: b € B = QInr(b) € A <+> B
(proof)

lemma gsumFE [elim!]:
[u€e A <+> B;
Nz. [z € A; uw=QInl(z)] = P;
Ay [y € B; u=QInr(y)] = P
|]= P

(proof)
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lemma QInl-iff [iff]: QInl(a)=QInl(b) +— a=b

(proof)

lemma QInr-iff [iff]: QInr(a)=QInr(b) +— a=b

(proof)

lemma QInl-QInr-iff [simp]: QInl(a)=QInr(b) +— False
(proof)

lemma QInr-QInl-iff [simp]: QInr(b)=QInl(a) «— False
(proof)

lemma gsum-empty [simp]: 0<+>0 = 0
(proof)

lemmas QInl-inject = QInl-iff [THEN iffD1]
lemmas QInr-inject = QInr-iff [THEN iffD1]
lemmas QInl-neq-QInr = QInl-QInr-iff [THEN iffD1, THEN FalseE, elim!]
lemmas QInr-neq-QInl = QInr-QInl-iff [THEN iffD1, THEN FulseE, elim!]

lemma QInlD: QInl(a): A<+>B = a € A
(proof)

lemma QInrD: QInr(b): A<+>B = b€ B
(proof)

lemma gsum-iff:
u€A<+> B+— (Fz.z € AN u=QInl(x)) | By. y € B A u=QInr(y))
(proof)

lemma gsum-subset-iff: A <4+> B C C <4+> D +— A<=C AN B<=D
(proof)

lemma gsum-equal-iff: A <+> B = C <+> D <— A=C N B=D
(proof)

9.2.1 Eliminator — qcase

lemma gcase-QInl [simp]: qcase(c, d, QInl(a)) = c(a)
(proof)

lemma gcase-QInr [simpl: qcase(c, d, QInr(b)) = d(b)
(proof)
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lemma qcase-type:
[u€ A <+> B;
Nz. z € A = ¢(z): C(QInl(z));

ANy.y € B= d(y): C anr(y)5
] = qcase(c,d,u) € C(u)

(proof)

lemma Part-QInl: Part(A <+> B,QInl) = {QInl(z). z € A}
(proof)

lemma Part-QInr: Part(A <+> B,QInr) = {QInr(y). y € B}
(proof)

lemma Part-QInr2: Part(A <4+> B, Az. QInr(h(z))) = {QInr(y). y € Part(B,h)}
(proof)

lemma Part-gsum-equality: C C A <+> B = Part(C,QInl) U Part(C,QInr) =
C

(proof)

9.2.2 Monotonicity

lemma QPair-mono: Ja<=c; b<=d] = <a;b> C <c¢;d>
(proof)
lemma QSigma-mono [rule-format]:
[A<=C; VzeA. B(z) C D(z)] = QSigma(A,B) C QSigma(C,D)
(proof)

lemma QInl-mono: a<=b = QInl(a) C QIni(b)
(proof)

lemma QInr-mono: a<=b = QInr(a) C QInr(b)

{(proof)

lemma gsum-mono: [A<=C; B<=D] = A <+> B C C <+> D
(proof)

end

10 Injections, Surjections, Bijections, Composition
theory Perm imports func begin
definition

comp o [4,d]=1 (infixr <O» 60) where

83



r O s = {zz € domain(s)*range(r) .
Jz y z. xz=(x,2) A (z,y):s A (y,2):r}

definition

id :: i=1 where
id(A) = (Az€A. x)

definition

inj :: [i,i]={ where
inj(A,B) ={ f € A—>B. VweA. VzeA. flu=fc — w=z}

definition

surj :: [i,i]=i where
surj(A,B) = { f € A=>B . VyeB. Jz€A. fa=y}

definition

bij :: [i,i]=i where
bij(A,B) = inj(A,B) N surj(A,B)

10.1 Surjective Function Space

lemma surj-is-fun: f € surj(A,B) = f € A—>B
(proof )

lemma fun-is-surj: f € Pi(A,B) = f € surj(A,range(f))
(proof)

lemma surj-range: f € surj(A,B) = range(f)=B
(proof )

A function with a right inverse is a surjection

lemma f-imp-surjective:
[f € A=>B; A\y.y € B= d(y): 4 Ay y € B= fi(y) =]
= f € surj(A,B)
(proof )

lemma lam-surjective:
[ANz. 2 € A = ¢(x): B;
Ny y € B = d(y): 4;
Ny-y € B= c(d(y)) =y
] = (Az€A. c¢(x)) € surj(A,B)

(proof)

Cantor’s theorem revisited

lemma cantor-surj: f ¢ surj(A,Pow(A))
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(proof)

10.2 Injective Function Space

lemma inj-is-fun: f € inj(A,B) = f € A—>B
(proof )

Good for dealing with sets of pairs, but a bit ugly in use [used in AC]
lemma inj-equality:
[(a,b):f; (e,b):f; f € inj(A,B)] = a=c
(proof)

lemma inj-apply-equality: [f € inj(A,B); fa=fb; a € A; be A] = a=b
(proof)

A function with a left inverse is an injection

lemma f-imp-injective: [f € A—>B; Vz€A. d(fr)=z] = [ € inj(A,B)
(proof)

lemma lam-injective:
[Az. z € A = c(z): B;
Nz. 2 € A = d(c(z)) = ]
= (Az€A. ¢(z)) € inj(A,B)
(proof )

10.3 Bijections
lemma bij-is-inj: f € bij(A,B) = f € inj(A,B)
(proof )

lemma bij-is-surj: f € bij(A,B) = f € surj(A,B)
(proof )

lemma bij-is-fun: f € bij(A,B) = f € A—>B
(proof )

lemma lam-bijective:
[ANz. z € A = ¢(z): B;

] = (\z€A. ¢(x)) € bij(A,B)
{proof)

lemma RepFun-bijective: (VY yez. Ay’ f(y') = f(y))
( ? (Az€{f(y). y € a}. THE y. f(y) = 2) € bij({f(y). y € =}, )
pTOO,
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10.4 Identity Function
lemma idI [introl]: a € A = (a,a) € id(A)
{proof)

lemma idE [elim!]: [p € id(A); Az.]z € A; p=(z,2)] = P] = P
(proof)

lemma id-type: id(A) € A—>A
{proof)

lemma id-conv [simp]: v € A = id(A)‘c =z
{proof)

lemma id-mono: A<=B = id(A) C id(B)
(proof)

lemma id-subset-inj: A<=B = id(A): inj(A,B)
(proof)

lemmas id-inj = subset-refl [THEN id-subset-inj]

lemma id-surj: id(A): surj(A4,A)
{proof)

lemma id-bij: id(A): bij(A,A)
(proof)

lemma subset-iff-id: A C B «— id(A) € A—>B
{proof)

id as the identity relation

lemma id-iff [simp]: (z,y) € id(A) +— z=y ANy € A

(proof)

10.5 Converse of a Function

lemma inj-converse-fun: f € inj(A,B) = converse(f) € range(f)—>A
(proof )

Equations for converse(f)

The premises are equivalent to saying that f is injective...

lemma [eft-inverse-lemma:
[f € A—>B; converse(f): C—>A; a € A] = converse(f) (fa) = a
(proof)

lemma left-inverse [simp]: [f € inj(A,B); a € A] = converse(f) (f‘a) = a
(proof)
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lemma left-inverse-eq:
[f € inj(A,B); f ‘z = y; z € A] = converse(f) ‘y ==
(proof)

lemmas left-inverse-bij = bij-is-inj [THEN left-inverse]

lemma right-inverse-lemma:
[f € A—>B; converse(f): C—>A; b e C] = f{converse(f)b) = b
(proof )

lemma right-inverse [simpl:
[f € inj(A,B); b € range(f)] = f{(converse(f)‘b) = b
(proof)

lemma right-inverse-bij: [f € bij(A,B); b € B] = f{converse(f)d) = b
(proof)

10.6 Converses of Injections, Surjections, Bijections

lemma inj-converse-inj: f € inj(A,B) = converse(f): inj(range(f), A)
(proof)

lemma inj-converse-surj: f € inj(A,B) = converse(f): surj(range(f), A)

(proof)

Adding this as an intro! rule seems to cause looping

lemma bij-converse-bij [TC): f € bij(A,B) = converse(f): bij(B,A)
{proof)

10.7 Composition of Two Relations

The inductive definition package could derive these theorems for r O s

lemma compl [introl: [{a,b):s; (b,c):r] = {(a,c) € r O s

(proof)

lemma compFE [elim!]:
[zz € 7 O s;
Nz y z. [zz=(x,2); (z,y):s; (y,2):r] = P]
— P

(proof)

lemma compFEpair:
[{a,c) € 7 O s;

Ny- [a.y):s; (y,c):r] = PJ
— P

(proof)

lemma converse-comp: converse(R O S) = converse(S) O converse(R)
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(proof)

10.8 Domain and Range — see Suppes, Section 3.1

Boyer et al., Set Theory in First-Order Logic, JAR 2 (1986), 287-327
lemma range-comp: range(r O s) C range(r)

(proof)

lemma range-comp-eq: domain(r) C range(s) = range(r O s) = range(r)

(proof)

lemma domain-comp: domain(r O s) C domain(s)
(proof)

lemma domain-comp-eq: range(s) C domain(r) = domain(r O s) = domain(s)

(proof)

lemma image-comp: (r O s)“A = r‘(s““A)
(proof)

lemma inj-inj-range: [ € inj(A,B) = f € inj(A,range(f))
(proof)

lemma inj-bij-range: f € inj(A,B) = f € bij(A,range(f))
(proof )

10.9 Other Results

lemma comp-mono: [r'<=r; s'<=s] = (r' 0 s’) C (r O s)

(proof)

composition preserves relations

lemma comp-rel: [s<=AxB; r<=BxC] = (r O s) C AxC
(proof)

associative law for composition

lemma comp-assoc: (r Os) Ot =10 (s Ot)
(proof)

lemma left-comp-id: r<=AxB = id(B) Or =r
(proof)

lemma right-comp-id: r<=A*B = r O id(A) = r

(proof)
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10.10 Composition Preserves Functions, Injections, and Sur-
jections

lemma comp-function: [function(g); function(f)] = function(f O g)
(proof)

Don’t think the premises can be weakened much

lemma comp-fun: [g € A—>B; f € B—>C] = (fO g) € A—>C
(proof)

lemma comp-fun-apply [simp]:
[9 € A=>B; a € A] = (f O g)'a = [(g%a)
(proof)

Simplifies compositions of lambda-abstractions
lemma comp-lam:

[Az. 2 € A = b(z): B]

= (A\yeB. c(y)) O (Az€A. b(z)) = (A\z€A. c(b(x)))
(proof )

lemma comp-ing:
[ € inj(A,B); [ € inj(B,C)] = (f O g) € inj(A,C)
(proof)

lemma comp-surj:
lg € surj(4,B); [ € surj(B,C)] = (f O g) € surj(A,C)
(proof)

lemma comp-bij:
lg € bij(A,B); [ € bij(B,C)] = (f O g) € bij(4,C)
(proof )

10.11 Dual Properties of inj and surj

Useful for proofs from D Pastre. Automatic theorem proving in set theory.
Artificial Intelligence, 10:1-27, 1978.
lemma comp-mem-injD1:
[(f O g): inj(A,C); g€ A—>B; f € B—>C] = g € inj(4,B)
(proof )

lemma comp-mem-injD2:
[(f O g): inj(A,C); g € surj(A,B); f € B=>C] = [ € inj(B,C)
(proof )

lemma comp-mem-surjD1:

[(f O g): surj(A,C); g € A—>B; f € B—>C] = [ € surj(B,C)
(proof )
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lemma comp-mem-surjD2:
[(f O g9): surj(A,C); g € A=>B; [ € inj(B,C)] = g € surj(A,B)
(proof)

10.11.1 Inverses of Composition

left inverse of composition; one inclusion is f € A — B = id(A) C con-
verse(f) O f
lemma left-comp-inverse: f € inj(A,B) = converse(f) O f = id(A)
(proof )
right inverse of composition; one inclusion is f € A — B = f O converse(f)
C id(B)
lemma right-comp-inverse:
f € surj(A,B) = f O converse(f) = id(B)
(proof )

10.11.2 Proving that a Function is a Bijection
lemma comp-eq-id-iff:
[f € A—>B; g€ B—>A] = f 0 g = id(B) +— (VYyeB. f(gy)=y)
(proof)
lemma fg-imp-bijective:
[f € A—=>B; g€ B—>A; fOg=1id(B); g Of=1id(A)] = f € bij(A,B)
(proof)
lemma nilpotent-imp-bijective: [f € A—>A; fO f =1id(A)] = f € bij(4,4)
(proof )
lemma invertible-imp-bijective:
[converse(f): B—>A; f € A—>B] = f € bij(A,B)
(proof)

10.11.3 Unions of Functions
See similar theorems in func.thy

Theorem by KG, proof by LCP

lemma inj-disjoint-Un:

[f € inj(A,B); g € inj(C,D); BN D = 0]

= (Aa€A U C. if a € A then f‘a else g‘a) € inj(A U C, BU D)
{proof )

lemma surj-disjoint-Un:
[f € surj(A,B); g € surj(C,D); An C = 0]
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= (fUyg) € surjf(AU C, BU D)
(proof)

A simple, high-level proof; the version for injections follows from it, using f
€ inj(A, B) «<— f € bij(A, range(f))
lemma bij-disjoint- Un:
If € bij(A,B); g€ bij(C.D); ANC=20; BND=0]
= (fUyg) € bij(AuU C, BU D)
(proof)

10.11.4 Restrictions as Surjections and Bijections

lemma surj-image:
f € Pi(A,B) = f € surj(A, f“A)
(proof)

lemma surj-image-eq: f € surj(A, B) = f“A =B
(proof )

lemma restrict-image [simp]: restrict(f,A) “ B = f “ (A N B)
(proof )

lemma restrict-ing:
[f € inj(A,B); C<=A] = restrict(f,C): inj(C,B)
(proof)

lemma restrict-surj: [f € Pi(A,B); C<=A] = restrict(f,C): surj(C, f*“C)
(proof)

lemma restrict-bij:
[f € inj(A,B); C<=A] = restrict(f,C): bij(C, f“C)
(proof)

10.11.5 Lemmas for Ramsey’s Theorem
lemma inj-weaken-type: [f € inj(A,B); B<=D] = f € inj(A,D)
(proof)

lemma inj-succ-restrict:
If € inj(succ(m), A)] = restrict(f,m) € inj(m, A—{f‘m})
(proof)

lemma inj-extend:
If € inj(A,B); a¢A; b¢B]
= cons((a,b),f) € inj(cons(a,A), cons(b,B))
{proof)

end
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11 Relations: Their General Properties and Tran-
sitive Closure

theory Trancl imports Fizedpt Perm begin

definition
refl  :: [i,i]=0 where
refl(A,r) = (Vzed. (z,z) € 1)

definition
irrefl i [i,i]=0 where
irrefl(A,r) = V€A (zz) ¢ r

definition
sym :: i=>0 where
sym(r) =V y. (z,y): r — (y,x): r

definition
asym : i=>0 where
asym(r) =V y. (z,y):r — - (y,x):r

definition
antisym :: i=o0 where
antisym(r) = Vz y.(z,y):r — (y,z):r — 2=y

definition
trans  :: i=0 where
trans(r) =Vzyz. (z,y): r — (y,2): 1 — {(x,2): r

definition
trans-on :: [i,i]=0 (¢<(<open-block notation=<mizfix trans-onsstrans[-]’(-"))») where
trans[A)(r) = VzeA. VyeA. ¥V zeA.
(xy): r — (y,2): 7 —> (z,2): 7

definition
rtrancl :: i=1 («(snotation=«<postfiz “x»-"x)» [100] 100) where
r7x = Ifp(field(r)*field(r), As. id(field(r)) U (r O s))

definition
trancl :: i=i («(<notation=<postfix ~+»-"+)» [100] 100) where
r4+=7r0r7rx

definition

equiv  :: [i,i]=0 where
equiv(A,r) = r C AxA A refl(A,r) A sym(r) A trans(r)
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11.1 General properties of relations

11.1.1 irreflexivity

lemma irrefil:
[Nz. z € A = (z,2) ¢ 1] = irrefl(A,r)
(proof )

lemma irrefiE: [irrefl(A,r); z € A] = (x,x) ¢ r
(proof)
11.1.2 symmetry

lemma syml:
Az y(z.y): 1 = (y,2): 1] = sym(r)
(proof)

lemma symE: [sym(r); (z,y): ] = (y,z): r
(proof )
11.1.3 antisymmetry

lemma antisyml:
Az y.[(z): 75 (y,2): ] = 2=y] = antisym(r)
(proof )

lemma antisymE: [antisym(r); (z,y): r; (y,x): r] = 2=y
(proof)

11.1.4 transitivity

lemma transD: [trans(r); (a,b):r; (b,c):r] = (a,c):r

(proof)

lemma trans-onD:
[trans[A](r); (a,b):r; (b,c):r; a € A; b€ A; ¢ € A] = (a,c)ir
(proof )

lemma trans-imp-trans-on: trans(r) = trans[A](r)

(proof)

lemma trans-on-imp-trans: [trans[A](r); r C AxA] = trans(r)
(proof)

11.2 Transitive closure of a relation

lemma rtrancl-bnd-mono:
bnd-mono(field(r)*field(r), As. id(field(r)) U (r O s))
(proof)

lemma rtrancl-mono: r<=s = r’ * C s x
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{proof)

lemmas rtrancl-unfold =
rtrancl-bnd-mono [THEN rtrancl-def [THEN def-lfp-unfold))

lemmas rtrancl-type = rtrancl-def [THEN def-lfp-subset)

lemma relation-rtrancl: relation(r )
(proof)

lemma rtrancl-refl: [a € field(r)] = (a,a) € 7%

(proof)

lemma rtrancl-into-rtrancl: [(a,b) € r7%; (b,c) € r] = (a,c) € 7%

(proof)

lemma r-into-rtrancl: (a,by € r = (a,b) € r’x

(proof)

~

lemma r-subset-rtrancl: relation(r) = r C r’x
(proof)

lemma rtrancl-field: field(r™) = field(r)
(proof)

lemma rtrancl-full-induct [case-names initial step, consumes 1]:
[{a,by € r7;
Nz. z € field(r) = P({z,z));
Nz y 2 [P((z.9); (z.y): 7% (y,2): r] = P((z,2))]
= P({a,b))
{proof)

lemma rtrancl-induct [case-names initial step, induct set: rtrancl):
[{a,b) € r7;
P(a);
Ay z[(ay) € 7% (y.2) € ;. P(y)] = P(z)
| = P(b)
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(proof)

lemma trans-rtrancl: trans(r )
(proof )

lemmas rtrancl-trans = trans-rtrancl [THEN transD)

lemma rtranclE:
[{a,b) € r™%; (a=b) = P;
Ay-[{a,y) € 17 (y,b) € r] = P
= P

(proof)

lemma trans-trancl: trans(r™+)
{proof)

lemmas trans-on-trancl = trans-trancl [THEN trans-imp-trans-on

lemmas trancl-trans = trans-trancl [THEN transD]

lemma trancl-into-rtrancl: (a,b) € r’™+ = (a,b) € rx

(proof)

lemma r-into-trancl: (a,b) € r = (a,b) € v+
{proof)

o~

lemma r-subset-trancl: relation(r) = r C r +
(proof)

lemma rtrancl-into-trancll: [(a,b) € r%; (b,c) € r] = (a,c) € "+

(proof)

lemma rtrancl-into-trancl2:
[{a,by € r; (byc) € r'*¥] = (a,c) € r’+

(proof)
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lemma trancl-induct [case-names initial step, induct set: trancl]:
[{a,b) € r™+;
Ay. [{ay) € r] = P(y);
Ny z[(a,y) € 7™+ (y,2) € 17 P(y)] = P(2)
| = P(b)

(proof)

lemma tranclE:
[(a,b) € r™+;
(a,b) € r = P;
Av-[{a,y) € 77+ (y,b) € r] = P
=P

(proof)

lemma trancl-type: r™+ C field(r)xfield(r)
{proof)

lemma relation-trancl: relation(r ™)

(proof)

lemma trancl-subset-times: 1 C A x A = r"+ C Ax A
(proof)

lemma trancl-mono: r<=s = r’ + C s +

(proof)

lemma trancl-eq-r: [relation(r); trans(r)] = r™+ =r

{(proof)

-~

lemma rtrancl-idemp [simp]: (r™) % = r’*

(proof)

lemma rtrancl-subset: [R C S; § C R™x] = S = R ™%
(proof)

lemma rtrancl-Un-rtrancl:

[relation(r); relation(s)] = (r’* U s %) x = (r U s) *

(proof)
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lemma rtrancl-converseD: (x,y):converse(r) x = (x,y):converse(r )
(proof)

lemma rtrancl-conversel: (z,y):converse(r *) = (z,y):converse(r) x

(proof)

lemma rtrancl-converse: converse(r) = converse(r )
(proof)

lemma trancl-converseD: (a, b):converse(r) + = (a, b):converse(r +)
(proof)

lemma trancl-conversel: (x,y):converse(r ™+) = (x,y):converse(r) "+

(proof)

lemma trancl-converse: converse(r) ™+ = converse(r +)
(proof)
lemma converse-trancl-induct [case-names initial step, consumes 1]:
[{a, b):r™+; Ay. (y, b) :r — P(y);
Ny z [y, 2) € 5 (2, b) € r™+; P(2)] = P(y)]
= P(a)
(proof)

end

12 Well-Founded Recursion

theory WF imports Trancl begin

definition
wf : i=>0 where

wf(r)=VZ. Z=0| (32€Z. Vy. (yx):r — —y € Z)

definition
wf-on :: [i,i]=0 (<(sopen-block notation=<«mizfizx wf-on»wf[-]’(-)))») where

wf-on(A,r) = wf(r N AxA)
definition
is-recfun  :: [i, i, [i,i]=1, i] =0 where
is-recfun(r,a,H,f) = (f = (Azer—“{a}. H(z, restrict(f, r—{x}))))
definition

the-recfun :: [i, i, [i,i]]=1i] =¢ where
the-recfun(r,a,H) = (THE f. is-recfun(r,a,H,f))
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definition
wftrec = [i, i, [¢,i]=4] =7 where
wftrec(r,a,H) = H(a, the-recfun(r,a,H))

definition
wfrec :: [i, i, [i,i]=1{] =i where

wfrec(r,a,H) = wftrec(r™+, a, Az f. H(z, restrict(f,r—“{z})))

definition
wfrec-on :: i, i, 1, [,i]=17] =1 (<(<open-block notation=«mizficx wfrec-on»»wfrec[-]'(-,-,-))»)
where wfrec[A](r,a,H) = wfrec(r N AxA, a, H)

12.1 Well-Founded Relations

12.1.1 Equivalences between wf and wf-on
lemma wf-imp-wf-on: wf(r) = wf[A](r)
(proof )

lemma wf-on-imp-wf: Jwf[A](r); r C AxA] = wf(r)

(proof)

lemma wf-on-field-imp-wf: wf|field(r)](r) = wf(r)
(proof)

lemma wf-iff-wf-on-field: wf(r) «— wf[field(r)](r)
(proof)

lemma wf-on-subset-A: [wf[A](r); B<=A] = wf[B](r)
(proof)

lemma wf-on-subset-r: [uf[A](r); s<=r] = wf[A](s)
(proof)

lemma wf-subset: [wf(s); r<=s] = wf(r)

(proof)

12.1.2 Introduction Rules for wf-on

If every non-empty subset of A has an r-minimal element then we have
wf [A](r)-
lemma wf-onl:

assumes prem: \NZ u. [Z<=A4; u € Z; VYz€Z. JyeZ. (y,x):r] = False
shows wf[A](r)

{proof)

If r allows well-founded induction over A then we have wf[A](r). Premise
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is equivalent to AB. Vz€A. (Vy. (y,z) €Er —y€ B) — € B— A

CB

lemma wf-onl2:

assumes prem: Ay B. [Vz€A. (VyeA. (y,z):r — y € B) — x € B; y € 4]
= yebB

shows wf[A](r)

(proof )

12.1.3 Well-founded Induction

Consider the least z in domain(r) such that P(z) does not hold...

lemma wf-induct-raw:
[wf(r);
Az.[Vy. (y.z): 1 — P(y)] = P(2)]
= P(a)
(proof)

lemmas wf-induct = wf-induct-raw [rule-format, consumes 1, case-names step,
induct set: wf]

The form of this rule is designed to match wfl

lemma wf-induct2:
[wf(r); a€ A; field(r)<=A4,;
Nz.Jz € 4; Yy. (y,x): 7 — P(y)] = P(2)]
= P(a)
(proof)

lemma field-Int-square: field(r N AxA) C A
(proof )

lemma wf-on-induct-raw [consumes 2, induct set: wf-on]:
[wf[A](r); a € A;
Nz.Jz € 4; VyeA. (y,z): r — P(y)] = P(z)
| = P(a)
(proof)

lemma wf-on-induct [consumes 2, case-names step, induct set: wf-on]:

wfldl(r) = ace A= (A\z. 1€ A= (A\y. y € A = (y, z) € r = P(y))
— P(z)) = P(a)

(proof )

If r allows well-founded induction then we have wf(r).

lemma wfT:
[field(r)<=A;
Ny B. [Vz€A. (VyeA. (yx):;r — y € B) — z € B; y € A]
= y € B]
— wf(r)
(proof)
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12.2 Basic Properties of Well-Founded Relations

lemma wf-not-refl: wf(r) = {(a,a) ¢ r

(proof)

lemma wf-not-sym [rule-format]: wf(r) = Vz. (a,x):r — (x,a) & T
(proof)

lemmas wf-asym = wf-not-sym [THEN swap]

lemma wf-on-not-refl: [wf[A](r); a € A] = (a,a) & r
(proof)
lemma wf-on-not-sym:

[wf[A](r); a € A] = (Ab. b€A = (a,b):r = (b,a)¢r)
(proof)
lemma wf-on-asym:

[wf[A](r); —=Z = {(a,b) € r;

(ba) ¢ r =2, -7 = ac A, ~Z =bec Al = 7

(proof)

lemma wf-on-chain3:
[wf[A](r); {a,b):r; (b,c):r; (c,a):r; a € A; b€ A; c € A] = P
(proof)

transitive closure of a WF relation is WF provided A is downward closed

lemma wf-on-trancl:
[wf[A)(r); r—“A C A] = wf[A](r"+)
(proof)

lemma wf-trancl: wf(r) = wf(r™+)

(proof)

r —“{a} is the set of everything under a in r

lemmas underl = vimage-singleton-iff [THEN iffD2)]
lemmas underD = vimage-singleton-iff [THEN iffD1]

12.3 The Predicate is-recfun

lemma is-recfun-type: is-recfun(r,a,H.f) = [ € r—*{a} —> range(f)
(proof )

lemmas is-recfun-imp-function = is-recfun-type [THEN fun-is-function]

lemma apply-recfun:
[is-recfun(r,a,H.f); (z,a):7] = fo = H(z, restrict(f,r—{z}))
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{proof)

lemma is-recfun-equal [rule-format]:
[wf(r); trans(r); is-recfun(r,a,H.f); is-recfun(r,b,H,q)]
= (z,a):r — (x,b):r — fr=gc

(proof)

lemma is-recfun-cut:
[wf(r); trans(r);
is-recfun(r,a,H.,f); is-recfun(r,b,H,g); (b,a):r]
= restrict(f, r—{b}) = g
(proof)

12.4 Recursion: Main Existence Lemma

lemma is-recfun-functional:
[wf(r); trans(r); is-recfun(r,a,H.f); is-recfun(r,a,H,q)] = f=g
(proof)

lemma the-recfun-eq:
[is-recfun(r,a,H,f); wf(r); trans(r)] = the-recfun(r,a,H) = f
{proof )

lemma is-the-recfun:
[is-recfun(r,a,H,f); wf(r); trans(r)]
= is-recfun(r, a, H, the-recfun(r,a,H))
(proof)

lemma unfold-the-recfun:
[wf(r); trans(r)] = is-recfun(r, a, H, the-recfun(r,a,H))
(proof)

12.5 Unfolding wftrec(r, a, H)

lemma the-recfun-cut:

[wf(r); trans(r); (b,a):r]

= restrict(the-recfun(r,a,H), r—“{b}) = the-recfun(r,b,H)
(proof)

lemma wftrec:
[wf(r); trans(r)] =
wftrec(r,a,H) = H(a, \xer—‘{a}. wftrec(r,z,H))
(proof)

12.5.1 Removal of the Premise trans(r)

lemma wfrec:
wf(r) = wfrec(r,a,H) = H(a, \xer—‘“{a}. wfrec(r,z,H))
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{proof)

lemma def-wfrec:
[Az. h(z)=wfrec(r,z,H); wf(r)] =
h(a) = H(a, Axer—*“{a}. h(z))
(proof)

lemma wfrec-type:
[wf(r); a € A; field(r)<=A4,;
Nz u. [z € 4; uw € Pi(r—‘{z}, B)] = H(z,u) € B(x)
] = wfrec(r,a,H) € B(a)
(proof)

lemma wfrec-on:

[wf[A)(r); a € A] =
< fz;)frec[A](r,a,H) = H(a, Axe(r—{a}) N A. wfrec[A|(r,z,H))
PTOO0,

Minimal-element characterization of well-foundedness

lemma wf-eq-minimal: wf(r) +— VQ z. z € Q — (F2€Q. Vy. (y,2):r —

y£Q))
(proof)

end

13 Transitive Sets and Ordinals

theory Ordinal imports WF Bool equalities begin

definition
Memprel :: =1 where
Memrel(A) = {2€AxA . 3z y. 2=(z,y) N z€y }

definition
Transset :: i=o0 where
Transset(i) = Vx€i. z<=1

definition
Ord :: i=o0 where
Ord(7) = Transset(i) A (Yz€i. Transset(z))
definition
It 2 [4,7] = o (infixl «<» 50)  where
i<j = i€j A Ord(j)
definition
Limit :: =0 where
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Limit(i) = Ord(i) A 0<i A (Vy. y<i — succ(y)<i)

abbreviation
le (infix]l << 50) where
z<y=uz< suce(y)

13.1 Rules for Transset
13.1.1 Three Neat Characterisations of Transset

lemma Transset-iff-Pow: Transset(A) <—> A<=Pow(A)

(proof)

lemma Transset-iff-Union-succ: Transset(A) <—> |J (succ(4)) = A
{proof)

lemma Transset-iff-Union-subset: Transset(A) <—> [J(4) C A

(proof)

13.1.2 Consequences of Downwards Closure

lemma Transset-doubleton-D:
[ Transset(C); {a,b}: C] = acC A beC
(proof)

lemma Transset-Pair-D:
[Transset(C); (a,b)eC] = acC A bel
(proof)

lemma Transset-includes-domain:
[Transset(C); AxB C C;be Bl = AC C
{(proof)

lemma Transset-includes-range:
[Transset(C); AxB C C;a € A] = B C C
(proof)

13.1.3 Closure Properties
lemma Transset-0: Transset(0)

(proof)

lemma Transset-Un:
[ Transset(i); Transset(j)] = Transset(i U j)
(proof)

lemma Transset-Int:
[ Transset(i); Transset(j)] = Transset(i N 7)
(proof)
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lemma Transset-succ: Transset(i) = Transset(succ(1))
(proof)

lemma Transset-Pow: Transset(i) = Transset(Pow(t))

(proof)

lemma Transset-Union: Transset(A) = Transset(|J (4))

(proof)

lemma Transset-Union-family:
[N\i. icA = Transset(i)] = Transset(|J (A))
(proof )

lemma Transset-Inter-family:
[Ai. i€A = Transset(i)] = Transset([)(A4))
(proof)

lemma Transset-UN:
(Az. z € A = Transset(B(z))) = Transset (|Jz€A. B(x))
(proof )

lemma Transset-INT:
(Az. © € A = Transset(B(z))) = Transset ((Nz€A. B(x))
(proof)

13.2 Lemmas for Ordinals

lemma Ordl:
[Transset(i); Az. x€i = Transset(z)] = Ord(7)

(proof)

lemma Ord-is-Transset: Ord(i) = Transset(7)
(proof)

lemma Ord-contains-Transset:
[Ord(7); jei] = Transset(j)
(proof)

lemma Ord-in-Ord: [Ord(7); jei] = Ord(j)
(proof)

lemma Ord-in-Ord": [j€i; Ord(i)] = Ord(j)
(proof)

lemmas Ord-succD = Ord-in-Ord [OF - succll]

104



lemma Ord-subset-Ord: [Ord(i); Transset(j); j<=i] = Ord(j)
(proof)

lemma OrdmemD: [j€i; Ord(i)] = j<=i

(proof)

lemma Ord-trans: [i€j; jek; Ord(k)] = ick
(proof)

lemma Ord-succ-subsetl: [icj; Ord(j)] = succ(i) C j

(proof)

13.3 The Construction of Ordinals: 0, succ, Union
lemma Ord-0 [iff, TC]: Ord(0)

(proof)

lemma Ord-succ [TC): Ord(i) = Ord(succ(7))
(proof)

lemmas Ord-1 = Ord-0 [THEN Ord-succ]

lemma Ord-succ-iff [iff]: Ord(succ(i)) <—> Ord(i)
(proof)

lemma Ord-Un [intro,simp, TC): [Ord(7); Ord(j)] = Ord(i U j)
{proof)

lemma Ord-Int [TC): [Ord(i); Ord(j)] = Ord(i N j)
(proof)

There is no set of all ordinals, for then it would contain itself

lemma ON-class: = (Vi. i€ X <—> Ord(7))
(proof )
13.4 < is ’less Than’ for Ordinals

lemma [tI: [icj; Ord(j)] = i<j
(proof)

lemma tE:
[i<j; [i€j; Ord(i); Ord(j)] = P] = P
(proof )

lemma ItD: i<j = i€j

(proof)

lemma not-it0 [simp]: - i<0
(proof)
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lemma [t-Ord: j<i = Ord(j)
{(proof )

lemma [t-Ord2: j<i = Ord(i)

(proof)

lemmas le-Ord2 = lt-Ord2 [THEN Ord-succD]

lemmas It0E = not-lt0 [THEN notE, elim!]

lemma lt-trans [trans]: [i<j; j<k] = i<k

(proof)

lemma lt-not-sym: i<j = — (j<i)
(proof)

lemmas lt-asym = lt-not-sym [THEN swap)

lemma [t-irrefl [elim!]: i<i = P
(proof)

lemma lt-not-refl: = i<i

(proof)

Recall that ¢ < j abbreviates ¢ < j!

lemma le-iff: i < j <—> i<j | (i=j A Ord(j))
(proof)

lemma lel: i<j = i < j

(proof)

lemma le-eql: [i=j; Ord(j)] = i <]
(proof)

lemmas le-refl = refl [THEN le-eql]

lemma le-refl-iff [iff]: i < i <—> Ord(7)
(proof)

lemma [eCI: (= (i=j A Ord(j)) = i<j) = i < j

(proof)

lemma [eF:
[i <j; i<j= P; [i=j; Ord(j)] = P] = P
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(proof)

lemma le-anti-sym: [i < j; j < i] = i=j

(proof)

lemma le0-iff [simp]: i < 0 <—> i=0
(proof)

lemmas le0D = le0-iff [THEN iffD1, dest!]

13.5 Natural Deduction Rules for Memrel

lemma Memrel-iff [simp]: (a,b) € Memrel(A) <—> a€b A a€A N bEA
(proof)

lemma Memrell [introl]: [a € b; a € A; b€ A] = (a,b) € Memrel(A)
(proof)

lemma MemrelE [elim!]:
[{a,b) € Memrel(A);
[a € 4; be A; ach] = P]
= P
(proof)

lemma Memrel-type: Memrel(A) C AxA
(proof)

lemma Memrel-mono: A<=B = Memrel(A) C Memrel(B)

(proof)

lemma Memrel-0 [simp]: Memrel(0) = 0
(proof)

lemma Memrel-1 [simp]: Memrel(1) = 0

(proof)

lemma relation-Memprel: relation(Memrel(A))
(proof)

lemma wf-Memrel: wf(Memrel(A))
(proof)

The premise Ord(i) does not suffice.

lemma trans-Memrel:
Ord(i) = trans(Memrel(7))

{(proof)

However, the following premise is strong enough.
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lemma Transset-trans-Memrel:
Vjei. Transset(j) = trans(Memrel(7))

(proof)

lemma Transset-Memrel-iff:
Transset(A) = (a,b) € Memrel(A) <—> acb A beA
(proof )

13.6 Transfinite Induction

lemma Transset-induct:
[ € k; Transset(k);
Nz.[z € k; Vyez. P(y)] = P(2)]
= P(7)

(proof)

lemma Ord-induct [consumes 2]:
i€k = Ord(k) = (Nz. 2 € k= (A\y. y € 2 = P(y)) = P(z)) = P(i)
(proof)

lemma trans-induct [consumes 1, case-names step):
Ord(i) = (Az. Ord(z) = (Ay. y € © = P(y)) = P(z)) = P(i)
{proof)

14 Fundamental properties of the epsilon ordering
(< on ordinals)

14.0.1 Proving That < is a Linear Ordering on the Ordinals

lemma Ord-linear:
Ord(i) = Ord(j) = i€j | i=j | jei
{(proof)

The trichotomy law for ordinals

lemma Ord-linear-It:

assumes o: Ord(i) Ord(j)

obtains (It) i<j | (eq) i=j | (gt) j<i
(proof )

lemma Ord-linear2:
assumes o: Ord(i) Ord(j)
obtains (It) i<j | (ge) j <1
(proof )

lemma Ord-linear-le:
assumes o: Ord(7) Ord(j)
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obtains (le) i < j | (ge) j < i
{(proof)

lemma le-imp-not-lt: j < 1 = - i<j

(proof)

lemma not-lt-imp-le: [ i<j; Ord(i); Ord(j)] = 7 < i
(proof)

14.0.2 Some Rewrite Rules for <, <

lemma Ord-mem-iff-lt: Ord(j) = i€j <—> i<j
(proof)

lemma not-lt-iff-le: [Ord(i); Ord(j)] = - i<j <—->j <14

(proof)

lemma not-le-iff-lt: [Ord(7); Ord(j)] = — i < j <—> j<i
(proof)

lemma Ord-0-le: Ord(i) = 0 < i

(proof )

lemma Ord-0-1t: [Ord(i); i#£0] = 0<i
(proof)

lemma Ord-0-lt-iff: Ord(i) = i#0 <—> 0<i
(proof )

14.1 Results about Less-Than or Equals

lemma zero-le-succ-iff [iff]: 0 < succ(z) <—> Ord(z)

{(proof)

lemma subset-imp-le: [j<=i; Ord(i); Ord(§)] = j < i
(proof)

lemma le-imp-subset: ¢ < j —= i<=j

(proof)

lemma le-subset-iff: j < i <—> j<=i A Ord(i) A Ord(j)
(proof)

lemma le-succ-iff: i < suce(j) <—> @ < j | i=succ(j) A Ord(7)

(proof)

lemma all-lt-imp-le: [Ord(i); Ord(j); Az 2<j = z<i] = j < i

{(proof)
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14.1.1 Transitivity Laws
lemma li-trans!: [i < j; j<k] = i<k

(proof)

lemma lt-trans2: [i<j; j < k] = i<k
(proof)

lemma le-trans: [i < j; j< k] = i<k

(proof)

lemma succ-lel: i<j = succ(i) < j
(proof)

lemma succ-leE: succ(i) < j = i<j

(proof)

lemma suce-le-iff [iff]: suce(i) < j <—> i<j
(proof)

lemma succ-le-imp-le: succ(i) < suce(j) = i < j
(proof)

lemma lt-subset-trans: [i C j; j<k; Ord(i)] = i<k

{(proof)

lemma lt-imp-0-lt: j<i = 0<i
(proof)

lemma suce-lt-iff: suce(i) < j <—> i<j A succ(i) # j

(proof)

lemma Ord-succ-mem-iff: Ord(j) = succ(i) € succ(j) <—> i€j
(proof )

14.1.2 Union and Intersection

lemma Un-upperi-le: [Ord(i); Ord(j)] = i
(proof)

IN

iuUj

lemma Un-upper2-le: [Ord(i); Ord(j)] = j < iU}
(proof)

lemma Un-least-lt: [i<k; j<k] = iU j<k

(proof)

lemma Un-least-lt-iff: [Ord(i); Ord(§)] = iU j < k <—> i<k A j<k
(proof)
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lemma Un-least-mem-iff:
[Ord(i); Ord(j); Ord(k)] = iU j €k <—> i€k A jek
(proof )

lemma Int-greatest-lt: [i<k; j<k] = inNj<k
(proof)

lemma Ord-Un-if:
[Ord(7); Ord(§)] = i U j = (if j<i then i else j)
(proof)

lemma succ-Un-distrib:

[Ord(3); Ord(j)] = succ(i U j) = suce(i) U suce(j)
(proof)
lemma [t-Un-iff:

[Ord(i); Ord(j)] = k< iUj<—>k<i|k<j
(proof )
lemma le-Un-iff:

[Ord(i); Ord(j)] = k< iUj<—>k<i|k<j
(proof )

lemma Un-upperl-lt: [k < i; Ord(j)] = k< iUj
(proof)

lemma Un-upper2-lt: [k < j; Ord(i)] = k< iU}
(proof)

lemma Ord-Union-succ-eq: Ord(i) = | (succ(i)) = i
(proof)
14.2 Results about Limits

lemma Ord-Union [intro,simp,TC): [\i. i€A = Ord(i)] = Ord(U (4))
(proof)

lemma Ord-UN [intro,simp, TC):
[Az. z€A = Ord(B(z))] = Ord(|Jz€A. B(z))
(proof )

lemma Ord-Inter [intro,simp, TC|:
[Ai. i€A = Ord(i)] = Ord(((4))
(proof)

lemma Ord-INT [intro,simp, TC|:
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[Az. €A = Ord(B(z))] = Ord((\z€A. B(x))
(proof)

lemma UN-least-le:
[Ord(i); Az. z€A = b(z) < i] = (Uz€d. b(z)) < i
(proof)

lemma UN-succ-least-It:
[i<i; Az z€A = b(z)<j] = (Jze€A. succ(b(x))) < i
{proof)

lemma UN-upper-It:
[acd; i < b(a); Ord(JzeA. b(z))] = i < (JzeA. b(x))
(proof)

lemma UN-upper-le:
[a € 4; i < b(a); Ord(JzeA. b(z))] = i < (UzeA. b(x))
(proof)

lemma [t-Union-iff: Vi€ A. Ord(i) = (j < U (4)) <—> (Fi€A. j<i)
(proof)

lemma Union-upper-le:
[ieJ; i<j; OodlU())] = i< UJ
(proof)

lemma le-implies-UN-le-UN:
< [[/}9;7 z€A = ¢(z) < d(2)] = (JzeA. c(z)) < (JzeA. d(z))
proo

EN

lemma Ord-equality: Ord(i) = (|J y€i. succ(y)) =
(proof)

lemma Ord-Union-subset: Ord(i) = |J (i) C ¢

(proof)

14.3 Limit Ordinals — General Properties

lemma Limit-Union-eq: Limit(i) = |J (i) = ¢
{proof)

lemma Limit-is-Ord: Limit(i) = Ord(7)
{proof)

lemma Limit-has-0: Limit(i) = 0 < @
{proof)
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lemma Limit-nonzero: Limit(i) = i # 0
(proof)

lemma Limit-has-succ: [Limit(i); j<i] = succ(j) < i

(proof)

lemma Limit-succ-lt-iff [simp]: Limit(i) = succ(j) < i <—> (j<i)
(proof)

lemma zero-not-Limit [iff]: = Limit(0)

(proof)

lemma Limit-has-1: Limit(i) = 1 < i

(proof)

lemma increasing-Limitl: [0<l; ¥V zel. Fyel. z<y] = Limit(l)
(proof)

lemma non-succ-Limitl:
assumes i: 0<i and nsucc: A\y. succ(y) # i
shows Limit(7)

(proof)

lemma suce-LimitE [elim!]: Limit(succ(i)) = P

(proof)

lemma not-succ-Limit [simp]: = Limit(succ(7))
(proof)

lemma Limit-le-suceD: [Limit(i); i < succ(j)] = i < j

(proof)

14.3.1 Traditional 3-Way Case Analysis on Ordinals

lemma Ord-cases-disj: Ord(i) = i=0 | (3j. Ord(j) A i=succ(j)) | Limit(i)
(proof)

lemma Ord-cases:

assumes 7: Ord(7)

obtains (0) i=0 | (succ) j where Ord(j) i=succ(j) | (limit) Limit(¢)
(proof)

lemma trans-induct3-raw:
[Ord(i);
P(0);
Az. [Ord(z); P(z)] = P(succ(x));
Nz. [Limit(z); Vyez. P(y)] = P(z)
] = P(i)
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(proof)

lemma trans-induct3 [case-names 0 succ limit, consumes 1]:

Ord(i) = P(0) = (A\z. Ord(z) = P(z) = P(succ(z))) = (Az. Limit(z)
= (A\y. y € 2 = P(y)) = P(z)) = P(i)

{proof)
A set of ordinals is either empty, contains its own union, or its union is a
limit ordinal.
lemma Union-le: [Az. z€] = z<j; Ord(j)] = U{) < j

(proof)

lemma Ord-set-cases:
assumes [: Viel. Ord(i)
shows I=0 vV J(I) e IV (UW) ¢ I A Limit(|J(1)))

(proof)

If the union of a set of ordinals is a successor, then it is an element of that
set.

lemma Ord-Union-eq-suceD: [V z€X. Ord(z); UX = suce(j)] = suce(j) € X
{proof)

lemma Limit-Union [rule-format]: [I # 0; (A\i. i€l = Limit(i))] = Limit(UJ I)
(proof)

end

15 Special quantifiers

theory OrdQuant imports Ordinal begin

15.1 Quantifiers and union operator for ordinals
definition

oall :: [i, i = o] = o where
oall(A, P) =Vz. <A — P(x)

definition
oex :: [i, i = o] = o where
oex(A, P) =3Jz. z<A A P(x)

definition

OUnion :: [,

i = i] = ¢ where
OUnion(i,B) =

{z: Jze€i. B(z). Ord(i)}

syntax
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-oall i [idt, i, o] = o (<(¢indent=3 notation=<binder ¥V <»V¥V-<-./ -)» 10)
-oex i [idt, iy o] = o («(<indent=38 notation=<binder 3<»3I-<-./ -)» 10)
-OUNION  : [idt, i, i| = i (¢«(<indent=38 notation=<binder |J<»nlJ-<-./ -)»
10)
syntax-consts
-oall = oall and
-oex = oex and
-OUNION = OUnion
translations
Vz<a. P = CONST oall(a, Az. P)
Jz<a. P = CONST oex(a, \x. P)
Uz<a. B = CONST OUnion(a, \z. B)

15.1.1 simplification of the new quantifiers

lemma [simp]: (Vz<0. P(z))
(proof)

lemma [simp]: ~(F2<0. P(z))

(proof )
lemma [simp]: (Vz<succ(i). P(z)) <—> (Ord(i) — P(i) A (Vz<i. P(z)))
(proof)

lemma [simp]: (z<succ(i). P(z)) <—> (Ord(i) A (P(i) | (3z<i. P(x))))
(proof)

15.1.2 TUnion over ordinals

lemma Ord-OUN [intro,simp):
[Az. 2<A = Ord(B(z))] = Ord(lJz<A. B(z))
(proof )

lemma OUN-upper-lt:
[a<A4; i < b(a); Ord(Jz<A. b(z))] = i < (Jz<A. b(z))
(proof)

lemma OUN-upper-le:
[a<A; i<b(a); Ord(Jz<A. b(z))] = i < (Uz<A. b(z))
(proof )

lemma Limit-OUN-eq: Limit(i) = (|Jz<i. x) =4
(proof)

lemma OUN-least:
(Az. 2<A = B(z) C C) = (Uz<A. B(z)) C C
(proof)

lemma OUN-least-le:
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[Ord(7); Az. 2<A = b(z) < i] = (Uz<A4. b(z)) < i
(proof)

lemma le-implies-OUN-le-OUN:
< [[]/c\>a: <A = ¢(z) < d(2)] = (Uz<A4. ¢(z)) < (Uz<A. d(x))
proo

lemma OUN-UN-eq:

(Az. z € A = Ord(B(z)))
< ? Uz < (UzeA. B(z)). C(2)) = (UzeA. Uz < B(z). C(z))
Proo

lemma OUN-Union-eq:

(Az. z € X = Ord(z))
< ? Uz <UX). C») = UreX. Uz < z. C(2))
Proo

lemma atomize-oall [symmetric, rulify]:
(Az. 2<A = P(z)) = Trueprop (Vaz<A. P(z))

(proof)

15.1.3 universal quantifier for ordinals

lemma oalll [intro]:
[Az. <A = P(z)] = Vz<A. P(x)

(proof)

lemma ospec: [Vz<A. P(z); z<A] = P(z)
(proof)

lemma oallE:
[Va<A. P(z); P(z) = @ —2<4d = Q] = Q
(proof)

lemma rev-oallE [elim]:
[Vz<A. P(z); "2<A = @; P(z) = Q] = @
(proof)

lemma oall-simp [simp]: (Vz<a. True) <—> True

(proof)

lemma oall-cong [cong]:

[a=a’; Az. z<a’ = P(z) <—> P'(2)]

= oall(a, Az. P(z)) <—> oall(a’, \x. P'(z))
(proof)
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15.1.4 existential quantifier for ordinals

lemma oezl [intro|:
[P(z); z<A] = Jz<A. P(x)
(proof)

lemma oexCI:
[Vz<A. -P(z) = P(a); a<A] = Ja<A. P(z)
(proof)

lemma oezE [elim!]:
[Fx<A. P(z); Az [z<4; P(2)] = Q] = @
(proof)

lemma oez-cong [cong|:

[a=a’; Az. <o’ = P(z) <—> P'(2)]

= oex(a, Az. P(z)) <—> oex(a’, A\z. P'(z))
(proof)

15.1.5 Rules for Ordinal-Indexed Unions

lemma OUN-I [intro]: [a<i; b € B(a)] = b: (U 2<i. B(2))
(proof)

lemma OUN-E [eliml]:
[b € (Uz<i. B(2)); Aa.be B(a); a<i] = R] = R
(proof)

lemma OUN-iff: b € (Jz<i. B(z)) <—> (Fz<i. b € B(x))
(proof)

lemma OUN-cong [cong]:
< [[z';j; Nz. 2<j = C(z)=D(2)] = (Jz<i. C(z)) = (Uz<j. D())
Proo

lemma lt-induct:
[i<k; Az.Je<k; Vy<z. P(y)] = P(z)] = P(i)
(proof)

15.2 Quantification over a class

definition
rall  :: [i=o, i=0] = 0 where
rall(M, P) =Vz. M(z) — P(z)

definition

rex i [i=o0, i=0] = o where
rex(M, P) = 3z. M(z) N P(x)
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syntax

-rall = [pttrn, i=0, o] = o («(xindent=38 notation=<binder ¥ [|»V -[-]./ -)»
10)

-rex o [pttrn, =0, o] = o («(<indent=38 notation=<binder I[|»3-[-]./ -)»
10)

syntax-consts
-rall = rall and
-rer = rex
translations
Vz[M]. P = CONST rall(M, Az. P)
Jz[M]. P = CONST rex(M, Az. P)

15.2.1 Relativized universal quantifier
lemma ralll [intro!]: [Az. M(z) = P(z)] = Vz[M]. P(x)
(proof )

lemma rspec: [Vz[M]. P(z); M(z)] = P(z)
(proof)

lemma rev-rallE [elim]:
[Va[M]. P(z); - M(z) = @; P(z) = @] = @
(proof)

lemma rallE: [V z[M]. P(z); P(z) = Q; - M(z) = Q] = @
(proof)

lemma rall-triv [simp]: (Vz[M]. P) +— ((32. M(z)) — P)
(proof)

lemma rall-cong [cong]:
< (/}9;7 M(z) = P(z) <—> P'(z)) = (Vz[M]. P(z)) <—> (Vz[M]. P'(z))
Proo

15.2.2 Relativized existential quantifier

lemma rezl [intro|: [P(z); M(z)] = Jz[M]. P(z)
(proof )

lemma rev-rexl: [M(z); P(z)] = Jz[M]. P(z)
(proof)

lemma rexCI: [V z[M]. -P(z) = P(a); M(a)] = Fz[M]. P(x)
(proof)
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lemma rezE [elim!]: [3z[M]. P(z); Az. [M(z); P(z)] = Q] = @
(proof)

lemma rez-triv [simp]: (3z[M]. P) «+— ((3z. M(x)) A P)
(proof)

lemma rez-cong [cong|:
< (/}ir M(z) = P(z) <—> P'(z)) = (Fz[M]. P(z)) <—> (3z[M]. P'(z))
proo,

lemma rall-is-ball [simp]: (Vz[Az. z€A]. P(x)) <—> (Vz€A. P(z))
(proof)

lemma rez-is-bex [simp]: (Fz[Az. z€A]. P(z)) <—> (Fz€A. P(x))
(proof)

lemma atomize-rall: (N\z. M(x) = P(x)) = Trueprop (VY z[M]. P(z))
(proof)

declare atomize-rall [symmetric, rulify]

lemma rall-simps1:

(Va[M]. P(z) A Q) <=> (Va[M]. P(z)) A ((Vz[M]. False) | Q)
(Va[M]. P(z) | @) <=> ((Va[M]. P(z)) | Q)
(Va[M]. P(z) — ) <> (Bz[M]. P(z)) — Q)
(=(Va[M]. P(z))) <=> (3a[M]. ~P(z))
(proof)

lemma rall-simps2:
(Vz[M]. P A Q(z)) > ((Vx[M)]. False) | P) A (VY z[M]. Q(x))
(ValM]. P | Q) <—> (P | (¥a[M]. Q(x)))

o ML P = Q) <= (P = (4l Q)

proo,

lemmas rall-simps [simp] = rall-simps1 rall-simps2
lemma rall-conj-distrib:

(Va[M]. P(z) A Q(z)) <=> ((Vz[M]. P(z)) A (Vz[M]. Q(z)))
(proof)

lemma rex-simpsi:

(Bz[M]. P(z) A Q) <=> (Bz[M]. P(x)) A Q)

(Bz[M]. P(z) | @) < (HI[M] P(z)) | (Bz[M]. True) A Q)
(3z[M]. P(z) — ) —> ((Vz[M]. P(z)) — (Bz[M]. True) A Q))
(=@ z[M]. P(2))) <=> (Vz[M]. ~P(z))

{(proof)

lemma rex-simps2:
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(proof)
lemmas rez-simps [simp] = rex-simpsl rex-simps2

lemma rex-disj-distrib:

(Fz[M]. P(z) | Q(x)) <=> (F=z[M]. P(z)) | Fz[M]. Q(z)))
{(proof)
15.2.3 One-point rule for bounded quantifiers
lemma rez-triv-one-point! [simpl: (3z[M]. z=a) <—> ( M(a))

(proof)

lemma rez-triv-one-point2 [simpl: (3 z[M]. a=z) <—> ( M(a))
(proof)

lemma rez-one-pointl [simp]: (3z[M]. z=a A P(z)) <—> ( M(a) A P(a))
(proof)

lemma rez-one-point2 [simp]: (Iz[M]. a=z A P(z)) <—> ( M(a) A P(a))
(proof)

lemma rall-one-point! [simpl: (Vz[M]. z=a — P(z)) <—> ( M(a) — P(a))

(proof)

lemma rall-one-point2 [simp]: (Vz[M]. a=2 — P(z)) <—> ( M(a) — P(a))
(proof)

15.2.4 Sets as Classes

definition

setclass = [i,i] = o («(<open-block notation=<prefix setclass»#4#-)> [40] 40)
where

setclass(A) = Az z € A

lemma setclass-iff [simp]: setclass(A,x) <—> z € A
(proof)

lemma rall-setclass-is-ball [simp]: (V z[##A]. P(x)) <—> (Vz€A. P(x))
(proof)

lemma rezx-setclass-is-bex [simp]: (3 z[##A]. P(z)) <—> (Jz€A. P(z))
(proof)

(ML)
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Setting up the one-point-rule simproc

(ML)

end

16 The Natural numbers As a Least Fixed Point

theory Nat imports OrdQuant Bool begin

definition
nat :: i where
nat = ifp(Inf, AX. {0} U {succ(i). i € X})

definition
quasinat :: i = o where
quasinat(n) = n=0 | (Im. n = succ(m))

definition

nat-case :: [i, i=1i, i{j=i where
nat-case(a,b,k) = THE y. k=0 N y=a | (Fz. k=succ(z) N y=>b(z))

definition
nat-rec :: [, 4, [i,i]=i]=7 where
nat-rec(k,a,b) =
wfrec(Memrel(nat), k, An f. nat-case(a, Am. b(m, f‘m), n))

definition
Le :: © where
Le = {{z,y):natxnat. x < y}

definition
Lt :: i where
Lt = {(z, y):natxnat. z < y}

definition
Ge :: i where
Ge = {{(z,y):natxnat. y < z}

definition
Gt :: i where
Gt = {{(z,y):natxnat. y < x}

definition

greater-than :: i=1i where
greater-than(n) = {i € nat. n < i}
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No need for a less-than operator: a natural number is its list of predecessors!

lemma nat-bnd-mono: bnd-mono(Inf, AX. {0} U {succ(7). i € X})
(proof)

lemmas nat-unfold = nat-bnd-mono [THEN nat-def [THEN def-Ifp-unfold]]

lemma nat-0I [iff,TC]: 0 € nat
(proof)

lemma nat-sucel [intro!, TC]: n € nat = succ(n) € nat
(proof)

lemma nat-11 [iff, TC]: 1 € nat
(proof)

lemma nat-2I [iff,TC]: 2 € nat
(proof)

lemma bool-subset-nat: bool C nat
(proof)

lemmas bool-into-nat = bool-subset-nat [THEN subsetD]

16.1 Injectivity Properties and Induction

lemma nat-induct [case-names 0 succ, induct set: nat):
[n € nat; P(0); Az. [z € nat; P(z)] = P(succ(z))] = P(n)
(proof)

lemma natk:

assumes n € nat
obtains (0) n=0 | (succ) z where = € nat n=succ(zx)

(proof )
lemma nat-into-Ord [simp]: n € nat = Ord(n)
(proof)

lemmas nat-0-le = nat-into-Ord [THEN Ord-0-le]

lemmas nat-le-refl = nat-into-Ord [THEN le-refl]

lemma Ord-nat [iff]: Ord(nat)
(proof)
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lemma Limit-nat [iff]: Limit(nat)
{proof)

lemma naturals-not-limit: a € nat = — Limit(a)

(proof)

lemma succ-natD: succ(i): nat = i € nat
(proof)

lemma nat-succ-iff [iff]: succ(n): nat +— n € nat

(proof)

lemma nat-le-Limit: Limit(i) = nat < ¢
(proof)

lemmas succ-in-naturalD = Ord-trans [OF succll - nat-into-Ord)

lemma lt-nat-in-nat: [m<n; n € nat] = m € nat
(proof)

lemma le-in-nat: [m < n; n € nat] = m € nat
(proof)

16.2 Variations on Mathematical Induction

lemmas complete-induct = Ord-induct [OF - Ord-nat, case-names less, consumes
1]

lemma complete-induct-rule [case-names less, consumes 1]:
i € nat = (Az. z € nat = (A\y. y € 2 = P(y)) = P(z)) = P(i)
{proof)

lemma nat-induct-from:
assumes m < nm € nat n € nat
and P(m)
and Az. [z € nat; m < z; P(z)] = P(succ(z))
shows P(n)
(proof)

lemma diff-induct [case-names 0 0-succ succ-succ, consumes 2]:
[m € nat; n € nat;
Nz. z € nat = P(z,0);
Ny. y € nat = P(0,succ(y));
Az y. [z € nat; y € nat; P(z,y)] = P(succ(zx),succ(y))]
= P(m,n)
(proof)
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lemma succ-lt-induct-lemma [rule-format]:
m € nat = P(m,succ(m)) — (Yxz€nat. P(m,z) — P(m,succ(z))) —
(Vnenat. m<n — P(m,n))
(proof )

lemma succ-lt-induct:
[m<n; n € nat;
P(m,succ(m));
Nz. [z € nat; P(m,z)] = P(m,succ(z))]
= P(m,n)

(proof)

16.3 quasinat: to allow a case-split rule for nat-case

True if the argument is zero or any successor

lemma [iff]: quasinat(0)

(proof)

lemma [iff]: quasinat(succ(x))
(proof)

lemma nat-imp-quasinat: n € nat = quasinat(n)

(proof)

lemma non-nat-case: = quasinat(x) = nat-case(a,b,x) = 0
(proof)

lemma nat-cases-disj: k=0 | (3y. k = succ(y)) | = quasinat(k)

(proof)

lemma nat-cases:
[k=0 = P; Ay. k = succ(y) = P; - quasinat(k) = P] = P
(proof)

lemma nat-case-0 [simp): nat-case(a,b,0) = a

(proof)

lemma nat-case-succ [simp]: nat-case(a,b,succ(n))
(proof)

b(n)

lemma nat-case-type [TC):
[n € nat; a € C(0); Am.m € nat = b(m): C(succ(m))]
= nat-case(a,b,n) € C(n)
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(proof)

lemma split-nat-case:

P(nat-c§se(a7b,k)) —
< ((k;() — P(a)) N (Vz. k=succ(z) — P(b(z))) A (- quasinat(k) — P(0)))
proo,

16.4 Recursion on the Natural Numbers

lemma nat-rec-0: nat-rec(0,a,b) = a

(proof)

lemma nat-rec-succ: m € nat => nat-rec(succ(m),a,b) = b(m, nat-rec(m,a,b))
(proof)

lemma Un-nat-type [TC): [i € nat; j € nat] = i U j € nat
(proof)

lemma Int-nat-type [TC]: [i € nat; j € nat] = i N j € nat

(proof)

lemma nat-nonempty [simp|: nat # 0
(proof)

A natural number is the set of its predecessors

lemma nat-eq-Collect-lt: i € nat = {j€nat. j<i} =i
(proof)

lemma Le-iff [iff]: (z,y) € Le +— z < y A z € nat A\ y € nat
(proof)

end

17 Inductive and Coinductive Definitions

theory Inductive
imports Fizedpt QPair Nat
keywords
inductive coinductive inductive-cases rep-datatype primrec :: thy-decl and
domains intros monos con-defs type-intros type-elims
elimination induction case-eqns recursor-eqns :: quasi-command,
begin

lemma def-swap-iff: a =b=— a=c<+—> c=0b
(proof)
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lemma def-trans: f = g = g(a) = b = f(a) = b
{proof)

lemma refl-thin: AP. a = a = P = P (proof)
(ML)

end

18 Epsilon Induction and Recursion

theory Epsilon imports Nat begin

definition
eclose  :: i=1 where
eclose(A) = |Jnenat. nat-rec(n, A, Am r. |J(r))

definition
transrec :: [i, [i,i]=i] ={ where
transrec(a,H) = wfrec(Memrel(eclose({a})), a, H)

definition
rank  i=7 where
rank(a) = transrec(a, Az f. |Jy€x. succ(fy))

definition
transrec? :: [i, i, [4,
transrec2(k, a, b)
transrec(k,
A 7. if (i=0, a,
if (3], i=succ(j),

b(THE j. i=succ(j), r(THE j. i=succ(j))),

Uj<i. 7))

i]=i] =i where

definition
recursor :: [i, [i,i]=1, i|={ where
recursor(a,b,k) = transrec(k, An f. nat-case(a, Am. b(m, f‘m), n))

definition

rec :: [4, 1, [{,i]=i]={ where
rec(k,a,b) = recursor(a,b,k)

18.1 Basic Closure Properties

lemma arg-subset-eclose: A C eclose(A)
{proof)

lemmas arg-into-eclose = arg-subset-eclose [THEN subsetD]
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lemma Transset-eclose: Transset(eclose(A))
{proof)

lemmas eclose-subset =
Transset-eclose [unfolded Transset-def, THEN bspec]

lemmas ecloseD = eclose-subset [THEN subsetD]

lemmas arg-in-eclose-sing = arg-subset-eclose [THEN singleton-subsetD)]
lemmas arg-into-eclose-sing = arg-in-eclose-sing [THEN ecloseD]

lemmas eclose-induct =
Transset-induct [OF - Transset-eclose, induct set: eclose]

lemma eps-induct:
[Az. Vyez. P(y) = P(z)] = P(a)
(proof)

18.2 Leastness of eclose

lemma eclose-least-lemma:
[Transset(X); A<=X; n € nat] = nat-rec(n, A, \m r.|J(r)) C X
(proof)

lemma eclose-least:
[Transset(X); A<=X] = eclose(A) C X
(proof )

lemma eclose-induct-down [consumes 1]:
[a € eclose(b);
Ny Ly € 0] = P(y);
Ny z. [y € eclose(b); P(y); z € y] = P(z)
| = P(a)
(proof)

lemma Transset-eclose-eq-arg: Transset(X) = eclose(X) = X
(proof)

A transitive set either is empty or contains the empty set.

lemma Transset-0-lemma [rule-format]: Transset(A) = z€A — 0€A

{(proof)

lemma Transset-0-disj: Transset(A) = A=0 | 0€A
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(proof)

18.3 Epsilon Recursion

lemma mem-eclose-trans: [A € eclose(B); B € eclose(C)] = A € eclose(C)
(proof)

lemma mem-eclose-sing-trans:
[A € eclose({B}); B € eclose({C})] = A € eclose({C})

(proof)

lemma under-Memrel: [Transset(i); j € i] = Memrel(i)—‘“{j} = j
(proof)

lemma lt-Memrel: j < i => Memrel(i) —“ {j} = j
(proof)

lemmas under-Memrel-eclose = Transset-eclose [THEN under-Memtrel]
lemmas wfrec-ssubst = wf-Memrel [THEN wfrec, THEN ssubst]

lemma wfrec-eclose-eq:

[k € eclose({j}); j € eclose({i})]
wfrec(Memrel(eclose({i})), k, H) = wfrec(Memrel(eclose({j})), k, H)

(proof)

lemma wfrec-eclose-eq2:
k € i = wfrec(Memrel(eclose({i})),k,H) = wfrec(Memrel(eclose({k})),k,H)

(proof)

lemma transrec: transrec(a,H) = H(a, Az€a. transrec(z,H))

(proof)

lemma def-transrec:
[Az. f(z)=transrec(z,H)] = f(a) = H(a, Az€a. f(z))
(proof)
lemma transrec-type:
[Az u. [z € eclose({a}); w € Pi(z,B)] = H(z,u) € B(x)]
= transrec(a,H) € B(a)
(proof)

lemma eclose-sing-Ord: Ord(i) = eclose({i}) C succ(i)

(proof)

lemma succ-subset-eclose-sing: succ(i) C eclose({i})
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(proof)

lemma eclose-sing-Ord-eq: Ord(i) = eclose({i}) = succ(i)

(proof)

lemma Ord-transrec-type:
assumes jini: j € @
and ordi: Ord(7)
and minor: Az u. [z € i; u € Pi(z,B)] = H(z,u) € B(z)
shows transrec(j,H) € B(j)
(proof )

18.4 Rank

lemma rank: rank(a) = (| y€a. succ(rank(y)))
(proof)

lemma Ord-rank [simp]: Ord(rank(a))
(proof)

lemma rank-of-Ord: Ord(i) = rank(i) = i
(proof)

lemma rank-lt: a € b = rank(a) < rank(b)

(proof)

lemma eclose-rank-lt: a € eclose(b) = rank(a) < rank(b)
(proof)

lemma rank-mono: a<=b = rank(a) < rank(b)

(proof)

lemma rank-Pow: rank(Pow(a)) = succ(rank(a))

{(proof)

lemma rank-0 [simp]: rank(0) = 0
(proof)

lemma rank-succ [simpl: rank(succ(z)) = succ(rank(z))

(proof)

lemma rank-Union: rank(|J (A)) = (Jz€A. rank(z))
(proof)

lemma rank-eclose: rank(eclose(a)) = rank(a)

(proof)

lemma rank-pair!: rank(a) < rank({a,b))
{proof)
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lemma rank-pair2: rank(b) < rank({a,b))
{proof)

lemma the-equality-if:
P(a) = (THE z. P(z)) = (if (3'z. P(x)) then a else 0)
(proof )

lemma rank-apply: [i € domain(f); function(f)] = rank(f%) < rank(f)
(proof)

18.5 Corollaries of Leastness

lemma mem-eclose-subset: A € B = eclose(A)<=eclose(B)
(proof)

lemma eclose-mono: A<=B = eclose(A) C eclose(B)

(proof)

lemma eclose-idem: eclose(eclose(A)) = eclose(A)

(proof)

lemma transrec2-0 [simpl: transrec2(0,a,b) = a

(proof)

lemma transrec2-succ [simp]: transrec2(succ(i),a,b) = b(i, transrec2(i,a,b))
(proof)

lemma transrec2-Limit:
Limit(i) = transrec2(i,a,b) = (|Jj<i. transrec2(j,a,b))
(proof )

lemma def-transrec2:
(Az. f(x)=transrec2(z,a,b))
= f(0) =a A
F(sucel?)) = bli, £() A
gy L) = I8 = <K 1)
proo

130



lemmas recursor-lemma = recursor-def [THEN def-transrec, THEN trans]

lemma recursor-0: recursor(a,b,0) = a

(proof)

lemma recursor-succ: recursor(a,b,succ(m)) = b(m, recursor(a,b,m))
(proof)

lemma rec-0 [simp]: rec(0,a,b) = a
{proof)

lemma rec-succ [simp]: rec(succ(m),a,b) = b(m, rec(m,a,b))
{proof)

lemma rec-type:
[n € nat;
a € C(0);
Am z. [m € nat; z € C(m)] = b(m,z): C(succ(m))]
= rec(n,a,b) € C(n)
(proof)

end

19 Partial and Total Orderings: Basic Definitions
and Properties

theory Order imports WF Perm begin

We adopt the following convention: ord is used for strict orders and order is
used for their reflexive counterparts.

definition
part-ord :: [i,i]=0 where
part-ord(A,r) = drrefl(A,r) A trans[A](r)

definition
linear :: [i,i]=0 where
linear(A,r) = (Vz€A. VyeA. (x,y):r | =y | (y,z):7)

definition
tot-ord :: [i,i]=0 where

t,
tot-ord(A,r) = part-ord(A,r) A linear(A,r)

definition
preorder-on(A, r) = refl(A, r) A trans[A](r)
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definition
partial-order-on(A, r) = preorder-on(A, r) A antisym(r)

abbreviation
Preorder(r) = preorder-on(field(r), r)

abbreviation
Partial-order(r) = partial-order-on(field(r), r)

definition
well-ord :: [i,{]=0 where
well-ord(A,r) = tot-ord(A,r) N wf[A](r)

definition
mono-map :: [i,i,4,{]=1 where
mono-map(A,r,B,s) =
{f € A—>B.VzeA. VycA. (z,y):r — <f'z,fy>:s}

definition
ord-iso :: [i,i,i,i]=% (<(<notation=<infix ord-iso»»{-, -) =2/ (-, -))» 51) where
(A,r) =2 (B,s) =
{f € bij(A,B). VxcA. YVycA. (z,y):r «— <fz,fy>:s}
definition
pred  u [i,0,4]=1 where

pred(A,z,r) = {y € A. (y,z):r}

definition
ord-iso-map :: [i,i,1,i]=1 where
ord-iso-map(A,r,B,s) =
UzeA. JyeB. Uf € ord-iso(pred(A,z,r), v, pred(B,y,s), s). {{z,y)}

definition
first :: [i, i, i = o where
first(u, X, R) = u e X N (VveX. v#Au — (u,v) € R)

19.1 Immediate Consequences of the Definitions

lemma part-ord-Imp-asym:
part-ord(A,r) = asym(r N AxA)
(proof)

lemma linearkE:
[linear(A,r); = € A; y € A;
(z,y):r = P; z=y = P; (y,z):r = P]
= P

(proof)
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lemma well-ordl:
[wf[A](r); linear(A,r)] = well-ord(A,r)
(proof)

lemma well-ord-is-wf:
well-ord(A,r) = wf[A](r)
(proof)

lemma well-ord-is-trans-on:
well-ord(A,r) = trans[A](r)
(proof)

lemma well-ord-is-linear: well-ord(A,r) = linear(A,r)

(proof)

lemma pred-iff: y € pred(A,z,r) +— (y,xz)ir Ny € A
(proof)

lemmas predl = conjl [THEN pred-iff [THEN iffD2]]

lemma predE: [y € pred(A,z,r); [y € 4; (y,z):r] = P] = P
{proof)

lemma pred-subset-under: pred(A,z,r) C r —* {z}
(proof)

lemma pred-subset: pred(A,z,r) C A

(proof)

lemma pred-pred-eq:
pred(pred(A,z,r), y, r) = pred(A,z,r) N pred(A,y,r)
(proof)

lemma trans-pred-pred-eq:
[trans[A](r); (y,x):r; z € A; y € A]
= pred(pred(A,z,r), y, r) = pred(4,y,r)
(proof)

19.2 Restricting an Ordering’s Domain

lemma part-ord-subset:
[part-ord(A,r); B<=A] = part-ord(B,r)
(proof)
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lemma linear-subset:
[linear(A,r); B<=A] = linear(B,r)
(proof )

lemma tot-ord-subset:
[tot-ord(A,r); B<=A] = tot-ord(B,r)
(proof )

lemma well-ord-subset:
[well-ord(A,r); B<=A] = well-ord(B,r)
(proof )

lemma irrefl-Int-iff: irrefl(A,r N AxA) <— drrefl(A,r)
(proof)

lemma trans-on-Int-iff: trans[A](r N AxA) «— trans[A](r)
(proof)

lemma part-ord-Int-iff: part-ord(A,r N AxA) «— part-ord(A,r)
(proof)

lemma linear-Int-iff: linear(A,r N AxA) <— linear(A4,r)

(proof)

lemma tot-ord-Int-iff: tot-ord(A,r N AxA) <— tot-ord(A,r)
{proof)

lemma wf-on-Int-iff: wf[A](r N AxA) «— wf[A](r)
(proof)

lemma well-ord-Int-iff: well-ord(A,r N AxA) <— well-ord(A,r)
{proof)

19.3 Empty and Unit Domains

lemma wf-on-any-0: wf[A](0)
(proof)

19.3.1 Relations over the Empty Set

lemma irrefl-0: irrefl(0,r)

{(proof)

lemma trans-on-0: trans[0](r)
(proof)

lemma part-ord-0: part-ord(0,r)
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{proof)

lemma linear-0: linear(0,r)

(proof)

lemma tot-ord-0: tot-ord(0,r)
(proof)

lemma wf-on-0: wf[0](r)

{(proof)

lemma well-ord-0: well-ord(0,r)
{proof)

19.3.2 The Empty Relation Well-Orders the Unit Set

by Grabczewski

lemma tot-ord-unit: tot-ord({a},0)
(proof)

lemma well-ord-unit: well-ord({a},0)
{proof)

19.4 Order-Isomorphisms

Suppes calls them "similarities"

lemma mono-map-is-fun: f € mono-map(A,r,B,s) = f € A—>B

(proof)

lemma mono-map-is-inj:
[linear(A,r); wf[B](s); f € mono-map(A,r,B,s)] = f € inj(A,B)
(proof)

lemma ord-isol:
[f € bij(A, B);
Ny [z € A ye Al = (z,y) € r +— <fz, fy> € 4]
= f € ord-iso(A,r,B,s)

(proof)

lemma ord-iso-is-mono-map:
f € ord-iso(A,r,B,s) = [ € mono-map(A,r,B,s)
(proof)

lemma ord-iso-is-bij:
f € ord-iso(A,r,B,s) = f € bij(A,B)
(proof)
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lemma ord-iso-apply:
[f € ord-iso(A,r,B,s); (x,y): r; =z € A; ye A] = <fz, fy>€ s
(proof)

lemma ord-iso-converse:
[f € ord-iso(A,r,B,s); (z,y):s; z € B; y € BJ
= <converse(f) ‘z, converse(f) ‘y> € r
(proof)

lemma ord-iso-refl: id(A): ord-iso(A,r,A,r)
(proof)

lemma ord-iso-sym: f € ord-iso(A,r,B,s) => converse(f): ord-iso(B,s,A,r)
(proof)

lemma mono-map-trans:
[g € mono-map(A,r,B,s); [ € mono-map(B,s,C,t)]
= (f O g): mono-map(A,r,C,t)
(proof )

lemma ord-iso-trans:
lg € ord-iso(A,r,B,s); [ € ord-iso(B,s,C,t)]
= (f O g): ord-iso(A,r,C,t)

(proof)

lemma mono-ord-isol:
[f € mono-map(A,r,B,s); g € mono-map(B,s,A,r);
fOg=id(B); gOf=id(A)] = f € ord-iso(A,r,B,s)
(proof)

lemma well-ord-mono-ord-isol:
[well-ord(A,r); well-ord(B,s);
f € mono-map(A,r,B,s); converse(f): mono-map(B,s,A,r)]
= f € ord-iso(A,r,B,s)
(proof)

lemma part-ord-ord-iso:
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[part-ord(B,s); f € ord-iso(A,r,B,s)] = part-ord(A,r)
(proof)

lemma linear-ord-iso:
[linear(B,s); f € ord-iso(A,r,B,s)] = linear(A,r)
(proof)

lemma wf-on-ord-iso:
[wf[B](s); f € ord-iso(A,r,B,s)] = wf[A](r)
{(proof)

lemma well-ord-ord-iso:
[well-ord(B,s); [ € ord-iso(A,r,B,s)] = well-ord(A,r)
{proof)

19.5 Main results of Kunen, Chapter 1 section 6

lemma well-ord-iso-subset-lemma:
[well-ord(A,r); f € ord-iso(A,r, Al;r); A<= A; y € A]
= - <fy, y>:r

(proof)

lemma well-ord-iso-predE:
[well-ord(A,r); f € ord-iso(A, r, pred(A,z,r), r); z € A] = P
(proof)

lemma well-ord-iso-pred-eq:
[well-ord(A,r); [ € ord-iso(pred(A,a,r), r, pred(A,c,r), r);
a€d; ced] = a=c
(proof)

lemma ord-iso-image-pred:
[f € ord-iso(A,r,B,s); a € A] = f “ pred(A,a,r) = pred(B, f‘a, s)
(proof)

lemma ord-iso-restrict-image:

[f € ord-iso(A,r,B,s); C<=A]

= restrict(f,C) € ord-iso(C, r, f*“C, s)
(proof)

lemma ord-iso-restrict-pred:

[f € ord-iso(A,r,B,s); a € A]

= restrict(f, pred(A,a,r)) € ord-iso(pred(A,a,r), r, pred(B, f‘a, s), )
(proof)
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lemma well-ord-iso-preserving:
[well-ord(A,r); well-ord(B,s); {(a,c): r;
f € ord-iso(pred(A,a,r), r, pred(B,b,s), s);
g € ord-iso(pred(A,c,r), r, pred(B,d,s), s)
a€d; ceAd; be B; de B] = (bd)
(proof)

)
: 8

lemma well-ord-iso-unique-lemma:
[well-ord(A,r);
f € ord-iso(A,r, B,s); g € ord-iso(A,r, B,s); y € A]
= - <9y, fy> € s
(proof)

lemma well-ord-iso-unique: [well-ord(A,r);
f € ord-iso(A,r, B,s); g € ord-iso(A,r, Bs)] = f =g
(proof )

19.6 Towards Kunen’s Theorem 6.3: Linearity of the Simi-
larity Relation

lemma ord-iso-map-subset: ord-iso-map(A,r,B,s) C AxB

(proof)

lemma domain-ord-iso-map: domain(ord-iso-map(A,r,B,s)) C A
(proof)

lemma range-ord-iso-map: range(ord-iso-map(A,r,B,s)) C B

(proof)

lemma converse-ord-iso-map:
converse(ord-iso-map(A,r,B,s)) = ord-iso-map(B,s,A,r)
(proof)

lemma function-ord-iso-map:
well-ord(B,s) = function(ord-iso-map(A,r,B,s))
{proof)

lemma ord-iso-map-fun: well-ord(B,s) = ord-iso-map(A,r,B,s)
€ domain(ord-iso-map(A,r,B,s)) —> range(ord-iso-map(A,r,B,s))
(proof )

lemma ord-iso-map-mono-map:
[well-ord(A,r); well-ord(B,s)]
= ord-iso-map(A,r,B,s)
€ mono-map(domain(ord-iso-map(A,r,B,s)), r,
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range(ord-iso-map(A,r,B,s)), s)
{proof)

lemma ord-iso-map-ord-iso:
[well-ord(A,r); well-ord(B,s)] = ord-iso-map(A,r,B,s)
€ ord-iso(domain(ord-iso-map(A,r,B,s)), r,
range(ord-iso-map(A,r,B,s)), s)
(proof )

lemma domain-ord-iso-map-subset:
[well-ord(A,r); well-ord(B,s);
a € A; a ¢ domain(ord-iso-map(A,r,B,s))]
= domain(ord-iso-map(A,r,B,s)) C pred(A, a, r)
(proof )

lemma domain-ord-iso-map-cases:
[well-ord(A,r); well-ord(B,s)]
= domain(ord-iso-map(A,r,B,s)) = A |
(Fz€A. domain(ord-iso-map(A,r,B,s)) = pred(A,z,r))
(proof )

lemma range-ord-iso-map-cases:
[well-ord(A,r); well-ord(B,s)]
= range(ord-iso-map(A,r,B,s)) = B |
(3 yeB. range(ord-iso-map(A,r,B,s)) = pred(B,y,s))
(proof)

Kunen’s Theorem 6.3: Fundamental Theorem for Well-Ordered Sets

theorem well-ord-trichotomy:
[well-ord(A,r); well-ord(B,s)]
= ord-iso-map(A,r,B,s) € ord-iso(A, r, B, s) |
(Fz€A. ord-iso-map(A,r,B,s) € ord-iso(pred(A,z,r), v, B, s)) |
(3yeB. ord-iso-map(A,r,B,s) € ord-iso(A, r, pred(B,y,s), s))
(proof)

19.7 Miscellaneous Results by Krzysztof Grabczewski

lemma irrefi-converse: irrefl(A,r) = irrefl( A,converse(r))

(proof)

lemma trans-on-converse: trans[A](r) = trans[A](converse(r))
(proof)

lemma part-ord-converse: part-ord(A,r) = part-ord(A,converse(r))

{proof)
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lemma linear-converse: linear(A,r) = linear(A,converse(r))
(proof)

lemma tot-ord-converse: tot-ord(A,r) = tot-ord(A,converse(r))
(proof )

lemma first-is-elem: first(b,B,r) = b € B

(proof)

lemma well-ord-imp-ex1-first:
[well-ord(A,r); B<=A; B#£0] = (3b. first(b,B,r))
(proof)

lemma the-first-in:
[well-ord(A,r); B<=A; B#£0] = (THE b. first(b,B,r)) € B
(proof)

19.8 Lemmas for the Reflexive Orders

lemma subset-vimage-vimage-iff:
[Preorder(r); A C field(r); B C field(r)] =
r—“ACr—“B<«— (VacA. 3beB. (a, b) € r)
(proof)

lemma subset-vimagel-vimagel-iff:
[Preorder(r); a € field(r); b € field(r)] =
r—“{a} Cr—“{b} +—{(a,b) €T
(proof)

lemma Refl-antisym-eq-Imagel-Imagel-iff:
[refi(field(r), r); antisym(r); a € field(r); b € field(r)] =
r“da} =71 “{b} +—a=b
(proof)

lemma Partial-order-eq-Imagel-Imagel-iff:
[Partial-order(r); a € field(r); b € field(r)] =
r“da} =71 “{b} +—a=»>
(proof)

lemma Refl-antisym-eq-vimagel-vimagel-iff:
[refi(field(r), r); antisym(r); a € field(r); b € field(r)] =
r—“Ja}=r —“{b}+—a=0>
(proof)

lemma Partial-order-eq-vimagel-vimagel-iff:
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[Partial-order(r); a € field(r); b € field(r)] =
r—“Aa}=r—"“Ab}+—a=1b
{proof)

end

20 Combining Orderings: Foundations of Ordinal
Arithmetic

theory OrderArith imports Order Sum Ordinal begin
definition

radd  :: [i,4,i,i]=7 where
radd(A,r,B,s) =
{z: (A+B) * (A+B).
Bz y. 2= (Inl(z), Tor(y)) |
3z’ z. z = (Inl(z'), Inl(z)) A (z'z):r) |
Py’ y. z = (Inr(y’), Inr(y)) A (y'y):s)}

definition

rmult  :: [i,4,4,i]=17 where
rmult(A,r,B,s) =
{z: (A*B) * (A*B).
dz'y' zy. 2= ((zy), <$7y>> A
(@) 7 | (522 A (y'g): )}

definition

rvimage :: [i,i,{]=47 where
rvimage(A,f,r) = {z € AxA. Jz y. z = (z,y) N ([, fy): r}

definition
measure :: [i, i=i] = i where
measure(A,f) = {(z,y): AxA. f(z) < f(y)}

20.1 Addition of Relations — Disjoint Sum

20.1.1 Rewrite rules. Can be used to obtain introduction rules
lemma radd-Inl-Inr-iff [iff]:

(Inl(a), Inr(b)) € radd(A,r,B,;s) +— a€ ANbEB
(proof)

lemma radd-Inl-iff [iff]:

(Inl(a’), Inl(a)) € radd(A,r,B,s) +— a"ANa€ AN (aa)r
(proof)
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lemma radd-Inr-iff [iff]:
(Inr(b"), Inr(b)) € radd(A,r,B,s) «— bB A b€ BA (b,b):s
(proof)

lemma radd-Inr-Inl-iff [simp):

(Inr(b), Inl(a)) € radd(A,r,B,s) «— Fulse
(proof)

declare radd-Inr-Inl-iff [THEN iffD1, dest!]

20.1.2 Elimination Rule

lemma raddFE:
[(p".p) € radd(A,r,B,s);
Az y. [p'=Inl(z); z € A; p=Inr(y); y € B] = @;
Nz’ z. [p'=Inl(z"); p=Ini(z); (z'z): r; " A; z € A] = @;
Ny" y. [p'=Inr(y"); p=Inr(y); (yv'y): s y:B; y € B] = @Q
|= @
(proof)

20.1.3 Type checking
lemma radd-type: radd(A,r,B,s) C (A+B) * (A+B)
{proof)

lemmas field-radd = radd-type [THEN field-rel-subset)

20.1.4 Linearity

lemma linear-radd:
[linear(A,r); linear(B,s)] = linear(A+B,radd(A,r,B,s))
(proof )

20.1.5 Well-foundedness
lemma wf-on-radd: [wf[A](r); wf[B](s)] = wf[A+B](radd(A,r,B,s))
(proof )

lemma wf-radd: [wf(r); wf(s)] = wf(radd(field(r),r,field(s),s))
(proof )

lemma well-ord-radd:
[well-ord(A,r); well-ord(B,s)] = well-ord(A+B, radd(A,r,B,s))
(proof )

20.1.6 An ord-iso congruence law

lemma sum-bij:
[f € bij(A,C); g € bij(B,D)]
= (A2€A+B. case(Az. Inl(fz), Ay. Inr(gy), 2)) € bij(A+B, C+D)
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(proof)

lemma sum-ord-iso-cong:
[f € ord-iso(A,r,A',r"); g € ord-iso(B,s,B',s")] =
(Az€A+B. case(Azx. Inl(f'c), Ny. Inr(g‘y), z))
€ ord-iso(A+B, radd(A,r,B,s), A'+B’, radd(A',r',B’ s"))
(proof )

lemma sum-disjoint-bij: AN B = 0 =
(Az€A+B. case(Az. z, \y. y, z)) € bij(A+B, AU B)
(proof)

20.1.7 Associativity

lemma sum-assoc-bij:
(Az€(A+B)+C. case(case(Inl, Ay. Inr(Inl(y))), Ay. Inr(Inr(y)), z))
€ bij((A+B)+C, A+(B+C))

(proof )

lemma sum-assoc-ord-iso:
(Az€(A+B)+C. case(case(Inl, Ay. Inr(Inl(y))), Ay. Inr(Inr(y)), z))
€ ord-iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),
A+(B+C), radd(A, v, B+C, radd(B,s,C,t)))
(proof)

20.2 Multiplication of Relations — Lexicographic Product

20.2.1 Rewrite rule. Can be used to obtain introduction rules

lemma rmult-iff [iff]:
((a',b%, (a,b)) € rmult(A,r,B,s) +—
((a;a): r Na"ANae ANV BADbEB)|
((b"b): s Na'=aNa€e ANDb: BAbE B)

(proof)

lemma rmultE:
[({a’.b"), (a,b)) € rmult(A,r,B,s);

[{a’,a): r; a":A; a€ A; b:B; be Bl = Q;
[(b'.0): s; a€ A; a'=a; b:B; be B] = @
=@
(proof)

20.2.2 Type checking

lemma rmult-type: rmult(A,r,B,s) C (AxB) * (A*B)
(proof)

lemmas field-rmult = rmult-type [THEN field-rel-subset]
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20.2.3 Linearity

lemma linear-rmult:
[linear(A,r); linear(B,s)] = linear(AxB,rmult(A,r,B,s))
(proof)

20.2.4 Well-foundedness

lemma wf-on-rmult: Jwf[A](r); wf[B](s)] = wf[AxB](rmult(A,r,B,s))
(proof)

lemma wf-rmult: [wf(r); wf(s)] = wf(rmult(field(r),r field(s),s))
(proof)

lemma well-ord-rmult:
[well-ord(A,r); well-ord(B,s)] = well-ord(AxB, rmult(A,r,B,s))
(proof)

20.2.5 An ord-iso congruence law

lemma prod-bij:

[f € bij(A,C); g € bij(B,D)]

= (lam (z,y):AxB. (fz, g‘y)) € bij(AxB, C*D)
(proof)

lemma prod-ord-iso-cong:
[f € ord-iso(A,r,A',r"); g € ord-iso(B,s,B’,s")]
= (lam (x,y):AxB. (fz, gy))
€ ord-iso(AxB, rmult(A,r,B,s), A*B’, rmult(A’,r',B’,s"))
(proof )

lemma singleton-prod-bij: (A\z€A. (x,2)) € bij(A, {x}*A)
(proof)

lemma singleton-prod-ord-iso:
well-ord({z},zr) =
(A\z€A. (x,2)) € ord-iso(A, r, {z}*A, rmult({z}, zr, A, r))
(proof)

lemma prod-sum-singleton-bij:
a¢C =
(AzeCxB + D. case(Az. x, Ay.{(a,y), ))
€ bij(CxB + D, CxB U {a}*D)
(proof)

lemma prod-sum-singleton-ord-iso:
la € A; well-ord(A,r)] =
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(Az€epred(A,a,r)xB + pred(B,b,s). case(Az. x, \y.(a,y), ))
€ ord-iso(pred(A,a,r)xB + pred(B,b,s),
radd(AxB, rmult(A,r,B,s), B, s),
pred(A,a,r)*B U {a}xpred(B,b,s), rmult(A,r,B,s))
(proof)

20.2.6 Distributive law

lemma sum-prod-distrib-bij:
(lam (z,2):(A+B)xC. case(Ay. Inl((y,z)), Ay. Inr({y,z)), ))
€ bij((A+B)xC, (AxC)+(Bx())

(proof)

lemma sum-prod-distrib-ord-iso:
(lam (z,2):(A4+B)xC. case(\y. Inl({y,z)), Ay. Inr({y,2)), z))
€ ord-iso((A+B)xC, rmult(A+B, radd(A,r,B,s), C, t),
(AxC)+(BxC), radd(AxC, rmult(A,r,C,t), BxC, rmult(B,s,C,t)))
(proof )
20.2.7 Associativity

lemma prod-assoc-bij:
< (%m ((z,y), 2):(AxB)xC. (z,(y,2))) € bij((AxB)xC, Ax(Bx(C))
Proo

lemma prod-assoc-ord-iso:
(lam ((z,y), 2):(AxB)xC. (z,(y,2)))
€ ord-iso((AxB)xC, rmult(A+B, rmult(A,r,B,s), C, t),
Ax(BxC), rmult(A, r, BxC, rmult(B,s,C,t)))
(proof )

20.3 Inverse Image of a Relation

20.3.1 Rewrite rule

lemma rvimage-iff: (a,b) € rvimage(A,f,r) +— (f'a,fd):rNa€c ANbeE A
(proof)

20.3.2 Type checking

lemma rvimage-type: rvimage(A,f,r) C AxA

(proof)
lemmas field-rvimage = rvimage-type [THEN field-rel-subset]

lemma rvimage-converse: rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))

(proof)

20.3.3 Partial Ordering Properties

lemma irrefl-rvimage:
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[f € inj(A,B); irrefl(B,r)] = irrefl(A, rvimage(A,f,r))
(proof)

lemma trans-on-rvimage:
[f € inj(A,B); trans[B|(r)] = trans[A](rvimage(A,f,r))
{proof)

lemma part-ord-rvimage:
[f € inj(A,B); part-ord(B,r)] = part-ord(4, rvimage(A,f,r))
(proof)

20.3.4 Linearity

lemma linear-rvimage:
[f € inj(A,B); linear(B,r)] = linear(A,rvimage(A,f,r))
(proof)

lemma tot-ord-rvimage:
[f € inj(A,B); tot-ord(B,r)] = tot-ord(A, rvimage(A,f,r))
(proof)

20.3.5 Well-foundedness

lemma wf-rvimage [introl]: wf(r) = wf(rvimage(A4.f,r))

(proof)

But note that the combination of wf-imp-wf-on and wf-rvimage gives wf(r)
= wf[C](rvimage(A, f, 1))

lemma wf-on-rvimage: [f € A—B; wf[B](r)] = wf[A](rvimage(A,f,r))
(proof)

lemma well-ord-rvimage:
If € inj(A,B); well-ord(B,r)] = well-ord(A, rvimage(A,f,r))
(proof)
lemma ord-iso-rvimage:
f € bij(A,B) = f € ord-iso(A, rvimage(A,f,s), B, s)
(proof)
lemma ord-iso-rvimage-eq:

f € ord-iso(A,r, B,s) = rvimage(A,f,s) = r N AxA
(proof)

20.4 Every well-founded relation is a subset of some inverse
image of an ordinal

lemma wf-rvimage-Ord: Ord(i) = wf(rvimage(A, f, Memrel(7)))
(proof)
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definition
wfrank :: [i,i]=¢ where
wfrank(r,a) = wfrec(r, a, \x f. Jy € r—*{x}. succ(fy))

definition
wftype :: i=1 where
wftype(r) = Uy € range(r). succ(wfrank(r,y))

lemma wfrank: wf(r) = wfrank(r,a) = (Jy € r—“{a}. succ(wfrank(r,y)))

(proof)

lemma Ord-wfrank: wf(r) = Ord(wfrank(r,a))

(proof)

lemma wfrank-lt: Jwf(r); (a,b) € r] = wfrank(r,a) < wfrank(r,b)
(proof)

lemma Ord-wftype: wf(r) = Ord(wftype(r))
(proof)

lemma wftypel: [wf(r); = € field(r)] = wfrank(r,z) € wftype(r)
(proof)

lemma wf-imp-subset-rvimage:
[wf(r); r C AxA] = 3i f. Ord(i) A r C rvimage(4, f, Memrel(7))
(proof)

theorem wf-iff-subset-rvimage:

relation(r) = wf(r) «+— (i f A. Ord(i) A r C rvimage(A, f, Memrel(i)))
(proof)
20.5 Other Results

lemma wf-times: AN B = 0 = wf(AxB)
(proof)

Could also be used to prove wf-radd
lemma wf-Un:
[range(r) N domain(s) = 0; wf(r); wf(s)] = wf(r U s)
(proof )
20.5.1 The Empty Relation

lemma wf0: wf(0)
{proof)
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lemma linear0: linear(0,0)
(proof )

lemma well-ord0: well-ord(0,0)

(proof)

20.5.2 The "measure" relation is useful with wfrec

lemma measure-eq-rvimage-Memrel:
measure(A,f) = rvimage(A,Lambda(A,f),Memrel( Collect(RepFun(A,f),0rd)))

(proof)

lemma wf-measure [iff]: wf(measure(A,f))
(proof)

lemma measure-iff [iff]: (z,y) € measure(A,f) +— z € ANy e AN f(z)<f(y)
(proof)

lemma linear-measure:

assumes Ordf: \z. z € A = Ord(f(x)

and inj: Azy. [z € A,y € 4; f(z) = f(y)] = 2=y
shows linear(A, measure(A,f))
(proof )

lemma wf-on-measure: wf[B](measure(A,f))

(proof)

lemma well-ord-measure:

assumes Ordf: A\z. z € A = Ord(f(z)
and inj: Azy. [z € 4y € A; f(z) = f(y)] = 2=y
shows well-ord(A, measure(A,f))

(proof)

lemma measure-type: measure(A,f) C AxA
(proof)

20.5.3 Well-foundedness of Unions

lemma wf-on-Union:
assumes wfA: wf[A](r)
and wfB: Aa. ac A = wf[B(a)](s)
and ok: Aa uv. [(u,v) € s; v € B(a); a € 4]
= (Ja'€A. (a’sa) € 7 AN u € B(a')) | u € B(a)
shows wf[lJ a€A. B(a)](s)
(proof)

20.5.4 Bijections involving Powersets

lemma Pow-sum-bij:
(A € Pow(A+B). ({x € A. Inl(z) € Z}, {y € B. Inr(y) € Z}))
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€ bij(Pow(A+B), Pow(A)*Pow(B))
(proof)

As a special case, we have bij(Pow(A x B), A — Pow(B))

lemma Pow-Sigma-bij:

(Ar € Pow(Sigma(A,B)). Az € A. r*{z})

€ bij(Pow(Sigma(A,B)), [[z € A. Pow(B(x)))
(proof )

end

21 Order Types and Ordinal Arithmetic
theory OrderType imports OrderArith OrdQuant Nat begin

The order type of a well-ordering is the least ordinal isomorphic to it. Ordi-
nal arithmetic is traditionally defined in terms of order types, as it is here.
But a definition by transfinite recursion would be much simpler!

definition

ordermap :: [i,i]=i where

ordermap(A,r) = Ax€A. wfrec[A](r, z, Az f. f * pred(A,z,r))
definition

ordertype :: [i,i]=1i where

ordertype(A,r) = ordermap(A,r) ‘A

definition

Ord-alt :: i = o where
Ord-alt(X) = well-ord(X, Memrel(X)) A (YueX. u=pred(X, u, Memrel(X)))

definition

ordify  :: i=i where
ordify(z) = if Ord(z) then x else 0

definition

omult i [6,d]=1 (infixl «xx> 70) where
i *x j = ordertype(jxi, rmult(j,Memrel(j),i,Memrel(7)))

definition

raw-oadd :: [i,i]=7 where
raw-oadd(i,j) = ordertype(i+j, radd(i,Memrel(),j,Memrel(5)))

definition
oadd 2 [4,8]=1 (infix]l <++» 65) where
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i ++ j = raw-oadd(ordify(i),ordify(j))
definition

odiff i [4,8]=1 (infixl <——» 65) where
i —— j = ordertype(i—j, Memrel(%))

21.1 Proofs needing the combination of Ordinal.thy and Or-
der.thy

lemma le-well-ord-Memrel: j < i = well-ord(j, Memrel(7))
(proof)

lemmas well-ord-Memrel = le-refl [THEN le-well-ord-Memprel)]

lemma lt-pred-Memrel:
j<i = pred(i, j, Memrel(i)) = j
(proof)

lemma pred-Memrel:
z € A= pred(A, z, Memrel(A)) = ANz
(proof)

lemma Ord-iso-implies-eq-lemma:
[i<i; f € ord-iso(i,Memrel(7),j,Memrel(j))] = R
(proof)

lemma Ord-iso-implies-eq:
[Ord(7); Ord(j); f € ord-iso(i,Memrel(i),j,Memrel(j))]
= i=j

(proof)

21.2 Ordermap and ordertype

lemma ordermap-type:
ordermap(A,r) € A —> ordertype(A,r)
(proof )

21.2.1 Unfolding of ordermap

lemma ordermap-eq-image:
[wflA](r); = € A]
= ordermap(A,r) ‘ x = ordermap(A,r) “ pred(A,z,r)
(proof)

lemma ordermap-pred-unfold:
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[wf[Al(r); = € A]
= ordermap(A,r) ‘x = {ordermap(A,r)‘y . y € pred(A,z,r)}
(proof)

lemmas ordermap-unfold = ordermap-pred-unfold [simplified pred-def]

21.2.2 Showing that ordermap, ordertype yield ordinals

lemma Ord-ordermap:
[well-ord(A,r); = € A] = Ord(ordermap(A,r) ‘ x)
(proof )

lemma Ord-ordertype:
well-ord(A,r) = Ord(ordertype(A,r))
(proof )

21.2.3 ordermap preserves the orderings in both directions

lemma ordermap-mono:

[{w,x): r; wf[A](r); we A; z € A]

= ordermap(A,r)‘w € ordermap(A,r)‘c
(proof)

lemma converse-ordermap-mono:
[ordermap(A,r)‘w € ordermap(A,r)‘z; well-ord(A,r); w € A; z € A]
= (w,z): 7

(proof)

lemma ordermap-surj: ordermap(A, r) € surj(A, ordertype(A, 1))

{proof)

lemma ordermap-bij:
well-ord(A,r) = ordermap(A,r) € bij(A, ordertype(A,r))
{proof)

21.2.4 TIsomorphisms involving ordertype

lemma ordertype-ord-iso:
well-ord(A,r)
= ordermap(A,r) € ord-iso(A,r, ordertype(A,r), Memrel(ordertype(A,r)))
(proof)
lemma ordertype-eq:
[f € ord-iso(A,r,B,s); well-ord(B,s)]
= ordertype(A,r) = ordertype(B,s)
(proof)

lemma ordertype-eq-imp-ord-iso:
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[ordertype(A,r) = ordertype(B,s); well-ord(A,r); well-ord(B,s)]
= 3f. f € ord-iso(A,r,B,s)
(proof)

21.2.5 Basic equalities for ordertype

lemma le-ordertype-Memprel: j < i = ordertype(j,Memrel(i)) = j
(proof)

lemmas ordertype-Memrel = le-refl [THEN le-ordertype-Memprel]

lemma ordertype-0 [simp]: ordertype(0,r) = 0
(proof)

lemmas bij-ordertype-vimage = ord-iso-rvimage [THEN ordertype-eq]

21.2.6 A fundamental unfolding law for ordertype.

lemma ordermap-pred-eq-ordermap:

[well-ord(A,r); y € A; z € pred(A,y,r)]

= ordermap(pred(A,y,r), r) ‘2z = ordermap(A, r) ‘ 2z
(proof)

lemma ordertype-unfold:
ordertype(A,r) = {ordermap(A,r)‘y . y € A}
(proof)

Theorems by Krzysztof Grabczewski; proofs simplified by lep

lemma ordertype-pred-subset: Jwell-ord(A,r); = € A] =
ordertype(pred(A,z,r),r) C ordertype(A,r)
(proof )

lemma ordertype-pred-lt:

[well-ord(A,r); x € A]

= ordertype(pred(A,z,r),r) < ordertype(A,r)
(proof )

lemma ordertype-pred-unfold:

well-ord(A,r)

= ordertype(A,r) = {ordertype(pred(A,z,r),r). x € A}
(proof)

21.3 Alternative definition of ordinal

lemma Ord-is-Ord-alt: Ord(i) = Ord-alt(7)
{proof)
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lemma Ord-alt-is-Ord:
Ord-alt(i) = Ord(1)
(proof)

21.4 Ordinal Addition
21.4.1 Order Type calculations for radd

Addition with 0

lemma bij-sum-0: (Az€A+0. case(Az. =, Ay. y, z)) € bij(A+0, A)
(proof)

lemma ordertype-sum-0-eq:
well-ord(A,r) = ordertype(A+0, radd(A,r,0,s)) = ordertype(A,r)
(proof)

lemma bij-0-sum: (Az€0+A. case(Ax. x, \y. y, 2)) € bij(0+A, A)
(proof)

lemma ordertype-0-sum-eq:
well-ord(A,r) = ordertype(0+A, radd(0,s,A,r)) = ordertype(A,r)
(proof)

Initial segments of radd. Statements by Grabczewski

lemma pred-Inl-bij:
a € A = (Aze€pred(A,a,r). Inl(x))
€ bij(pred(A,a,r), pred(A+B, Inl(a), radd(A,r,B,s)))
(proof)

lemma ordertype-pred-Inl-eq:
[a € A; well-ord(A,r)]
= ordertype(pred(A+B, Inl(a), radd(A,r,B,s)), radd(A,r,B,s)) =
ordertype(pred(A,a,r), r)
(proof)

lemma pred-Inr-bij:
be B—
id(A+pred(B,b,s))
€ bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r,B,s)))
{proof)

lemma ordertype-pred-Inr-eq:
[b € B; well-ord(A,r); well-ord(B,s)]
= ordertype(pred(A+B, Inr(b), radd(A,r,B,s)), radd(A,r,B,s)) =
ordertype( A+pred(B,b,s), radd(A,r,pred(B,b,s),s))
(proof)
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21.4.2 ordify: trivial coercion to an ordinal

lemma Ord-ordify [iff, TC): Ord(ordify(z))
(proof)

lemma ordify-idem [simp]: ordify(ordify(z)) = ordify(z)
(proof)

21.4.3 Basic laws for ordinal addition
lemma Ord-raw-oadd: [Ord(i); Ord(j)] = Ord(raw-oadd(i,j))
(proof )

lemma Ord-oadd [iff, TC]: Ord(i++j)

(proof)

Ordinal addition with zero

lemma raw-oadd-0: Ord(i) = raw-oadd(i,0) = i

(proof)

lemma oadd-0 [simp]: Ord(i) = i++0 = i
(proof)

lemma raw-oadd-0-left: Ord(i) = raw-oadd(0,i) = i
(proof)

lemma oadd-0-left [simp]: Ord(i) = 0++i =1
(proof)

lemma oadd-eq-if-raw-oadd:
i++j = (if Ord(7) then (if Ord(j) then raw-oadd(i,j) else i)
else (if Ord(j) then j else 0))
(proof)

lemma raw-oadd-eq-oadd: [Ord(i); Ord(j)] = raw-oadd(i,j) = i++j
(proof)

lemma lt-oaddl: k<i = k < i++j

(proof)

lemma oadd-le-self: Ord(i) = i < i++j
(proof)

Various other results
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lemma id-ord-iso-Memrel: A<=B = id(A) € ord-iso(4, Memrel(A), A, Mem-
rel(B))
(proof)

lemma subset-ord-iso-Memrel:
[f € ord-iso(A,Memrel(B),C,r); A<=B] = f € ord-iso(A,Memrel(A),C,r)
(proof)

lemma restrict-ord-iso:
[f € ord-iso(i, Memrel(i), Order.pred(A,a,r), r); a € A; j < i;
trans[A](r)]
= restrict(f,j) € ord-iso(j, Memrel(j), Order.pred(A,f%,r), )
(proof)

lemma restrict-ord-iso2:
[f € ord-iso(Order.pred(A,a,r), r, i, Memrel(i)); a € A;
j < i; trans[A](r)]
= converse(restrict(converse(f), j))
€ ord-iso( Order.pred(A, converse(f) %, r), r, j, Memrel(j))
(proof)

lemma ordertype-sum-Memrel:
[well-ord(A,r); k<j]
= ordertype(A+k, radd(A, r, k, Memrel(j))) =
ordertype( A+k, radd(A, r, k, Memrel(k)))
(proof)

lemma oadd-lt-mono2: k<j = i++k < i++j
(proof)

lemma oadd-lt-cancel?: [i++j < i++k; Ord(j)] = j<k
(proof)

lemma oadd-lt-iff2: Ord(j) = i++j < i++k +— j<k
(proof)

lemma oadd-inject: [i++j = i++k; Ord(j); Ord(k)] = j=k
(proof)

lemma lt-oadd-disj: k < i++j = k<i | (3l€j. k = i++1)
(proof)

21.4.4 Ordinal addition with successor — via associativity!

lemma oadd-assoc: (i++j)++k = i++(j++k)
(proof)

lemma oadd-unfold: [Ord(i); Ord(j)] = i++j = ¢ U (Jkej. {i++k})
(proof)
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lemma oadd-1: Ord(i) = i++1 = succ(i)
(proof)

lemma oadd-succ [simp]: Ord(j) = i++succ(j) = suce(i++j)
(proof)
Ordinal addition with limit ordinals

lemma oadd-UN':

[ANz. © € A = Ord(j(z)); a € A]
< ? i ++ (UzeA. j(z)) = (UzeA. i++j(x))
proo

lemma oadd-Limit: Limit(j) = i++j = (Jke€j. i++k)
(proof)

lemma oadd-eq-0-iff: [Ord(i); Ord(j)] = (i ++ j) = 0 +— i=0 A j=0
(proof)

lemma oadd-eq-lt-iff: [Ord(i); Ord(j)] = 0 < (i ++ j) +— 0<i | 0<j
(proof)

lemma oadd-Limitl: [Ord(i); Limit(j)] = Limit(i ++ j)
(proof)

Order/monotonicity properties of ordinal addition
lemma oadd-le-self2: Ord(i) = i < j++i
(proof)

lemma oadd-le-monol: k < j = k++i < j++1
(proof)

lemma oadd-lt-mono: [i’ < 4; j'<j] = i'++j' < i++j

(proof)

lemma oadd-le-mono: [i' < i; j' < j] = i'++j' < i++j
(proof)

lemma oadd-le-iff2: [Ord(j); Ord(k)] = i++j < i++k +— j < k
(proof)

lemma oadd-lt-self: [Ord(i); 0<j] = i < i++j
(proof)

Every ordinal is exceeded by some limit ordinal.

lemma Ord-imp-greater-Limit: Ord(i) = k. i<k A Limit(k)
(proof)

lemma Ord2-imp-greater-Limit: [Ord(i); Ord(j)] = 3 k. i<k A j<k A Limit(k)
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(proof)

21.5 Ordinal Subtraction

The difference is ordertype(j — i, Memrel(j)). It’s probably simpler to define
the difference recursively!
lemma bij-sum-Diff:
A<=B = (A\yeB. if(y € A, Inl(y), Inr(y))) € bij(B, A+(B—A))
(proof)

lemma ordertype-sum-Diff:
1 < j =
ordertype(i+(j—1i), radd(i,Memrel(j),j—i,Memrel(j))) =
ordertype(j, Memrel(j))
(proof )

lemma Ord-odiff [simp,TC]:
[Ord(i); Ord(j)] = Ord(i——j)
(proof)

lemma raw-oadd-ordertype-Diff:

i<

= raw-oadd(i,j——1) = ordertype(i+(j—1i), radd(i,Memrel(j),j—i,Memrel(j)))
(proof)

lemma oadd-odiff-inverse: i < j = i ++ (j——1i) = j
(proof )

lemma odiff-oadd-inverse: [Ord(7); Ord(j)] = (i++j) —— i =]
(proof)

lemma odiff-lt-mono2: [i<j; k < i] = i——k < j——k
{proof)

21.6 Ordinal Multiplication

lemma Ord-omult [simp, TC):
[Ord(i); Ord(j)] = Ord(ixxj)
{proof)

21.6.1 A useful unfolding law

lemma pred-Pair-eq:

[a € A; b € B) = pred(AxB, (a,b), rmult(A,r,B,s)) =
pred(A,a,r)*B U ({a} * pred(B,b,s))

(proof)
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lemma ordertype-pred-Pair-eq:

[a € A; b e B; well-ord(A,r); well-ord(B,s)] =
ordertype(pred(A*B, {a,b), rmult(A,r,B,s)), rmult(A,r,B,s)) =
ordertype(pred(A,a,r)xB + pred(B,b,s),

radd(A*B, rmult(A,r,B,s), B, s))
(proof )

lemma ordertype-pred-Pair-lemma:
[i'<i; j'<d]
= ordertype(pred(ixj, <i’j"™>, rmult(i,Memrel(i),j,Memrel())),
rmult(i, Memrel(7),j,Memrel(5))) =
raw-oadd (jxxi’, j')
(proof)

lemma [t-omult:

[Ord(i); Ord(j); k<j*xi]

= 35" i k = jaxi’ ++ § A §I<j A i'<i
(proof)

lemma omult-oadd-It:
[1'<j; i'<i] = jaxi’ +4 j1 < fxxi
(proof )

lemma omult-unfold:
[0rd(i); Ord(j)] = jexi = (Uj'ej. Ui'ei. {jxxi’ ++ j'})
(proof)

21.6.2 Basic laws for ordinal multiplication

Ordinal multiplication by zero
lemma omult-0 [simp]: ixx0 = 0

{proof)

lemma omult-0-left [simp]: Oxxi = 0
{proof )
Ordinal multiplication by 1
lemma omult-1 [simp]: Ord(i) = ixx1 =1

{proof)

lemma omult-1-left [simp]: Ord(i) = 1xxi = i
(proof )
Distributive law for ordinal multiplication and addition

lemma oadd-omult-distrib:
[Ord(3); Ord(j); Ord(k)] = ixx(j++k) = (ixx])++(ixxk)
(proof)
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lemma omult-succ: [Ord(i); Ord(j)] = ixxsucc(j) = (ixxj)++1i
(proof)

Associative law

lemma omult-assoc:
[Ord(7); Ord(j); Ord(k)] = (ixxj)xxk = txx(jrxk)
(proof )

Ordinal multiplication with limit ordinals

lemma omult-UN:

[Ord(7); Az. z € A = Ord(j(z))]
< ? ixx (Jzed. j(z) = (JzeA. isxj(z))
proo

lemma omult-Limit: [Ord(i); Limit(j)] = ixxj = (U k€. ixxk)
(proof)

21.6.3 Ordering/monotonicity properties of ordinal multiplica-
tion

lemma lt-omult]: [k<i; 0<j] = k < ixxj

(proof)

lemma omult-le-self: [Ord(i); 0<j] = i < ixxj

(proof)

lemma omult-le-monol:
assumes kj: k£ < j and i: Ord(i) shows kxxi < jiki

(proof)

lemma omult-lt-mono2: [k<j; 0<i] = xxk < xkj
(proof)

lemma omult-le-mono2: [k < j; Ord(i)] = ixxk < i*x*j

(proof)

lemma omult-le-mono: [i’ < i; j' < j] = i'sxj’ < ixxj
(proof)

lemma omult-lt-mono: [i' < i; j'<j; 0<i] = i"xj’ < ixxj

(proof)

lemma omult-le-self2:
assumes i: Ord(7) and j: 0<j shows i < jski
{proof )

Further properties of ordinal multiplication

lemma omult-inject: [ixxj = ixxk; 0<i; Ord(j); Ord(k)] = j=k
(proof)
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21.7 The Relation Lt
lemma wf-Lt: wf(Lt)
(proof)

lemma irrefl-Lt: irrefl(A,Lt)
(proof)

lemma trans-Lt: trans[A](Lt)
(proof)

lemma part-ord-Lt: part-ord(A,Lt)
(proof)

lemma linear-Lt: linear(nat,Lt)

(proof)

lemma tot-ord-Lt: tot-ord(nat,Lt)
(proof)

lemma well-ord-Lt: well-ord(nat,Lt)

(proof)

end

22 Finite Powerset Operator and Finite Function
Space

theory Finite imports Inductive Epsilon Nat begin

rep-datatype
elimination natFE
induction nat-induct
case-eqns nat-case-0 nat-case-succ
recursor-eqns recursor-0 recursor-succ

consts

Fin =1

FiniteFun :: [i,d]={ («(<notation=<infix —||>»- —||>/ -)» [61, 60] 60)
inductive

domains Fin(A) C Pow(A)

intros

emptyl: 0 € Fin(A)

consl: [a € A; b€ Fin(A)] = cons(a,b) € Fin(A)
type-intros empty-subset] cons-subset] Powl
type-elims PowD [elim-format]
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inductive
domains FiniteFun(A,B) C Fin(AxB)
intros
emptyl: 0 € A —||> B
consl: [a€ A; be B; he A—||> B; a¢ domain(h)]
= cons({(a,b),h) € A —||> B
type-intros Fin.intros

22.1 Finite Powerset Operator

lemma Fin-mono: A<=B = Fin(A) C Fin(B)
{proof)

lemmas FinD = Fin.dom-subset [THEN subsetD, THEN PowD)]

lemma Fin-induct [case-names 0 cons, induct set: Fin):
[b € Fin(A);
P(0);
Nz y. [z € A; y € Fin(A); a¢y; P(y)] = P(cons(z,y))
| = P(b)
(proof)

declare Fin.intros [simp]
lemma Fin-0: Fin(0) = {0}
(proof)

lemma Fin-Unl [simp]: [b € Fin(A); ¢ € Fin(A)] = b U ¢ € Fin(A)
(proof)

lemma Fin-Unionl: C € Fin(Fin(A)) = J(C) € Fin(A)
(proof)

lemma Fin-subset-lemma [rule-format]: b € Fin(A) =V z. z<=b — z € Fin(A)

(proof)

lemma Fin-subset: [e<=b; b € Fin(A)] = ¢ € Fin(4)
(proof)
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lemma Fin-Intl1 [intro,simp|: b € Fin(A) = b N ¢ € Fin(A)
(proof)

lemma Fin-IntI2 [intro,simp|: ¢ € Fin(4) = b N ¢ € Fin(A)
(proof)

lemma Fin-0-induct-lemma [rule-format]:
[c € Fin(A4); b€ Fin(A); P(b);
Nz y. [z € A; y € Fin(A); z €y, Py)] = Ply—{z})
] = ¢<=b — P(b—c)

(proof)

lemma Fin-0-induct:
[b € Fin(A);
P(b);
Nz y. [z € A; y € Fin(A); = €y; P(y)] = Ply—{z})
] — P(0)
(proof)

lemma nat-fun-subset-Fin: n € nat = n—>A C Fin(natxA)
(proof )

22.2 Finite Function Space

lemma FiniteFun-mono:
[A<=C; B<=D] = A—||>B C C—||>D
(proof)

lemma FiniteFun-monol: A<=B = A —||> A C B —||> B
(proof)

lemma FiniteFun-is-fun: h € A —||>B = h € domain(h) —> B

(proof)

lemma FiniteFun-domain-Fin: h € A —||>B = domain(h) € Fin(A)

(proof)
lemmas FiniteFun-apply-type = FiniteFun-is-fun [THEN apply-type]
lemma FiniteFun-subset-lemma [rule-format]:

be A—||>B = Vz. 2<=b — 2z € A—||>B

(proof)

lemma FiniteFun-subset: [c<=b; b € A—||>B] = ¢ € A—||>B
(proof)
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lemma fun-FiniteFunl [rule-format]: A € Fin(X) = Vf. f € A—>B — f €
A—||>B
(proof)

lemma lam-FiniteFun: A € Fin(X) = (Az€A. b(z)) € A —||> {b(z). z € A}
(proof)
lemma FiniteFun-Collect-iff:
f € FiniteFun(A, {y € B. P(y)})
«— [ € FiniteFun(A,B) N (Y z€domain(f). P(fcr))
(proof)

22.3 The Contents of a Singleton Set

definition
contents :: i=1 where
contents(X) = THE z. X = {z}

lemma contents-eq [simp]: contents ({z}) = x
(proof)

end

23 Cardinal Numbers Without the Axiom of Choice

theory Cardinal imports OrderType Finite Nat Sum begin
definition

Least :: (i=o0) = ¢ (binder <u > 10) where
Least(P) = THE i. Ord(i) A P(i) A (Vj. j<i — —P(§))

definition
egpoll :: [i,i] = o  (infixl =) 50) where
A~ B=3f. f e bij(4d,B)

definition
lepoll :: [i,i] = o (infix]l <<» 50) where
A< B=13f. f € inj(A,B)

definition
lesspoll :: [i,i) = o (infix]l <<» 50) where
A<B=A<BA—(A=B)

definition

cardinal =2 i=1 (<(<open-block notation=<mizfix cardinalys|-|)»)
where |A| = (pi. i = A)
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definition
Finite :: i=0 where
Finite(A) = 3nenat. A= n

definition
Card :: i=0 where
Card(i) = (i = i)

23.1 The Schroeder-Bernstein Theorem

See Davey and Priestly, page 106

lemma decomp-bnd-mono: bnd-mono(X, A\W. X — ¢‘(Y — f“W))
(proof)

lemma Banach-last-equation:
ge Y—>X
= g (Y — [“lfp(X, AW. X — g*(Y — f*W))) =
X — Ufp(X, \W. X — g(Y — f“W))
{proof)

lemma decomposition:
[fe X—>Y; ge Y->X] =
FXAXBYAYB. (XANXB=0)AN(XAUXB=X)A
(YANYB=0)AN(YAUYB=Y)A
f4XA=YA N ¢“YB=XB
(proof)

lemma schroeder-bernstein:
[f € inj(X,Y); g€ inj(Y,X)] = Ih. h € bij(X,Y)
(proof)

lemma bij-imp-egpoll: f € bij(A,B) = A~ B
(proof )
lemmas eqpoll-refl = id-bij [THEN bij-imp-egpoll, simp)

lemma egpoll-sym: X = ¥ — YV = X
(proof)

lemma egpoll-trans [trans]:
[X~Y, YrZ|l=X=~2Z
{proof)
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lemma subset-imp-lepoll: X<=Y — X < Y
(proof)

lemmas lepoll-refl = subset-refl [THEN subset-imp-lepoll, simp]
lemmas le-imp-lepoll = le-imp-subset [THEN subset-imp-lepoll]

lemma egpoll-imp-lepoll: X ~ ¥V —= X < Y
{(proof)

lemma lepoll-trans [trans]: [X S Y; Y S Z] = X < Z
{proof)

lemma eg-lepoll-trans [trans]: [X =~ YV; VY SZ] = X < Z
(proof)

lemma lepoll-eq-trans [trans]: [X S Y; Y= 7] = X< Z

{proof)

lemma egpolll: [X S Y; VY SX]=X~=Y
(proof)
lemma egpollE:
[X=Y;[XSY,; Y<X]=P]=P
(proof)

lemma egpoll-iff: X = VY +—= X <Y AY S X
(proof)

lemma lepoll-0-is-0: A S 0= A= 0
(proof)
lemmas empty-lepolll = empty-subset] [THEN subset-imp-lepoll]

lemma lepoll-0-iff: A < 0 +— A=0
(proof)

lemma Un-lepoll-Un:
[ASB, C<D;BND=0]= AuC<BUD
(proof)

lemmas eqpoll-0-is-0 = egpoll-imp-lepoll [THEN lepoll-0-is-0)

lemma eqpoll-0-iff: A = 0 +— A=0
(proof)
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lemma egpoll-disjoint-Un:
[A=B; C~D; AnNC=20; BNnD=70]
= AUC~BUD
(proof )

23.2 lesspoll: contributions by Krzysztof Grabczewski

lemma lesspoll-not-refl: = (i < 7)
(proof)

lemma lesspoll-irrefl [elim!]: i < { = P

(proof)

lemma lesspoll-imp-lepoll: A < B=— A < B
(proof)

lemma lepoll-well-ord: [A < B; well-ord(B,r)] = 3s. well-ord(A,s)
{proof)

lemma lepoll-iff-leqpoll: A< B+— A<B|A~B
(proof )

lemma inj-not-surj-succ:
assumes fi: f € inj(A, succ(m)) and fns: f ¢ surj(A, succ(m))
shows 3f. f € inj(A,m)

(proof)

lemma lesspoll-trans [trans:

[X<Y; Y <Z] = X<Z
{proof)

lemma lesspoll-trans1 [trans]:
XSY;, Y <Z]=X<Z
{proof)

lemma lesspoll-trans2 [trans]:
X<V, Y<SZ]=X<Z
{proof)

lemma eq-lesspoll-trans [trans]:
[X~Y; Y <Z]=X<Z
{proof)

lemma lesspoll-eq-trans [trans]:

[X<Y; Y~ Z]= X<Z
{proof)
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lemma Least-equality:
[P(i); Ord(i); Az. z<i = -P(z)] = (1 z. P(z)) =1
(proof )

lemma Least!:
assumes P: P(i) and i: Ord(i) shows P(u z. P(z))
(proof)

The proof is almost identical to the one above!
lemma Least-le:

assumes P: P(7) and i: Ord(i) shows (u z. P(z)) < ¢
(proof )

lemma less-LeastE: [P(i); i < (p z. P(z))] = Q
(proof )

lemma LeastI2:
< ﬂ?gi); Ord(i); Nj. P(j) = Q)] = Q(u j. P(j))
Proo,

lemma Least-0:
[- (Fi. Ord(i) A P(i))] = (u z. P(z)) =0
(proof)

lemma Ord-Least [intro,simp,TC): Ord(u z. P(z))
(proof )
23.3 Basic Properties of Cardinals

1<emn}1§1 Least-cong: (\y. P(y) «— Q(y)) = (n 2. P(z)) = (n 2. Q(z))
proo

lemma cardinal-cong: X ~ Y = |X| = |Y]|
{proof)

lemma well-ord-cardinal-eqpoll:
assumes 7: well-ord(A,r) shows |A| = A

{(proof)
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lemmas Ord-cardinal-eqpoll = well-ord-Memrel [THEN well-ord-cardinal-egpoll]

lemma Ord-cardinal-idem: Ord(A) = ||A|| = |4]
(proof )

lemma well-ord-cardinal-eqE:

assumes woX: well-ord(X,r) and woY: well-ord(Y,s) and eq: | X| = | Y|
shows X ~ Y
(proof)

lemma well-ord-cardinal-eqpoll-iff:
[well-ord(X,r); well-ord(Y,s)] = |X| =|Y|+— X~ Y
(proof)

lemma Ord-cardinal-le: Ord(i) = |i| < i
{proof)

lemma Card-cardinal-eq: Card(K) = |K| = K
{proof)

lemma Cardl: [Ord(i); Nj. j<i = —(j = i)] = Card(i)
(proof )

lemma Card-is-Ord: Card(i) = Ord(7)
{proof)

lemma Card-cardinal-le: Card(K) = K < |K|
(proof)

lemma Ord-cardinal [simp,introl]: Ord(|A|)
{proof)

The cardinals are the initial ordinals.

lemma Card-iff-initial: Card(K) «+— Ord(K) A (Vj. j<K — = j ~ K)
(proof)

lemma [t-Card-imp-lesspoll: [Card(a); i<a] = i < a

{proof )
lemma Card-0: Card(0)
(proof)
lemma Card-Un: [Card(K); Card(L)] = Card(K U L)
(proof )
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lemma Card-cardinal [iff]: Card(|A|)
(proof)

lemma cardinal-eq-lemma:
assumes i:|i| < j and j: j < ¢ shows |j| = [i]
(proof )

lemma cardinal-mono:
assumes #j: i < j shows [i| < [j]|
(proof)
Since we have |succ(nat)| < |nat|, the converse of cardinal-mono fails!
lemma cardinal-lt-imp-lt: [|i| < |j|; Ord(i); Ord(j)] = i <j
(proof)

lemma Card-lt-imp-it: [|i| < K; Ord(i); Card(K)] = i < K
{proof )

lemma Card-lt-iff: [Ord(i); Card(K)] = (]i| < K) «+— (i < K)

(proof)

lemma Card-le-iff: [Ord(i); Card(K)] = (K < |i|) «+— (K <)
(proof)

lemma well-ord-lepoll-imp-cardinal-le:
assumes wB: well-ord(B,r) and AB: A < B
shows |A| < |B|

(proof)

lemma lepoll-cardinal-le: [A < i; Ord(i)] = |4] < ¢

(proof)

lemma lepoll-Ord-imp-egpoll: [A < i; Ord(i)] = |4] = A
(proof)

lemma lesspoll-imp-eqpoll: [A < i; Ord(i)] = |A] = A
(proof)

lemma cardinal-subset-Ord: [A<=i; Ord(i)] = |4]| C ¢

(proof)

23.4 The finite cardinals

lemma cons-lepoll-consD:
[cons(u,A) < cons(v,B); u¢A; v¢B] = A < B
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(proof)

lemma cons-egpoll-consD: [cons(u,A) ~ cons(v,B); u¢Ad; v¢B] = A~ B

(proof)

lemma succ-lepoll-suceD: succ(m) S suce(n) = m S n
{proof)

lemma nat-lepoll-imp-le:
menat =n€nat =mSn=m<n
(proof)

lemma nat-eqpoll-iff: [m € nat; n € nat) = m = n<+— m=n

(proof)

lemma nat-into-Card:
assumes n: n € nat shows Card(n)

(proof)

lemmas cardinal-0 = nat-0I [THEN nat-into-Card, THEN Card-cardinal-eq, iff]
lemmas cardinal-1 = nat-11 [THEN nat-into-Card, THEN Card-cardinal-eq, iff)

lemma succ-lepoll-natE: [succ(n) < n; n € nat] = P
(proof)

lemma nat-lepoll-imp-ex-eqgpoll-n:
[n€nat; nat SX]=3JY. Y CXAnrY
(proof )

lemma lepoli-succ: @ < suce(i)
(proof)

lemma lepoll-imp-lesspoll-succ:
assumes A: A < m and m: m € nat
shows A < succ(m)

(proof)

lemma lesspoll-succ-imp-lepoll:
[A < suce(m); m € nat] = A < m
(proof)
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lemma lesspoll-succ-iff: m € nat = A < succ(m) +— A S m
(proof)

lemma lepoll-suce-disj: [A < suce(m); m € nat] = A < m | A =~ succ(m)

(proof)

lemma lesspoli-cardinal-lt: [A < i; Ord(i)] = |4] < ¢
(proof)

23.5 The first infinite cardinal: Omega, or nat

lemma [t-not-lepoll:
assumes n: n<i n € nat shows =7 < n

(proof)

A slightly weaker version of nat-egpoll-iff
lemma Ord-nat-egpoll-iff:

assumes i: Ord(7) and n: n € nat shows ¢ = n +— i=n
(proof)

lemma Card-nat: Card(nat)

(proof)

lemma nat-le-cardinal: nat < i = nat < |i]

{(proof)

lemma n-lesspoll-nat: n € nat = n < nat
(proof)

23.6 Towards Cardinal Arithmetic

lemma cons-lepoll-cong:
[A < B; b¢ Bl = cons(a,A) < cons(b,B)
(proof)

lemma cons-eqpoll-cong:

[A~B; a¢ A; b¢ B] = cons(a,A) = cons(b,B)
(proof)
lemma cons-lepoll-cons-iff:

[a ¢ A; b ¢ B] = cons(a,A) < cons(b,B) «— A< B
(proof)
lemma cons-eqpoll-cons-iff:

[a ¢ A; b ¢ B] = cons(a,A) = cons(b,B) +— A~ B
(proof)

lemma singleton-egpoll-1: {a} ~ 1
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{proof)

lemma cardinal-singleton: |{a}| = 1

(proof)

lemma not-0-is-lepoll-1: A # 0 = 1 < A
(proof )

lemma succ-eqpoll-cong: A = B = succ(A) =~ succ(B)
(proof)

lemma sum-egpoll-cong: [A =~ C; B~ D] = A+B ~ C+D
(proof )

lemma prod-eqpoll-cong:
[A~ C; B~ D] = AxB = CxD
(proof )

lemma inj-disjoint-eqpoll:
[f € inj(A,B); AN B=0] = AU (B — range(f)) = B
(proof)

23.7 Lemmas by Krzysztof Grabczewski

If A has at most n + 1 elements and a € A then A — {a} has at most n.
lemma Diff-sing-lepoll:
[a € A; A < suce(n)] = A —{a} <n
(proof )

If A has at least n + I elements then A — {a} has at least n.

lemma lepoll-Diff-sing:
assumes A: succ(n) S A shows n < A — {a}

(proof)

lemma Diff-sing-eqpoll: [a € 4; A ~ suce(n)] = A — {a} = n

(proof)

lemma lepoll-1-is-sing: [A S 1; a € A] = A = {a}
(proof)

lemma Un-lepoll-sum: AU B < A+B
(proof)

lemma well-ord-Un:

[well-ord(X,R); well-ord(Y,S)] = 3 T. well-ord(X U'Y, T)
(proof)

172



lemma disj-Un-eqpoll-sum: AN B=0—=— AUB=~ A+ B
(proof )

23.8 Finite and infinite sets

lemma egpoll-imp-Finite-iff: A = B —> Flinite(A) <— Flinite(B)
(proof )

lemma Finite-0 [simp]: Finite(0)
{proof)

lemma Finite-cons: Finite(x) = Finite(cons(y,z))
(proof)

lemma Finite-succ: Finite(x) = Finite(succ(z))
{proof)

lemma lepoll-nat-imp-Finite:
assumes A: A < n and n: n € nat shows Finite(A)
(proof)

lemma lesspoll-nat-is-Finite:
A < nat = Finite(A)
(proof )

lemma lepoll-Finite:
assumes Y: YV < X and X: Finite(X) shows Finite(Y)

(proof)

lemmas subset-Finite = subset-imp-lepoll [THEN lepoll-Finite]

lemma Finite-cons-iff [iff]: Finite(cons(y,z)) «— Finite(x)

(proof)

lemma Finite-succ-iff [iff]: Finite(succ(z)) <— Finite(z)
(proof)

lemma Finite-Int: Finite(A) | Finite(B) = Finite(A N B)
(proof)

lemmas Finite-Diff = Diff-subset [THEN subset-Finite]
lemma nat-le-infinite-Ord:

[Ord(7); — Finite(i)] = nat < i
(proof)

lemma Finite-imp-well-ord:
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Finite(A) = 3 r. well-ord(A,r)
{proof)

lemma succ-lepoll-imp-not-empty: succ(z) Sy =y # 0

(proof)

lemma egpoll-succ-imp-not-empty: z ~ succ(n) = z # 0
(proof)

lemma Finite-Fin-lemma [rule-format]:
n € nat = VA (Axn AN A C X) — A € Fin(X)
(proof)

lemma Finite-Fin: [Finite(A); A C X] = A € Fin(X)
(proof)

lemma Fin-lemma [rule-format]: n € nat = VA. A=~ n — A € Fin(A)
(proof)

lemma Finite-into-Fin: Finite(A) = A € Fin(A)
(proof)

lemma Fin-into-Finite: A € Fin(U) = Finite(A)
(proof)

lemma Finite-Fin-iff: Finite(A) «— A € Fin(A)
(proof)

lemma Finite-Un: [Finite(A); Finite(B)] = Finite(A U B)
(proof)

lemma Finite-Un-iff [simp]: Finite(A U B) <— (Finite(A) A Finite(B))
(proof)

The converse must hold too.

lemma Finite-Union: [V yeX. Finite(y); Finite(X)] = Finite(J (X))
(proof)

lemma Finite-induct [case-names 0 cons, induct set: Finite]:
[Finite(A); P(0);

Az B. [Finite(B); ¢ ¢ B; P(B)] = P(cons(z, B))]
= P(A)
(proof)

lemma Diff-sing-Finite: Finite(A — {a}) = Finite(A)
{proof)
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lemma Diff-Finite [rule-format]: Finite(B) = Finite(A—B) — Finite(A)
(proof)

lemma Finite-RepFun: Finite(A) = Finite(RepFun(A.,f))
(proof)

lemma Finite-RepFun-iff-lemma [rule-format]:

[Finite(z); Az y. f(2)=[(y) = 2=1]
— V A. 2 = RepFun(A,f) — Finite(A)

(proof)

I don’t know why, but if the premise is expressed using meta-connectives
then the simplifier cannot prove it automatically in conditional rewriting.
lemma Finite-RepFun-iff:

(Vzy. f(x)=f(y) — z=y) = Finite(RepFun(A,f)) «— Finite(A)
(proof)

lemma Finite-Pow: Finite(A) = Finite(Pow(A))
(proof)

lemma Finite- Pow-imp-Finite: Finite(Pow(A)) = Finite(A)
(proof)

lemma Finite-Pow-iff [iff]: Finite(Pow(A)) +— Finite(A)
(proof)

lemma Finite-cardinal-iff:
assumes i: Ord(i) shows Finite(]i|) <— Finite(?)
{proof)

lemma nat-wf-on-converse-Memrel: n € nat = wf[n](converse(Memrel(n)))
(proof)

lemma nat-well-ord-converse-Memrel: n € nat = well-ord(n,converse( Memrel(n)))

(proof)

lemma well-ord-converse:
[well-ord(A,r);
well-ord(ordertype( A,r), converse( Memrel(ordertype(A, r))))]
= well-ord(A,converse(r))

(proof)
lemma ordertype-eq-n:

assumes r: well-ord(A,r) and A: A = n and n: n € nat
shows ordertype(A,r) = n
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(proof)

lemma Finite-well-ord-converse:
[Finite(A); well-ord(A,r)] = well-ord(A,converse(r))
{proof)

lemma nat-into-Finite: n € nat = Finite(n)
{proof)

lemma nat-not-Finite: = Finite(nat)

(proof)

end

24 The Cumulative Hierarchy and a Small Uni-
verse for Recursive Types

theory Univ imports Epsilon Cardinal begin

definition
Vfrom i [4,i]=1 where
Vfrom(A,i) = transrec(i, Az f. AU (Jy€z. Pow(fy)))

abbreviation
Vset :: i=1 where
Vset(z) = Vfrom(0,z)

definition
Virec 2[4, [4,i]=1] =i where
Vrec(a,H) = transrec(rank(a), Az g. A\z€ Vset(succ(x)).
H(z, Awe Vset(x). g‘rank(w)‘w)) ‘a

definition
Vrecursor :: [[i,i|=1, i] =7 where
Virecursor(H,a) = transrec(rank(a), Az g. Az€ Vset(suce(x)).
H(Awe Vset(x). grank(w) ‘w, z)) ‘a

definition
uUniv :: 1=17 where
univ(A) = Vfrom(A,nat)

24.1 Immediate Consequences of the Definition of Vfrom(A,
i)
NOT SUITABLE FOR REWRITING — RECURSIVE!

lemma Vfrom: Vfrom(A,i) = A U (Uj€i. Pow(Vfrom(A,j)))
(proof)
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24.1.1 Monotonicity

lemma Vfrom-mono [rule-format]:
A<=B = Vj. i<=j — Vfrom(A,i) C Vfrom(B,j)
(proof)

lemma VfromlI: [a € Vfrom(A,j); j<i] = a € Vfrom(A,7)

(proof )

24.1.2 A fundamental equality: Vfrom does not require ordinals!
lemma Vfrom-rank-subsetl: Vfrom(A,z) C Vfrom(A,rank(z))

(proof )

lemma Vfrom-rank-subset2: Virom(A,rank(z)) C Vfrom(A,x)
(proof)

lemma Vfrom-rank-eq: Vfrom(A,rank(z)) = Vfrom(A,x)
(proof)

24.2 Basic Closure Properties

lemma zero-in-Vfrom: y:x = 0 € Vfrom(A,x)

(proof)

lemma i-subset-Vfrom: i C Vfrom(A,7)
(proof)

lemma A-subset-Vfrom: A C Vfrom(A,i)
(proof)

lemmas A-into-Vfrom = A-subset-Vfrom [THEN subsetD)

lemma subset-mem-Vfrom: a C Vfrom(A,i) = a € Vfrom(A,succ(i))
(proof)

24.2.1 Finite sets and ordered pairs

lemma singleton-in-Vfrom: a € Vfrom(A,i) = {a} € Vfrom(A,succ(t))

(proof)

lemma doubleton-in-Vfrom:
[a € Vfrom(A,i); b€ Virom(A,i)] = {a,b} € Vfrom(A,succ(i))
(proof)
lemma Pair-in-Vfrom:
[a € Vfrom(A,i); b€ Virom(A,i)] = (a,b) € Vfrom(A,succ(succ(i)))
(proof)

lemma succ-in-Vfrom: a C Vfrom(A,i) = succ(a) € Vfrom(A,succ(succ(i)))
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(proof)

24.3 0, Successor and Limit Equations for Vfrom

lemma Vfrom-0: Vfrom(A,0) = A
(proof)

lemma Vfrom-succ-lemma: Ord(i) = Vfrom(A,succ(i)) = A U Pow( Vfrom(A,7))
(proof)

lemma Vfrom-succ: Vfrom(A,succ(i)) = A U Pow(Vfrom(A,7))
(proof)

lemma Vfrom-Union: y:X = Vfrom(A,|J (X)) = (JyeX. Vfrom(A,y))
(proof)

24.4  Vfrom applied to Limit Ordinals
lemma Limit- Vfrom-eq:

Limit(i) = Vfrom(A,i) = (Jy€i. Vfrom(A,y))
(proof)

lemma Limit-VfromE:
[a € Vfrom(A,i); =R = Limit(i);
Nz. [z<i; a € Vfrom(A,z)] = R
|=Rr

(proof)

lemma singleton-in-V_Limit:
[a € Virom(A,i); Limit(i)] = {a} € Vfrom(A,i)
{proof )
lemmas Vfrom-Unll =
Un-upperl [THEN subset-refl [THEN Vfrom-mono, THEN subsetD]]

lemmas Vfrom-Unl2 =
Un-upper2 [THEN subset-refl [THEN Vfrom-mono, THEN subsetD])

Hard work is finding a single j:i such that a,b<=Vfrom(A,j)

lemma doubleton-in-VLimit:
[a € Virom(A,i); b€ Vfrom(A,i); Limit(i)] = {a,b} € Vfrom(A,q)
(proof)

lemma Pair-in- VLimit:
[a € Virom(A,i); b € Virom(A,i); Limit(i)] = (a,b) € Virom(A,7)

Infer that a, b occur at ordinals x,xa < i.

(proof)
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lemma product-VLimit: Limit(i) = Vfrom(A,i) x Vfrom(A,i) C Vfrom(A,7)
(proof)

lemmas Sigma-subset-VLimit =
subset-trans [OF Sigma-mono product-VLimit)

lemmas nat-subset-VLimit =
subset-trans [OF nat-le-Limit [THEN le-imp-subset] i-subset-Vfrom]

lemma nat-into-VLimit: [n: nat; Limit(i)] = n € Vfrom(A,i)

(proof )
24.4.1 Closure under Disjoint Union
lemmas zero-in-VLimit = Limit-has-0 [THEN ItD, THEN zero-in-Vfrom]

lemma one-in-VLimit: Limit(i) = 1 € Vfrom(A,q)
(proof)
lemma Inl-in- VLimit:
[a € Vfrom(A,i); Limit(i)] = Inl(a) € Vfrom(A,i)
(proof)
lemma Inr-in- VLimit:
[b € Vfrom(A,i); Limit(i)] = Inr(b) € Vfrom(A,i)
(proof )

lemma sum-VLimit: Limit(i) = Vfrom(C,i)+ Vfrom(C,i) C Vfrom(C,q7)
(proof)

lemmas sum-subset-VLimit = subset-trans [OF sum-mono sum-VLimit]

24.5 Properties assuming Transset(A)

lemma Transset-Vfrom: Transset(A) = Transset( Vfrom(A,i))

(proof)

lemma Transset-Vfrom-succ:
Transset(A) = Vfrom(A, succ(i)) = Pow(Vfrom(A,i))
(proof)

lemma Transset-Pair-subset: [(a,b) C C; Transset(C)] = a: C A b: C
(proof)
lemma Transset-Pair-subset-VLimit:
[{a,b) C Vfrom(A,i); Transset(A); Limit(i)]
= (a,b) € Vfrom(A,)
(proof)

lemma Union-in-Vfrom:
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< [[jri € Vfrom(4,j); Transset(A)] = U (X) € Vfrom(A, succ(j))
proo

lemma Union-in- VLimit:
[X € Vfrom(A,i); Limit(i); Transset(A)] = U (X) € Vfrom(A,i)
(proof )

General theorem for membership in Virom(A,i) when i is a limit ordinal
lemma in-VLimit:
[a € Virom(A,i); b€ Vfrom(A,i); Limit(i);
Az y j. [i<i; 1:5; x € Virom(A,j); y € Virom(A,j)]
= 3k. h(z,y) € Virom(A,k) N k<i]
= h(a,b) € Vfrom(A,i)

Infer that a, b occur at ordinals x,xa < i.

(proof)

24.5.1 Products

lemma prod-in-Vfrom:
[a € Vfrom(A,j); b€ Virom(A,j); Transset(A)]
= axb € Vfrom(A, succ(succ(suce(j))))

(proof)

lemma prod-in- VLimit:
la € Vfrom(A,i); b€ Vfrom(A,i); Limit(i); Transset(A)]
= axb € Vfrom(A,i)

(proof)

24.5.2 Disjoint Sums, or Quine Ordered Pairs

lemma sum-in-Vfrom:
[a € Vfrom(A,j); b€ Vfrom(A,j); Transset(A4); 1:j]
= a+b € Vfrom(A, succ(succ(succ(f))))
(proof)

lemma sum-in- VLimit:
[a € Virom(A,i); b€ Vfrom(A,i); Limit(i); Transset(A4)]
= a+b € Vfrom(A,i)

(proof)

24.5.3 Function Space!

lemma fun-in-Vfrom:
[a € Vfrom(A,j); b€ Vfrom(A,j); Transset(A)] =
a—>b € Vfrom(A, succ(succ(succ(succ(j)))))
(proof )

lemma fun-in-VLimit:
la € Vfrom(A,©); b€ Vfrom(A,i); Limit(i); Transset(A)]
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= a—>b € Vfrom(A,i)
(proof)

lemma Pow-in-Vfrom:
[a € Vfrom(A,j); Transset(A)] = Pow(a) € Vfrom(A, succ(succ()))
(proof )

lemma Pow-in- VLimit:

la € Vfrom(A,i); Limit(i); Transset(A)] = Pow(a) € Vfrom(A,i)
{(proof)
24.6 The Set Vset(7)

lemma Vset: Vset(i) = (|Jj€i. Pow(Vset(j)))
(proof)

lemmas Vset-succ = Transset-0 [THEN Transset-Vfrom-succ]
lemmas Transset-Vset = Transset-0 [THEN Transset-Vfrom)

24.6.1 Characterisation of the elements of Vset(1)

lemma VsetD [rule-format]: Ord(i) = Vb. b € Vset(i) — rank(b) < i
(proof)

lemma Vsetl-lemma [rule-format]:
Ord(i) = Vb. rank(b) € i — b € Vset(i)
(proof)

lemma Vsetl: rank(z)<i = = € Vset(7)

(proof)

Merely a lemma for the next result

lemma Vset-Ord-rank-iff: Ord(i) = b € Vset(i) <— rank(b) < i

(proof)

lemma Vset-rank-iff [simp]: b € Vset(a) <— rank(b) < rank(a)
(proof)

This is rank(rank(a)) = rank(a)
declare Ord-rank [THEN rank-of-Ord, simp]

lemma rank-Vset: Ord(i) = rank(Vset(i)) = i
(proof)

lemma Finite-Vset: i € nat = Finite( Vset(i))

(proof)

24.6.2 Reasoning about Sets in Terms of Their Elements’ Ranks

lemma arg-subset-Vset-rank: a C Vset(rank(a))
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(proof)

lemma Int- Vset-subset:
[Ai. Ord(i) = an Vset(i) Cb] = a C b
(proof)
24.6.3 Set Up an Environment for Simplification
lemma rank-Inl: rank(a) < rank(Ini(a))

(proof)

lemma rank-Inr: rank(a) < rank(Inr(a))
{proof)

lemmas rank-ris = rank-Inl rank-Inr rank-pairl rank-pair2

24.6.4 Recursion over Vset Levels!

NOT SUITABLE FOR REWRITING: recursive!

lemma Vrec: Vrec(a,H) = H(a, Az€ Vset(rank(a)). Vrec(z,H))
{proof)

This form avoids giant explosions in proofs. NOTE the form of the premise!

lemma def-Vrec:

[Az. h(z)=Vrec(z,H)] =

h(a) = H(a, Ax€ Vset(rank(a)). h(z))
{(proof )

NOT SUITABLE FOR REWRITING: recursive!

lemma Vrecursor:
Vrecursor(H,a) = H(A\x€ Vset(rank(a)). Vrecursor(H,x), a)
(proof)

This form avoids giant explosions in proofs. NOTE the form of the premise!

lemma def-Vrecursor:
h = Vrecursor(H) = h(a) = H(A\z€ Vset(rank(a)). h(z), a)
(proof)

24.7 The Datatype Universe: univ(A)

lemma univ-mono: A<=B = univ(4) C univ(B)
{proof)

lemma Transset-univ: Transset(A) = Transset(univ(A))
{proof)
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24.7.1 The Set univ(A) as a Limit

lemma univ-eq-UN: univ(A) = (|Ji€nat. Virom(A,7))
{proof)

lemma subset-univ-eq-Int: ¢ C univ(A) = ¢ = (Ji€nat. ¢ N Vfrom(A,7))
(proof)

lemma univ-Int- Vfrom-subset:
[a C univ(X);
Ni. iinat = a N Vfrom(X,7) C 0]
—aChbh
(proof)

lemma univ-Int- Vfrom-eq:
[a C univ(X); b C univ(X);
Ni. inat = a N Vfrom(X,7) = b N Vfrom(X,7)
]=a=1b
(proof )

24.8 Closure Properties for univ(A)
lemma zero-in-univ: 0 € univ(A)

(proof)

lemma zero-subset-univ: {0} C univ(A)
(proof)

lemma A-subset-univ: A C univ(A)
{proof)

lemmas A-into-univ = A-subset-univ [THEN subsetD]

24.8.1 Closure under Unordered and Ordered Pairs

lemma singleton-in-univ: a: univ(A) = {a} € univ(A)
{proof)

lemma doubleton-in-univ:
[a: univ(A); b: univ(4)] = {a,b} € univ(A)
(proof)

lemma Pair-in-univ:
[a: univ(A); b: univ(A)] = {(a,b) € univ(A)
(proof )
lemma Union-in-univ:
[X: univ(A); Transset(A)] = U (X) € univ(4)
(proof)
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lemma product-univ: univ(A)*xuniv(A) C univ(A)
{proof)
24.8.2 The Natural Numbers

lemma nat-subset-univ: nat C univ(A)
{proof)

lemma nat-into-univ: n € nat = n € univ(A)
(proof)
24.8.3 Instances for 1 and 2

lemma one-in-univ: 1 € univ(A)
(proof)

unused!
lemma two-in-univ: 2 € univ(A)

(proof)

lemma bool-subset-univ: bool C univ(A)
{proof)

lemmas bool-into-univ = bool-subset-univ [THEN subsetD)

24.8.4 Closure under Disjoint Union
lemma Inl-in-univ: a: univ(A) = Ini(a) € univ(A)

{proof)

lemma Inr-in-univ: b: univ(A) = Inr(db) € univ(A)
{proof)

lemma sum-univ: univ(C)+univ(C) C univ(C)
{proof)

lemmas sum-subset-univ = subset-trans [OF sum-mono sum-univl

lemma Sigma-subset-univ:

[A C univ(D); Az. z € A = B(z) C univ(D)] = Sigma(A,B) C univ(D)
(proof)
24.9 Finite Branching Closure Properties

24.9.1 Closure under Finite Powerset

lemma Fin-Vfrom-lemma:
[b: Fin(Vfrom(A,i)); Limit(d)] = 35. b C Vfrom(A,j) A j<i
(proof)
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lemma Fin-VLimit: Limit(i) = Fin(Vfrom(A,i)) C Vfrom(A,i)
(proof)

lemmas Fin-subset-VLimit = subset-trans [OF Fin-mono Fin-VLimit]

lemma Fin-univ: Fin(univ(A)) C univ(A)
(proof)

24.9.2 Closure under Finite Powers: Functions from a Natural
Number

lemma nat-fun- VLimit:
[n: nat; Limit(7)] = n —> Vfrom(A,i) C Vfrom(A,i)
(proof )

lemmas nat-fun-subset-VLimit = subset-trans [OF Pi-mono nat-fun- VLimit)

lemma nat-fun-univ: n: nat = n —> univ(A) C univ(A)
(proof)

24.9.3 Closure under Finite Function Space

General but seldom-used version; normally the domain is fixed

lemma FiniteFun-VLimitl:
Limit(i) = Vfrom(A,i) —||> Vfrom(A,i) C Vfrom(A,i)
(proof )

lemma FiniteFun-univl: univ(A) —||> univ(A) C univ(A)
{proof)
Version for a fixed domain

lemma FiniteFun-VLimit:
[W C Vfrom(A,i); Limit({)] = W —||> Vfrom(A,i) C Vfrom(A,i)
(proof)

lemma FiniteFun-univ:
W C univ(A) = W —||> univ(A) C univ(A)
(proof )

lemma FiniteFun-in-univ:
If: W —||> univ(A); W C univ(4)] = f € univ(A)
(proof )

Remove C from the rule above

lemmas FiniteFun-in-univ’ = FiniteFun-in-univ [OF - subsetl]
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24.10 * For QUniv. Properties of Vfrom analogous to the
"take-lemma" *

Intersecting a*b with Vfrom...

This version says a, b exist one level down, in the smaller set Vfrom(X,i)
lemma doubleton-in-Vfrom-D:

[{a,b} € Vfrom(X,succ(i)); Transset(X)]

= a € Vfrom(X,i) N b€ Vfrom(X,i)
(proof)

This weaker version says a, b exist at the same level

lemmas Vfrom-doubleton-D = Transset-Vfrom [THEN Transset-doubleton-D]

lemma Pair-in-Vfrom-D:
[{a,b) € Virom(X,succ(7)); Transset(X)]
= a € Vfrom(X,i) N b€ Virom(X,i)
(proof)

lemma product-Int-Vfrom-subset:

Transset(X) =

(axb) N Vfrom(X, succ()) C (a N Virom(X,i)) * (b N Vfrom(X,7))
(proof)

(ML)

end

25 A Small Universe for Lazy Recursive Types

theory QUniv imports Univ QPair begin

rep-datatype
elimination sumFE
induction Truel
case-eqns case-Inl case-Inr

rep-datatype
elimination g¢sumFE
induction Truel
case-eqns gcase-QInl qcase-QInr

definition
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quniv :: i = ¢ where
quniv(A) = Pow(univ(eclose(A)))
25.1 Properties involving Transset and Sum

lemma Transset-includes-summands:
[Transset(C); A+ABC )= AC CABCC

(proof)

lemma Transset-sum-Int-subset:
Transset(C) = (A+B)N C C (AN C)+ (BN C)
(proof)

25.2 Introduction and Elimination Rules

lemma qunivl: X C univ(eclose(A)) = X € quniv(A)

(proof)

lemma qunivD: X € quniv(A) = X C univ(eclose(A))
(proof)

lemma quniv-mono: A<=B = quniv(A) C quniv(B)
(proof)

25.3 Closure Properties

lemma univ-eclose-subset-quniv: univ(eclose(A)) C quniv(A)
(proof)

lemma univ-subset-quniv: univ(A) C quniv(A)

(proof)

lemmas univ-into-quniv = univ-subset-quniv [THEN subsetD]

lemma Pow-univ-subset-quniv: Pow(univ(A)) C quniv(A)
(proof)

lemmas univ-subset-into-quniv =
Powl [THEN Pow-univ-subset-quniv [THEN subsetD]]

lemmas zero-in-quniv = zero-in-univ [THEN univ-into-quniv]
lemmas one-in-quniv = one-in-univ [THEN univ-into-quniv]
lemmas two-in-quniv = two-in-univ [THEN univ-into-quniv]

lemmas A-subset-quniv = subset-trans [OF A-subset-univ univ-subset-quniv)

lemmas A-into-quniv = A-subset-quniv [THEN subsetD)
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lemma QPair-subset-univ:
[a C univ(A4); b C univ(A)] = <a;b> C univ(A)
(proof)
25.4 Quine Disjoint Sum
lemma QInl-subset-univ: a C univ(A) = QInl(a) C univ(A)
(proof)

lemmas naturals-subset-nat =
Ord-nat [THEN Ord-is- Transset, unfolded Transset-def, THEN bspec]

lemmas naturals-subset-univ =
subset-trans [OF naturals-subset-nat nat-subset-univ

lemma QInr-subset-univ: a C univ(A) = QInr(a) C univ(A)
(proof)
25.5 Closure for Quine-Inspired Products and Sums

lemma QPair-in-quniv:
[a: quniv(A); b: quniv(A)] = <a;b> € quniv(A)

(proof)

lemma QSigma-quniv: quniv(A) <x> quniv(A4) C quniv(A)

(proof)

lemmas QSigma-subset-quniv = subset-trans [OF QSigma-mono QSigma-quniv)

lemma quniv-QPair-D:
<a;b> € quniv(4A) = a: quniv(A) A b: quniv(A)
(proof)
lemmas quniv-QPair-E = quniv-QPair-D [THEN conjE]

lemma quniv-QPair-iff: <a;b> € quniv(A) «— a: quniv(A) A b: quniv(A)
(proof)

25.6 Quine Disjoint Sum

lemma QInl-in-quniv: a: quniv(A) = QInl(a) € quniv(A)
(proof)

lemma QInr-in-quniv: b: quniv(A) = QInr(b) € quniv(A)

(proof)

lemma gsum-quniv: quniv(C) <+> quniv(C) C quniv(C)
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(proof)

lemmas gsum-subset-quniv = subset-trans [OF gsum-mono qsum-quniv]

25.7 The Natural Numbers

lemmas nat-subset-quniv = subset-trans [OF nat-subset-univ univ-subset-quniv]

lemmas nat-into-quniv = nat-subset-quniv [THEN subsetD]
lemmas bool-subset-quniv = subset-trans [OF bool-subset-univ univ-subset-quniv]

lemmas bool-into-quniv = bool-subset-quniv [THEN subsetD]

lemma QPair-Int-Vfrom-succ-subset:
Transset(X) =

<a;b> N Vfrom(X, succ(i)) C <a N Vfrom(X,i); b N Virom(X,i)>
(proof)

25.8 "Take-Lemma" Rules

lemma QPair-Int-Vfrom-subset:
Transset(X) =
<a;b> N Vfrom(X,i) C <a N Vfrom(X,i); b N Vfrom(X,i)>
{proof )

lemmas QPair-Int-Vset-subset-trans =
subset-trans [OF Transset-0 [THEN QPair-Int-Vfrom-subset] QPair-mono]

lemma @QPair-Int-Vset-subset-UN:
Ord(i) = <a;b> N Vset(i) C (Jj€i. <a N Vset(j); b N Vset(4)>)
(proof)

end

26 Datatype and CoDatatype Definitions

theory Datatype

imports Inductive Univ QUniv
keywords datatype codatatype :: thy-decl
begin

(ML)
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end

27 Arithmetic Operators and Their Definitions

theory Arith imports Univ begin

Proofs about elementary arithmetic: addition, multiplication, etc.

definition
pred i i=1i where
pred(y) = nat-case(0, \z. z, y)

definition
natify :: i=1 where
natify = Vrecursor(\f a. if a = succ(pred(a)) then suce(f‘pred(a))

else 0)
consts
raw-add :: [i,i]=1
raw-diff :: [i,i]=1
raw-mult :: [i,i]=1
primrec

raw-add (0, n) = n
raw-add (succ(m), n) = succ(raw-add(m, n))

primrec
raw-diff-0:  raw-diff (m, 0) = m
raw-diff-succ:  raw-diff (m, suce(n)) =
nat-case(0, Az. x, raw-diff (m, n))

primrec
raw-mult(0, n) = 0
raw-mult(suce(m), n) = raw-add (n, raw-mult(m, n))

definition
add :: [i,i]=1 (infix] «#+> 65) where
m #+ n = raw-add (natify(m), natify(n))
definition
diff = [4,i]=1 (infix]l <#—> 65) where
m #— n = raw-diff (natify(m), natify(n))
definition
mult i [i,i]=14 (infixl «#x> 70) where

m #x n = raw-mult (natify(m), natify(n))
definition

raw-div :: [i,i]=¢ where
raw-div (m, n) =
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transrec(m, Aj f. if j<n | n=0 then 0 else succ(f(j#—n)))

definition
raw-mod :: [i,i]=¢ where
raw-mod (m, n) =
transrec(m, Aj f. if j<n | n=0 then j else f(j#—n))

definition
div :: [i,i]=1 (infixl «divy 70) where
m div n = raw-div (natify(m), natify(n))

definition
mod :: [i,i]=1 (infix] <mod> 70) where

m mod n = raw-mod (natify(m), natify(n))

declare rec-type [simp]
nat-0-le [simp]

lemma zero-lt-lemma: [0<k; k € nat] = Fjenat. k = succ(j)

(proof)

lemmas zero-lt-natE = zero-lt-lemma [THEN bezE]

27.1 natify, the Coercion to nat

lemma pred-succ-eq [simp]: pred(succ(y)) = y

(proof)

lemma natify-suce: natify(succ(z)) = succ(natify(x))
(proof)

lemma natify-0 [simpl: natify(0) = 0
(proof )

lemma natify-non-succ: ¥ z. © # succ(z) = natify(z) = 0
(proof)

lemma natify-in-nat [iff, TC]: natify(xz) € nat
(proof)

lemma natify-ident [simp]: n € nat = natify(n) = n
(proof)

lemma natify-eqE: [natify(z) = y; = € nat] = z=y

(proof)
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lemma natify-idem [simp]: natify(natify(z)) = natify(z)
(proof)

lemma add-natifyl [simp]: natify(m) #+ n = m #+ n
(proof)

lemma add-natify2 [simp]: m #+ natify(n) = m #+ n
(proof)

lemma mult-natifyl [simpl: natify(m) #x n = m #x n

(proof)

lemma mult-natify2 [simpl: m #x* natify(n) = m #* n
(proof)

lemma diff-natifyl [simp]: natify(m) #£— n = m #— n
(proof)

lemma diff-natify2 [simp]: m #— natify(n) = m #— n
(proof)

lemma mod-natifyl [simp]: natify(m) mod n = m mod n

(proof)

lemma mod-natify2 [simp]: m mod natify(n) = m mod n
(proof)

lemma div-natifyl [simp]: natify(m) div n = m div n

(proof)

lemma div-natify2 [simpl: m div natify(n) = m div n
(proof)

27.2 Typing rules

lemma raw-add-type: [menat; nenat] = raw-add (m, n) € nat
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(proof)

lemma add-type [iff, TC]: m #+ n € nat
(proof)

lemma raw-mult-type: [menat; nenat] = raw-mult (m, n) € nat
(proof)

lemma mult-type [iff , TC]: m #x n € nat
(proof)

lemma raw-diff-type: [menat; nenat] = raw-diff (m, n) € nat
(proof)

lemma diff-type [iff , TC): m #— n € nat
{proof)

lemma diff-0-eq-0 [simp]: 0 #— n = 0
(proof )

lemma diff-succ-succ [simp]: succ(m) #— succ(n) = m #— n

(proof)

declare raw-diff-succ [simp del]

lemma diff-0 [simp]: m #— 0 = natify(m)
(proof)

lemma diff-le-self: menat = (m #— n) < m

(proof)

27.3 Addition

lemma add-0-natify [simp]: 0 #+ m = natify(m)
(proof)

lemma add-succ [simp]: succ(m) #+ n = succ(m #+ n)

(proof)

lemma add-0: m € nat = 0 #+ m = m
(proof)
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lemma add-assoc: (m #+ n) #+ k = m #+ (n #+ k)
(proof)

lemma add-0-right-natify [simp]: m #+ 0 = natify(m)
(proof)

lemma add-succ-right [simp]: m #+ succ(n) = succ(m #+ n)

(proof)

lemma add-0-right: m € nat = m #+ 0 = m
(proof)

lemma add-commute: m #+ n = n #+ m
(proof)

lemma add-left-commute: m#+(n#+k)=n#+(m#+k)
(proof)

lemmas add-ac = add-assoc add-commute add-left-commute

lemma raw-add-left-cancel:
[raw-add(k, m) = raw-add(k, n); k€nat] = m=n
(proof )

lemma add-left-cancel-natify: k #+ m = k #+ n = natify(m) = natify(n)
(proof )

lemma add-left-cancel:

[i =34 (#+ m=j#+ n;, mEnat; nenat] = m =n

(proof)
lemma add-le-elim1-natify: k#+m < k#+n = natify(m) < natify(n)
(proof)

lemma add-le-elim1: [k#+m < k#+n; m € nat; n € nat] = m < n

(proof)

lemma add-lt-elim1-natify: k#+m < k#+n = natify(m) < natify(n)
{proof )

lemma add-lt-elim1: [k#+m < k#+4n; m € nat; n € nat] = m < n
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(proof)

lemma zero-less-add: [n € nat; m € nat] = 0 < m #+ n «— (0<m | 0<n)

(proof)

27.4 Monotonicity of Addition

lemma add-lt-monol: [i<j; j€nat] = i#+k < jH#+k

(proof)

strict, in second argument

lemma add-lt-mono2: [i<j; j€nat] = k#+i < k#+j

(proof)

A [clumsy] way of lifting < monotonicity to < monotonicity

lemma Ord-lt-mono-imp-le-mono:
assumes li-mono: \i j. [i<j; j:k] = f(i) < f(4)
and ford: Ni. i:k = Ord(f(7))
and leij: < j
and jink:  j:k
shows /(i) < /(j)
(proof)
< monotonicity, 1st argument
lemma add-le-monol: [i < j; jénat] = i#+k < j#+k
(proof)
< monotonicity, both arguments
lemma add-le-mono: [i < j; k < I; j€nat; l€nat] = i#+k < jH#+1
(proof)
Combinations of less-than and less-than-or-equals
lemma add-lt-le-mono: [i<j; k<l; j€nat; l€nat] = i#+k < jH#+I
(proof)

lemma add-le-lt-mono: [i<j; k<l; j€nat; l€nat] = i#+k < jH#+I1

(proof)

Less-than: in other words, strict in both arguments

lemma add-lt-mono: [i<j; k<l; jenat; l€nat] = i#+k < j#+I
(proof)

lemma diff-add-inverse: (n#+m) #— n = natify(m)
(proof)

lemma diff-add-inverse2: (m#+n) #— n = natify(m)
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(proof)

lemma diff-cancel: (k#+m) #— (k#+n) = m #— n
(proof )

lemma diff-cancel2: (m#+k) #— (n#+k) = m #— n
(proof)

lemma diff-add-0: n #— (n#+m) = 0
{(proof)

lemma pred-0 [simp]: pred(0) = 0
(proof)

lemma eg-succ-imp-eq-m1: [i = succ(j); i€nat] = j =17 #— 1 N j €nat

(proof)

lemma pred- Un-distrib:
[ienat; jenat] = pred(i U j) = pred(i) U pred(5)
(proof)

lemma pred-type [TC,simp]:
i € nat = pred(i) € nat
(proof )

lemma nat-diff-pred: [i€nat; j€nat] = i #— succ(j) = pred(i #— 7)
(proof)

lemma diff-succ-eg-pred: i #— succ(j) = pred(i #— j)
(proof)

lemma nat-diff- Un-distrib:
[i€nat; jenat; kenat] = (i U j) #— k = (i#—k) U (j#—Fk)
(proof)

lemma diff- Un-distrib:

[i€nat; jenat] = (i U j) #— k = (i#—k) U (j#—k)
(proof)
We actually prove i #— j #— k=i #— (j #+ k)

lemma diff-diff-left [simplified):
natify(i)#—natify(j)#—k = natify(i) #— (natify(j)#+k)
(proof)

lemma eg-add-iff: (u #+ m = u #+ n) +— (0 #+ m = natify(n))
(proof)
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lemma less-add-iff: (v #+ m < u #+ n) <— (0 #+ m < natify(n))
(proof)

lemma diff-add-eq: (v #+ m) #— (u #+ n)) = ((0 #+ m) #— n)
(proof)

lemma eg-cong2: v = v’ = (t=u) = (t=u’)

{(proof)

lemma iff-cong2: v +— v’ = (i=u) = (I=u)
(proof)

27.5 Multiplication

lemma mult-0 [simp]: 0 #x m = 0

(proof)

lemma mult-succ [simp]: succ(m) #x n = n #+ (m #x n)
(proof)

lemma mult-0-right [simp]: m #x 0 = 0
(proof)

lemma mult-suce-right [simp]: m #x succ(n) = m #+ (m #x n)

(proof)

lemma mult-1-natify [simp]: 1 #x n = natify(n)
(proof)

lemma mult-1-right-natify [simp]: n #x 1 = natify(n)
(proof)

lemma mult-1: n € nat = 1 #*xn=n
(proof)

lemma mult-1-right: n € nat = n #x 1 = n

(proof)

lemma mult-commute: m #x n = n #x m

(proof)

lemma add-mult-distrib: (m #+ n) #+ k = (m #x k) #+ (n #x k)
(proof)
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lemma add-mult-distrib-left: k #x (m #+ n) = (k #x m) #+ (k #x n)
(proof)

lemma mult-assoc: (m #x n) #* k = m #x (n #x k)
(proof)

lemma mult-left-commute: m #x (n #x k) = n #x (m #x* k)
(proof )

lemmas mult-ac = mult-assoc mult-commute mult-left-commute

lemma lt-succ-eq-0-disj:

[meEnat; nenat]

= (m < succ(n)) «— (m = 0| (3jenat. m = succ(j) A j < n))
(proof)

lemma less-diff-conv [rule-format]:
[jenat; k€nat] = Vienat. (i < j #— k) +— (i #+ k < j)
(proof)

lemmas nat-typechecks = rec-type nat-0I nat-1I nat-succl Ord-nat

end

28 Arithmetic with simplification

theory ArithSimp
imports Arith
begin

28.1 Arithmetic simplification
(ML)

28.1.1 Examples

lemma z #+ y = z #+ z (proof)
lemma y #+ = = z #+ z (proof)

lemma z #+ y #+ 2z = z #+ z (proof)

lemma y #+ (z #+ z) = 2z #+ = (proof)

lemma 5 #+ y #+ 2 = (2 4+ y) #+ (z #+ w) (proof)
lemma z#xy #+ 2 = (2 #+ y) #+ (yisz 44 w) (proof)

lemma z #+ succ(y) = z #+ 2 (proof)
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lemma © #+ succ(y) = succ(z #+ z) (proof)
lemma succ(z) #+ succ(y) #+ 2 = succ(z #+ y) #+ succ(z #+ w) (proof)

lemma (z #+ 4) #— (z #+ 2) = w {proof)

lemma (y #+ z) #— (¢ #+ z) = dd (proof)
lemma (z #+ y #+ 2) #— (¢ #+ z) = dd (proof)
lemma (y #+ (2 4+ 2)) #— (2 #+ @) = dd (proof)
lemma (z #+ y #+ 2) #—

lemma (z#*xy #+ z) #—

((z #+ o) #+ (2 #+ w))

= dd (proof)
((z #+ y) #+ (y#xz #+ w)) =

dd (proof)

lemma (z #+ succ(y)) #— (z #+ z) = dd (proof)
lemma z #x y2 #+ y #x 12 = y #x 22 #+ x #x y2 (proof)

lemma (z #+ succ(y)) #— (suce(z #+ x)) = dd (proof)
lemma (succ(z) #+ suce(y) #+ 2) #— (succ(z #+ y) #+ succ(z #+ w)) = dd
(proof )

lemma z : nat ==> x #+ y = z (proof)
lemma z : nat ——> z #+ y = = (proof)
lemma z : nat ==> x #+ y < x {proof)
lemma z : nat ==> z < y#-+z (proof)

lemma z : nat ==> z < suce(z) (proof)

lemma = #+ y = z (proof)

lemma z #+ y < = #+ z (proof)

lemma y #+ z < z #+ 2z (proof)

lemma = #+ y #+ z < z #+ z (proof)

lemma y #+ z #+ z < = #+ z (proof)

lemma y #+ (z #+ z) < z #+ z (proof)

lemma © #+ y #+ 2 < (2 4+ y) #+ (2 #+ w) (proof)
lemma z#xy #+ 2z < (z #+ y) #+ (y#*xx #+ w) (proof)

lemma z #+ succ(y) < z #+ z (proof)

lemma © #+ suce(y) < succ(z #+ z) (proof)

lemma succ(x) #+ succ(y) #+ 2 < succ(z #+ y) #+ succ(x #+ w) (proof)
lemma z #+ succ(y) < succ(z #+ z) (proof)

28.2 Difference

lemma diff-self-eq-0 [simp]: m #— m = 0
(proof)
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lemma add-diff-inverse: [n < m; m:nat] = n #+ (m#—n) = m
(proof)

lemma add-diff-inverse2: [n < m; m:nat] = (m#—n) #+ n=m
(proof)

lemma diff-succ: [n < m; m:nat] = succ(m) #— n = succ(m#—n)

(proof)

lemma zero-less-diff [simp]:
[m: nat; n: nat] = 0 < (n #— m) <+— m<n

(proof)

lemma diff-mult-distrib: (m #— n) #x k = (m #x k) #— (n #x k)
(proof)

lemma diff-mult-distrib2: k #+ (m #— n) = (k #+ m) #— (k #x n)
(proof)

28.3 Remainder

lemma div-termination: [0<n; n < m; m:nat] = m #—n < m

(proof)

lemmas div-rls =
nat-typechecks Ord-transrec-type apply-funtype
div-termination [THEN [tD]
nat-into-Ord not-lt-iff-le [THEN iffD1]

lemma raw-mod-type: [m:nat; n:nat] = raw-mod (m, n) € nat
{proof)

lemma mod-type [TC,iff]: m mod n € nat
{proof)

lemma DIVISION-BY-ZERO-DIV: a div 0 = 0
(proof )

lemma DIVISION-BY-ZERO-MOD: a mod 0 = natify(a)
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{proof)

lemma raw-mod-less: m<n = raw-mod (m,n) = m

(proof)

lemma mod-less [simp]: [m<n; n € nat] = m mod n = m
(proof)

lemma raw-mod-geq:
[0<n; n < m; minat] = raw-mod (m, n) = raw-mod (m#—n, n)

(proof)

lemma mod-gegq: [n < m; m:nat] = m mod n = (m#—n) mod n

(proof)

28.4 Division

lemma raw-div-type: [m:nat; n:nat] = raw-div (m, n) € nat

{proof)

lemma div-type [TC,iff]: m div n € nat
(proof)

lemma raw-div-less: m<n = raw-div (m,n) = 0
(proof)

lemma div-less [simp]: [m<n; n € nat] = m divn = 0

(proof)

lemma raw-div-geq: [0<n; n < m; m:nat] = raw-div(m,n) = succ(raw-div(m#—n,

n))
(proof)

lemma div-geq [simp]:
[0<n; n < m; m:nat] = m div n = succ ((m#—n) div n)
(proof)

declare div-less [simp] div-geq [simp)]

lemma mod-div-lemma: [m: nat; n: nat] = (m div n)#+n #+ m mod n = m
(proof)

lemma mod-div-equality-natify: (m div n)#xn #+ m mod n = natify(m)

(proof)

lemma mod-div-equality: m: nat = (m div n)#*n #+ m mod n = m
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(proof)

28.5 Further Facts about Remainder

(mainly for mutilated chess board)

lemma mod-succ-lemma:
[0<n; m:inat; ninat]
= succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))

{(proof)

lemma mod-succ:
n:nat = succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))

(proof)

lemma mod-less-divisor: [0<n; n:nat] = m mod n < n

(proof)

lemma mod-1-eq [simp]: m mod 1 = 0
(proof)

lemma mod2-cases: b<2 = k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)
(proof)

lemma mod2-succ-succ [simp]: succ(succ(m)) mod 2 = m mod 2

(proof)

lemma mod2-add-more [simp]: (m#+m#+n) mod 2 = n mod 2
(proof)

lemma mod2-add-self [simpl: (m#+m) mod 2 = 0
(proof)

28.6 Additional theorems about <

lemma add-le-self: m:nat = m < (m #+ n)

(proof)

lemma add-le-self2: m:nat = m < (n #+ m)

(proof)

lemma mult-le-monol: [i < j; jinat] = (i#xk) < (j#xk)

(proof)

lemma mult-le-mono: [i < j; k < I; jinat; Lnat] = i#xk < j#*l
(proof)
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lemma mult-lt-mono2: [i<j; 0<k; jinat; k:nat] = k#xi < k#xj
(proof)

lemma mult-lt-monol: [i<j; 0<k; jinat; k:inat] = i#*xk < j#xk

(proof)

lemma add-eq-0-iff [iff]: m#+n = 0 «— natify(m)=0 A natify(n)=0
(proof)

lemma zero-lt-mult-iff [iff]: 0 < m#*n «— 0 < natify(m) A 0 < natify(n)
(proof)

lemma mult-eq-1-iff [iff]: m#*xn = 1 +— natify(m)=1 A natify(n)=1
(proof)

lemma mult-is-zero: [m: nat; n: nat] = (m #*xn=0) «— (m =0 | n = 0)
(proof)

lemma mult-is-zero-natify [iff]:
(m #x n = 0) +— (natify(m) = 0 | natify(n) = 0)
(proof)

28.7 Cancellation Laws for Common Factors in Comparisons

lemma mult-less-cancel-lemma:
[k: nat; m: nat; n: nat] = (m#xk < n#xk) «— (0<k A m<n)

(proof)

lemma mult-less-cancel2 [simp]:
(m#+k < nF#xk) «— (0 < natify(k) A natify(m) < natify(n))
(proof)

lemma mult-less-cancell [simp]:
(k#xm < k#xn) <— (0 < natify(k) A natify(m) < natify(n))
(proof)

lemma mult-le-cancel2 [simp]: (m#Fxk < n#xk) +— (0 < natify(k) — natify(m)
< natify(n))
(proof)

lemma mult-le-cancell [simpl: (k#xm < k#xn) <— (0 < natify(k) — natify(m)
< natify(n))
(proof )

lemma mult-le-cancel-lel: k € nat = k #x m < k +— (0 < k — natify(m) <
1)
(proof)
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lemma Ord-eq-iff-le: [Ord(m); Ord(n)] = m=n +— (m < n A n<m)
(proof)

lemma mult-cancel2-lemma:
[k: nat; m: nat; n: nat] = (m#xk = n#xk) +— (m=n | k=0)
(proof)

lemma mult-cancel2 [simp:
(m#xk = n#xk) +— (natify(m) = natify(n) | natify(k) = 0)
(proof)

lemma mult-cancell [simp]:
(k#xm = k#xn) +— (natify(m) = natify(n) | natify(k) = 0)
(proof )

lemma div-cancel-raw:
[0<n; 0<k; k:nat; m:nat; ninat] = (k#+«m) div (k#xn) = m div n

(proof)

lemma div-cancel:

[0 < natify(n); 0 < natify(k)] = (k#xm) div (k#xn) = m div n
(proof)
28.8 More Lemmas about Remainder

lemma mult-mod-distrib-raw:
[k:nat; m:nat; n:nat] = (k#xm) mod (k#xn) = k #* (m mod n)
(proof )

lemma mod-mult-distrib2: k #x (m mod n) = (k#xm) mod (k#x*n)
(proof)

lemma mult-mod-distrib: (m mod n) #+ k = (m#xk) mod (n#xk)
(proof)

lemma mod-add-self2-raw: n € nat = (m #+ n) mod n = m mod n

(proof)

lemma mod-add-self2 [simp]: (m #+ n) mod n = m mod n
(proof)

lemma mod-add-self! [simp]: (n#+m) mod n = m mod n

(proof)

lemma mod-mult-selfl-raw: k € nat = (m #+ k#+n) mod n = m mod n
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(proof)

lemma mod-mult-selfl [simpl: (m #+ k#xn) mod n = m mod n

(proof)

lemma mod-mult-self2 [simp]: (m #+ n#xk) mod n = m mod n
(proof)

lemma mult-eq-self-implies-10: m = m#xn = natify(n)=1 | m=0

(proof)

lemma less-imp-succ-add [rule-format]:
[m<n; n: nat] = Fkenat. n = succ(m#+k)

(proof)

lemma less-iff-succ-add:
[m: nat; n: nat] = (m<n) «+— (Fk€nat. n = succ(m#+k))
(proof )

lemma add-lt-elim2:
[a #+ d =b#+ ¢;a < b; b € nat; ¢c € nat; d € nat] = c < d
(proof)

lemma add-le-elim2:
[a #+ d = b #+ ¢; a < b; b € nat; ¢ € nat; d € nat) = ¢ < d
(proof)

28.8.1 More Lemmas About Difference

lemma diff-is-0-lemma;:
[m: nat; n: nat] = m #—n=0<+— m<n

(proof)

lemma diff-is-0-iff: m #— n = 0 +— natify(m) < natify(n)
{(proof)

lemma nat-lt-imp-diff-eq-0:
[a:nat; b:nat; a<d] = a #— b= 10
(proof)

lemma raw-nat-diff-split:

[a:nat; b:nat] =

(P(a #— b)) «— ((a < b —P(0)) N (Vdenat. a = b #+ d — P(d)))
(proof )

lemma nat-diff-split:

(P(a #— b)) «—
(natify(a) < natify(b) —P(0)) A (VY denat. natify(a) = b #+ d — P(d))
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(proof)

Difference and less-than

lemma diff-lt-imp-lt: [(k#—i) < (k#—j); i€nat; j€nat; kEnat] = j<i
{proof )

lemma lt-imp-diff-lt: [j<i; i<k; kenat] = (k#—1) < (k#—7)
(proof)

lemma diff-lt-iff-lt: [i<k; jenat; k€nat] = (k#—1i) < (k#—j) +— j<i
(proof)

end

29 Lists in Zermelo-Fraenkel Set Theory

theory List imports Datatype ArithSimp begin

consts
list =0

datatype
list(A) = Nil | Cons (a € A, | € list(A))

notation Nil («[])

syntax

-List = is = i («(<indent=1 notation=mizfix list enumeration»[-])»)
translations

[z, zs] == CONST Cons(z, [zs])

(7] == CONST Cons(z, |])

consts
length :: i=1
hd e
tl e

primrec
length(]]) = 0
length(Cons(a,l)) = succ(length(l))

primrec
hd([l) = 0
hd(Cons(a,l)) = a

primrec

) =1l
tl(Cons(a,l)) =1
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consts

map w i i = 4

set-of-list :: i=1

app i [4,4)=1 (infixr <@ 60)
primrec

map(f,[]) = [l

map(f,Cons(a,l)) = Cons(f(a), map(f,l))

primrec
set-of-list([]) = 0
set-of-list(Cons(a,l)) = cons(a, set-of-list(l))

primrec
app-Nil: [] @ ys = ys
app-Cons: (Cons(a,l)) Q@ ys = Cons(a, | Q ys)

consts
Tev i 1=1
flat =
list-add :: i=1

primrec

rev([]) = [

rev(Cons(a,l)) = rev(l) Q [a]
primrec

flar([l) =1

flat(Cons(l,ls)) = 1 @ flat(ls)
primrec

list-add([]) = 0

list-add(Cons(a,l)) = a #+ list-add(l)

consts
drop i [4,i]=1

primrec
drop-0:  drop(0,]) =1
drop-succ: drop(succ(i), 1) = tl (drop(i,l))

definition

207



take  :: [i,i]=7 where
take(n, as) = list-rec(An€nat. [|,
Aa I r. An€nat. nat-case([], Am. Cons(a, r‘m), n), as)‘n

definition
nth :: [i, i]=7 where
— returns the (n+1)th element of a list, or 0 if the list is too short.
nth(n, as) = list-rec(An€nat. 0,
Aa I r. An€nat. nat-case(a, Am. r‘m, n), as) ‘n

definition
list-update :: [i, i, i]=¢ where
list-update(xs, i, v) = list-rec(An€nat. Nil,
Au us vs. An€nat. nat-case(Cons(v, us), Am. Cons(u, vs‘m), n), xs)‘

consts
filter :: [i=o0, i] = @
upt = [i, 1] =i

primrec
filter(P, Nil) = Nil
filter(P, Cons(z, zs)) =
(if P(z) then Cons(z, filter(P, xs)) else filter(P, xs))

primrec
upt(i, 0) = Nil
upt(i, succ(j)) = (if © < j then upt(i, j)Q[j] else Nil)
definition
min :: [i,i]] =1 where
min(z, y) = (if ¢ < y then z else y)
definition

maz :: [i, ] =i where
maz(z, y) = (if < y then y else x)

declare list.intros [simp,TC]
inductive-cases ConsE: Cons(a,l) € list(A)
lemma Cons-type-iff [simp]: Cons(a,l) € list(A) «— a € A N € list(A)

(proof)

lemma Cons-iff: Cons(a,l)=Cons(a’,l") +— a=a’' A =1’
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(proof)

lemma Nil-Cons-iff: = Nil=Cons(a,l)
(proof)

lemma list-unfold: list(A) = {0} + (A4 = list(A))
(proof )

lemma list-mono: A<=B = list(A) C list(B)
{proof)

lemma list-univ: list(univ(A)) C univ(A)
(proof)

lemmas list-subset-univ = subset-trans [OF list-mono list-univ]

lemma list-into-univ: [l € list(A); A C univ(B)] = | € univ(B)
(proof)

lemma list-case-type:
[l € list(A);
c € C(Nil);
Nz y. [z € A; y € list(A)] = h(z,y): C(Cons(z,y))
| = list-case(c,h,l) € C(1)
(proof)

lemma list-0-triv: list(0) = {Nil}
(proof)

lemma tl-type: | € list(A) = ti(1) € list(A)
(proof)

lemma drop-Nil [simp]: i € nat = drop(i, Nil) = Nil
(proof)

lemma drop-succ-Cons [simp]: © € nat => drop(succ(i), Cons(a,l)) = drop(i,l)

{(proof)

lemma drop-type [simp, TC]: [i € nat; | € list(A)] = drop(i,]) € list(A)
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(proof)

declare drop-succ [simp del]

lemma list-rec-type [TC):
[l € list(A);
c € C(Nil);
Neyr. [z e A yelist(A); re Cly)] = h(z,y,r): C(Cons(z,y))
| = list-rec(c,h,l) € C(1)
(proof)

lemma map-type [TC]:
[l € list(A); Az. 2 € A = h(z): B] = map(h,l) € list(B)
(proof)

lemma map-type2 [TC): | € list(A) = map(h,l) € list({h(u). u € A})
(proof)

lemma length-type [TC]: | € list(A) = length(l) € nat
(proof)

lemma lt-length-in-nat:
[z < length(zs); zs € list(A)] = = € nat

{(proof)

lemma app-type [TC): [zs: list(A); ys: list(A)] = zsQys € list(A)
(proof)

lemma rev-type [TC]: zs: list(A) = rev(zs) € list(A)
(proof)

lemma flat-type [TC): Is: list(list(A)) = flat(ls) € list(A)
(proof )
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lemma set-of-list-type [TC): | € list(A) = set-of-list(l) € Pow(A)
{proof)

lemma set-of-list-append:
xs: list(A) = set-of-list (zsQys) = set-of-list(zs) U set-of-list(ys)
(proof)

lemma list-add-type [TC): zs: list(nat) = list-add(zs) € nat
(proof)

lemma map-ident [simpl: | € list(A) = map(Au. u, l) =1
(proof)

lemma map-compose: | € list(A) = map(h, map(j,l)) = map(Au. h(j(w)), 1)
(proof)

lemma map-app-distrib: xs: list(A) = map(h, zsQys) = map(h,xs) Q@ map(h,ys)
(proof)

lemma map-flat: Is: list(list(A)) = map(h, flat(ls)) = flat(map(map(h),ls))
(proof)

lemma list-rec-map:

l € list(A) =

list-rec(c, d, map(h,l)) =

list-rec(c, Az xs r. d(h(z), map(h,zs), 1), )
(proof)

lemmas list-CollectD = Collect-subset [THEN list-mono, THEN subsetD]

lemma map-list-Collect: | € list({zx € A. h(z)=j(x)}) = map(h,l) = map(j,I)
(proof)

lemma length-map [simp]: zs: list(A) = length(map(h,xs)) = length(zs)
(proof)
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lemma length-app [simp]:

[zs: list(A); ys: list(A)]

= length(zsQys) = length(zs) #+ length(ys)
(proof)

lemma length-rev [simp]: xs: list(A) = length(rev(xs)) = length(xs)
(proof)

lemma length-flat:
Is: list(list(A)) = length(flat(ls)) = list-add(map(length,ls))
(proof )

lemma drop-length-Cons [rule-format]:
xs: list(A) =
V. Iz zs. drop(length(xs), Cons(z,zs)) = Cons(z,zs)
(proof)

lemma drop-length [rule-format]:
l € list(A) = Vi € length(l). (3 z zs. drop(i,l) = Cons(z,2s))
(proof )

lemma app-right-Nil [simp]: xs: list(A) = zsQNil=xs
(proof)

lemma app-assoc: zs: list(A) = (xsQys)Qzs = xsQ(ysQzs)

(proof)

lemma flat-app-distrib: Is: list(list(A)) = flat(IsQms) = flat(ls)Qflat(ms)
(proof)

lemma rev-map-distrib: | € list(A) = rev(map(h,l)) = map(h,rev(l))
(proof)

lemma rev-app-distrib:
[xs: list(A); ys: list(A)] = rev(xsQys) = rev(ys)Qrev(zs)
(proof)

lemma rev-rev-ident [simpl: | € list(4) = rev(rev(l))=I

(proof)
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lemma rev-flat: Is: list(list(A)) = rev(flat(ls)) = flat(map(rev,rev(ls)))
(proof)

lemma list-add-app:

[zs: list(nat); ys: list(nat)]

= list-add(zsQys) = list-add(ys) #+ list-add(zs)
{(proof)

lemma list-add-rev: | € list(nat) = list-add(rev(l)) = list-add(l)
(proof)

lemma list-add-flat:
Is: list(list(nat)) = list-add(flat(ls)) = list-add(map(list-add,ls))
(proof)

lemma list-append-induct [case-names Nil snoc, consumes 1]:
[l € list(A);
P(Nil);
Nz y. [z € A; y € list(A); P(y)] = P(y @ [a])
| = P(I)
(proof)

lemma list-complete-induct-lemma [rule-format]:
assumes h:
N1 € list(A);
VI e list(A). length(l") < length(l) — P(1")]
= P(I)
shows n € nat = V1 € list(A). length(l) < n — P(l)
(proof)

theorem list-complete-induct:
[l € list(A);
AL 1 € list(A);
Vi€ list(A). length(l") < length(l) — P(1")]
= P(I)
| = P()
{proof )

lemma min-sym: [i € nat; j € nat] = min(i,j)=min(4,7)
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{proof)

lemma min-type [simp,TC): [i € nat; j € nat] = min(i,j):nat

(proof)

lemma min-0 [simp]: i € nat = min(0,i) = 0
(proof)

lemma min-02 [simp): i € nat = min(i, 0) = 0

(proof)

lemma lt-min-iff: [i € nat; j € nat; k € nat] = i<min(j,k) +— i<j A i<k
(proof )

lemma min-succ-suce [simpl:
[¢ € nat; j € nat] = min(suce(i), succ(f))= succ(min(i, 7))

(proof)

lemma filter-append [simp]:
xs:list(A) = filter(P, zsQys) = filter(P, zs) Q filter(P, ys)
(proof )

lemma filter-type [simp, TC|: zs:list(A) = filter(P, xs):list(A)
(proof)

lemma length-filter: xs:list(A) = length(filter(P, zs)) < length(xs)
(proof)

lemma filter-is-subset: xs:list(A) = set-of-list(filter(P,xs)) C set-of-list(zs)
(proof)

lemma filter-False [simpl: xs:list(A) = filter(Ap. False, xs) = Nil
(proof)

lemma filter-True [simp]: zs:list(A) = filter(Ap. True, xs) = xs
(proof)

lemma length-is-0-iff [simp]: zs:list(A) = length(xs)=0 <— zs=Nil
(proof)

lemma length-is-0-iff2 [simp]: xs:list(A) = 0 = length(xs) +— zs=Nil
(proof)
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lemma length-tl [simp]: zs:list(A) = length(tl(xs)) = length(zs) #— 1
(proof)

lemma length-greater-0-iff: zs:list(A) = 0<length(xs) +— xzs # Nil
(proof)

lemma length-succ-iff: zs:list(A) = length(zs)=succ(n) <— (Fy ys. zs=Cons(y,
ys) A length(ys)=n)
(proof)

lemma append-is-Nil-iff [simp]:
zs:list(A) = (xsQys = Nil) «— (zs=Nil N ys = Nil)
(proof)

lemma append-is-Nil-iff2 [simp]:
xs:list(A) = (Nil = zsQys) — (zs=Nil A ys = Nil)
(proof )

lemma append-left-is-self-iff [simp]:
xs:list(A) = (xsQys = xs) +— (ys = Nil)
(proof)

lemma append-left-is-self-iff2 [simp]:
xs:list(A) = (zs = zsQys) «— (ys = Nil)
{proof)

lemma append-left-is-Nil-iff [rule-format]:
[xs:list(A); ys:list(A); zs:list(A)] =
length(ys)=length(zs) — (xsQys=zs «— (xs=Nil N ys=zs))
(proof)

lemma append-left-is-Nil-iff2 [rule-format]:
[xs:list(A); ys:list(A); zs:list(A)] =
length(ys)=length(zs) — (zs=ysQxs +— (xs=Nil A ys=zs))
(proof)

lemma append-eq-append-iff [rule-format]:

zs:list(A) = Vys € list(A).

length(zs)=length(ys) — (xsQus = ysQus) +— (zs=ys N us=wvs)
(proof)
declare append-eq-append-iff [simp]

lemma append-eq-append [rule-format]:

xs:list(A) =
Vys € list(A). Yus € list(A). Yus € list(A).
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length(us) = length(vs) — (zsQus = ysQus) — (zs=ys N us=vs)
(proof)

lemma append-eq-append-iff2 [simp]:

[ws:list(A); ys:list(A); us:list(A); vs:list(A); length(us)=length(vs)]
= zsQus = ysQus «— (zs=ys N\ us=wvs)

(proof)

lemma append-self-iff [simp]:
[xs:list(A); ys:list(A); zs:list(A)] = zsQys=1sQzs «— ys=zs
(proof )

lemma append-self-iff2 [simp]:
[ws:list(A); ys:list(A); zs:list(A)] = ysQus=2zsQus +— ys=zs
(proof)

lemma append1-eq-iff [rule-format]:
zs:list(A) = Vys € list(A). zsQ[z] = ysQy] «— (zs = ys A z=y)

{proof)
declare appendI-eq-iff [simp]

lemma append-right-is-self-iff [simp]:
[ws:list(A); ys:list(A)] = (zsQys = ys) «— (xs=Nil)
(proof)

lemma append-right-is-self-iff2 [simp]:
[ws:list(A); ys:list(A)] = (ys = zsQys) «— (zs=Nil)
(proof)

lemma hd-append [rule-format]:
xs:list(A) = xs # Nil — hd(zs Q ys) = hd(xs)

(proof)
declare hd-append [simp]

lemma tl-append [rule-format]:
xs:list(A) = xs#Nil — tl(xs Q ys) = tl(zs)Qys

(proof)
declare tl-append [simp]

lemma rev-is-Nil-iff [simp]: zs:list(A) = (rev(zs) = Nil +— xzs = Nil)

(proof)

lemma Nil-is-rev-iff [simp]: zs:list(A) = (Nil = rev(zs) <— zs = Nil)
(proof)

lemma rev-is-rev-iff [rule-format]:
xs:list(A) = Vys € list(A). rev(zs)=rev(ys) +— zs=ys
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(proof)

declare rev-is-rev-iff [simp]

lemma rev-list-elim [rule-format]:

xs:list(A) =

(zs=Nil — P) — (Vys € list(A). Vy € A. zs =ysQ[y] —P)—P
(proof )

lemma length-drop [rule-format):
n € nat = Vs € list(A). length(drop(n, xs)) = length(xzs) #— n

(proof)
declare length-drop [simp]

lemma drop-all [rule-format]:
n € nat = Vs € list(A). length(zs) < n — drop(n, xs)=Nil

(proof)
declare drop-all [simp)

lemma drop-append [rule-format]:

n € nat —

Vs € list(A). drop(n, xsQys) = drop(n,xs) Q drop(n #— length(zs), ys)
(proof )

lemma drop-drop:
m € nat = Vs € list(A). Vn € nat. drop(n, drop(m, xs))=drop(n #+ m, zs)
(proof)

lemma take-0 [simp]: zs:list(A) => take(0, zs) = Nil
{proof)

lemma take-succ-Cons [simp]:
n € nat = take(succ(n), Cons(a, xs)) = Cons(a, take(n, s))

(proof )
lemma take-Nil [simp]: n € nat = take(n, Nil) = Nil
(proof)

lemma take-all [rule-format):

n € nat = Vs € list(A). length(zs) < n — take(n, xs) = xs
(proof)
declare take-all [simp]

lemma take-type [rule-format]:
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xs:list(A) = VY n € nat. take(n, xs):list(A)

(proof)
declare take-type [simp, TC)|

lemma take-append [rule-format]:
xs:list(A) =
Vys € list(A). Yn € nat. take(n, s Q ys) =
take(n, zs) Q take(n #— length(zs), ys)
(proof)

declare take-append [simp)

lemma take-take [rule-format]:

m € nat —

Vas € list(A). Vn € nat. take(n, take(m,zs))= take(min(n, m), xs)
(proof)

lemma nth-0 [simp]: nth(0, Cons(a, 1)) = a
(proof)

lemma nth-Cons [simp]: n € nat = nth(succ(n), Cons(a,l)) = nth(n,l)
(proof)

lemma nth-empty [simpl: nth(n, Nil) = 0
(proof)

lemma nth-type [rule-format]:

xs:list(A) = VY n. n < length(zs) — nth(n,zs) € A
(proof)
declare nth-type [simp, TC]

lemma nth-eq-0 [rule-format]:
xs:list(A) = VY n € nat. length(xzs) < n — nth(n,zs) = 0

(proof)

lemma nth-append [rule-format):
xs:list(A) =
Vn € nat. nth(n, zs Q ys) = (if n < length(xs) then nth(n,zs)
else nth(n #— length(zs), ys))
(proof)

lemma set-of-list-conv-nth:

zs:list(A)

= set-of-list(xs) = {z € A. Fienat. i<length(zs) N x = nth(i,zs)}
(proof)
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lemma nth-take-lemma [rule-format]:
k € nat =
Vas € list(A). (Vys € list(A). k < length(xs) — k < length(ys) —
(Vi € nat. i<k — nth(i,zs) = nth(i,ys))— take(k,zs) = take(k,ys))
(proof)

lemma nth-equalityl [rule-format]:
[xs:list(A); ys:list(A); length(zs) = length(ys);
Vi € nat. i < length(xs) — nth(i,xs) = nth(i,ys)]
= 75 = Ys
(proof )

lemma take-equalityl [rule-format]:
[xs:list(A); ys:list(A); (Vi € nat. take(i, xs) = take(i,ys))]
= Is = YS§

(proof)

lemma nth-drop [rule-format]:
n € nat = Vi € nat. Vas € list(A). nth(i, drop(n, zs)) = nth(n #+ i, xs)
(proof )

lemma take-succ [rule-format):
zs€list(A)
= Vi. { < length(zs) — take(succ(i), xs) = take(i,xs) Q [nth(i, zs)]
(proof)
lemma take-add [rule-format]:
[zs€list(A); jenat]
= Vi€nat. take(i #+ j, xs) = take(i,xs) Q take(j, drop(i,zs))
(proof)

lemma length-take:
lelist(A) = V nenat. length(take(n,l)) = min(n, length(l))
(proof)

29.1 The function zip

Crafty definition to eliminate a type argument
consts

Zip-aux i [4,d)=0

primrec
zip-aux(B,[]) =
(Ays € list(B). list-case([], Ay L. [], ys))

zip-auz(B,Cons(z,l)) =
(Ays € list(B).
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list-case(Nil, Ay zs. Cons({z,y), zip-auz(B,l)zs), ys))

definition
zip :: i, i{]=i where
zip(xs, ys) = zip-auz(set-of-list(ys),zs) ‘ys

lemma list-on-set-of-list: xs € list(A) = xs € list(set-of-list(zs))

(proof)

lemma zip-Nil [simp]: ys:list(A) = zip(Nil, ys)=Nil
(proof)

lemma zip-Nil2 [simp]: xs:list(A) = zip(xs, Nil)=Nil
(proof)

lemma zip-auz-unique [rule-format]:

[B<=C; zs € list(A)]

= Vys € list(B). zip-auz(C,xs) ‘ys = zip-auz(B,xs) ‘ys
(proof)

lemma zip-Cons-Cons [simpl:
[ws:list(A); ys:list(B); ¢ € A; y € B] =
zip(Cons(z,zs), Cons(y, ys)) = Cons({z,y), zip(zs, ys))
(proof )

lemma zip-type [rule-format]:

zs:list(A) = Vys € list(B). zip(zs, ys):list(AxB)
{proof )
declare zip-type [simp, TC]

lemma length-zip [rule-format:
zs:list(A) = YV ys € list(B). length(zip(zs,ys)) =
min(length(xs), length(ys))
(proof)
declare length-zip [simp]

lemma zip-appendl [rule-format):
[ys:list(A); zs:list(B)] =
Vs € list(A). zip(zs Q ys, 2s) =
zip(zs, take(length(zs), zs)) @ zip(ys, drop(length(zs),zs))
(proo)

lemma zip-append2 [rule-format):

[ws:list(A); zs:list(B)] = Vys € list(B). zip(zs, ysQzs) =
zip(take(length(ys), xs), ys) Q zip(drop(length(ys), xs), 2s)
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(proof)

lemma zip-append [simp):

[length(xs) = length(us); length(ys) = length(vs);
xs:list(A); us:list(B); ys:list(A); vs:list(B)]
= zip(zsQys,usQus) = zip(xs, us) @ zip(ys, vs)

(proof)

lemma zip-rev [rule-format]:
ys:list(B) = Vs € list(4).
length(zs) = length(ys) — zip(rev(zs), rev(ys)) = rev(zip(xs, ys))
(proof)
declare zip-rev [simp]

lemma nth-zip [rule-format):
ys:list(B) = Vi € nat. Yas € list(A).
i < length(zs) — i < length(ys) —
nth(i,zip(xs, ys)) = <nth(i,xs),nth(i, ys)>
(proof)
declare nth-zip [simp)

lemma set-of-list-zip [rule-format]:
[ws:list(A); ys:list(B); i € nat]
= set-of-list(zip(xs, ys)) =
{(z, y):AxB. Fi€nat. i < min(length(zs), length(ys))
A x = nth(i, zs) A y = nth(i, ys)}
(proof )

lemma list-update-Nil [simp]: ¢ € nat =>list-update(Nil, i, v) = Nil

(proof)

lemma list-update-Cons-0 [simp]: list-update( Cons(z, zs), 0, v)= Cons(v, xs)
(proof)

lemma list-update-Cons-succ [simp]:
n € nat —
list-update( Cons(z, xs), succ(n), v)= Cons(z, list-update(zs, n, v))
(proof)

lemma list-update-type [rule-format]:
[xs:list(A); v € A] = V' n € nat. list-update(zs, n, v):list(A)
(proof )
declare list-update-type [simp, TC)
lemma length-list-update [rule-format]:

xs:list(A) = Vi € nat. length(list-update(zs, i, v))=length(zs)
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(proof)
declare length-list-update [simp)

lemma nth-list-update [rule-format]:
[zs:list(A)] = Vi € nat. Vj € nat. i < length(zs) —
nth(j, list-update(zs, i, x)) = (if i=j then z else nth(j, ©s))
(proof)

lemma nth-list-update-eq [simp):
[ < length(xs); xs:list(A)] = nth(i, list-update(zs, i,x)) = x
(proof)

lemma nth-list-update-neq [rule-format):
zs:list(A) =
Vi € nat. Vj € nat. i # j — nth(j, list-update(zs,i,z)) = nth(j,zs)
(proof)

declare nth-list-update-neq [simp]

lemma list-update-overwrite [rule-format]:
zs:list(A) = Vi € nat. i < length(zs)
— list-update(list-update(xs, i, x), i, y) = list-update(xs, i,y)
(proof )

declare list-update-overwrite [simp]

lemma list-update-same-conv [rule-format]:
xs:list(A) =
Vi € nat. i < length(zs) —
(list-update(zs, i, ) = xs) +— (nth(i, zs) = x)
(proof)

lemma update-zip [rule-format]:
ys:list(B) =
Vi € nat. Vay € AxB. Vs € list(A).
length(zs) = length(ys) —
list-update(zip(zs, ys), i, zy) = zip(list-update(zs, i, fst(xy)),
list-update(ys, i, snd(zy)))
(proof)

lemma set-update-subset-cons [rule-format]:
zs:list(A) =
Vi € nat. set-of-list(list-update(zs, i, z)) C cons(z, set-of-list(xs))

(proof)

lemma set-of-list-update-subsetl:
[set-of-list(xs) C A; zs:list(A); z € A; i € nat]
= set-of-list(list-update(xs, i,x)) C A

(proof)
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lemma upt-rec:
j € nat = upt(i,j) = (if i<j then Cons(i, upt(succ(i), j)) else Nil)
(proof)

lemma upt-conv-Nil [simp]: [j < 4; j € nat] = upt(i,j) = Nil
(proof)

lemma upt-succ-append:
[¢ < j;j € nat] = upt(i,succ(j)) = upt(i, j)Q[j]
(proof)

lemma upt-conv-Cons:
[i<j; j € nat] = upt(i,j) = Cons(i,upt(succ(i),j))
(proof)

lemma upt-type [simp, TC): j € nat = upt(i,5):list(nat)
(proof)

lemma upt-add-eq-append:
[i < j; j € nat; k € nat] = upt(i, j #+k) = upt(i,j)Qupt(j,j#+k)
(proof)

lemma length-upt [simp]: [i € nat; j € nat] =>length(upt(i,j)) = j #— @
(proof)

lemma nth-upt [simp]:
[¢ € nat; j € nat; k € nat; @ #+ k < j] = nth(k, upt(i,j)) = #+ k
(proof)

lemma take-upt [rule-format]:
[m € nat; n € nat] =
Vi € nat. i #+ m < n —> take(m, upt(i,n)) = upt(i,i#t+m)
(proof)

declare take-upt [simp]

lemma map-succ-upt:
[m € nat; n € nat] = map(suce, upt(m,n))= upt(suce(m), succ(n))

(proof)

lemma nth-map [rule-format]:

xs:list(A) =

Vn € nat. n < length(zs) — nth(n, map(f, zs)) = f(nth(n, xs))
(proof)

declare nth-map [simp)
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lemma nth-map-upt [rule-format]:

[m € nat; n € nat] =

Vi€ nat. i < n #— m — nth(i, map(f, upt(m,n))) = f(m #+ 7)
(proof)

definition
sublist :: [i, i) = i where
sublist(xzs, A)=
map(fst, (filter(Ap. snd(p): A, zip(xs, upt(0,length(zs))))))

lemma sublist-0 [simp): zs:list(A) == sublist(zs, 0) =Nil
(proof)

lemma sublist-Nil [simp]: sublist(Nil, A) = Nil
(proof)

lemma sublist-shift-lemma:

[xs:list(B); i € nat] =

map(fst, filter(Ap. snd(p):A, zip(zs, upt(i,i #+ length(xs))))) =

map(fst, filter(Ap. snd(p):nat A snd(p) #+ ¢ € A, zip(zs,upt(0,length(xs)))))
(proof)

lemma sublist-type [simp, TC):
xs:list(B) = sublist(xzs, A):list(B)
(proof)

lemma upt-add-eq-append?2:
[i € nat; j € nat] = upt(0, i #+ j) = upt(0, i) Q upt(i, i #+ 7)
(proof)

lemma sublist-append:

[zs:list(B); ys:list(B)] =
sublist(zsQys, A) = sublist(zs, A) Q sublist(ys, {j € nat. j #+ length(zs): A})
{proof)

lemma sublist-Cons:

[ws:list(B); © € B] =

sublist(Cons(z, xs), A) =

(if 0 € A then [z] else []) @ sublist(zs, {j € nat. succ(j) € A})
(proof )

lemma sublist-singleton [simp]:
sublist([z], A) = (if 0 € A then [z] else [])
(proof)

lemma sublist-upt-eq-take [rule-format]:
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zs:list(A) = V¥ nenat. sublist(xzs,n) = take(n,zs)

(proof)
declare sublist-upt-eq-take [simp]

lemma sublist-Int-eq:
xs € list(B) = sublist(zs, A N nat) = sublist(zs, A)
(proof)

Repetition of a List Element

consts repeat :: [i,i]|=i
primrec
repeat(a,0) = |]

repeat(a,succ(n)) = Cons(a,repeat(a,n))

lemma length-repeat: n € nat = length(repeat(a,n)) = n

(proof)

lemma repeat-succ-app: n € nat = repeat(a,succ(n)) = repeat(a,n) Q [a)

(proof)

lemma repeat-type [TC)]: [a € A; n € nat] = repeat(a,n) € list(A)

(proof)

end

30 Equivalence Relations

theory FEquivClass imports Trancl Perm begin

definition
quotient :: [i,i]=4¢ (infixl <'/'/> 90) where
Aljr = {r{z} .z € A}

definition
congruent :: [i,i=i]=0 where
congruent(r,b) = Vy z. (y,z):r — b(y)=b(2)

definition
congruent? :: [i,i,[i,i{]=i]=0 where
congruent2(rl,r2,b) = Vyl z1 y2 22.
(yl,21):rl — (y2,22):12 — b(yl,y2) = b(21,22)

abbreviation
RESPECTS :[i=1, i] = o (infixr <respects> 80) where

f respects r = congruent(r,f)

abbreviation
RESPECTS?2 ::[i=i=i, i] = o (infixr <respects2 » 80) where
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f respects2 r = congruent2(r,r,f)
— Abbreviation for the common case where the relations are identical

30.1 Suppes, Theorem 70: r is an equiv relation iff converse(r)
Or=r

lemma sym-trans-comp-subset:
[sym(r); trans(r)] = converse(r) O r C r

(proof)

lemma refl-comp-subset:
[refl(A,r); r C AxA] = r C converse(r) O r
(proof )

lemma equiv-comp-eq:
equiv(A,r) = converse(r) Or =r
{proof )

lemma comp-equivl:
[converse(r) O r = r; domain(r) = A] = equiv(A,r)
(proof)

lemma equiv-class-subset:
[sym(r); trans(r); (a,b): ] = r‘{a} C r*{b}
(proof )

lemma equiv-class-eq:
[equiv(A,r); {(a,b): r] = r‘{a} = r{b}
{proof)

lemma equiv-class-self:
[equiv(A,r); a € A] = a € r*{a}

(proof)

lemma subset-equiv-class:
[equiv(A,r); r{b} C rfa}; b€ A] = (a,b): r
(proof)

lemma eg-equiv-class: [r‘{a} = r*{b}; equiv(4,r); b€ A] = (a,b): r

(proof)

lemma equiv-class-nondisjoint:
[equiv(A,r); z: (r*{a} N r*4{b})] = (a,b): r

226



(proof)

lemma equiv-type: equiv(A,r) = r C AxA

(proof)

lemma equiv-class-eq-iff:
equiv(A,r) = (zy): r«— r'{fat =r{yl Az e ANye A
(proof)

lemma eg-equiv-class-iff:
[equiv(A,r); z € A; y € A] = r{z} = r'*{y} «— (z,y): 7
(proof )

lemma quotient] [TC]: z € A = r‘{z}: A//r
{proof)

lemma quotientE:
[X e A)/r; Ne. [X =r{z}; € A] = P] = P
(proof)

lemma Union-quotient:
equiv(A,r) = J(4//r) = A
(proof)

lemma quotient-disj:
lequiv(A,r); X € Af/r; Y e Al/r] = X=Y | (X N Y C 0)
(proof)

30.2 Defining Unary Operations upon Equivalence Classes

lemma UN-equiv-class:
[equiv(A,r); b respects r; a € A] = (Jzer{a}. b(z)) = b(a)
(proof)

lemma UN-equiv-class-type:
[equiv(A,r); b respects r; X € A//r; Nx. © € A = b(x) € BJ
= (JzeX. b(z)) € B

(proof )

lemma UN-equiv-class-inject:
[equiv(A,r); b respects r;
(UseX. b(x)=(UyeY. b)) X € A/jri Y € A//r;
Az y. [z € Ay € A; b(z)=b(y)] = (z,):r]
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= X=Y
(proof)

30.3 Defining Binary Operations upon Equivalence Classes

lemma congruent2-implies-congruent:
[equiv(A,r1); congruent2(rl,r2,b); a € A] = congruent(r2,b(a))
(proof)

lemma congruent2-implies-congruent-UN:
[equiv(Al1,r1); equiv(A2,r2); congruent2(rl,r2,b); a € A2] =
congruent(rl, Azl. |Jz2 € r2‘{a}. b(zl,22))

(proof)

lemma UN-equiv-class2:
[equiv(A1,rl); equiv(A2,r2); congruent2(rl,r2,b); al: Al; a2: A2]
= (Uz! € r1*{al}. U2 € r24a2}. b(z1,22)) = b(al,a2)

{proof )

lemma UN-equiv-class-type2:
[equiv(A,r); b respects?2 r;
X1: Al/r; X2: A//r;
Nzl z2. [zl: A; 22: A] = b(x1,22) € B
] = (Uz1eX1. |Jz2€X2. b(z1,22)) € B
(proof )

lemma congruent2l:
[equiv(A1,rl); equiv(A2,r2);
Ny zw. [we A2; (y,2) € r1] = b(y,w) = b(z,w);
Ny zw. [we Al; (y,2) € r2] = b(w,y) = b(w,z)
] = congruent2(r1,r2,b)

(proof)

lemma congruent2-commutel:
assumes equivA: equiv(A,r)
and commute: Ny z. [y € 4; z € A] = b(y,2) = b(z,y)
and congt: Ay zw. [w e 4; (y,2): r] = blw,y) = b(w,z)
shows b respects2 r

(proof)

lemma congruent-commutel:
[equiv(A,r); Z € A//r;
Nw. [w € A] = congruent(r, Az. b(w,z));
Nzy. [z € A y € A] = b(y,z) = b(z,y)
| = congruent(r, Aw. |Jz€Z. b(w,z))
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(proof)

end

31 The Integers as Equivalence Classes Over Pairs
of Natural Numbers
theory Int imports FquivClass ArithSimp begin

definition
intrel :: i where
intrel = {p € (natxnat)*(natxnat).
a1 yl 22 y2. p=<(z1,y1),(x2,y2)> A zl#+y2 = 22#+yl}
definition
int :: i where
int = (natxnat)//intrel

definition

int-of :: i=i— coercion from nat to int (<(<open-block notation=<prefix $#>$#
)y [80] 80)

where $# m = intrel *“ {<natify(m), 0>}

definition
intify :: i=1 — coercion from ANYTHING to int where
intify(m) = if m € int then m else $#0
definition

raw-zminus :: 1=1 where

raw-zminus(z) = J (z,y)€z. intrel*{(y,z)}

definition
zminus 2 1=1 («(<open-block notation=<prefic $—»$— -)» [80] 80)
where $— 2z = raw-zminus (intify(z))

definition

znegative i=0 where

znegative(z) = Jz y. <y A yEnat A (x,y)Ez
definition

182€eT0 i=0 where

iszero(z) = 2 = $# 0

definition
raw-nat-of :: i=1i where
raw-nat-of (z) = natify (U (z,y)€z. z#—y)

definition
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nat-of :: i=1i where
nat-of (z) = raw-nat-of (intify(z2))

definition
zmagnitude i=1 where
— could be replaced by an absolute value function from int to int?
zmagnitude(z) =
THE m. menat A ((— znegative(z) A z = m) |
(znegative(z) N $— z = $# ))
definition
raw-zmult [i,i]=7 where

raw-zmult(z1,22) =
Uplezl. |Up2ez2. split(Axl yl. split(Az2 y2.

intrel “{ <zl #*x2 #+ yl#xy2, zl1#xy2 #+ yl#*x12>}, p2), pl

definition
zmult $ [7,i]=1 (infix] 3% 70) where
z1 $x 22 = raw-zmult (intify(z1),intify(22))

definition
raw-zadd [i,i]=7 where
raw-zadd (21, 22) =
Uzlezl. |J2z2€22. let (x1,yl)=21; (22,y2)=22
in intrel‘{<zl1#+12, yl #+y2>}

definition
zadd $ [i,i]=1 (infixl «$+> 65) where
z1 $+ 22 = raw-zadd (intify(z1),intify(22))
definition
2diff 3 [i,i]=1 (infixl «$—> 65) where
z1 $— 22 = 21 $+ zminus(22)
definition
zless $ [i,i]=0 (infixl «$<» 50) where

z1 $< 22 = znegative(z1 $— 22)

definition
zle : [i,i]=0 (infix] <3<» 50) where
z1 $< 22 = 21 $< 22 | intify(21)=intify(22)

declare quotientE [elim!]

31.1 Proving that intrel is an equivalence relation

lemma intrel-iff [simpl:
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<(x1,y1),(x2,y2)>: intrel +—
zlenat N yl€nat A z2€nat N y2enat N\ x1#+y2 = x2#+yl
(proof)

lemma intrell [intro!]:
[x1#+y2 = z2#+yl; x1€nat; ylEnat; x2€nat; y2€nat]
= <(z1,y1),(x2,y2)>: intrel

(proof )

lemma intrelE [elim!]:
[p € intrel;
Azl yl 22 y2. [p = <(xl,yl),(22,y2)>; xl#+y2 = 22#+yl;
zl Enat; yl Enat; z2€nat; y2€nat] = Q]
= @

(proof)

lemma int-trans-lemma:

[zl #+ y2 = 22 #+ yl; 122 #+ y3 = 23 #+ y2] = z1 #+ y3 = 23 #+
yl
(proof)

lemma equiv-intrel: equiv(natxnat, intrel)
(proof)

lemma image-intrel-int: [menat; nenat] = intrel ““ {{(m,n)} € int

(proof)

declare equiv-intrel [THEN eq-equiv-class-iff, simp)
declare conj-cong [cong]

lemmas eg-intrelD = eq-equiv-class [OF - equiv-intrel)

lemma int-of-type [simp, TC]: $#m € int
(proof)

lemma int-of-eq [iff]: ($# m = $# n) <— natify(m)=natify(n)
(proof)

lemma int-of-inject: [$#m = $#n; menat; nenat] = m=n

(proof)

lemma intify-in-int [iff, TC]: intify(x) € int
{proof)
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lemma intify-ident [simp]: n € int = intify(n) = n
(proof)

31.2 Collapsing rules: to remove intify from arithmetic ex-
pressions

lemma intify-idem [simp]: intify(intify(z)) = intify(z)
(proof)

lemma int-of-natify [simp]: $# (natify(m)) = $# m
(proof)

lemma zminus-intify [simp): $— (intify(m)) = $— m

(proof)

lemma zadd-intifyl [simpl: intify(z) $+ y =z $+ y
(proof)

lemma zadd-intify2 [simp]: z $+ intify(y) = = $+ y
(proof)

lemma zdiff-intifyl [simp):intify(z) $— y =z $— y
(proof)

lemma zdiff-intify2 [simpl:z $— intify(y) = z $— y
(proof )

lemma zmult-intifyl [simpl:intify(z) $x y = = $* y
(proof)

lemma zmult-intify2 [simpl:z $* intify(y) = © $* y
(proof)

lemma zless-intifyl [simpl:intify(z) $< y +— z $< y

(proof)

lemma zless-intify2 [simpl:z $< intify(y) +— = $< y
(proof)

lemma zle-intifyl [simpl:intify(z) $< y +— 2 $< y

(proof )
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lemma zle-intify2 [simp):z $< intify(y) +— = $< y

(proof)

31.3 zminus: unary negation on int

lemma zminus-congruent: (A(z,y). intrel*“{{y,x)}) respects intrel

(proof)

lemma raw-zminus-type: z € int => raw-zminus(z) € int

(proof)

lemma zminus-type [TC,iff]: $—2z € int

(proof)

lemma raw-zminus-inject:
[raw-zminus(z) = raw-zminus(w); z € int; w € int] = z=w

(proof)

lemma zminus-inject-intify [dest!]: $—z = $—w = intify(z) = intify(w)

(proof)

lemma zminus-inject: [$—z = $—w; z € int; w € int] = z=w

(proof)

lemma raw-zminus:
[zenat; yenat] = raw-zminus(intrel “{(z,y)}) = intrel “ {{y,z)}

(proof)

lemma zminus:

[z€nat; yeEnai]

= $— (intrel*{(z,y)}) = intrel ““ {{y,x)}
(proof)

lemma raw-zminus-zminus: z € int = raw-zminus (raw-zminus(z)) = z
(proof)

lemma zminus-zminus-intify [simpl: $— ($— 2) = intify(2)

{(proof)

lemma zminus-int0 [simp]: $— (3#0) = $#0
(proof)

lemma zminus-zminus: z € int = $— ($— 2) = z

(proof)

31.4 znegative: the test for negative integers

lemma znegative: [z€nat; yEnat] = znegative(intrel*{(z,y)}) +— z<y

(proof)
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lemma not-znegative-int-of [iff]: = znegative($# n)

(proof)

lemma znegative-zminus-int-of [simpl: znegative($— $# succ(n))
(proof)

lemma not-znegative-imp-zero: — znegative($— $# n) = natify(n)=0
{(proof)

31.5 nat-of: Coercion of an Integer to a Natural Number
lemma nat-of-intify [simp]: nat-of (intify(z)) = nat-of (2)

(proof)

lemma nat-of-congruent: (Az. (A (z,y). * #— y)(x)) respects intrel

(proof)

lemma raw-nat-of:
[zEnat; yeEnat] = raw-nat-of (intrel “{(z,y)}) = z#—y
(proof )

lemma raw-nat-of-int-of : raw-nat-of ($# n) = natify(n)

(proof)

lemma nat-of-int-of [simp]: nat-of ($# n) = natify(n)
(proof)

lemma raw-nat-of-type: raw-nat-of(z) € nat

(proof)

lemma nat-of-type [iff, TC): nat-of (z) € nat
{proof )

31.6 zmagnitude: magnitide of an integer, as a natural num-
ber

lemma zmagnitude-int-of [simp]: zmagnitude($# n) = natify(n)

(proof)

lemma natify-int-of-eq: natify(z)=n = $#z = $# n
(proof)

lemma zmagnitude-zminus-int-of [simp]: zmagnitude($— $# n) = natify(n)

(proof)

lemma zmagnitude-type [iff,TC]: zmagnitude(z)€Enat
(proof)
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lemma not-zneg-int-of:
[z € int; = znegative(z)] = Inenat. z = $# n

(proof)

lemma not-zneg-mag [simp):
[z € int; = znegative(z)] = $# (zmagnitude(z)) = z
(proof )

lemma zneg-int-of:
[znegative(z); z € int] = Inenat. z = $§— ($# succ(n))

(proof)

lemma zneg-mag [simp):
[znegative(z); z € int] = $# (zmagnitude(z)) = $— z

(proof)

lemma int-cases: z € int = Ine€nat. z = $# n | z = $— ($# succ(n))
(proof )

lemma not-zneg-raw-nat-of:
[— znegative(z); z € int] = $# (raw-nat-of (2)) = z
(proof)

lemma not-zneg-nat-of-intify:

- znegative(intify(z)) = $# (nat-of (z)) = intify(z)
(proof)

lemma not-zneg-nat-of: [~ znegative(z2); z € int] = $# (nat-of (z)) = 2
(proof)

lemma zneg-nat-of [simpl: znegative(intify(z)) = nat-of (z) = 0

(proof)

31.7 ($+4): addition on int

Congruence Property for Addition

lemma zadd-congruent2:
(N2l 22. let (x1,yl)=21; (22,y2)=22
in intrel*{ <zl #+z2, yl#+y2>})
respects? intrel

(proof)

lemma raw-zadd-type: [z € int; w € int] = raw-zadd(z,w) € int
(proof)

lemma zadd-type [iff, TC]: z $+ w € int
(proof)
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lemma raw-zadd:
[z1€nat; y1€nat; z2€nat; y2€nat]
= raw-zadd (intrel*{{z1,y1)}, intrel*{(x2,y2)}) =
intrel ““ {<zl#+z2, ylH#+y2>}
(proof )

lemma zadd:
[z1€nat; y1€nat; z2€nat; y2€E€nat]
= (intrel“{(z1,y1)}) $+ (intrel*{(z2,y2)}) =
intrel ““ {<zl#+z2, ylH#+y2>}
(proof)

lemma raw-zadd-int0: z € int = raw-zadd ($3#0,z) = z
(proof)

lemma zadd-int0-intify [simp]: $#0 $+ z = intify(z)
(proof)

lemma zadd-int0: z € int = $#0 $+ 2z = 2

(proof)

lemma raw-zminus-zadd-distrib:
[z € int; w € int] = $— raw-zadd(z,w) = raw-zadd($— z, $— w)
(proof)

lemma zminus-zadd-distrib [simp]: $— (z $+ w) = $— 2 $+ $— w

(proof)

lemma raw-zadd-commute:
[z € int; w € int] = raw-zadd(z,w) = raw-zadd(w,z)

{(proof)

lemma zadd-commute: z $+ w = w $+ 2
(proof)
lemma raw-zadd-assoc:
[21: int; 22: int; 23: int]
= raw-zadd (raw-zadd(z1,22),23) = raw-zadd(z1 ,raw-zadd(22,23))
(proof)

lemma zadd-assoc: (z1 $4 2z2) $+ 28 = 21 $+ (22 $+ 23)
(proof)

lemma zadd-left-commute: z18+(228+23) = 228+ (21$+23)
(proof)

lemmas zadd-ac = zadd-assoc zadd-commute zadd-left-commute
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lemma int-of-add: $# (m #+ n) = (3#m) $+ ($#n)
(proof )

lemma int-succ-int-1: $# succ(m) = $# 1 $+ ($# m)
(proof)

lemma int-of-diff:
[menat; n < m] = $# (m #— n) = ($#m) $— ($#n)
{(proof)

lemma raw-zadd-zminus-inverse: z € int = raw-zadd (z, $— z) = $#0
(proof)

lemma zadd-zminus-inverse [simp]: z $+ ($— z) = $#0

(proof)

lemma zadd-zminus-inverse2 [simp]: ($— z) $+ z = $#0
(proof)

lemma zadd-int0-right-intify [simp]: z $+ $#0 = intify(z)
(proof)

lemma zadd-int0-right: z € int = 2z $+ $#0 = 2
(proof)

31.8 ($*): Integer Multiplication

Congruence property for multiplication

lemma zmult-congruent?:
(ApI p2. split(Axl y1. split(Az2 y2.
intrel “{<xl#*xx2 #+ yl#xy2, xl#xy2 #+ yl#xx2>}, p2), pl))

respects2 intrel
(proof)

lemma raw-zmult-type: [z € int; w € int] = raw-zmult(z,w) € int

(proof)

lemma zmult-type [iff , TC]: z $% w € int
(proof)

lemma raw-zmult:
[z1E€nat; y1€nat; x2€nat; y2€nat]
= raw-zmult(intrel “{(x1,y1)}, intrel*{{z2,y2)}) =
intrel ““ {<xl#x12 #+ yl#*y2, xl#xy2 #+ yl#*xz2>}
(proof )

lemma zmult:
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[x1€nat; y1€nat; z2€nat; y2E€nat]
= (intrel“{(z1,y1)}) $* (intrel*{(z2,y2)}) =
intrel “{<zl#*xx2 #+ yl#*y2, xl#+xy2 #+ yl#+x12>}
(proof)

lemma raw-zmult-int0: z € int => raw-zmult ($#0,z) = $#0
{proof)

lemma zmult-int0 [simp]: $#0 $x 2z = $#0
{(proof)

lemma raw-zmult-intl: z € int = raw-zmult (3#1,2) = z
(proof)

lemma zmult-int1-intify [simp]: $#1 $x 2z = intify(z)
(proof)

lemma zmult-intl: z € int = $#1 $x 2z = 2
(proof)

lemma raw-zmult-commute:
[z € int; w € int] = raw-zmult(z,w) = raw-zmult(w,z)
(proof)

lemma zmult-commute: z $x w = w $* 2

(proof)

lemma raw-zmult-zminus:
[z € int; w € int] = raw-zmult($— 2z, w) = $— raw-zmult(z, w)
(proof )

lemma zmult-zminus [simp]: (3— 2) $x w = $— (2 $x w)

(proof)

lemma zmult-zminus-right [simp]: w $x ($— 2) = $— (w $x 2)
(proof)

lemma raw-zmult-assoc:

[21: int; 22: int; 23: int]

= raw-zmult (raw-zmult(z1,22),23) = raw-zmult(z1,raw-zmult(22,23))
(proof)

lemma zmult-assoc: (z1 $% 22) $x 23 = 21 $x (22 $* 23)

(proof)

lemma zmult-left-commute: z1$x(228%23) = 22%%(21$x23)

(proof)
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lemmas zmult-ac = zmult-assoc zmult-commute zmult-left-commute

lemma raw-zadd-zmult-distrib:
[21: int; 22:int; w € int]
= raw-zmult(raw-zadd(z1,22), w) =
raw-zadd (raw-zmult(z1,w), raw-zmult(22,w))
(proof)

lemma zadd-zmult-distrib: (z1 $+ 22) $x w = (21 $% w) $+ (22 $x w)
(proof)

lemma zadd-zmult-distrib2: w $* (21 $+ 22) = (w $x 21) $+ (w $* 22)
(proof)

lemmas int-typechecks =
int-of-type zminus-type zmagnitude-type zadd-type zmult-type

lemma zdiff-type [iff , TC]: z $— w € int
(proof)

lemma zminus-zdiff-eq [simp]: $— (2 $— y) = y $— 2

(proof)

lemma zdiff-zmult-distrib: (z1 $§— 22) $x w = (21 $x w) $§— (22 $* w)
(proof)

lemma zdiff-zmult-distrib2: w $* (21 $— 22) = (w $* 21) $— (w $* 22)
(proof)

lemma zadd-zdiff-eq: = $+ (y $— 2) = (z $+ y) $— =
(proof )

lemma zdiff-zadd-eq: (z $— y) $+ 2 = (z $+ 2) $— y
(proof)

31.9 The "Less Than" Relation

lemma zless-linear-lemma:
[z € int; w € int] = 28<w | z=w | wh<z
(proof)

lemma zless-linear: z$<w | intify(z)=intify(w) | w$<z

(proof)

lemma zless-not-refl [iff]: = (28<z2)
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(proof)

lemma neq-iff-zless: [z € int; y € int] = (x #£ y) +— (z$< y | y $< 2)

(proof)

lemma zless-imp-intify-neq: w $< 2z = intify(w) # intify(z)
(proof)

lemma zless-imp-succ-zadd-lemma:
[w $< z; w € int; z € int] = (In€nat. z = w $+ $#(succ(n)))
(proof)

lemma zless-imp-succ-zadd:
w $< z = (Inenat. w $+ $#(succ(n)) = intify(z))

(proof)

lemma zless-succ-zadd-lemma:
w € int = w $< w $+ $# succ(n)

(proof)

lemma zless-succ-zadd: w $< w $+ $# succ(n)
(proof)

lemma zless-iff-succ-zadd:
w $< z «— (Inenat. w $+ $#(suce(n)) = intify(z))
(proof)

lemma zless-int-of [simp]: [menat; neEnat] = (3#m $< $#n) «— (m<n)
(proof )

lemma zless-trans-lemma:
[ $< y; y $< z; ¢ € int; y € int; z € int] = = $< 2
(proof)

lemma zless-trans [trans]: [z $< y; y $< 2] = 2 $< 2

(proof)

lemma zless-not-sym: z $< w = - (w $< 2)
(proof )
lemmas zless-asym = zless-not-sym [THEN swap)

lemma zless-imp-zle: z $< w = 2z $< w
(proof)

lemma zle-linear: z $< w | w $< 2

(proof)
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31.10 Less Than or Equals
lemma zle-refl: z $< 2z

(proof)

lemma zle-eg-refl: 1=y = z $< y
(proof)

lemma zle-anti-sym-intify: [z $< y; y $< 2] = intify(z) = intify(y)

(proof)

lemma zle-anti-sym: [z $< y; y $< z; © € int; y € int] = z=y
(proof)

lemma zle-trans-lemma:
[x € int; y € int; z € int; 2 $< y; y $< 2] = 2 $< 2

(proof)

lemma zle-trans [trans]: [z $< y; y $< 2] = 2 $< 2

(proof)

lemma zle-zless-trans [trans]: [i $< j; j $< k] = i $< k
(proof)

lemma zless-zle-trans [trans]: [i $< j; § $< k] = i $< k

{(proof)

lemma not-zless-iff-zle: = (z $< w) «— (w $< 2)
(proof)

lemma not-zle-iff-zless: = (z $< w) +— (w $< 2)

(proof)

31.11 More subtraction laws (for zcompare-ris)

lemma zdiff-zdiff-eq: (z $— y) $— 2z = 2 $— (y $+ 2)
(proof)

lemma zdiff-zdiff-eq2: = $— (y $— 2) = (z $+ 2) $— y
{proof)

lemma zdiff-zless-iff: (z$—y $< 2) +— (z $< 2 $+ y)
(proof)

lemma zless-zdiff-iff: (z $< 2$—y) +— (2 $+ y $< 2)
{proof)

lemma zdiff-eq-iff: [z € int; z € int] = (2$—y = 2) +— (z = z $+ y)
(proof)
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lemma eg-zdiff-iff: [z € int; z € int] = (z = 28—y) «— (z $+ y = 2)
(proof )

lemma zdiff-zle-iff-lemma:
[z € int; z € int] = (28—y $< 2) «— (z $< 2 $+ y)

(proof)

lemma zdiff-zle-iff: (z$—y $< 2) «— (2 $< 2 $+ y)
(proof )

lemma zle-zdiff-iff-lemma:
[z € int; z € int] =>(z $< 28—y) +— (z $+ y $< 2)
(proof)

lemma zle-zdiff-iff: (z $< 28—y) +— (z $+ y $< 2)
(proof)

This list of rewrites simplifies (in)equalities by bringing subtractions to the
top and then moving negative terms to the other side. Use with zadd-ac

lemmas zcompare-rls =
zdiff-def [symmetric]
zadd-zdiff-eq zdiff-zadd-eq zdiff-zdiff-eq zdiff-zdiff-eq2
zdiff-zless-iff zless-zdiff-iff zdiff-zle-iff zle-zdiff-iff
zdiff-eq-iff eq-zdiff-iff

31.12 Monotonicity and Cancellation Results for Instantia-
tion of the CancelNumerals Simprocs

lemma zadd-left-cancel:
[w e int; w" int] = (2 3+ w' = 2 $+ w) +— (w' = w)

(proof)

lemma zadd-left-cancel-intify [simp]:
(z 8+ w’ = z $+ w) +— intify(w’) = intify(w)
(proof)

lemma zadd-right-cancel:
[w e int; w" int] = (W' $+ 2 = w $+ 2) +— (w' = w)
(proof)
lemma zadd-right-cancel-intify [simp):
(w' $+ z = w $+ 2) +— intify(w’) = intify(w)
(proof)

lemma zadd-right-cancel-zless [simp]: (w' $+ z $< w $+ 2) +— (w’ $< w)
(proof)

lemma zadd-left-cancel-zless [simp]: (z $4+ w’ $< z $+ w) +— (w’ $< w)

(proof)
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lemma zadd-right-cancel-zle [simp]: (w' $4 z $< w $+ 2) «— w' < w

(proof)

lemma zadd-left-cancel-zle [simp]: (z $+ w' $< 2 $4+ w) +— w' $< w

(proof)

lemmas zadd-zless-monol

lemmas zadd-zless-mono2

lemmas zadd-zle-monol

lemmas zadd-zle-mono2

zadd-right-cancel-zless [THEN iffD2]

zadd-left-cancel-zless [THEN iffD2]

zadd-right-cancel-zle [THEN iffD2)

zadd-left-cancel-zle [THEN iffD2]

lemma zadd-zle-mono: [w’ $< w; 2/ $< 2] = w’ $+ 2’ $< w $+ 2

(proof)

lemma zadd-zless-mono: [w’ $< w; 2’ $< 2] = w’ $+ 2’ $< w $+ 2

(proof)

31.13 Comparison laws

lemma zminus-zless-zminus [simp]: ($— = $< $— y) +— (y $< )

(proof)

lemma zminus-zle-zminus [simp]: ($— z $< $— y) +— (y $< 2)

(proof)

31.13.1 More inequality lemmas

lemma equation-zminus: [z € int; y € int] = (z = $— y) «+— (y = $— 2)

(proof)

lemma zminus-equation: [z € int; y € int] = ($— =

(proof)

y) «— ($—y

lemma equation-zminus-intify: (intify(z) = $— y) «— (intify(y) = $— x)

(proof)

lemma zminus-equation-intify: ($— z = intify(y)) «— ($— y = intify(z))

(proof)
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31.13.2 The next several equations are permutative: watch out!

lemma zless-zminus: (¢ $< $— y) +— (y $< $— z)

(proof)

lemma zminus-zless: ($— = $< y) +— ($— y $< )
(proof)

lemma zle-zminus: (z $< $— y) +— (y $< $— )

(proof)

lemma zminus-zle: ($— z $< y) +— ($— y $< 1)
(proof )

end

32 Arithmetic on Binary Integers

theory Bin
imports Int Datatype
begin

consts bin :: ¢
datatype
bin = Pls
| Min
| Bit (w € bin, b € bool)  (infixl «BIT»> 90)

consts
integ-of :: 1=

NCons  :: [i,i]=1
bin-succ :: i=1
bin-pred :: i=1
bin-minus :: i=1
bin-adder :: i=1

bin-mult :: [i,i]=1

primrec
integ-of-Pls: integ-of (Pls) =8$# 0
integ-of-Min: integ-of (Min) = $—($#1)

integ-of-BIT: integ-of (w BIT b) = $#b $+ integ-of (w) $+ integ-of (w)

primrec
NCons-Pls: NCons (Pls,b) = cond(b,Pls BIT b,Pls)
NCons-Min: NCons (Min,b) = cond(b,Min,Min BIT b)

NCons-BIT: NCons (w BIT ¢,b) = w BIT ¢ BIT b
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primrec
bin-succ-Pls: bin-succ (Pls) = Pls BIT 1
bin-succ-Min: bin-succ (Min) = Pls
bin-succ-BIT: bin-succ (w BIT b) = cond(b, bin-succ(w) BIT 0, NCons(w,1))

primrec
bin-pred-Pls: bin-pred (Pls) = Min
bin-pred-Min: bin-pred (Min) = Min BIT 0

bin-pred-BIT: bin-pred (w BIT b) = cond(b, NCons(w,0), bin-pred(w) BIT 1)

primrec
bin-minus-Pls:
bin-minus (Pls) = Pls
bin-minus-Min:
bin-minus (Min) = Pls BIT 1

bin-minus-BIT:
bin-minus (w BIT b) = cond(b, bin-pred( NCons(bin-minus(w),0)),
bin-minus(w) BIT 0)

primrec
bin-adder-Pls:
bin-adder (Pls) = (Aw€bin. w)
bin-adder-Min:
bin-adder (Min) = (Awebin. bin-pred(w))

bin-adder-BIT:
bin-adder (v BIT z) =
(Awebin.
bin-case (v BIT z, bin-pred(v BIT z),
Aw y. NCons(bin-adder (v) ‘ cond(z and y, bin-succ(w), w),
T zor y),
w))

definition
bin-add :: [i,i]=i where
bin-add(v,w) = bin-adder(v) ‘w

primrec
bin-mult-Pls:
bin-mult (Pls,w) = Pls
bin-mult-Min:
bin-mult (Min,w) = bin-minus(w)

bin-mult-BIT":
bin-mult (v BIT b,w) = cond(b, bin-add(NCons(bin-mult(v,w),0),w),
NCons(bin-mult(v,w),0))

syntax
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-Int0 i («#()0»)

-Intl i (HOD)

-Int2 i (H(O)2)

-Neg-Int1 :: i («#—(1>)

-Neg-Int2 :: i («#—()2»)
translations

#0 = CONST integ-of (CONST Pls)

#1 = CONST integ-of (CONST Pls BIT 1)

42 = CONST integ-of (CONST Pls BIT 1 BIT 0)
#—1 = CONST integ-of (CONST Min)

#—2 = CONST integ-of (CONST Min BIT 0)

syntax
-Int :: num-token = i («(<open-block notation=:literal number»#-)> 1000)
-Neg-Int :: num-token = i («<(<open-block notation=:literal number»»#—-)» 1000)

syntax-consts
-Int0 -Int1 -Int2 -Int -Neg-Intl -Neg-Int2 -Neg-Int = integ-of

(ML)

declare bin.intros [simp,TC]

lemma NCons-Pls-0: NCons(Pls,0) = Pls
(proof)

lemma NCons-Pls-1: NCons(Pls,1) = Pls BIT 1
(proof)

lemma NCons-Min-0: NCons(Min,0) = Min BIT 0
(proof)

lemma NCons-Min-1: NCons(Min,1) = Min
(proof)

lemma NCons-BIT: NCons(w BIT z,b) = w BIT = BIT b
(proof)

lemmas NCons-simps [simp] =
NCons-Pls-0 NCons-Pls-1 NCons-Min-0 NCons-Min-1 NCons-BIT

lemma integ-of-type [TC]: w € bin = integ-of (w) € int

(proof)
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lemma NCons-type [TC): [w € bin; b € bool] = NCons(w,b) € bin
(proof)

lemma bin-succ-type [TC]: w € bin = bin-succ(w) € bin

(proof)

lemma bin-pred-type [TC): w € bin = bin-pred(w) € bin
(proof)

lemma bin-minus-type [TC]: w € bin = bin-minus(w) € bin

(proof)

lemma bin-add-type [rule-format]:
v € bin = Y webin. bin-add(v,w) € bin
(proof)

declare bin-add-type [TC]

lemma bin-mult-type [TC]: [v € bin; w € bin] = bin-mult(v,w) € bin
(proof)
32.0.1 The Carry and Borrow Functions, bin-succ and bin-pred

lemma integ-of-NCons [simp):
[w € bin; b € bool] = integ-of (NCons(w,b)) = integ-of (w BIT b)
(proof )

lemma integ-of-succ [simpl:
w € bin = integ-of (bin-succ(w)) = $#1 $+ integ-of (w)
(proof)

lemma integ-of-pred [simp]:
w € bin = integ-of (bin-pred(w)) = $— (3#1) $+ integ-of (w)
(proof )

32.0.2 bin-minus: Unary Negation of Binary Integers

lemma integ-of-minus: w € bin = integ-of (bin-minus(w)) = $— integ-of (w)
(proof)

32.0.3 bin-add: Binary Addition

lemma bin-add-Pls [simp]: w € bin = bin-add(Pls,w) = w
(proof)

lemma bin-add-Pls-right: w € bin = bin-add(w,Pls) = w
(proof)

lemma bin-add-Min [simp]: w € bin = bin-add(Min,w) = bin-pred(w)
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(proof)

lemma bin-add-Min-right: w € bin = bin-add(w,Min) = bin-pred(w)
{proof)

lemma bin-add-BIT-Pls [simp]: bin-add(v BIT z,Pls) = v BIT z
(proof)

lemma bin-add-BIT-Min [simp]: bin-add(v BIT xz,Min) = bin-pred(v BIT z)
(proof)

lemma bin-add-BIT-BIT [simp]:
[w € bin; y € bool]
= bin-add(v BIT z, w BIT y) =
NCons(bin-add(v, cond(x and y, bin-succ(w), w)), x zor y)
(proof)

lemma integ-of-add [rule-format]:
v € bin =
YV webin. integ-of (bin-add(v,w)) = integ-of (v) $+ integ-of (w)
{proof)

lemma diff-integ-of-eq:
[v € bin; w € bin]
= integ-of (v) $— integ-of (w) = integ-of (bin-add (v, bin-minus(w)))
(proof )

32.0.4 bin-mult: Binary Multiplication

lemma integ-of-mult:

[v € bin; w € bin]

= integ-of (bin-mult(v,w)) = integ-of (v) $* integ-of (w)
(proof)

32.1 Computations

lemma bin-succ-1: bin-succ(w BIT 1) = bin-succ(w) BIT 0

(proof)

lemma bin-succ-0: bin-succ(w BIT 0) = NCons(w,1)
(proof)

lemma bin-pred-1: bin-pred(w BIT 1) = NCons(w,0)
(proof)

lemma bin-pred-0: bin-pred(w BIT 0) = bin-pred(w) BIT 1
(proof)
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lemma bin-minus-1: bin-minus(w BIT 1) = bin-pred( NCons(bin-minus(w), 0))
(proof)

lemma bin-minus-0: bin-minus(w BIT 0) = bin-minus(w) BIT 0

(proof)

lemma bin-add-BIT-11: w € bin = bin-add(v BIT 1, w BIT 1) =
NCons(bin-add(v, bin-succ(w)), 0)
(proof )

lemma bin-add-BIT-10: w € bin = bin-add(v BIT 1, w BIT 0) =
NCons(bin-add(v,w), 1)
(proof)

lemma bin-add-BIT-0: [w € bin; y € bool]
= bin-add(v BIT 0, w BIT y) = NCons(bin-add(v,w), y)
(proof)

lemma bin-mult-1: bin-mult(v BIT 1, w) = bin-add(NCons(bin-mult(v,w),0), w)
(proof)

lemma bin-mult-0: bin-mult(v BIT 0, w) = NCons(bin-mult(v,w),0)
(proof)

lemma int-of-0: $#0 = #0
(proof)

lemma int-of-succ: $# suce(n) = #1 $+ $#n
(proof)

lemma zminus-0 [simp]: $— #0 = #0
(proof)

lemma zadd-0-intify [simpl: #0 $+ z = intify(z)
(proof)

lemma zadd-0-right-intify [simp]: z $+ #0 = intify(z)
(proof)

lemma zmult-1-intify [simp]: #1 $x z = intify(z)
(proof)
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lemma zmult-1-right-intify [simp]: z $x #1 = intify(z)
(proof)

lemma zmult-0 [simp]: #0 $% z = #0
(proof)

lemma zmult-0-right [simpl: z $x #0 = #0
(proof)

lemma zmult-minus! [simp]: #—1 $x z = $—=z

(proof)

lemma zmult-minus1-right [simpl: z $x #—1 = $—2

(proof)

32.2 Simplification Rules for Comparison of Binary Num-
bers

Thanks to Norbert Voelker
lemma eg-integ-of-eq:
[v € bin; w € bin]
= ((integ-of (v)) = integ-of (w)) +—
iszero (integ-of (bin-add (v, bin-minus(w))))

{proof)

lemma iszero-integ-of-Pls: iszero (integ-of (Pls))
(proof)

lemma nonzero-integ-of-Min: — iszero (integ-of (Min))
{proof)

lemma iszero-integ-of-BIT:

[w € bin; z € bool]

= iszero (integ-of (w BIT x)) «— (z=0 A iszero (integ-of (w)))
(proof)

lemma iszero-integ-of-0:
w € bin = iszero (integ-of (w BIT 0)) «— iszero (integ-of (w))

(proof)

lemma iszero-integ-of-1: w € bin = — iszero (integ-of (w BIT 1))

(proof)
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lemma less-integ-of-eq-neg:
[v € bin; w € bin]
= integ-of (v) $< integ-of (w)
+— znegative (integ-of (bin-add (v, bin-minus(w))))
(proof )

lemma not-neg-integ-of-Pls: — znegative (integ-of (Pls))
(proof)

lemma neg-integ-of-Min: znegative (integ-of (Min))
(proof)

lemma neg-integ-of-BIT:
[w € bin; x € bool]
= znegative (integ-of (w BIT x)) +— znegative (integ-of (w))

(proof)

lemma le-integ-of-eq-not-less:
(integ-of (z) $< (integ-of (w))) +— — (integ-of (w) $< (integ-of (z)))
(proof)

declare bin-succ-BIT [simp del]
bin-pred-BIT [simp del]
bin-minus-BIT [simp del]
NCons-Pls [simp del]
NCons-Min [simp del]
bin-adder-BIT [simp del)
bin-mult-BIT [simp del]

declare integ-of-Pls [simp del| integ-of-Min [simp del] integ-of-BIT [simp del]

lemmas bin-arith-extra-simps =
integ-of-add [symmetric]
integ-of-minus [symmetric]
integ-of-mult [symmetric]
bin-succ-1 bin-succ-0
bin-pred-1 bin-pred-0
bin-minus-1 bin-minus-0
bin-add-Pls-right bin-add-Min-right
bin-add-BIT-0 bin-add-BIT-10 bin-add-BIT-11
diff-integ-of-eq
bin-mult-1 bin-mult-0 NCons-simps
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lemmas bin-arith-simps =
bin-pred-Pls bin-pred-Min
bin-succ-Pls bin-succ-Min
bin-add-Pls bin-add-Min
bin-minus-Pls bin-minus-Min
bin-mult-Pls bin-mult-Min
bin-arith-extra-simps

lemmas bin-rel-simps =
eq-integ-of-eq iszero-integ-of-Pls nonzero-integ-of-Min
iszero-integ-of-0 iszero-integ-of-1
less-integ-of-eq-neg
not-neg-integ-of-Pls neg-integ-of-Min neg-integ-of-BIT
le-integ-of-eq-not-less

declare bin-arith-simps [simp]
declare bin-rel-simps [simp)

lemma add-integ-of-left [simp]:

[v € bin; w € bin]

= integ-of (v) $+ (integ-of(w) $+ z) = (integ-of (bin-add(v,w)) $+ z)
(proof)

lemma mult-integ-of-left [simp]:

[v € bin; w € bin]

= integ-of (v) $x (integ-of (w) $x 2) = (integ-of (bin-mult(v,w)) $x 2)
(proof)

lemma add-integ-of-diff1 [simp):
[v € bin; w € bin]
= integ-of (v) $+ (integ-of (w) $— ¢) = integ-of (bin-add(v,w)) $— (c)
(proof )

lemma add-integ-of-diff2 [simp):
[v € bin; w € bin]
= integ-of (v) $+ (c $— integ-of (w)) =
integ-of (bin-add (v, bin-minus(w))) $+ (c)
(proof)

declare int-of-0 [simp] int-of-succ [simp]
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lemma zdiff0 [simp]: #0 $— = = $—=z
(proof)

lemma zdiff0-right [simp]: © $— #0 = intify(x)
(proof)

lemma zdiff-self [simp]: v $— z = #0
(proof)

lemma znegative-iff-zless-0: k € int = znegative(k) <— k $< #0

(proof)

lemma zero-zless-imp-znegative-zminus: [#0 $< k; k € int] = znegative($—Fk)

(proof)

lemma zero-zle-int-of [simp]: #0 $< $# n
(proof)

lemma nat-of-0 [simp]: nat-of (#0) = 0
(proof)

lemma nat-le-int0-lemma: [z $< $#0; z € int] = nat-of (z) = 0
(proof)

lemma nat-le-int0: z $< $#0 = nat-of (z) = 0

(proof)

lemma int-of-eq-0-imp-natify-eq-0: $# n = #0 = natify(n) = 0
(proof)

lemma nat-of-zminus-int-of : nat-of (3— $# n) = 0
(proof)

lemma int-of-nat-of : #0 $< 2z = $# nat-of (z) = intify(z)
(proof)

declare int-of-nat-of [simp] nat-of-zminus-int-of [simp]

lemma int-of-nat-of-if: $# nat-of (z) = (if #0 $< z then intify(z) else #0)
(proof)

lemma zless-nat-iff-int-zless: [m € nat; z € int] = (m < nat-of (z)) +— ($#m
$< 2)
(proof)
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lemma zless-nat-conj-lemma: $#0 $< z = (nat-of (w) < nat-of(z)) +— (w $<
z)
(proof)

lemma zless-nat-conj: (nat-of (w) < nat-of(z)) «— ($#0 $< z A w $< 2)
(proof)

lemma integ-of-minus-reorient [simp:
(integ-of (w) = $— z) «— (3— = = integ-of (w))
(proof)

lemma integ-of-add-reorient [simpl:
(integ-of (w) = z $+ y) «— (x $+ y = integ-of (w))
(proof )

lemma integ-of-diff-reorient [simp:
(integ-of (w) = z $— y) «— (z $— y = integ-of (w))
(proof)

lemma integ-of-mult-reorient [simp):
(integ-of (w) = z $% y) +— (z $* y = integ-of (w))
(proof)

lemmas [simp] =
zminus-equation [where y = integ-of (w)]
equation-zminus [where z = integ-of (w)]
for w

lemmas [iff] =
zminus-zless [where y = integ-of (w)]
zless-zminus [where z = integ-of (w)]
for w

lemmas [iff] =
zminus-zle [where y = integ-of (w)]
zle-zminus [where x = integ-of (w)]
for w

lemmas [simp] =
Let-def [where s = integ-of (w)] for w
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lemma zless-iff-zdiff-zless-0: (z $< y) +— (28—y $< #0)
(proof )

lemma eg-iff-zdiff-eq-0: [z € int; y € int] = (z = y) «— (28—y = #0)
(proof )

lemma zle-iff-zdiff-zle-0: (z $< y) +— (285—y $< #0)
{proof)

lemma left-zadd-zmult-distrib: i$xu $+ (j$xu $+ k) = (i$+7)$xu $+ &
{proof)

lemma eq-add-iff1: (i$xu $+ m = j8xu $4+ n) «— ((i$—j)$*u $+ m = intify(n))
(proof)

lemma eq-add-iff2: (i$*xu $+ m = j$xu $+ n) «— (intify(m) = (j8—1)$*u $+ n)
{proof)

context fixes n :: ¢
begin

lemmas rel-iff-rel-0-rls =
zless-iff-zdiff-zless-0 [where y = u $+ o]
eq-iff-zdiff-eq-0 [where y = u $+ ]
2le-iff-zdiff-zle-0 [where y = u $+ ]
zless-iff-zdiff-zless-0 [where y = n|
eq-iff-zdiff-eq-0 [where y = n]
zle-iff-zdiff-zle-0 [where y = n]
for u v

lemma less-add-iff1: (i$xu $+ m $< j$*u $4+ n) +— ((i$—j)$*u $+ m $< n)
(proof)

lemma less-add-iff2: (i$xu $+ m $< j$*u $+ n) +— (m $< (j$—1)$*u $+ n)
(proof)

end

lemma le-add-iff1: (i%$xu $+ m $< j$xu $+ n) +— ((18—7)$*u $+ m $< n)
(proof)
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lemma le-add-iff2: (i$xu $+ m $< j$xu $+ n) +— (m $< (j8—0)$*u $+ n)
{proof)

(ML)

32.2.1 Examples

combine-numerals-prod (products of separate literals)

lemma #5 $x x $x #3 = y (proof)
schematic-goal y2 $+ 2242 = y $+ y2 (proof)
lemma oo : int = 1 $+ (I $+ #2) $+ oo = oo (proof)

lemma #9%xz $+ y = x$x#23 $+ 2 (proof)
lemma y $+ z = = $+ z (proof)

lemma z : int = z $+ y $+ 2z = =z $+ 2z (proof)

lemma z : int = y $+ (2 $+ z) = 2z $+ = (proof)

lemma 2 : int = z $+ y $+ z = (2 $+ y) $+ (2 $+ w) (proof)
lemma 2 : int = z$xy $+ 2z = (2 $+ y) $+ (y$xz $+ w) (proof)

lemma #—3 $x = $+ y $< = $x #2 $+ 2 (proof)
lemma y $+ z $< z $+ 2 (proof)
lemma z $+ y $+ 2 $< = $+ 2 (proof)

lemma y $+ (z $+ z) $< 2z $+ z (proof)
lemma z $+ y $+ 2z $< (2 $+ y) $+ (z $+ w) (proof)
lemma z$xy $+ z $< (2 $+ y) $+ (y$xz $+ w) (proof)

lemma [ $+ #2 $+ #2 $+ #2 $+ (I $+ #2) $+ (00 $+ #2) = uu (proof)
lemma v : int = #2 $% u = u (proof)

lemma (i $+ j $+ #12 $+ k) $— #15 = y (proof)

lemma (i $+ j $+ #12 $+ k) $— #5 = y (proof)

lemma y $— b $< b (proof)
lemma y $— (#3 3% b $+ ¢) $< b §— #2 $x ¢ (proof)

lemma (#2 $x z $— (u $x v) $4+ y) $— v $x #8 $x u = w (proof)
lemma (#2 $* = $ u $x v $+ (u $% v) S #4 $+ y) $— v $x u $x #4 = w

(proof )
lemma (#2 $x © $x u $x v $+ (u $x v) $x #4 $+ y) $— v $x w = w (proof)
lemma u $x v $— (2 $* u $x v $+ (u $x v) $* #4 $+ y) = w (proof)

lemma (¢ $+ j $+ #12 $+ k) = u $+ #15 $+ y (proof)
lemma (i $+ j $x #2 $+ #12 $+ k) = j $+ #5 $+ y (proof)

lemma #2 $x y $+ #3 $x 2 $+ #6 $x w $+ #2 $x y $+ #3 $x 2 $+ #2 $x
u=F2 Sy’ $+ #3 $x 2/ S+ #6 $x w’ $+ #2 $x vy’ $+ #3 $x 2/ $+ u $+ w
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(proof)

lemma o $+ $—(b$+c) $ = d (proof)

lemma a $+ $—(b$+c) $— b = d (proof)

negative numerals

lemma (i $+ j $+ #—2 $+ k) $— (u $+ #5 $+ y) = 2z (proof)
lemma (¢ $+ j $+ #—38 $+ k) $< u $+ #5 $+ y (proof)
lemma (¢ $+ j $+ #3 $+ k) $< u $+ #—6 $+ y (proof)
lemma (¢ $+ j $+ #—12 $+ k) $— #15 = y (proof)

lemma (i $+ j $+ #12 $+ k) $— #—15 = y (proof)

lemma (¢ $+ j $+ #—12 $+ k) $— #—15 = y (proof)

Multiplying separated numerals

lemma #6 $x ($# = $x #2) = wu (proof)
lemma #/ $x (34 = $x $# ) $x (#2 $x $# x) = uu (proof)

end

33 The Division Operators Div and Mod

theory IntDiv
imports Bin OrderArith
begin

definition
quorem :: [i,i] = o where
quorem = Aa,b) (gq,r).
a= b%xq $+ r A
(#03<b N #08<r A r$<b | = (#08<b) A bS<r A r $< #0)

definition
adjust :: [i,i] = 7 where
adjust(b) = Xq,r). if #0 $< r$—b then <#28%xq $+ #1,r$—b>
else <#2%xq,r>
definition

posDivAlg :: 1 = i where

posDivAlg(ab) =
wfrec(measure(intxint, A{a,b). nat-of (a $— b $+ #1)),
ab,
Ma,b) f.if (a$<b | bS<H#0) then <#0,a>
else adjust(b, f “ <a,#2%xb>))
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definition
negDivAlg :: i = i where

negDivAlg(ab) =
wfrec(measure(intxint, A(a,b). nat-of ($— a $— b)),
ab,
Ma,b) f.if (#0 $< a$+b | b$<#0) then <#—1,a$3+b>
else adjust(b, f “ <a,#2%xb>))

definition
negateSnd :: i = i where
negateSnd = X(q,r). <q, $—r>

definition
divAlg :: i = i where
divAlg =
Ma,b). if #0 $< a then
if #0 $< b then posDivAlg ({a,b))
else if a=#0 then <#0,#0>
else negateSnd (negDivAlg (<$—a,$—b>))

else
if #03<b then negDivAlg ({a,b))
else negateSnd (posDivAlg (<$—a,$—b>))
definition
zdiv :: |ii]=i (infix]l <zdivy 70) where

a zdiv b = fst (divAlg (<intify(a), intify(b)>))

definition
zmod :: [i,i]=i (infix] <zmod> 70) where
a zmod b = snd (divAlg (<intify(a), intify(b)>))

lemma zspos-add-zspos-imp-zspos: [#0 $< z; #0 $< y] = #0 $< %+ y
(proof)

lemma zpos-add-zpos-imp-zpos: [#0 $< x; #0 $< y] = #0 $< z $+ y
(proof)

lemma zneg-add-zneg-imp-zneg: [z $< #0; y $< #0] = z $+ y $< #0
(proof)
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lemma zneg-or-0-add-zneg-or-0-imp-zneg-or-0:
[z $< #0; y $< #0] = 2 8+ y $< #0
(proof)

lemma zero-lt-zmagnitude: [#0 $< k; k € int] = 0 < zmagnitude(k)

(proof)

lemma zless-add-succ-iff:
(w $< 2z $+ $# succ(m)) «— (w $< z $+ $#m | intify(w) = z $+ $#m)
{proof )

lemma zadd-succ-lemma:
z € int = (w $4 $# succ(m) $< 2) +— (w $+ $#m $< 2)
(proof)

lemma zadd-succ-zle-iff: (w $+ $# succ(m) $< 2) +— (w $+ $#m $< 2)
(proof)

lemma zless-add1-iff-zle: (w $< z $+ #1) +— (w$<z)
(proof )

lemma addi-zle-iff: (w $+ #1 $< 2) +— (w $< 2)
(proof)

lemma addl-left-zle-iff: (#1 $+ w $< 2) +— (w $< 2)
(proof)

lemma zmult-mono-lemma: k € nat = 1 $< j = i $x $H#k $< j S $S#k

(proof)

lemma zmult-zle-monol: [i $< j; #0 $< k] = 8k $< j$«k

(proof)

lemma zmult-zle-monol-neg: [i $< j; k $< #0] = 8k $< i$«k
(proof)

lemma zmult-zle-mono2: [i $< j; #0 $< k] = k$xi $< kS«
(proof )
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lemma zmult-zle-mono2-neg: [i $< j; k $< #0] = k$xj $< k=i
(proof)

lemma zmult-zle-mono:
[i$< j; kS$< I, #0 $<j; #0 $< k] = %k $< 58«1
(proof)

lemma zmult-zless-mono2-lemma [rule-format]:
[13<j; k € nat] = 0<k — $#k $x i $< $#k $x j
(proof)

lemma zmult-zless-mono2: [i$<j; #0 $< k] = k$xi $< k$xj

(proof)

lemma zmult-zless-monol: [i$<j; #0 $< k] = i$xk $< j8«k

(proof)

lemma zmult-zless-mono:
[i $< j; kS<; #03%<j; #0 $< k] = i$xk $< j3x!
(proof)

lemma zmult-zless-monol-neg: [i $< j; k $< #0] = 9k $< %k
(proof)

lemma zmult-zless-mono2-neg: [i $< j; k $< #0] = k$xj $< k$xi

{(proof)

lemma zmult-eq-lemma:
[m € int; n € int] = (m = #0 | n = #0) +— (m3xn = #0)

(proof)

lemma zmult-eq-0-iff [iff]: (m$*xn = #0) <— (intify(m) = #0 | intify(n) = #0)
(proof)

lemma zmult-zless-lemma:

[k € int; m € int; n € int]

= (m3xk $< n¥xk) «— ((#0 $< k A m8<n) | (k $< #0 A n$<m))
(proof)
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lemma zmult-zless-cancel2:
(m$xk $§< n$xk) «— ((#0 $< k A m$<n) | (k $< #0 A n$<m))
(proof)

lemma zmult-zless-cancell :
(k$xm $< k$xn) «+— ((#0 $< k A m¥<n) | (k $< #0 A nS<m))
(proof)

lemma zmult-zle-cancel2:
(m8xk $< n¥xk) +— ((#0 $< k —> m¥<n) A (k $< #0 — n¥<m))
(proof)

lemma zmult-zle-cancell :
(k$xm $< k$xn) +— ((#0 $< k — m8<n) A (k $< #0 — n$<m))
(proof)

lemma int-eg-iff-zle: [m € int; n € int] = m=n +— (M $< n A n $< m)
(proof)

lemma zmult-cancel2-lemmas:
[k € int; m € int; n € int] = (m$xk = n$«k) «— (k=#0 | m=n)
(proof)

lemma zmult-cancel2 [simp:
(m$xk = n$xk) «+— (intify(k) = #0 | intify(m) = intify(n))
(proof)

lemma zmult-cancell [simp]:
(k$xm = k$xn) <— (intify(k) = #0 | intify(m) = intify(n))
(proof)

33.1 Uniqueness and monotonicity of quotients and remain-
ders

lemma unique-quotient-lemma:
[68xq’ $+ r' $< bSxq $+ 7; #0 $< r’; #0 $< b; r $< b]
= q¢'8< ¢

(proof)

lemma unique-quotient-lemma-neg:
[68xq" $+ r' $< bSxq $+ r; 7 $< #0; b $< #0; b $< ]
= ¢ 8< ¢

(proof)

lemma unique-quotient:
[quorem ({a,b), (q,)); quorem ({a,b), <q',;r’>); b € int; b # #0;
q € int; ¢’ € int] = q¢=¢q’
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(proof)

lemma unique-remainder:
[quorem ({a,b), (q,r)); quorem ({a,b), <q',r'>); b € int; b # #0;
q € int; q' € int;
r€ant; r’ € int] = r=r’
(proof)

33.2 Correctness of posDivAlg, the Division Algorithm for
a>0 and b>0

lemma adjust-eq [simp]:
adjust(b, {q,r)) = (let diff = r$—b in
if #0 $< diff then <#2%xq $+ #1,diff >
else <#2%xq,r>)
(proof)

lemma posDivAlg-termination:

[#0 $< b; = a $< 0]

= nat-of (a $— #2 $* b 3+ #1) < nat-of(a $— b $+ #1)
(proof)

lemmas posDivAlg-unfold = def-wfrec [OF posDivAlg-def wf-measure]

lemma posDivAlg-eqn:
[#0 $< b; a € int; b € int] =
posDivAlg({a,b)) =
(if a$<b then <#0,a> else adjust(b, posDivAlg (<a, #2%%b>)))
(proof)

lemma posDivAlg-induct-lemma [rule-format]:
assumes prem:
Aa b. [a € int; b € int;
- (a$< b | b$< #0) — P(<a, #2 $x b>)] = P({(a,b))
shows (u,v) € intxint = P({u,v))

(proof)

lemma posDivAlg-induct [consumes 2]:
assumes u-int: v € int
and v-int: v € int
and ih: Aa b. [a € int; b € int;
- (a8<b|b3< #0) — P(a, #2 $x b)] = P(a,b)
shows P(u,v)
(proof)

lemma intify-eq-0-iff-zle: intify(m) = #0 +— (m $< #0 A #0 $< m)
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{proof)

33.3 Some convenient biconditionals for products of signs

lemma zmult-pos: [#0 $< i; #0 $< j] = #0 $< i $x j
(proof)

lemma zmult-neg: [i $< #0; j $< #0] = #0 $< i $x j
(proof )

lemma zmult-pos-neg: [#0 $< i; j $< #0] = @ $x j $< #0
(proof )

lemma int-0-less-lemma:

[z € int; y € int]

= (#0 $< z $*x y) +— (#0S< z A #08< y |z 3< #0 N y $< #0)
(proof)

lemma int-0-less-mult-iff:
(#0 $< 2 $x y) «— (#0 $< z AN #0 $< y | z $< #0 N y $< #0)
(proof)

lemma int-0-le-lemma:

[z € int; y € int]

— (#0$< 2 $xy) «— (F0S< z A#03< y | z$< #0 Ay $< #0)
(proof)

lemma int-0-le-mult-iff:
(#0 $< x $x y) «— (#0 $< z AN #0 3< y) | (z $< #0 A y $< #0))
(proof)

lemma zmult-less-0-iff :
(% y < #0) «— (#0S< z ANy $< #0 | z $< #0 N #0 $< y)
(proof)

lemma zmult-le-0-iff:
(8% y $< #0) +— (#0 3< z Ay $< #0 | £ $< #0 N #0 $< y)
(proof)

lemma posDivAlg-type [rule-format):
[a € int; b € int] = posDivAlg({a,b)) € int x int
(proof)
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lemma posDivAlg-correct [rule-format]:

[a € int; b € int]

= #0 $< a — #0 $< b — quorem ({a,b), posDivAlg({a,b)))
(proof)

33.4 Correctness of negDivAlg, the division algorithm for
a<0 and b>0

lemma negDivAlg-termination:

[#0 $< b; a $+ b $< #0]

= nat-of (§— a $— #2 $* b) < nat-of ($— a $— b)
(proof)

lemmas negDivAlg-unfold = def-wfrec [OF negDivAlg-def wf-measure

lemma negDivAlg-eqn:
[#0 $< b; a € int; b € int] =
negDivAlg({a,b)) =
(if #0 $< a$+b then <#—1,a$+b>
else adjust(b, negDivAlg (<a, #2%xb>)))
(proof)

lemma negDivAlg-induct-lemma [rule-format]:
assumes prem:
Na b. [a € int; b € int;
S (#08< a$+ b | b3< #0) — P(<a, #2 $x b>)]
— P((ah)
shows (u,v) € intxint = P((u,v))
(proof)

lemma negDivAlg-induct [consumes 2]:
assumes u-int: v € int
and v-int: v € int
and ih: Na b. [a € int; b € int;
— (#0 $< a $+ b | b$< #0) — P(a, #2 $+ )]
= P(a,b)
shows P(u,v)

(proof)

lemma negDivAlg-type:
[a € int; b € int] = negDivAlg({a,b)) € int * int
(proof )

lemma negDivAlg-correct [rule-format]:
[a € int; b € int]
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= a $< #0 — #0 $< b — quorem ({a,b), negDivAlg({a,b)))
(proof)

33.5 Existence shown by proving the division algorithm to
be correct

lemma quorem-0: [b # #0; b € int] = quorem (<#0,b>, <#0,#0>)
(proof )

lemma posDivAlg-zero-divisor: posDivAlg(<a,#0>) = <#0,a>

(proof)

lemma posDivAlg-0 [simp]: posDivAlg (<#0,b>) = <#0,#0>
(proof)

lemma linear-arith-lemma: — (#0 $< #—1 $+ b) = (b $< #0)
(proof)

lemma negDivAlg-minus! [simp]: negDivAlg (<#—1,b>) = <#—1, b$—#1>
(proof)

lemma negateSnd-eq [simp]: negateSnd ({q,r)) = <q, $—r>
(proof)

lemma negateSnd-type: qr € int * int = negateSnd (qr) € int * int
{proof )

lemma quorem-neg:
[quorem (<$—a,$—b>, qr); a € int; b € int; qr € int * int]
= quorem ({a,b), negateSnd(qr))

(proof)

lemma divAlg-correct:
[b# #0; a € int; b€ int] = quorem ({a,b), divAlg({a,b)))
(proof )

lemma divAlg-type: [a € int; b € int] = divAlg({a,b)) € int * int
(proof)

lemma zdiv-intifyl [simp]: intify(z) zdiv y = z 2div y
(proof)

lemma zdiv-intify2 [simp]: © zdiv intify(y) = z zdiv y
(proof )
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lemma zdiv-type [iff,TC): z zdiv w € int
(proof)

lemma zmod-intifyl [simp]: intify(z) zmod y = = zmod y
(proof )

lemma zmod-intify2 [simp]: z zmod intify(y) = = zmod y
(proof)

lemma zmod-type [iff,TC]: z zmod w € int
{proof)

lemma DIVISION-BY-ZERO-ZDIV: a zdiv #0 = #0
{proof)

lemma DIVISION-BY-ZERO-ZMOD: a zmod #0 = intify(a)
{proof)

lemma raw-zmod-zdiv-equality:
la € int; b € int] = a = b $x (a zdiv b) $+ (a zmod b)
(proof)

lemma zmod-zdiv-equality: intify(a) = b $* (a zdiv b) $+ (a zmod b)
(proof)

lemma pos-mod: #0 $< b = #0 $< a zmod b A a zmod b $< b
(proof)

lemmas pos-mod-sign = pos-mod [THEN conjuncti)
and pos-mod-bound = pos-mod [THEN conjunct2)

lemma neg-mod: b $< #0 = a zmod b $< #0 N b $< a zmod b
(proof)

lemmas neg-mod-sign = neg-mod [THEN conjunctl]
and neg-mod-bound = neg-mod [THEN conjunct2)

lemma quorem-div-mod:
[b# #0; a € int; b € int]
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= quorem ({(a,b), <a zdiv b, a zmod b>)
(proof)

lemma quorem-div:
[quorem({a,b),(q,r)); b # #0; a € int; b € int; q € int]
= azdivb=q

(proof )

lemma quorem-mod:
[quorem({a,b),(q,r)); b # #0; a € int; b € int; q € int; r € int]
= azmod b=r

(proof)

lemma zdiv-pos-pos-trivial-raw:
[a € int; b€ int; #0 3< a; a $3< b = a 2div b = #0
(proof)

lemma zdiv-pos-pos-trivial: [#0 $< a; a $< b] = a zdiv b = #0

(proof)

lemma zdiv-neg-neg-trivial-raw:
[a € int; b€ int; a $3< #0; b$< a] = a 2div b = #0
(proof)

lemma zdiv-neg-neg-trivial: Ja $< #0; b $< o] = a zdiv b = #0

(proof)

lemma zadd-le-0-lemma: [a$+b $< #0; #0 $< a; #0 $< b] = False
(proof)

lemma zdiv-pos-neg-trivial-raw:
[a € int; b€ int; #0 $< a; a$+b $< #0] = a zdiv b = #—1
(proof)

lemma zdiv-pos-neg-trivial: [#0 $< a; a$+b $< #0] = a zdiv b = #—1
(proof)

lemma zmod-pos-pos-trivial-raw:
[a € int; b€ int; #0$< a; a$< b = a zmod b = a
(proof)

lemma zmod-pos-pos-trivial: [#0 $< a; a $< b] = a zmod b = intify(a)

{(proof)

lemma zmod-neg-neg-trivial-raw:
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[a € int; b€ int; a8< #0; b$< a] = a zmod b = a
(proof)

lemma zmod-neg-neg-trivial: Ja $< #0; b $< a] = a zmod b = intify(a)

(proof)

lemma zmod-pos-neg-trivial-raw:
[a € int; b€ int; #0 $< a; a$+b $< #0] = a zmod b = a$+d
(proof)

lemma zmod-pos-neg-trivial: [#0 $< a; a$+b $< #0] = a zmod b = a$+b
(proof )

lemma zdiv-zminus-zminus-raw:
la € int; b€ int] = ($—a) zdiv ($—b) = a zdiv b

(proof)

lemma zdiv-zminus-zminus [simp]: ($—a) zdiv ($—b) = a zdiv b
(proof)

lemma zmod-zminus-zminus-raw:
[a € int; b€ int] = (3—a) zmod ($—b) = $— (a zmod b)
(proof)

lemma zmod-zminus-zminus [simp: (3—a) zmod ($—b) = $— (a zmod b)

(proof)
33.6 division of a number by itself
lemma self-quotient-auzl: [#0 $< a; a = 7 $+ a$*q; r $< o] = #1 $< ¢

(proof)

lemma self-quotient-auz2: [#0 $< a; a = r $+ a$xq; #0 $< 1] = q $< #1
(proof)

lemma self-quotient:
[quorem({a,a),{q,r)); a € int; q € int; a # #0] = q = #1
(proof )

lemma self-remainder:

[quorem({a,a),{q,r)); a € int; ¢ € int; r € int; a # #0] = r = #0
(proof )
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lemma zdiv-self-raw: [a # #0; a € int] = a zdiv a = #1
(proof)

lemma zdiv-self [simp]: intify(a) # #0 = a zdiv a = #1
(proof)

lemma zmod-self-raw: a € int = a zmod a = #0
(proof)

lemma zmod-self [simp]: a zmod a = #0

(proof)

33.7 Computation of division and remainder

lemma zdiv-zero [simpl: #0 zdiv b = #0
{proof)

lemma zdiv-eqg-minusl: #0 $< b = #—1 zdiv b = #—1

{proof)

lemma zmod-zero [simp]: #0 zmod b = #0
{proof)

lemma zdiv-minusl: #0 $< b = #—1 zdiv b = #—1
(proof)

lemma zmod-minusl: #0 $< b = #—1 2zmod b = b $— #1
(proof )

lemma z2div-pos-pos: [#0 $< a; #0 $< b]
= a zdiv b = fst (posDivAlg(<intify(a), intify(b)>))
(proof)

lemma zmod-pos-pos:
[#0 $< a; #0 $< b]
= a zmod b = snd (posDivAlg(<intify(a), intify(b)>))

(proof)

lemma zdiv-neg-pos:

[a $< #0; #0 $< 0]

= a 2div b = fst (negDivAlg(<intify(a), intify(b)>))
(proof)

lemma zmod-neg-pos:
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[a $< #0; #0 $< 0]
= a zmod b = snd (negDiwAlg(<intify(a), intify(b)>))
(proof)

lemma zdiv-pos-neg:

[#0 $< a; b $< #0]

= a zdiv b = fst (negateSnd(negDivAlg (<$—a, $—0>)))
{proof)

lemma zmod-pos-neg:

[#0 $< a; b $< #0]

= a zmod b = snd (negateSnd(negDivAlg (<$—a, $—b>)))
(proof)

lemma zdiv-neg-neg:

[a $< #0; b $< #0]

= a zdiv b = fst (negateSnd(posDivAlg(<$—a, $—0>)))
(proof)

lemma zmod-neg-neg:

la $< #0; b $< #0]

= a zmod b = snd (negateSnd(posDivAlg(<$—a, $—b>)))
(proof)

declare zdiv-pos-pos |of integ-of (v) integ-of (

declare zdiv-neg-pos [of integ-of (v) integ-of (w), simp] for v w
declare zdiv-pos-neg [of integ-of (v) integ-of (w), simp)
declare zdiv-neg-neg [of integ-of (v) @ (w),

declare zmod-pos-pos [of integ-of (v) i (w)
declare zmod-neg-pos [of integ-of (v) integ-of (w), simp]
declare zmod-pos-neg [of integ-of (v) integ-of (w), simp] for v w
declare zmod-neg-neg [of integ-of (v) integ-of (w), simp] for v w
declare posDivAlg-eqn [of concl: integ-of (v) integ-of (w), simp] for v w
declare negDivAlg-eqn [of concl: integ-of (v) integ-of (w), simp] for v w

lemma zmod-1 [simp]: a zmod #1 = #0

(proof)

lemma zdiv-1 [simp]: a zdiv #1 = intify(a)
(proof)

lemma zmod-minus1-right [simp]: a zmod #—1 = #0
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(proof)

lemma zdiv-minusi-right-raw: a € int => a 2div #—1 = $—a

(proof)

lemma zdiv-minusl-right: a zdiv #—1 = $—a

(proof)
declare zdiv-minusI-right [simp)

33.8 Monotonicity in the first argument (divisor)

lemma zdiv-monol: [a $< a’; #0 $< b] = a zdiv b $< a’ zdiv b

(proof)

lemma zdiv-monol-neg: [a $< a’; b $< #0] = a’ 2div b $< a zdiv b
(proof)

33.9 Monotonicity in the second argument (dividend)

lemma ¢-pos-lemma:
[#0 $< b'$xq’ $+ r; ' $< by #0 $< b = #0 $< ¢’
(proof)

lemma zdiv-mono2-lemma:
[b$xq $+ r = b'Sxq’ $+ ' #0 $< b'$xq’ $+ 1
' §< by #0 $< r; #0 $< by b $< b
= ¢ 8< ¢
(proof)

lemma zdiv-mono2-raw:
[#0 $< a; #0 $< b’; b’ $< b; a € int]
= a zdiv b $< a zdiv b’

(proof)

lemma zdiv-mono2:
[#0 $< a; #0 $< b b’ $< b
= q zdiv b $< a zdiv b’
(proof)

lemma ¢-neg-lemma:
[68xq’ $+ v/ $< #0; #0 $< r'; #0 $< b = ¢’ $< #0
(proof)

lemma zdiv-mono2-neg-lemma:
[b3%q $+ r = b'Sxq’ $+ r'; b'$xq’ $+ 1’ $< #0;
r$< b; #0 $< r; #0 $< b b $< B
= ¢'$< ¢
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(proof)

lemma zdiv-mono2-neg-raw:
[a $< #0; #0 $< b’ b $< b; a € int]
= a zdiv b’ $< a zdiv b

(proof)

lemma zdiv-mono2-neg: [a $< #0; #0 $< b’; b/ $< b]
= a zdiv b’ $< a zdiv b

{(proof)

33.10 More algebraic laws for zdiv and zmod

lemma zmultl-lemma:

[quorem((b.c), (g.1)); ¢ € int; ¢ # #0]
= quorem (<a$xb, ¢>, <a$xq $+ (a$*r) zdiv ¢, (a$xr) zmod c>)

(proof)

lemma zdiv-zmult1-eq-raw:

[b € int; c € int]

= (a$xb) zdiv ¢ = a$x(b zdiv c) $+ a$*(b zmod ¢) zdiv ¢
(proof)

lemma zdiv-zmulti-eq: (a$xb) zdiv ¢ = a$%(b zdiv ¢) $+ a$%(b zmod ¢) zdiv ¢

(proof)

lemma zmod-zmultl-eq-raw:
[b € int; c € int] = (a$*b) zmod ¢ = a$*(b zmod c) zmod c

(proof)

lemma zmod-zmulti-eq: (a$+b) zmod ¢ = a$+(b zmod c¢) zmod c
(proof)

lemma zmod-zmulti-eq”: (a$xb) zmod ¢ = ((a zmod c) $x b) zmod c

(proof)

lemma zmod-zmult-distrib: (a$xb) zmod ¢ = ((a zmod ¢) $x (b zmod ¢)) zmod ¢
(proof)

lemma zdiv-zmult-selfl [simp]: intify(b) # #0 = (a$xb) zdiv b = intify(a)
{proof)

lemma zdiv-zmult-self2 [simp]: intify(b) # #0 = (b$*a) zdiv b = intify(a)
{proof)

lemma zmod-zmult-self1 [simp]: (a$xb) zmod b = #0
{proof)

lemma zmod-zmult-self2 [simp]: (b$*a) zmod b = #0
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{proof)

lemma zadd1-lemma:
[quorem({a,c), {ag,ar)); quorem({b,c), (bg,br));

c € int; ¢ # #0]
= quorem (<a$+b, c>, <aq 3+ bg $+ (ar$+br) zdiv ¢, (ar$+br) zmod c>)

{(proof)

lemma zdiv-zadd1-eq-raw:

[a € int; b € int; ¢ € int] =

(a$+b) zdiv ¢ = a zdiv ¢ $+ b zdiv ¢ $+ ((a zmod ¢ $+ b zmod ¢) zdiv c)
(proof)

lemma zdiv-zadd1-eq:
(a$+b) zdiv ¢ = a zdiv ¢ $4 b zdiv ¢ $+ ((a zmod ¢ $+ b zmod ¢) zdiv ¢)

(proof)

lemma zmod-zaddl1-eq-raw:

[a € int; b € int; ¢ € int]

= (a$+b) zmod ¢ = (a zmod ¢ $+ b zmod ¢) zmod c
(proof)

lemma zmod-zadd1-eq: (a$3+b) zmod ¢ = (a zmod ¢ $+ b zmod ¢) zmod ¢

(proof)

lemma zmod-div-trivial-raw:
[a € int; b € int] = (a zmod b) zdiv b = #0

(proof)

lemma zmod-div-trivial [simp]: (a zmod b) zdiv b = #0
(proof)

lemma zmod-mod-trivial-raw:
[a € int; b € int] = (a zmod b) zmod b = a zmod b
(proof )

lemma zmod-mod-trivial [simp]: (a zmod b) zmod b = a zmod b

(proof)

lemma zmod-zadd-left-eq: (a$+b) zmod ¢ = ((a zmod c) $+ b) zmod ¢
(proof)

lemma zmod-zadd-right-eq: (a$+b) zmod ¢ = (a $+ (b zmod c)) zmod c
(proof)
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lemma zdiv-zadd-selfl [simp):
intify(a) # #0 = (a$+b) 2zdiv a = b zdiv a $+ #1
(proof)

lemma zdiv-zadd-self2 [simp):
intify(a) # #0 = (b$+a) zdiv a = b 2div a $+ #1
(proof )

lemma zmod-zadd-self! [simp]: (a$3+b) zmod a = b zmod a

(proof)

lemma zmod-zadd-self2 [simp]: (b$+a) zmod a = b zmod a
(proof)

33.11 proving a zdiv (b*c) = (a zdiv b) zdiv ¢

lemma zdiv-zmult2-auxl:
[#0 $< ¢; b$< r; r$< #0] = b$*c $< b$*(q zmod ¢) $+ r
(proof)

lemma zdiv-zmult2-aux?:
[#0 $< ¢; bS$<r; r$< #0] = b $* (q 2mod ¢) $+ r $< #0
(proof)

lemma zdiv-zmult2-auzs:
[#0 $< ¢; #0 $< r; 7 8< b] = #0 $< b $x (q zmod ¢) $+ r
(proof )

lemma zdiv-zmult2-auxs :
[#0 $< ¢; #0 $< r; r $< b)) = b $* (g zmod ¢) $+ r $< b $x ¢
(proof)

lemma zdiv-zmult2-lemma:
[quorem ({a,b), (q,r)); a € int; b € int; b # #0; #0 $< (]
= quorem (<a,b$xc>, <q zdiv ¢, b$*(q zmod ¢) $+ r>)
(proof)

lemma zdiv-zmult2-eq-raw:
[#0 $< ¢; a € int; b € int] = a zdiv (b$xc) = (a 2zdiv b) zdiv ¢

(proof)

lemma zdiv-zmult2-eq: #0 $< ¢ = a zdiv (b$*c) = (a zdiv b) zdiv ¢
(proof)

lemma zmod-zmult2-eq-raw:

[#0 $< ¢; a € int; b € int]

= a zmod (b%xc) = b$x(a zdiv b zmod c) $+ a zmod b
(proof)
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lemma zmod-zmult2-eq:
#0 3< ¢ = a zmod (b%xc) = b$x(a zdiv b zmod ¢) $+ a zmod b
(proof)

33.12 Cancellation of common factors in "zdiv"

lemma zdiv-zmult-zmultl-auzl
[#0 $< b; intify(c) # #0] = (c$xa) zdiv (c$xb) = a zdiv b
(proof)

lemma zdiv-zmult-zmultl-aux2:
[b $< #0; intify(c) # #0] = (c$xa) zdiv (c$xb) = a zdiv b
(proof)

lemma zdiv-zmult-zmultl-raw:
[intify(c) # #0; b € int] = (c$*a) zdiv (c$%b) = a zdiv b
(proof)

lemma zdiv-zmult-zmultl: intify(c) # #0 = (c$xa) zdiv (c$xb) = a zdiv b
(proof)

lemma zdiv-zmult-zmult2: intify(c) # #0 = (a$*c) zdiv (b$*c) = a zdiv b
(proof)

33.13 Distribution of factors over "zmod"

lemma zmod-zmult-zmultl-auzl:

[#0 $< b; intify(c) # #0]
= (c$*a) zmod (c$xb) = ¢ $* (a zmod b)

(proof)

lemma zmod-zmult-zmultl-auz?:

[b $< #0; ntify(c) # #0]

= (c$*a) zmod (c$xb) = ¢ $* (a zmod b)

(proof)

lemma zmod-zmult-zmultl-raw:
[b € int; ¢ € int] = (c$*a) zmod (c$xb) = ¢ $x (a zmod b)

(proof)

lemma zmod-zmult-zmultl: (¢$xa) zmod (c$xb) = ¢ $x (a zmod b)
(proof)

lemma zmod-zmult-zmult2: (a$xc) zmod (b$xc) = (a zmod b) $* ¢

(proof)
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lemma zdiv-neg-pos-less0: [a $< #0; #0 $< b] = a zdiv b $< #0
(proof)

lemma zdiv-nonneg-neg-le0: [#0 $< a; b $3< #0] = a zdiv b $< #0
(proof)

lemma pos-imp-zdiv-nonneg-iff: #0 $< b = (#0 $< a zdiv b) +— (#0 $< a)
(proof)

lemma neg-imp-zdiv-nonneg-iff: b $< #0 = (#0 $< a zdiv b) +— (a $< #0)

(proof)

lemma pos-imp-zdiv-neg-iff: #0 $< b = (a zdiv b $< #0) +— (a $< #0)
{proof )

lemma neg-imp-zdiv-neg-iff: b $< #0 = (a zdiv b $< #0) +— (#0 $< a)
(proof)

end

34 Cardinal Arithmetic Without the Axiom of Choice

theory CardinalArith imports Cardinal OrderArith ArithSimp Finite begin

definition
InfCard : i=>0 where
InfCard(i) = Card(i) A nat < ¢

definition
cmult i [4,4])=1 (infixl «®» 70) where
i ® j = |ix]
definition
cadd i [4,d]=1 (infixl «®» 65) where
i ©j = it
definition
csquare-rel  :: i=1i where
csquare-rel(K) =
rvimage( K« K,
lam (z,y): KxK. <z Uy, z, y>,
rmult(K,Memrel(K), K«K, rmult(K,Memrel(K), K,Memrel(K))))
definition

jump-cardinal :: i=1 where
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— This definition is more complex than Kunen’s but it more easily proved to
be a cardinal
Jump-cardinal(K) =
U XePow(K). {z. r € Pow(KxK), well-ord(X,r) A z = ordertype(X,r)}

definition
csuce :» i=7 where
— needed because jump-cardinal(K) might not be the successor of K
csucc(K) = p L. Card(L) N K<L

lemma Card-Union [simp,intro, TC:
assumes A: Az. 1€ A = Card(z) shows Card(|J (A))
(proof )

lemma Card-UN: (Az. 2 € A = Card(K(z))) = Card(|Jz€A. K(x))
(proof)

lemma Card-OUN [simp,intro, TC):
(Az. 2 € A = Card(K(z))) = Card(Jz<A. K(x))

(proof)

lemma in-Card-imp-lesspoll: [Card(K); b € K] = b < K
{proof)

34.1 Cardinal addition

Note: Could omit proving the algebraic laws for cardinal addition and mul-
tiplication. On finite cardinals these operations coincide with addition and
multiplication of natural numbers; on infinite cardinals they coincide with
union (maximum). Either way we get most laws for free.

34.1.1 Cardinal addition is commutative
lemma sum-commute-eqpoll: A+B ~ B+A

(proof)

lemma cadd-commute: i ® j = j D i
{proof)

34.1.2 Cardinal addition is associative

lemma sum-assoc-eqpoll: (A+B)+C ~ A+(B+C)
{proof)

Unconditional version requires AC

lemma well-ord-cadd-assoc:
assumes i: well-ord(i,ri) and j: well-ord(j,rj) and k: well-ord(k,rk)
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shows (i D) @ k=id® (k)
(proof)

34.1.3 0 is the identity for addition
lemma sum-0-eqpoll: 0+A ~ A

{proof)

lemma cadd-0 [simp]: Card(K) = 0 & K = K
(proof)

34.1.4 Addition by another cardinal

lemma sum-lepoll-self: A < A+B
(proof)

lemma cadd-le-self:
assumes K: Card(K) and L: Ord(L) shows K < (K & L)

(proof)

34.1.5 Monotonicity of addition

lemma sum-Ilepoll-mono:
[ASC, BSD)]=A+BSC+D
(proof)

lemma cadd-le-mono:
[K'<K; L'<) = (K'® L)< (K®L)
(proof )

34.1.6 Addition of finite cardinals is "ordinary" addition

lemma sum-succ-egpoll: succ(A)+B = succ(A+B)
{proof)

lemma cadd-succ-lemma:
assumes Ord(m) Ord(n) shows succ(m) ® n = |succ(m @ n)

(proof)

lemma nat-cadd-eq-add:
assumes m: m € nat and [simp]: n € nat showsm & n = m #+ n

(proof)
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34.2 Cardinal multiplication

34.2.1 Cardinal multiplication is commutative
lemma prod-commute-eqpoll: AxB =~ BxA

{proof)

lemma cmult-commute: 1 ® j = j ® 1@
(proof)

34.2.2 Cardinal multiplication is associative

lemma prod-assoc-eqpoll: (AxB)xC =~ Ax(Bx()
{proof )

Unconditional version requires AC

lemma well-ord-cmult-assoc:
assumes i: well-ord(i,ri) and j: well-ord(j,rj) and k: well-ord(k,rk)
shows (i ® )R k=i® (j ® k)
(proof)
34.2.3 Cardinal multiplication distributes over addition
lemma sum-prod-distrib-eqgpoll: (A+B)*C =~ (AxC)+(BxC)
{proof)

lemma well-ord-cadd-cmult-distrib:
assumes i: well-ord(i,ri) and j: well-ord(j,rj) and k: well-ord(k,rk)
shows (i D) @k=(GRk & (k)

(proof)

34.2.4 Multiplication by 0 yields 0

lemma prod-0-eqpoll: 0xA ~ 0
(proof )

lemma cmult-0 [simp]: 0 @ i = 0
(proof)

34.2.5 1 is the identity for multiplication

lemma prod-singleton-eqpoll: {z}xA ~ A
(proof)

lemma cmult-1 [simp]: Card(K) = 1 @ K = K
{proof)

34.3 Some inequalities for multiplication

lemma prod-square-lepoll: A < AxA
(proof )
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lemma cmult-square-le: Card(K) = K < K @ K
{proof)

34.3.1 Multiplication by a non-zero cardinal

lemma prod-lepoll-self: b € B — A < AxB
(proof )

lemma cmult-le-self:
[Card(K); Ord(L); 0<L] = K < (K ® L)
(proof )

34.3.2 Monotonicity of multiplication

lemma prod-lepoll-mono:
[ASC;, BSD=AxB < C=x*D
(proof )

lemma cmult-le-mono:
[K'<K; L'<L)]= (K'® L") < (K ® L)
(proof)

34.4 Multiplication of finite cardinals is "ordinary" multipli-
cation

lemma prod-succ-egpoll: succ(A)*B ~ B + AxB
(proof )

lemma cmult-succ-lemmas:
[Ord(m); Ord(n)] = succ(m) @ n=n & (m Q n)
(proof )

lemma nat-cmult-eg-mult: [m € nat; n € nat] = m ® n = m#«n
(proof)

lemma cmult-2: Card(n) = 2 @n=n® n

(proof)

lemma sum-lepoll-prod:
assumes C: 2 < C shows B+B < C+B

(proof)

lemma lepoll-imp-sum-lepoll-prod: [A < B; 2 S A] = A+B < AxB
(proof)
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34.5 Infinite Cardinals are Limit Ordinals

lemma nat-cons-lepoll: nat S A = cons(u,A) < A
{proof)

lemma nat-cons-eqpoll: nat < A = cons(u,A) =~ A
(proof)

lemma nat-succ-egpoll: nat C A = succ(A) = A
(proof)

lemma InfCard-nat: InfCard(nat)
{proof)

lemma InfCard-is-Card: InfCard(K) = Card(K)
(proof)

lemma InfCard-Un:
[InfCard(K); Card(L)] = InfCard(K U L)
(proof)

lemma InfCard-is-Limit: InfCard(K) = Limit(K)
{proof)

lemma ordermap-egpoll-pred:
[well-ord(A,r); = € A] = ordermap(A,r)‘c ~ Order.pred(A,z,r)
(proof)

34.5.1 Establishing the well-ordering

lemma well-ord-csquare:
assumes K: Ord(K) shows well-ord(K+K, csquare-rel(K))

(proof)

34.5.2 Characterising initial segments of the well-ordering

lemma csquareD:

[<(z,y), (z,2)> € csquare-rel(K); az<K; y<K; 2<K] = 2<zAy<z
{proof)

lemma pred-csquare-subset:
2<K = Order.pred(K«K, (z,z), csquare-rel(K)) C succ(z)*succ(z)
{proof )
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lemma csquare-Itl:
[z<z; y<z; 2<K] = <(z,y), (2,2)> € csquare-rel(K)
{proof )

lemma csquare-or-eql:
[z <z y <z 2<K] = <(z,y), (2,2)> € csquare-rel(K) | =2z N y=z
{proof)

34.5.3 The cardinality of initial segments

lemma ordermap-z-lt:

[Limit(K); z<K; y<K; z=succ(z U y)] =
ordermap(K+K, csquare-rel(K)) ‘ (z,y) <
ordermap(K+K, csquare-rel(K)) *(z,z)

(proof)

Kunen: "each (z, y) € K x K has no more than z x z predecessors..." (page
29)
lemma ordermap-csquare-le:

assumes K: Limit(K) and z: 2<K and y: y<K

defines z = succ(z U y)

shows |ordermap(K x K, csquare-rel(K)) ‘ (z,y)| < |suce(z)| ® |suce(z)]
(proof)

Kunen: "

. so the order type is < K"

lemma ordertype-csquare-le:
assumes IK: InfCard(K) and eq: \y. ye K = InfCard(y) —= y Q@ y =y
shows ordertype(K*K, csquare-rel(K)) < K

(proof)

lemma InfCard-csquare-eq:
assumes [K: InfCard(K) shows K @ K = K

(proof)

lemma well-ord-InfCard-square-eq:
assumes 7: well-ord(A,r) and I: InfCard(|A|) shows A x A~ A

(proof)

lemma InfCard-square-egpoll: InfCard(K) — K x K = K
(proof)

lemma Inf-Card-is-InfCard: [Card(i); — Finite(i)] = InfCard(i)
(proof)

34.5.4 Toward’s Kunen’s Corollary 10.13 (1)
lemma InfCard-le-cmult-eq: [InfCard(K); L< K; 0<L] = K® L=K
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(proof)

lemma InfCard-cmult-eq: [InfCard(K); InfCard(L)] = K ® L= K U L
(proof)

lemma InfCard-cdouble-eq: InfCard(K) — K ® K = K
(proof)

lemma InfCard-le-cadd-eq: [InfCard(K); L< K] = K & L =K
(proof)

lemma InfCard-cadd-eq: [InfCard(K); InfCard(L)] — K & L=K U L
(proof)

34.6 For Every Cardinal Number There Exists A Greater
One

This result is Kunen’s Theorem 10.16, which would be trivial using AC

lemma Ord-jump-cardinal: Ord(jump-cardinal(K))
(proof)

lemma jump-cardinal-iff:
i € jump-cardinal(K) +—
3rX.rCK«KANXCK A wellord(X,r) N\ i = ordertype(X,r))
(proof)

lemma K-lt-jump-cardinal: Ord(K) = K < jump-cardinal(K)
(proof)

lemma Card-jump-cardinal-lemma:
[well-ord(X,r); r C K x K; X C K;
f € bij(ordertype(X,r), jump-cardinal(K))]
= jump-cardinal(K) € jump-cardinal(K)
(proof)

lemma Card-jump-cardinal: Card(jump-cardinal(K))

(proof)

34.7 Basic Properties of Successor Cardinals

lemma csucc-basic: Ord(K) = Card(csucc(K)) N K < csucc(K)
{proof)
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lemmas Card-csucc = csucc-basic [THEN conjunct!]
lemmas lt-csuce = csuce-basic [THEN conjunct?)

lemma Ord-0-lt-csucc: Ord(K) = 0 < csucc(K)

(proof)

lemma csucc-le: [Card(L); K<L] = csucc(K) < L
{proof)

lemma lt-csucc-iff: [Ord(i); Card(K)] = i < csucc(K) «— |i| < K
(proof)

lemma Card-lt-csucc-iff:
[Card(K'); Card(K)] = K' < csucce(K) +— K'< K
(proof)

lemma InfCard-csucc: InfCard(K) = InfCard(csucc(K))
(proof)

34.7.1 Removing elements from a finite set decreases its cardi-
nality
lemma Finite-imp-cardinal-cons [simp]:
assumes FA: Finite(A) and a: a¢ A shows |cons(a,A)| = succ(|A])
(proof)

lemma Finite-imp-succ-cardinal-Diff:
[Finite(A); a € A] = succ(|A—{a}|) = |4]
(proof)

lemma Finite-imp-cardinal-Diff: [Finite(A); a € A] = |A—{a}| < |4]
(proof)

lemma Finite-cardinal-in-nat [simp): Finite(A) = |A| € nat

(proof)

lemma card-Un-Int:
[Finite(A); Finite(B)] = |A| #+ |B] = |A U B| #+ |A N B]
(proof)

lemma card-Un-disjoint:
[Finite(A); Finite(B); AN B = 0] = |A U B| = |A| #+ |B]
(proof)

lemma card-partition:
assumes FC: Finite(C)
shows
Finite (J C) =
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(Veel. |c] = k) =
Vel e C.Ve2e€Cocl #¢c2 —clNc2=10) =
ks |Cl=1U C

(proof)

34.7.2 Theorems by Krzysztof Grabczewski, proofs by lcp

lemmas nat-implies-well-ord = nat-into-Ord [THEN well-ord-Memprel]

lemma nat-sum-egpoll-sum:
assumes m: m € nat and n: n € nat shows m + n~ m #+ n

(proof)

lemma Ord-subset-natD [rule-format]: Ord(i) = i C nat = i € nat | i=nat

(proof)

lemma Ord-nat-subset-into-Card: [Ord(i); i C nat] = Card(i)
{proof)

end

35 Main ZF Theory: Everything Except AC

theory ZF imports List IntDiv CardinalArith begin

35.1 Iteration of the function F

consts iterates :: [i=1,i,i] = ¢ (<(<notation=<mixfix iteratesy>-"-'(-"))» [60,1000,1000]
60)

primrec
F70 (z) ==
F(suce(n)) (z) = F(F™n (z))
definition
iterates-omega :: [i=i,i] = © («(¢notation=«mixfix iterates-omegarr-"w '(-'))

[60,1000] 60) where
Fw (z) =Unenat. Fn (z)

lemma iterates-triv:
[n€nat; F(z) =2] = Fn(z)=12x
(proo)
lemma iterates-type [TC]:
[n € nat; a € A; Az. z € A = F(x) € A]
= Fn(a) €A
(proof)

lemma iterates-omega-triv:
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Fz)y)=o = Fuw(z)=1z
(proof)

lemma Ord-iterates [simpl:
[nenat; Ai. Ord(i) = Ord(F(i)); Ord(z)]
= Ord(F™n (z))

(proof)

lemma iterates-commute: n € nat = F(F™n (z)) = F™n (F(z))
(proof)

35.2 Transfinite Recursion

Transfinite recursion for definitions based on the three cases of ordinals

definition
transrecd :: [i, i, [i,i]=1, [i,i]={] =i where
transrec3(k, a, b, ¢) =
transrec(k, Az r.
if t=0 then a
else if Limit(x) then c(z, A\y€x. ry)
else b(Arith.pred(z), v © Arith.pred(z)))

lemma transrec3-0 [simp]: transrec3(0,a,b,c) = a
(proof)

lemma transrec3-succ [simpl:

transrec3 (succ(i),a,b,c) = b(i, transrec3(i,a,b,c))
(proof)
lemma transrec3-Limit:

Limit(i) =

transrec3(i,a,b,¢) = c(i, Nj€i. transrec3(j,a,b,c))

(proof)

(ML)

end

36 The Axiom of Choice

theory AC imports ZF begin

This definition comes from Halmos (1960), page 59.

axiomatization where
AC: Ja€ 4; Nz.z € A= (Jy. y € B(x))] = 3z z € Pi(A,B)
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lemma AC-Pi: [Az. x € A = (Jy. y € B(x))] = J=2. z € Pi(A,B)
(proof)

lemma AC-ball-Pi: Vo € A. Jy. y € B(z) = Jy. y € Pi(4,B)
(proof)

lemma AC-Pi-Pow: 3f. f € ([[X € Pow(C)—{0}. X)
(proof)

lemma AC-func:
[Ne. 2€ A= Fy.yecz)] =3fc A—>J(A). Ve e A facz
(proof)

lemma non-empty-family: [0 ¢ A; z € A] = Jy. y€x

(proof)

lemma AC-func0: 0 ¢ A = 3f € A—>J(A). Ve e A. fr ez
(proof)

lemma AC-func-Pow: 3f € (Pow(C)—{0}) —> C.Vx € Pow(C)—{0}. fz € x
(proof)

lemma AC-Pi0: 0 ¢ A= 3f. f € ([[z € A. z)
(proof)

end

37 Zorn’s Lemma

theory Zorn imports OrderArith AC Inductive begin

Based upon the unpublished article “Towards the Mechanization of the
Proofs of Some Classical Theorems of Set Theory,” by Abrial and Laffitte.
definition

Subset-rel :: i=1 where
Subset-rel(A) = {z € AxA . Fz y. 2=(z,y) N <=y A z#y}

definition

chain :: =1 where

chain(A) ={F € Pow(A). VXeF.VYeF. X<=Y | Y<=X}
definition

super o [4,é]=i where

super(A,c) = {d € chain(4). c<=d A c#d}

definition
maxchain :: i=47 where
mazchain(A) = {c € chain(A). super(A,c)=0}
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definition
increasing :: i=1 where
increasing(A) = {f € Pow(4)—>Pow(A). Vz. 2<=A — z<=f‘c}

Lemma for the inductive definition below

lemma Union-in-Pow: Y € Pow(Pow(A)) = |J(Y) € Pow(A)
(proof)

We could make the inductive definition conditional on next € increasing(S)
but instead we make this a side-condition of an introduction rule. Thus
the induction rule lets us assume that condition! Many inductive proofs are
therefore unconditional.

consts
TFin :: [i,i]=1

inductive
domains TFin(S,next) C Pow(S)
intros
nextl: [x € TFin(S,next); next € increasing(S)]

= next‘c € TFin(S,next)
Pow-Unionl: Y € Pow(TFin(S,next)) = |J(Y) € TFin(S,next)

monos Pow-mono
con-defs increasing-def
type-intros CollectD1 [THEN apply-funtype] Union-in-Pow

37.1 Mathematical Preamble

lemma Union-lemma0: (Vz€C. z<=A | B<=z) = |J(C)<=4 | B<={J(C)
(proof)

lemma Inter-lemma0:
[ce C;VzeC. A<=z | z<=B] = A C(C)|N(C)CB
(proof)

37.2 The Transfinite Construction

lemma increasingD1: f € increasing(A) = f € Pow(A)—>Pow(A)
{proof)

lemma increasingD2: [f € increasing(A); z<=A] = = C f
(proof)

lemmas TFin-Unionl = Powl [THEN TFin.Pow-Unionl]

lemmas TFin-is-subset = TFin.dom-subset [THEN subsetD, THEN PowD]
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Structural induction on TFin(S, next)
lemma TFin-induct:
[n € TFin(S,next);
Az. [z € TFin(S,next); P(x); next € increasing(S)] = P(next‘x);
AY. [Y C TFin(S,next); YyeY. P(y)] = P(U(Y))
| = P(n)
(proof)

37.3 Some Properties of the Transfinite Construction

lemmas increasing-trans = subset-trans [OF - increasingD2,
OF - - TFin-is-subset]

Lemma 1 of section 3.1
lemma TFin-linear-lemmal:
[n € TFin(S,next); m € TFin(S,next);
Vz € TFin(S,next) . t<=m — z=m | next‘z<=m]
= n<=m | next‘m<=n

(proof)

Lemma 2 of section 3.2. Interesting in its own right! Requires next € in-
creasing(S) in the second induction step.
lemma TFin-linear-lemma2:

[m € TFin(S,next); next € increasing(S)]

= Vn € TFin(S,next). n<=m — n=m | next'n C m

(proof)

a more convenient form for Lemma 2

lemma TFin-subsetD:
[n<=m; m € TFin(S,next); n € TFin(S,next); next € increasing(S)]
= n=m | next'n C m

(proof)

Consequences from section 3.3 — Property 3.2, the ordering is total

lemma TFin-subset-linear:
[m € TFin(S,next); n € TFin(S,next); next € increasing(S)]
= nCm|m<=n

(proof)

Lemma 3 of section 3.3

lemma equal-next-upper:
[n € TFin(S,next); m € TFin(S,next); m = next‘m] = n C m

(proof)
Property 3.3 of section 3.3

lemma equal-next-Union:
[m € TFin(S,next); next € increasing(S)]
= m = next‘'m <—> m = |J (TFin(S,next))
(proof)
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37.4 Hausdorff’s Theorem: Every Set Contains a Maximal
Chain

NOTE: We assume the partial ordering is C, the subset relation!

* Defining the "next" operation for Hausdorff’s Theorem *

lemma chain-subset-Pow: chain(A) C Pow(A)
{proof)

lemma super-subset-chain: super(A,c) C chain(A)
(proof)

lemma mazchain-subset-chain: mazchain(A) C chain(A)
{proof)

lemma choice-super:
[ch € (I X € Pow(chain(S)) — {0}. X); X € chain(S); X ¢ mazchain(S)]
= ch ‘ super(S,X) € super(S,X)

(proof )

lemma choice-not-equals:
[ch € (I X € Pow(chain(S)) — {0}. X); X € chain(S); X ¢ mazchain(S)]
= ch ‘ super(S,X) # X

(proof)

This justifies Definition 4.4
lemma Hausdorff-next-exists:
ch € ([ X € Pow(chain(S))—{0}. X) =
Jnext € increasing(S). VX € Pow(S).
next‘'’X = if(X € chain(S)—mazchain(S), ch'super(S,X), X)
(proof )

Lemma 4
lemma TFin-chain-lemma:
[c € TFin(S,next);
ch € (I X € Pow(chain(S))—{0}. X);
next € increasing(S);
VX € Pow(S). next‘'X =
if (X € chain(S)—mazchain(S), chsuper(S,X), X)]
= ¢ € chain(9)

(proof)

theorem Hausdorff: 3 c. ¢ € mazchain(S)

(proof)

37.5 Zorn’s Lemma: If All Chains in S Have Upper Bounds
In S, then S contains a Maximal Element

Used in the proof of Zorn’s Lemma

290



lemma chain-extend:
[c € chain(A); z € A; YV € c. z<=2] = cons(z,c) € chain(A)
(proof )

lemma Zorn: V¢ € chain(S). |J(c) € S = Jy € S.Vz € S. y<=z — y==2

(proof)

Alternative version of Zorn’s Lemma
theorem Zorn2:

V¢ € chain(S). Jye S. Ve €c.a Cy=— Jye€ S.Vz€ S y<=z — y=2
(proof)

37.6 Zermelo’s Theorem: Every Set can be Well-Ordered

Lemma 5

lemma TFin-well-lemmas:
[n € TFin(S,next); Z C TFin(S,next); z:7Z; = ((Z) € Z]
—VmeZ nCm

(proof)

Well-ordering of TFin(S, next)

lemma well-ord-TFin-lemma: [Z C TFin(S,next); z € Z] = ((Z) € Z
(proof)

This theorem just packages the previous result

lemma well-ord-TFin:
next € increasing(S)
= well-ord( TFin(S,next), Subset-rel( TFin(S,next)))

(proof)

* Defining the "next" operation for Zermelo’s Theorem *
lemma choice-Diff:

[ch € ([IX € Pow(S) — {0}. X); X C8; X#£S5] = ¢ch ‘(S—X) € S—X
(proof)

This justifies Definition 6.1

lemma Zermelo-next-exists:
ch € (I X € Pow(S)—{0}. X) =
dnext € increasing(S). VX € Pow(S).
next‘’X = (if X==5 then S else cons(ch{(S—X), X))
(proof)

The construction of the injection

lemma choice-imp-injection:
[ch € (]I X € Pow(S)—{0}. X);
next € increasing(S);
VX € Pow(S). next‘'’X = if(X=S, S, cons(ch(S—X), X))]

291



= Az e S.U{y € TFin(S,next). x ¢ y}))
€ inj(S, TFin(S,next) — {S})
(proof)
The wellordering theorem

theorem AC-well-ord: Ir. well-ord(S,r)
(proof)

37.7 Zorn’s Lemma for Partial Orders

Reimported from HOL by Clemens Ballarin.
definition Chain :: i = i where
Chain(r) = {A € Pow(field(r)). VacA. VbeA. (a, b) € r | (b, a) € r}

lemma mono-Chain:
r C s = Chain(r) C Chain(s)
(proof )

theorem Zorn-po:
assumes po: Partial-order(r)
and u: V CeChain(r). Juefield(r). Vael. {(a, u) € r
shows I mefield(r). V acfield(r). (m, a) € 1 — a =m
(proof)

end

38 Cardinal Arithmetic Using AC

theory Cardinal-AC imports CardinalArith Zorn begin

38.1 Strengthened Forms of Existing Theorems on Cardinals

lemma cardinal-egpoll: |A| = A

(proof)
The theorem ||A|| = | 4|

lemmas cardinal-idem = cardinal-eqpoll [THEN cardinal-cong, simp)

lemma cardinal-eqE: | X| = Y| = X = Y

(proof)

lemma cardinal-egpoll-iff: | X| = |Y| +— X =~ Y
(proof)

lemma cardinal-disjoint-Un:
[lA|=[B]; |C|=[D]; An C=0; BN D=0]
= |AU C| =|BUD|

(proof)
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lemma lepoll-imp-cardinal-le: A < B = |A| < |B|
(proof)

lemma cadd-assoc: (i @ j) ®k=i® (j D k)
(proof)

lemma cmult-assoc: (1 @ j) @ k=1 Q (j ® k)
(proof)

lemma cadd-cmult-distrib: (i & j) @ k=i @ k) ® (j ® k)
(proof)

lemma InfCard-square-eq: InfCard(|A|]) = AxA = A
(proof)

38.2 The relationship between cardinality and le-pollence

lemma Card-le-imp-lepoll:
assumes |A| < |B| shows A < B
(proof)

lemma le-Card-iff: Card(K) = |A| < K +— A S K
(proof)

lemma cardinal-0-iff-0 [simp]: |[A] = 0 «— A =0
(proof)

lemma cardinal-lt-iff-lesspoll:
assumes i: Ord(i) shows i < |4| +— i< A

(proof)

lemma cardinal-le-imp-lepoll: i < |A] = i S A

(proof)

38.3 Other Applications of AC
lemma surj-implies-inj:
assumes f: f € surj(X,Y) shows Jg. g € inj(Y,X)
(proof)
Kunen’s Lemma 10.20

lemma surj-implies-cardinal-le:
assumes f: f € surj(X,Y) shows |Y| < | X]|
(proof)

Kunen’s Lemma 10.21

lemma cardinal- UN-le:
assumes K: InfCard(K)
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shows (\i. icK = |X(i)| < K) = |JieK. X(4)| < K
(proof)

The same again, using csucc

lemma cardinal- UN-It-csucc:
[InfCard(K); Ai. ieK = |X(7)] < csucc(K)]
= ||JieK. X(i)| < csucc(K)

(proof)

The same again, for a union of ordinals. In use, j(i) is a bit like rank(i), the
least ordinal j such that i:Virom(A,j).

lemma cardinal-UN-Ord-lt-csucc:
[InfCard(K); Ai. i €K = j(i) < csucc(K)]
= (Ji€eK. j(i)) < csucc(K)

(proof)

38.4 The Main Result for Infinite-Branching Datatypes

As above, but the index set need not be a cardinal. Work backwards along
the injection from W into K, given that W # 0.

lemma inj- UN-subset:

assumes f: f € inj(A,B) and a: a € A

shows (|Jz€A. C(z)) C (JyeB. C(if y € range(f) then converse(f)‘y else a))
(proof )

theorem le- UN-Ord-It-csucc:

assumes IK: InfCard(K) and WK: |W| < K and j: Aw. weW = j(w) <
csuce(K)

shows (| JweW. j(w)) < csucc(K)

(proof)

end

39 Infinite-Branching Datatype Definitions

theory InfDatatype imports Datatype Univ Finite Cardinal-AC begin

lemmas fun-Limit-VfromE =
Limit-VfromE [OF apply-funtype InfCard-csucc [THEN InfCard-is-Limit]]

lemma fun-Vesucc-lemma:

assumes f: f € D —> Vfrom(4,csucc(K)) and DK: |D| < K and ICK: Inf-
Card(K)

shows 3j. f € D —> Vfrom(A,j) N\ j < csucc(K)
(proof)

lemma subset- Vesuce:
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[D C Vfrom(A,csuce(K)); |D| < K; InfCard(K)]
= 3j. D C Vfrom(A4,j) N j < csucc(K)
(proof)

lemma fun-Vesucc:
[ID| < K; InfCard(K); D C Vfrom(A,csucc(K))] =
D —> Vfrom(A,csucc(K)) C Virom(A,csucc(K)
(proof )

lemma fun-in-Vesuce:
[f: D —> Vfrom(A4, csucc(K
D C Vfrom(A,csucc(K))]
= f: Vfrom(A,csucc(K))
(proof)

) |D] < K; InfCard(K);

Remove C from the rule above

lemmas fun-in-Vesuce’ = fun-in-Vesuce [OF - - - subset]]

lemma Card-fun-Vesucc:
InfCard(K) = K —> Vfrom(A,csucc(K)) C Vfrom(A,csucc(K))
(proof )

lemma Card-fun-in-Vesucc:
If: K —> Vfrom(A, csuce(K)); InfCard(K)] = f: Vfrom(A,csucc(K))
(proof)

lemma Limit-csucc: InfCard(K) = Limit(csucc(K))
(proof)

lemmas Pair-in-Vesuce = Pair-in-VLimit [OF - - Limit-csucc]
lemmas Inl-in-Vesuce = Inl-in-VLimit [OF - Limit-csucc]
lemmas Inr-in-Vesuce = Inr-in-VLimit [OF - Limit-csucc)
lemmas zero-in- Vesuce = Limit-csuce [THEN zero-in-VLimit)
lemmas nat-into-Vesuce = nat-into- VLimit [OF - Limit-csucc]

lemmas InfCard-nat-Un-cardinal = InfCard-Un [OF InfCard-nat Card-cardinal)

lemmas le-nat-Un-cardinal =
Un-upper2-le [OF Ord-nat Card-cardinal [THEN Card-is-Ord)]

lemmas UN-upper-cardinal = UN-upper [THEN subset-imp-lepoll, THEN lep-
oll-imp-cardinal-le]
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lemmas Data-Arg-intros =
Sigmal Inll Inrl
Pair-in-univ Inl-in-univ Inr-in-univ
zero-in-univ A-into-univ nat-into-univ UnCI

lemmas inf-datatype-intros =
InfCard-nat InfCard-nat-Un-cardinal
Pair-in-Vesuce Inl-in-Vesuce Inr-in- Vesuce
zero-in-Vesuce A-into-Vfrom nat-into- Vesuce
Card-fun-in-Vesuce fun-in-Vesuce” UN-I

end
theory ZFC imports ZF InfDatatype
begin

end
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