
ZF

Lawrence C Paulson and others

January 18, 2026

Contents
1 Base of Zermelo-Fraenkel Set Theory 3

1.1 Signature . 3
1.2 Bounded Quantifiers . 3
1.3 Variations on Replacement 3
1.4 General union and intersection 4
1.5 Finite sets and binary operations 4
1.6 Axioms . 5
1.7 Definite descriptions – via Replace over the set "1" 5
1.8 Ordered Pairing . 6
1.9 Relations and Functions . 7
1.10 ASCII syntax . 8
1.11 Substitution . 9
1.12 Bounded universal quantifier 9
1.13 Bounded existential quantifier 9
1.14 Rules for subsets . 10
1.15 Rules for equality . 11
1.16 Rules for Replace – the derived form of replacement 11
1.17 Rules for RepFun . 12
1.18 Rules for Collect – forming a subset by separation 12
1.19 Rules for Unions . 13
1.20 Rules for Unions of families 13
1.21 Rules for the empty set . 13
1.22 Rules for Inter . 14
1.23 Rules for Intersections of families 14
1.24 Rules for Powersets . 15
1.25 Cantor’s Theorem: There is no surjection from a set to its

powerset. 15

1

2 Unordered Pairs 15
2.1 Unordered Pairs: constant Upair 15
2.2 Rules for Binary Union, Defined via Upair 15
2.3 Rules for Binary Intersection, Defined via Upair 16
2.4 Rules for Set Difference, Defined via Upair 16
2.5 Rules for cons . 17
2.6 Singletons . 17
2.7 Descriptions . 17
2.8 Conditional Terms: if−then−else 18
2.9 Consequences of Foundation 19
2.10 Rules for Successor . 20
2.11 Miniscoping of the Bounded Universal Quantifier 20
2.12 Miniscoping of the Bounded Existential Quantifier 21
2.13 Miniscoping of the Replacement Operator 22
2.14 Miniscoping of Unions . 22
2.15 Miniscoping of Intersections 23
2.16 Other simprules . 24

3 Ordered Pairs 24
3.1 Sigma: Disjoint Union of a Family of Sets 25
3.2 Projections fst and snd . 26
3.3 The Eliminator, split . 26
3.4 A version of split for Formulae: Result Type o 26

4 Basic Equalities and Inclusions 27
4.1 Bounded Quantifiers . 27
4.2 Converse of a Relation . 28
4.3 Finite Set Constructions Using cons 28
4.4 Binary Intersection . 30
4.5 Binary Union . 31
4.6 Set Difference . 32
4.7 Big Union and Intersection 34
4.8 Unions and Intersections of Families 35
4.9 Image of a Set under a Function or Relation 41
4.10 Inverse Image of a Set under a Function or Relation 42
4.11 Powerset Operator . 44
4.12 RepFun . 44
4.13 Collect . 45

5 Least and Greatest Fixed Points; the Knaster-Tarski Theo-
rem 46
5.1 Monotone Operators . 46
5.2 Proof of Knaster-Tarski Theorem using lfp 47
5.3 General Induction Rule for Least Fixedpoints 48

2

5.4 Proof of Knaster-Tarski Theorem using gfp 49
5.5 Coinduction Rules for Greatest Fixed Points 49

6 Booleans in Zermelo-Fraenkel Set Theory 50
6.1 Laws About ’not’ . 52
6.2 Laws About ’and’ . 52
6.3 Laws About ’or’ . 53

7 Disjoint Sums 53
7.1 Rules for the Part Primitive 54
7.2 Rules for Disjoint Sums . 54
7.3 The Eliminator: case . 56
7.4 More Rules for Part(A, h) . 56

8 Functions, Function Spaces, Lambda-Abstraction 57
8.1 The Pi Operator: Dependent Function Space 57
8.2 Function Application . 58
8.3 Lambda Abstraction . 59
8.4 Extensionality . 61
8.5 Images of Functions . 61
8.6 Properties of restrict(f , A) 62
8.7 Unions of Functions . 63
8.8 Domain and Range of a Function or Relation 64
8.9 Extensions of Functions . 64
8.10 Function Updates . 64
8.11 Monotonicity Theorems . 65

8.11.1 Replacement in its Various Forms 65
8.11.2 Standard Products, Sums and Function Spaces 66
8.11.3 Converse, Domain, Range, Field 66
8.11.4 Images . 67

9 Quine-Inspired Ordered Pairs and Disjoint Sums 67
9.1 Quine ordered pairing . 69

9.1.1 QSigma: Disjoint union of a family of sets Generalizes
Cartesian product . 69

9.1.2 Projections: qfst, qsnd 70
9.1.3 Eliminator: qsplit . 70
9.1.4 qsplit for predicates: result type o 70
9.1.5 qconverse . 71

9.2 The Quine-inspired notion of disjoint sum 71
9.2.1 Eliminator – qcase . 72
9.2.2 Monotonicity . 73

3

10 Injections, Surjections, Bijections, Composition 73
10.1 Surjective Function Space . 74
10.2 Injective Function Space . 75
10.3 Bijections . 75
10.4 Identity Function . 76
10.5 Converse of a Function . 76
10.6 Converses of Injections, Surjections, Bijections 77
10.7 Composition of Two Relations 77
10.8 Domain and Range – see Suppes, Section 3.1 78
10.9 Other Results . 78
10.10Composition Preserves Functions, Injections, and Surjections 79
10.11Dual Properties of inj and surj 79

10.11.1 Inverses of Composition 80
10.11.2 Proving that a Function is a Bijection 80
10.11.3 Unions of Functions 80
10.11.4 Restrictions as Surjections and Bijections 81
10.11.5 Lemmas for Ramsey’s Theorem 81

11 Relations: Their General Properties and Transitive Closure 82
11.1 General properties of relations 83

11.1.1 irreflexivity . 83
11.1.2 symmetry . 83
11.1.3 antisymmetry . 83
11.1.4 transitivity . 83

11.2 Transitive closure of a relation 83

12 Well-Founded Recursion 87
12.1 Well-Founded Relations . 88

12.1.1 Equivalences between wf and wf-on 88
12.1.2 Introduction Rules for wf-on 88
12.1.3 Well-founded Induction 89

12.2 Basic Properties of Well-Founded Relations 90
12.3 The Predicate is-recfun . 90
12.4 Recursion: Main Existence Lemma 91
12.5 Unfolding wftrec(r , a, H) . 91

12.5.1 Removal of the Premise trans(r) 91

13 Transitive Sets and Ordinals 92
13.1 Rules for Transset . 93

13.1.1 Three Neat Characterisations of Transset 93
13.1.2 Consequences of Downwards Closure 93
13.1.3 Closure Properties . 93

13.2 Lemmas for Ordinals . 94
13.3 The Construction of Ordinals: 0, succ, Union 95

4

13.4 < is ’less Than’ for Ordinals 95
13.5 Natural Deduction Rules for Memrel 97
13.6 Transfinite Induction . 98

14 Fundamental properties of the epsilon ordering (< on ordi-
nals) 98

14.0.1 Proving That < is a Linear Ordering on the Ordinals 98
14.0.2 Some Rewrite Rules for <, ≤ 99

14.1 Results about Less-Than or Equals 99
14.1.1 Transitivity Laws . 100
14.1.2 Union and Intersection 100

14.2 Results about Limits . 101
14.3 Limit Ordinals – General Properties 102

14.3.1 Traditional 3-Way Case Analysis on Ordinals 103

15 Special quantifiers 104
15.1 Quantifiers and union operator for ordinals 104

15.1.1 simplification of the new quantifiers 105
15.1.2 Union over ordinals 105
15.1.3 universal quantifier for ordinals 106
15.1.4 existential quantifier for ordinals 107
15.1.5 Rules for Ordinal-Indexed Unions 107

15.2 Quantification over a class . 107
15.2.1 Relativized universal quantifier 108
15.2.2 Relativized existential quantifier 108
15.2.3 One-point rule for bounded quantifiers 110
15.2.4 Sets as Classes . 110

16 The Natural numbers As a Least Fixed Point 111
16.1 Injectivity Properties and Induction 112
16.2 Variations on Mathematical Induction 113
16.3 quasinat: to allow a case-split rule for nat-case 114
16.4 Recursion on the Natural Numbers 115

17 Inductive and Coinductive Definitions 115

18 Epsilon Induction and Recursion 116
18.1 Basic Closure Properties . 116
18.2 Leastness of eclose . 117
18.3 Epsilon Recursion . 118
18.4 Rank . 119
18.5 Corollaries of Leastness . 120

5

19 Partial and Total Orderings: Basic Definitions and Proper-
ties 121
19.1 Immediate Consequences of the Definitions 122
19.2 Restricting an Ordering’s Domain 123
19.3 Empty and Unit Domains . 124

19.3.1 Relations over the Empty Set 124
19.3.2 The Empty Relation Well-Orders the Unit Set 125

19.4 Order-Isomorphisms . 125
19.5 Main results of Kunen, Chapter 1 section 6 127
19.6 Towards Kunen’s Theorem 6.3: Linearity of the Similarity

Relation . 128
19.7 Miscellaneous Results by Krzysztof Grabczewski 129
19.8 Lemmas for the Reflexive Orders 130

20 Combining Orderings: Foundations of Ordinal Arithmetic 131
20.1 Addition of Relations – Disjoint Sum 131

20.1.1 Rewrite rules. Can be used to obtain introduction rules131
20.1.2 Elimination Rule . 132
20.1.3 Type checking . 132
20.1.4 Linearity . 132
20.1.5 Well-foundedness . 132
20.1.6 An ord-iso congruence law 132
20.1.7 Associativity . 133

20.2 Multiplication of Relations – Lexicographic Product 133
20.2.1 Rewrite rule. Can be used to obtain introduction rules 133
20.2.2 Type checking . 133
20.2.3 Linearity . 134
20.2.4 Well-foundedness . 134
20.2.5 An ord-iso congruence law 134
20.2.6 Distributive law . 135
20.2.7 Associativity . 135

20.3 Inverse Image of a Relation 135
20.3.1 Rewrite rule . 135
20.3.2 Type checking . 135
20.3.3 Partial Ordering Properties 135
20.3.4 Linearity . 136
20.3.5 Well-foundedness . 136

20.4 Every well-founded relation is a subset of some inverse image
of an ordinal . 136

20.5 Other Results . 137
20.5.1 The Empty Relation 137
20.5.2 The "measure" relation is useful with wfrec 138
20.5.3 Well-foundedness of Unions 138
20.5.4 Bijections involving Powersets 138

6

21 Order Types and Ordinal Arithmetic 139
21.1 Proofs needing the combination of Ordinal.thy and Order.thy 140
21.2 Ordermap and ordertype . 140

21.2.1 Unfolding of ordermap 140
21.2.2 Showing that ordermap, ordertype yield ordinals . . . 141
21.2.3 ordermap preserves the orderings in both directions . 141
21.2.4 Isomorphisms involving ordertype 141
21.2.5 Basic equalities for ordertype 142
21.2.6 A fundamental unfolding law for ordertype. 142

21.3 Alternative definition of ordinal 142
21.4 Ordinal Addition . 143

21.4.1 Order Type calculations for radd 143
21.4.2 ordify: trivial coercion to an ordinal 144
21.4.3 Basic laws for ordinal addition 144
21.4.4 Ordinal addition with successor – via associativity! . . 145

21.5 Ordinal Subtraction . 147
21.6 Ordinal Multiplication . 147

21.6.1 A useful unfolding law 147
21.6.2 Basic laws for ordinal multiplication 148
21.6.3 Ordering/monotonicity properties of ordinal multipli-

cation . 149
21.7 The Relation Lt . 150

22 Finite Powerset Operator and Finite Function Space 150
22.1 Finite Powerset Operator . 151
22.2 Finite Function Space . 152
22.3 The Contents of a Singleton Set 153

23 Cardinal Numbers Without the Axiom of Choice 153
23.1 The Schroeder-Bernstein Theorem 154
23.2 lesspoll: contributions by Krzysztof Grabczewski 156
23.3 Basic Properties of Cardinals 157
23.4 The finite cardinals . 159
23.5 The first infinite cardinal: Omega, or nat 161
23.6 Towards Cardinal Arithmetic 161
23.7 Lemmas by Krzysztof Grabczewski 162
23.8 Finite and infinite sets . 163

24 The Cumulative Hierarchy and a Small Universe for Recur-
sive Types 166
24.1 Immediate Consequences of the Definition of Vfrom(A, i) . . 166

24.1.1 Monotonicity . 167
24.1.2 A fundamental equality: Vfrom does not require or-

dinals! . 167

7

24.2 Basic Closure Properties . 167
24.2.1 Finite sets and ordered pairs 167

24.3 0, Successor and Limit Equations for Vfrom 168
24.4 Vfrom applied to Limit Ordinals 168

24.4.1 Closure under Disjoint Union 169
24.5 Properties assuming Transset(A) 169

24.5.1 Products . 170
24.5.2 Disjoint Sums, or Quine Ordered Pairs 170
24.5.3 Function Space! . 170

24.6 The Set Vset(i) . 171
24.6.1 Characterisation of the elements of Vset(i) 171
24.6.2 Reasoning about Sets in Terms of Their Elements’ Ranks171
24.6.3 Set Up an Environment for Simplification 172
24.6.4 Recursion over Vset Levels! 172

24.7 The Datatype Universe: univ(A) 172
24.7.1 The Set univ(A) as a Limit 173

24.8 Closure Properties for univ(A) 173
24.8.1 Closure under Unordered and Ordered Pairs 173
24.8.2 The Natural Numbers 174
24.8.3 Instances for 1 and 2 174
24.8.4 Closure under Disjoint Union 174

24.9 Finite Branching Closure Properties 174
24.9.1 Closure under Finite Powerset 174
24.9.2 Closure under Finite Powers: Functions from a Natu-

ral Number . 175
24.9.3 Closure under Finite Function Space 175

24.10* For QUniv. Properties of Vfrom analogous to the "take-
lemma" * . 176

25 A Small Universe for Lazy Recursive Types 176
25.1 Properties involving Transset and Sum 177
25.2 Introduction and Elimination Rules 177
25.3 Closure Properties . 177
25.4 Quine Disjoint Sum . 178
25.5 Closure for Quine-Inspired Products and Sums 178
25.6 Quine Disjoint Sum . 178
25.7 The Natural Numbers . 179
25.8 "Take-Lemma" Rules . 179

26 Datatype and CoDatatype Definitions 179

8

27 Arithmetic Operators and Their Definitions 180
27.1 natify, the Coercion to nat . 181
27.2 Typing rules . 182
27.3 Addition . 183
27.4 Monotonicity of Addition . 185
27.5 Multiplication . 187

28 Arithmetic with simplification 188
28.1 Arithmetic simplification . 188

28.1.1 Examples . 188
28.2 Difference . 189
28.3 Remainder . 190
28.4 Division . 191
28.5 Further Facts about Remainder 192
28.6 Additional theorems about ≤ 192
28.7 Cancellation Laws for Common Factors in Comparisons . . . 193
28.8 More Lemmas about Remainder 194

28.8.1 More Lemmas About Difference 195

29 Lists in Zermelo-Fraenkel Set Theory 196
29.1 The function zip . 209

30 Equivalence Relations 215
30.1 Suppes, Theorem 70: r is an equiv relation iff converse(r) O

r = r . 216
30.2 Defining Unary Operations upon Equivalence Classes 217
30.3 Defining Binary Operations upon Equivalence Classes 218

31 The Integers as Equivalence Classes Over Pairs of Natural
Numbers 219
31.1 Proving that intrel is an equivalence relation 220
31.2 Collapsing rules: to remove intify from arithmetic expressions 222
31.3 zminus: unary negation on int 223
31.4 znegative: the test for negative integers 223
31.5 nat-of : Coercion of an Integer to a Natural Number 224
31.6 zmagnitude: magnitide of an integer, as a natural number . . 224
31.7 ($+): addition on int . 225
31.8 ($∗): Integer Multiplication 227
31.9 The "Less Than" Relation . 229
31.10Less Than or Equals . 231
31.11More subtraction laws (for zcompare-rls) 231
31.12Monotonicity and Cancellation Results for Instantiation of

the CancelNumerals Simprocs 232
31.13Comparison laws . 233

9

31.13.1 More inequality lemmas 233
31.13.2 The next several equations are permutative: watch out!234

32 Arithmetic on Binary Integers 234
32.0.1 The Carry and Borrow Functions, bin-succ and bin-pred237
32.0.2 bin-minus: Unary Negation of Binary Integers 237
32.0.3 bin-add: Binary Addition 237
32.0.4 bin-mult: Binary Multiplication 238

32.1 Computations . 238
32.2 Simplification Rules for Comparison of Binary Numbers . . . 240

32.2.1 Examples . 246

33 The Division Operators Div and Mod 247
33.1 Uniqueness and monotonicity of quotients and remainders . . 251
33.2 Correctness of posDivAlg, the Division Algorithm for a≥0

and b>0 . 252
33.3 Some convenient biconditionals for products of signs 253
33.4 Correctness of negDivAlg, the division algorithm for a<0 and

b>0 . 254
33.5 Existence shown by proving the division algorithm to be correct255
33.6 division of a number by itself 258
33.7 Computation of division and remainder 259
33.8 Monotonicity in the first argument (divisor) 261
33.9 Monotonicity in the second argument (dividend) 261
33.10More algebraic laws for zdiv and zmod 262
33.11proving a zdiv (b*c) = (a zdiv b) zdiv c 264
33.12Cancellation of common factors in "zdiv" 265
33.13Distribution of factors over "zmod" 265

34 Cardinal Arithmetic Without the Axiom of Choice 266
34.1 Cardinal addition . 267

34.1.1 Cardinal addition is commutative 267
34.1.2 Cardinal addition is associative 267
34.1.3 0 is the identity for addition 268
34.1.4 Addition by another cardinal 268
34.1.5 Monotonicity of addition 268
34.1.6 Addition of finite cardinals is "ordinary" addition . . . 268

34.2 Cardinal multiplication . 269
34.2.1 Cardinal multiplication is commutative 269
34.2.2 Cardinal multiplication is associative 269
34.2.3 Cardinal multiplication distributes over addition . . . 269
34.2.4 Multiplication by 0 yields 0 269
34.2.5 1 is the identity for multiplication 269

34.3 Some inequalities for multiplication 269

10

34.3.1 Multiplication by a non-zero cardinal 270
34.3.2 Monotonicity of multiplication 270

34.4 Multiplication of finite cardinals is "ordinary" multiplication . 270
34.5 Infinite Cardinals are Limit Ordinals 271

34.5.1 Establishing the well-ordering 271
34.5.2 Characterising initial segments of the well-ordering . . 271
34.5.3 The cardinality of initial segments 272
34.5.4 Toward’s Kunen’s Corollary 10.13 (1) 272

34.6 For Every Cardinal Number There Exists A Greater One . . 273
34.7 Basic Properties of Successor Cardinals 273

34.7.1 Removing elements from a finite set decreases its car-
dinality . 274

34.7.2 Theorems by Krzysztof Grabczewski, proofs by lcp . . 275

35 Main ZF Theory: Everything Except AC 275
35.1 Iteration of the function F . 275
35.2 Transfinite Recursion . 276

36 The Axiom of Choice 276

37 Zorn’s Lemma 277
37.1 Mathematical Preamble . 278
37.2 The Transfinite Construction 278
37.3 Some Properties of the Transfinite Construction 279
37.4 Hausdorff’s Theorem: Every Set Contains a Maximal Chain . 280
37.5 Zorn’s Lemma: If All Chains in S Have Upper Bounds In S,

then S contains a Maximal Element 280
37.6 Zermelo’s Theorem: Every Set can be Well-Ordered 281
37.7 Zorn’s Lemma for Partial Orders 282

38 Cardinal Arithmetic Using AC 282
38.1 Strengthened Forms of Existing Theorems on Cardinals . . . 282
38.2 The relationship between cardinality and le-pollence 283
38.3 Other Applications of AC . 283
38.4 The Main Result for Infinite-Branching Datatypes 284

39 Infinite-Branching Datatype Definitions 284

11

AC

Arith

ArithSimp

Bin

Bool

Cardinal

CardinalArith

Cardinal_AC

Datatype

Epsilon

EquivClass

Finite

Fixedpt

Inductive

InfDatatype

Int

IntDiv

List

Nat

OrdQuant

Order

OrderArith

OrderType

Ordinal

PermQPair

QUniv

Sum

Trancl

Univ

WF

ZF

ZFC

ZF_Base

Zorn

[FOL]

[Pure]

equalities

func

pair

upair

12

1 Base of Zermelo-Fraenkel Set Theory
theory ZF-Base
imports FOL
begin

1.1 Signature
declare [[eta-contract = false]]

typedecl i
instance i :: term 〈proof 〉

axiomatization mem :: [i, i] ⇒ o (infixl ‹∈› 50) — membership relation
and zero :: i (‹0 ›) — the empty set
and Pow :: i ⇒ i — power sets
and Inf :: i — infinite set
and Union :: i ⇒ i (‹(‹open-block notation=‹prefix

⋃
››
⋃

-)› [90] 90)
and PrimReplace :: [i, [i, i] ⇒ o] ⇒ i

abbreviation not-mem :: [i, i] ⇒ o (infixl ‹/∈› 50) — negated membership
relation

where x /∈ y ≡ ¬ (x ∈ y)

1.2 Bounded Quantifiers
definition Ball :: [i, i ⇒ o] ⇒ o

where Ball(A, P) ≡ ∀ x. x∈A −→ P(x)

definition Bex :: [i, i ⇒ o] ⇒ o
where Bex(A, P) ≡ ∃ x. x∈A ∧ P(x)

syntax
-Ball :: [pttrn, i, o] ⇒ o (‹(‹indent=3 notation=‹binder ∀∈››∀ -∈-./ -)› 10)
-Bex :: [pttrn, i, o] ⇒ o (‹(‹indent=3 notation=‹binder ∃∈››∃ -∈-./ -)› 10)

syntax-consts
-Ball
 Ball and
-Bex
 Bex

translations
∀ x∈A. P
 CONST Ball(A, λx. P)
∃ x∈A. P
 CONST Bex(A, λx. P)

1.3 Variations on Replacement
definition Replace :: [i, [i, i] ⇒ o] ⇒ i

where Replace(A,P) ≡ PrimReplace(A, λx y. (∃ !z. P(x,z)) ∧ P(x,y))

syntax
-Replace :: [pttrn, pttrn, i, o] ⇒ i (‹(‹indent=1 notation=‹mixfix relational

replacement››{- ./ - ∈ -, -})›)

13

syntax-consts
-Replace
 Replace

translations
{y. x∈A, Q}
 CONST Replace(A, λx y. Q)

definition RepFun :: [i, i ⇒ i] ⇒ i
where RepFun(A,f) ≡ {y . x∈A, y=f (x)}

syntax
-RepFun :: [i, pttrn, i] ⇒ i (‹(‹indent=1 notation=‹mixfix functional replace-

ment››{- ./ - ∈ -})› [51 ,0 ,51])
syntax-consts

-RepFun
 RepFun
translations
{b. x∈A}
 CONST RepFun(A, λx. b)

definition Collect :: [i, i ⇒ o] ⇒ i
where Collect(A,P) ≡ {y . x∈A, x=y ∧ P(x)}

syntax
-Collect :: [pttrn, i, o] ⇒ i (‹(‹indent=1 notation=‹mixfix set comprehension››{-
∈ - ./ -})›)
syntax-consts

-Collect
 Collect
translations
{x∈A. P}
 CONST Collect(A, λx. P)

1.4 General union and intersection
definition Inter :: i ⇒ i (‹(‹open-block notation=‹prefix

⋂
››
⋂

-)› [90] 90)
where

⋂
(A) ≡ { x∈

⋃
(A) . ∀ y∈A. x∈y}

syntax
-UNION :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder

⋃
∈››

⋃
-∈-./ -)› 10)

-INTER :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder
⋂
∈››

⋂
-∈-./ -)› 10)

syntax-consts
-UNION == Union and
-INTER == Inter

translations⋃
x∈A. B == CONST Union({B. x∈A})⋂
x∈A. B == CONST Inter({B. x∈A})

1.5 Finite sets and binary operations
definition Upair :: [i, i] ⇒ i

where Upair(a,b) ≡ {y. x∈Pow(Pow(0)), (x=0 ∧ y=a) | (x=Pow(0) ∧ y=b)}

14

definition Subset :: [i, i] ⇒ o (infixl ‹⊆› 50) — subset relation
where subset-def : A ⊆ B ≡ ∀ x∈A. x∈B

definition Diff :: [i, i] ⇒ i (infixl ‹−› 65) — set difference
where A − B ≡ { x∈A . ¬(x∈B) }

definition Un :: [i, i] ⇒ i (infixl ‹∪› 65) — binary union
where A ∪ B ≡

⋃
(Upair(A,B))

definition Int :: [i, i] ⇒ i (infixl ‹∩› 70) — binary intersection
where A ∩ B ≡

⋂
(Upair(A,B))

definition cons :: [i, i] ⇒ i
where cons(a,A) ≡ Upair(a,a) ∪ A

definition succ :: i ⇒ i
where succ(i) ≡ cons(i, i)

nonterminal is
syntax

:: i ⇒ is (‹-›)
-Enum :: [i, is] ⇒ is (‹-,/ -›)
-Finset :: is ⇒ i (‹(‹indent=1 notation=‹mixfix set enumeration››{-})›)

translations
{x, xs} == CONST cons(x, {xs})
{x} == CONST cons(x, 0)

1.6 Axioms
axiomatization
where

extension: A = B ←→ A ⊆ B ∧ B ⊆ A and
Union-iff : A ∈

⋃
(C) ←→ (∃B∈C . A∈B) and

Pow-iff : A ∈ Pow(B) ←→ A ⊆ B and

infinity: 0 ∈ Inf ∧ (∀ y∈Inf . succ(y) ∈ Inf) and

foundation: A = 0 ∨ (∃ x∈A. ∀ y∈x. y /∈A) and

replacement: (∀ x∈A. ∀ y z. P(x,y) ∧ P(x,z) −→ y = z) =⇒
b ∈ PrimReplace(A,P) ←→ (∃ x∈A. P(x,b))

1.7 Definite descriptions – via Replace over the set "1"
definition The :: (i ⇒ o) ⇒ i (binder ‹THE › 10)

where the-def : The(P) ≡
⋃
({y . x ∈ {0}, P(y)})

15

definition If :: [o, i, i] ⇒ i (‹(‹notation=‹mixfix if then else››if (-)/ then (-)/
else (-))› [10] 10)

where if-def : if P then a else b ≡ THE z . P ∧ z=a | ¬P ∧ z=b

abbreviation (input)
old-if :: [o, i, i] ⇒ i (‹if ′(-,-,- ′)›)
where if (P,a,b) ≡ If (P,a,b)

1.8 Ordered Pairing
definition Pair :: [i, i] ⇒ i

where Pair(a,b) ≡ {{a,a}, {a,b}}

definition fst :: i ⇒ i
where fst(p) ≡ THE a. ∃ b. p = Pair(a, b)

definition snd :: i ⇒ i
where snd(p) ≡ THE b. ∃ a. p = Pair(a, b)

definition split :: [[i, i] ⇒ ′a, i] ⇒ ′a::{} — for pattern-matching
where split(c) ≡ λp. c(fst(p), snd(p))

nonterminal tuple-args
syntax

:: i ⇒ tuple-args (‹-›)
-Tuple-args :: [i, tuple-args] ⇒ tuple-args (‹-,/ -›)
-Tuple :: [i, tuple-args] ⇒ i (‹(‹indent=1 notation=‹mixfix tuple enumera-

tion››〈-,/ -〉)›)
translations
〈x, y, z〉 == 〈x, 〈y, z〉〉
〈x, y〉 == CONST Pair(x, y)

nonterminal patterns
syntax

-pattern :: patterns ⇒ pttrn (‹(‹open-block notation=‹pattern tuple››〈-〉)›)
:: pttrn ⇒ patterns (‹-›)

-patterns :: [pttrn, patterns] ⇒ patterns (‹-,/-›)
syntax-consts

-pattern -patterns == split
translations
λ〈x,y,zs〉.b == CONST split(λx 〈y,zs〉.b)
λ〈x,y〉.b == CONST split(λx y. b)

definition Sigma :: [i, i ⇒ i] ⇒ i
where Sigma(A,B) ≡

⋃
x∈A.

⋃
y∈B(x). {〈x,y〉}

abbreviation cart-prod :: [i, i] ⇒ i (infixr ‹×› 80) — Cartesian product

16

where A × B ≡ Sigma(A, λ-. B)

1.9 Relations and Functions
definition converse :: i ⇒ i

where converse(r) ≡ {z. w∈r , ∃ x y. w=〈x,y〉 ∧ z=〈y,x〉}

definition domain :: i ⇒ i
where domain(r) ≡ {x. w∈r , ∃ y. w=〈x,y〉}

definition range :: i ⇒ i
where range(r) ≡ domain(converse(r))

definition field :: i ⇒ i
where field(r) ≡ domain(r) ∪ range(r)

definition relation :: i ⇒ o — recognizes sets of pairs
where relation(r) ≡ ∀ z∈r . ∃ x y. z = 〈x,y〉

definition function :: i ⇒ o — recognizes functions; can have non-pairs
where function(r) ≡ ∀ x y. 〈x,y〉 ∈ r −→ (∀ y ′. 〈x,y ′〉 ∈ r −→ y = y ′)

definition Image :: [i, i] ⇒ i (infixl ‹‘‘› 90) — image
where image-def : r ‘‘ A ≡ {y ∈ range(r). ∃ x∈A. 〈x,y〉 ∈ r}

definition vimage :: [i, i] ⇒ i (infixl ‹−‘‘› 90) — inverse image
where vimage-def : r −‘‘ A ≡ converse(r)‘‘A

definition restrict :: [i, i] ⇒ i
where restrict(r ,A) ≡ {z ∈ r . ∃ x∈A. ∃ y. z = 〈x,y〉}

definition Lambda :: [i, i ⇒ i] ⇒ i
where lam-def : Lambda(A,b) ≡ {〈x,b(x)〉. x∈A}

definition apply :: [i, i] ⇒ i (infixl ‹‘› 90) — function application
where f‘a ≡

⋃
(f‘‘{a})

definition Pi :: [i, i ⇒ i] ⇒ i
where Pi(A,B) ≡ {f∈Pow(Sigma(A,B)). A⊆domain(f) ∧ function(f)}

abbreviation function-space :: [i, i] ⇒ i (infixr ‹→› 60) — function space
where A → B ≡ Pi(A, λ-. B)

17

syntax
-PROD :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹mixfix

∏
∈››

∏
-∈-./

-)› 10)
-SUM :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹mixfix

∑
∈››

∑
-∈-./

-)› 10)
-lam :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹mixfix λ∈››λ-∈-./ -)›

10)
syntax-consts

-PROD == Pi and
-SUM == Sigma and
-lam == Lambda

translations∏
x∈A. B == CONST Pi(A, λx. B)∑
x∈A. B == CONST Sigma(A, λx. B)

λx∈A. f == CONST Lambda(A, λx. f)

1.10 ASCII syntax
notation (ASCII)

cart-prod (infixr ‹∗› 80) and
Int (infixl ‹Int› 70) and
Un (infixl ‹Un› 65) and
function-space (infixr ‹−>› 60) and
Subset (infixl ‹<=› 50) and
mem (infixl ‹:› 50) and
not-mem (infixl ‹¬:› 50)

syntax (ASCII)
-Ball :: [pttrn, i, o] ⇒ o (‹(‹indent=3 notation=‹binder ALL:››ALL -:-./

-)› 10)
-Bex :: [pttrn, i, o] ⇒ o (‹(‹indent=3 notation=‹binder EX :››EX -:-./

-)› 10)
-Collect :: [pttrn, i, o] ⇒ i (‹(‹indent=1 notation=‹mixfix set comprehen-

sion››{-: - ./ -})›)
-Replace :: [pttrn, pttrn, i, o] ⇒ i (‹(‹indent=1 notation=‹mixfix relational

replacement››{- ./ -: -, -})›)
-RepFun :: [i, pttrn, i] ⇒ i (‹(‹indent=1 notation=‹mixfix functional

replacement››{- ./ -: -})› [51 ,0 ,51])
-UNION :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder UN :››UN -:-./

-)› 10)
-INTER :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder INT :››INT

-:-./ -)› 10)
-PROD :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder PROD:››PROD

-:-./ -)› 10)
-SUM :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder SUM :››SUM

-:-./ -)› 10)
-lam :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder lam:››lam -:-./

-)› 10)

18

-Tuple :: [i, tuple-args] ⇒ i (‹(‹indent=1 notation=‹mixfix tuple enumera-
tion››<-,/ ->)›)

-pattern :: patterns ⇒ pttrn (‹<->›)

1.11 Substitution
lemma subst-elem: [[b∈A; a=b]] =⇒ a∈A
〈proof 〉

1.12 Bounded universal quantifier
lemma ballI [intro!]: [[

∧
x. x∈A =⇒ P(x)]] =⇒ ∀ x∈A. P(x)

〈proof 〉

lemmas strip = impI allI ballI

lemma bspec [dest?]: [[∀ x∈A. P(x); x: A]] =⇒ P(x)
〈proof 〉

lemma rev-ballE [elim]:
[[∀ x∈A. P(x); x /∈A =⇒ Q; P(x) =⇒ Q]] =⇒ Q

〈proof 〉

lemma ballE : [[∀ x∈A. P(x); P(x) =⇒ Q; x /∈A =⇒ Q]] =⇒ Q
〈proof 〉

lemma rev-bspec: [[x: A; ∀ x∈A. P(x)]] =⇒ P(x)
〈proof 〉

lemma ball-triv [simp]: (∀ x∈A. P) ←→ ((∃ x. x∈A) −→ P)
〈proof 〉

lemma ball-cong [cong]:
[[A=A ′;

∧
x. x∈A ′ =⇒ P(x)←→ P ′(x)]] =⇒ (∀ x∈A. P(x))←→ (∀ x∈A ′. P ′(x))

〈proof 〉

lemma atomize-ball:
(
∧

x. x ∈ A =⇒ P(x)) ≡ Trueprop (∀ x∈A. P(x))
〈proof 〉

lemmas [symmetric, rulify] = atomize-ball
and [symmetric, defn] = atomize-ball

1.13 Bounded existential quantifier
lemma bexI [intro]: [[P(x); x: A]] =⇒ ∃ x∈A. P(x)

19

〈proof 〉

lemma rev-bexI : [[x∈A; P(x)]] =⇒ ∃ x∈A. P(x)
〈proof 〉

lemma bexCI : [[∀ x∈A. ¬P(x) =⇒ P(a); a: A]] =⇒ ∃ x∈A. P(x)
〈proof 〉

lemma bexE [elim!]: [[∃ x∈A. P(x);
∧

x. [[x∈A; P(x)]] =⇒ Q]] =⇒ Q
〈proof 〉

lemma bex-triv [simp]: (∃ x∈A. P) ←→ ((∃ x. x∈A) ∧ P)
〈proof 〉

lemma bex-cong [cong]:
[[A=A ′;

∧
x. x∈A ′ =⇒ P(x) ←→ P ′(x)]]

=⇒ (∃ x∈A. P(x)) ←→ (∃ x∈A ′. P ′(x))
〈proof 〉

1.14 Rules for subsets
lemma subsetI [intro!]:

(
∧

x. x∈A =⇒ x∈B) =⇒ A ⊆ B
〈proof 〉

lemma subsetD [elim]: [[A ⊆ B; c∈A]] =⇒ c∈B
〈proof 〉

lemma subsetCE [elim]:
[[A ⊆ B; c/∈A =⇒ P; c∈B =⇒ P]] =⇒ P

〈proof 〉

lemma rev-subsetD: [[c∈A; A⊆B]] =⇒ c∈B
〈proof 〉

lemma contra-subsetD: [[A ⊆ B; c /∈ B]] =⇒ c /∈ A
〈proof 〉

lemma rev-contra-subsetD: [[c /∈ B; A ⊆ B]] =⇒ c /∈ A
〈proof 〉

lemma subset-refl [simp]: A ⊆ A
〈proof 〉

20

lemma subset-trans: [[A⊆B; B⊆C]] =⇒ A⊆C
〈proof 〉

lemma subset-iff :
A⊆B ←→ (∀ x. x∈A −→ x∈B)

〈proof 〉

For calculations
declare subsetD [trans] rev-subsetD [trans] subset-trans [trans]

1.15 Rules for equality
lemma equalityI [intro]: [[A ⊆ B; B ⊆ A]] =⇒ A = B
〈proof 〉

lemma equality-iffI : (
∧

x. x∈A ←→ x∈B) =⇒ A = B
〈proof 〉

lemmas equalityD1 = extension [THEN iffD1 , THEN conjunct1]
lemmas equalityD2 = extension [THEN iffD1 , THEN conjunct2]

lemma equalityE : [[A = B; [[A⊆B; B⊆A]] =⇒ P]] =⇒ P
〈proof 〉

lemma equalityCE :
[[A = B; [[c∈A; c∈B]] =⇒ P; [[c/∈A; c/∈B]] =⇒ P]] =⇒ P
〈proof 〉

lemma equality-iffD:
A = B =⇒ (

∧
x. x ∈ A ←→ x ∈ B)

〈proof 〉

1.16 Rules for Replace – the derived form of replacement
lemma Replace-iff :

b ∈ {y. x∈A, P(x,y)} ←→ (∃ x∈A. P(x,b) ∧ (∀ y. P(x,y) −→ y=b))
〈proof 〉

lemma ReplaceI [intro]:
[[P(x,b); x: A;

∧
y. P(x,y) =⇒ y=b]] =⇒

b ∈ {y. x∈A, P(x,y)}
〈proof 〉

lemma ReplaceE :

21

[[b ∈ {y. x∈A, P(x,y)};∧
x. [[x: A; P(x,b); ∀ y. P(x,y)−→y=b]] =⇒ R

]] =⇒ R
〈proof 〉

lemma ReplaceE2 [elim!]:
[[b ∈ {y. x∈A, P(x,y)};∧

x. [[x: A; P(x,b)]] =⇒ R
]] =⇒ R
〈proof 〉

lemma Replace-cong [cong]:
[[A=B;

∧
x y. x∈B =⇒ P(x,y) ←→ Q(x,y)]] =⇒ Replace(A,P) = Replace(B,Q)

〈proof 〉

1.17 Rules for RepFun
lemma RepFunI : a ∈ A =⇒ f (a) ∈ {f (x). x∈A}
〈proof 〉

lemma RepFun-eqI [intro]: [[b=f (a); a ∈ A]] =⇒ b ∈ {f (x). x∈A}
〈proof 〉

lemma RepFunE [elim!]:
[[b ∈ {f (x). x∈A};∧

x.[[x∈A; b=f (x)]] =⇒ P]] =⇒
P

〈proof 〉

lemma RepFun-cong [cong]:
[[A=B;

∧
x. x∈B =⇒ f (x)=g(x)]] =⇒ RepFun(A,f) = RepFun(B,g)

〈proof 〉

lemma RepFun-iff [simp]: b ∈ {f (x). x∈A} ←→ (∃ x∈A. b=f (x))
〈proof 〉

lemma triv-RepFun [simp]: {x. x∈A} = A
〈proof 〉

1.18 Rules for Collect – forming a subset by separation
lemma separation [simp]: a ∈ {x∈A. P(x)} ←→ a∈A ∧ P(a)
〈proof 〉

lemma CollectI [intro!]: [[a∈A; P(a)]] =⇒ a ∈ {x∈A. P(x)}
〈proof 〉

lemma CollectE [elim!]: [[a ∈ {x∈A. P(x)}; [[a∈A; P(a)]] =⇒ R]] =⇒ R

22

〈proof 〉

lemma CollectD1 : a ∈ {x∈A. P(x)} =⇒ a∈A and CollectD2 : a ∈ {x∈A. P(x)}
=⇒ P(a)
〈proof 〉

lemma Collect-cong [cong]:
[[A=B;

∧
x. x∈B =⇒ P(x) ←→ Q(x)]]

=⇒ Collect(A, λx. P(x)) = Collect(B, λx. Q(x))
〈proof 〉

1.19 Rules for Unions
declare Union-iff [simp]

lemma UnionI [intro]: [[B: C ; A: B]] =⇒ A:
⋃

(C)
〈proof 〉

lemma UnionE [elim!]: [[A ∈
⋃
(C);

∧
B.[[A: B; B: C]] =⇒ R]] =⇒ R

〈proof 〉

1.20 Rules for Unions of families
lemma UN-iff [simp]: b ∈ (

⋃
x∈A. B(x)) ←→ (∃ x∈A. b ∈ B(x))

〈proof 〉

lemma UN-I : [[a: A; b: B(a)]] =⇒ b: (
⋃

x∈A. B(x))
〈proof 〉

lemma UN-E [elim!]:
[[b ∈ (

⋃
x∈A. B(x));

∧
x.[[x: A; b: B(x)]] =⇒ R]] =⇒ R

〈proof 〉

lemma UN-cong:
[[A=B;

∧
x. x∈B =⇒ C (x)=D(x)]] =⇒ (

⋃
x∈A. C (x)) = (

⋃
x∈B. D(x))

〈proof 〉

1.21 Rules for the empty set
lemma not-mem-empty [simp]: a /∈ 0
〈proof 〉

lemmas emptyE [elim!] = not-mem-empty [THEN notE]

lemma empty-subsetI [simp]: 0 ⊆ A
〈proof 〉

23

lemma equals0I : [[
∧

y. y∈A =⇒ False]] =⇒ A=0
〈proof 〉

lemma equals0D [dest]: A=0 =⇒ a /∈ A
〈proof 〉

declare sym [THEN equals0D, dest]

lemma not-emptyI : a∈A =⇒ A 6= 0
〈proof 〉

lemma not-emptyE : [[A 6= 0 ;
∧

x. x∈A =⇒ R]] =⇒ R
〈proof 〉

1.22 Rules for Inter
lemma Inter-iff : A ∈

⋂
(C) ←→ (∀ x∈C . A: x) ∧ C 6=0

〈proof 〉

lemma InterI [intro!]:
[[
∧

x. x: C =⇒ A: x; C 6=0]] =⇒ A ∈
⋂

(C)
〈proof 〉

lemma InterD [elim, Pure.elim]: [[A ∈
⋂
(C); B ∈ C]] =⇒ A ∈ B

〈proof 〉

lemma InterE [elim]:
[[A ∈

⋂
(C); B /∈C =⇒ R; A∈B =⇒ R]] =⇒ R

〈proof 〉

1.23 Rules for Intersections of families
lemma INT-iff : b ∈ (

⋂
x∈A. B(x)) ←→ (∀ x∈A. b ∈ B(x)) ∧ A 6=0

〈proof 〉

lemma INT-I : [[
∧

x. x: A =⇒ b: B(x); A 6=0]] =⇒ b: (
⋂

x∈A. B(x))
〈proof 〉

lemma INT-E : [[b ∈ (
⋂

x∈A. B(x)); a: A]] =⇒ b ∈ B(a)
〈proof 〉

lemma INT-cong:
[[A=B;

∧
x. x∈B =⇒ C (x)=D(x)]] =⇒ (

⋂
x∈A. C (x)) = (

⋂
x∈B. D(x))

〈proof 〉

24

1.24 Rules for Powersets
lemma PowI : A ⊆ B =⇒ A ∈ Pow(B)
〈proof 〉

lemma PowD: A ∈ Pow(B) =⇒ A⊆B
〈proof 〉

declare Pow-iff [iff]

lemmas Pow-bottom = empty-subsetI [THEN PowI] — 0 ∈ Pow(B)
lemmas Pow-top = subset-refl [THEN PowI] — A ∈ Pow(A)

1.25 Cantor’s Theorem: There is no surjection from a set to
its powerset.

lemma cantor : ∃S ∈ Pow(A). ∀ x∈A. b(x) 6= S
〈proof 〉

end

2 Unordered Pairs
theory upair
imports ZF-Base
keywords print-tcset :: diag
begin

〈ML〉

2.1 Unordered Pairs: constant Upair
lemma Upair-iff [simp]: c ∈ Upair(a,b) ←→ (c=a | c=b)
〈proof 〉

lemma UpairI1 : a ∈ Upair(a,b)
〈proof 〉

lemma UpairI2 : b ∈ Upair(a,b)
〈proof 〉

lemma UpairE : [[a ∈ Upair(b,c); a=b =⇒ P; a=c =⇒ P]] =⇒ P
〈proof 〉

2.2 Rules for Binary Union, Defined via Upair
lemma Un-iff [simp]: c ∈ A ∪ B ←→ (c ∈ A | c ∈ B)
〈proof 〉

25

lemma UnI1 : c ∈ A =⇒ c ∈ A ∪ B
〈proof 〉

lemma UnI2 : c ∈ B =⇒ c ∈ A ∪ B
〈proof 〉

declare UnI1 [elim?] UnI2 [elim?]

lemma UnE [elim!]: [[c ∈ A ∪ B; c ∈ A =⇒ P; c ∈ B =⇒ P]] =⇒ P
〈proof 〉

lemma UnE ′: [[c ∈ A ∪ B; c ∈ A =⇒ P; [[c ∈ B; c/∈A]] =⇒ P]] =⇒ P
〈proof 〉

lemma UnCI [intro!]: (c /∈ B =⇒ c ∈ A) =⇒ c ∈ A ∪ B
〈proof 〉

2.3 Rules for Binary Intersection, Defined via Upair
lemma Int-iff [simp]: c ∈ A ∩ B ←→ (c ∈ A ∧ c ∈ B)
〈proof 〉

lemma IntI [intro!]: [[c ∈ A; c ∈ B]] =⇒ c ∈ A ∩ B
〈proof 〉

lemma IntD1 : c ∈ A ∩ B =⇒ c ∈ A
〈proof 〉

lemma IntD2 : c ∈ A ∩ B =⇒ c ∈ B
〈proof 〉

lemma IntE [elim!]: [[c ∈ A ∩ B; [[c ∈ A; c ∈ B]] =⇒ P]] =⇒ P
〈proof 〉

2.4 Rules for Set Difference, Defined via Upair
lemma Diff-iff [simp]: c ∈ A−B ←→ (c ∈ A ∧ c/∈B)
〈proof 〉

lemma DiffI [intro!]: [[c ∈ A; c /∈ B]] =⇒ c ∈ A − B
〈proof 〉

lemma DiffD1 : c ∈ A − B =⇒ c ∈ A
〈proof 〉

lemma DiffD2 : c ∈ A − B =⇒ c /∈ B
〈proof 〉

26

lemma DiffE [elim!]: [[c ∈ A − B; [[c ∈ A; c/∈B]] =⇒ P]] =⇒ P
〈proof 〉

2.5 Rules for cons
lemma cons-iff [simp]: a ∈ cons(b,A) ←→ (a=b | a ∈ A)
〈proof 〉

lemma consI1 [simp,TC]: a ∈ cons(a,B)
〈proof 〉

lemma consI2 : a ∈ B =⇒ a ∈ cons(b,B)
〈proof 〉

lemma consE [elim!]: [[a ∈ cons(b,A); a=b =⇒ P; a ∈ A =⇒ P]] =⇒ P
〈proof 〉

lemma consE ′:
[[a ∈ cons(b,A); a=b =⇒ P; [[a ∈ A; a 6=b]] =⇒ P]] =⇒ P

〈proof 〉

lemma consCI [intro!]: (a /∈B =⇒ a=b) =⇒ a ∈ cons(b,B)
〈proof 〉

lemma cons-not-0 [simp]: cons(a,B) 6= 0
〈proof 〉

lemmas cons-neq-0 = cons-not-0 [THEN notE]

declare cons-not-0 [THEN not-sym, simp]

2.6 Singletons
lemma singleton-iff : a ∈ {b} ←→ a=b
〈proof 〉

lemma singletonI [intro!]: a ∈ {a}
〈proof 〉

lemmas singletonE = singleton-iff [THEN iffD1 , elim-format, elim!]

2.7 Descriptions
lemma the-equality [intro]:

[[P(a);
∧

x. P(x) =⇒ x=a]] =⇒ (THE x . P(x)) = a
〈proof 〉

27

lemma the-equality2 : [[∃ !x. P(x); P(a)]] =⇒ (THE x . P(x)) = a
〈proof 〉

lemma theI : ∃ !x. P(x) =⇒ P(THE x . P(x))
〈proof 〉

lemma the-0 : ¬ (∃ !x. P(x)) =⇒ (THE x . P(x))=0
〈proof 〉

lemma theI2 :
assumes p1 : ¬ Q(0) =⇒ ∃ !x. P(x)

and p2 :
∧

x. P(x) =⇒ Q(x)
shows Q(THE x . P(x))

〈proof 〉

lemma the-eq-trivial [simp]: (THE x . x = a) = a
〈proof 〉

lemma the-eq-trivial2 [simp]: (THE x. a = x) = a
〈proof 〉

2.8 Conditional Terms: if−then−else
lemma if-true [simp]: (if True then a else b) = a
〈proof 〉

lemma if-false [simp]: (if False then a else b) = b
〈proof 〉

lemma if-cong:
[[P←→Q; Q =⇒ a=c; ¬Q =⇒ b=d]]
=⇒ (if P then a else b) = (if Q then c else d)

〈proof 〉

lemma if-weak-cong: P←→Q =⇒ (if P then x else y) = (if Q then x else y)
〈proof 〉

lemma if-P: P =⇒ (if P then a else b) = a
〈proof 〉

28

lemma if-not-P: ¬P =⇒ (if P then a else b) = b
〈proof 〉

lemma split-if [split]:
P(if Q then x else y) ←→ ((Q −→ P(x)) ∧ (¬Q −→ P(y)))

〈proof 〉

lemmas split-if-eq1 = split-if [of λx. x = b] for b
lemmas split-if-eq2 = split-if [of λx. a = x] for a

lemmas split-if-mem1 = split-if [of λx. x ∈ b] for b
lemmas split-if-mem2 = split-if [of λx. a ∈ x] for a

lemmas split-ifs = split-if-eq1 split-if-eq2 split-if-mem1 split-if-mem2

lemma if-iff : a: (if P then x else y) ←→ P ∧ a ∈ x | ¬P ∧ a ∈ y
〈proof 〉

lemma if-type [TC]:
[[P =⇒ a ∈ A; ¬P =⇒ b ∈ A]] =⇒ (if P then a else b): A

〈proof 〉

lemma split-if-asm: P(if Q then x else y) ←→ (¬((Q ∧ ¬P(x)) | (¬Q ∧ ¬P(y))))
〈proof 〉

lemmas if-splits = split-if split-if-asm

2.9 Consequences of Foundation
lemma mem-asym: [[a ∈ b; ¬P =⇒ b ∈ a]] =⇒ P
〈proof 〉

lemma mem-irrefl: a ∈ a =⇒ P
〈proof 〉

lemma mem-not-refl: a /∈ a
〈proof 〉

lemma mem-imp-not-eq: a ∈ A =⇒ a 6= A

29

〈proof 〉

lemma eq-imp-not-mem: a=A =⇒ a /∈ A
〈proof 〉

2.10 Rules for Successor
lemma succ-iff : i ∈ succ(j) ←→ i=j | i ∈ j
〈proof 〉

lemma succI1 [simp]: i ∈ succ(i)
〈proof 〉

lemma succI2 : i ∈ j =⇒ i ∈ succ(j)
〈proof 〉

lemma succE [elim!]:
[[i ∈ succ(j); i=j =⇒ P; i ∈ j =⇒ P]] =⇒ P

〈proof 〉

lemma succCI [intro!]: (i /∈j =⇒ i=j) =⇒ i ∈ succ(j)
〈proof 〉

lemma succ-not-0 [simp]: succ(n) 6= 0
〈proof 〉

lemmas succ-neq-0 = succ-not-0 [THEN notE , elim!]

declare succ-not-0 [THEN not-sym, simp]
declare sym [THEN succ-neq-0 , elim!]

lemmas succ-subsetD = succI1 [THEN [2] subsetD]

lemmas succ-neq-self = succI1 [THEN mem-imp-not-eq, THEN not-sym]

lemma succ-inject-iff [simp]: succ(m) = succ(n) ←→ m=n
〈proof 〉

lemmas succ-inject = succ-inject-iff [THEN iffD1 , dest!]

2.11 Miniscoping of the Bounded Universal Quantifier
lemma ball-simps1 :

(∀ x∈A. P(x) ∧ Q) ←→ (∀ x∈A. P(x)) ∧ (A=0 | Q)
(∀ x∈A. P(x) | Q) ←→ ((∀ x∈A. P(x)) | Q)
(∀ x∈A. P(x) −→ Q) ←→ ((∃ x∈A. P(x)) −→ Q)
(¬(∀ x∈A. P(x))) ←→ (∃ x∈A. ¬P(x))

30

(∀ x∈0 .P(x)) ←→ True
(∀ x∈succ(i).P(x)) ←→ P(i) ∧ (∀ x∈i. P(x))
(∀ x∈cons(a,B).P(x)) ←→ P(a) ∧ (∀ x∈B. P(x))
(∀ x∈RepFun(A,f). P(x)) ←→ (∀ y∈A. P(f (y)))
(∀ x∈

⋃
(A).P(x)) ←→ (∀ y∈A. ∀ x∈y. P(x))

〈proof 〉

lemma ball-simps2 :
(∀ x∈A. P ∧ Q(x)) ←→ (A=0 | P) ∧ (∀ x∈A. Q(x))
(∀ x∈A. P | Q(x)) ←→ (P | (∀ x∈A. Q(x)))
(∀ x∈A. P −→ Q(x)) ←→ (P −→ (∀ x∈A. Q(x)))

〈proof 〉

lemma ball-simps3 :
(∀ x∈Collect(A,Q).P(x)) ←→ (∀ x∈A. Q(x) −→ P(x))

〈proof 〉

lemmas ball-simps [simp] = ball-simps1 ball-simps2 ball-simps3

lemma ball-conj-distrib:
(∀ x∈A. P(x) ∧ Q(x)) ←→ ((∀ x∈A. P(x)) ∧ (∀ x∈A. Q(x)))

〈proof 〉

2.12 Miniscoping of the Bounded Existential Quantifier
lemma bex-simps1 :

(∃ x∈A. P(x) ∧ Q) ←→ ((∃ x∈A. P(x)) ∧ Q)
(∃ x∈A. P(x) | Q) ←→ (∃ x∈A. P(x)) | (A 6=0 ∧ Q)
(∃ x∈A. P(x) −→ Q) ←→ ((∀ x∈A. P(x)) −→ (A 6=0 ∧ Q))
(∃ x∈0 .P(x)) ←→ False
(∃ x∈succ(i).P(x)) ←→ P(i) | (∃ x∈i. P(x))
(∃ x∈cons(a,B).P(x)) ←→ P(a) | (∃ x∈B. P(x))
(∃ x∈RepFun(A,f). P(x)) ←→ (∃ y∈A. P(f (y)))
(∃ x∈

⋃
(A).P(x)) ←→ (∃ y∈A. ∃ x∈y. P(x))

(¬(∃ x∈A. P(x))) ←→ (∀ x∈A. ¬P(x))
〈proof 〉

lemma bex-simps2 :
(∃ x∈A. P ∧ Q(x)) ←→ (P ∧ (∃ x∈A. Q(x)))
(∃ x∈A. P | Q(x)) ←→ (A 6=0 ∧ P) | (∃ x∈A. Q(x))
(∃ x∈A. P −→ Q(x)) ←→ ((A=0 | P) −→ (∃ x∈A. Q(x)))

〈proof 〉

lemma bex-simps3 :
(∃ x∈Collect(A,Q).P(x)) ←→ (∃ x∈A. Q(x) ∧ P(x))

〈proof 〉

lemmas bex-simps [simp] = bex-simps1 bex-simps2 bex-simps3

31

lemma bex-disj-distrib:
(∃ x∈A. P(x) | Q(x)) ←→ ((∃ x∈A. P(x)) | (∃ x∈A. Q(x)))

〈proof 〉

lemma bex-triv-one-point1 [simp]: (∃ x∈A. x=a) ←→ (a ∈ A)
〈proof 〉

lemma bex-triv-one-point2 [simp]: (∃ x∈A. a=x) ←→ (a ∈ A)
〈proof 〉

lemma bex-one-point1 [simp]: (∃ x∈A. x=a ∧ P(x)) ←→ (a ∈ A ∧ P(a))
〈proof 〉

lemma bex-one-point2 [simp]: (∃ x∈A. a=x ∧ P(x)) ←→ (a ∈ A ∧ P(a))
〈proof 〉

lemma ball-one-point1 [simp]: (∀ x∈A. x=a −→ P(x)) ←→ (a ∈ A −→ P(a))
〈proof 〉

lemma ball-one-point2 [simp]: (∀ x∈A. a=x −→ P(x)) ←→ (a ∈ A −→ P(a))
〈proof 〉

2.13 Miniscoping of the Replacement Operator

These cover both Replace and Collect
lemma Rep-simps [simp]:
{x. y ∈ 0 , R(x,y)} = 0
{x ∈ 0 . P(x)} = 0
{x ∈ A. Q} = (if Q then A else 0)
RepFun(0 ,f) = 0
RepFun(succ(i),f) = cons(f (i), RepFun(i,f))
RepFun(cons(a,B),f) = cons(f (a), RepFun(B,f))

〈proof 〉

2.14 Miniscoping of Unions
lemma UN-simps1 :

(
⋃

x∈C . cons(a, B(x))) = (if C=0 then 0 else cons(a,
⋃

x∈C . B(x)))
(
⋃

x∈C . A(x) ∪ B ′) = (if C=0 then 0 else (
⋃

x∈C . A(x)) ∪ B ′)
(
⋃

x∈C . A ′ ∪ B(x)) = (if C=0 then 0 else A ′ ∪ (
⋃

x∈C . B(x)))
(
⋃

x∈C . A(x) ∩ B ′) = ((
⋃

x∈C . A(x)) ∩ B ′)
(
⋃

x∈C . A ′ ∩ B(x)) = (A ′ ∩ (
⋃

x∈C . B(x)))
(
⋃

x∈C . A(x) − B ′) = ((
⋃

x∈C . A(x)) − B ′)
(
⋃

x∈C . A ′ − B(x)) = (if C=0 then 0 else A ′ − (
⋂

x∈C . B(x)))
〈proof 〉

32

lemma UN-simps2 :
(
⋃

x∈
⋃

(A). B(x)) = (
⋃

y∈A.
⋃

x∈y. B(x))
(
⋃

z∈(
⋃

x∈A. B(x)). C (z)) = (
⋃

x∈A.
⋃

z∈B(x). C (z))
(
⋃

x∈RepFun(A,f). B(x)) = (
⋃

a∈A. B(f (a)))
〈proof 〉

lemmas UN-simps [simp] = UN-simps1 UN-simps2

Opposite of miniscoping: pull the operator out
lemma UN-extend-simps1 :

(
⋃

x∈C . A(x)) ∪ B = (if C=0 then B else (
⋃

x∈C . A(x) ∪ B))
((
⋃

x∈C . A(x)) ∩ B) = (
⋃

x∈C . A(x) ∩ B)
((
⋃

x∈C . A(x)) − B) = (
⋃

x∈C . A(x) − B)
〈proof 〉

lemma UN-extend-simps2 :
cons(a,

⋃
x∈C . B(x)) = (if C=0 then {a} else (

⋃
x∈C . cons(a, B(x))))

A ∪ (
⋃

x∈C . B(x)) = (if C=0 then A else (
⋃

x∈C . A ∪ B(x)))
(A ∩ (

⋃
x∈C . B(x))) = (

⋃
x∈C . A ∩ B(x))

A − (
⋂

x∈C . B(x)) = (if C=0 then A else (
⋃

x∈C . A − B(x)))
(
⋃

y∈A.
⋃

x∈y. B(x)) = (
⋃

x∈
⋃
(A). B(x))

(
⋃

a∈A. B(f (a))) = (
⋃

x∈RepFun(A,f). B(x))
〈proof 〉

lemma UN-UN-extend:
(
⋃

x∈A.
⋃

z∈B(x). C (z)) = (
⋃

z∈(
⋃

x∈A. B(x)). C (z))
〈proof 〉

lemmas UN-extend-simps = UN-extend-simps1 UN-extend-simps2 UN-UN-extend

2.15 Miniscoping of Intersections
lemma INT-simps1 :

(
⋂

x∈C . A(x) ∩ B) = (
⋂

x∈C . A(x)) ∩ B
(
⋂

x∈C . A(x) − B) = (
⋂

x∈C . A(x)) − B
(
⋂

x∈C . A(x) ∪ B) = (if C=0 then 0 else (
⋂

x∈C . A(x)) ∪ B)
〈proof 〉

lemma INT-simps2 :
(
⋂

x∈C . A ∩ B(x)) = A ∩ (
⋂

x∈C . B(x))
(
⋂

x∈C . A − B(x)) = (if C=0 then 0 else A − (
⋃

x∈C . B(x)))
(
⋂

x∈C . cons(a, B(x))) = (if C=0 then 0 else cons(a,
⋂

x∈C . B(x)))
(
⋂

x∈C . A ∪ B(x)) = (if C=0 then 0 else A ∪ (
⋂

x∈C . B(x)))
〈proof 〉

lemmas INT-simps [simp] = INT-simps1 INT-simps2

Opposite of miniscoping: pull the operator out
lemma INT-extend-simps1 :

33

(
⋂

x∈C . A(x)) ∩ B = (
⋂

x∈C . A(x) ∩ B)
(
⋂

x∈C . A(x)) − B = (
⋂

x∈C . A(x) − B)
(
⋂

x∈C . A(x)) ∪ B = (if C=0 then B else (
⋂

x∈C . A(x) ∪ B))
〈proof 〉

lemma INT-extend-simps2 :
A ∩ (

⋂
x∈C . B(x)) = (

⋂
x∈C . A ∩ B(x))

A − (
⋃

x∈C . B(x)) = (if C=0 then A else (
⋂

x∈C . A − B(x)))
cons(a,

⋂
x∈C . B(x)) = (if C=0 then {a} else (

⋂
x∈C . cons(a, B(x))))

A ∪ (
⋂

x∈C . B(x)) = (if C=0 then A else (
⋂

x∈C . A ∪ B(x)))
〈proof 〉

lemmas INT-extend-simps = INT-extend-simps1 INT-extend-simps2

2.16 Other simprules
lemma misc-simps [simp]:

0 ∪ A = A
A ∪ 0 = A
0 ∩ A = 0
A ∩ 0 = 0
0 − A = 0
A − 0 = A⋃

(0) = 0⋃
(cons(b,A)) = b ∪

⋃
(A)⋂

({b}) = b
〈proof 〉

end

3 Ordered Pairs
theory pair imports upair
begin

〈ML〉

lemma singleton-eq-iff [iff]: {a} = {b} ←→ a=b
〈proof 〉

lemma doubleton-eq-iff : {a,b} = {c,d} ←→ (a=c ∧ b=d) | (a=d ∧ b=c)
〈proof 〉

lemma Pair-iff [simp]: 〈a,b〉 = 〈c,d〉 ←→ a=c ∧ b=d
〈proof 〉

34

lemmas Pair-inject = Pair-iff [THEN iffD1 , THEN conjE , elim!]

lemmas Pair-inject1 = Pair-iff [THEN iffD1 , THEN conjunct1]
lemmas Pair-inject2 = Pair-iff [THEN iffD1 , THEN conjunct2]

lemma Pair-not-0 : 〈a,b〉 6= 0
〈proof 〉

lemmas Pair-neq-0 = Pair-not-0 [THEN notE , elim!]

declare sym [THEN Pair-neq-0 , elim!]

lemma Pair-neq-fst: 〈a,b〉=a =⇒ P
〈proof 〉

lemma Pair-neq-snd: 〈a,b〉=b =⇒ P
〈proof 〉

3.1 Sigma: Disjoint Union of a Family of Sets

Generalizes Cartesian product
lemma Sigma-iff [simp]: 〈a,b〉: Sigma(A,B) ←→ a ∈ A ∧ b ∈ B(a)
〈proof 〉

lemma SigmaI [TC ,intro!]: [[a ∈ A; b ∈ B(a)]] =⇒ 〈a,b〉 ∈ Sigma(A,B)
〈proof 〉

lemmas SigmaD1 = Sigma-iff [THEN iffD1 , THEN conjunct1]
lemmas SigmaD2 = Sigma-iff [THEN iffD1 , THEN conjunct2]

lemma SigmaE [elim!]:
[[c ∈ Sigma(A,B);∧

x y.[[x ∈ A; y ∈ B(x); c=〈x,y〉]] =⇒ P
]] =⇒ P
〈proof 〉

lemma SigmaE2 [elim!]:
[[〈a,b〉 ∈ Sigma(A,B);

[[a ∈ A; b ∈ B(a)]] =⇒ P
]] =⇒ P
〈proof 〉

lemma Sigma-cong:
[[A=A ′;

∧
x. x ∈ A ′ =⇒ B(x)=B ′(x)]] =⇒

Sigma(A,B) = Sigma(A ′,B ′)
〈proof 〉

35

lemma Sigma-empty1 [simp]: Sigma(0 ,B) = 0
〈proof 〉

lemma Sigma-empty2 [simp]: A∗0 = 0
〈proof 〉

lemma Sigma-empty-iff : A∗B=0 ←→ A=0 | B=0
〈proof 〉

3.2 Projections fst and snd
lemma fst-conv [simp]: fst(〈a,b〉) = a
〈proof 〉

lemma snd-conv [simp]: snd(〈a,b〉) = b
〈proof 〉

lemma fst-type [TC]: p ∈ Sigma(A,B) =⇒ fst(p) ∈ A
〈proof 〉

lemma snd-type [TC]: p ∈ Sigma(A,B) =⇒ snd(p) ∈ B(fst(p))
〈proof 〉

lemma Pair-fst-snd-eq: a ∈ Sigma(A,B) =⇒ <fst(a),snd(a)> = a
〈proof 〉

3.3 The Eliminator, split
lemma split [simp]: split(λx y. c(x,y), 〈a,b〉) ≡ c(a,b)
〈proof 〉

lemma split-type [TC]:
[[p ∈ Sigma(A,B);∧

x y.[[x ∈ A; y ∈ B(x)]] =⇒ c(x,y):C (〈x,y〉)
]] =⇒ split(λx y. c(x,y), p) ∈ C (p)
〈proof 〉

lemma expand-split:
u ∈ A∗B =⇒

R(split(c,u)) ←→ (∀ x∈A. ∀ y∈B. u = 〈x,y〉 −→ R(c(x,y)))
〈proof 〉

3.4 A version of split for Formulae: Result Type o
lemma splitI : R(a,b) =⇒ split(R, 〈a,b〉)
〈proof 〉

lemma splitE :
[[split(R,z); z ∈ Sigma(A,B);

36

∧
x y. [[z = 〈x,y〉; R(x,y)]] =⇒ P

]] =⇒ P
〈proof 〉

lemma splitD: split(R,〈a,b〉) =⇒ R(a,b)
〈proof 〉

Complex rules for Sigma.
lemma split-paired-Bex-Sigma [simp]:

(∃ z ∈ Sigma(A,B). P(z)) ←→ (∃ x ∈ A. ∃ y ∈ B(x). P(〈x,y〉))
〈proof 〉

lemma split-paired-Ball-Sigma [simp]:
(∀ z ∈ Sigma(A,B). P(z)) ←→ (∀ x ∈ A. ∀ y ∈ B(x). P(〈x,y〉))

〈proof 〉

end

4 Basic Equalities and Inclusions
theory equalities imports pair begin

These cover union, intersection, converse, domain, range, etc. Philippe de
Groote proved many of the inclusions.
lemma in-mono: A⊆B =⇒ x∈A −→ x∈B
〈proof 〉

lemma the-eq-0 [simp]: (THE x . False) = 0
〈proof 〉

4.1 Bounded Quantifiers

The following are not added to the default simpset because (a) they duplicate
the body and (b) there are no similar rules for Int.
lemma ball-Un: (∀ x ∈ A∪B. P(x)) ←→ (∀ x ∈ A. P(x)) ∧ (∀ x ∈ B. P(x))
〈proof 〉

lemma bex-Un: (∃ x ∈ A∪B. P(x)) ←→ (∃ x ∈ A. P(x)) | (∃ x ∈ B. P(x))
〈proof 〉

lemma ball-UN : (∀ z ∈ (
⋃

x∈A. B(x)). P(z)) ←→ (∀ x∈A. ∀ z ∈ B(x). P(z))
〈proof 〉

lemma bex-UN : (∃ z ∈ (
⋃

x∈A. B(x)). P(z)) ←→ (∃ x∈A. ∃ z∈B(x). P(z))
〈proof 〉

37

4.2 Converse of a Relation
lemma converse-iff [simp]: 〈a,b〉∈ converse(r) ←→ 〈b,a〉∈r
〈proof 〉

lemma converseI [intro!]: 〈a,b〉∈r =⇒ 〈b,a〉∈converse(r)
〈proof 〉

lemma converseD: 〈a,b〉 ∈ converse(r) =⇒ 〈b,a〉 ∈ r
〈proof 〉

lemma converseE [elim!]:
[[yx ∈ converse(r);∧

x y. [[yx=〈y,x〉; 〈x,y〉∈r]] =⇒ P]]
=⇒ P

〈proof 〉

lemma converse-converse: r⊆Sigma(A,B) =⇒ converse(converse(r)) = r
〈proof 〉

lemma converse-type: r⊆A∗B =⇒ converse(r)⊆B∗A
〈proof 〉

lemma converse-prod [simp]: converse(A∗B) = B∗A
〈proof 〉

lemma converse-empty [simp]: converse(0) = 0
〈proof 〉

lemma converse-subset-iff :
A ⊆ Sigma(X ,Y) =⇒ converse(A) ⊆ converse(B) ←→ A ⊆ B

〈proof 〉

4.3 Finite Set Constructions Using cons
lemma cons-subsetI : [[a∈C ; B⊆C]] =⇒ cons(a,B) ⊆ C
〈proof 〉

lemma subset-consI : B ⊆ cons(a,B)
〈proof 〉

lemma cons-subset-iff [iff]: cons(a,B)⊆C ←→ a∈C ∧ B⊆C
〈proof 〉

lemmas cons-subsetE = cons-subset-iff [THEN iffD1 , THEN conjE]

lemma subset-empty-iff : A⊆0 ←→ A=0
〈proof 〉

38

lemma subset-cons-iff : C⊆cons(a,B) ←→ C⊆B | (a∈C ∧ C−{a} ⊆ B)
〈proof 〉

lemma cons-eq: {a} ∪ B = cons(a,B)
〈proof 〉

lemma cons-commute: cons(a, cons(b, C)) = cons(b, cons(a, C))
〈proof 〉

lemma cons-absorb: a: B =⇒ cons(a,B) = B
〈proof 〉

lemma cons-Diff : a: B =⇒ cons(a, B−{a}) = B
〈proof 〉

lemma Diff-cons-eq: cons(a,B) − C = (if a∈C then B−C else cons(a,B−C))
〈proof 〉

lemma equal-singleton: [[a: C ;
∧

y. y ∈C =⇒ y=b]] =⇒ C = {b}
〈proof 〉

lemma [simp]: cons(a,cons(a,B)) = cons(a,B)
〈proof 〉

lemma singleton-subsetI : a∈C =⇒ {a} ⊆ C
〈proof 〉

lemma singleton-subsetD: {a} ⊆ C =⇒ a∈C
〈proof 〉

lemma subset-succI : i ⊆ succ(i)
〈proof 〉

lemma succ-subsetI : [[i∈j; i⊆j]] =⇒ succ(i)⊆j
〈proof 〉

lemma succ-subsetE :
[[succ(i) ⊆ j; [[i∈j; i⊆j]] =⇒ P]] =⇒ P

〈proof 〉

lemma succ-subset-iff : succ(a) ⊆ B ←→ (a ⊆ B ∧ a ∈ B)
〈proof 〉

39

4.4 Binary Intersection
lemma Int-subset-iff : C ⊆ A ∩ B ←→ C ⊆ A ∧ C ⊆ B
〈proof 〉

lemma Int-lower1 : A ∩ B ⊆ A
〈proof 〉

lemma Int-lower2 : A ∩ B ⊆ B
〈proof 〉

lemma Int-greatest: [[C⊆A; C⊆B]] =⇒ C ⊆ A ∩ B
〈proof 〉

lemma Int-cons: cons(a,B) ∩ C ⊆ cons(a, B ∩ C)
〈proof 〉

lemma Int-absorb [simp]: A ∩ A = A
〈proof 〉

lemma Int-left-absorb: A ∩ (A ∩ B) = A ∩ B
〈proof 〉

lemma Int-commute: A ∩ B = B ∩ A
〈proof 〉

lemma Int-left-commute: A ∩ (B ∩ C) = B ∩ (A ∩ C)
〈proof 〉

lemma Int-assoc: (A ∩ B) ∩ C = A ∩ (B ∩ C)
〈proof 〉

lemmas Int-ac= Int-assoc Int-left-absorb Int-commute Int-left-commute

lemma Int-absorb1 : B ⊆ A =⇒ A ∩ B = B
〈proof 〉

lemma Int-absorb2 : A ⊆ B =⇒ A ∩ B = A
〈proof 〉

lemma Int-Un-distrib: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
〈proof 〉

lemma Int-Un-distrib2 : (B ∪ C) ∩ A = (B ∩ A) ∪ (C ∩ A)
〈proof 〉

lemma subset-Int-iff : A⊆B ←→ A ∩ B = A
〈proof 〉

40

lemma subset-Int-iff2 : A⊆B ←→ B ∩ A = A
〈proof 〉

lemma Int-Diff-eq: C⊆A =⇒ (A−B) ∩ C = C−B
〈proof 〉

lemma Int-cons-left:
cons(a,A) ∩ B = (if a ∈ B then cons(a, A ∩ B) else A ∩ B)

〈proof 〉

lemma Int-cons-right:
A ∩ cons(a, B) = (if a ∈ A then cons(a, A ∩ B) else A ∩ B)

〈proof 〉

lemma cons-Int-distrib: cons(x, A ∩ B) = cons(x, A) ∩ cons(x, B)
〈proof 〉

4.5 Binary Union
lemma Un-subset-iff : A ∪ B ⊆ C ←→ A ⊆ C ∧ B ⊆ C
〈proof 〉

lemma Un-upper1 : A ⊆ A ∪ B
〈proof 〉

lemma Un-upper2 : B ⊆ A ∪ B
〈proof 〉

lemma Un-least: [[A⊆C ; B⊆C]] =⇒ A ∪ B ⊆ C
〈proof 〉

lemma Un-cons: cons(a,B) ∪ C = cons(a, B ∪ C)
〈proof 〉

lemma Un-absorb [simp]: A ∪ A = A
〈proof 〉

lemma Un-left-absorb: A ∪ (A ∪ B) = A ∪ B
〈proof 〉

lemma Un-commute: A ∪ B = B ∪ A
〈proof 〉

lemma Un-left-commute: A ∪ (B ∪ C) = B ∪ (A ∪ C)
〈proof 〉

lemma Un-assoc: (A ∪ B) ∪ C = A ∪ (B ∪ C)
〈proof 〉

41

lemmas Un-ac = Un-assoc Un-left-absorb Un-commute Un-left-commute

lemma Un-absorb1 : A ⊆ B =⇒ A ∪ B = B
〈proof 〉

lemma Un-absorb2 : B ⊆ A =⇒ A ∪ B = A
〈proof 〉

lemma Un-Int-distrib: (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)
〈proof 〉

lemma subset-Un-iff : A⊆B ←→ A ∪ B = B
〈proof 〉

lemma subset-Un-iff2 : A⊆B ←→ B ∪ A = B
〈proof 〉

lemma Un-empty [iff]: (A ∪ B = 0) ←→ (A = 0 ∧ B = 0)
〈proof 〉

lemma Un-eq-Union: A ∪ B =
⋃
({A, B})

〈proof 〉

4.6 Set Difference
lemma Diff-subset: A−B ⊆ A
〈proof 〉

lemma Diff-contains: [[C⊆A; C ∩ B = 0]] =⇒ C ⊆ A−B
〈proof 〉

lemma subset-Diff-cons-iff : B ⊆ A − cons(c,C) ←→ B⊆A−C ∧ c /∈ B
〈proof 〉

lemma Diff-cancel: A − A = 0
〈proof 〉

lemma Diff-triv: A ∩ B = 0 =⇒ A − B = A
〈proof 〉

lemma empty-Diff [simp]: 0 − A = 0
〈proof 〉

lemma Diff-0 [simp]: A − 0 = A
〈proof 〉

lemma Diff-eq-0-iff : A − B = 0 ←→ A ⊆ B
〈proof 〉

42

lemma Diff-cons: A − cons(a,B) = A − B − {a}
〈proof 〉

lemma Diff-cons2 : A − cons(a,B) = A − {a} − B
〈proof 〉

lemma Diff-disjoint: A ∩ (B−A) = 0
〈proof 〉

lemma Diff-partition: A⊆B =⇒ A ∪ (B−A) = B
〈proof 〉

lemma subset-Un-Diff : A ⊆ B ∪ (A − B)
〈proof 〉

lemma double-complement: [[A⊆B; B⊆C]] =⇒ B−(C−A) = A
〈proof 〉

lemma double-complement-Un: (A ∪ B) − (B−A) = A
〈proof 〉

lemma Un-Int-crazy:
(A ∩ B) ∪ (B ∩ C) ∪ (C ∩ A) = (A ∪ B) ∩ (B ∪ C) ∩ (C ∪ A)
〈proof 〉

lemma Diff-Un: A − (B ∪ C) = (A−B) ∩ (A−C)
〈proof 〉

lemma Diff-Int: A − (B ∩ C) = (A−B) ∪ (A−C)
〈proof 〉

lemma Un-Diff : (A ∪ B) − C = (A − C) ∪ (B − C)
〈proof 〉

lemma Int-Diff : (A ∩ B) − C = A ∩ (B − C)
〈proof 〉

lemma Diff-Int-distrib: C ∩ (A−B) = (C ∩ A) − (C ∩ B)
〈proof 〉

lemma Diff-Int-distrib2 : (A−B) ∩ C = (A ∩ C) − (B ∩ C)
〈proof 〉

lemma Un-Int-assoc-iff : (A ∩ B) ∪ C = A ∩ (B ∪ C) ←→ C⊆A
〈proof 〉

43

4.7 Big Union and Intersection
lemma Union-subset-iff :

⋃
(A) ⊆ C ←→ (∀ x∈A. x ⊆ C)

〈proof 〉

lemma Union-upper : B∈A =⇒ B ⊆
⋃
(A)

〈proof 〉

lemma Union-least: [[
∧

x. x∈A =⇒ x⊆C]] =⇒
⋃

(A) ⊆ C
〈proof 〉

lemma Union-cons [simp]:
⋃
(cons(a,B)) = a ∪

⋃
(B)

〈proof 〉

lemma Union-Un-distrib:
⋃
(A ∪ B) =

⋃
(A) ∪

⋃
(B)

〈proof 〉

lemma Union-Int-subset:
⋃
(A ∩ B) ⊆

⋃
(A) ∩

⋃
(B)

〈proof 〉

lemma Union-disjoint:
⋃
(C) ∩ A = 0 ←→ (∀B∈C . B ∩ A = 0)

〈proof 〉

lemma Union-empty-iff :
⋃
(A) = 0 ←→ (∀B∈A. B=0)

〈proof 〉

lemma Int-Union2 :
⋃
(B) ∩ A = (

⋃
C∈B. C ∩ A)

〈proof 〉

lemma Inter-subset-iff : A 6=0 =⇒ C ⊆
⋂
(A) ←→ (∀ x∈A. C ⊆ x)

〈proof 〉

lemma Inter-lower : B∈A =⇒
⋂
(A) ⊆ B

〈proof 〉

lemma Inter-greatest: [[A 6=0 ;
∧

x. x∈A =⇒ C⊆x]] =⇒ C ⊆
⋂

(A)
〈proof 〉

lemma INT-lower : x∈A =⇒ (
⋂

x∈A. B(x)) ⊆ B(x)
〈proof 〉

lemma INT-greatest: [[A 6=0 ;
∧

x. x∈A =⇒ C⊆B(x)]] =⇒ C ⊆ (
⋂

x∈A. B(x))
〈proof 〉

lemma Inter-0 [simp]:
⋂
(0) = 0

〈proof 〉

44

lemma Inter-Un-subset:
[[z∈A; z∈B]] =⇒

⋂
(A) ∪

⋂
(B) ⊆

⋂
(A ∩ B)

〈proof 〉

lemma Inter-Un-distrib:
[[A6=0 ; B 6=0]] =⇒

⋂
(A ∪ B) =

⋂
(A) ∩

⋂
(B)

〈proof 〉

lemma Union-singleton:
⋃
({b}) = b

〈proof 〉

lemma Inter-singleton:
⋂
({b}) = b

〈proof 〉

lemma Inter-cons [simp]:⋂
(cons(a,B)) = (if B=0 then a else a ∩

⋂
(B))

〈proof 〉

4.8 Unions and Intersections of Families
lemma subset-UN-iff-eq: A ⊆ (

⋃
i∈I . B(i)) ←→ A = (

⋃
i∈I . A ∩ B(i))

〈proof 〉

lemma UN-subset-iff : (
⋃

x∈A. B(x)) ⊆ C ←→ (∀ x∈A. B(x) ⊆ C)
〈proof 〉

lemma UN-upper : x∈A =⇒ B(x) ⊆ (
⋃

x∈A. B(x))
〈proof 〉

lemma UN-least: [[
∧

x. x∈A =⇒ B(x)⊆C]] =⇒ (
⋃

x∈A. B(x)) ⊆ C
〈proof 〉

lemma Union-eq-UN :
⋃
(A) = (

⋃
x∈A. x)

〈proof 〉

lemma Inter-eq-INT :
⋂
(A) = (

⋂
x∈A. x)

〈proof 〉

lemma UN-0 [simp]: (
⋃

i∈0 . A(i)) = 0
〈proof 〉

lemma UN-singleton: (
⋃

x∈A. {x}) = A
〈proof 〉

lemma UN-Un: (
⋃

i∈ A ∪ B. C (i)) = (
⋃

i∈ A. C (i)) ∪ (
⋃

i∈B. C (i))
〈proof 〉

45

lemma INT-Un: (
⋂

i∈I ∪ J . A(i)) =
(if I=0 then

⋂
j∈J . A(j)

else if J=0 then
⋂

i∈I . A(i)
else ((

⋂
i∈I . A(i)) ∩ (

⋂
j∈J . A(j))))

〈proof 〉

lemma UN-UN-flatten: (
⋃

x ∈ (
⋃

y∈A. B(y)). C (x)) = (
⋃

y∈A.
⋃

x∈ B(y). C (x))
〈proof 〉

lemma Int-UN-distrib: B ∩ (
⋃

i∈I . A(i)) = (
⋃

i∈I . B ∩ A(i))
〈proof 〉

lemma Un-INT-distrib: I 6=0 =⇒ B ∪ (
⋂

i∈I . A(i)) = (
⋂

i∈I . B ∪ A(i))
〈proof 〉

lemma Int-UN-distrib2 :
(
⋃

i∈I . A(i)) ∩ (
⋃

j∈J . B(j)) = (
⋃

i∈I .
⋃

j∈J . A(i) ∩ B(j))
〈proof 〉

lemma Un-INT-distrib2 : [[I 6=0 ; J 6=0]] =⇒
(
⋂

i∈I . A(i)) ∪ (
⋂

j∈J . B(j)) = (
⋂

i∈I .
⋂

j∈J . A(i) ∪ B(j))
〈proof 〉

lemma UN-constant [simp]: (
⋃

y∈A. c) = (if A=0 then 0 else c)
〈proof 〉

lemma INT-constant [simp]: (
⋂

y∈A. c) = (if A=0 then 0 else c)
〈proof 〉

lemma UN-RepFun [simp]: (
⋃

y∈ RepFun(A,f). B(y)) = (
⋃

x∈A. B(f (x)))
〈proof 〉

lemma INT-RepFun [simp]: (
⋂

x∈RepFun(A,f). B(x)) = (
⋂

a∈A. B(f (a)))
〈proof 〉

lemma INT-Union-eq:
0 /∈ A =⇒ (

⋂
x∈

⋃
(A). B(x)) = (

⋂
y∈A.

⋂
x∈y. B(x))

〈proof 〉

lemma INT-UN-eq:
(∀ x∈A. B(x) 6= 0)
=⇒ (

⋂
z∈ (

⋃
x∈A. B(x)). C (z)) = (

⋂
x∈A.

⋂
z∈ B(x). C (z))

〈proof 〉

lemma UN-Un-distrib:

46

(
⋃

i∈I . A(i) ∪ B(i)) = (
⋃

i∈I . A(i)) ∪ (
⋃

i∈I . B(i))
〈proof 〉

lemma INT-Int-distrib:
I 6=0 =⇒ (

⋂
i∈I . A(i) ∩ B(i)) = (

⋂
i∈I . A(i)) ∩ (

⋂
i∈I . B(i))

〈proof 〉

lemma UN-Int-subset:
(
⋃

z∈I ∩ J . A(z)) ⊆ (
⋃

z∈I . A(z)) ∩ (
⋃

z∈J . A(z))
〈proof 〉

lemma Diff-UN : I 6=0 =⇒ B − (
⋃

i∈I . A(i)) = (
⋂

i∈I . B − A(i))
〈proof 〉

lemma Diff-INT : I 6=0 =⇒ B − (
⋂

i∈I . A(i)) = (
⋃

i∈I . B − A(i))
〈proof 〉

lemma Sigma-cons1 : Sigma(cons(a,B), C) = ({a}∗C (a)) ∪ Sigma(B,C)
〈proof 〉

lemma Sigma-cons2 : A ∗ cons(b,B) = A∗{b} ∪ A∗B
〈proof 〉

lemma Sigma-succ1 : Sigma(succ(A), B) = ({A}∗B(A)) ∪ Sigma(A,B)
〈proof 〉

lemma Sigma-succ2 : A ∗ succ(B) = A∗{B} ∪ A∗B
〈proof 〉

lemma SUM-UN-distrib1 :
(
∑

x ∈ (
⋃

y∈A. C (y)). B(x)) = (
⋃

y∈A.
∑

x∈C (y). B(x))
〈proof 〉

lemma SUM-UN-distrib2 :
(
∑

i∈I .
⋃

j∈J . C (i,j)) = (
⋃

j∈J .
∑

i∈I . C (i,j))
〈proof 〉

lemma SUM-Un-distrib1 :
(
∑

i∈I ∪ J . C (i)) = (
∑

i∈I . C (i)) ∪ (
∑

j∈J . C (j))
〈proof 〉

lemma SUM-Un-distrib2 :

47

(
∑

i∈I . A(i) ∪ B(i)) = (
∑

i∈I . A(i)) ∪ (
∑

i∈I . B(i))
〈proof 〉

lemma prod-Un-distrib2 : I ∗ (A ∪ B) = I∗A ∪ I∗B
〈proof 〉

lemma SUM-Int-distrib1 :
(
∑

i∈I ∩ J . C (i)) = (
∑

i∈I . C (i)) ∩ (
∑

j∈J . C (j))
〈proof 〉

lemma SUM-Int-distrib2 :
(
∑

i∈I . A(i) ∩ B(i)) = (
∑

i∈I . A(i)) ∩ (
∑

i∈I . B(i))
〈proof 〉

lemma prod-Int-distrib2 : I ∗ (A ∩ B) = I∗A ∩ I∗B
〈proof 〉

lemma SUM-eq-UN : (
∑

i∈I . A(i)) = (
⋃

i∈I . {i} ∗ A(i))
〈proof 〉

lemma times-subset-iff :
(A ′∗B ′ ⊆ A∗B) ←→ (A ′ = 0 | B ′ = 0 | (A ′⊆A) ∧ (B ′⊆B))

〈proof 〉

lemma Int-Sigma-eq:
(
∑

x ∈ A ′. B ′(x)) ∩ (
∑

x ∈ A. B(x)) = (
∑

x ∈ A ′ ∩ A. B ′(x) ∩ B(x))
〈proof 〉

lemma domain-iff : a: domain(r) ←→ (∃ y. 〈a,y〉∈ r)
〈proof 〉

lemma domainI [intro]: 〈a,b〉∈ r =⇒ a: domain(r)
〈proof 〉

lemma domainE [elim!]:
[[a ∈ domain(r);

∧
y. 〈a,y〉∈ r =⇒ P]] =⇒ P

〈proof 〉

lemma domain-subset: domain(Sigma(A,B)) ⊆ A
〈proof 〉

lemma domain-of-prod: b∈B =⇒ domain(A∗B) = A
〈proof 〉

48

lemma domain-0 [simp]: domain(0) = 0
〈proof 〉

lemma domain-cons [simp]: domain(cons(〈a,b〉,r)) = cons(a, domain(r))
〈proof 〉

lemma domain-Un-eq [simp]: domain(A ∪ B) = domain(A) ∪ domain(B)
〈proof 〉

lemma domain-Int-subset: domain(A ∩ B) ⊆ domain(A) ∩ domain(B)
〈proof 〉

lemma domain-Diff-subset: domain(A) − domain(B) ⊆ domain(A − B)
〈proof 〉

lemma domain-UN : domain(
⋃

x∈A. B(x)) = (
⋃

x∈A. domain(B(x)))
〈proof 〉

lemma domain-Union: domain(
⋃
(A)) = (

⋃
x∈A. domain(x))

〈proof 〉

lemma rangeI [intro]: 〈a,b〉∈ r =⇒ b ∈ range(r)
〈proof 〉

lemma rangeE [elim!]: [[b ∈ range(r);
∧

x. 〈x,b〉∈ r =⇒ P]] =⇒ P
〈proof 〉

lemma range-subset: range(A∗B) ⊆ B
〈proof 〉

lemma range-of-prod: a∈A =⇒ range(A∗B) = B
〈proof 〉

lemma range-0 [simp]: range(0) = 0
〈proof 〉

lemma range-cons [simp]: range(cons(〈a,b〉,r)) = cons(b, range(r))
〈proof 〉

lemma range-Un-eq [simp]: range(A ∪ B) = range(A) ∪ range(B)
〈proof 〉

lemma range-Int-subset: range(A ∩ B) ⊆ range(A) ∩ range(B)
〈proof 〉

lemma range-Diff-subset: range(A) − range(B) ⊆ range(A − B)

49

〈proof 〉

lemma domain-converse [simp]: domain(converse(r)) = range(r)
〈proof 〉

lemma range-converse [simp]: range(converse(r)) = domain(r)
〈proof 〉

lemma fieldI1 : 〈a,b〉∈ r =⇒ a ∈ field(r)
〈proof 〉

lemma fieldI2 : 〈a,b〉∈ r =⇒ b ∈ field(r)
〈proof 〉

lemma fieldCI [intro]:
(¬ 〈c,a〉∈r =⇒ 〈a,b〉∈ r) =⇒ a ∈ field(r)

〈proof 〉

lemma fieldE [elim!]:
[[a ∈ field(r);∧

x. 〈a,x〉∈ r =⇒ P;∧
x. 〈x,a〉∈ r =⇒ P]] =⇒ P

〈proof 〉

lemma field-subset: field(A∗B) ⊆ A ∪ B
〈proof 〉

lemma domain-subset-field: domain(r) ⊆ field(r)
〈proof 〉

lemma range-subset-field: range(r) ⊆ field(r)
〈proof 〉

lemma domain-times-range: r ⊆ Sigma(A,B) =⇒ r ⊆ domain(r)∗range(r)
〈proof 〉

lemma field-times-field: r ⊆ Sigma(A,B) =⇒ r ⊆ field(r)∗field(r)
〈proof 〉

lemma relation-field-times-field: relation(r) =⇒ r ⊆ field(r)∗field(r)
〈proof 〉

lemma field-of-prod: field(A∗A) = A
〈proof 〉

lemma field-0 [simp]: field(0) = 0

50

〈proof 〉

lemma field-cons [simp]: field(cons(〈a,b〉,r)) = cons(a, cons(b, field(r)))
〈proof 〉

lemma field-Un-eq [simp]: field(A ∪ B) = field(A) ∪ field(B)
〈proof 〉

lemma field-Int-subset: field(A ∩ B) ⊆ field(A) ∩ field(B)
〈proof 〉

lemma field-Diff-subset: field(A) − field(B) ⊆ field(A − B)
〈proof 〉

lemma field-converse [simp]: field(converse(r)) = field(r)
〈proof 〉

lemma rel-Union: (∀ x∈S . ∃A B. x ⊆ A∗B) =⇒⋃
(S) ⊆ domain(

⋃
(S)) ∗ range(

⋃
(S))

〈proof 〉

lemma rel-Un: [[r ⊆ A∗B; s ⊆ C∗D]] =⇒ (r ∪ s) ⊆ (A ∪ C) ∗ (B ∪ D)
〈proof 〉

lemma domain-Diff-eq: [[〈a,c〉 ∈ r ; c 6=b]] =⇒ domain(r−{〈a,b〉}) = domain(r)
〈proof 〉

lemma range-Diff-eq: [[〈c,b〉 ∈ r ; c 6=a]] =⇒ range(r−{〈a,b〉}) = range(r)
〈proof 〉

4.9 Image of a Set under a Function or Relation
lemma image-iff : b ∈ r‘‘A ←→ (∃ x∈A. 〈x,b〉∈r)
〈proof 〉

lemma image-singleton-iff : b ∈ r‘‘{a} ←→ 〈a,b〉∈r
〈proof 〉

lemma imageI [intro]: [[〈a,b〉∈ r ; a∈A]] =⇒ b ∈ r‘‘A
〈proof 〉

lemma imageE [elim!]:
[[b: r‘‘A;

∧
x.[[〈x,b〉∈ r ; x∈A]] =⇒ P]] =⇒ P

〈proof 〉

lemma image-subset: r ⊆ A∗B =⇒ r‘‘C ⊆ B
〈proof 〉

51

lemma image-0 [simp]: r‘‘0 = 0
〈proof 〉

lemma image-Un [simp]: r‘‘(A ∪ B) = (r‘‘A) ∪ (r‘‘B)
〈proof 〉

lemma image-UN : r ‘‘ (
⋃

x∈A. B(x)) = (
⋃

x∈A. r ‘‘ B(x))
〈proof 〉

lemma Collect-image-eq:
{z ∈ Sigma(A,B). P(z)} ‘‘ C = (

⋃
x ∈ A. {y ∈ B(x). x ∈ C ∧ P(〈x,y〉)})

〈proof 〉

lemma image-Int-subset: r‘‘(A ∩ B) ⊆ (r‘‘A) ∩ (r‘‘B)
〈proof 〉

lemma image-Int-square-subset: (r ∩ A∗A)‘‘B ⊆ (r‘‘B) ∩ A
〈proof 〉

lemma image-Int-square: B⊆A =⇒ (r ∩ A∗A)‘‘B = (r‘‘B) ∩ A
〈proof 〉

lemma image-0-left [simp]: 0‘‘A = 0
〈proof 〉

lemma image-Un-left: (r ∪ s)‘‘A = (r‘‘A) ∪ (s‘‘A)
〈proof 〉

lemma image-Int-subset-left: (r ∩ s)‘‘A ⊆ (r‘‘A) ∩ (s‘‘A)
〈proof 〉

4.10 Inverse Image of a Set under a Function or Relation
lemma vimage-iff :

a ∈ r−‘‘B ←→ (∃ y∈B. 〈a,y〉∈r)
〈proof 〉

lemma vimage-singleton-iff : a ∈ r−‘‘{b} ←→ 〈a,b〉∈r
〈proof 〉

lemma vimageI [intro]: [[〈a,b〉∈ r ; b∈B]] =⇒ a ∈ r−‘‘B
〈proof 〉

lemma vimageE [elim!]:
[[a: r−‘‘B;

∧
x.[[〈a,x〉∈ r ; x∈B]] =⇒ P]] =⇒ P

〈proof 〉

52

lemma vimage-subset: r ⊆ A∗B =⇒ r−‘‘C ⊆ A
〈proof 〉

lemma vimage-0 [simp]: r−‘‘0 = 0
〈proof 〉

lemma vimage-Un [simp]: r−‘‘(A ∪ B) = (r−‘‘A) ∪ (r−‘‘B)
〈proof 〉

lemma vimage-Int-subset: r−‘‘(A ∩ B) ⊆ (r−‘‘A) ∩ (r−‘‘B)
〈proof 〉

lemma vimage-eq-UN : f −‘‘B = (
⋃

y∈B. f−‘‘{y})
〈proof 〉

lemma function-vimage-Int:
function(f) =⇒ f−‘‘(A ∩ B) = (f−‘‘A) ∩ (f−‘‘B)

〈proof 〉

lemma function-vimage-Diff : function(f) =⇒ f−‘‘(A−B) = (f−‘‘A) − (f−‘‘B)
〈proof 〉

lemma function-image-vimage: function(f) =⇒ f ‘‘ (f−‘‘ A) ⊆ A
〈proof 〉

lemma vimage-Int-square-subset: (r ∩ A∗A)−‘‘B ⊆ (r−‘‘B) ∩ A
〈proof 〉

lemma vimage-Int-square: B⊆A =⇒ (r ∩ A∗A)−‘‘B = (r−‘‘B) ∩ A
〈proof 〉

lemma vimage-0-left [simp]: 0−‘‘A = 0
〈proof 〉

lemma vimage-Un-left: (r ∪ s)−‘‘A = (r−‘‘A) ∪ (s−‘‘A)
〈proof 〉

lemma vimage-Int-subset-left: (r ∩ s)−‘‘A ⊆ (r−‘‘A) ∩ (s−‘‘A)
〈proof 〉

lemma converse-Un [simp]: converse(A ∪ B) = converse(A) ∪ converse(B)

53

〈proof 〉

lemma converse-Int [simp]: converse(A ∩ B) = converse(A) ∩ converse(B)
〈proof 〉

lemma converse-Diff [simp]: converse(A − B) = converse(A) − converse(B)
〈proof 〉

lemma converse-UN [simp]: converse(
⋃

x∈A. B(x)) = (
⋃

x∈A. converse(B(x)))
〈proof 〉

lemma converse-INT [simp]:
converse(

⋂
x∈A. B(x)) = (

⋂
x∈A. converse(B(x)))

〈proof 〉

4.11 Powerset Operator
lemma Pow-0 [simp]: Pow(0) = {0}
〈proof 〉

lemma Pow-insert: Pow (cons(a,A)) = Pow(A) ∪ {cons(a,X) . X : Pow(A)}
〈proof 〉

lemma Un-Pow-subset: Pow(A) ∪ Pow(B) ⊆ Pow(A ∪ B)
〈proof 〉

lemma UN-Pow-subset: (
⋃

x∈A. Pow(B(x))) ⊆ Pow(
⋃

x∈A. B(x))
〈proof 〉

lemma subset-Pow-Union: A ⊆ Pow(
⋃
(A))

〈proof 〉

lemma Union-Pow-eq [simp]:
⋃
(Pow(A)) = A

〈proof 〉

lemma Union-Pow-iff :
⋃
(A) ∈ Pow(B) ←→ A ∈ Pow(Pow(B))

〈proof 〉

lemma Pow-Int-eq [simp]: Pow(A ∩ B) = Pow(A) ∩ Pow(B)
〈proof 〉

lemma Pow-INT-eq: A 6=0 =⇒ Pow(
⋂

x∈A. B(x)) = (
⋂

x∈A. Pow(B(x)))
〈proof 〉

4.12 RepFun
lemma RepFun-subset: [[

∧
x. x∈A =⇒ f (x) ∈ B]] =⇒ {f (x). x∈A} ⊆ B

〈proof 〉

54

lemma RepFun-eq-0-iff [simp]: {f (x).x∈A}=0 ←→ A=0
〈proof 〉

lemma RepFun-constant [simp]: {c. x∈A} = (if A=0 then 0 else {c})
〈proof 〉

4.13 Collect
lemma Collect-subset: Collect(A,P) ⊆ A
〈proof 〉

lemma Collect-Un: Collect(A ∪ B, P) = Collect(A,P) ∪ Collect(B,P)
〈proof 〉

lemma Collect-Int: Collect(A ∩ B, P) = Collect(A,P) ∩ Collect(B,P)
〈proof 〉

lemma Collect-Diff : Collect(A − B, P) = Collect(A,P) − Collect(B,P)
〈proof 〉

lemma Collect-cons: {x∈cons(a,B). P(x)} =
(if P(a) then cons(a, {x∈B. P(x)}) else {x∈B. P(x)})

〈proof 〉

lemma Int-Collect-self-eq: A ∩ Collect(A,P) = Collect(A,P)
〈proof 〉

lemma Collect-Collect-eq [simp]:
Collect(Collect(A,P), Q) = Collect(A, λx. P(x) ∧ Q(x))

〈proof 〉

lemma Collect-Int-Collect-eq:
Collect(A,P) ∩ Collect(A,Q) = Collect(A, λx. P(x) ∧ Q(x))

〈proof 〉

lemma Collect-Union-eq [simp]:
Collect(

⋃
x∈A. B(x), P) = (

⋃
x∈A. Collect(B(x), P))

〈proof 〉

lemma Collect-Int-left: {x∈A. P(x)} ∩ B = {x ∈ A ∩ B. P(x)}
〈proof 〉

lemma Collect-Int-right: A ∩ {x∈B. P(x)} = {x ∈ A ∩ B. P(x)}
〈proof 〉

lemma Collect-disj-eq: {x∈A. P(x) | Q(x)} = Collect(A, P) ∪ Collect(A, Q)
〈proof 〉

lemma Collect-conj-eq: {x∈A. P(x) ∧ Q(x)} = Collect(A, P) ∩ Collect(A, Q)

55

〈proof 〉

lemmas subset-SIs = subset-refl cons-subsetI subset-consI
Union-least UN-least Un-least
Inter-greatest Int-greatest RepFun-subset
Un-upper1 Un-upper2 Int-lower1 Int-lower2

〈ML〉

end

5 Least and Greatest Fixed Points; the Knaster-
Tarski Theorem

theory Fixedpt imports equalities begin

definition

bnd-mono :: [i,i⇒i]⇒o where
bnd-mono(D,h) ≡ h(D)<=D ∧ (∀W X . W<=X −→ X<=D −→ h(W) ⊆

h(X))

definition
lfp :: [i,i⇒i]⇒i where

lfp(D,h) ≡
⋂
({X : Pow(D). h(X) ⊆ X})

definition
gfp :: [i,i⇒i]⇒i where

gfp(D,h) ≡
⋃
({X : Pow(D). X ⊆ h(X)})

The theorem is proved in the lattice of subsets of D, namely Pow(D), with
Inter as the greatest lower bound.

5.1 Monotone Operators
lemma bnd-monoI :

[[h(D)<=D;∧
W X . [[W<=D; X<=D; W<=X]] =⇒ h(W) ⊆ h(X)

]] =⇒ bnd-mono(D,h)
〈proof 〉

lemma bnd-monoD1 : bnd-mono(D,h) =⇒ h(D) ⊆ D
〈proof 〉

lemma bnd-monoD2 : [[bnd-mono(D,h); W<=X ; X<=D]] =⇒ h(W) ⊆ h(X)
〈proof 〉

lemma bnd-mono-subset:

56

[[bnd-mono(D,h); X<=D]] =⇒ h(X) ⊆ D
〈proof 〉

lemma bnd-mono-Un:
[[bnd-mono(D,h); A ⊆ D; B ⊆ D]] =⇒ h(A) ∪ h(B) ⊆ h(A ∪ B)

〈proof 〉

lemma bnd-mono-UN :
[[bnd-mono(D,h); ∀ i∈I . A(i) ⊆ D]]
=⇒ (

⋃
i∈I . h(A(i))) ⊆ h((

⋃
i∈I . A(i)))

〈proof 〉

lemma bnd-mono-Int:
[[bnd-mono(D,h); A ⊆ D; B ⊆ D]] =⇒ h(A ∩ B) ⊆ h(A) ∩ h(B)

〈proof 〉

5.2 Proof of Knaster-Tarski Theorem using lfp
lemma lfp-lowerbound:

[[h(A) ⊆ A; A<=D]] =⇒ lfp(D,h) ⊆ A
〈proof 〉

lemma lfp-subset: lfp(D,h) ⊆ D
〈proof 〉

lemma def-lfp-subset: A ≡ lfp(D,h) =⇒ A ⊆ D
〈proof 〉

lemma lfp-greatest:
[[h(D) ⊆ D;

∧
X . [[h(X) ⊆ X ; X<=D]] =⇒ A<=X]] =⇒ A ⊆ lfp(D,h)

〈proof 〉

lemma lfp-lemma1 :
[[bnd-mono(D,h); h(A)<=A; A<=D]] =⇒ h(lfp(D,h)) ⊆ A

〈proof 〉

lemma lfp-lemma2 : bnd-mono(D,h) =⇒ h(lfp(D,h)) ⊆ lfp(D,h)
〈proof 〉

lemma lfp-lemma3 :
bnd-mono(D,h) =⇒ lfp(D,h) ⊆ h(lfp(D,h))

〈proof 〉

lemma lfp-unfold: bnd-mono(D,h) =⇒ lfp(D,h) = h(lfp(D,h))
〈proof 〉

57

lemma def-lfp-unfold:
[[A≡lfp(D,h); bnd-mono(D,h)]] =⇒ A = h(A)

〈proof 〉

5.3 General Induction Rule for Least Fixedpoints
lemma Collect-is-pre-fixedpt:

[[bnd-mono(D,h);
∧

x. x ∈ h(Collect(lfp(D,h),P)) =⇒ P(x)]]
=⇒ h(Collect(lfp(D,h),P)) ⊆ Collect(lfp(D,h),P)

〈proof 〉

lemma induct:
[[bnd-mono(D,h); a ∈ lfp(D,h);∧

x. x ∈ h(Collect(lfp(D,h),P)) =⇒ P(x)
]] =⇒ P(a)
〈proof 〉

lemma def-induct:
[[A ≡ lfp(D,h); bnd-mono(D,h); a:A;∧

x. x ∈ h(Collect(A,P)) =⇒ P(x)
]] =⇒ P(a)
〈proof 〉

lemma lfp-Int-lowerbound:
[[h(D ∩ A) ⊆ A; bnd-mono(D,h)]] =⇒ lfp(D,h) ⊆ A

〈proof 〉

lemma lfp-mono:
assumes hmono: bnd-mono(D,h)

and imono: bnd-mono(E ,i)
and subhi:

∧
X . X<=D =⇒ h(X) ⊆ i(X)

shows lfp(D,h) ⊆ lfp(E ,i)
〈proof 〉

lemma lfp-mono2 :
[[i(D) ⊆ D;

∧
X . X<=D =⇒ h(X) ⊆ i(X)]] =⇒ lfp(D,h) ⊆ lfp(D,i)

〈proof 〉

lemma lfp-cong:
[[D=D ′;

∧
X . X ⊆ D ′ =⇒ h(X) = h ′(X)]] =⇒ lfp(D,h) = lfp(D ′,h ′)

〈proof 〉

58

5.4 Proof of Knaster-Tarski Theorem using gfp
lemma gfp-upperbound: [[A ⊆ h(A); A<=D]] =⇒ A ⊆ gfp(D,h)
〈proof 〉

lemma gfp-subset: gfp(D,h) ⊆ D
〈proof 〉

lemma def-gfp-subset: A≡gfp(D,h) =⇒ A ⊆ D
〈proof 〉

lemma gfp-least:
[[bnd-mono(D,h);

∧
X . [[X ⊆ h(X); X<=D]] =⇒ X<=A]] =⇒

gfp(D,h) ⊆ A
〈proof 〉

lemma gfp-lemma1 :
[[bnd-mono(D,h); A<=h(A); A<=D]] =⇒ A ⊆ h(gfp(D,h))

〈proof 〉

lemma gfp-lemma2 : bnd-mono(D,h) =⇒ gfp(D,h) ⊆ h(gfp(D,h))
〈proof 〉

lemma gfp-lemma3 :
bnd-mono(D,h) =⇒ h(gfp(D,h)) ⊆ gfp(D,h)

〈proof 〉

lemma gfp-unfold: bnd-mono(D,h) =⇒ gfp(D,h) = h(gfp(D,h))
〈proof 〉

lemma def-gfp-unfold:
[[A≡gfp(D,h); bnd-mono(D,h)]] =⇒ A = h(A)

〈proof 〉

5.5 Coinduction Rules for Greatest Fixed Points
lemma weak-coinduct: [[a: X ; X ⊆ h(X); X ⊆ D]] =⇒ a ∈ gfp(D,h)
〈proof 〉

lemma coinduct-lemma:
[[X ⊆ h(X ∪ gfp(D,h)); X ⊆ D; bnd-mono(D,h)]] =⇒
X ∪ gfp(D,h) ⊆ h(X ∪ gfp(D,h))

〈proof 〉

lemma coinduct:
[[bnd-mono(D,h); a: X ; X ⊆ h(X ∪ gfp(D,h)); X ⊆ D]]
=⇒ a ∈ gfp(D,h)

59

〈proof 〉

lemma def-coinduct:
[[A ≡ gfp(D,h); bnd-mono(D,h); a: X ; X ⊆ h(X ∪ A); X ⊆ D]] =⇒
a ∈ A

〈proof 〉

lemma def-Collect-coinduct:
[[A ≡ gfp(D, λw. Collect(D,P(w))); bnd-mono(D, λw. Collect(D,P(w)));

a: X ; X ⊆ D;
∧

z. z: X =⇒ P(X ∪ A, z)]] =⇒
a ∈ A

〈proof 〉

lemma gfp-mono:
[[bnd-mono(D,h); D ⊆ E ;∧

X . X<=D =⇒ h(X) ⊆ i(X)]] =⇒ gfp(D,h) ⊆ gfp(E ,i)
〈proof 〉

end

6 Booleans in Zermelo-Fraenkel Set Theory
theory Bool imports pair begin

abbreviation
one (‹1 ›) where
1 ≡ succ(0)

abbreviation
two (‹2 ›) where
2 ≡ succ(1)

2 is equal to bool, but is used as a number rather than a type.
definition bool ≡ {0 ,1}

definition cond(b,c,d) ≡ if (b=1 ,c,d)

definition not(b) ≡ cond(b,0 ,1)

definition
and :: [i,i]⇒i (infixl ‹and› 70) where

a and b ≡ cond(a,b,0)

definition
or :: [i,i]⇒i (infixl ‹or› 65) where

a or b ≡ cond(a,1 ,b)

60

definition
xor :: [i,i]⇒i (infixl ‹xor› 65) where

a xor b ≡ cond(a,not(b),b)

lemmas bool-defs = bool-def cond-def

lemma singleton-0 : {0} = 1
〈proof 〉

lemma bool-1I [simp,TC]: 1 ∈ bool
〈proof 〉

lemma bool-0I [simp,TC]: 0 ∈ bool
〈proof 〉

lemma one-not-0 : 1 6=0
〈proof 〉

lemmas one-neq-0 = one-not-0 [THEN notE]

lemma boolE :
[[c: bool; c=1 =⇒ P; c=0 =⇒ P]] =⇒ P

〈proof 〉

lemma cond-1 [simp]: cond(1 ,c,d) = c
〈proof 〉

lemma cond-0 [simp]: cond(0 ,c,d) = d
〈proof 〉

lemma cond-type [TC]: [[b: bool; c: A(1); d: A(0)]] =⇒ cond(b,c,d): A(b)
〈proof 〉

lemma cond-simple-type: [[b: bool; c: A; d: A]] =⇒ cond(b,c,d): A
〈proof 〉

lemma def-cond-1 : [[
∧

b. j(b)≡cond(b,c,d)]] =⇒ j(1) = c
〈proof 〉

61

lemma def-cond-0 : [[
∧

b. j(b)≡cond(b,c,d)]] =⇒ j(0) = d
〈proof 〉

lemmas not-1 = not-def [THEN def-cond-1 , simp]
lemmas not-0 = not-def [THEN def-cond-0 , simp]

lemmas and-1 = and-def [THEN def-cond-1 , simp]
lemmas and-0 = and-def [THEN def-cond-0 , simp]

lemmas or-1 = or-def [THEN def-cond-1 , simp]
lemmas or-0 = or-def [THEN def-cond-0 , simp]

lemmas xor-1 = xor-def [THEN def-cond-1 , simp]
lemmas xor-0 = xor-def [THEN def-cond-0 , simp]

lemma not-type [TC]: a:bool =⇒ not(a) ∈ bool
〈proof 〉

lemma and-type [TC]: [[a:bool; b:bool]] =⇒ a and b ∈ bool
〈proof 〉

lemma or-type [TC]: [[a:bool; b:bool]] =⇒ a or b ∈ bool
〈proof 〉

lemma xor-type [TC]: [[a:bool; b:bool]] =⇒ a xor b ∈ bool
〈proof 〉

lemmas bool-typechecks = bool-1I bool-0I cond-type not-type and-type
or-type xor-type

6.1 Laws About ’not’
lemma not-not [simp]: a:bool =⇒ not(not(a)) = a
〈proof 〉

lemma not-and [simp]: a:bool =⇒ not(a and b) = not(a) or not(b)
〈proof 〉

lemma not-or [simp]: a:bool =⇒ not(a or b) = not(a) and not(b)
〈proof 〉

6.2 Laws About ’and’
lemma and-absorb [simp]: a: bool =⇒ a and a = a
〈proof 〉

lemma and-commute: [[a: bool; b:bool]] =⇒ a and b = b and a
〈proof 〉

lemma and-assoc: a: bool =⇒ (a and b) and c = a and (b and c)

62

〈proof 〉

lemma and-or-distrib: [[a: bool; b:bool; c:bool]] =⇒
(a or b) and c = (a and c) or (b and c)

〈proof 〉

6.3 Laws About ’or’
lemma or-absorb [simp]: a: bool =⇒ a or a = a
〈proof 〉

lemma or-commute: [[a: bool; b:bool]] =⇒ a or b = b or a
〈proof 〉

lemma or-assoc: a: bool =⇒ (a or b) or c = a or (b or c)
〈proof 〉

lemma or-and-distrib: [[a: bool; b: bool; c: bool]] =⇒
(a and b) or c = (a or c) and (b or c)

〈proof 〉

definition
bool-of-o :: o⇒i where
bool-of-o(P) ≡ (if P then 1 else 0)

lemma [simp]: bool-of-o(True) = 1
〈proof 〉

lemma [simp]: bool-of-o(False) = 0
〈proof 〉

lemma [simp,TC]: bool-of-o(P) ∈ bool
〈proof 〉

lemma [simp]: (bool-of-o(P) = 1) ←→ P
〈proof 〉

lemma [simp]: (bool-of-o(P) = 0) ←→ ¬P
〈proof 〉

end

7 Disjoint Sums
theory Sum imports Bool equalities begin

And the "Part" primitive for simultaneous recursive type definitions
definition sum :: [i,i]⇒i (infixr ‹+› 65) where

63

A+B ≡ {0}∗A ∪ {1}∗B

definition Inl :: i⇒i where
Inl(a) ≡ 〈0 ,a〉

definition Inr :: i⇒i where
Inr(b) ≡ 〈1 ,b〉

definition case :: [i⇒i, i⇒i, i]⇒i where
case(c,d) ≡ (λ〈y,z〉. cond(y, d(z), c(z)))

definition Part :: [i,i⇒i] ⇒ i where
Part(A,h) ≡ {x ∈ A. ∃ z. x = h(z)}

7.1 Rules for the Part Primitive
lemma Part-iff :

a ∈ Part(A,h) ←→ a ∈ A ∧ (∃ y. a=h(y))
〈proof 〉

lemma Part-eqI [intro]:
[[a ∈ A; a=h(b)]] =⇒ a ∈ Part(A,h)

〈proof 〉

lemmas PartI = refl [THEN [2] Part-eqI]

lemma PartE [elim!]:
[[a ∈ Part(A,h);

∧
z. [[a ∈ A; a=h(z)]] =⇒ P

]] =⇒ P
〈proof 〉

lemma Part-subset: Part(A,h) ⊆ A
〈proof 〉

7.2 Rules for Disjoint Sums
lemmas sum-defs = sum-def Inl-def Inr-def case-def

lemma Sigma-bool: Sigma(bool,C) = C (0) + C (1)
〈proof 〉

lemma InlI [intro!,simp,TC]: a ∈ A =⇒ Inl(a) ∈ A+B
〈proof 〉

lemma InrI [intro!,simp,TC]: b ∈ B =⇒ Inr(b) ∈ A+B
〈proof 〉

64

lemma sumE [elim!]:
[[u ∈ A+B;∧

x. [[x ∈ A; u=Inl(x)]] =⇒ P;∧
y. [[y ∈ B; u=Inr(y)]] =⇒ P

]] =⇒ P
〈proof 〉

lemma Inl-iff [iff]: Inl(a)=Inl(b) ←→ a=b
〈proof 〉

lemma Inr-iff [iff]: Inr(a)=Inr(b) ←→ a=b
〈proof 〉

lemma Inl-Inr-iff [simp]: Inl(a)=Inr(b) ←→ False
〈proof 〉

lemma Inr-Inl-iff [simp]: Inr(b)=Inl(a) ←→ False
〈proof 〉

lemma sum-empty [simp]: 0+0 = 0
〈proof 〉

lemmas Inl-inject = Inl-iff [THEN iffD1]
lemmas Inr-inject = Inr-iff [THEN iffD1]
lemmas Inl-neq-Inr = Inl-Inr-iff [THEN iffD1 , THEN FalseE , elim!]
lemmas Inr-neq-Inl = Inr-Inl-iff [THEN iffD1 , THEN FalseE , elim!]

lemma InlD: Inl(a): A+B =⇒ a ∈ A
〈proof 〉

lemma InrD: Inr(b): A+B =⇒ b ∈ B
〈proof 〉

lemma sum-iff : u ∈ A+B ←→ (∃ x. x ∈ A ∧ u=Inl(x)) | (∃ y. y ∈ B ∧ u=Inr(y))
〈proof 〉

lemma Inl-in-sum-iff [simp]: (Inl(x) ∈ A+B) ←→ (x ∈ A)
〈proof 〉

lemma Inr-in-sum-iff [simp]: (Inr(y) ∈ A+B) ←→ (y ∈ B)
〈proof 〉

65

lemma sum-subset-iff : A+B ⊆ C+D ←→ A<=C ∧ B<=D
〈proof 〉

lemma sum-equal-iff : A+B = C+D ←→ A=C ∧ B=D
〈proof 〉

lemma sum-eq-2-times: A+A = 2∗A
〈proof 〉

7.3 The Eliminator: case
lemma case-Inl [simp]: case(c, d, Inl(a)) = c(a)
〈proof 〉

lemma case-Inr [simp]: case(c, d, Inr(b)) = d(b)
〈proof 〉

lemma case-type [TC]:
[[u ∈ A+B;∧

x. x ∈ A =⇒ c(x): C (Inl(x));∧
y. y ∈ B =⇒ d(y): C (Inr(y))

]] =⇒ case(c,d,u) ∈ C (u)
〈proof 〉

lemma expand-case: u ∈ A+B =⇒
R(case(c,d,u)) ←→
((∀ x∈A. u = Inl(x) −→ R(c(x))) ∧
(∀ y∈B. u = Inr(y) −→ R(d(y))))

〈proof 〉

lemma case-cong:
[[z ∈ A+B;∧

x. x ∈ A =⇒ c(x)=c ′(x);∧
y. y ∈ B =⇒ d(y)=d ′(y)

]] =⇒ case(c,d,z) = case(c ′,d ′,z)
〈proof 〉

lemma case-case: z ∈ A+B =⇒
case(c, d, case(λx. Inl(c ′(x)), λy. Inr(d ′(y)), z)) =
case(λx. c(c ′(x)), λy. d(d ′(y)), z)

〈proof 〉

7.4 More Rules for Part(A, h)
lemma Part-mono: A<=B =⇒ Part(A,h)<=Part(B,h)
〈proof 〉

lemma Part-Collect: Part(Collect(A,P), h) = Collect(Part(A,h), P)
〈proof 〉

66

lemmas Part-CollectE =
Part-Collect [THEN equalityD1 , THEN subsetD, THEN CollectE]

lemma Part-Inl: Part(A+B,Inl) = {Inl(x). x ∈ A}
〈proof 〉

lemma Part-Inr : Part(A+B,Inr) = {Inr(y). y ∈ B}
〈proof 〉

lemma PartD1 : a ∈ Part(A,h) =⇒ a ∈ A
〈proof 〉

lemma Part-id: Part(A,λx. x) = A
〈proof 〉

lemma Part-Inr2 : Part(A+B, λx. Inr(h(x))) = {Inr(y). y ∈ Part(B,h)}
〈proof 〉

lemma Part-sum-equality: C ⊆ A+B =⇒ Part(C ,Inl) ∪ Part(C ,Inr) = C
〈proof 〉

end

8 Functions, Function Spaces, Lambda-Abstraction
theory func imports equalities Sum begin

8.1 The Pi Operator: Dependent Function Space
lemma subset-Sigma-imp-relation: r ⊆ Sigma(A,B) =⇒ relation(r)
〈proof 〉

lemma relation-converse-converse [simp]:
relation(r) =⇒ converse(converse(r)) = r

〈proof 〉

lemma relation-restrict [simp]: relation(restrict(r ,A))
〈proof 〉

lemma Pi-iff :
f ∈ Pi(A,B) ←→ function(f) ∧ f<=Sigma(A,B) ∧ A<=domain(f)

〈proof 〉

lemma Pi-iff-old:
f ∈ Pi(A,B) ←→ f<=Sigma(A,B) ∧ (∀ x∈A. ∃ !y. 〈x,y〉: f)

〈proof 〉

lemma fun-is-function: f ∈ Pi(A,B) =⇒ function(f)

67

〈proof 〉

lemma function-imp-Pi:
[[function(f); relation(f)]] =⇒ f ∈ domain(f) −> range(f)

〈proof 〉

lemma functionI :
[[
∧

x y y ′. [[〈x,y〉:r ; <x,y ′>:r]] =⇒ y=y ′]] =⇒ function(r)
〈proof 〉

lemma fun-is-rel: f ∈ Pi(A,B) =⇒ f ⊆ Sigma(A,B)
〈proof 〉

lemma Pi-cong:
[[A=A ′;

∧
x. x ∈ A ′ =⇒ B(x)=B ′(x)]] =⇒ Pi(A,B) = Pi(A ′,B ′)

〈proof 〉

lemma fun-weaken-type: [[f ∈ A−>B; B<=D]] =⇒ f ∈ A−>D
〈proof 〉

8.2 Function Application
lemma apply-equality2 : [[〈a,b〉: f ; 〈a,c〉: f ; f ∈ Pi(A,B)]] =⇒ b=c
〈proof 〉

lemma function-apply-equality: [[〈a,b〉: f ; function(f)]] =⇒ f‘a = b
〈proof 〉

lemma apply-equality: [[〈a,b〉: f ; f ∈ Pi(A,B)]] =⇒ f‘a = b
〈proof 〉

lemma apply-0 : a /∈ domain(f) =⇒ f‘a = 0
〈proof 〉

lemma Pi-memberD: [[f ∈ Pi(A,B); c ∈ f]] =⇒ ∃ x∈A. c = <x,f‘x>
〈proof 〉

lemma function-apply-Pair : [[function(f); a ∈ domain(f)]] =⇒ <a,f‘a>: f
〈proof 〉

lemma apply-Pair : [[f ∈ Pi(A,B); a ∈ A]] =⇒ <a,f‘a>: f
〈proof 〉

68

lemma apply-type [TC]: [[f ∈ Pi(A,B); a ∈ A]] =⇒ f‘a ∈ B(a)
〈proof 〉

lemma apply-funtype: [[f ∈ A−>B; a ∈ A]] =⇒ f‘a ∈ B
〈proof 〉

lemma apply-iff : f ∈ Pi(A,B) =⇒ 〈a,b〉: f ←→ a ∈ A ∧ f‘a = b
〈proof 〉

lemma Pi-type: [[f ∈ Pi(A,C);
∧

x. x ∈ A =⇒ f‘x ∈ B(x)]] =⇒ f ∈ Pi(A,B)
〈proof 〉

lemma Pi-Collect-iff :
(f ∈ Pi(A, λx. {y ∈ B(x). P(x,y)}))
←→ f ∈ Pi(A,B) ∧ (∀ x∈A. P(x, f‘x))

〈proof 〉

lemma Pi-weaken-type:
[[f ∈ Pi(A,B);

∧
x. x ∈ A =⇒ B(x)<=C (x)]] =⇒ f ∈ Pi(A,C)

〈proof 〉

lemma domain-type: [[〈a,b〉 ∈ f ; f ∈ Pi(A,B)]] =⇒ a ∈ A
〈proof 〉

lemma range-type: [[〈a,b〉 ∈ f ; f ∈ Pi(A,B)]] =⇒ b ∈ B(a)
〈proof 〉

lemma Pair-mem-PiD: [[〈a,b〉: f ; f ∈ Pi(A,B)]] =⇒ a ∈ A ∧ b ∈ B(a) ∧ f‘a = b
〈proof 〉

8.3 Lambda Abstraction
lemma lamI : a ∈ A =⇒ <a,b(a)> ∈ (λx∈A. b(x))
〈proof 〉

lemma lamE :
[[p: (λx∈A. b(x));

∧
x.[[x ∈ A; p=<x,b(x)>]] =⇒ P

]] =⇒ P
〈proof 〉

lemma lamD: [[〈a,c〉: (λx∈A. b(x))]] =⇒ c = b(a)
〈proof 〉

69

lemma lam-type [TC]:
[[
∧

x. x ∈ A =⇒ b(x): B(x)]] =⇒ (λx∈A. b(x)) ∈ Pi(A,B)
〈proof 〉

lemma lam-funtype: (λx∈A. b(x)) ∈ A −> {b(x). x ∈ A}
〈proof 〉

lemma function-lam: function (λx∈A. b(x))
〈proof 〉

lemma relation-lam: relation (λx∈A. b(x))
〈proof 〉

lemma beta-if [simp]: (λx∈A. b(x)) ‘ a = (if a ∈ A then b(a) else 0)
〈proof 〉

lemma beta: a ∈ A =⇒ (λx∈A. b(x)) ‘ a = b(a)
〈proof 〉

lemma lam-empty [simp]: (λx∈0 . b(x)) = 0
〈proof 〉

lemma domain-lam [simp]: domain(Lambda(A,b)) = A
〈proof 〉

lemma lam-cong [cong]:
[[A=A ′;

∧
x. x ∈ A ′ =⇒ b(x)=b ′(x)]] =⇒ Lambda(A,b) = Lambda(A ′,b ′)

〈proof 〉

lemma lam-theI :
(
∧

x. x ∈ A =⇒ ∃ !y. Q(x,y)) =⇒ ∃ f . ∀ x∈A. Q(x, f‘x)
〈proof 〉

lemma lam-eqE : [[(λx∈A. f (x)) = (λx∈A. g(x)); a ∈ A]] =⇒ f (a)=g(a)
〈proof 〉

lemma Pi-empty1 [simp]: Pi(0 ,A) = {0}
〈proof 〉

lemma singleton-fun [simp]: {〈a,b〉} ∈ {a} −> {b}
〈proof 〉

lemma Pi-empty2 [simp]: (A−>0) = (if A=0 then {0} else 0)
〈proof 〉

70

lemma fun-space-empty-iff [iff]: (A−>X)=0 ←→ X=0 ∧ (A 6= 0)
〈proof 〉

8.4 Extensionality
lemma fun-subset:

[[f ∈ Pi(A,B); g ∈ Pi(C ,D); A<=C ;∧
x. x ∈ A =⇒ f‘x = g‘x]] =⇒ f<=g

〈proof 〉

lemma fun-extension:
[[f ∈ Pi(A,B); g ∈ Pi(A,D);∧

x. x ∈ A =⇒ f‘x = g‘x]] =⇒ f=g
〈proof 〉

lemma eta [simp]: f ∈ Pi(A,B) =⇒ (λx∈A. f‘x) = f
〈proof 〉

lemma fun-extension-iff :
[[f ∈ Pi(A,B); g ∈ Pi(A,C)]] =⇒ (∀ a∈A. f‘a = g‘a) ←→ f=g

〈proof 〉

lemma fun-subset-eq: [[f ∈ Pi(A,B); g ∈ Pi(A,C)]] =⇒ f ⊆ g ←→ (f = g)
〈proof 〉

lemma Pi-lamE :
assumes major : f ∈ Pi(A,B)

and minor :
∧

b. [[∀ x∈A. b(x):B(x); f = (λx∈A. b(x))]] =⇒ P
shows P
〈proof 〉

8.5 Images of Functions
lemma image-lam: C ⊆ A =⇒ (λx∈A. b(x)) ‘‘ C = {b(x). x ∈ C}
〈proof 〉

lemma Repfun-function-if :
function(f)
=⇒ {f‘x. x ∈ C} = (if C ⊆ domain(f) then f‘‘C else cons(0 ,f‘‘C))

〈proof 〉

lemma image-function:
[[function(f); C ⊆ domain(f)]] =⇒ f‘‘C = {f‘x. x ∈ C}

〈proof 〉

lemma image-fun: [[f ∈ Pi(A,B); C ⊆ A]] =⇒ f‘‘C = {f‘x. x ∈ C}

71

〈proof 〉

lemma image-eq-UN :
assumes f : f ∈ Pi(A,B) C ⊆ A shows f‘‘C = (

⋃
x∈C . {f ‘ x})

〈proof 〉

lemma Pi-image-cons:
[[f ∈ Pi(A,B); x ∈ A]] =⇒ f ‘‘ cons(x,y) = cons(f‘x, f‘‘y)

〈proof 〉

8.6 Properties of restrict(f , A)

lemma restrict-subset: restrict(f ,A) ⊆ f
〈proof 〉

lemma function-restrictI :
function(f) =⇒ function(restrict(f ,A))

〈proof 〉

lemma restrict-type2 : [[f ∈ Pi(C ,B); A<=C]] =⇒ restrict(f ,A) ∈ Pi(A,B)
〈proof 〉

lemma restrict: restrict(f ,A) ‘ a = (if a ∈ A then f‘a else 0)
〈proof 〉

lemma restrict-empty [simp]: restrict(f ,0) = 0
〈proof 〉

lemma restrict-iff : z ∈ restrict(r ,A) ←→ z ∈ r ∧ (∃ x∈A. ∃ y. z = 〈x, y〉)
〈proof 〉

lemma restrict-restrict [simp]:
restrict(restrict(r ,A),B) = restrict(r , A ∩ B)

〈proof 〉

lemma domain-restrict [simp]: domain(restrict(f ,C)) = domain(f) ∩ C
〈proof 〉

lemma restrict-idem: f ⊆ Sigma(A,B) =⇒ restrict(f ,A) = f
〈proof 〉

lemma domain-restrict-idem:
[[domain(r) ⊆ A; relation(r)]] =⇒ restrict(r ,A) = r

〈proof 〉

lemma domain-restrict-lam [simp]: domain(restrict(Lambda(A,f),C)) = A ∩ C
〈proof 〉

72

lemma restrict-if [simp]: restrict(f ,A) ‘ a = (if a ∈ A then f‘a else 0)
〈proof 〉

lemma restrict-lam-eq:
A<=C =⇒ restrict(λx∈C . b(x), A) = (λx∈A. b(x))

〈proof 〉

lemma fun-cons-restrict-eq:
f ∈ cons(a, b) −> B =⇒ f = cons(<a, f ‘ a>, restrict(f , b))

〈proof 〉

8.7 Unions of Functions
lemma function-Union:

[[∀ x∈S . function(x);
∀ x∈S . ∀ y∈S . x<=y | y<=x]]

=⇒ function(
⋃
(S))

〈proof 〉

lemma fun-Union:
[[∀ f∈S . ∃C D. f ∈ C−>D;

∀ f∈S . ∀ y∈S . f<=y | y<=f]] =⇒⋃
(S) ∈ domain(

⋃
(S)) −> range(

⋃
(S))

〈proof 〉

lemma gen-relation-Union:
(
∧

f . f∈F =⇒ relation(f)) =⇒ relation(
⋃
(F))

〈proof 〉

lemmas Un-rls = Un-subset-iff SUM-Un-distrib1 prod-Un-distrib2
subset-trans [OF - Un-upper1]
subset-trans [OF - Un-upper2]

lemma fun-disjoint-Un:
[[f ∈ A−>B; g ∈ C−>D; A ∩ C = 0]]
=⇒ (f ∪ g) ∈ (A ∪ C) −> (B ∪ D)

〈proof 〉

lemma fun-disjoint-apply1 : a /∈ domain(g) =⇒ (f ∪ g)‘a = f‘a
〈proof 〉

lemma fun-disjoint-apply2 : c /∈ domain(f) =⇒ (f ∪ g)‘c = g‘c
〈proof 〉

73

8.8 Domain and Range of a Function or Relation
lemma domain-of-fun: f ∈ Pi(A,B) =⇒ domain(f)=A
〈proof 〉

lemma apply-rangeI : [[f ∈ Pi(A,B); a ∈ A]] =⇒ f‘a ∈ range(f)
〈proof 〉

lemma range-of-fun: f ∈ Pi(A,B) =⇒ f ∈ A−>range(f)
〈proof 〉

8.9 Extensions of Functions
lemma fun-extend:

[[f ∈ A−>B; c/∈A]] =⇒ cons(〈c,b〉,f) ∈ cons(c,A) −> cons(b,B)
〈proof 〉

lemma fun-extend3 :
[[f ∈ A−>B; c/∈A; b ∈ B]] =⇒ cons(〈c,b〉,f) ∈ cons(c,A) −> B

〈proof 〉

lemma extend-apply:
c /∈ domain(f) =⇒ cons(〈c,b〉,f)‘a = (if a=c then b else f‘a)

〈proof 〉

lemma fun-extend-apply [simp]:
[[f ∈ A−>B; c/∈A]] =⇒ cons(〈c,b〉,f)‘a = (if a=c then b else f‘a)

〈proof 〉

lemmas singleton-apply = apply-equality [OF singletonI singleton-fun, simp]

lemma cons-fun-eq:
c /∈ A =⇒ cons(c,A) −> B = (

⋃
f ∈ A−>B.

⋃
b∈B. {cons(〈c,b〉, f)})

〈proof 〉

lemma succ-fun-eq: succ(n) −> B = (
⋃

f ∈ n−>B.
⋃

b∈B. {cons(〈n,b〉, f)})
〈proof 〉

8.10 Function Updates
definition

update :: [i,i,i] ⇒ i where
update(f ,a,b) ≡ λx∈cons(a, domain(f)). if (x=a, b, f‘x)

nonterminal updbinds and updbind

syntax
-updbind :: [i, i] ⇒ updbind (‹(‹indent=2 notation=‹infix update››- :=/ -)›)

:: updbind ⇒ updbinds (‹-›)

74

-updbinds :: [updbind, updbinds] ⇒ updbinds (‹-,/ -›)
-Update :: [i, updbinds] ⇒ i (‹(‹open-block notation=‹mixfix function up-

date››-/ ′((-) ′))› [900 ,0] 900)
syntax-consts

-Update
 update
translations

-Update (f , -updbinds(b,bs)) == -Update (-Update(f ,b), bs)
f (x:=y) == CONST update(f ,x,y)

lemma update-apply [simp]: f (x:=y) ‘ z = (if z=x then y else f‘z)
〈proof 〉

lemma update-idem: [[f‘x = y; f ∈ Pi(A,B); x ∈ A]] =⇒ f (x:=y) = f
〈proof 〉

declare refl [THEN update-idem, simp]

lemma domain-update [simp]: domain(f (x:=y)) = cons(x, domain(f))
〈proof 〉

lemma update-type: [[f ∈ Pi(A,B); x ∈ A; y ∈ B(x)]] =⇒ f (x:=y) ∈ Pi(A, B)
〈proof 〉

8.11 Monotonicity Theorems
8.11.1 Replacement in its Various Forms
lemma Replace-mono: A<=B =⇒ Replace(A,P) ⊆ Replace(B,P)
〈proof 〉

lemma RepFun-mono: A<=B =⇒ {f (x). x ∈ A} ⊆ {f (x). x ∈ B}
〈proof 〉

lemma Pow-mono: A<=B =⇒ Pow(A) ⊆ Pow(B)
〈proof 〉

lemma Union-mono: A<=B =⇒
⋃
(A) ⊆

⋃
(B)

〈proof 〉

lemma UN-mono:
[[A<=C ;

∧
x. x ∈ A =⇒ B(x)<=D(x)]] =⇒ (

⋃
x∈A. B(x)) ⊆ (

⋃
x∈C . D(x))

〈proof 〉

lemma Inter-anti-mono: [[A<=B; A6=0]] =⇒
⋂
(B) ⊆

⋂
(A)

〈proof 〉

lemma cons-mono: C<=D =⇒ cons(a,C) ⊆ cons(a,D)

75

〈proof 〉

lemma Un-mono: [[A<=C ; B<=D]] =⇒ A ∪ B ⊆ C ∪ D
〈proof 〉

lemma Int-mono: [[A<=C ; B<=D]] =⇒ A ∩ B ⊆ C ∩ D
〈proof 〉

lemma Diff-mono: [[A<=C ; D<=B]] =⇒ A−B ⊆ C−D
〈proof 〉

8.11.2 Standard Products, Sums and Function Spaces
lemma Sigma-mono [rule-format]:

[[A<=C ;
∧

x. x ∈ A −→ B(x) ⊆ D(x)]] =⇒ Sigma(A,B) ⊆ Sigma(C ,D)
〈proof 〉

lemma sum-mono: [[A<=C ; B<=D]] =⇒ A+B ⊆ C+D
〈proof 〉

lemma Pi-mono: B<=C =⇒ A−>B ⊆ A−>C
〈proof 〉

lemma lam-mono: A<=B =⇒ Lambda(A,c) ⊆ Lambda(B,c)
〈proof 〉

8.11.3 Converse, Domain, Range, Field
lemma converse-mono: r<=s =⇒ converse(r) ⊆ converse(s)
〈proof 〉

lemma domain-mono: r<=s =⇒ domain(r)<=domain(s)
〈proof 〉

lemmas domain-rel-subset = subset-trans [OF domain-mono domain-subset]

lemma range-mono: r<=s =⇒ range(r)<=range(s)
〈proof 〉

lemmas range-rel-subset = subset-trans [OF range-mono range-subset]

lemma field-mono: r<=s =⇒ field(r)<=field(s)
〈proof 〉

lemma field-rel-subset: r ⊆ A∗A =⇒ field(r) ⊆ A
〈proof 〉

76

8.11.4 Images
lemma image-pair-mono:

[[
∧

x y. 〈x,y〉:r =⇒ 〈x,y〉:s; A<=B]] =⇒ r‘‘A ⊆ s‘‘B
〈proof 〉

lemma vimage-pair-mono:
[[
∧

x y. 〈x,y〉:r =⇒ 〈x,y〉:s; A<=B]] =⇒ r−‘‘A ⊆ s−‘‘B
〈proof 〉

lemma image-mono: [[r<=s; A<=B]] =⇒ r‘‘A ⊆ s‘‘B
〈proof 〉

lemma vimage-mono: [[r<=s; A<=B]] =⇒ r−‘‘A ⊆ s−‘‘B
〈proof 〉

lemma Collect-mono:
[[A<=B;

∧
x. x ∈ A =⇒ P(x) −→ Q(x)]] =⇒ Collect(A,P) ⊆ Collect(B,Q)

〈proof 〉

lemmas basic-monos = subset-refl imp-refl disj-mono conj-mono ex-mono
Collect-mono Part-mono in-mono

lemma bex-image-simp:
[[f ∈ Pi(X , Y); A ⊆ X]] =⇒ (∃ x∈f‘‘A. P(x)) ←→ (∃ x∈A. P(f‘x))
〈proof 〉

lemma ball-image-simp:
[[f ∈ Pi(X , Y); A ⊆ X]] =⇒ (∀ x∈f‘‘A. P(x)) ←→ (∀ x∈A. P(f‘x))
〈proof 〉

end

9 Quine-Inspired Ordered Pairs and Disjoint Sums
theory QPair imports Sum func begin

For non-well-founded data structures in ZF. Does not precisely follow Quine’s
construction. Thanks to Thomas Forster for suggesting this approach!
W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
1966.
definition

QPair :: [i, i] ⇒ i (‹(‹indent=1 notation=‹mixfix Quine pair››<-;/ ->)›)
where <a;b> ≡ a+b

definition

77

qfst :: i ⇒ i where
qfst(p) ≡ THE a. ∃ b. p=<a;b>

definition
qsnd :: i ⇒ i where

qsnd(p) ≡ THE b. ∃ a. p=<a;b>

definition
qsplit :: [[i, i] ⇒ ′a, i] ⇒ ′a::{} where

qsplit(c,p) ≡ c(qfst(p), qsnd(p))

definition
qconverse :: i ⇒ i where

qconverse(r) ≡ {z. w ∈ r , ∃ x y. w=<x;y> ∧ z=<y;x>}

definition
QSigma :: [i, i ⇒ i] ⇒ i where

QSigma(A,B) ≡
⋃

x∈A.
⋃

y∈B(x). {<x;y>}

syntax
-QSUM :: [idt, i, i] ⇒ i (‹(‹indent=3 notation=‹binder QSUM∈››QSUM - ∈

-./ -)› 10)
syntax-consts

-QSUM
 QSigma
translations

QSUM x ∈ A. B => CONST QSigma(A, λx. B)

abbreviation
qprod (infixr ‹<∗>› 80) where
A <∗> B ≡ QSigma(A, λ-. B)

definition
qsum :: [i,i]⇒i (infixr ‹<+>› 65) where

A <+> B ≡ ({0} <∗> A) ∪ ({1} <∗> B)

definition
QInl :: i⇒i where

QInl(a) ≡ <0 ;a>

definition
QInr :: i⇒i where

QInr(b) ≡ <1 ;b>

definition
qcase :: [i⇒i, i⇒i, i]⇒i where

qcase(c,d) ≡ qsplit(λy z . cond(y, d(z), c(z)))

78

9.1 Quine ordered pairing
lemma QPair-empty [simp]: <0 ;0> = 0
〈proof 〉

lemma QPair-iff [simp]: <a;b> = <c;d> ←→ a=c ∧ b=d
〈proof 〉

lemmas QPair-inject = QPair-iff [THEN iffD1 , THEN conjE , elim!]

lemma QPair-inject1 : <a;b> = <c;d> =⇒ a=c
〈proof 〉

lemma QPair-inject2 : <a;b> = <c;d> =⇒ b=d
〈proof 〉

9.1.1 QSigma: Disjoint union of a family of sets Generalizes Carte-
sian product

lemma QSigmaI [intro!]: [[a ∈ A; b ∈ B(a)]] =⇒ <a;b> ∈ QSigma(A,B)
〈proof 〉

lemma QSigmaE [elim!]:
[[c ∈ QSigma(A,B);∧

x y.[[x ∈ A; y ∈ B(x); c=<x;y>]] =⇒ P
]] =⇒ P
〈proof 〉

lemma QSigmaE2 [elim!]:
[[<a;b>: QSigma(A,B); [[a ∈ A; b ∈ B(a)]] =⇒ P]] =⇒ P

〈proof 〉

lemma QSigmaD1 : <a;b> ∈ QSigma(A,B) =⇒ a ∈ A
〈proof 〉

lemma QSigmaD2 : <a;b> ∈ QSigma(A,B) =⇒ b ∈ B(a)
〈proof 〉

lemma QSigma-cong:
[[A=A ′;

∧
x. x ∈ A ′ =⇒ B(x)=B ′(x)]] =⇒

QSigma(A,B) = QSigma(A ′,B ′)
〈proof 〉

lemma QSigma-empty1 [simp]: QSigma(0 ,B) = 0
〈proof 〉

lemma QSigma-empty2 [simp]: A <∗> 0 = 0

79

〈proof 〉

9.1.2 Projections: qfst, qsnd
lemma qfst-conv [simp]: qfst(<a;b>) = a
〈proof 〉

lemma qsnd-conv [simp]: qsnd(<a;b>) = b
〈proof 〉

lemma qfst-type [TC]: p ∈ QSigma(A,B) =⇒ qfst(p) ∈ A
〈proof 〉

lemma qsnd-type [TC]: p ∈ QSigma(A,B) =⇒ qsnd(p) ∈ B(qfst(p))
〈proof 〉

lemma QPair-qfst-qsnd-eq: a ∈ QSigma(A,B) =⇒ <qfst(a); qsnd(a)> = a
〈proof 〉

9.1.3 Eliminator: qsplit
lemma qsplit [simp]: qsplit(λx y. c(x,y), <a;b>) ≡ c(a,b)
〈proof 〉

lemma qsplit-type [elim!]:
[[p ∈ QSigma(A,B);∧

x y.[[x ∈ A; y ∈ B(x)]] =⇒ c(x,y):C (<x;y>)
]] =⇒ qsplit(λx y. c(x,y), p) ∈ C (p)
〈proof 〉

lemma expand-qsplit:
u ∈ A<∗>B =⇒ R(qsplit(c,u)) ←→ (∀ x∈A. ∀ y∈B. u = <x;y> −→ R(c(x,y)))
〈proof 〉

9.1.4 qsplit for predicates: result type o
lemma qsplitI : R(a,b) =⇒ qsplit(R, <a;b>)
〈proof 〉

lemma qsplitE :
[[qsplit(R,z); z ∈ QSigma(A,B);∧

x y. [[z = <x;y>; R(x,y)]] =⇒ P
]] =⇒ P
〈proof 〉

lemma qsplitD: qsplit(R,<a;b>) =⇒ R(a,b)
〈proof 〉

80

9.1.5 qconverse
lemma qconverseI [intro!]: <a;b>:r =⇒ <b;a>:qconverse(r)
〈proof 〉

lemma qconverseD [elim!]: <a;b> ∈ qconverse(r) =⇒ <b;a> ∈ r
〈proof 〉

lemma qconverseE [elim!]:
[[yx ∈ qconverse(r);∧

x y. [[yx=<y;x>; <x;y>:r]] =⇒ P
]] =⇒ P
〈proof 〉

lemma qconverse-qconverse: r<=QSigma(A,B) =⇒ qconverse(qconverse(r)) = r
〈proof 〉

lemma qconverse-type: r ⊆ A <∗> B =⇒ qconverse(r) ⊆ B <∗> A
〈proof 〉

lemma qconverse-prod: qconverse(A <∗> B) = B <∗> A
〈proof 〉

lemma qconverse-empty: qconverse(0) = 0
〈proof 〉

9.2 The Quine-inspired notion of disjoint sum
lemmas qsum-defs = qsum-def QInl-def QInr-def qcase-def

lemma QInlI [intro!]: a ∈ A =⇒ QInl(a) ∈ A <+> B
〈proof 〉

lemma QInrI [intro!]: b ∈ B =⇒ QInr(b) ∈ A <+> B
〈proof 〉

lemma qsumE [elim!]:
[[u ∈ A <+> B;∧

x. [[x ∈ A; u=QInl(x)]] =⇒ P;∧
y. [[y ∈ B; u=QInr(y)]] =⇒ P

]] =⇒ P
〈proof 〉

81

lemma QInl-iff [iff]: QInl(a)=QInl(b) ←→ a=b
〈proof 〉

lemma QInr-iff [iff]: QInr(a)=QInr(b) ←→ a=b
〈proof 〉

lemma QInl-QInr-iff [simp]: QInl(a)=QInr(b) ←→ False
〈proof 〉

lemma QInr-QInl-iff [simp]: QInr(b)=QInl(a) ←→ False
〈proof 〉

lemma qsum-empty [simp]: 0<+>0 = 0
〈proof 〉

lemmas QInl-inject = QInl-iff [THEN iffD1]
lemmas QInr-inject = QInr-iff [THEN iffD1]
lemmas QInl-neq-QInr = QInl-QInr-iff [THEN iffD1 , THEN FalseE , elim!]
lemmas QInr-neq-QInl = QInr-QInl-iff [THEN iffD1 , THEN FalseE , elim!]

lemma QInlD: QInl(a): A<+>B =⇒ a ∈ A
〈proof 〉

lemma QInrD: QInr(b): A<+>B =⇒ b ∈ B
〈proof 〉

lemma qsum-iff :
u ∈ A <+> B ←→ (∃ x. x ∈ A ∧ u=QInl(x)) | (∃ y. y ∈ B ∧ u=QInr(y))

〈proof 〉

lemma qsum-subset-iff : A <+> B ⊆ C <+> D ←→ A<=C ∧ B<=D
〈proof 〉

lemma qsum-equal-iff : A <+> B = C <+> D ←→ A=C ∧ B=D
〈proof 〉

9.2.1 Eliminator – qcase
lemma qcase-QInl [simp]: qcase(c, d, QInl(a)) = c(a)
〈proof 〉

lemma qcase-QInr [simp]: qcase(c, d, QInr(b)) = d(b)
〈proof 〉

82

lemma qcase-type:
[[u ∈ A <+> B;∧

x. x ∈ A =⇒ c(x): C (QInl(x));∧
y. y ∈ B =⇒ d(y): C (QInr(y))

]] =⇒ qcase(c,d,u) ∈ C (u)
〈proof 〉

lemma Part-QInl: Part(A <+> B,QInl) = {QInl(x). x ∈ A}
〈proof 〉

lemma Part-QInr : Part(A <+> B,QInr) = {QInr(y). y ∈ B}
〈proof 〉

lemma Part-QInr2 : Part(A <+> B, λx. QInr(h(x))) = {QInr(y). y ∈ Part(B,h)}
〈proof 〉

lemma Part-qsum-equality: C ⊆ A <+> B =⇒ Part(C ,QInl) ∪ Part(C ,QInr) =
C
〈proof 〉

9.2.2 Monotonicity
lemma QPair-mono: [[a<=c; b<=d]] =⇒ <a;b> ⊆ <c;d>
〈proof 〉

lemma QSigma-mono [rule-format]:
[[A<=C ; ∀ x∈A. B(x) ⊆ D(x)]] =⇒ QSigma(A,B) ⊆ QSigma(C ,D)

〈proof 〉

lemma QInl-mono: a<=b =⇒ QInl(a) ⊆ QInl(b)
〈proof 〉

lemma QInr-mono: a<=b =⇒ QInr(a) ⊆ QInr(b)
〈proof 〉

lemma qsum-mono: [[A<=C ; B<=D]] =⇒ A <+> B ⊆ C <+> D
〈proof 〉

end

10 Injections, Surjections, Bijections, Composition
theory Perm imports func begin

definition

comp :: [i,i]⇒i (infixr ‹O› 60) where

83

r O s ≡ {xz ∈ domain(s)∗range(r) .
∃ x y z. xz=〈x,z〉 ∧ 〈x,y〉:s ∧ 〈y,z〉:r}

definition

id :: i⇒i where
id(A) ≡ (λx∈A. x)

definition

inj :: [i,i]⇒i where
inj(A,B) ≡ { f ∈ A−>B. ∀w∈A. ∀ x∈A. f‘w=f‘x −→ w=x}

definition

surj :: [i,i]⇒i where
surj(A,B) ≡ { f ∈ A−>B . ∀ y∈B. ∃ x∈A. f‘x=y}

definition

bij :: [i,i]⇒i where
bij(A,B) ≡ inj(A,B) ∩ surj(A,B)

10.1 Surjective Function Space
lemma surj-is-fun: f ∈ surj(A,B) =⇒ f ∈ A−>B
〈proof 〉

lemma fun-is-surj: f ∈ Pi(A,B) =⇒ f ∈ surj(A,range(f))
〈proof 〉

lemma surj-range: f ∈ surj(A,B) =⇒ range(f)=B
〈proof 〉

A function with a right inverse is a surjection
lemma f-imp-surjective:

[[f ∈ A−>B;
∧

y. y ∈ B =⇒ d(y): A;
∧

y. y ∈ B =⇒ f‘d(y) = y]]
=⇒ f ∈ surj(A,B)

〈proof 〉

lemma lam-surjective:
[[
∧

x. x ∈ A =⇒ c(x): B;∧
y. y ∈ B =⇒ d(y): A;∧
y. y ∈ B =⇒ c(d(y)) = y

]] =⇒ (λx∈A. c(x)) ∈ surj(A,B)
〈proof 〉

Cantor’s theorem revisited
lemma cantor-surj: f /∈ surj(A,Pow(A))

84

〈proof 〉

10.2 Injective Function Space
lemma inj-is-fun: f ∈ inj(A,B) =⇒ f ∈ A−>B
〈proof 〉

Good for dealing with sets of pairs, but a bit ugly in use [used in AC]
lemma inj-equality:

[[〈a,b〉:f ; 〈c,b〉:f ; f ∈ inj(A,B)]] =⇒ a=c
〈proof 〉

lemma inj-apply-equality: [[f ∈ inj(A,B); f‘a=f‘b; a ∈ A; b ∈ A]] =⇒ a=b
〈proof 〉

A function with a left inverse is an injection
lemma f-imp-injective: [[f ∈ A−>B; ∀ x∈A. d(f‘x)=x]] =⇒ f ∈ inj(A,B)
〈proof 〉

lemma lam-injective:
[[
∧

x. x ∈ A =⇒ c(x): B;∧
x. x ∈ A =⇒ d(c(x)) = x]]

=⇒ (λx∈A. c(x)) ∈ inj(A,B)
〈proof 〉

10.3 Bijections
lemma bij-is-inj: f ∈ bij(A,B) =⇒ f ∈ inj(A,B)
〈proof 〉

lemma bij-is-surj: f ∈ bij(A,B) =⇒ f ∈ surj(A,B)
〈proof 〉

lemma bij-is-fun: f ∈ bij(A,B) =⇒ f ∈ A−>B
〈proof 〉

lemma lam-bijective:
[[
∧

x. x ∈ A =⇒ c(x): B;∧
y. y ∈ B =⇒ d(y): A;∧
x. x ∈ A =⇒ d(c(x)) = x;∧
y. y ∈ B =⇒ c(d(y)) = y

]] =⇒ (λx∈A. c(x)) ∈ bij(A,B)
〈proof 〉

lemma RepFun-bijective: (∀ y∈x. ∃ !y ′. f (y ′) = f (y))
=⇒ (λz∈{f (y). y ∈ x}. THE y. f (y) = z) ∈ bij({f (y). y ∈ x}, x)

〈proof 〉

85

10.4 Identity Function
lemma idI [intro!]: a ∈ A =⇒ 〈a,a〉 ∈ id(A)
〈proof 〉

lemma idE [elim!]: [[p ∈ id(A);
∧

x.[[x ∈ A; p=〈x,x〉]] =⇒ P]] =⇒ P
〈proof 〉

lemma id-type: id(A) ∈ A−>A
〈proof 〉

lemma id-conv [simp]: x ∈ A =⇒ id(A)‘x = x
〈proof 〉

lemma id-mono: A<=B =⇒ id(A) ⊆ id(B)
〈proof 〉

lemma id-subset-inj: A<=B =⇒ id(A): inj(A,B)
〈proof 〉

lemmas id-inj = subset-refl [THEN id-subset-inj]

lemma id-surj: id(A): surj(A,A)
〈proof 〉

lemma id-bij: id(A): bij(A,A)
〈proof 〉

lemma subset-iff-id: A ⊆ B ←→ id(A) ∈ A−>B
〈proof 〉

id as the identity relation
lemma id-iff [simp]: 〈x,y〉 ∈ id(A) ←→ x=y ∧ y ∈ A
〈proof 〉

10.5 Converse of a Function
lemma inj-converse-fun: f ∈ inj(A,B) =⇒ converse(f) ∈ range(f)−>A
〈proof 〉

Equations for converse(f)

The premises are equivalent to saying that f is injective...
lemma left-inverse-lemma:

[[f ∈ A−>B; converse(f): C−>A; a ∈ A]] =⇒ converse(f)‘(f‘a) = a
〈proof 〉

lemma left-inverse [simp]: [[f ∈ inj(A,B); a ∈ A]] =⇒ converse(f)‘(f‘a) = a
〈proof 〉

86

lemma left-inverse-eq:
[[f ∈ inj(A,B); f ‘ x = y; x ∈ A]] =⇒ converse(f) ‘ y = x

〈proof 〉

lemmas left-inverse-bij = bij-is-inj [THEN left-inverse]

lemma right-inverse-lemma:
[[f ∈ A−>B; converse(f): C−>A; b ∈ C]] =⇒ f‘(converse(f)‘b) = b

〈proof 〉

lemma right-inverse [simp]:
[[f ∈ inj(A,B); b ∈ range(f)]] =⇒ f‘(converse(f)‘b) = b

〈proof 〉

lemma right-inverse-bij: [[f ∈ bij(A,B); b ∈ B]] =⇒ f‘(converse(f)‘b) = b
〈proof 〉

10.6 Converses of Injections, Surjections, Bijections
lemma inj-converse-inj: f ∈ inj(A,B) =⇒ converse(f): inj(range(f), A)
〈proof 〉

lemma inj-converse-surj: f ∈ inj(A,B) =⇒ converse(f): surj(range(f), A)
〈proof 〉

Adding this as an intro! rule seems to cause looping
lemma bij-converse-bij [TC]: f ∈ bij(A,B) =⇒ converse(f): bij(B,A)
〈proof 〉

10.7 Composition of Two Relations

The inductive definition package could derive these theorems for r O s
lemma compI [intro]: [[〈a,b〉:s; 〈b,c〉:r]] =⇒ 〈a,c〉 ∈ r O s
〈proof 〉

lemma compE [elim!]:
[[xz ∈ r O s;∧

x y z. [[xz=〈x,z〉; 〈x,y〉:s; 〈y,z〉:r]] =⇒ P]]
=⇒ P

〈proof 〉

lemma compEpair :
[[〈a,c〉 ∈ r O s;∧

y. [[〈a,y〉:s; 〈y,c〉:r]] =⇒ P]]
=⇒ P

〈proof 〉

lemma converse-comp: converse(R O S) = converse(S) O converse(R)

87

〈proof 〉

10.8 Domain and Range – see Suppes, Section 3.1

Boyer et al., Set Theory in First-Order Logic, JAR 2 (1986), 287-327
lemma range-comp: range(r O s) ⊆ range(r)
〈proof 〉

lemma range-comp-eq: domain(r) ⊆ range(s) =⇒ range(r O s) = range(r)
〈proof 〉

lemma domain-comp: domain(r O s) ⊆ domain(s)
〈proof 〉

lemma domain-comp-eq: range(s) ⊆ domain(r) =⇒ domain(r O s) = domain(s)
〈proof 〉

lemma image-comp: (r O s)‘‘A = r‘‘(s‘‘A)
〈proof 〉

lemma inj-inj-range: f ∈ inj(A,B) =⇒ f ∈ inj(A,range(f))
〈proof 〉

lemma inj-bij-range: f ∈ inj(A,B) =⇒ f ∈ bij(A,range(f))
〈proof 〉

10.9 Other Results
lemma comp-mono: [[r ′<=r ; s ′<=s]] =⇒ (r ′ O s ′) ⊆ (r O s)
〈proof 〉

composition preserves relations
lemma comp-rel: [[s<=A∗B; r<=B∗C]] =⇒ (r O s) ⊆ A∗C
〈proof 〉

associative law for composition
lemma comp-assoc: (r O s) O t = r O (s O t)
〈proof 〉

lemma left-comp-id: r<=A∗B =⇒ id(B) O r = r
〈proof 〉

lemma right-comp-id: r<=A∗B =⇒ r O id(A) = r
〈proof 〉

88

10.10 Composition Preserves Functions, Injections, and Sur-
jections

lemma comp-function: [[function(g); function(f)]] =⇒ function(f O g)
〈proof 〉

Don’t think the premises can be weakened much
lemma comp-fun: [[g ∈ A−>B; f ∈ B−>C]] =⇒ (f O g) ∈ A−>C
〈proof 〉

lemma comp-fun-apply [simp]:
[[g ∈ A−>B; a ∈ A]] =⇒ (f O g)‘a = f‘(g‘a)

〈proof 〉

Simplifies compositions of lambda-abstractions
lemma comp-lam:

[[
∧

x. x ∈ A =⇒ b(x): B]]
=⇒ (λy∈B. c(y)) O (λx∈A. b(x)) = (λx∈A. c(b(x)))

〈proof 〉

lemma comp-inj:
[[g ∈ inj(A,B); f ∈ inj(B,C)]] =⇒ (f O g) ∈ inj(A,C)

〈proof 〉

lemma comp-surj:
[[g ∈ surj(A,B); f ∈ surj(B,C)]] =⇒ (f O g) ∈ surj(A,C)
〈proof 〉

lemma comp-bij:
[[g ∈ bij(A,B); f ∈ bij(B,C)]] =⇒ (f O g) ∈ bij(A,C)
〈proof 〉

10.11 Dual Properties of inj and surj

Useful for proofs from D Pastre. Automatic theorem proving in set theory.
Artificial Intelligence, 10:1–27, 1978.
lemma comp-mem-injD1 :

[[(f O g): inj(A,C); g ∈ A−>B; f ∈ B−>C]] =⇒ g ∈ inj(A,B)
〈proof 〉

lemma comp-mem-injD2 :
[[(f O g): inj(A,C); g ∈ surj(A,B); f ∈ B−>C]] =⇒ f ∈ inj(B,C)

〈proof 〉

lemma comp-mem-surjD1 :
[[(f O g): surj(A,C); g ∈ A−>B; f ∈ B−>C]] =⇒ f ∈ surj(B,C)
〈proof 〉

89

lemma comp-mem-surjD2 :
[[(f O g): surj(A,C); g ∈ A−>B; f ∈ inj(B,C)]] =⇒ g ∈ surj(A,B)

〈proof 〉

10.11.1 Inverses of Composition

left inverse of composition; one inclusion is f ∈ A → B =⇒ id(A) ⊆ con-
verse(f) O f
lemma left-comp-inverse: f ∈ inj(A,B) =⇒ converse(f) O f = id(A)
〈proof 〉

right inverse of composition; one inclusion is f ∈ A→ B =⇒ f O converse(f)
⊆ id(B)

lemma right-comp-inverse:
f ∈ surj(A,B) =⇒ f O converse(f) = id(B)

〈proof 〉

10.11.2 Proving that a Function is a Bijection
lemma comp-eq-id-iff :

[[f ∈ A−>B; g ∈ B−>A]] =⇒ f O g = id(B) ←→ (∀ y∈B. f‘(g‘y)=y)
〈proof 〉

lemma fg-imp-bijective:
[[f ∈ A−>B; g ∈ B−>A; f O g = id(B); g O f = id(A)]] =⇒ f ∈ bij(A,B)
〈proof 〉

lemma nilpotent-imp-bijective: [[f ∈ A−>A; f O f = id(A)]] =⇒ f ∈ bij(A,A)
〈proof 〉

lemma invertible-imp-bijective:
[[converse(f): B−>A; f ∈ A−>B]] =⇒ f ∈ bij(A,B)

〈proof 〉

10.11.3 Unions of Functions

See similar theorems in func.thy

Theorem by KG, proof by LCP
lemma inj-disjoint-Un:

[[f ∈ inj(A,B); g ∈ inj(C ,D); B ∩ D = 0]]
=⇒ (λa∈A ∪ C . if a ∈ A then f‘a else g‘a) ∈ inj(A ∪ C , B ∪ D)

〈proof 〉

lemma surj-disjoint-Un:
[[f ∈ surj(A,B); g ∈ surj(C ,D); A ∩ C = 0]]

90

=⇒ (f ∪ g) ∈ surj(A ∪ C , B ∪ D)
〈proof 〉

A simple, high-level proof; the version for injections follows from it, using f
∈ inj(A, B) ←→ f ∈ bij(A, range(f))
lemma bij-disjoint-Un:

[[f ∈ bij(A,B); g ∈ bij(C ,D); A ∩ C = 0 ; B ∩ D = 0]]
=⇒ (f ∪ g) ∈ bij(A ∪ C , B ∪ D)

〈proof 〉

10.11.4 Restrictions as Surjections and Bijections
lemma surj-image:

f ∈ Pi(A,B) =⇒ f ∈ surj(A, f‘‘A)
〈proof 〉

lemma surj-image-eq: f ∈ surj(A, B) =⇒ f‘‘A = B
〈proof 〉

lemma restrict-image [simp]: restrict(f ,A) ‘‘ B = f ‘‘ (A ∩ B)
〈proof 〉

lemma restrict-inj:
[[f ∈ inj(A,B); C<=A]] =⇒ restrict(f ,C): inj(C ,B)
〈proof 〉

lemma restrict-surj: [[f ∈ Pi(A,B); C<=A]] =⇒ restrict(f ,C): surj(C , f‘‘C)
〈proof 〉

lemma restrict-bij:
[[f ∈ inj(A,B); C<=A]] =⇒ restrict(f ,C): bij(C , f‘‘C)

〈proof 〉

10.11.5 Lemmas for Ramsey’s Theorem
lemma inj-weaken-type: [[f ∈ inj(A,B); B<=D]] =⇒ f ∈ inj(A,D)
〈proof 〉

lemma inj-succ-restrict:
[[f ∈ inj(succ(m), A)]] =⇒ restrict(f ,m) ∈ inj(m, A−{f‘m})

〈proof 〉

lemma inj-extend:
[[f ∈ inj(A,B); a /∈A; b/∈B]]
=⇒ cons(〈a,b〉,f) ∈ inj(cons(a,A), cons(b,B))

〈proof 〉

end

91

11 Relations: Their General Properties and Tran-
sitive Closure

theory Trancl imports Fixedpt Perm begin

definition
refl :: [i,i]⇒o where

refl(A,r) ≡ (∀ x∈A. 〈x,x〉 ∈ r)

definition
irrefl :: [i,i]⇒o where

irrefl(A,r) ≡ ∀ x∈A. 〈x,x〉 /∈ r

definition
sym :: i⇒o where

sym(r) ≡ ∀ x y. 〈x,y〉: r −→ 〈y,x〉: r

definition
asym :: i⇒o where

asym(r) ≡ ∀ x y. 〈x,y〉:r −→ ¬ 〈y,x〉:r

definition
antisym :: i⇒o where

antisym(r) ≡ ∀ x y.〈x,y〉:r −→ 〈y,x〉:r −→ x=y

definition
trans :: i⇒o where

trans(r) ≡ ∀ x y z. 〈x,y〉: r −→ 〈y,z〉: r −→ 〈x,z〉: r

definition
trans-on :: [i,i]⇒o (‹(‹open-block notation=‹mixfix trans-on››trans[-] ′(- ′))›) where

trans[A](r) ≡ ∀ x∈A. ∀ y∈A. ∀ z∈A.
〈x,y〉: r −→ 〈y,z〉: r −→ 〈x,z〉: r

definition
rtrancl :: i⇒i (‹(‹notation=‹postfix ^∗››-^∗)› [100] 100) where

r^∗ ≡ lfp(field(r)∗field(r), λs. id(field(r)) ∪ (r O s))

definition
trancl :: i⇒i (‹(‹notation=‹postfix ^+››-^+)› [100] 100) where

r^+ ≡ r O r^∗

definition
equiv :: [i,i]⇒o where

equiv(A,r) ≡ r ⊆ A∗A ∧ refl(A,r) ∧ sym(r) ∧ trans(r)

92

11.1 General properties of relations
11.1.1 irreflexivity
lemma irreflI :

[[
∧

x. x ∈ A =⇒ 〈x,x〉 /∈ r]] =⇒ irrefl(A,r)
〈proof 〉

lemma irreflE : [[irrefl(A,r); x ∈ A]] =⇒ 〈x,x〉 /∈ r
〈proof 〉

11.1.2 symmetry
lemma symI :

[[
∧

x y.〈x,y〉: r =⇒ 〈y,x〉: r]] =⇒ sym(r)
〈proof 〉

lemma symE : [[sym(r); 〈x,y〉: r]] =⇒ 〈y,x〉: r
〈proof 〉

11.1.3 antisymmetry
lemma antisymI :

[[
∧

x y.[[〈x,y〉: r ; 〈y,x〉: r]] =⇒ x=y]] =⇒ antisym(r)
〈proof 〉

lemma antisymE : [[antisym(r); 〈x,y〉: r ; 〈y,x〉: r]] =⇒ x=y
〈proof 〉

11.1.4 transitivity
lemma transD: [[trans(r); 〈a,b〉:r ; 〈b,c〉:r]] =⇒ 〈a,c〉:r
〈proof 〉

lemma trans-onD:
[[trans[A](r); 〈a,b〉:r ; 〈b,c〉:r ; a ∈ A; b ∈ A; c ∈ A]] =⇒ 〈a,c〉:r

〈proof 〉

lemma trans-imp-trans-on: trans(r) =⇒ trans[A](r)
〈proof 〉

lemma trans-on-imp-trans: [[trans[A](r); r ⊆ A∗A]] =⇒ trans(r)
〈proof 〉

11.2 Transitive closure of a relation
lemma rtrancl-bnd-mono:

bnd-mono(field(r)∗field(r), λs. id(field(r)) ∪ (r O s))
〈proof 〉

lemma rtrancl-mono: r<=s =⇒ r^∗ ⊆ s^∗

93

〈proof 〉

lemmas rtrancl-unfold =
rtrancl-bnd-mono [THEN rtrancl-def [THEN def-lfp-unfold]]

lemmas rtrancl-type = rtrancl-def [THEN def-lfp-subset]

lemma relation-rtrancl: relation(r^∗)
〈proof 〉

lemma rtrancl-refl: [[a ∈ field(r)]] =⇒ 〈a,a〉 ∈ r^∗
〈proof 〉

lemma rtrancl-into-rtrancl: [[〈a,b〉 ∈ r^∗; 〈b,c〉 ∈ r]] =⇒ 〈a,c〉 ∈ r^∗
〈proof 〉

lemma r-into-rtrancl: 〈a,b〉 ∈ r =⇒ 〈a,b〉 ∈ r^∗
〈proof 〉

lemma r-subset-rtrancl: relation(r) =⇒ r ⊆ r^∗
〈proof 〉

lemma rtrancl-field: field(r^∗) = field(r)
〈proof 〉

lemma rtrancl-full-induct [case-names initial step, consumes 1]:
[[〈a,b〉 ∈ r^∗;∧

x. x ∈ field(r) =⇒ P(〈x,x〉);∧
x y z.[[P(〈x,y〉); 〈x,y〉: r^∗; 〈y,z〉: r]] =⇒ P(〈x,z〉)]]

=⇒ P(〈a,b〉)
〈proof 〉

lemma rtrancl-induct [case-names initial step, induct set: rtrancl]:
[[〈a,b〉 ∈ r^∗;

P(a);∧
y z.[[〈a,y〉 ∈ r^∗; 〈y,z〉 ∈ r ; P(y)]] =⇒ P(z)

]] =⇒ P(b)

94

〈proof 〉

lemma trans-rtrancl: trans(r^∗)
〈proof 〉

lemmas rtrancl-trans = trans-rtrancl [THEN transD]

lemma rtranclE :
[[〈a,b〉 ∈ r^∗; (a=b) =⇒ P;∧

y.[[〈a,y〉 ∈ r^∗; 〈y,b〉 ∈ r]] =⇒ P]]
=⇒ P

〈proof 〉

lemma trans-trancl: trans(r^+)
〈proof 〉

lemmas trans-on-trancl = trans-trancl [THEN trans-imp-trans-on]

lemmas trancl-trans = trans-trancl [THEN transD]

lemma trancl-into-rtrancl: 〈a,b〉 ∈ r^+ =⇒ 〈a,b〉 ∈ r^∗
〈proof 〉

lemma r-into-trancl: 〈a,b〉 ∈ r =⇒ 〈a,b〉 ∈ r^+
〈proof 〉

lemma r-subset-trancl: relation(r) =⇒ r ⊆ r^+
〈proof 〉

lemma rtrancl-into-trancl1 : [[〈a,b〉 ∈ r^∗; 〈b,c〉 ∈ r]] =⇒ 〈a,c〉 ∈ r^+
〈proof 〉

lemma rtrancl-into-trancl2 :
[[〈a,b〉 ∈ r ; 〈b,c〉 ∈ r^∗]] =⇒ 〈a,c〉 ∈ r^+

〈proof 〉

95

lemma trancl-induct [case-names initial step, induct set: trancl]:
[[〈a,b〉 ∈ r^+;∧

y. [[〈a,y〉 ∈ r]] =⇒ P(y);∧
y z.[[〈a,y〉 ∈ r^+; 〈y,z〉 ∈ r ; P(y)]] =⇒ P(z)

]] =⇒ P(b)
〈proof 〉

lemma tranclE :
[[〈a,b〉 ∈ r^+;
〈a,b〉 ∈ r =⇒ P;∧

y.[[〈a,y〉 ∈ r^+; 〈y,b〉 ∈ r]] =⇒ P
]] =⇒ P
〈proof 〉

lemma trancl-type: r^+ ⊆ field(r)∗field(r)
〈proof 〉

lemma relation-trancl: relation(r^+)
〈proof 〉

lemma trancl-subset-times: r ⊆ A ∗ A =⇒ r^+ ⊆ A ∗ A
〈proof 〉

lemma trancl-mono: r<=s =⇒ r^+ ⊆ s^+
〈proof 〉

lemma trancl-eq-r : [[relation(r); trans(r)]] =⇒ r^+ = r
〈proof 〉

lemma rtrancl-idemp [simp]: (r^∗)^∗ = r^∗
〈proof 〉

lemma rtrancl-subset: [[R ⊆ S ; S ⊆ R^∗]] =⇒ S^∗ = R^∗
〈proof 〉

lemma rtrancl-Un-rtrancl:
[[relation(r); relation(s)]] =⇒ (r^∗ ∪ s^∗)^∗ = (r ∪ s)^∗

〈proof 〉

96

lemma rtrancl-converseD: 〈x,y〉:converse(r)^∗ =⇒ 〈x,y〉:converse(r^∗)
〈proof 〉

lemma rtrancl-converseI : 〈x,y〉:converse(r^∗) =⇒ 〈x,y〉:converse(r)^∗
〈proof 〉

lemma rtrancl-converse: converse(r)^∗ = converse(r^∗)
〈proof 〉

lemma trancl-converseD: 〈a, b〉:converse(r)^+ =⇒ 〈a, b〉:converse(r^+)
〈proof 〉

lemma trancl-converseI : 〈x,y〉:converse(r^+) =⇒ 〈x,y〉:converse(r)^+
〈proof 〉

lemma trancl-converse: converse(r)^+ = converse(r^+)
〈proof 〉

lemma converse-trancl-induct [case-names initial step, consumes 1]:
[[〈a, b〉:r^+;

∧
y. 〈y, b〉 :r =⇒ P(y);∧

y z. [[〈y, z〉 ∈ r ; 〈z, b〉 ∈ r^+; P(z)]] =⇒ P(y)]]
=⇒ P(a)

〈proof 〉

end

12 Well-Founded Recursion
theory WF imports Trancl begin

definition
wf :: i⇒o where

wf (r) ≡ ∀Z . Z=0 | (∃ x∈Z . ∀ y. 〈y,x〉:r −→ ¬ y ∈ Z)

definition
wf-on :: [i,i]⇒o (‹(‹open-block notation=‹mixfix wf-on››wf [-] ′(- ′))›) where

wf-on(A,r) ≡ wf (r ∩ A∗A)

definition
is-recfun :: [i, i, [i,i]⇒i, i] ⇒o where

is-recfun(r ,a,H ,f) ≡ (f = (λx∈r−‘‘{a}. H (x, restrict(f , r−‘‘{x}))))

definition
the-recfun :: [i, i, [i,i]⇒i] ⇒i where

the-recfun(r ,a,H) ≡ (THE f . is-recfun(r ,a,H ,f))

97

definition
wftrec :: [i, i, [i,i]⇒i] ⇒i where

wftrec(r ,a,H) ≡ H (a, the-recfun(r ,a,H))

definition
wfrec :: [i, i, [i,i]⇒i] ⇒i where

wfrec(r ,a,H) ≡ wftrec(r^+, a, λx f . H (x, restrict(f ,r−‘‘{x})))

definition
wfrec-on :: [i, i, i, [i,i]⇒i]⇒i (‹(‹open-block notation=‹mixfix wfrec-on››wfrec[-] ′(-,-,- ′))›)
where wfrec[A](r ,a,H) ≡ wfrec(r ∩ A∗A, a, H)

12.1 Well-Founded Relations
12.1.1 Equivalences between wf and wf-on
lemma wf-imp-wf-on: wf (r) =⇒ wf [A](r)
〈proof 〉

lemma wf-on-imp-wf : [[wf [A](r); r ⊆ A∗A]] =⇒ wf (r)
〈proof 〉

lemma wf-on-field-imp-wf : wf [field(r)](r) =⇒ wf (r)
〈proof 〉

lemma wf-iff-wf-on-field: wf (r) ←→ wf [field(r)](r)
〈proof 〉

lemma wf-on-subset-A: [[wf [A](r); B<=A]] =⇒ wf [B](r)
〈proof 〉

lemma wf-on-subset-r : [[wf [A](r); s<=r]] =⇒ wf [A](s)
〈proof 〉

lemma wf-subset: [[wf (s); r<=s]] =⇒ wf (r)
〈proof 〉

12.1.2 Introduction Rules for wf-on

If every non-empty subset of A has an r-minimal element then we have
wf [A](r).
lemma wf-onI :
assumes prem:

∧
Z u. [[Z<=A; u ∈ Z ; ∀ x∈Z . ∃ y∈Z . 〈y,x〉:r]] =⇒ False

shows wf [A](r)
〈proof 〉

If r allows well-founded induction over A then we have wf [A](r). Premise

98

is equivalent to
∧

B. ∀ x∈A. (∀ y. 〈y, x〉 ∈ r −→ y ∈ B) −→ x ∈ B =⇒ A
⊆ B
lemma wf-onI2 :
assumes prem:

∧
y B. [[∀ x∈A. (∀ y∈A. 〈y,x〉:r −→ y ∈ B) −→ x ∈ B; y ∈ A]]
=⇒ y ∈ B

shows wf [A](r)
〈proof 〉

12.1.3 Well-founded Induction

Consider the least z in domain(r) such that P(z) does not hold...
lemma wf-induct-raw:

[[wf (r);∧
x.[[∀ y. 〈y,x〉: r −→ P(y)]] =⇒ P(x)]]

=⇒ P(a)
〈proof 〉

lemmas wf-induct = wf-induct-raw [rule-format, consumes 1 , case-names step,
induct set: wf]

The form of this rule is designed to match wfI
lemma wf-induct2 :

[[wf (r); a ∈ A; field(r)<=A;∧
x.[[x ∈ A; ∀ y. 〈y,x〉: r −→ P(y)]] =⇒ P(x)]]

=⇒ P(a)
〈proof 〉

lemma field-Int-square: field(r ∩ A∗A) ⊆ A
〈proof 〉

lemma wf-on-induct-raw [consumes 2 , induct set: wf-on]:
[[wf [A](r); a ∈ A;∧

x.[[x ∈ A; ∀ y∈A. 〈y,x〉: r −→ P(y)]] =⇒ P(x)
]] =⇒ P(a)
〈proof 〉

lemma wf-on-induct [consumes 2 , case-names step, induct set: wf-on]:
wf [A](r) =⇒ a ∈ A =⇒ (

∧
x. x ∈ A =⇒ (

∧
y. y ∈ A =⇒ 〈y, x〉 ∈ r =⇒ P(y))

=⇒ P(x)) =⇒ P(a)
〈proof 〉

If r allows well-founded induction then we have wf (r).
lemma wfI :

[[field(r)<=A;∧
y B. [[∀ x∈A. (∀ y∈A. 〈y,x〉:r −→ y ∈ B) −→ x ∈ B; y ∈ A]]

=⇒ y ∈ B]]
=⇒ wf (r)

〈proof 〉

99

12.2 Basic Properties of Well-Founded Relations
lemma wf-not-refl: wf (r) =⇒ 〈a,a〉 /∈ r
〈proof 〉

lemma wf-not-sym [rule-format]: wf (r) =⇒ ∀ x. 〈a,x〉:r −→ 〈x,a〉 /∈ r
〈proof 〉

lemmas wf-asym = wf-not-sym [THEN swap]

lemma wf-on-not-refl: [[wf [A](r); a ∈ A]] =⇒ 〈a,a〉 /∈ r
〈proof 〉

lemma wf-on-not-sym:
[[wf [A](r); a ∈ A]] =⇒ (

∧
b. b∈A =⇒ 〈a,b〉:r =⇒ 〈b,a〉/∈r)

〈proof 〉

lemma wf-on-asym:
[[wf [A](r); ¬Z =⇒ 〈a,b〉 ∈ r ;
〈b,a〉 /∈ r =⇒ Z ; ¬Z =⇒ a ∈ A; ¬Z =⇒ b ∈ A]] =⇒ Z

〈proof 〉

lemma wf-on-chain3 :
[[wf [A](r); 〈a,b〉:r ; 〈b,c〉:r ; 〈c,a〉:r ; a ∈ A; b ∈ A; c ∈ A]] =⇒ P

〈proof 〉

transitive closure of a WF relation is WF provided A is downward closed
lemma wf-on-trancl:

[[wf [A](r); r−‘‘A ⊆ A]] =⇒ wf [A](r^+)
〈proof 〉

lemma wf-trancl: wf (r) =⇒ wf (r^+)
〈proof 〉

r −‘‘ {a} is the set of everything under a in r
lemmas underI = vimage-singleton-iff [THEN iffD2]
lemmas underD = vimage-singleton-iff [THEN iffD1]

12.3 The Predicate is-recfun
lemma is-recfun-type: is-recfun(r ,a,H ,f) =⇒ f ∈ r−‘‘{a} −> range(f)
〈proof 〉

lemmas is-recfun-imp-function = is-recfun-type [THEN fun-is-function]

lemma apply-recfun:
[[is-recfun(r ,a,H ,f); 〈x,a〉:r]] =⇒ f‘x = H (x, restrict(f ,r−‘‘{x}))

100

〈proof 〉

lemma is-recfun-equal [rule-format]:
[[wf (r); trans(r); is-recfun(r ,a,H ,f); is-recfun(r ,b,H ,g)]]
=⇒ 〈x,a〉:r −→ 〈x,b〉:r −→ f‘x=g‘x

〈proof 〉

lemma is-recfun-cut:
[[wf (r); trans(r);

is-recfun(r ,a,H ,f); is-recfun(r ,b,H ,g); 〈b,a〉:r]]
=⇒ restrict(f , r−‘‘{b}) = g

〈proof 〉

12.4 Recursion: Main Existence Lemma
lemma is-recfun-functional:

[[wf (r); trans(r); is-recfun(r ,a,H ,f); is-recfun(r ,a,H ,g)]] =⇒ f=g
〈proof 〉

lemma the-recfun-eq:
[[is-recfun(r ,a,H ,f); wf (r); trans(r)]] =⇒ the-recfun(r ,a,H) = f
〈proof 〉

lemma is-the-recfun:
[[is-recfun(r ,a,H ,f); wf (r); trans(r)]]
=⇒ is-recfun(r , a, H , the-recfun(r ,a,H))

〈proof 〉

lemma unfold-the-recfun:
[[wf (r); trans(r)]] =⇒ is-recfun(r , a, H , the-recfun(r ,a,H))

〈proof 〉

12.5 Unfolding wftrec(r , a, H)

lemma the-recfun-cut:
[[wf (r); trans(r); 〈b,a〉:r]]
=⇒ restrict(the-recfun(r ,a,H), r−‘‘{b}) = the-recfun(r ,b,H)

〈proof 〉

lemma wftrec:
[[wf (r); trans(r)]] =⇒

wftrec(r ,a,H) = H (a, λx∈r−‘‘{a}. wftrec(r ,x,H))
〈proof 〉

12.5.1 Removal of the Premise trans(r)
lemma wfrec:

wf (r) =⇒ wfrec(r ,a,H) = H (a, λx∈r−‘‘{a}. wfrec(r ,x,H))

101

〈proof 〉

lemma def-wfrec:
[[
∧

x. h(x)≡wfrec(r ,x,H); wf (r)]] =⇒
h(a) = H (a, λx∈r−‘‘{a}. h(x))

〈proof 〉

lemma wfrec-type:
[[wf (r); a ∈ A; field(r)<=A;∧

x u. [[x ∈ A; u ∈ Pi(r−‘‘{x}, B)]] =⇒ H (x,u) ∈ B(x)
]] =⇒ wfrec(r ,a,H) ∈ B(a)
〈proof 〉

lemma wfrec-on:
[[wf [A](r); a ∈ A]] =⇒

wfrec[A](r ,a,H) = H (a, λx∈(r−‘‘{a}) ∩ A. wfrec[A](r ,x,H))
〈proof 〉

Minimal-element characterization of well-foundedness
lemma wf-eq-minimal: wf (r) ←→ (∀Q x. x ∈ Q −→ (∃ z∈Q. ∀ y. 〈y,z〉:r −→
y /∈Q))
〈proof 〉

end

13 Transitive Sets and Ordinals
theory Ordinal imports WF Bool equalities begin

definition
Memrel :: i⇒i where

Memrel(A) ≡ {z∈A∗A . ∃ x y. z=〈x,y〉 ∧ x∈y }

definition
Transset :: i⇒o where

Transset(i) ≡ ∀ x∈i. x<=i

definition
Ord :: i⇒o where

Ord(i) ≡ Transset(i) ∧ (∀ x∈i. Transset(x))

definition
lt :: [i,i] ⇒ o (infixl ‹<› 50) where

i<j ≡ i∈j ∧ Ord(j)

definition
Limit :: i⇒o where

102

Limit(i) ≡ Ord(i) ∧ 0<i ∧ (∀ y. y<i −→ succ(y)<i)

abbreviation
le (infixl ‹≤› 50) where
x ≤ y ≡ x < succ(y)

13.1 Rules for Transset
13.1.1 Three Neat Characterisations of Transset
lemma Transset-iff-Pow: Transset(A) <−> A<=Pow(A)
〈proof 〉

lemma Transset-iff-Union-succ: Transset(A) <−>
⋃
(succ(A)) = A

〈proof 〉

lemma Transset-iff-Union-subset: Transset(A) <−>
⋃
(A) ⊆ A

〈proof 〉

13.1.2 Consequences of Downwards Closure
lemma Transset-doubleton-D:

[[Transset(C); {a,b}: C]] =⇒ a∈C ∧ b∈C
〈proof 〉

lemma Transset-Pair-D:
[[Transset(C); 〈a,b〉∈C]] =⇒ a∈C ∧ b∈C

〈proof 〉

lemma Transset-includes-domain:
[[Transset(C); A∗B ⊆ C ; b ∈ B]] =⇒ A ⊆ C

〈proof 〉

lemma Transset-includes-range:
[[Transset(C); A∗B ⊆ C ; a ∈ A]] =⇒ B ⊆ C

〈proof 〉

13.1.3 Closure Properties
lemma Transset-0 : Transset(0)
〈proof 〉

lemma Transset-Un:
[[Transset(i); Transset(j)]] =⇒ Transset(i ∪ j)

〈proof 〉

lemma Transset-Int:
[[Transset(i); Transset(j)]] =⇒ Transset(i ∩ j)

〈proof 〉

103

lemma Transset-succ: Transset(i) =⇒ Transset(succ(i))
〈proof 〉

lemma Transset-Pow: Transset(i) =⇒ Transset(Pow(i))
〈proof 〉

lemma Transset-Union: Transset(A) =⇒ Transset(
⋃

(A))
〈proof 〉

lemma Transset-Union-family:
[[
∧

i. i∈A =⇒ Transset(i)]] =⇒ Transset(
⋃
(A))

〈proof 〉

lemma Transset-Inter-family:
[[
∧

i. i∈A =⇒ Transset(i)]] =⇒ Transset(
⋂
(A))

〈proof 〉

lemma Transset-UN :
(
∧

x. x ∈ A =⇒ Transset(B(x))) =⇒ Transset (
⋃

x∈A. B(x))
〈proof 〉

lemma Transset-INT :
(
∧

x. x ∈ A =⇒ Transset(B(x))) =⇒ Transset (
⋂

x∈A. B(x))
〈proof 〉

13.2 Lemmas for Ordinals
lemma OrdI :

[[Transset(i);
∧

x. x∈i =⇒ Transset(x)]] =⇒ Ord(i)
〈proof 〉

lemma Ord-is-Transset: Ord(i) =⇒ Transset(i)
〈proof 〉

lemma Ord-contains-Transset:
[[Ord(i); j∈i]] =⇒ Transset(j)

〈proof 〉

lemma Ord-in-Ord: [[Ord(i); j∈i]] =⇒ Ord(j)
〈proof 〉

lemma Ord-in-Ord ′: [[j∈i; Ord(i)]] =⇒ Ord(j)
〈proof 〉

lemmas Ord-succD = Ord-in-Ord [OF - succI1]

104

lemma Ord-subset-Ord: [[Ord(i); Transset(j); j<=i]] =⇒ Ord(j)
〈proof 〉

lemma OrdmemD: [[j∈i; Ord(i)]] =⇒ j<=i
〈proof 〉

lemma Ord-trans: [[i∈j; j∈k; Ord(k)]] =⇒ i∈k
〈proof 〉

lemma Ord-succ-subsetI : [[i∈j; Ord(j)]] =⇒ succ(i) ⊆ j
〈proof 〉

13.3 The Construction of Ordinals: 0, succ, Union
lemma Ord-0 [iff ,TC]: Ord(0)
〈proof 〉

lemma Ord-succ [TC]: Ord(i) =⇒ Ord(succ(i))
〈proof 〉

lemmas Ord-1 = Ord-0 [THEN Ord-succ]

lemma Ord-succ-iff [iff]: Ord(succ(i)) <−> Ord(i)
〈proof 〉

lemma Ord-Un [intro,simp,TC]: [[Ord(i); Ord(j)]] =⇒ Ord(i ∪ j)
〈proof 〉

lemma Ord-Int [TC]: [[Ord(i); Ord(j)]] =⇒ Ord(i ∩ j)
〈proof 〉

There is no set of all ordinals, for then it would contain itself
lemma ON-class: ¬ (∀ i. i∈X <−> Ord(i))
〈proof 〉

13.4 < is ’less Than’ for Ordinals
lemma ltI : [[i∈j; Ord(j)]] =⇒ i<j
〈proof 〉

lemma ltE :
[[i<j; [[i∈j; Ord(i); Ord(j)]] =⇒ P]] =⇒ P
〈proof 〉

lemma ltD: i<j =⇒ i∈j
〈proof 〉

lemma not-lt0 [simp]: ¬ i<0
〈proof 〉

105

lemma lt-Ord: j<i =⇒ Ord(j)
〈proof 〉

lemma lt-Ord2 : j<i =⇒ Ord(i)
〈proof 〉

lemmas le-Ord2 = lt-Ord2 [THEN Ord-succD]

lemmas lt0E = not-lt0 [THEN notE , elim!]

lemma lt-trans [trans]: [[i<j; j<k]] =⇒ i<k
〈proof 〉

lemma lt-not-sym: i<j =⇒ ¬ (j<i)
〈proof 〉

lemmas lt-asym = lt-not-sym [THEN swap]

lemma lt-irrefl [elim!]: i<i =⇒ P
〈proof 〉

lemma lt-not-refl: ¬ i<i
〈proof 〉

Recall that i ≤ j abbreviates i ≤ j!
lemma le-iff : i ≤ j <−> i<j | (i=j ∧ Ord(j))
〈proof 〉

lemma leI : i<j =⇒ i ≤ j
〈proof 〉

lemma le-eqI : [[i=j; Ord(j)]] =⇒ i ≤ j
〈proof 〉

lemmas le-refl = refl [THEN le-eqI]

lemma le-refl-iff [iff]: i ≤ i <−> Ord(i)
〈proof 〉

lemma leCI : (¬ (i=j ∧ Ord(j)) =⇒ i<j) =⇒ i ≤ j
〈proof 〉

lemma leE :
[[i ≤ j; i<j =⇒ P; [[i=j; Ord(j)]] =⇒ P]] =⇒ P

106

〈proof 〉

lemma le-anti-sym: [[i ≤ j; j ≤ i]] =⇒ i=j
〈proof 〉

lemma le0-iff [simp]: i ≤ 0 <−> i=0
〈proof 〉

lemmas le0D = le0-iff [THEN iffD1 , dest!]

13.5 Natural Deduction Rules for Memrel
lemma Memrel-iff [simp]: 〈a,b〉 ∈ Memrel(A) <−> a∈b ∧ a∈A ∧ b∈A
〈proof 〉

lemma MemrelI [intro!]: [[a ∈ b; a ∈ A; b ∈ A]] =⇒ 〈a,b〉 ∈ Memrel(A)
〈proof 〉

lemma MemrelE [elim!]:
[[〈a,b〉 ∈ Memrel(A);

[[a ∈ A; b ∈ A; a∈b]] =⇒ P]]
=⇒ P

〈proof 〉

lemma Memrel-type: Memrel(A) ⊆ A∗A
〈proof 〉

lemma Memrel-mono: A<=B =⇒ Memrel(A) ⊆ Memrel(B)
〈proof 〉

lemma Memrel-0 [simp]: Memrel(0) = 0
〈proof 〉

lemma Memrel-1 [simp]: Memrel(1) = 0
〈proof 〉

lemma relation-Memrel: relation(Memrel(A))
〈proof 〉

lemma wf-Memrel: wf (Memrel(A))
〈proof 〉

The premise Ord(i) does not suffice.
lemma trans-Memrel:

Ord(i) =⇒ trans(Memrel(i))
〈proof 〉

However, the following premise is strong enough.

107

lemma Transset-trans-Memrel:
∀ j∈i. Transset(j) =⇒ trans(Memrel(i))

〈proof 〉

lemma Transset-Memrel-iff :
Transset(A) =⇒ 〈a,b〉 ∈ Memrel(A) <−> a∈b ∧ b∈A

〈proof 〉

13.6 Transfinite Induction
lemma Transset-induct:

[[i ∈ k; Transset(k);∧
x.[[x ∈ k; ∀ y∈x. P(y)]] =⇒ P(x)]]

=⇒ P(i)
〈proof 〉

lemma Ord-induct [consumes 2]:
i ∈ k =⇒ Ord(k) =⇒ (

∧
x. x ∈ k =⇒ (

∧
y. y ∈ x =⇒ P(y)) =⇒ P(x)) =⇒ P(i)

〈proof 〉

lemma trans-induct [consumes 1 , case-names step]:
Ord(i) =⇒ (

∧
x. Ord(x) =⇒ (

∧
y. y ∈ x =⇒ P(y)) =⇒ P(x)) =⇒ P(i)

〈proof 〉

14 Fundamental properties of the epsilon ordering
(< on ordinals)

14.0.1 Proving That < is a Linear Ordering on the Ordinals
lemma Ord-linear :

Ord(i) =⇒ Ord(j) =⇒ i∈j | i=j | j∈i
〈proof 〉

The trichotomy law for ordinals
lemma Ord-linear-lt:
assumes o: Ord(i) Ord(j)
obtains (lt) i<j | (eq) i=j | (gt) j<i
〈proof 〉

lemma Ord-linear2 :
assumes o: Ord(i) Ord(j)
obtains (lt) i<j | (ge) j ≤ i
〈proof 〉

lemma Ord-linear-le:
assumes o: Ord(i) Ord(j)

108

obtains (le) i ≤ j | (ge) j ≤ i
〈proof 〉

lemma le-imp-not-lt: j ≤ i =⇒ ¬ i<j
〈proof 〉

lemma not-lt-imp-le: [[¬ i<j; Ord(i); Ord(j)]] =⇒ j ≤ i
〈proof 〉

14.0.2 Some Rewrite Rules for <, ≤
lemma Ord-mem-iff-lt: Ord(j) =⇒ i∈j <−> i<j
〈proof 〉

lemma not-lt-iff-le: [[Ord(i); Ord(j)]] =⇒ ¬ i<j <−> j ≤ i
〈proof 〉

lemma not-le-iff-lt: [[Ord(i); Ord(j)]] =⇒ ¬ i ≤ j <−> j<i
〈proof 〉

lemma Ord-0-le: Ord(i) =⇒ 0 ≤ i
〈proof 〉

lemma Ord-0-lt: [[Ord(i); i 6=0]] =⇒ 0<i
〈proof 〉

lemma Ord-0-lt-iff : Ord(i) =⇒ i 6=0 <−> 0<i
〈proof 〉

14.1 Results about Less-Than or Equals
lemma zero-le-succ-iff [iff]: 0 ≤ succ(x) <−> Ord(x)
〈proof 〉

lemma subset-imp-le: [[j<=i; Ord(i); Ord(j)]] =⇒ j ≤ i
〈proof 〉

lemma le-imp-subset: i ≤ j =⇒ i<=j
〈proof 〉

lemma le-subset-iff : j ≤ i <−> j<=i ∧ Ord(i) ∧ Ord(j)
〈proof 〉

lemma le-succ-iff : i ≤ succ(j) <−> i ≤ j | i=succ(j) ∧ Ord(i)
〈proof 〉

lemma all-lt-imp-le: [[Ord(i); Ord(j);
∧

x. x<j =⇒ x<i]] =⇒ j ≤ i
〈proof 〉

109

14.1.1 Transitivity Laws
lemma lt-trans1 : [[i ≤ j; j<k]] =⇒ i<k
〈proof 〉

lemma lt-trans2 : [[i<j; j ≤ k]] =⇒ i<k
〈proof 〉

lemma le-trans: [[i ≤ j; j ≤ k]] =⇒ i ≤ k
〈proof 〉

lemma succ-leI : i<j =⇒ succ(i) ≤ j
〈proof 〉

lemma succ-leE : succ(i) ≤ j =⇒ i<j
〈proof 〉

lemma succ-le-iff [iff]: succ(i) ≤ j <−> i<j
〈proof 〉

lemma succ-le-imp-le: succ(i) ≤ succ(j) =⇒ i ≤ j
〈proof 〉

lemma lt-subset-trans: [[i ⊆ j; j<k; Ord(i)]] =⇒ i<k
〈proof 〉

lemma lt-imp-0-lt: j<i =⇒ 0<i
〈proof 〉

lemma succ-lt-iff : succ(i) < j <−> i<j ∧ succ(i) 6= j
〈proof 〉

lemma Ord-succ-mem-iff : Ord(j) =⇒ succ(i) ∈ succ(j) <−> i∈j
〈proof 〉

14.1.2 Union and Intersection
lemma Un-upper1-le: [[Ord(i); Ord(j)]] =⇒ i ≤ i ∪ j
〈proof 〉

lemma Un-upper2-le: [[Ord(i); Ord(j)]] =⇒ j ≤ i ∪ j
〈proof 〉

lemma Un-least-lt: [[i<k; j<k]] =⇒ i ∪ j < k
〈proof 〉

lemma Un-least-lt-iff : [[Ord(i); Ord(j)]] =⇒ i ∪ j < k <−> i<k ∧ j<k
〈proof 〉

110

lemma Un-least-mem-iff :
[[Ord(i); Ord(j); Ord(k)]] =⇒ i ∪ j ∈ k <−> i∈k ∧ j∈k

〈proof 〉

lemma Int-greatest-lt: [[i<k; j<k]] =⇒ i ∩ j < k
〈proof 〉

lemma Ord-Un-if :
[[Ord(i); Ord(j)]] =⇒ i ∪ j = (if j<i then i else j)

〈proof 〉

lemma succ-Un-distrib:
[[Ord(i); Ord(j)]] =⇒ succ(i ∪ j) = succ(i) ∪ succ(j)

〈proof 〉

lemma lt-Un-iff :
[[Ord(i); Ord(j)]] =⇒ k < i ∪ j <−> k < i | k < j

〈proof 〉

lemma le-Un-iff :
[[Ord(i); Ord(j)]] =⇒ k ≤ i ∪ j <−> k ≤ i | k ≤ j

〈proof 〉

lemma Un-upper1-lt: [[k < i; Ord(j)]] =⇒ k < i ∪ j
〈proof 〉

lemma Un-upper2-lt: [[k < j; Ord(i)]] =⇒ k < i ∪ j
〈proof 〉

lemma Ord-Union-succ-eq: Ord(i) =⇒
⋃
(succ(i)) = i

〈proof 〉

14.2 Results about Limits
lemma Ord-Union [intro,simp,TC]: [[

∧
i. i∈A =⇒ Ord(i)]] =⇒ Ord(

⋃
(A))

〈proof 〉

lemma Ord-UN [intro,simp,TC]:
[[
∧

x. x∈A =⇒ Ord(B(x))]] =⇒ Ord(
⋃

x∈A. B(x))
〈proof 〉

lemma Ord-Inter [intro,simp,TC]:
[[
∧

i. i∈A =⇒ Ord(i)]] =⇒ Ord(
⋂

(A))
〈proof 〉

lemma Ord-INT [intro,simp,TC]:

111

[[
∧

x. x∈A =⇒ Ord(B(x))]] =⇒ Ord(
⋂

x∈A. B(x))
〈proof 〉

lemma UN-least-le:
[[Ord(i);

∧
x. x∈A =⇒ b(x) ≤ i]] =⇒ (

⋃
x∈A. b(x)) ≤ i

〈proof 〉

lemma UN-succ-least-lt:
[[j<i;

∧
x. x∈A =⇒ b(x)<j]] =⇒ (

⋃
x∈A. succ(b(x))) < i

〈proof 〉

lemma UN-upper-lt:
[[a∈A; i < b(a); Ord(

⋃
x∈A. b(x))]] =⇒ i < (

⋃
x∈A. b(x))

〈proof 〉

lemma UN-upper-le:
[[a ∈ A; i ≤ b(a); Ord(

⋃
x∈A. b(x))]] =⇒ i ≤ (

⋃
x∈A. b(x))

〈proof 〉

lemma lt-Union-iff : ∀ i∈A. Ord(i) =⇒ (j <
⋃

(A)) <−> (∃ i∈A. j<i)
〈proof 〉

lemma Union-upper-le:
[[j ∈ J ; i≤j; Ord(

⋃
(J))]] =⇒ i ≤

⋃
J

〈proof 〉

lemma le-implies-UN-le-UN :
[[
∧

x. x∈A =⇒ c(x) ≤ d(x)]] =⇒ (
⋃

x∈A. c(x)) ≤ (
⋃

x∈A. d(x))
〈proof 〉

lemma Ord-equality: Ord(i) =⇒ (
⋃

y∈i. succ(y)) = i
〈proof 〉

lemma Ord-Union-subset: Ord(i) =⇒
⋃
(i) ⊆ i

〈proof 〉

14.3 Limit Ordinals – General Properties
lemma Limit-Union-eq: Limit(i) =⇒

⋃
(i) = i

〈proof 〉

lemma Limit-is-Ord: Limit(i) =⇒ Ord(i)
〈proof 〉

lemma Limit-has-0 : Limit(i) =⇒ 0 < i
〈proof 〉

112

lemma Limit-nonzero: Limit(i) =⇒ i 6= 0
〈proof 〉

lemma Limit-has-succ: [[Limit(i); j<i]] =⇒ succ(j) < i
〈proof 〉

lemma Limit-succ-lt-iff [simp]: Limit(i) =⇒ succ(j) < i <−> (j<i)
〈proof 〉

lemma zero-not-Limit [iff]: ¬ Limit(0)
〈proof 〉

lemma Limit-has-1 : Limit(i) =⇒ 1 < i
〈proof 〉

lemma increasing-LimitI : [[0<l; ∀ x∈l. ∃ y∈l. x<y]] =⇒ Limit(l)
〈proof 〉

lemma non-succ-LimitI :
assumes i: 0<i and nsucc:

∧
y. succ(y) 6= i

shows Limit(i)
〈proof 〉

lemma succ-LimitE [elim!]: Limit(succ(i)) =⇒ P
〈proof 〉

lemma not-succ-Limit [simp]: ¬ Limit(succ(i))
〈proof 〉

lemma Limit-le-succD: [[Limit(i); i ≤ succ(j)]] =⇒ i ≤ j
〈proof 〉

14.3.1 Traditional 3-Way Case Analysis on Ordinals
lemma Ord-cases-disj: Ord(i) =⇒ i=0 | (∃ j. Ord(j) ∧ i=succ(j)) | Limit(i)
〈proof 〉

lemma Ord-cases:
assumes i: Ord(i)
obtains (0) i=0 | (succ) j where Ord(j) i=succ(j) | (limit) Limit(i)
〈proof 〉

lemma trans-induct3-raw:
[[Ord(i);

P(0);∧
x. [[Ord(x); P(x)]] =⇒ P(succ(x));∧
x. [[Limit(x); ∀ y∈x. P(y)]] =⇒ P(x)

]] =⇒ P(i)

113

〈proof 〉

lemma trans-induct3 [case-names 0 succ limit, consumes 1]:
Ord(i) =⇒ P(0) =⇒ (

∧
x. Ord(x) =⇒ P(x) =⇒ P(succ(x))) =⇒ (

∧
x. Limit(x)

=⇒ (
∧

y. y ∈ x =⇒ P(y)) =⇒ P(x)) =⇒ P(i)
〈proof 〉

A set of ordinals is either empty, contains its own union, or its union is a
limit ordinal.
lemma Union-le: [[

∧
x. x∈I =⇒ x≤j; Ord(j)]] =⇒

⋃
(I) ≤ j

〈proof 〉

lemma Ord-set-cases:
assumes I : ∀ i∈I . Ord(i)
shows I=0 ∨

⋃
(I) ∈ I ∨ (

⋃
(I) /∈ I ∧ Limit(

⋃
(I)))

〈proof 〉

If the union of a set of ordinals is a successor, then it is an element of that
set.
lemma Ord-Union-eq-succD: [[∀ x∈X . Ord(x);

⋃
X = succ(j)]] =⇒ succ(j) ∈ X

〈proof 〉

lemma Limit-Union [rule-format]: [[I 6= 0 ; (
∧

i. i∈I =⇒ Limit(i))]] =⇒ Limit(
⋃

I)
〈proof 〉

end

15 Special quantifiers
theory OrdQuant imports Ordinal begin

15.1 Quantifiers and union operator for ordinals
definition

oall :: [i, i ⇒ o] ⇒ o where
oall(A, P) ≡ ∀ x. x<A −→ P(x)

definition
oex :: [i, i ⇒ o] ⇒ o where

oex(A, P) ≡ ∃ x. x<A ∧ P(x)

definition

OUnion :: [i, i ⇒ i] ⇒ i where
OUnion(i,B) ≡ {z:

⋃
x∈i. B(x). Ord(i)}

syntax

114

-oall :: [idt, i, o] ⇒ o (‹(‹indent=3 notation=‹binder ∀<››∀ -<-./ -)› 10)
-oex :: [idt, i, o] ⇒ o (‹(‹indent=3 notation=‹binder ∃<››∃ -<-./ -)› 10)
-OUNION :: [idt, i, i] ⇒ i (‹(‹indent=3 notation=‹binder

⋃
<››

⋃
-<-./ -)›

10)
syntax-consts

-oall
 oall and
-oex
 oex and
-OUNION
 OUnion

translations
∀ x<a. P
 CONST oall(a, λx. P)
∃ x<a. P
 CONST oex(a, λx. P)⋃

x<a. B
 CONST OUnion(a, λx. B)

15.1.1 simplification of the new quantifiers
lemma [simp]: (∀ x<0 . P(x))
〈proof 〉

lemma [simp]: ¬(∃ x<0 . P(x))
〈proof 〉

lemma [simp]: (∀ x<succ(i). P(x)) <−> (Ord(i) −→ P(i) ∧ (∀ x<i. P(x)))
〈proof 〉

lemma [simp]: (∃ x<succ(i). P(x)) <−> (Ord(i) ∧ (P(i) | (∃ x<i. P(x))))
〈proof 〉

15.1.2 Union over ordinals
lemma Ord-OUN [intro,simp]:

[[
∧

x. x<A =⇒ Ord(B(x))]] =⇒ Ord(
⋃

x<A. B(x))
〈proof 〉

lemma OUN-upper-lt:
[[a<A; i < b(a); Ord(

⋃
x<A. b(x))]] =⇒ i < (

⋃
x<A. b(x))

〈proof 〉

lemma OUN-upper-le:
[[a<A; i≤b(a); Ord(

⋃
x<A. b(x))]] =⇒ i ≤ (

⋃
x<A. b(x))

〈proof 〉

lemma Limit-OUN-eq: Limit(i) =⇒ (
⋃

x<i. x) = i
〈proof 〉

lemma OUN-least:
(
∧

x. x<A =⇒ B(x) ⊆ C) =⇒ (
⋃

x<A. B(x)) ⊆ C
〈proof 〉

lemma OUN-least-le:

115

[[Ord(i);
∧

x. x<A =⇒ b(x) ≤ i]] =⇒ (
⋃

x<A. b(x)) ≤ i
〈proof 〉

lemma le-implies-OUN-le-OUN :
[[
∧

x. x<A =⇒ c(x) ≤ d(x)]] =⇒ (
⋃

x<A. c(x)) ≤ (
⋃

x<A. d(x))
〈proof 〉

lemma OUN-UN-eq:
(
∧

x. x ∈ A =⇒ Ord(B(x)))
=⇒ (

⋃
z < (

⋃
x∈A. B(x)). C (z)) = (

⋃
x∈A.

⋃
z < B(x). C (z))

〈proof 〉

lemma OUN-Union-eq:
(
∧

x. x ∈ X =⇒ Ord(x))
=⇒ (

⋃
z <

⋃
(X). C (z)) = (

⋃
x∈X .

⋃
z < x. C (z))

〈proof 〉

lemma atomize-oall [symmetric, rulify]:
(
∧

x. x<A =⇒ P(x)) ≡ Trueprop (∀ x<A. P(x))
〈proof 〉

15.1.3 universal quantifier for ordinals
lemma oallI [intro!]:

[[
∧

x. x<A =⇒ P(x)]] =⇒ ∀ x<A. P(x)
〈proof 〉

lemma ospec: [[∀ x<A. P(x); x<A]] =⇒ P(x)
〈proof 〉

lemma oallE :
[[∀ x<A. P(x); P(x) =⇒ Q; ¬x<A =⇒ Q]] =⇒ Q

〈proof 〉

lemma rev-oallE [elim]:
[[∀ x<A. P(x); ¬x<A =⇒ Q; P(x) =⇒ Q]] =⇒ Q

〈proof 〉

lemma oall-simp [simp]: (∀ x<a. True) <−> True
〈proof 〉

lemma oall-cong [cong]:
[[a=a ′;

∧
x. x<a ′ =⇒ P(x) <−> P ′(x)]]

=⇒ oall(a, λx. P(x)) <−> oall(a ′, λx. P ′(x))
〈proof 〉

116

15.1.4 existential quantifier for ordinals
lemma oexI [intro]:

[[P(x); x<A]] =⇒ ∃ x<A. P(x)
〈proof 〉

lemma oexCI :
[[∀ x<A. ¬P(x) =⇒ P(a); a<A]] =⇒ ∃ x<A. P(x)

〈proof 〉

lemma oexE [elim!]:
[[∃ x<A. P(x);

∧
x. [[x<A; P(x)]] =⇒ Q]] =⇒ Q

〈proof 〉

lemma oex-cong [cong]:
[[a=a ′;

∧
x. x<a ′ =⇒ P(x) <−> P ′(x)]]

=⇒ oex(a, λx. P(x)) <−> oex(a ′, λx. P ′(x))
〈proof 〉

15.1.5 Rules for Ordinal-Indexed Unions
lemma OUN-I [intro]: [[a<i; b ∈ B(a)]] =⇒ b: (

⋃
z<i. B(z))

〈proof 〉

lemma OUN-E [elim!]:
[[b ∈ (

⋃
z<i. B(z));

∧
a.[[b ∈ B(a); a<i]] =⇒ R]] =⇒ R

〈proof 〉

lemma OUN-iff : b ∈ (
⋃

x<i. B(x)) <−> (∃ x<i. b ∈ B(x))
〈proof 〉

lemma OUN-cong [cong]:
[[i=j;

∧
x. x<j =⇒ C (x)=D(x)]] =⇒ (

⋃
x<i. C (x)) = (

⋃
x<j. D(x))

〈proof 〉

lemma lt-induct:
[[i<k;

∧
x.[[x<k; ∀ y<x. P(y)]] =⇒ P(x)]] =⇒ P(i)

〈proof 〉

15.2 Quantification over a class
definition

rall :: [i⇒o, i⇒o] ⇒ o where
rall(M , P) ≡ ∀ x. M (x) −→ P(x)

definition
rex :: [i⇒o, i⇒o] ⇒ o where

rex(M , P) ≡ ∃ x. M (x) ∧ P(x)

117

syntax
-rall :: [pttrn, i⇒o, o] ⇒ o (‹(‹indent=3 notation=‹binder ∀ []››∀ -[-]./ -)›

10)
-rex :: [pttrn, i⇒o, o] ⇒ o (‹(‹indent=3 notation=‹binder ∃ []››∃ -[-]./ -)›

10)
syntax-consts

-rall
 rall and
-rex
 rex

translations
∀ x[M]. P
 CONST rall(M , λx. P)
∃ x[M]. P
 CONST rex(M , λx. P)

15.2.1 Relativized universal quantifier
lemma rallI [intro!]: [[

∧
x. M (x) =⇒ P(x)]] =⇒ ∀ x[M]. P(x)

〈proof 〉

lemma rspec: [[∀ x[M]. P(x); M (x)]] =⇒ P(x)
〈proof 〉

lemma rev-rallE [elim]:
[[∀ x[M]. P(x); ¬ M (x) =⇒ Q; P(x) =⇒ Q]] =⇒ Q

〈proof 〉

lemma rallE : [[∀ x[M]. P(x); P(x) =⇒ Q; ¬ M (x) =⇒ Q]] =⇒ Q
〈proof 〉

lemma rall-triv [simp]: (∀ x[M]. P) ←→ ((∃ x. M (x)) −→ P)
〈proof 〉

lemma rall-cong [cong]:
(
∧

x. M (x) =⇒ P(x) <−> P ′(x)) =⇒ (∀ x[M]. P(x)) <−> (∀ x[M]. P ′(x))
〈proof 〉

15.2.2 Relativized existential quantifier
lemma rexI [intro]: [[P(x); M (x)]] =⇒ ∃ x[M]. P(x)
〈proof 〉

lemma rev-rexI : [[M (x); P(x)]] =⇒ ∃ x[M]. P(x)
〈proof 〉

lemma rexCI : [[∀ x[M]. ¬P(x) =⇒ P(a); M (a)]] =⇒ ∃ x[M]. P(x)
〈proof 〉

118

lemma rexE [elim!]: [[∃ x[M]. P(x);
∧

x. [[M (x); P(x)]] =⇒ Q]] =⇒ Q
〈proof 〉

lemma rex-triv [simp]: (∃ x[M]. P) ←→ ((∃ x. M (x)) ∧ P)
〈proof 〉

lemma rex-cong [cong]:
(
∧

x. M (x) =⇒ P(x) <−> P ′(x)) =⇒ (∃ x[M]. P(x)) <−> (∃ x[M]. P ′(x))
〈proof 〉

lemma rall-is-ball [simp]: (∀ x[λz. z∈A]. P(x)) <−> (∀ x∈A. P(x))
〈proof 〉

lemma rex-is-bex [simp]: (∃ x[λz. z∈A]. P(x)) <−> (∃ x∈A. P(x))
〈proof 〉

lemma atomize-rall: (
∧

x. M (x) =⇒ P(x)) ≡ Trueprop (∀ x[M]. P(x))
〈proof 〉

declare atomize-rall [symmetric, rulify]

lemma rall-simps1 :
(∀ x[M]. P(x) ∧ Q) <−> (∀ x[M]. P(x)) ∧ ((∀ x[M]. False) | Q)
(∀ x[M]. P(x) | Q) <−> ((∀ x[M]. P(x)) | Q)
(∀ x[M]. P(x) −→ Q) <−> ((∃ x[M]. P(x)) −→ Q)
(¬(∀ x[M]. P(x))) <−> (∃ x[M]. ¬P(x))

〈proof 〉

lemma rall-simps2 :
(∀ x[M]. P ∧ Q(x)) <−> ((∀ x[M]. False) | P) ∧ (∀ x[M]. Q(x))
(∀ x[M]. P | Q(x)) <−> (P | (∀ x[M]. Q(x)))
(∀ x[M]. P −→ Q(x)) <−> (P −→ (∀ x[M]. Q(x)))

〈proof 〉

lemmas rall-simps [simp] = rall-simps1 rall-simps2

lemma rall-conj-distrib:
(∀ x[M]. P(x) ∧ Q(x)) <−> ((∀ x[M]. P(x)) ∧ (∀ x[M]. Q(x)))

〈proof 〉

lemma rex-simps1 :
(∃ x[M]. P(x) ∧ Q) <−> ((∃ x[M]. P(x)) ∧ Q)
(∃ x[M]. P(x) | Q) <−> (∃ x[M]. P(x)) | ((∃ x[M]. True) ∧ Q)
(∃ x[M]. P(x) −→ Q) <−> ((∀ x[M]. P(x)) −→ ((∃ x[M]. True) ∧ Q))
(¬(∃ x[M]. P(x))) <−> (∀ x[M]. ¬P(x))

〈proof 〉

lemma rex-simps2 :

119

(∃ x[M]. P ∧ Q(x)) <−> (P ∧ (∃ x[M]. Q(x)))
(∃ x[M]. P | Q(x)) <−> ((∃ x[M]. True) ∧ P) | (∃ x[M]. Q(x))
(∃ x[M]. P −→ Q(x)) <−> (((∀ x[M]. False) | P) −→ (∃ x[M]. Q(x)))

〈proof 〉

lemmas rex-simps [simp] = rex-simps1 rex-simps2

lemma rex-disj-distrib:
(∃ x[M]. P(x) | Q(x)) <−> ((∃ x[M]. P(x)) | (∃ x[M]. Q(x)))

〈proof 〉

15.2.3 One-point rule for bounded quantifiers
lemma rex-triv-one-point1 [simp]: (∃ x[M]. x=a) <−> (M (a))
〈proof 〉

lemma rex-triv-one-point2 [simp]: (∃ x[M]. a=x) <−> (M (a))
〈proof 〉

lemma rex-one-point1 [simp]: (∃ x[M]. x=a ∧ P(x)) <−> (M (a) ∧ P(a))
〈proof 〉

lemma rex-one-point2 [simp]: (∃ x[M]. a=x ∧ P(x)) <−> (M (a) ∧ P(a))
〈proof 〉

lemma rall-one-point1 [simp]: (∀ x[M]. x=a −→ P(x)) <−> (M (a) −→ P(a))
〈proof 〉

lemma rall-one-point2 [simp]: (∀ x[M]. a=x −→ P(x)) <−> (M (a) −→ P(a))
〈proof 〉

15.2.4 Sets as Classes
definition

setclass :: [i,i] ⇒ o (‹(‹open-block notation=‹prefix setclass››##-)› [40] 40)
where

setclass(A) ≡ λx. x ∈ A

lemma setclass-iff [simp]: setclass(A,x) <−> x ∈ A
〈proof 〉

lemma rall-setclass-is-ball [simp]: (∀ x[##A]. P(x)) <−> (∀ x∈A. P(x))
〈proof 〉

lemma rex-setclass-is-bex [simp]: (∃ x[##A]. P(x)) <−> (∃ x∈A. P(x))
〈proof 〉

〈ML〉

120

Setting up the one-point-rule simproc
〈ML〉

end

16 The Natural numbers As a Least Fixed Point
theory Nat imports OrdQuant Bool begin

definition
nat :: i where

nat ≡ lfp(Inf , λX . {0} ∪ {succ(i). i ∈ X})

definition
quasinat :: i ⇒ o where

quasinat(n) ≡ n=0 | (∃m. n = succ(m))

definition

nat-case :: [i, i⇒i, i]⇒i where
nat-case(a,b,k) ≡ THE y. k=0 ∧ y=a | (∃ x. k=succ(x) ∧ y=b(x))

definition
nat-rec :: [i, i, [i,i]⇒i]⇒i where

nat-rec(k,a,b) ≡
wfrec(Memrel(nat), k, λn f . nat-case(a, λm. b(m, f‘m), n))

definition
Le :: i where

Le ≡ {〈x,y〉:nat∗nat. x ≤ y}

definition
Lt :: i where

Lt ≡ {〈x, y〉:nat∗nat. x < y}

definition
Ge :: i where

Ge ≡ {〈x,y〉:nat∗nat. y ≤ x}

definition
Gt :: i where

Gt ≡ {〈x,y〉:nat∗nat. y < x}

definition
greater-than :: i⇒i where

greater-than(n) ≡ {i ∈ nat. n < i}

121

No need for a less-than operator: a natural number is its list of predecessors!
lemma nat-bnd-mono: bnd-mono(Inf , λX . {0} ∪ {succ(i). i ∈ X})
〈proof 〉

lemmas nat-unfold = nat-bnd-mono [THEN nat-def [THEN def-lfp-unfold]]

lemma nat-0I [iff ,TC]: 0 ∈ nat
〈proof 〉

lemma nat-succI [intro!,TC]: n ∈ nat =⇒ succ(n) ∈ nat
〈proof 〉

lemma nat-1I [iff ,TC]: 1 ∈ nat
〈proof 〉

lemma nat-2I [iff ,TC]: 2 ∈ nat
〈proof 〉

lemma bool-subset-nat: bool ⊆ nat
〈proof 〉

lemmas bool-into-nat = bool-subset-nat [THEN subsetD]

16.1 Injectivity Properties and Induction
lemma nat-induct [case-names 0 succ, induct set: nat]:

[[n ∈ nat; P(0);
∧

x. [[x ∈ nat; P(x)]] =⇒ P(succ(x))]] =⇒ P(n)
〈proof 〉

lemma natE :
assumes n ∈ nat
obtains (0) n=0 | (succ) x where x ∈ nat n=succ(x)
〈proof 〉

lemma nat-into-Ord [simp]: n ∈ nat =⇒ Ord(n)
〈proof 〉

lemmas nat-0-le = nat-into-Ord [THEN Ord-0-le]

lemmas nat-le-refl = nat-into-Ord [THEN le-refl]

lemma Ord-nat [iff]: Ord(nat)
〈proof 〉

122

lemma Limit-nat [iff]: Limit(nat)
〈proof 〉

lemma naturals-not-limit: a ∈ nat =⇒ ¬ Limit(a)
〈proof 〉

lemma succ-natD: succ(i): nat =⇒ i ∈ nat
〈proof 〉

lemma nat-succ-iff [iff]: succ(n): nat ←→ n ∈ nat
〈proof 〉

lemma nat-le-Limit: Limit(i) =⇒ nat ≤ i
〈proof 〉

lemmas succ-in-naturalD = Ord-trans [OF succI1 - nat-into-Ord]

lemma lt-nat-in-nat: [[m<n; n ∈ nat]] =⇒ m ∈ nat
〈proof 〉

lemma le-in-nat: [[m ≤ n; n ∈ nat]] =⇒ m ∈ nat
〈proof 〉

16.2 Variations on Mathematical Induction
lemmas complete-induct = Ord-induct [OF - Ord-nat, case-names less, consumes
1]

lemma complete-induct-rule [case-names less, consumes 1]:
i ∈ nat =⇒ (

∧
x. x ∈ nat =⇒ (

∧
y. y ∈ x =⇒ P(y)) =⇒ P(x)) =⇒ P(i)

〈proof 〉

lemma nat-induct-from:
assumes m ≤ n m ∈ nat n ∈ nat

and P(m)
and

∧
x. [[x ∈ nat; m ≤ x; P(x)]] =⇒ P(succ(x))

shows P(n)
〈proof 〉

lemma diff-induct [case-names 0 0-succ succ-succ, consumes 2]:
[[m ∈ nat; n ∈ nat;∧

x. x ∈ nat =⇒ P(x,0);∧
y. y ∈ nat =⇒ P(0 ,succ(y));∧
x y. [[x ∈ nat; y ∈ nat; P(x,y)]] =⇒ P(succ(x),succ(y))]]

=⇒ P(m,n)
〈proof 〉

123

lemma succ-lt-induct-lemma [rule-format]:
m ∈ nat =⇒ P(m,succ(m)) −→ (∀ x∈nat. P(m,x) −→ P(m,succ(x))) −→

(∀n∈nat. m<n −→ P(m,n))
〈proof 〉

lemma succ-lt-induct:
[[m<n; n ∈ nat;

P(m,succ(m));∧
x. [[x ∈ nat; P(m,x)]] =⇒ P(m,succ(x))]]

=⇒ P(m,n)
〈proof 〉

16.3 quasinat: to allow a case-split rule for nat-case

True if the argument is zero or any successor
lemma [iff]: quasinat(0)
〈proof 〉

lemma [iff]: quasinat(succ(x))
〈proof 〉

lemma nat-imp-quasinat: n ∈ nat =⇒ quasinat(n)
〈proof 〉

lemma non-nat-case: ¬ quasinat(x) =⇒ nat-case(a,b,x) = 0
〈proof 〉

lemma nat-cases-disj: k=0 | (∃ y. k = succ(y)) | ¬ quasinat(k)
〈proof 〉

lemma nat-cases:
[[k=0 =⇒ P;

∧
y. k = succ(y) =⇒ P; ¬ quasinat(k) =⇒ P]] =⇒ P

〈proof 〉

lemma nat-case-0 [simp]: nat-case(a,b,0) = a
〈proof 〉

lemma nat-case-succ [simp]: nat-case(a,b,succ(n)) = b(n)
〈proof 〉

lemma nat-case-type [TC]:
[[n ∈ nat; a ∈ C (0);

∧
m. m ∈ nat =⇒ b(m): C (succ(m))]]

=⇒ nat-case(a,b,n) ∈ C (n)

124

〈proof 〉

lemma split-nat-case:
P(nat-case(a,b,k)) ←→
((k=0 −→ P(a)) ∧ (∀ x. k=succ(x) −→ P(b(x))) ∧ (¬ quasinat(k) −→ P(0)))

〈proof 〉

16.4 Recursion on the Natural Numbers
lemma nat-rec-0 : nat-rec(0 ,a,b) = a
〈proof 〉

lemma nat-rec-succ: m ∈ nat =⇒ nat-rec(succ(m),a,b) = b(m, nat-rec(m,a,b))
〈proof 〉

lemma Un-nat-type [TC]: [[i ∈ nat; j ∈ nat]] =⇒ i ∪ j ∈ nat
〈proof 〉

lemma Int-nat-type [TC]: [[i ∈ nat; j ∈ nat]] =⇒ i ∩ j ∈ nat
〈proof 〉

lemma nat-nonempty [simp]: nat 6= 0
〈proof 〉

A natural number is the set of its predecessors
lemma nat-eq-Collect-lt: i ∈ nat =⇒ {j∈nat. j<i} = i
〈proof 〉

lemma Le-iff [iff]: 〈x,y〉 ∈ Le ←→ x ≤ y ∧ x ∈ nat ∧ y ∈ nat
〈proof 〉

end

17 Inductive and Coinductive Definitions
theory Inductive
imports Fixedpt QPair Nat
keywords

inductive coinductive inductive-cases rep-datatype primrec :: thy-decl and
domains intros monos con-defs type-intros type-elims

elimination induction case-eqns recursor-eqns :: quasi-command
begin

lemma def-swap-iff : a ≡ b =⇒ a = c ←→ c = b
〈proof 〉

125

lemma def-trans: f ≡ g =⇒ g(a) = b =⇒ f (a) = b
〈proof 〉

lemma refl-thin:
∧

P. a = a =⇒ P =⇒ P 〈proof 〉

〈ML〉

end

18 Epsilon Induction and Recursion
theory Epsilon imports Nat begin

definition
eclose :: i⇒i where

eclose(A) ≡
⋃

n∈nat. nat-rec(n, A, λm r .
⋃
(r))

definition
transrec :: [i, [i,i]⇒i] ⇒i where

transrec(a,H) ≡ wfrec(Memrel(eclose({a})), a, H)

definition
rank :: i⇒i where

rank(a) ≡ transrec(a, λx f .
⋃

y∈x. succ(f‘y))

definition
transrec2 :: [i, i, [i,i]⇒i] ⇒i where

transrec2 (k, a, b) ≡
transrec(k,

λi r . if (i=0 , a,
if (∃ j. i=succ(j),

b(THE j. i=succ(j), r‘(THE j. i=succ(j))),⋃
j<i. r‘j)))

definition
recursor :: [i, [i,i]⇒i, i]⇒i where

recursor(a,b,k) ≡ transrec(k, λn f . nat-case(a, λm. b(m, f‘m), n))

definition
rec :: [i, i, [i,i]⇒i]⇒i where

rec(k,a,b) ≡ recursor(a,b,k)

18.1 Basic Closure Properties
lemma arg-subset-eclose: A ⊆ eclose(A)
〈proof 〉

lemmas arg-into-eclose = arg-subset-eclose [THEN subsetD]

126

lemma Transset-eclose: Transset(eclose(A))
〈proof 〉

lemmas eclose-subset =
Transset-eclose [unfolded Transset-def , THEN bspec]

lemmas ecloseD = eclose-subset [THEN subsetD]

lemmas arg-in-eclose-sing = arg-subset-eclose [THEN singleton-subsetD]
lemmas arg-into-eclose-sing = arg-in-eclose-sing [THEN ecloseD]

lemmas eclose-induct =
Transset-induct [OF - Transset-eclose, induct set: eclose]

lemma eps-induct:
[[
∧

x. ∀ y∈x. P(y) =⇒ P(x)]] =⇒ P(a)
〈proof 〉

18.2 Leastness of eclose
lemma eclose-least-lemma:

[[Transset(X); A<=X ; n ∈ nat]] =⇒ nat-rec(n, A, λm r .
⋃
(r)) ⊆ X

〈proof 〉

lemma eclose-least:
[[Transset(X); A<=X]] =⇒ eclose(A) ⊆ X

〈proof 〉

lemma eclose-induct-down [consumes 1]:
[[a ∈ eclose(b);∧

y. [[y ∈ b]] =⇒ P(y);∧
y z. [[y ∈ eclose(b); P(y); z ∈ y]] =⇒ P(z)

]] =⇒ P(a)
〈proof 〉

lemma Transset-eclose-eq-arg: Transset(X) =⇒ eclose(X) = X
〈proof 〉

A transitive set either is empty or contains the empty set.
lemma Transset-0-lemma [rule-format]: Transset(A) =⇒ x∈A −→ 0∈A
〈proof 〉

lemma Transset-0-disj: Transset(A) =⇒ A=0 | 0∈A

127

〈proof 〉

18.3 Epsilon Recursion
lemma mem-eclose-trans: [[A ∈ eclose(B); B ∈ eclose(C)]] =⇒ A ∈ eclose(C)
〈proof 〉

lemma mem-eclose-sing-trans:
[[A ∈ eclose({B}); B ∈ eclose({C})]] =⇒ A ∈ eclose({C})

〈proof 〉

lemma under-Memrel: [[Transset(i); j ∈ i]] =⇒ Memrel(i)−‘‘{j} = j
〈proof 〉

lemma lt-Memrel: j < i =⇒ Memrel(i) −‘‘ {j} = j
〈proof 〉

lemmas under-Memrel-eclose = Transset-eclose [THEN under-Memrel]

lemmas wfrec-ssubst = wf-Memrel [THEN wfrec, THEN ssubst]

lemma wfrec-eclose-eq:
[[k ∈ eclose({j}); j ∈ eclose({i})]] =⇒
wfrec(Memrel(eclose({i})), k, H) = wfrec(Memrel(eclose({j})), k, H)

〈proof 〉

lemma wfrec-eclose-eq2 :
k ∈ i =⇒ wfrec(Memrel(eclose({i})),k,H) = wfrec(Memrel(eclose({k})),k,H)

〈proof 〉

lemma transrec: transrec(a,H) = H (a, λx∈a. transrec(x,H))
〈proof 〉

lemma def-transrec:
[[
∧

x. f (x)≡transrec(x,H)]] =⇒ f (a) = H (a, λx∈a. f (x))
〈proof 〉

lemma transrec-type:
[[
∧

x u. [[x ∈ eclose({a}); u ∈ Pi(x,B)]] =⇒ H (x,u) ∈ B(x)]]
=⇒ transrec(a,H) ∈ B(a)

〈proof 〉

lemma eclose-sing-Ord: Ord(i) =⇒ eclose({i}) ⊆ succ(i)
〈proof 〉

lemma succ-subset-eclose-sing: succ(i) ⊆ eclose({i})

128

〈proof 〉

lemma eclose-sing-Ord-eq: Ord(i) =⇒ eclose({i}) = succ(i)
〈proof 〉

lemma Ord-transrec-type:
assumes jini: j ∈ i

and ordi: Ord(i)
and minor :

∧
x u. [[x ∈ i; u ∈ Pi(x,B)]] =⇒ H (x,u) ∈ B(x)

shows transrec(j,H) ∈ B(j)
〈proof 〉

18.4 Rank
lemma rank: rank(a) = (

⋃
y∈a. succ(rank(y)))

〈proof 〉

lemma Ord-rank [simp]: Ord(rank(a))
〈proof 〉

lemma rank-of-Ord: Ord(i) =⇒ rank(i) = i
〈proof 〉

lemma rank-lt: a ∈ b =⇒ rank(a) < rank(b)
〈proof 〉

lemma eclose-rank-lt: a ∈ eclose(b) =⇒ rank(a) < rank(b)
〈proof 〉

lemma rank-mono: a<=b =⇒ rank(a) ≤ rank(b)
〈proof 〉

lemma rank-Pow: rank(Pow(a)) = succ(rank(a))
〈proof 〉

lemma rank-0 [simp]: rank(0) = 0
〈proof 〉

lemma rank-succ [simp]: rank(succ(x)) = succ(rank(x))
〈proof 〉

lemma rank-Union: rank(
⋃
(A)) = (

⋃
x∈A. rank(x))

〈proof 〉

lemma rank-eclose: rank(eclose(a)) = rank(a)
〈proof 〉

lemma rank-pair1 : rank(a) < rank(〈a,b〉)
〈proof 〉

129

lemma rank-pair2 : rank(b) < rank(〈a,b〉)
〈proof 〉

lemma the-equality-if :
P(a) =⇒ (THE x . P(x)) = (if (∃ !x. P(x)) then a else 0)

〈proof 〉

lemma rank-apply: [[i ∈ domain(f); function(f)]] =⇒ rank(f‘i) < rank(f)
〈proof 〉

18.5 Corollaries of Leastness
lemma mem-eclose-subset: A ∈ B =⇒ eclose(A)<=eclose(B)
〈proof 〉

lemma eclose-mono: A<=B =⇒ eclose(A) ⊆ eclose(B)
〈proof 〉

lemma eclose-idem: eclose(eclose(A)) = eclose(A)
〈proof 〉

lemma transrec2-0 [simp]: transrec2 (0 ,a,b) = a
〈proof 〉

lemma transrec2-succ [simp]: transrec2 (succ(i),a,b) = b(i, transrec2 (i,a,b))
〈proof 〉

lemma transrec2-Limit:
Limit(i) =⇒ transrec2 (i,a,b) = (

⋃
j<i. transrec2 (j,a,b))

〈proof 〉

lemma def-transrec2 :
(
∧

x. f (x)≡transrec2 (x,a,b))
=⇒ f (0) = a ∧

f (succ(i)) = b(i, f (i)) ∧
(Limit(K) −→ f (K) = (

⋃
j<K . f (j)))

〈proof 〉

130

lemmas recursor-lemma = recursor-def [THEN def-transrec, THEN trans]

lemma recursor-0 : recursor(a,b,0) = a
〈proof 〉

lemma recursor-succ: recursor(a,b,succ(m)) = b(m, recursor(a,b,m))
〈proof 〉

lemma rec-0 [simp]: rec(0 ,a,b) = a
〈proof 〉

lemma rec-succ [simp]: rec(succ(m),a,b) = b(m, rec(m,a,b))
〈proof 〉

lemma rec-type:
[[n ∈ nat;

a ∈ C (0);∧
m z. [[m ∈ nat; z ∈ C (m)]] =⇒ b(m,z): C (succ(m))]]

=⇒ rec(n,a,b) ∈ C (n)
〈proof 〉

end

19 Partial and Total Orderings: Basic Definitions
and Properties

theory Order imports WF Perm begin

We adopt the following convention: ord is used for strict orders and order is
used for their reflexive counterparts.
definition

part-ord :: [i,i]⇒o where
part-ord(A,r) ≡ irrefl(A,r) ∧ trans[A](r)

definition
linear :: [i,i]⇒o where
linear(A,r) ≡ (∀ x∈A. ∀ y∈A. 〈x,y〉:r | x=y | 〈y,x〉:r)

definition
tot-ord :: [i,i]⇒o where
tot-ord(A,r) ≡ part-ord(A,r) ∧ linear(A,r)

definition
preorder-on(A, r) ≡ refl(A, r) ∧ trans[A](r)

131

definition
partial-order-on(A, r) ≡ preorder-on(A, r) ∧ antisym(r)

abbreviation
Preorder(r) ≡ preorder-on(field(r), r)

abbreviation
Partial-order(r) ≡ partial-order-on(field(r), r)

definition
well-ord :: [i,i]⇒o where
well-ord(A,r) ≡ tot-ord(A,r) ∧ wf [A](r)

definition
mono-map :: [i,i,i,i]⇒i where
mono-map(A,r ,B,s) ≡

{f ∈ A−>B. ∀ x∈A. ∀ y∈A. 〈x,y〉:r −→ <f‘x,f‘y>:s}

definition
ord-iso :: [i,i,i,i]⇒i (‹(‹notation=‹infix ord-iso››〈-, -〉 ∼=/ 〈-, -〉)› 51) where
〈A,r〉 ∼= 〈B,s〉 ≡

{f ∈ bij(A,B). ∀ x∈A. ∀ y∈A. 〈x,y〉:r ←→ <f‘x,f‘y>:s}

definition
pred :: [i,i,i]⇒i where
pred(A,x,r) ≡ {y ∈ A. 〈y,x〉:r}

definition
ord-iso-map :: [i,i,i,i]⇒i where
ord-iso-map(A,r ,B,s) ≡⋃

x∈A.
⋃

y∈B.
⋃

f ∈ ord-iso(pred(A,x,r), r , pred(B,y,s), s). {〈x,y〉}

definition
first :: [i, i, i] ⇒ o where

first(u, X , R) ≡ u ∈ X ∧ (∀ v∈X . v 6=u −→ 〈u,v〉 ∈ R)

19.1 Immediate Consequences of the Definitions
lemma part-ord-Imp-asym:

part-ord(A,r) =⇒ asym(r ∩ A∗A)
〈proof 〉

lemma linearE :
[[linear(A,r); x ∈ A; y ∈ A;
〈x,y〉:r =⇒ P; x=y =⇒ P; 〈y,x〉:r =⇒ P]]

=⇒ P
〈proof 〉

132

lemma well-ordI :
[[wf [A](r); linear(A,r)]] =⇒ well-ord(A,r)

〈proof 〉

lemma well-ord-is-wf :
well-ord(A,r) =⇒ wf [A](r)

〈proof 〉

lemma well-ord-is-trans-on:
well-ord(A,r) =⇒ trans[A](r)

〈proof 〉

lemma well-ord-is-linear : well-ord(A,r) =⇒ linear(A,r)
〈proof 〉

lemma pred-iff : y ∈ pred(A,x,r) ←→ 〈y,x〉:r ∧ y ∈ A
〈proof 〉

lemmas predI = conjI [THEN pred-iff [THEN iffD2]]

lemma predE : [[y ∈ pred(A,x,r); [[y ∈ A; 〈y,x〉:r]] =⇒ P]] =⇒ P
〈proof 〉

lemma pred-subset-under : pred(A,x,r) ⊆ r −‘‘ {x}
〈proof 〉

lemma pred-subset: pred(A,x,r) ⊆ A
〈proof 〉

lemma pred-pred-eq:
pred(pred(A,x,r), y, r) = pred(A,x,r) ∩ pred(A,y,r)

〈proof 〉

lemma trans-pred-pred-eq:
[[trans[A](r); 〈y,x〉:r ; x ∈ A; y ∈ A]]
=⇒ pred(pred(A,x,r), y, r) = pred(A,y,r)

〈proof 〉

19.2 Restricting an Ordering’s Domain
lemma part-ord-subset:

[[part-ord(A,r); B<=A]] =⇒ part-ord(B,r)
〈proof 〉

133

lemma linear-subset:
[[linear(A,r); B<=A]] =⇒ linear(B,r)

〈proof 〉

lemma tot-ord-subset:
[[tot-ord(A,r); B<=A]] =⇒ tot-ord(B,r)
〈proof 〉

lemma well-ord-subset:
[[well-ord(A,r); B<=A]] =⇒ well-ord(B,r)
〈proof 〉

lemma irrefl-Int-iff : irrefl(A,r ∩ A∗A) ←→ irrefl(A,r)
〈proof 〉

lemma trans-on-Int-iff : trans[A](r ∩ A∗A) ←→ trans[A](r)
〈proof 〉

lemma part-ord-Int-iff : part-ord(A,r ∩ A∗A) ←→ part-ord(A,r)
〈proof 〉

lemma linear-Int-iff : linear(A,r ∩ A∗A) ←→ linear(A,r)
〈proof 〉

lemma tot-ord-Int-iff : tot-ord(A,r ∩ A∗A) ←→ tot-ord(A,r)
〈proof 〉

lemma wf-on-Int-iff : wf [A](r ∩ A∗A) ←→ wf [A](r)
〈proof 〉

lemma well-ord-Int-iff : well-ord(A,r ∩ A∗A) ←→ well-ord(A,r)
〈proof 〉

19.3 Empty and Unit Domains
lemma wf-on-any-0 : wf [A](0)
〈proof 〉

19.3.1 Relations over the Empty Set
lemma irrefl-0 : irrefl(0 ,r)
〈proof 〉

lemma trans-on-0 : trans[0](r)
〈proof 〉

lemma part-ord-0 : part-ord(0 ,r)

134

〈proof 〉

lemma linear-0 : linear(0 ,r)
〈proof 〉

lemma tot-ord-0 : tot-ord(0 ,r)
〈proof 〉

lemma wf-on-0 : wf [0](r)
〈proof 〉

lemma well-ord-0 : well-ord(0 ,r)
〈proof 〉

19.3.2 The Empty Relation Well-Orders the Unit Set

by Grabczewski
lemma tot-ord-unit: tot-ord({a},0)
〈proof 〉

lemma well-ord-unit: well-ord({a},0)
〈proof 〉

19.4 Order-Isomorphisms

Suppes calls them "similarities"
lemma mono-map-is-fun: f ∈ mono-map(A,r ,B,s) =⇒ f ∈ A−>B
〈proof 〉

lemma mono-map-is-inj:
[[linear(A,r); wf [B](s); f ∈ mono-map(A,r ,B,s)]] =⇒ f ∈ inj(A,B)

〈proof 〉

lemma ord-isoI :
[[f ∈ bij(A, B);∧

x y. [[x ∈ A; y ∈ A]] =⇒ 〈x, y〉 ∈ r ←→ <f‘x, f‘y> ∈ s]]
=⇒ f ∈ ord-iso(A,r ,B,s)

〈proof 〉

lemma ord-iso-is-mono-map:
f ∈ ord-iso(A,r ,B,s) =⇒ f ∈ mono-map(A,r ,B,s)

〈proof 〉

lemma ord-iso-is-bij:
f ∈ ord-iso(A,r ,B,s) =⇒ f ∈ bij(A,B)

〈proof 〉

135

lemma ord-iso-apply:
[[f ∈ ord-iso(A,r ,B,s); 〈x,y〉: r ; x ∈ A; y ∈ A]] =⇒ <f‘x, f‘y> ∈ s

〈proof 〉

lemma ord-iso-converse:
[[f ∈ ord-iso(A,r ,B,s); 〈x,y〉: s; x ∈ B; y ∈ B]]
=⇒ <converse(f) ‘ x, converse(f) ‘ y> ∈ r

〈proof 〉

lemma ord-iso-refl: id(A): ord-iso(A,r ,A,r)
〈proof 〉

lemma ord-iso-sym: f ∈ ord-iso(A,r ,B,s) =⇒ converse(f): ord-iso(B,s,A,r)
〈proof 〉

lemma mono-map-trans:
[[g ∈ mono-map(A,r ,B,s); f ∈ mono-map(B,s,C ,t)]]
=⇒ (f O g): mono-map(A,r ,C ,t)

〈proof 〉

lemma ord-iso-trans:
[[g ∈ ord-iso(A,r ,B,s); f ∈ ord-iso(B,s,C ,t)]]
=⇒ (f O g): ord-iso(A,r ,C ,t)

〈proof 〉

lemma mono-ord-isoI :
[[f ∈ mono-map(A,r ,B,s); g ∈ mono-map(B,s,A,r);

f O g = id(B); g O f = id(A)]] =⇒ f ∈ ord-iso(A,r ,B,s)
〈proof 〉

lemma well-ord-mono-ord-isoI :
[[well-ord(A,r); well-ord(B,s);

f ∈ mono-map(A,r ,B,s); converse(f): mono-map(B,s,A,r)]]
=⇒ f ∈ ord-iso(A,r ,B,s)

〈proof 〉

lemma part-ord-ord-iso:

136

[[part-ord(B,s); f ∈ ord-iso(A,r ,B,s)]] =⇒ part-ord(A,r)
〈proof 〉

lemma linear-ord-iso:
[[linear(B,s); f ∈ ord-iso(A,r ,B,s)]] =⇒ linear(A,r)

〈proof 〉

lemma wf-on-ord-iso:
[[wf [B](s); f ∈ ord-iso(A,r ,B,s)]] =⇒ wf [A](r)

〈proof 〉

lemma well-ord-ord-iso:
[[well-ord(B,s); f ∈ ord-iso(A,r ,B,s)]] =⇒ well-ord(A,r)
〈proof 〉

19.5 Main results of Kunen, Chapter 1 section 6
lemma well-ord-iso-subset-lemma:

[[well-ord(A,r); f ∈ ord-iso(A,r , A ′,r); A ′<= A; y ∈ A]]
=⇒ ¬ <f‘y, y>: r

〈proof 〉

lemma well-ord-iso-predE :
[[well-ord(A,r); f ∈ ord-iso(A, r , pred(A,x,r), r); x ∈ A]] =⇒ P

〈proof 〉

lemma well-ord-iso-pred-eq:
[[well-ord(A,r); f ∈ ord-iso(pred(A,a,r), r , pred(A,c,r), r);

a ∈ A; c ∈ A]] =⇒ a=c
〈proof 〉

lemma ord-iso-image-pred:
[[f ∈ ord-iso(A,r ,B,s); a ∈ A]] =⇒ f ‘‘ pred(A,a,r) = pred(B, f‘a, s)

〈proof 〉

lemma ord-iso-restrict-image:
[[f ∈ ord-iso(A,r ,B,s); C<=A]]
=⇒ restrict(f ,C) ∈ ord-iso(C , r , f‘‘C , s)

〈proof 〉

lemma ord-iso-restrict-pred:
[[f ∈ ord-iso(A,r ,B,s); a ∈ A]]
=⇒ restrict(f , pred(A,a,r)) ∈ ord-iso(pred(A,a,r), r , pred(B, f‘a, s), s)

〈proof 〉

137

lemma well-ord-iso-preserving:
[[well-ord(A,r); well-ord(B,s); 〈a,c〉: r ;

f ∈ ord-iso(pred(A,a,r), r , pred(B,b,s), s);
g ∈ ord-iso(pred(A,c,r), r , pred(B,d,s), s);
a ∈ A; c ∈ A; b ∈ B; d ∈ B]] =⇒ 〈b,d〉: s

〈proof 〉

lemma well-ord-iso-unique-lemma:
[[well-ord(A,r);

f ∈ ord-iso(A,r , B,s); g ∈ ord-iso(A,r , B,s); y ∈ A]]
=⇒ ¬ <g‘y, f‘y> ∈ s

〈proof 〉

lemma well-ord-iso-unique: [[well-ord(A,r);
f ∈ ord-iso(A,r , B,s); g ∈ ord-iso(A,r , B,s)]] =⇒ f = g

〈proof 〉

19.6 Towards Kunen’s Theorem 6.3: Linearity of the Simi-
larity Relation

lemma ord-iso-map-subset: ord-iso-map(A,r ,B,s) ⊆ A∗B
〈proof 〉

lemma domain-ord-iso-map: domain(ord-iso-map(A,r ,B,s)) ⊆ A
〈proof 〉

lemma range-ord-iso-map: range(ord-iso-map(A,r ,B,s)) ⊆ B
〈proof 〉

lemma converse-ord-iso-map:
converse(ord-iso-map(A,r ,B,s)) = ord-iso-map(B,s,A,r)
〈proof 〉

lemma function-ord-iso-map:
well-ord(B,s) =⇒ function(ord-iso-map(A,r ,B,s))
〈proof 〉

lemma ord-iso-map-fun: well-ord(B,s) =⇒ ord-iso-map(A,r ,B,s)
∈ domain(ord-iso-map(A,r ,B,s)) −> range(ord-iso-map(A,r ,B,s))

〈proof 〉

lemma ord-iso-map-mono-map:
[[well-ord(A,r); well-ord(B,s)]]
=⇒ ord-iso-map(A,r ,B,s)

∈ mono-map(domain(ord-iso-map(A,r ,B,s)), r ,

138

range(ord-iso-map(A,r ,B,s)), s)
〈proof 〉

lemma ord-iso-map-ord-iso:
[[well-ord(A,r); well-ord(B,s)]] =⇒ ord-iso-map(A,r ,B,s)

∈ ord-iso(domain(ord-iso-map(A,r ,B,s)), r ,
range(ord-iso-map(A,r ,B,s)), s)

〈proof 〉

lemma domain-ord-iso-map-subset:
[[well-ord(A,r); well-ord(B,s);

a ∈ A; a /∈ domain(ord-iso-map(A,r ,B,s))]]
=⇒ domain(ord-iso-map(A,r ,B,s)) ⊆ pred(A, a, r)

〈proof 〉

lemma domain-ord-iso-map-cases:
[[well-ord(A,r); well-ord(B,s)]]
=⇒ domain(ord-iso-map(A,r ,B,s)) = A |

(∃ x∈A. domain(ord-iso-map(A,r ,B,s)) = pred(A,x,r))
〈proof 〉

lemma range-ord-iso-map-cases:
[[well-ord(A,r); well-ord(B,s)]]
=⇒ range(ord-iso-map(A,r ,B,s)) = B |

(∃ y∈B. range(ord-iso-map(A,r ,B,s)) = pred(B,y,s))
〈proof 〉

Kunen’s Theorem 6.3: Fundamental Theorem for Well-Ordered Sets
theorem well-ord-trichotomy:

[[well-ord(A,r); well-ord(B,s)]]
=⇒ ord-iso-map(A,r ,B,s) ∈ ord-iso(A, r , B, s) |

(∃ x∈A. ord-iso-map(A,r ,B,s) ∈ ord-iso(pred(A,x,r), r , B, s)) |
(∃ y∈B. ord-iso-map(A,r ,B,s) ∈ ord-iso(A, r , pred(B,y,s), s))

〈proof 〉

19.7 Miscellaneous Results by Krzysztof Grabczewski
lemma irrefl-converse: irrefl(A,r) =⇒ irrefl(A,converse(r))
〈proof 〉

lemma trans-on-converse: trans[A](r) =⇒ trans[A](converse(r))
〈proof 〉

lemma part-ord-converse: part-ord(A,r) =⇒ part-ord(A,converse(r))
〈proof 〉

139

lemma linear-converse: linear(A,r) =⇒ linear(A,converse(r))
〈proof 〉

lemma tot-ord-converse: tot-ord(A,r) =⇒ tot-ord(A,converse(r))
〈proof 〉

lemma first-is-elem: first(b,B,r) =⇒ b ∈ B
〈proof 〉

lemma well-ord-imp-ex1-first:
[[well-ord(A,r); B<=A; B 6=0]] =⇒ (∃ !b. first(b,B,r))

〈proof 〉

lemma the-first-in:
[[well-ord(A,r); B<=A; B 6=0]] =⇒ (THE b. first(b,B,r)) ∈ B

〈proof 〉

19.8 Lemmas for the Reflexive Orders
lemma subset-vimage-vimage-iff :
[[Preorder(r); A ⊆ field(r); B ⊆ field(r)]] =⇒
r −‘‘ A ⊆ r −‘‘ B ←→ (∀ a∈A. ∃ b∈B. 〈a, b〉 ∈ r)
〈proof 〉

lemma subset-vimage1-vimage1-iff :
[[Preorder(r); a ∈ field(r); b ∈ field(r)]] =⇒
r −‘‘ {a} ⊆ r −‘‘ {b} ←→ 〈a, b〉 ∈ r
〈proof 〉

lemma Refl-antisym-eq-Image1-Image1-iff :
[[refl(field(r), r); antisym(r); a ∈ field(r); b ∈ field(r)]] =⇒
r ‘‘ {a} = r ‘‘ {b} ←→ a = b
〈proof 〉

lemma Partial-order-eq-Image1-Image1-iff :
[[Partial-order(r); a ∈ field(r); b ∈ field(r)]] =⇒
r ‘‘ {a} = r ‘‘ {b} ←→ a = b
〈proof 〉

lemma Refl-antisym-eq-vimage1-vimage1-iff :
[[refl(field(r), r); antisym(r); a ∈ field(r); b ∈ field(r)]] =⇒
r −‘‘ {a} = r −‘‘ {b} ←→ a = b
〈proof 〉

lemma Partial-order-eq-vimage1-vimage1-iff :

140

[[Partial-order(r); a ∈ field(r); b ∈ field(r)]] =⇒
r −‘‘ {a} = r −‘‘ {b} ←→ a = b
〈proof 〉

end

20 Combining Orderings: Foundations of Ordinal
Arithmetic

theory OrderArith imports Order Sum Ordinal begin

definition

radd :: [i,i,i,i]⇒i where
radd(A,r ,B,s) ≡

{z: (A+B) ∗ (A+B).
(∃ x y. z = 〈Inl(x), Inr(y)〉) |
(∃ x ′ x. z = 〈Inl(x ′), Inl(x)〉 ∧ 〈x ′,x〉:r) |
(∃ y ′ y. z = 〈Inr(y ′), Inr(y)〉 ∧ 〈y ′,y〉:s)}

definition

rmult :: [i,i,i,i]⇒i where
rmult(A,r ,B,s) ≡

{z: (A∗B) ∗ (A∗B).
∃ x ′ y ′ x y. z = 〈〈x ′,y ′〉, 〈x,y〉〉 ∧

(〈x ′,x〉: r | (x ′=x ∧ 〈y ′,y〉: s))}

definition

rvimage :: [i,i,i]⇒i where
rvimage(A,f ,r) ≡ {z ∈ A∗A. ∃ x y. z = 〈x,y〉 ∧ 〈f‘x,f‘y〉: r}

definition
measure :: [i, i⇒i] ⇒ i where

measure(A,f) ≡ {〈x,y〉: A∗A. f (x) < f (y)}

20.1 Addition of Relations – Disjoint Sum
20.1.1 Rewrite rules. Can be used to obtain introduction rules
lemma radd-Inl-Inr-iff [iff]:
〈Inl(a), Inr(b)〉 ∈ radd(A,r ,B,s) ←→ a ∈ A ∧ b ∈ B

〈proof 〉

lemma radd-Inl-iff [iff]:
〈Inl(a ′), Inl(a)〉 ∈ radd(A,r ,B,s) ←→ a ′:A ∧ a ∈ A ∧ 〈a ′,a〉:r

〈proof 〉

141

lemma radd-Inr-iff [iff]:
〈Inr(b ′), Inr(b)〉 ∈ radd(A,r ,B,s) ←→ b ′:B ∧ b ∈ B ∧ 〈b ′,b〉:s

〈proof 〉

lemma radd-Inr-Inl-iff [simp]:
〈Inr(b), Inl(a)〉 ∈ radd(A,r ,B,s) ←→ False

〈proof 〉

declare radd-Inr-Inl-iff [THEN iffD1 , dest!]

20.1.2 Elimination Rule
lemma raddE :

[[〈p ′,p〉 ∈ radd(A,r ,B,s);∧
x y. [[p ′=Inl(x); x ∈ A; p=Inr(y); y ∈ B]] =⇒ Q;∧
x ′ x. [[p ′=Inl(x ′); p=Inl(x); 〈x ′,x〉: r ; x ′:A; x ∈ A]] =⇒ Q;∧
y ′ y. [[p ′=Inr(y ′); p=Inr(y); 〈y ′,y〉: s; y ′:B; y ∈ B]] =⇒ Q

]] =⇒ Q
〈proof 〉

20.1.3 Type checking
lemma radd-type: radd(A,r ,B,s) ⊆ (A+B) ∗ (A+B)
〈proof 〉

lemmas field-radd = radd-type [THEN field-rel-subset]

20.1.4 Linearity
lemma linear-radd:

[[linear(A,r); linear(B,s)]] =⇒ linear(A+B,radd(A,r ,B,s))
〈proof 〉

20.1.5 Well-foundedness
lemma wf-on-radd: [[wf [A](r); wf [B](s)]] =⇒ wf [A+B](radd(A,r ,B,s))
〈proof 〉

lemma wf-radd: [[wf (r); wf (s)]] =⇒ wf (radd(field(r),r ,field(s),s))
〈proof 〉

lemma well-ord-radd:
[[well-ord(A,r); well-ord(B,s)]] =⇒ well-ord(A+B, radd(A,r ,B,s))

〈proof 〉

20.1.6 An ord-iso congruence law
lemma sum-bij:

[[f ∈ bij(A,C); g ∈ bij(B,D)]]
=⇒ (λz∈A+B. case(λx. Inl(f‘x), λy. Inr(g‘y), z)) ∈ bij(A+B, C+D)

142

〈proof 〉

lemma sum-ord-iso-cong:
[[f ∈ ord-iso(A,r ,A ′,r ′); g ∈ ord-iso(B,s,B ′,s ′)]] =⇒

(λz∈A+B. case(λx. Inl(f‘x), λy. Inr(g‘y), z))
∈ ord-iso(A+B, radd(A,r ,B,s), A ′+B ′, radd(A ′,r ′,B ′,s ′))

〈proof 〉

lemma sum-disjoint-bij: A ∩ B = 0 =⇒
(λz∈A+B. case(λx. x, λy. y, z)) ∈ bij(A+B, A ∪ B)

〈proof 〉

20.1.7 Associativity
lemma sum-assoc-bij:

(λz∈(A+B)+C . case(case(Inl, λy. Inr(Inl(y))), λy. Inr(Inr(y)), z))
∈ bij((A+B)+C , A+(B+C))

〈proof 〉

lemma sum-assoc-ord-iso:
(λz∈(A+B)+C . case(case(Inl, λy. Inr(Inl(y))), λy. Inr(Inr(y)), z))
∈ ord-iso((A+B)+C , radd(A+B, radd(A,r ,B,s), C , t),

A+(B+C), radd(A, r , B+C , radd(B,s,C ,t)))
〈proof 〉

20.2 Multiplication of Relations – Lexicographic Product
20.2.1 Rewrite rule. Can be used to obtain introduction rules
lemma rmult-iff [iff]:
〈〈a ′,b ′〉, 〈a,b〉〉 ∈ rmult(A,r ,B,s) ←→

(〈a ′,a〉: r ∧ a ′:A ∧ a ∈ A ∧ b ′: B ∧ b ∈ B) |
(〈b ′,b〉: s ∧ a ′=a ∧ a ∈ A ∧ b ′: B ∧ b ∈ B)

〈proof 〉

lemma rmultE :
[[〈〈a ′,b ′〉, 〈a,b〉〉 ∈ rmult(A,r ,B,s);

[[〈a ′,a〉: r ; a ′:A; a ∈ A; b ′:B; b ∈ B]] =⇒ Q;
[[〈b ′,b〉: s; a ∈ A; a ′=a; b ′:B; b ∈ B]] =⇒ Q

]] =⇒ Q
〈proof 〉

20.2.2 Type checking
lemma rmult-type: rmult(A,r ,B,s) ⊆ (A∗B) ∗ (A∗B)
〈proof 〉

lemmas field-rmult = rmult-type [THEN field-rel-subset]

143

20.2.3 Linearity
lemma linear-rmult:

[[linear(A,r); linear(B,s)]] =⇒ linear(A∗B,rmult(A,r ,B,s))
〈proof 〉

20.2.4 Well-foundedness
lemma wf-on-rmult: [[wf [A](r); wf [B](s)]] =⇒ wf [A∗B](rmult(A,r ,B,s))
〈proof 〉

lemma wf-rmult: [[wf (r); wf (s)]] =⇒ wf (rmult(field(r),r ,field(s),s))
〈proof 〉

lemma well-ord-rmult:
[[well-ord(A,r); well-ord(B,s)]] =⇒ well-ord(A∗B, rmult(A,r ,B,s))

〈proof 〉

20.2.5 An ord-iso congruence law
lemma prod-bij:

[[f ∈ bij(A,C); g ∈ bij(B,D)]]
=⇒ (lam 〈x,y〉:A∗B. 〈f‘x, g‘y〉) ∈ bij(A∗B, C∗D)

〈proof 〉

lemma prod-ord-iso-cong:
[[f ∈ ord-iso(A,r ,A ′,r ′); g ∈ ord-iso(B,s,B ′,s ′)]]
=⇒ (lam 〈x,y〉:A∗B. 〈f‘x, g‘y〉)
∈ ord-iso(A∗B, rmult(A,r ,B,s), A ′∗B ′, rmult(A ′,r ′,B ′,s ′))

〈proof 〉

lemma singleton-prod-bij: (λz∈A. 〈x,z〉) ∈ bij(A, {x}∗A)
〈proof 〉

lemma singleton-prod-ord-iso:
well-ord({x},xr) =⇒

(λz∈A. 〈x,z〉) ∈ ord-iso(A, r , {x}∗A, rmult({x}, xr , A, r))
〈proof 〉

lemma prod-sum-singleton-bij:
a /∈C =⇒
(λx∈C∗B + D. case(λx. x, λy.〈a,y〉, x))
∈ bij(C∗B + D, C∗B ∪ {a}∗D)

〈proof 〉

lemma prod-sum-singleton-ord-iso:
[[a ∈ A; well-ord(A,r)]] =⇒

144

(λx∈pred(A,a,r)∗B + pred(B,b,s). case(λx. x, λy.〈a,y〉, x))
∈ ord-iso(pred(A,a,r)∗B + pred(B,b,s),

radd(A∗B, rmult(A,r ,B,s), B, s),
pred(A,a,r)∗B ∪ {a}∗pred(B,b,s), rmult(A,r ,B,s))

〈proof 〉

20.2.6 Distributive law
lemma sum-prod-distrib-bij:

(lam 〈x,z〉:(A+B)∗C . case(λy. Inl(〈y,z〉), λy. Inr(〈y,z〉), x))
∈ bij((A+B)∗C , (A∗C)+(B∗C))

〈proof 〉

lemma sum-prod-distrib-ord-iso:
(lam 〈x,z〉:(A+B)∗C . case(λy. Inl(〈y,z〉), λy. Inr(〈y,z〉), x))
∈ ord-iso((A+B)∗C , rmult(A+B, radd(A,r ,B,s), C , t),

(A∗C)+(B∗C), radd(A∗C , rmult(A,r ,C ,t), B∗C , rmult(B,s,C ,t)))
〈proof 〉

20.2.7 Associativity
lemma prod-assoc-bij:

(lam 〈〈x,y〉, z〉:(A∗B)∗C . 〈x,〈y,z〉〉) ∈ bij((A∗B)∗C , A∗(B∗C))
〈proof 〉

lemma prod-assoc-ord-iso:
(lam 〈〈x,y〉, z〉:(A∗B)∗C . 〈x,〈y,z〉〉)
∈ ord-iso((A∗B)∗C , rmult(A∗B, rmult(A,r ,B,s), C , t),

A∗(B∗C), rmult(A, r , B∗C , rmult(B,s,C ,t)))
〈proof 〉

20.3 Inverse Image of a Relation
20.3.1 Rewrite rule
lemma rvimage-iff : 〈a,b〉 ∈ rvimage(A,f ,r) ←→ 〈f‘a,f‘b〉: r ∧ a ∈ A ∧ b ∈ A
〈proof 〉

20.3.2 Type checking
lemma rvimage-type: rvimage(A,f ,r) ⊆ A∗A
〈proof 〉

lemmas field-rvimage = rvimage-type [THEN field-rel-subset]

lemma rvimage-converse: rvimage(A,f , converse(r)) = converse(rvimage(A,f ,r))
〈proof 〉

20.3.3 Partial Ordering Properties
lemma irrefl-rvimage:

145

[[f ∈ inj(A,B); irrefl(B,r)]] =⇒ irrefl(A, rvimage(A,f ,r))
〈proof 〉

lemma trans-on-rvimage:
[[f ∈ inj(A,B); trans[B](r)]] =⇒ trans[A](rvimage(A,f ,r))
〈proof 〉

lemma part-ord-rvimage:
[[f ∈ inj(A,B); part-ord(B,r)]] =⇒ part-ord(A, rvimage(A,f ,r))
〈proof 〉

20.3.4 Linearity
lemma linear-rvimage:

[[f ∈ inj(A,B); linear(B,r)]] =⇒ linear(A,rvimage(A,f ,r))
〈proof 〉

lemma tot-ord-rvimage:
[[f ∈ inj(A,B); tot-ord(B,r)]] =⇒ tot-ord(A, rvimage(A,f ,r))
〈proof 〉

20.3.5 Well-foundedness
lemma wf-rvimage [intro!]: wf (r) =⇒ wf (rvimage(A,f ,r))
〈proof 〉

But note that the combination of wf-imp-wf-on and wf-rvimage gives wf (r)
=⇒ wf [C](rvimage(A, f , r))
lemma wf-on-rvimage: [[f ∈ A→B; wf [B](r)]] =⇒ wf [A](rvimage(A,f ,r))
〈proof 〉

lemma well-ord-rvimage:
[[f ∈ inj(A,B); well-ord(B,r)]] =⇒ well-ord(A, rvimage(A,f ,r))

〈proof 〉

lemma ord-iso-rvimage:
f ∈ bij(A,B) =⇒ f ∈ ord-iso(A, rvimage(A,f ,s), B, s)
〈proof 〉

lemma ord-iso-rvimage-eq:
f ∈ ord-iso(A,r , B,s) =⇒ rvimage(A,f ,s) = r ∩ A∗A

〈proof 〉

20.4 Every well-founded relation is a subset of some inverse
image of an ordinal

lemma wf-rvimage-Ord: Ord(i) =⇒ wf (rvimage(A, f , Memrel(i)))
〈proof 〉

146

definition
wfrank :: [i,i]⇒i where

wfrank(r ,a) ≡ wfrec(r , a, λx f .
⋃

y ∈ r−‘‘{x}. succ(f‘y))

definition
wftype :: i⇒i where

wftype(r) ≡
⋃

y ∈ range(r). succ(wfrank(r ,y))

lemma wfrank: wf (r) =⇒ wfrank(r ,a) = (
⋃

y ∈ r−‘‘{a}. succ(wfrank(r ,y)))
〈proof 〉

lemma Ord-wfrank: wf (r) =⇒ Ord(wfrank(r ,a))
〈proof 〉

lemma wfrank-lt: [[wf (r); 〈a,b〉 ∈ r]] =⇒ wfrank(r ,a) < wfrank(r ,b)
〈proof 〉

lemma Ord-wftype: wf (r) =⇒ Ord(wftype(r))
〈proof 〉

lemma wftypeI : [[wf (r); x ∈ field(r)]] =⇒ wfrank(r ,x) ∈ wftype(r)
〈proof 〉

lemma wf-imp-subset-rvimage:
[[wf (r); r ⊆ A∗A]] =⇒ ∃ i f . Ord(i) ∧ r ⊆ rvimage(A, f , Memrel(i))

〈proof 〉

theorem wf-iff-subset-rvimage:
relation(r) =⇒ wf (r) ←→ (∃ i f A. Ord(i) ∧ r ⊆ rvimage(A, f , Memrel(i)))
〈proof 〉

20.5 Other Results
lemma wf-times: A ∩ B = 0 =⇒ wf (A∗B)
〈proof 〉

Could also be used to prove wf-radd
lemma wf-Un:

[[range(r) ∩ domain(s) = 0 ; wf (r); wf (s)]] =⇒ wf (r ∪ s)
〈proof 〉

20.5.1 The Empty Relation
lemma wf0 : wf (0)
〈proof 〉

147

lemma linear0 : linear(0 ,0)
〈proof 〉

lemma well-ord0 : well-ord(0 ,0)
〈proof 〉

20.5.2 The "measure" relation is useful with wfrec
lemma measure-eq-rvimage-Memrel:

measure(A,f) = rvimage(A,Lambda(A,f),Memrel(Collect(RepFun(A,f),Ord)))
〈proof 〉

lemma wf-measure [iff]: wf (measure(A,f))
〈proof 〉

lemma measure-iff [iff]: 〈x,y〉 ∈ measure(A,f) ←→ x ∈ A ∧ y ∈ A ∧ f (x)<f (y)
〈proof 〉

lemma linear-measure:
assumes Ordf :

∧
x. x ∈ A =⇒ Ord(f (x))

and inj:
∧

x y. [[x ∈ A; y ∈ A; f (x) = f (y)]] =⇒ x=y
shows linear(A, measure(A,f))
〈proof 〉

lemma wf-on-measure: wf [B](measure(A,f))
〈proof 〉

lemma well-ord-measure:
assumes Ordf :

∧
x. x ∈ A =⇒ Ord(f (x))

and inj:
∧

x y. [[x ∈ A; y ∈ A; f (x) = f (y)]] =⇒ x=y
shows well-ord(A, measure(A,f))
〈proof 〉

lemma measure-type: measure(A,f) ⊆ A∗A
〈proof 〉

20.5.3 Well-foundedness of Unions
lemma wf-on-Union:
assumes wfA: wf [A](r)

and wfB:
∧

a. a∈A =⇒ wf [B(a)](s)
and ok:

∧
a u v. [[〈u,v〉 ∈ s; v ∈ B(a); a ∈ A]]

=⇒ (∃ a ′∈A. 〈a ′,a〉 ∈ r ∧ u ∈ B(a ′)) | u ∈ B(a)
shows wf [

⋃
a∈A. B(a)](s)

〈proof 〉

20.5.4 Bijections involving Powersets
lemma Pow-sum-bij:

(λZ ∈ Pow(A+B). 〈{x ∈ A. Inl(x) ∈ Z}, {y ∈ B. Inr(y) ∈ Z}〉)

148

∈ bij(Pow(A+B), Pow(A)∗Pow(B))
〈proof 〉

As a special case, we have bij(Pow(A × B), A → Pow(B))

lemma Pow-Sigma-bij:
(λr ∈ Pow(Sigma(A,B)). λx ∈ A. r‘‘{x})
∈ bij(Pow(Sigma(A,B)),

∏
x ∈ A. Pow(B(x)))

〈proof 〉

end

21 Order Types and Ordinal Arithmetic
theory OrderType imports OrderArith OrdQuant Nat begin

The order type of a well-ordering is the least ordinal isomorphic to it. Ordi-
nal arithmetic is traditionally defined in terms of order types, as it is here.
But a definition by transfinite recursion would be much simpler!
definition

ordermap :: [i,i]⇒i where
ordermap(A,r) ≡ λx∈A. wfrec[A](r , x, λx f . f ‘‘ pred(A,x,r))

definition
ordertype :: [i,i]⇒i where
ordertype(A,r) ≡ ordermap(A,r)‘‘A

definition

Ord-alt :: i ⇒ o where
Ord-alt(X) ≡ well-ord(X , Memrel(X)) ∧ (∀ u∈X . u=pred(X , u, Memrel(X)))

definition

ordify :: i⇒i where
ordify(x) ≡ if Ord(x) then x else 0

definition

omult :: [i,i]⇒i (infixl ‹∗∗› 70) where
i ∗∗ j ≡ ordertype(j∗i, rmult(j,Memrel(j),i,Memrel(i)))

definition

raw-oadd :: [i,i]⇒i where
raw-oadd(i,j) ≡ ordertype(i+j, radd(i,Memrel(i),j,Memrel(j)))

definition
oadd :: [i,i]⇒i (infixl ‹++› 65) where

149

i ++ j ≡ raw-oadd(ordify(i),ordify(j))

definition

odiff :: [i,i]⇒i (infixl ‹−−› 65) where
i −− j ≡ ordertype(i−j, Memrel(i))

21.1 Proofs needing the combination of Ordinal.thy and Or-
der.thy

lemma le-well-ord-Memrel: j ≤ i =⇒ well-ord(j, Memrel(i))
〈proof 〉

lemmas well-ord-Memrel = le-refl [THEN le-well-ord-Memrel]

lemma lt-pred-Memrel:
j<i =⇒ pred(i, j, Memrel(i)) = j

〈proof 〉

lemma pred-Memrel:
x ∈ A =⇒ pred(A, x, Memrel(A)) = A ∩ x

〈proof 〉

lemma Ord-iso-implies-eq-lemma:
[[j<i; f ∈ ord-iso(i,Memrel(i),j,Memrel(j))]] =⇒ R

〈proof 〉

lemma Ord-iso-implies-eq:
[[Ord(i); Ord(j); f ∈ ord-iso(i,Memrel(i),j,Memrel(j))]]
=⇒ i=j

〈proof 〉

21.2 Ordermap and ordertype
lemma ordermap-type:

ordermap(A,r) ∈ A −> ordertype(A,r)
〈proof 〉

21.2.1 Unfolding of ordermap
lemma ordermap-eq-image:

[[wf [A](r); x ∈ A]]
=⇒ ordermap(A,r) ‘ x = ordermap(A,r) ‘‘ pred(A,x,r)

〈proof 〉

lemma ordermap-pred-unfold:

150

[[wf [A](r); x ∈ A]]
=⇒ ordermap(A,r) ‘ x = {ordermap(A,r)‘y . y ∈ pred(A,x,r)}

〈proof 〉

lemmas ordermap-unfold = ordermap-pred-unfold [simplified pred-def]

21.2.2 Showing that ordermap, ordertype yield ordinals
lemma Ord-ordermap:

[[well-ord(A,r); x ∈ A]] =⇒ Ord(ordermap(A,r) ‘ x)
〈proof 〉

lemma Ord-ordertype:
well-ord(A,r) =⇒ Ord(ordertype(A,r))
〈proof 〉

21.2.3 ordermap preserves the orderings in both directions
lemma ordermap-mono:

[[〈w,x〉: r ; wf [A](r); w ∈ A; x ∈ A]]
=⇒ ordermap(A,r)‘w ∈ ordermap(A,r)‘x

〈proof 〉

lemma converse-ordermap-mono:
[[ordermap(A,r)‘w ∈ ordermap(A,r)‘x; well-ord(A,r); w ∈ A; x ∈ A]]
=⇒ 〈w,x〉: r

〈proof 〉

lemma ordermap-surj: ordermap(A, r) ∈ surj(A, ordertype(A, r))
〈proof 〉

lemma ordermap-bij:
well-ord(A,r) =⇒ ordermap(A,r) ∈ bij(A, ordertype(A,r))
〈proof 〉

21.2.4 Isomorphisms involving ordertype
lemma ordertype-ord-iso:
well-ord(A,r)
=⇒ ordermap(A,r) ∈ ord-iso(A,r , ordertype(A,r), Memrel(ordertype(A,r)))
〈proof 〉

lemma ordertype-eq:
[[f ∈ ord-iso(A,r ,B,s); well-ord(B,s)]]
=⇒ ordertype(A,r) = ordertype(B,s)

〈proof 〉

lemma ordertype-eq-imp-ord-iso:

151

[[ordertype(A,r) = ordertype(B,s); well-ord(A,r); well-ord(B,s)]]
=⇒ ∃ f . f ∈ ord-iso(A,r ,B,s)

〈proof 〉

21.2.5 Basic equalities for ordertype
lemma le-ordertype-Memrel: j ≤ i =⇒ ordertype(j,Memrel(i)) = j
〈proof 〉

lemmas ordertype-Memrel = le-refl [THEN le-ordertype-Memrel]

lemma ordertype-0 [simp]: ordertype(0 ,r) = 0
〈proof 〉

lemmas bij-ordertype-vimage = ord-iso-rvimage [THEN ordertype-eq]

21.2.6 A fundamental unfolding law for ordertype.
lemma ordermap-pred-eq-ordermap:

[[well-ord(A,r); y ∈ A; z ∈ pred(A,y,r)]]
=⇒ ordermap(pred(A,y,r), r) ‘ z = ordermap(A, r) ‘ z

〈proof 〉

lemma ordertype-unfold:
ordertype(A,r) = {ordermap(A,r)‘y . y ∈ A}
〈proof 〉

Theorems by Krzysztof Grabczewski; proofs simplified by lcp
lemma ordertype-pred-subset: [[well-ord(A,r); x ∈ A]] =⇒

ordertype(pred(A,x,r),r) ⊆ ordertype(A,r)
〈proof 〉

lemma ordertype-pred-lt:
[[well-ord(A,r); x ∈ A]]
=⇒ ordertype(pred(A,x,r),r) < ordertype(A,r)

〈proof 〉

lemma ordertype-pred-unfold:
well-ord(A,r)
=⇒ ordertype(A,r) = {ordertype(pred(A,x,r),r). x ∈ A}

〈proof 〉

21.3 Alternative definition of ordinal
lemma Ord-is-Ord-alt: Ord(i) =⇒ Ord-alt(i)
〈proof 〉

152

lemma Ord-alt-is-Ord:
Ord-alt(i) =⇒ Ord(i)

〈proof 〉

21.4 Ordinal Addition
21.4.1 Order Type calculations for radd

Addition with 0
lemma bij-sum-0 : (λz∈A+0 . case(λx. x, λy. y, z)) ∈ bij(A+0 , A)
〈proof 〉

lemma ordertype-sum-0-eq:
well-ord(A,r) =⇒ ordertype(A+0 , radd(A,r ,0 ,s)) = ordertype(A,r)

〈proof 〉

lemma bij-0-sum: (λz∈0+A. case(λx. x, λy. y, z)) ∈ bij(0+A, A)
〈proof 〉

lemma ordertype-0-sum-eq:
well-ord(A,r) =⇒ ordertype(0+A, radd(0 ,s,A,r)) = ordertype(A,r)

〈proof 〉

Initial segments of radd. Statements by Grabczewski
lemma pred-Inl-bij:
a ∈ A =⇒ (λx∈pred(A,a,r). Inl(x))

∈ bij(pred(A,a,r), pred(A+B, Inl(a), radd(A,r ,B,s)))
〈proof 〉

lemma ordertype-pred-Inl-eq:
[[a ∈ A; well-ord(A,r)]]
=⇒ ordertype(pred(A+B, Inl(a), radd(A,r ,B,s)), radd(A,r ,B,s)) =

ordertype(pred(A,a,r), r)
〈proof 〉

lemma pred-Inr-bij:
b ∈ B =⇒

id(A+pred(B,b,s))
∈ bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r ,B,s)))

〈proof 〉

lemma ordertype-pred-Inr-eq:
[[b ∈ B; well-ord(A,r); well-ord(B,s)]]
=⇒ ordertype(pred(A+B, Inr(b), radd(A,r ,B,s)), radd(A,r ,B,s)) =

ordertype(A+pred(B,b,s), radd(A,r ,pred(B,b,s),s))
〈proof 〉

153

21.4.2 ordify: trivial coercion to an ordinal
lemma Ord-ordify [iff , TC]: Ord(ordify(x))
〈proof 〉

lemma ordify-idem [simp]: ordify(ordify(x)) = ordify(x)
〈proof 〉

21.4.3 Basic laws for ordinal addition
lemma Ord-raw-oadd: [[Ord(i); Ord(j)]] =⇒ Ord(raw-oadd(i,j))
〈proof 〉

lemma Ord-oadd [iff ,TC]: Ord(i++j)
〈proof 〉

Ordinal addition with zero
lemma raw-oadd-0 : Ord(i) =⇒ raw-oadd(i,0) = i
〈proof 〉

lemma oadd-0 [simp]: Ord(i) =⇒ i++0 = i
〈proof 〉

lemma raw-oadd-0-left: Ord(i) =⇒ raw-oadd(0 ,i) = i
〈proof 〉

lemma oadd-0-left [simp]: Ord(i) =⇒ 0++i = i
〈proof 〉

lemma oadd-eq-if-raw-oadd:
i++j = (if Ord(i) then (if Ord(j) then raw-oadd(i,j) else i)

else (if Ord(j) then j else 0))
〈proof 〉

lemma raw-oadd-eq-oadd: [[Ord(i); Ord(j)]] =⇒ raw-oadd(i,j) = i++j
〈proof 〉

lemma lt-oadd1 : k<i =⇒ k < i++j
〈proof 〉

lemma oadd-le-self : Ord(i) =⇒ i ≤ i++j
〈proof 〉

Various other results

154

lemma id-ord-iso-Memrel: A<=B =⇒ id(A) ∈ ord-iso(A, Memrel(A), A, Mem-
rel(B))
〈proof 〉

lemma subset-ord-iso-Memrel:
[[f ∈ ord-iso(A,Memrel(B),C ,r); A<=B]] =⇒ f ∈ ord-iso(A,Memrel(A),C ,r)

〈proof 〉

lemma restrict-ord-iso:
[[f ∈ ord-iso(i, Memrel(i), Order .pred(A,a,r), r); a ∈ A; j < i;

trans[A](r)]]
=⇒ restrict(f ,j) ∈ ord-iso(j, Memrel(j), Order .pred(A,f‘j,r), r)

〈proof 〉

lemma restrict-ord-iso2 :
[[f ∈ ord-iso(Order .pred(A,a,r), r , i, Memrel(i)); a ∈ A;

j < i; trans[A](r)]]
=⇒ converse(restrict(converse(f), j))
∈ ord-iso(Order .pred(A, converse(f)‘j, r), r , j, Memrel(j))

〈proof 〉

lemma ordertype-sum-Memrel:
[[well-ord(A,r); k<j]]
=⇒ ordertype(A+k, radd(A, r , k, Memrel(j))) =

ordertype(A+k, radd(A, r , k, Memrel(k)))
〈proof 〉

lemma oadd-lt-mono2 : k<j =⇒ i++k < i++j
〈proof 〉

lemma oadd-lt-cancel2 : [[i++j < i++k; Ord(j)]] =⇒ j<k
〈proof 〉

lemma oadd-lt-iff2 : Ord(j) =⇒ i++j < i++k ←→ j<k
〈proof 〉

lemma oadd-inject: [[i++j = i++k; Ord(j); Ord(k)]] =⇒ j=k
〈proof 〉

lemma lt-oadd-disj: k < i++j =⇒ k<i | (∃ l∈j. k = i++l)
〈proof 〉

21.4.4 Ordinal addition with successor – via associativity!
lemma oadd-assoc: (i++j)++k = i++(j++k)
〈proof 〉

lemma oadd-unfold: [[Ord(i); Ord(j)]] =⇒ i++j = i ∪ (
⋃

k∈j. {i++k})
〈proof 〉

155

lemma oadd-1 : Ord(i) =⇒ i++1 = succ(i)
〈proof 〉

lemma oadd-succ [simp]: Ord(j) =⇒ i++succ(j) = succ(i++j)
〈proof 〉

Ordinal addition with limit ordinals
lemma oadd-UN :

[[
∧

x. x ∈ A =⇒ Ord(j(x)); a ∈ A]]
=⇒ i ++ (

⋃
x∈A. j(x)) = (

⋃
x∈A. i++j(x))

〈proof 〉

lemma oadd-Limit: Limit(j) =⇒ i++j = (
⋃

k∈j. i++k)
〈proof 〉

lemma oadd-eq-0-iff : [[Ord(i); Ord(j)]] =⇒ (i ++ j) = 0 ←→ i=0 ∧ j=0
〈proof 〉

lemma oadd-eq-lt-iff : [[Ord(i); Ord(j)]] =⇒ 0 < (i ++ j) ←→ 0<i | 0<j
〈proof 〉

lemma oadd-LimitI : [[Ord(i); Limit(j)]] =⇒ Limit(i ++ j)
〈proof 〉

Order/monotonicity properties of ordinal addition
lemma oadd-le-self2 : Ord(i) =⇒ i ≤ j++i
〈proof 〉

lemma oadd-le-mono1 : k ≤ j =⇒ k++i ≤ j++i
〈proof 〉

lemma oadd-lt-mono: [[i ′ ≤ i; j ′<j]] =⇒ i ′++j ′ < i++j
〈proof 〉

lemma oadd-le-mono: [[i ′ ≤ i; j ′ ≤ j]] =⇒ i ′++j ′ ≤ i++j
〈proof 〉

lemma oadd-le-iff2 : [[Ord(j); Ord(k)]] =⇒ i++j ≤ i++k ←→ j ≤ k
〈proof 〉

lemma oadd-lt-self : [[Ord(i); 0<j]] =⇒ i < i++j
〈proof 〉

Every ordinal is exceeded by some limit ordinal.
lemma Ord-imp-greater-Limit: Ord(i) =⇒ ∃ k. i<k ∧ Limit(k)
〈proof 〉

lemma Ord2-imp-greater-Limit: [[Ord(i); Ord(j)]] =⇒ ∃ k. i<k ∧ j<k ∧ Limit(k)

156

〈proof 〉

21.5 Ordinal Subtraction

The difference is ordertype(j − i, Memrel(j)). It’s probably simpler to define
the difference recursively!
lemma bij-sum-Diff :

A<=B =⇒ (λy∈B. if (y ∈ A, Inl(y), Inr(y))) ∈ bij(B, A+(B−A))
〈proof 〉

lemma ordertype-sum-Diff :
i ≤ j =⇒

ordertype(i+(j−i), radd(i,Memrel(j),j−i,Memrel(j))) =
ordertype(j, Memrel(j))

〈proof 〉

lemma Ord-odiff [simp,TC]:
[[Ord(i); Ord(j)]] =⇒ Ord(i−−j)
〈proof 〉

lemma raw-oadd-ordertype-Diff :
i ≤ j
=⇒ raw-oadd(i,j−−i) = ordertype(i+(j−i), radd(i,Memrel(j),j−i,Memrel(j)))

〈proof 〉

lemma oadd-odiff-inverse: i ≤ j =⇒ i ++ (j−−i) = j
〈proof 〉

lemma odiff-oadd-inverse: [[Ord(i); Ord(j)]] =⇒ (i++j) −− i = j
〈proof 〉

lemma odiff-lt-mono2 : [[i<j; k ≤ i]] =⇒ i−−k < j−−k
〈proof 〉

21.6 Ordinal Multiplication
lemma Ord-omult [simp,TC]:

[[Ord(i); Ord(j)]] =⇒ Ord(i∗∗j)
〈proof 〉

21.6.1 A useful unfolding law
lemma pred-Pair-eq:
[[a ∈ A; b ∈ B]] =⇒ pred(A∗B, 〈a,b〉, rmult(A,r ,B,s)) =

pred(A,a,r)∗B ∪ ({a} ∗ pred(B,b,s))
〈proof 〉

157

lemma ordertype-pred-Pair-eq:
[[a ∈ A; b ∈ B; well-ord(A,r); well-ord(B,s)]] =⇒

ordertype(pred(A∗B, 〈a,b〉, rmult(A,r ,B,s)), rmult(A,r ,B,s)) =
ordertype(pred(A,a,r)∗B + pred(B,b,s),

radd(A∗B, rmult(A,r ,B,s), B, s))
〈proof 〉

lemma ordertype-pred-Pair-lemma:
[[i ′<i; j ′<j]]
=⇒ ordertype(pred(i∗j, <i ′,j ′>, rmult(i,Memrel(i),j,Memrel(j))),

rmult(i,Memrel(i),j,Memrel(j))) =
raw-oadd (j∗∗i ′, j ′)

〈proof 〉

lemma lt-omult:
[[Ord(i); Ord(j); k<j∗∗i]]
=⇒ ∃ j ′ i ′. k = j∗∗i ′ ++ j ′ ∧ j ′<j ∧ i ′<i
〈proof 〉

lemma omult-oadd-lt:
[[j ′<j; i ′<i]] =⇒ j∗∗i ′ ++ j ′ < j∗∗i

〈proof 〉

lemma omult-unfold:
[[Ord(i); Ord(j)]] =⇒ j∗∗i = (

⋃
j ′∈j.

⋃
i ′∈i. {j∗∗i ′ ++ j ′})

〈proof 〉

21.6.2 Basic laws for ordinal multiplication

Ordinal multiplication by zero
lemma omult-0 [simp]: i∗∗0 = 0
〈proof 〉

lemma omult-0-left [simp]: 0∗∗i = 0
〈proof 〉

Ordinal multiplication by 1
lemma omult-1 [simp]: Ord(i) =⇒ i∗∗1 = i
〈proof 〉

lemma omult-1-left [simp]: Ord(i) =⇒ 1∗∗i = i
〈proof 〉

Distributive law for ordinal multiplication and addition
lemma oadd-omult-distrib:

[[Ord(i); Ord(j); Ord(k)]] =⇒ i∗∗(j++k) = (i∗∗j)++(i∗∗k)
〈proof 〉

158

lemma omult-succ: [[Ord(i); Ord(j)]] =⇒ i∗∗succ(j) = (i∗∗j)++i
〈proof 〉

Associative law
lemma omult-assoc:

[[Ord(i); Ord(j); Ord(k)]] =⇒ (i∗∗j)∗∗k = i∗∗(j∗∗k)
〈proof 〉

Ordinal multiplication with limit ordinals
lemma omult-UN :

[[Ord(i);
∧

x. x ∈ A =⇒ Ord(j(x))]]
=⇒ i ∗∗ (

⋃
x∈A. j(x)) = (

⋃
x∈A. i∗∗j(x))

〈proof 〉

lemma omult-Limit: [[Ord(i); Limit(j)]] =⇒ i∗∗j = (
⋃

k∈j. i∗∗k)
〈proof 〉

21.6.3 Ordering/monotonicity properties of ordinal multiplica-
tion

lemma lt-omult1 : [[k<i; 0<j]] =⇒ k < i∗∗j
〈proof 〉

lemma omult-le-self : [[Ord(i); 0<j]] =⇒ i ≤ i∗∗j
〈proof 〉

lemma omult-le-mono1 :
assumes kj: k ≤ j and i: Ord(i) shows k∗∗i ≤ j∗∗i
〈proof 〉

lemma omult-lt-mono2 : [[k<j; 0<i]] =⇒ i∗∗k < i∗∗j
〈proof 〉

lemma omult-le-mono2 : [[k ≤ j; Ord(i)]] =⇒ i∗∗k ≤ i∗∗j
〈proof 〉

lemma omult-le-mono: [[i ′ ≤ i; j ′ ≤ j]] =⇒ i ′∗∗j ′ ≤ i∗∗j
〈proof 〉

lemma omult-lt-mono: [[i ′ ≤ i; j ′<j; 0<i]] =⇒ i ′∗∗j ′ < i∗∗j
〈proof 〉

lemma omult-le-self2 :
assumes i: Ord(i) and j: 0<j shows i ≤ j∗∗i
〈proof 〉

Further properties of ordinal multiplication
lemma omult-inject: [[i∗∗j = i∗∗k; 0<i; Ord(j); Ord(k)]] =⇒ j=k
〈proof 〉

159

21.7 The Relation Lt
lemma wf-Lt: wf (Lt)
〈proof 〉

lemma irrefl-Lt: irrefl(A,Lt)
〈proof 〉

lemma trans-Lt: trans[A](Lt)
〈proof 〉

lemma part-ord-Lt: part-ord(A,Lt)
〈proof 〉

lemma linear-Lt: linear(nat,Lt)
〈proof 〉

lemma tot-ord-Lt: tot-ord(nat,Lt)
〈proof 〉

lemma well-ord-Lt: well-ord(nat,Lt)
〈proof 〉

end

22 Finite Powerset Operator and Finite Function
Space

theory Finite imports Inductive Epsilon Nat begin

rep-datatype
elimination natE
induction nat-induct
case-eqns nat-case-0 nat-case-succ
recursor-eqns recursor-0 recursor-succ

consts
Fin :: i⇒i
FiniteFun :: [i,i]⇒i (‹(‹notation=‹infix −||>››- −||>/ -)› [61 , 60] 60)

inductive
domains Fin(A) ⊆ Pow(A)
intros

emptyI : 0 ∈ Fin(A)
consI : [[a ∈ A; b ∈ Fin(A)]] =⇒ cons(a,b) ∈ Fin(A)

type-intros empty-subsetI cons-subsetI PowI
type-elims PowD [elim-format]

160

inductive
domains FiniteFun(A,B) ⊆ Fin(A∗B)
intros

emptyI : 0 ∈ A −||> B
consI : [[a ∈ A; b ∈ B; h ∈ A −||> B; a /∈ domain(h)]]

=⇒ cons(〈a,b〉,h) ∈ A −||> B
type-intros Fin.intros

22.1 Finite Powerset Operator
lemma Fin-mono: A<=B =⇒ Fin(A) ⊆ Fin(B)
〈proof 〉

lemmas FinD = Fin.dom-subset [THEN subsetD, THEN PowD]

lemma Fin-induct [case-names 0 cons, induct set: Fin]:
[[b ∈ Fin(A);

P(0);∧
x y. [[x ∈ A; y ∈ Fin(A); x /∈y; P(y)]] =⇒ P(cons(x,y))

]] =⇒ P(b)
〈proof 〉

declare Fin.intros [simp]

lemma Fin-0 : Fin(0) = {0}
〈proof 〉

lemma Fin-UnI [simp]: [[b ∈ Fin(A); c ∈ Fin(A)]] =⇒ b ∪ c ∈ Fin(A)
〈proof 〉

lemma Fin-UnionI : C ∈ Fin(Fin(A)) =⇒
⋃
(C) ∈ Fin(A)

〈proof 〉

lemma Fin-subset-lemma [rule-format]: b ∈ Fin(A) =⇒ ∀ z. z<=b −→ z ∈ Fin(A)
〈proof 〉

lemma Fin-subset: [[c<=b; b ∈ Fin(A)]] =⇒ c ∈ Fin(A)
〈proof 〉

161

lemma Fin-IntI1 [intro,simp]: b ∈ Fin(A) =⇒ b ∩ c ∈ Fin(A)
〈proof 〉

lemma Fin-IntI2 [intro,simp]: c ∈ Fin(A) =⇒ b ∩ c ∈ Fin(A)
〈proof 〉

lemma Fin-0-induct-lemma [rule-format]:
[[c ∈ Fin(A); b ∈ Fin(A); P(b);∧

x y. [[x ∈ A; y ∈ Fin(A); x ∈ y; P(y)]] =⇒ P(y−{x})
]] =⇒ c<=b −→ P(b−c)
〈proof 〉

lemma Fin-0-induct:
[[b ∈ Fin(A);

P(b);∧
x y. [[x ∈ A; y ∈ Fin(A); x ∈ y; P(y)]] =⇒ P(y−{x})

]] =⇒ P(0)
〈proof 〉

lemma nat-fun-subset-Fin: n ∈ nat =⇒ n−>A ⊆ Fin(nat∗A)
〈proof 〉

22.2 Finite Function Space
lemma FiniteFun-mono:

[[A<=C ; B<=D]] =⇒ A −||> B ⊆ C −||> D
〈proof 〉

lemma FiniteFun-mono1 : A<=B =⇒ A −||> A ⊆ B −||> B
〈proof 〉

lemma FiniteFun-is-fun: h ∈ A −||>B =⇒ h ∈ domain(h) −> B
〈proof 〉

lemma FiniteFun-domain-Fin: h ∈ A −||>B =⇒ domain(h) ∈ Fin(A)
〈proof 〉

lemmas FiniteFun-apply-type = FiniteFun-is-fun [THEN apply-type]

lemma FiniteFun-subset-lemma [rule-format]:
b ∈ A−||>B =⇒ ∀ z. z<=b −→ z ∈ A−||>B

〈proof 〉

lemma FiniteFun-subset: [[c<=b; b ∈ A−||>B]] =⇒ c ∈ A−||>B
〈proof 〉

162

lemma fun-FiniteFunI [rule-format]: A ∈ Fin(X) =⇒ ∀ f . f ∈ A−>B −→ f ∈
A−||>B
〈proof 〉

lemma lam-FiniteFun: A ∈ Fin(X) =⇒ (λx∈A. b(x)) ∈ A −||> {b(x). x ∈ A}
〈proof 〉

lemma FiniteFun-Collect-iff :
f ∈ FiniteFun(A, {y ∈ B. P(y)})
←→ f ∈ FiniteFun(A,B) ∧ (∀ x∈domain(f). P(f‘x))

〈proof 〉

22.3 The Contents of a Singleton Set
definition

contents :: i⇒i where
contents(X) ≡ THE x . X = {x}

lemma contents-eq [simp]: contents ({x}) = x
〈proof 〉

end

23 Cardinal Numbers Without the Axiom of Choice
theory Cardinal imports OrderType Finite Nat Sum begin

definition

Least :: (i⇒o) ⇒ i (binder ‹µ › 10) where
Least(P) ≡ THE i. Ord(i) ∧ P(i) ∧ (∀ j. j<i −→ ¬P(j))

definition
eqpoll :: [i,i] ⇒ o (infixl ‹≈› 50) where

A ≈ B ≡ ∃ f . f ∈ bij(A,B)

definition
lepoll :: [i,i] ⇒ o (infixl ‹.› 50) where

A . B ≡ ∃ f . f ∈ inj(A,B)

definition
lesspoll :: [i,i] ⇒ o (infixl ‹≺› 50) where

A ≺ B ≡ A . B ∧ ¬(A ≈ B)

definition
cardinal :: i⇒i (‹(‹open-block notation=‹mixfix cardinal››|-|)›)
where |A| ≡ (µ i. i ≈ A)

163

definition
Finite :: i⇒o where

Finite(A) ≡ ∃n∈nat. A ≈ n

definition
Card :: i⇒o where

Card(i) ≡ (i = |i|)

23.1 The Schroeder-Bernstein Theorem

See Davey and Priestly, page 106
lemma decomp-bnd-mono: bnd-mono(X , λW . X − g‘‘(Y − f‘‘W))
〈proof 〉

lemma Banach-last-equation:
g ∈ Y−>X
=⇒ g‘‘(Y − f‘‘ lfp(X , λW . X − g‘‘(Y − f‘‘W))) =

X − lfp(X , λW . X − g‘‘(Y − f‘‘W))
〈proof 〉

lemma decomposition:
[[f ∈ X−>Y ; g ∈ Y−>X]] =⇒
∃XA XB YA YB. (XA ∩ XB = 0) ∧ (XA ∪ XB = X) ∧

(YA ∩ YB = 0) ∧ (YA ∪ YB = Y) ∧
f‘‘XA=YA ∧ g‘‘YB=XB

〈proof 〉

lemma schroeder-bernstein:
[[f ∈ inj(X ,Y); g ∈ inj(Y ,X)]] =⇒ ∃ h. h ∈ bij(X ,Y)

〈proof 〉

lemma bij-imp-eqpoll: f ∈ bij(A,B) =⇒ A ≈ B
〈proof 〉

lemmas eqpoll-refl = id-bij [THEN bij-imp-eqpoll, simp]

lemma eqpoll-sym: X ≈ Y =⇒ Y ≈ X
〈proof 〉

lemma eqpoll-trans [trans]:
[[X ≈ Y ; Y ≈ Z]] =⇒ X ≈ Z
〈proof 〉

164

lemma subset-imp-lepoll: X<=Y =⇒ X . Y
〈proof 〉

lemmas lepoll-refl = subset-refl [THEN subset-imp-lepoll, simp]

lemmas le-imp-lepoll = le-imp-subset [THEN subset-imp-lepoll]

lemma eqpoll-imp-lepoll: X ≈ Y =⇒ X . Y
〈proof 〉

lemma lepoll-trans [trans]: [[X . Y ; Y . Z]] =⇒ X . Z
〈proof 〉

lemma eq-lepoll-trans [trans]: [[X ≈ Y ; Y . Z]] =⇒ X . Z
〈proof 〉

lemma lepoll-eq-trans [trans]: [[X . Y ; Y ≈ Z]] =⇒ X . Z
〈proof 〉

lemma eqpollI : [[X . Y ; Y . X]] =⇒ X ≈ Y
〈proof 〉

lemma eqpollE :
[[X ≈ Y ; [[X . Y ; Y . X]] =⇒ P]] =⇒ P

〈proof 〉

lemma eqpoll-iff : X ≈ Y ←→ X . Y ∧ Y . X
〈proof 〉

lemma lepoll-0-is-0 : A . 0 =⇒ A = 0
〈proof 〉

lemmas empty-lepollI = empty-subsetI [THEN subset-imp-lepoll]

lemma lepoll-0-iff : A . 0 ←→ A=0
〈proof 〉

lemma Un-lepoll-Un:
[[A . B; C . D; B ∩ D = 0]] =⇒ A ∪ C . B ∪ D
〈proof 〉

lemmas eqpoll-0-is-0 = eqpoll-imp-lepoll [THEN lepoll-0-is-0]

lemma eqpoll-0-iff : A ≈ 0 ←→ A=0
〈proof 〉

165

lemma eqpoll-disjoint-Un:
[[A ≈ B; C ≈ D; A ∩ C = 0 ; B ∩ D = 0]]
=⇒ A ∪ C ≈ B ∪ D

〈proof 〉

23.2 lesspoll: contributions by Krzysztof Grabczewski
lemma lesspoll-not-refl: ¬ (i ≺ i)
〈proof 〉

lemma lesspoll-irrefl [elim!]: i ≺ i =⇒ P
〈proof 〉

lemma lesspoll-imp-lepoll: A ≺ B =⇒ A . B
〈proof 〉

lemma lepoll-well-ord: [[A . B; well-ord(B,r)]] =⇒ ∃ s. well-ord(A,s)
〈proof 〉

lemma lepoll-iff-leqpoll: A . B ←→ A ≺ B | A ≈ B
〈proof 〉

lemma inj-not-surj-succ:
assumes fi: f ∈ inj(A, succ(m)) and fns: f /∈ surj(A, succ(m))
shows ∃ f . f ∈ inj(A,m)
〈proof 〉

lemma lesspoll-trans [trans]:
[[X ≺ Y ; Y ≺ Z]] =⇒ X ≺ Z

〈proof 〉

lemma lesspoll-trans1 [trans]:
[[X . Y ; Y ≺ Z]] =⇒ X ≺ Z

〈proof 〉

lemma lesspoll-trans2 [trans]:
[[X ≺ Y ; Y . Z]] =⇒ X ≺ Z

〈proof 〉

lemma eq-lesspoll-trans [trans]:
[[X ≈ Y ; Y ≺ Z]] =⇒ X ≺ Z

〈proof 〉

lemma lesspoll-eq-trans [trans]:
[[X ≺ Y ; Y ≈ Z]] =⇒ X ≺ Z

〈proof 〉

166

lemma Least-equality:
[[P(i); Ord(i);

∧
x. x<i =⇒ ¬P(x)]] =⇒ (µ x. P(x)) = i

〈proof 〉

lemma LeastI :
assumes P: P(i) and i: Ord(i) shows P(µ x. P(x))
〈proof 〉

The proof is almost identical to the one above!
lemma Least-le:

assumes P: P(i) and i: Ord(i) shows (µ x. P(x)) ≤ i
〈proof 〉

lemma less-LeastE : [[P(i); i < (µ x. P(x))]] =⇒ Q
〈proof 〉

lemma LeastI2 :
[[P(i); Ord(i);

∧
j. P(j) =⇒ Q(j)]] =⇒ Q(µ j. P(j))

〈proof 〉

lemma Least-0 :
[[¬ (∃ i. Ord(i) ∧ P(i))]] =⇒ (µ x. P(x)) = 0
〈proof 〉

lemma Ord-Least [intro,simp,TC]: Ord(µ x. P(x))
〈proof 〉

23.3 Basic Properties of Cardinals
lemma Least-cong: (

∧
y. P(y) ←→ Q(y)) =⇒ (µ x. P(x)) = (µ x. Q(x))

〈proof 〉

lemma cardinal-cong: X ≈ Y =⇒ |X | = |Y |
〈proof 〉

lemma well-ord-cardinal-eqpoll:
assumes r : well-ord(A,r) shows |A| ≈ A
〈proof 〉

167

lemmas Ord-cardinal-eqpoll = well-ord-Memrel [THEN well-ord-cardinal-eqpoll]

lemma Ord-cardinal-idem: Ord(A) =⇒ ||A|| = |A|
〈proof 〉

lemma well-ord-cardinal-eqE :
assumes woX : well-ord(X ,r) and woY : well-ord(Y ,s) and eq: |X | = |Y |

shows X ≈ Y
〈proof 〉

lemma well-ord-cardinal-eqpoll-iff :
[[well-ord(X ,r); well-ord(Y ,s)]] =⇒ |X | = |Y | ←→ X ≈ Y

〈proof 〉

lemma Ord-cardinal-le: Ord(i) =⇒ |i| ≤ i
〈proof 〉

lemma Card-cardinal-eq: Card(K) =⇒ |K | = K
〈proof 〉

lemma CardI : [[Ord(i);
∧

j. j<i =⇒ ¬(j ≈ i)]] =⇒ Card(i)
〈proof 〉

lemma Card-is-Ord: Card(i) =⇒ Ord(i)
〈proof 〉

lemma Card-cardinal-le: Card(K) =⇒ K ≤ |K |
〈proof 〉

lemma Ord-cardinal [simp,intro!]: Ord(|A|)
〈proof 〉

The cardinals are the initial ordinals.
lemma Card-iff-initial: Card(K) ←→ Ord(K) ∧ (∀ j. j<K −→ ¬ j ≈ K)
〈proof 〉

lemma lt-Card-imp-lesspoll: [[Card(a); i<a]] =⇒ i ≺ a
〈proof 〉

lemma Card-0 : Card(0)
〈proof 〉

lemma Card-Un: [[Card(K); Card(L)]] =⇒ Card(K ∪ L)
〈proof 〉

168

lemma Card-cardinal [iff]: Card(|A|)
〈proof 〉

lemma cardinal-eq-lemma:
assumes i:|i| ≤ j and j: j ≤ i shows |j| = |i|
〈proof 〉

lemma cardinal-mono:
assumes ij: i ≤ j shows |i| ≤ |j|
〈proof 〉

Since we have |succ(nat)| ≤ |nat|, the converse of cardinal-mono fails!
lemma cardinal-lt-imp-lt: [[|i| < |j|; Ord(i); Ord(j)]] =⇒ i < j
〈proof 〉

lemma Card-lt-imp-lt: [[|i| < K ; Ord(i); Card(K)]] =⇒ i < K
〈proof 〉

lemma Card-lt-iff : [[Ord(i); Card(K)]] =⇒ (|i| < K) ←→ (i < K)
〈proof 〉

lemma Card-le-iff : [[Ord(i); Card(K)]] =⇒ (K ≤ |i|) ←→ (K ≤ i)
〈proof 〉

lemma well-ord-lepoll-imp-cardinal-le:
assumes wB: well-ord(B,r) and AB: A . B
shows |A| ≤ |B|
〈proof 〉

lemma lepoll-cardinal-le: [[A . i; Ord(i)]] =⇒ |A| ≤ i
〈proof 〉

lemma lepoll-Ord-imp-eqpoll: [[A . i; Ord(i)]] =⇒ |A| ≈ A
〈proof 〉

lemma lesspoll-imp-eqpoll: [[A ≺ i; Ord(i)]] =⇒ |A| ≈ A
〈proof 〉

lemma cardinal-subset-Ord: [[A<=i; Ord(i)]] =⇒ |A| ⊆ i
〈proof 〉

23.4 The finite cardinals
lemma cons-lepoll-consD:
[[cons(u,A) . cons(v,B); u /∈A; v /∈B]] =⇒ A . B

169

〈proof 〉

lemma cons-eqpoll-consD: [[cons(u,A) ≈ cons(v,B); u /∈A; v /∈B]] =⇒ A ≈ B
〈proof 〉

lemma succ-lepoll-succD: succ(m) . succ(n) =⇒ m . n
〈proof 〉

lemma nat-lepoll-imp-le:
m ∈ nat =⇒ n ∈ nat =⇒ m . n =⇒ m ≤ n

〈proof 〉

lemma nat-eqpoll-iff : [[m ∈ nat; n ∈ nat]] =⇒ m ≈ n ←→ m = n
〈proof 〉

lemma nat-into-Card:
assumes n: n ∈ nat shows Card(n)
〈proof 〉

lemmas cardinal-0 = nat-0I [THEN nat-into-Card, THEN Card-cardinal-eq, iff]
lemmas cardinal-1 = nat-1I [THEN nat-into-Card, THEN Card-cardinal-eq, iff]

lemma succ-lepoll-natE : [[succ(n) . n; n ∈ nat]] =⇒ P
〈proof 〉

lemma nat-lepoll-imp-ex-eqpoll-n:
[[n ∈ nat; nat . X]] =⇒ ∃Y . Y ⊆ X ∧ n ≈ Y

〈proof 〉

lemma lepoll-succ: i . succ(i)
〈proof 〉

lemma lepoll-imp-lesspoll-succ:
assumes A: A . m and m: m ∈ nat
shows A ≺ succ(m)
〈proof 〉

lemma lesspoll-succ-imp-lepoll:
[[A ≺ succ(m); m ∈ nat]] =⇒ A . m

〈proof 〉

170

lemma lesspoll-succ-iff : m ∈ nat =⇒ A ≺ succ(m) ←→ A . m
〈proof 〉

lemma lepoll-succ-disj: [[A . succ(m); m ∈ nat]] =⇒ A . m | A ≈ succ(m)
〈proof 〉

lemma lesspoll-cardinal-lt: [[A ≺ i; Ord(i)]] =⇒ |A| < i
〈proof 〉

23.5 The first infinite cardinal: Omega, or nat
lemma lt-not-lepoll:

assumes n: n<i n ∈ nat shows ¬ i . n
〈proof 〉

A slightly weaker version of nat-eqpoll-iff
lemma Ord-nat-eqpoll-iff :

assumes i: Ord(i) and n: n ∈ nat shows i ≈ n ←→ i=n
〈proof 〉

lemma Card-nat: Card(nat)
〈proof 〉

lemma nat-le-cardinal: nat ≤ i =⇒ nat ≤ |i|
〈proof 〉

lemma n-lesspoll-nat: n ∈ nat =⇒ n ≺ nat
〈proof 〉

23.6 Towards Cardinal Arithmetic
lemma cons-lepoll-cong:

[[A . B; b /∈ B]] =⇒ cons(a,A) . cons(b,B)
〈proof 〉

lemma cons-eqpoll-cong:
[[A ≈ B; a /∈ A; b /∈ B]] =⇒ cons(a,A) ≈ cons(b,B)

〈proof 〉

lemma cons-lepoll-cons-iff :
[[a /∈ A; b /∈ B]] =⇒ cons(a,A) . cons(b,B) ←→ A . B

〈proof 〉

lemma cons-eqpoll-cons-iff :
[[a /∈ A; b /∈ B]] =⇒ cons(a,A) ≈ cons(b,B) ←→ A ≈ B

〈proof 〉

lemma singleton-eqpoll-1 : {a} ≈ 1

171

〈proof 〉

lemma cardinal-singleton: |{a}| = 1
〈proof 〉

lemma not-0-is-lepoll-1 : A 6= 0 =⇒ 1 . A
〈proof 〉

lemma succ-eqpoll-cong: A ≈ B =⇒ succ(A) ≈ succ(B)
〈proof 〉

lemma sum-eqpoll-cong: [[A ≈ C ; B ≈ D]] =⇒ A+B ≈ C+D
〈proof 〉

lemma prod-eqpoll-cong:
[[A ≈ C ; B ≈ D]] =⇒ A∗B ≈ C∗D
〈proof 〉

lemma inj-disjoint-eqpoll:
[[f ∈ inj(A,B); A ∩ B = 0]] =⇒ A ∪ (B − range(f)) ≈ B
〈proof 〉

23.7 Lemmas by Krzysztof Grabczewski

If A has at most n + 1 elements and a ∈ A then A − {a} has at most n.
lemma Diff-sing-lepoll:

[[a ∈ A; A . succ(n)]] =⇒ A − {a} . n
〈proof 〉

If A has at least n + 1 elements then A − {a} has at least n.
lemma lepoll-Diff-sing:

assumes A: succ(n) . A shows n . A − {a}
〈proof 〉

lemma Diff-sing-eqpoll: [[a ∈ A; A ≈ succ(n)]] =⇒ A − {a} ≈ n
〈proof 〉

lemma lepoll-1-is-sing: [[A . 1 ; a ∈ A]] =⇒ A = {a}
〈proof 〉

lemma Un-lepoll-sum: A ∪ B . A+B
〈proof 〉

lemma well-ord-Un:
[[well-ord(X ,R); well-ord(Y ,S)]] =⇒ ∃T . well-ord(X ∪ Y , T)

〈proof 〉

172

lemma disj-Un-eqpoll-sum: A ∩ B = 0 =⇒ A ∪ B ≈ A + B
〈proof 〉

23.8 Finite and infinite sets
lemma eqpoll-imp-Finite-iff : A ≈ B =⇒ Finite(A) ←→ Finite(B)
〈proof 〉

lemma Finite-0 [simp]: Finite(0)
〈proof 〉

lemma Finite-cons: Finite(x) =⇒ Finite(cons(y,x))
〈proof 〉

lemma Finite-succ: Finite(x) =⇒ Finite(succ(x))
〈proof 〉

lemma lepoll-nat-imp-Finite:
assumes A: A . n and n: n ∈ nat shows Finite(A)
〈proof 〉

lemma lesspoll-nat-is-Finite:
A ≺ nat =⇒ Finite(A)

〈proof 〉

lemma lepoll-Finite:
assumes Y : Y . X and X : Finite(X) shows Finite(Y)
〈proof 〉

lemmas subset-Finite = subset-imp-lepoll [THEN lepoll-Finite]

lemma Finite-cons-iff [iff]: Finite(cons(y,x)) ←→ Finite(x)
〈proof 〉

lemma Finite-succ-iff [iff]: Finite(succ(x)) ←→ Finite(x)
〈proof 〉

lemma Finite-Int: Finite(A) | Finite(B) =⇒ Finite(A ∩ B)
〈proof 〉

lemmas Finite-Diff = Diff-subset [THEN subset-Finite]

lemma nat-le-infinite-Ord:
[[Ord(i); ¬ Finite(i)]] =⇒ nat ≤ i

〈proof 〉

lemma Finite-imp-well-ord:

173

Finite(A) =⇒ ∃ r . well-ord(A,r)
〈proof 〉

lemma succ-lepoll-imp-not-empty: succ(x) . y =⇒ y 6= 0
〈proof 〉

lemma eqpoll-succ-imp-not-empty: x ≈ succ(n) =⇒ x 6= 0
〈proof 〉

lemma Finite-Fin-lemma [rule-format]:
n ∈ nat =⇒ ∀A. (A≈n ∧ A ⊆ X) −→ A ∈ Fin(X)

〈proof 〉

lemma Finite-Fin: [[Finite(A); A ⊆ X]] =⇒ A ∈ Fin(X)
〈proof 〉

lemma Fin-lemma [rule-format]: n ∈ nat =⇒ ∀A. A ≈ n −→ A ∈ Fin(A)
〈proof 〉

lemma Finite-into-Fin: Finite(A) =⇒ A ∈ Fin(A)
〈proof 〉

lemma Fin-into-Finite: A ∈ Fin(U) =⇒ Finite(A)
〈proof 〉

lemma Finite-Fin-iff : Finite(A) ←→ A ∈ Fin(A)
〈proof 〉

lemma Finite-Un: [[Finite(A); Finite(B)]] =⇒ Finite(A ∪ B)
〈proof 〉

lemma Finite-Un-iff [simp]: Finite(A ∪ B) ←→ (Finite(A) ∧ Finite(B))
〈proof 〉

The converse must hold too.
lemma Finite-Union: [[∀ y∈X . Finite(y); Finite(X)]] =⇒ Finite(

⋃
(X))

〈proof 〉

lemma Finite-induct [case-names 0 cons, induct set: Finite]:
[[Finite(A); P(0);∧

x B. [[Finite(B); x /∈ B; P(B)]] =⇒ P(cons(x, B))]]
=⇒ P(A)
〈proof 〉

lemma Diff-sing-Finite: Finite(A − {a}) =⇒ Finite(A)
〈proof 〉

174

lemma Diff-Finite [rule-format]: Finite(B) =⇒ Finite(A−B) −→ Finite(A)
〈proof 〉

lemma Finite-RepFun: Finite(A) =⇒ Finite(RepFun(A,f))
〈proof 〉

lemma Finite-RepFun-iff-lemma [rule-format]:
[[Finite(x);

∧
x y. f (x)=f (y) =⇒ x=y]]

=⇒ ∀A. x = RepFun(A,f) −→ Finite(A)
〈proof 〉

I don’t know why, but if the premise is expressed using meta-connectives
then the simplifier cannot prove it automatically in conditional rewriting.
lemma Finite-RepFun-iff :

(∀ x y. f (x)=f (y) −→ x=y) =⇒ Finite(RepFun(A,f)) ←→ Finite(A)
〈proof 〉

lemma Finite-Pow: Finite(A) =⇒ Finite(Pow(A))
〈proof 〉

lemma Finite-Pow-imp-Finite: Finite(Pow(A)) =⇒ Finite(A)
〈proof 〉

lemma Finite-Pow-iff [iff]: Finite(Pow(A)) ←→ Finite(A)
〈proof 〉

lemma Finite-cardinal-iff :
assumes i: Ord(i) shows Finite(|i|) ←→ Finite(i)
〈proof 〉

lemma nat-wf-on-converse-Memrel: n ∈ nat =⇒ wf [n](converse(Memrel(n)))
〈proof 〉

lemma nat-well-ord-converse-Memrel: n ∈ nat =⇒ well-ord(n,converse(Memrel(n)))
〈proof 〉

lemma well-ord-converse:
[[well-ord(A,r);

well-ord(ordertype(A,r), converse(Memrel(ordertype(A, r))))]]
=⇒ well-ord(A,converse(r))

〈proof 〉

lemma ordertype-eq-n:
assumes r : well-ord(A,r) and A: A ≈ n and n: n ∈ nat
shows ordertype(A,r) = n

175

〈proof 〉

lemma Finite-well-ord-converse:
[[Finite(A); well-ord(A,r)]] =⇒ well-ord(A,converse(r))
〈proof 〉

lemma nat-into-Finite: n ∈ nat =⇒ Finite(n)
〈proof 〉

lemma nat-not-Finite: ¬ Finite(nat)
〈proof 〉

end

24 The Cumulative Hierarchy and a Small Uni-
verse for Recursive Types

theory Univ imports Epsilon Cardinal begin

definition
Vfrom :: [i,i]⇒i where

Vfrom(A,i) ≡ transrec(i, λx f . A ∪ (
⋃

y∈x. Pow(f‘y)))

abbreviation
Vset :: i⇒i where
Vset(x) ≡ Vfrom(0 ,x)

definition
Vrec :: [i, [i,i]⇒i] ⇒i where

Vrec(a,H) ≡ transrec(rank(a), λx g. λz∈Vset(succ(x)).
H (z, λw∈Vset(x). g‘rank(w)‘w)) ‘ a

definition
Vrecursor :: [[i,i]⇒i, i] ⇒i where

Vrecursor(H ,a) ≡ transrec(rank(a), λx g. λz∈Vset(succ(x)).
H (λw∈Vset(x). g‘rank(w)‘w, z)) ‘ a

definition
univ :: i⇒i where

univ(A) ≡ Vfrom(A,nat)

24.1 Immediate Consequences of the Definition of Vfrom(A,
i)

NOT SUITABLE FOR REWRITING – RECURSIVE!
lemma Vfrom: Vfrom(A,i) = A ∪ (

⋃
j∈i. Pow(Vfrom(A,j)))

〈proof 〉

176

24.1.1 Monotonicity
lemma Vfrom-mono [rule-format]:

A<=B =⇒ ∀ j. i<=j −→ Vfrom(A,i) ⊆ Vfrom(B,j)
〈proof 〉

lemma VfromI : [[a ∈ Vfrom(A,j); j<i]] =⇒ a ∈ Vfrom(A,i)
〈proof 〉

24.1.2 A fundamental equality: Vfrom does not require ordinals!
lemma Vfrom-rank-subset1 : Vfrom(A,x) ⊆ Vfrom(A,rank(x))
〈proof 〉

lemma Vfrom-rank-subset2 : Vfrom(A,rank(x)) ⊆ Vfrom(A,x)
〈proof 〉

lemma Vfrom-rank-eq: Vfrom(A,rank(x)) = Vfrom(A,x)
〈proof 〉

24.2 Basic Closure Properties
lemma zero-in-Vfrom: y:x =⇒ 0 ∈ Vfrom(A,x)
〈proof 〉

lemma i-subset-Vfrom: i ⊆ Vfrom(A,i)
〈proof 〉

lemma A-subset-Vfrom: A ⊆ Vfrom(A,i)
〈proof 〉

lemmas A-into-Vfrom = A-subset-Vfrom [THEN subsetD]

lemma subset-mem-Vfrom: a ⊆ Vfrom(A,i) =⇒ a ∈ Vfrom(A,succ(i))
〈proof 〉

24.2.1 Finite sets and ordered pairs
lemma singleton-in-Vfrom: a ∈ Vfrom(A,i) =⇒ {a} ∈ Vfrom(A,succ(i))
〈proof 〉

lemma doubleton-in-Vfrom:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i)]] =⇒ {a,b} ∈ Vfrom(A,succ(i))

〈proof 〉

lemma Pair-in-Vfrom:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i)]] =⇒ 〈a,b〉 ∈ Vfrom(A,succ(succ(i)))
〈proof 〉

lemma succ-in-Vfrom: a ⊆ Vfrom(A,i) =⇒ succ(a) ∈ Vfrom(A,succ(succ(i)))

177

〈proof 〉

24.3 0, Successor and Limit Equations for Vfrom
lemma Vfrom-0 : Vfrom(A,0) = A
〈proof 〉

lemma Vfrom-succ-lemma: Ord(i) =⇒ Vfrom(A,succ(i)) = A ∪ Pow(Vfrom(A,i))
〈proof 〉

lemma Vfrom-succ: Vfrom(A,succ(i)) = A ∪ Pow(Vfrom(A,i))
〈proof 〉

lemma Vfrom-Union: y:X =⇒ Vfrom(A,
⋃

(X)) = (
⋃

y∈X . Vfrom(A,y))
〈proof 〉

24.4 Vfrom applied to Limit Ordinals
lemma Limit-Vfrom-eq:

Limit(i) =⇒ Vfrom(A,i) = (
⋃

y∈i. Vfrom(A,y))
〈proof 〉

lemma Limit-VfromE :
[[a ∈ Vfrom(A,i); ¬R =⇒ Limit(i);∧

x. [[x<i; a ∈ Vfrom(A,x)]] =⇒ R
]] =⇒ R
〈proof 〉

lemma singleton-in-VLimit:
[[a ∈ Vfrom(A,i); Limit(i)]] =⇒ {a} ∈ Vfrom(A,i)

〈proof 〉

lemmas Vfrom-UnI1 =
Un-upper1 [THEN subset-refl [THEN Vfrom-mono, THEN subsetD]]

lemmas Vfrom-UnI2 =
Un-upper2 [THEN subset-refl [THEN Vfrom-mono, THEN subsetD]]

Hard work is finding a single j:i such that a,b<=Vfrom(A,j)
lemma doubleton-in-VLimit:

[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i)]] =⇒ {a,b} ∈ Vfrom(A,i)
〈proof 〉

lemma Pair-in-VLimit:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i)]] =⇒ 〈a,b〉 ∈ Vfrom(A,i)

Infer that a, b occur at ordinals x,xa < i.

〈proof 〉

178

lemma product-VLimit: Limit(i) =⇒ Vfrom(A,i) ∗ Vfrom(A,i) ⊆ Vfrom(A,i)
〈proof 〉

lemmas Sigma-subset-VLimit =
subset-trans [OF Sigma-mono product-VLimit]

lemmas nat-subset-VLimit =
subset-trans [OF nat-le-Limit [THEN le-imp-subset] i-subset-Vfrom]

lemma nat-into-VLimit: [[n: nat; Limit(i)]] =⇒ n ∈ Vfrom(A,i)
〈proof 〉

24.4.1 Closure under Disjoint Union
lemmas zero-in-VLimit = Limit-has-0 [THEN ltD, THEN zero-in-Vfrom]

lemma one-in-VLimit: Limit(i) =⇒ 1 ∈ Vfrom(A,i)
〈proof 〉

lemma Inl-in-VLimit:
[[a ∈ Vfrom(A,i); Limit(i)]] =⇒ Inl(a) ∈ Vfrom(A,i)
〈proof 〉

lemma Inr-in-VLimit:
[[b ∈ Vfrom(A,i); Limit(i)]] =⇒ Inr(b) ∈ Vfrom(A,i)
〈proof 〉

lemma sum-VLimit: Limit(i) =⇒ Vfrom(C ,i)+Vfrom(C ,i) ⊆ Vfrom(C ,i)
〈proof 〉

lemmas sum-subset-VLimit = subset-trans [OF sum-mono sum-VLimit]

24.5 Properties assuming Transset(A)

lemma Transset-Vfrom: Transset(A) =⇒ Transset(Vfrom(A,i))
〈proof 〉

lemma Transset-Vfrom-succ:
Transset(A) =⇒ Vfrom(A, succ(i)) = Pow(Vfrom(A,i))

〈proof 〉

lemma Transset-Pair-subset: [[〈a,b〉 ⊆ C ; Transset(C)]] =⇒ a: C ∧ b: C
〈proof 〉

lemma Transset-Pair-subset-VLimit:
[[〈a,b〉 ⊆ Vfrom(A,i); Transset(A); Limit(i)]]
=⇒ 〈a,b〉 ∈ Vfrom(A,i)

〈proof 〉

lemma Union-in-Vfrom:

179

[[X ∈ Vfrom(A,j); Transset(A)]] =⇒
⋃

(X) ∈ Vfrom(A, succ(j))
〈proof 〉

lemma Union-in-VLimit:
[[X ∈ Vfrom(A,i); Limit(i); Transset(A)]] =⇒

⋃
(X) ∈ Vfrom(A,i)

〈proof 〉

General theorem for membership in Vfrom(A,i) when i is a limit ordinal
lemma in-VLimit:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i);∧

x y j. [[j<i; 1 :j; x ∈ Vfrom(A,j); y ∈ Vfrom(A,j)]]
=⇒ ∃ k. h(x,y) ∈ Vfrom(A,k) ∧ k<i]]

=⇒ h(a,b) ∈ Vfrom(A,i)

Infer that a, b occur at ordinals x,xa < i.

〈proof 〉

24.5.1 Products
lemma prod-in-Vfrom:

[[a ∈ Vfrom(A,j); b ∈ Vfrom(A,j); Transset(A)]]
=⇒ a∗b ∈ Vfrom(A, succ(succ(succ(j))))

〈proof 〉

lemma prod-in-VLimit:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i); Transset(A)]]
=⇒ a∗b ∈ Vfrom(A,i)

〈proof 〉

24.5.2 Disjoint Sums, or Quine Ordered Pairs
lemma sum-in-Vfrom:

[[a ∈ Vfrom(A,j); b ∈ Vfrom(A,j); Transset(A); 1 :j]]
=⇒ a+b ∈ Vfrom(A, succ(succ(succ(j))))

〈proof 〉

lemma sum-in-VLimit:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i); Transset(A)]]
=⇒ a+b ∈ Vfrom(A,i)

〈proof 〉

24.5.3 Function Space!
lemma fun-in-Vfrom:

[[a ∈ Vfrom(A,j); b ∈ Vfrom(A,j); Transset(A)]] =⇒
a−>b ∈ Vfrom(A, succ(succ(succ(succ(j)))))

〈proof 〉

lemma fun-in-VLimit:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i); Transset(A)]]

180

=⇒ a−>b ∈ Vfrom(A,i)
〈proof 〉

lemma Pow-in-Vfrom:
[[a ∈ Vfrom(A,j); Transset(A)]] =⇒ Pow(a) ∈ Vfrom(A, succ(succ(j)))

〈proof 〉

lemma Pow-in-VLimit:
[[a ∈ Vfrom(A,i); Limit(i); Transset(A)]] =⇒ Pow(a) ∈ Vfrom(A,i)

〈proof 〉

24.6 The Set Vset(i)
lemma Vset: Vset(i) = (

⋃
j∈i. Pow(Vset(j)))

〈proof 〉

lemmas Vset-succ = Transset-0 [THEN Transset-Vfrom-succ]
lemmas Transset-Vset = Transset-0 [THEN Transset-Vfrom]

24.6.1 Characterisation of the elements of Vset(i)
lemma VsetD [rule-format]: Ord(i) =⇒ ∀ b. b ∈ Vset(i) −→ rank(b) < i
〈proof 〉

lemma VsetI-lemma [rule-format]:
Ord(i) =⇒ ∀ b. rank(b) ∈ i −→ b ∈ Vset(i)

〈proof 〉

lemma VsetI : rank(x)<i =⇒ x ∈ Vset(i)
〈proof 〉

Merely a lemma for the next result
lemma Vset-Ord-rank-iff : Ord(i) =⇒ b ∈ Vset(i) ←→ rank(b) < i
〈proof 〉

lemma Vset-rank-iff [simp]: b ∈ Vset(a) ←→ rank(b) < rank(a)
〈proof 〉

This is rank(rank(a)) = rank(a)
declare Ord-rank [THEN rank-of-Ord, simp]

lemma rank-Vset: Ord(i) =⇒ rank(Vset(i)) = i
〈proof 〉

lemma Finite-Vset: i ∈ nat =⇒ Finite(Vset(i))
〈proof 〉

24.6.2 Reasoning about Sets in Terms of Their Elements’ Ranks
lemma arg-subset-Vset-rank: a ⊆ Vset(rank(a))

181

〈proof 〉

lemma Int-Vset-subset:
[[
∧

i. Ord(i) =⇒ a ∩ Vset(i) ⊆ b]] =⇒ a ⊆ b
〈proof 〉

24.6.3 Set Up an Environment for Simplification
lemma rank-Inl: rank(a) < rank(Inl(a))
〈proof 〉

lemma rank-Inr : rank(a) < rank(Inr(a))
〈proof 〉

lemmas rank-rls = rank-Inl rank-Inr rank-pair1 rank-pair2

24.6.4 Recursion over Vset Levels!

NOT SUITABLE FOR REWRITING: recursive!
lemma Vrec: Vrec(a,H) = H (a, λx∈Vset(rank(a)). Vrec(x,H))
〈proof 〉

This form avoids giant explosions in proofs. NOTE the form of the premise!
lemma def-Vrec:

[[
∧

x. h(x)≡Vrec(x,H)]] =⇒
h(a) = H (a, λx∈Vset(rank(a)). h(x))

〈proof 〉

NOT SUITABLE FOR REWRITING: recursive!
lemma Vrecursor :

Vrecursor(H ,a) = H (λx∈Vset(rank(a)). Vrecursor(H ,x), a)
〈proof 〉

This form avoids giant explosions in proofs. NOTE the form of the premise!
lemma def-Vrecursor :

h ≡ Vrecursor(H) =⇒ h(a) = H (λx∈Vset(rank(a)). h(x), a)
〈proof 〉

24.7 The Datatype Universe: univ(A)

lemma univ-mono: A<=B =⇒ univ(A) ⊆ univ(B)
〈proof 〉

lemma Transset-univ: Transset(A) =⇒ Transset(univ(A))
〈proof 〉

182

24.7.1 The Set univ(A) as a Limit
lemma univ-eq-UN : univ(A) = (

⋃
i∈nat. Vfrom(A,i))

〈proof 〉

lemma subset-univ-eq-Int: c ⊆ univ(A) =⇒ c = (
⋃

i∈nat. c ∩ Vfrom(A,i))
〈proof 〉

lemma univ-Int-Vfrom-subset:
[[a ⊆ univ(X);∧

i. i:nat =⇒ a ∩ Vfrom(X ,i) ⊆ b]]
=⇒ a ⊆ b

〈proof 〉

lemma univ-Int-Vfrom-eq:
[[a ⊆ univ(X); b ⊆ univ(X);∧

i. i:nat =⇒ a ∩ Vfrom(X ,i) = b ∩ Vfrom(X ,i)
]] =⇒ a = b
〈proof 〉

24.8 Closure Properties for univ(A)

lemma zero-in-univ: 0 ∈ univ(A)
〈proof 〉

lemma zero-subset-univ: {0} ⊆ univ(A)
〈proof 〉

lemma A-subset-univ: A ⊆ univ(A)
〈proof 〉

lemmas A-into-univ = A-subset-univ [THEN subsetD]

24.8.1 Closure under Unordered and Ordered Pairs
lemma singleton-in-univ: a: univ(A) =⇒ {a} ∈ univ(A)
〈proof 〉

lemma doubleton-in-univ:
[[a: univ(A); b: univ(A)]] =⇒ {a,b} ∈ univ(A)
〈proof 〉

lemma Pair-in-univ:
[[a: univ(A); b: univ(A)]] =⇒ 〈a,b〉 ∈ univ(A)
〈proof 〉

lemma Union-in-univ:
[[X : univ(A); Transset(A)]] =⇒

⋃
(X) ∈ univ(A)

〈proof 〉

183

lemma product-univ: univ(A)∗univ(A) ⊆ univ(A)
〈proof 〉

24.8.2 The Natural Numbers
lemma nat-subset-univ: nat ⊆ univ(A)
〈proof 〉

lemma nat-into-univ: n ∈ nat =⇒ n ∈ univ(A)
〈proof 〉

24.8.3 Instances for 1 and 2
lemma one-in-univ: 1 ∈ univ(A)
〈proof 〉

unused!
lemma two-in-univ: 2 ∈ univ(A)
〈proof 〉

lemma bool-subset-univ: bool ⊆ univ(A)
〈proof 〉

lemmas bool-into-univ = bool-subset-univ [THEN subsetD]

24.8.4 Closure under Disjoint Union
lemma Inl-in-univ: a: univ(A) =⇒ Inl(a) ∈ univ(A)
〈proof 〉

lemma Inr-in-univ: b: univ(A) =⇒ Inr(b) ∈ univ(A)
〈proof 〉

lemma sum-univ: univ(C)+univ(C) ⊆ univ(C)
〈proof 〉

lemmas sum-subset-univ = subset-trans [OF sum-mono sum-univ]

lemma Sigma-subset-univ:
[[A ⊆ univ(D);

∧
x. x ∈ A =⇒ B(x) ⊆ univ(D)]] =⇒ Sigma(A,B) ⊆ univ(D)

〈proof 〉

24.9 Finite Branching Closure Properties
24.9.1 Closure under Finite Powerset
lemma Fin-Vfrom-lemma:

[[b: Fin(Vfrom(A,i)); Limit(i)]] =⇒ ∃ j. b ⊆ Vfrom(A,j) ∧ j<i
〈proof 〉

184

lemma Fin-VLimit: Limit(i) =⇒ Fin(Vfrom(A,i)) ⊆ Vfrom(A,i)
〈proof 〉

lemmas Fin-subset-VLimit = subset-trans [OF Fin-mono Fin-VLimit]

lemma Fin-univ: Fin(univ(A)) ⊆ univ(A)
〈proof 〉

24.9.2 Closure under Finite Powers: Functions from a Natural
Number

lemma nat-fun-VLimit:
[[n: nat; Limit(i)]] =⇒ n −> Vfrom(A,i) ⊆ Vfrom(A,i)

〈proof 〉

lemmas nat-fun-subset-VLimit = subset-trans [OF Pi-mono nat-fun-VLimit]

lemma nat-fun-univ: n: nat =⇒ n −> univ(A) ⊆ univ(A)
〈proof 〉

24.9.3 Closure under Finite Function Space

General but seldom-used version; normally the domain is fixed
lemma FiniteFun-VLimit1 :

Limit(i) =⇒ Vfrom(A,i) −||> Vfrom(A,i) ⊆ Vfrom(A,i)
〈proof 〉

lemma FiniteFun-univ1 : univ(A) −||> univ(A) ⊆ univ(A)
〈proof 〉

Version for a fixed domain
lemma FiniteFun-VLimit:

[[W ⊆ Vfrom(A,i); Limit(i)]] =⇒ W −||> Vfrom(A,i) ⊆ Vfrom(A,i)
〈proof 〉

lemma FiniteFun-univ:
W ⊆ univ(A) =⇒ W −||> univ(A) ⊆ univ(A)
〈proof 〉

lemma FiniteFun-in-univ:
[[f : W −||> univ(A); W ⊆ univ(A)]] =⇒ f ∈ univ(A)

〈proof 〉

Remove ⊆ from the rule above
lemmas FiniteFun-in-univ ′ = FiniteFun-in-univ [OF - subsetI]

185

24.10 * For QUniv. Properties of Vfrom analogous to the
"take-lemma" *

Intersecting a*b with Vfrom...

This version says a, b exist one level down, in the smaller set Vfrom(X,i)
lemma doubleton-in-Vfrom-D:

[[{a,b} ∈ Vfrom(X ,succ(i)); Transset(X)]]
=⇒ a ∈ Vfrom(X ,i) ∧ b ∈ Vfrom(X ,i)

〈proof 〉

This weaker version says a, b exist at the same level
lemmas Vfrom-doubleton-D = Transset-Vfrom [THEN Transset-doubleton-D]

lemma Pair-in-Vfrom-D:
[[〈a,b〉 ∈ Vfrom(X ,succ(i)); Transset(X)]]
=⇒ a ∈ Vfrom(X ,i) ∧ b ∈ Vfrom(X ,i)

〈proof 〉

lemma product-Int-Vfrom-subset:
Transset(X) =⇒
(a∗b) ∩ Vfrom(X , succ(i)) ⊆ (a ∩ Vfrom(X ,i)) ∗ (b ∩ Vfrom(X ,i))

〈proof 〉

〈ML〉

end

25 A Small Universe for Lazy Recursive Types
theory QUniv imports Univ QPair begin

rep-datatype
elimination sumE
induction TrueI
case-eqns case-Inl case-Inr

rep-datatype
elimination qsumE
induction TrueI
case-eqns qcase-QInl qcase-QInr

definition

186

quniv :: i ⇒ i where
quniv(A) ≡ Pow(univ(eclose(A)))

25.1 Properties involving Transset and Sum
lemma Transset-includes-summands:

[[Transset(C); A+B ⊆ C]] =⇒ A ⊆ C ∧ B ⊆ C
〈proof 〉

lemma Transset-sum-Int-subset:
Transset(C) =⇒ (A+B) ∩ C ⊆ (A ∩ C) + (B ∩ C)

〈proof 〉

25.2 Introduction and Elimination Rules
lemma qunivI : X ⊆ univ(eclose(A)) =⇒ X ∈ quniv(A)
〈proof 〉

lemma qunivD: X ∈ quniv(A) =⇒ X ⊆ univ(eclose(A))
〈proof 〉

lemma quniv-mono: A<=B =⇒ quniv(A) ⊆ quniv(B)
〈proof 〉

25.3 Closure Properties
lemma univ-eclose-subset-quniv: univ(eclose(A)) ⊆ quniv(A)
〈proof 〉

lemma univ-subset-quniv: univ(A) ⊆ quniv(A)
〈proof 〉

lemmas univ-into-quniv = univ-subset-quniv [THEN subsetD]

lemma Pow-univ-subset-quniv: Pow(univ(A)) ⊆ quniv(A)
〈proof 〉

lemmas univ-subset-into-quniv =
PowI [THEN Pow-univ-subset-quniv [THEN subsetD]]

lemmas zero-in-quniv = zero-in-univ [THEN univ-into-quniv]
lemmas one-in-quniv = one-in-univ [THEN univ-into-quniv]
lemmas two-in-quniv = two-in-univ [THEN univ-into-quniv]

lemmas A-subset-quniv = subset-trans [OF A-subset-univ univ-subset-quniv]

lemmas A-into-quniv = A-subset-quniv [THEN subsetD]

187

lemma QPair-subset-univ:
[[a ⊆ univ(A); b ⊆ univ(A)]] =⇒ <a;b> ⊆ univ(A)

〈proof 〉

25.4 Quine Disjoint Sum
lemma QInl-subset-univ: a ⊆ univ(A) =⇒ QInl(a) ⊆ univ(A)
〈proof 〉

lemmas naturals-subset-nat =
Ord-nat [THEN Ord-is-Transset, unfolded Transset-def , THEN bspec]

lemmas naturals-subset-univ =
subset-trans [OF naturals-subset-nat nat-subset-univ]

lemma QInr-subset-univ: a ⊆ univ(A) =⇒ QInr(a) ⊆ univ(A)
〈proof 〉

25.5 Closure for Quine-Inspired Products and Sums
lemma QPair-in-quniv:

[[a: quniv(A); b: quniv(A)]] =⇒ <a;b> ∈ quniv(A)
〈proof 〉

lemma QSigma-quniv: quniv(A) <∗> quniv(A) ⊆ quniv(A)
〈proof 〉

lemmas QSigma-subset-quniv = subset-trans [OF QSigma-mono QSigma-quniv]

lemma quniv-QPair-D:
<a;b> ∈ quniv(A) =⇒ a: quniv(A) ∧ b: quniv(A)
〈proof 〉

lemmas quniv-QPair-E = quniv-QPair-D [THEN conjE]

lemma quniv-QPair-iff : <a;b> ∈ quniv(A) ←→ a: quniv(A) ∧ b: quniv(A)
〈proof 〉

25.6 Quine Disjoint Sum
lemma QInl-in-quniv: a: quniv(A) =⇒ QInl(a) ∈ quniv(A)
〈proof 〉

lemma QInr-in-quniv: b: quniv(A) =⇒ QInr(b) ∈ quniv(A)
〈proof 〉

lemma qsum-quniv: quniv(C) <+> quniv(C) ⊆ quniv(C)

188

〈proof 〉

lemmas qsum-subset-quniv = subset-trans [OF qsum-mono qsum-quniv]

25.7 The Natural Numbers
lemmas nat-subset-quniv = subset-trans [OF nat-subset-univ univ-subset-quniv]

lemmas nat-into-quniv = nat-subset-quniv [THEN subsetD]

lemmas bool-subset-quniv = subset-trans [OF bool-subset-univ univ-subset-quniv]

lemmas bool-into-quniv = bool-subset-quniv [THEN subsetD]

lemma QPair-Int-Vfrom-succ-subset:
Transset(X) =⇒

<a;b> ∩ Vfrom(X , succ(i)) ⊆ <a ∩ Vfrom(X ,i); b ∩ Vfrom(X ,i)>
〈proof 〉

25.8 "Take-Lemma" Rules
lemma QPair-Int-Vfrom-subset:
Transset(X) =⇒

<a;b> ∩ Vfrom(X ,i) ⊆ <a ∩ Vfrom(X ,i); b ∩ Vfrom(X ,i)>
〈proof 〉

lemmas QPair-Int-Vset-subset-trans =
subset-trans [OF Transset-0 [THEN QPair-Int-Vfrom-subset] QPair-mono]

lemma QPair-Int-Vset-subset-UN :
Ord(i) =⇒ <a;b> ∩ Vset(i) ⊆ (

⋃
j∈i. <a ∩ Vset(j); b ∩ Vset(j)>)

〈proof 〉

end

26 Datatype and CoDatatype Definitions
theory Datatype
imports Inductive Univ QUniv
keywords datatype codatatype :: thy-decl
begin

〈ML〉

189

end

27 Arithmetic Operators and Their Definitions
theory Arith imports Univ begin

Proofs about elementary arithmetic: addition, multiplication, etc.
definition

pred :: i⇒i where
pred(y) ≡ nat-case(0 , λx. x, y)

definition
natify :: i⇒i where

natify ≡ Vrecursor(λf a. if a = succ(pred(a)) then succ(f‘pred(a))
else 0)

consts
raw-add :: [i,i]⇒i
raw-diff :: [i,i]⇒i
raw-mult :: [i,i]⇒i

primrec
raw-add (0 , n) = n
raw-add (succ(m), n) = succ(raw-add(m, n))

primrec
raw-diff-0 : raw-diff (m, 0) = m
raw-diff-succ: raw-diff (m, succ(n)) =

nat-case(0 , λx. x, raw-diff (m, n))

primrec
raw-mult(0 , n) = 0
raw-mult(succ(m), n) = raw-add (n, raw-mult(m, n))

definition
add :: [i,i]⇒i (infixl ‹#+› 65) where

m #+ n ≡ raw-add (natify(m), natify(n))

definition
diff :: [i,i]⇒i (infixl ‹#−› 65) where

m #− n ≡ raw-diff (natify(m), natify(n))

definition
mult :: [i,i]⇒i (infixl ‹#∗› 70) where

m #∗ n ≡ raw-mult (natify(m), natify(n))

definition
raw-div :: [i,i]⇒i where

raw-div (m, n) ≡

190

transrec(m, λj f . if j<n | n=0 then 0 else succ(f‘(j#−n)))

definition
raw-mod :: [i,i]⇒i where

raw-mod (m, n) ≡
transrec(m, λj f . if j<n | n=0 then j else f‘(j#−n))

definition
div :: [i,i]⇒i (infixl ‹div› 70) where

m div n ≡ raw-div (natify(m), natify(n))

definition
mod :: [i,i]⇒i (infixl ‹mod› 70) where

m mod n ≡ raw-mod (natify(m), natify(n))

declare rec-type [simp]
nat-0-le [simp]

lemma zero-lt-lemma: [[0<k; k ∈ nat]] =⇒ ∃ j∈nat. k = succ(j)
〈proof 〉

lemmas zero-lt-natE = zero-lt-lemma [THEN bexE]

27.1 natify, the Coercion to nat
lemma pred-succ-eq [simp]: pred(succ(y)) = y
〈proof 〉

lemma natify-succ: natify(succ(x)) = succ(natify(x))
〈proof 〉

lemma natify-0 [simp]: natify(0) = 0
〈proof 〉

lemma natify-non-succ: ∀ z. x 6= succ(z) =⇒ natify(x) = 0
〈proof 〉

lemma natify-in-nat [iff ,TC]: natify(x) ∈ nat
〈proof 〉

lemma natify-ident [simp]: n ∈ nat =⇒ natify(n) = n
〈proof 〉

lemma natify-eqE : [[natify(x) = y; x ∈ nat]] =⇒ x=y
〈proof 〉

191

lemma natify-idem [simp]: natify(natify(x)) = natify(x)
〈proof 〉

lemma add-natify1 [simp]: natify(m) #+ n = m #+ n
〈proof 〉

lemma add-natify2 [simp]: m #+ natify(n) = m #+ n
〈proof 〉

lemma mult-natify1 [simp]: natify(m) #∗ n = m #∗ n
〈proof 〉

lemma mult-natify2 [simp]: m #∗ natify(n) = m #∗ n
〈proof 〉

lemma diff-natify1 [simp]: natify(m) #− n = m #− n
〈proof 〉

lemma diff-natify2 [simp]: m #− natify(n) = m #− n
〈proof 〉

lemma mod-natify1 [simp]: natify(m) mod n = m mod n
〈proof 〉

lemma mod-natify2 [simp]: m mod natify(n) = m mod n
〈proof 〉

lemma div-natify1 [simp]: natify(m) div n = m div n
〈proof 〉

lemma div-natify2 [simp]: m div natify(n) = m div n
〈proof 〉

27.2 Typing rules
lemma raw-add-type: [[m∈nat; n∈nat]] =⇒ raw-add (m, n) ∈ nat

192

〈proof 〉

lemma add-type [iff ,TC]: m #+ n ∈ nat
〈proof 〉

lemma raw-mult-type: [[m∈nat; n∈nat]] =⇒ raw-mult (m, n) ∈ nat
〈proof 〉

lemma mult-type [iff ,TC]: m #∗ n ∈ nat
〈proof 〉

lemma raw-diff-type: [[m∈nat; n∈nat]] =⇒ raw-diff (m, n) ∈ nat
〈proof 〉

lemma diff-type [iff ,TC]: m #− n ∈ nat
〈proof 〉

lemma diff-0-eq-0 [simp]: 0 #− n = 0
〈proof 〉

lemma diff-succ-succ [simp]: succ(m) #− succ(n) = m #− n
〈proof 〉

declare raw-diff-succ [simp del]

lemma diff-0 [simp]: m #− 0 = natify(m)
〈proof 〉

lemma diff-le-self : m∈nat =⇒ (m #− n) ≤ m
〈proof 〉

27.3 Addition
lemma add-0-natify [simp]: 0 #+ m = natify(m)
〈proof 〉

lemma add-succ [simp]: succ(m) #+ n = succ(m #+ n)
〈proof 〉

lemma add-0 : m ∈ nat =⇒ 0 #+ m = m
〈proof 〉

193

lemma add-assoc: (m #+ n) #+ k = m #+ (n #+ k)
〈proof 〉

lemma add-0-right-natify [simp]: m #+ 0 = natify(m)
〈proof 〉

lemma add-succ-right [simp]: m #+ succ(n) = succ(m #+ n)
〈proof 〉

lemma add-0-right: m ∈ nat =⇒ m #+ 0 = m
〈proof 〉

lemma add-commute: m #+ n = n #+ m
〈proof 〉

lemma add-left-commute: m#+(n#+k)=n#+(m#+k)
〈proof 〉

lemmas add-ac = add-assoc add-commute add-left-commute

lemma raw-add-left-cancel:
[[raw-add(k, m) = raw-add(k, n); k∈nat]] =⇒ m=n

〈proof 〉

lemma add-left-cancel-natify: k #+ m = k #+ n =⇒ natify(m) = natify(n)
〈proof 〉

lemma add-left-cancel:
[[i = j; i #+ m = j #+ n; m∈nat; n∈nat]] =⇒ m = n

〈proof 〉

lemma add-le-elim1-natify: k#+m ≤ k#+n =⇒ natify(m) ≤ natify(n)
〈proof 〉

lemma add-le-elim1 : [[k#+m ≤ k#+n; m ∈ nat; n ∈ nat]] =⇒ m ≤ n
〈proof 〉

lemma add-lt-elim1-natify: k#+m < k#+n =⇒ natify(m) < natify(n)
〈proof 〉

lemma add-lt-elim1 : [[k#+m < k#+n; m ∈ nat; n ∈ nat]] =⇒ m < n

194

〈proof 〉

lemma zero-less-add: [[n ∈ nat; m ∈ nat]] =⇒ 0 < m #+ n ←→ (0<m | 0<n)
〈proof 〉

27.4 Monotonicity of Addition
lemma add-lt-mono1 : [[i<j; j∈nat]] =⇒ i#+k < j#+k
〈proof 〉

strict, in second argument
lemma add-lt-mono2 : [[i<j; j∈nat]] =⇒ k#+i < k#+j
〈proof 〉

A [clumsy] way of lifting < monotonicity to ≤ monotonicity
lemma Ord-lt-mono-imp-le-mono:

assumes lt-mono:
∧

i j. [[i<j; j:k]] =⇒ f (i) < f (j)
and ford:

∧
i. i:k =⇒ Ord(f (i))

and leij: i ≤ j
and jink: j:k

shows f (i) ≤ f (j)
〈proof 〉

≤ monotonicity, 1st argument
lemma add-le-mono1 : [[i ≤ j; j∈nat]] =⇒ i#+k ≤ j#+k
〈proof 〉

≤ monotonicity, both arguments
lemma add-le-mono: [[i ≤ j; k ≤ l; j∈nat; l∈nat]] =⇒ i#+k ≤ j#+l
〈proof 〉

Combinations of less-than and less-than-or-equals
lemma add-lt-le-mono: [[i<j; k≤l; j∈nat; l∈nat]] =⇒ i#+k < j#+l
〈proof 〉

lemma add-le-lt-mono: [[i≤j; k<l; j∈nat; l∈nat]] =⇒ i#+k < j#+l
〈proof 〉

Less-than: in other words, strict in both arguments
lemma add-lt-mono: [[i<j; k<l; j∈nat; l∈nat]] =⇒ i#+k < j#+l
〈proof 〉

lemma diff-add-inverse: (n#+m) #− n = natify(m)
〈proof 〉

lemma diff-add-inverse2 : (m#+n) #− n = natify(m)

195

〈proof 〉

lemma diff-cancel: (k#+m) #− (k#+n) = m #− n
〈proof 〉

lemma diff-cancel2 : (m#+k) #− (n#+k) = m #− n
〈proof 〉

lemma diff-add-0 : n #− (n#+m) = 0
〈proof 〉

lemma pred-0 [simp]: pred(0) = 0
〈proof 〉

lemma eq-succ-imp-eq-m1 : [[i = succ(j); i∈nat]] =⇒ j = i #− 1 ∧ j ∈nat
〈proof 〉

lemma pred-Un-distrib:
[[i∈nat; j∈nat]] =⇒ pred(i ∪ j) = pred(i) ∪ pred(j)

〈proof 〉

lemma pred-type [TC ,simp]:
i ∈ nat =⇒ pred(i) ∈ nat

〈proof 〉

lemma nat-diff-pred: [[i∈nat; j∈nat]] =⇒ i #− succ(j) = pred(i #− j)
〈proof 〉

lemma diff-succ-eq-pred: i #− succ(j) = pred(i #− j)
〈proof 〉

lemma nat-diff-Un-distrib:
[[i∈nat; j∈nat; k∈nat]] =⇒ (i ∪ j) #− k = (i#−k) ∪ (j#−k)

〈proof 〉

lemma diff-Un-distrib:
[[i∈nat; j∈nat]] =⇒ (i ∪ j) #− k = (i#−k) ∪ (j#−k)

〈proof 〉

We actually prove i #− j #− k = i #− (j #+ k)
lemma diff-diff-left [simplified]:

natify(i)#−natify(j)#−k = natify(i) #− (natify(j)#+k)
〈proof 〉

lemma eq-add-iff : (u #+ m = u #+ n) ←→ (0 #+ m = natify(n))
〈proof 〉

196

lemma less-add-iff : (u #+ m < u #+ n) ←→ (0 #+ m < natify(n))
〈proof 〉

lemma diff-add-eq: ((u #+ m) #− (u #+ n)) = ((0 #+ m) #− n)
〈proof 〉

lemma eq-cong2 : u = u ′ =⇒ (t≡u) ≡ (t≡u ′)
〈proof 〉

lemma iff-cong2 : u ←→ u ′ =⇒ (t≡u) ≡ (t≡u ′)
〈proof 〉

27.5 Multiplication
lemma mult-0 [simp]: 0 #∗ m = 0
〈proof 〉

lemma mult-succ [simp]: succ(m) #∗ n = n #+ (m #∗ n)
〈proof 〉

lemma mult-0-right [simp]: m #∗ 0 = 0
〈proof 〉

lemma mult-succ-right [simp]: m #∗ succ(n) = m #+ (m #∗ n)
〈proof 〉

lemma mult-1-natify [simp]: 1 #∗ n = natify(n)
〈proof 〉

lemma mult-1-right-natify [simp]: n #∗ 1 = natify(n)
〈proof 〉

lemma mult-1 : n ∈ nat =⇒ 1 #∗ n = n
〈proof 〉

lemma mult-1-right: n ∈ nat =⇒ n #∗ 1 = n
〈proof 〉

lemma mult-commute: m #∗ n = n #∗ m
〈proof 〉

lemma add-mult-distrib: (m #+ n) #∗ k = (m #∗ k) #+ (n #∗ k)
〈proof 〉

197

lemma add-mult-distrib-left: k #∗ (m #+ n) = (k #∗ m) #+ (k #∗ n)
〈proof 〉

lemma mult-assoc: (m #∗ n) #∗ k = m #∗ (n #∗ k)
〈proof 〉

lemma mult-left-commute: m #∗ (n #∗ k) = n #∗ (m #∗ k)
〈proof 〉

lemmas mult-ac = mult-assoc mult-commute mult-left-commute

lemma lt-succ-eq-0-disj:
[[m∈nat; n∈nat]]
=⇒ (m < succ(n)) ←→ (m = 0 | (∃ j∈nat. m = succ(j) ∧ j < n))

〈proof 〉

lemma less-diff-conv [rule-format]:
[[j∈nat; k∈nat]] =⇒ ∀ i∈nat. (i < j #− k) ←→ (i #+ k < j)

〈proof 〉

lemmas nat-typechecks = rec-type nat-0I nat-1I nat-succI Ord-nat

end

28 Arithmetic with simplification
theory ArithSimp
imports Arith
begin

28.1 Arithmetic simplification
〈ML〉

28.1.1 Examples
lemma x #+ y = x #+ z 〈proof 〉
lemma y #+ x = x #+ z 〈proof 〉
lemma x #+ y #+ z = x #+ z 〈proof 〉
lemma y #+ (z #+ x) = z #+ x 〈proof 〉
lemma x #+ y #+ z = (z #+ y) #+ (x #+ w) 〈proof 〉
lemma x#∗y #+ z = (z #+ y) #+ (y#∗x #+ w) 〈proof 〉

lemma x #+ succ(y) = x #+ z 〈proof 〉

198

lemma x #+ succ(y) = succ(z #+ x) 〈proof 〉
lemma succ(x) #+ succ(y) #+ z = succ(z #+ y) #+ succ(x #+ w) 〈proof 〉

lemma (x #+ y) #− (x #+ z) = w 〈proof 〉
lemma (y #+ x) #− (x #+ z) = dd 〈proof 〉
lemma (x #+ y #+ z) #− (x #+ z) = dd 〈proof 〉
lemma (y #+ (z #+ x)) #− (z #+ x) = dd 〈proof 〉
lemma (x #+ y #+ z) #− ((z #+ y) #+ (x #+ w)) = dd 〈proof 〉
lemma (x#∗y #+ z) #− ((z #+ y) #+ (y#∗x #+ w)) = dd 〈proof 〉

lemma (x #+ succ(y)) #− (x #+ z) = dd 〈proof 〉

lemma x #∗ y2 #+ y #∗ x2 = y #∗ x2 #+ x #∗ y2 〈proof 〉

lemma (x #+ succ(y)) #− (succ(z #+ x)) = dd 〈proof 〉
lemma (succ(x) #+ succ(y) #+ z) #− (succ(z #+ y) #+ succ(x #+ w)) = dd
〈proof 〉

lemma x : nat ==> x #+ y = x 〈proof 〉
lemma x : nat −−> x #+ y = x 〈proof 〉
lemma x : nat ==> x #+ y < x 〈proof 〉
lemma x : nat ==> x < y#+x 〈proof 〉
lemma x : nat ==> x ≤ succ(x) 〈proof 〉

lemma x #+ y = x 〈proof 〉

lemma x #+ y < x #+ z 〈proof 〉
lemma y #+ x < x #+ z 〈proof 〉
lemma x #+ y #+ z < x #+ z 〈proof 〉
lemma y #+ z #+ x < x #+ z 〈proof 〉
lemma y #+ (z #+ x) < z #+ x 〈proof 〉
lemma x #+ y #+ z < (z #+ y) #+ (x #+ w) 〈proof 〉
lemma x#∗y #+ z < (z #+ y) #+ (y#∗x #+ w) 〈proof 〉

lemma x #+ succ(y) < x #+ z 〈proof 〉
lemma x #+ succ(y) < succ(z #+ x) 〈proof 〉
lemma succ(x) #+ succ(y) #+ z < succ(z #+ y) #+ succ(x #+ w) 〈proof 〉

lemma x #+ succ(y) ≤ succ(z #+ x) 〈proof 〉

28.2 Difference
lemma diff-self-eq-0 [simp]: m #− m = 0
〈proof 〉

199

lemma add-diff-inverse: [[n ≤ m; m:nat]] =⇒ n #+ (m#−n) = m
〈proof 〉

lemma add-diff-inverse2 : [[n ≤ m; m:nat]] =⇒ (m#−n) #+ n = m
〈proof 〉

lemma diff-succ: [[n ≤ m; m:nat]] =⇒ succ(m) #− n = succ(m#−n)
〈proof 〉

lemma zero-less-diff [simp]:
[[m: nat; n: nat]] =⇒ 0 < (n #− m) ←→ m<n

〈proof 〉

lemma diff-mult-distrib: (m #− n) #∗ k = (m #∗ k) #− (n #∗ k)
〈proof 〉

lemma diff-mult-distrib2 : k #∗ (m #− n) = (k #∗ m) #− (k #∗ n)
〈proof 〉

28.3 Remainder
lemma div-termination: [[0<n; n ≤ m; m:nat]] =⇒ m #− n < m
〈proof 〉

lemmas div-rls =
nat-typechecks Ord-transrec-type apply-funtype
div-termination [THEN ltD]
nat-into-Ord not-lt-iff-le [THEN iffD1]

lemma raw-mod-type: [[m:nat; n:nat]] =⇒ raw-mod (m, n) ∈ nat
〈proof 〉

lemma mod-type [TC ,iff]: m mod n ∈ nat
〈proof 〉

lemma DIVISION-BY-ZERO-DIV : a div 0 = 0
〈proof 〉

lemma DIVISION-BY-ZERO-MOD: a mod 0 = natify(a)

200

〈proof 〉

lemma raw-mod-less: m<n =⇒ raw-mod (m,n) = m
〈proof 〉

lemma mod-less [simp]: [[m<n; n ∈ nat]] =⇒ m mod n = m
〈proof 〉

lemma raw-mod-geq:
[[0<n; n ≤ m; m:nat]] =⇒ raw-mod (m, n) = raw-mod (m#−n, n)

〈proof 〉

lemma mod-geq: [[n ≤ m; m:nat]] =⇒ m mod n = (m#−n) mod n
〈proof 〉

28.4 Division
lemma raw-div-type: [[m:nat; n:nat]] =⇒ raw-div (m, n) ∈ nat
〈proof 〉

lemma div-type [TC ,iff]: m div n ∈ nat
〈proof 〉

lemma raw-div-less: m<n =⇒ raw-div (m,n) = 0
〈proof 〉

lemma div-less [simp]: [[m<n; n ∈ nat]] =⇒ m div n = 0
〈proof 〉

lemma raw-div-geq: [[0<n; n ≤ m; m:nat]] =⇒ raw-div(m,n) = succ(raw-div(m#−n,
n))
〈proof 〉

lemma div-geq [simp]:
[[0<n; n ≤ m; m:nat]] =⇒ m div n = succ ((m#−n) div n)

〈proof 〉

declare div-less [simp] div-geq [simp]

lemma mod-div-lemma: [[m: nat; n: nat]] =⇒ (m div n)#∗n #+ m mod n = m
〈proof 〉

lemma mod-div-equality-natify: (m div n)#∗n #+ m mod n = natify(m)
〈proof 〉

lemma mod-div-equality: m: nat =⇒ (m div n)#∗n #+ m mod n = m

201

〈proof 〉

28.5 Further Facts about Remainder

(mainly for mutilated chess board)
lemma mod-succ-lemma:

[[0<n; m:nat; n:nat]]
=⇒ succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))

〈proof 〉

lemma mod-succ:
n:nat =⇒ succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))
〈proof 〉

lemma mod-less-divisor : [[0<n; n:nat]] =⇒ m mod n < n
〈proof 〉

lemma mod-1-eq [simp]: m mod 1 = 0
〈proof 〉

lemma mod2-cases: b<2 =⇒ k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)
〈proof 〉

lemma mod2-succ-succ [simp]: succ(succ(m)) mod 2 = m mod 2
〈proof 〉

lemma mod2-add-more [simp]: (m#+m#+n) mod 2 = n mod 2
〈proof 〉

lemma mod2-add-self [simp]: (m#+m) mod 2 = 0
〈proof 〉

28.6 Additional theorems about ≤
lemma add-le-self : m:nat =⇒ m ≤ (m #+ n)
〈proof 〉

lemma add-le-self2 : m:nat =⇒ m ≤ (n #+ m)
〈proof 〉

lemma mult-le-mono1 : [[i ≤ j; j:nat]] =⇒ (i#∗k) ≤ (j#∗k)
〈proof 〉

lemma mult-le-mono: [[i ≤ j; k ≤ l; j:nat; l:nat]] =⇒ i#∗k ≤ j#∗l
〈proof 〉

202

lemma mult-lt-mono2 : [[i<j; 0<k; j:nat; k:nat]] =⇒ k#∗i < k#∗j
〈proof 〉

lemma mult-lt-mono1 : [[i<j; 0<k; j:nat; k:nat]] =⇒ i#∗k < j#∗k
〈proof 〉

lemma add-eq-0-iff [iff]: m#+n = 0 ←→ natify(m)=0 ∧ natify(n)=0
〈proof 〉

lemma zero-lt-mult-iff [iff]: 0 < m#∗n ←→ 0 < natify(m) ∧ 0 < natify(n)
〈proof 〉

lemma mult-eq-1-iff [iff]: m#∗n = 1 ←→ natify(m)=1 ∧ natify(n)=1
〈proof 〉

lemma mult-is-zero: [[m: nat; n: nat]] =⇒ (m #∗ n = 0) ←→ (m = 0 | n = 0)
〈proof 〉

lemma mult-is-zero-natify [iff]:
(m #∗ n = 0) ←→ (natify(m) = 0 | natify(n) = 0)

〈proof 〉

28.7 Cancellation Laws for Common Factors in Comparisons
lemma mult-less-cancel-lemma:

[[k: nat; m: nat; n: nat]] =⇒ (m#∗k < n#∗k) ←→ (0<k ∧ m<n)
〈proof 〉

lemma mult-less-cancel2 [simp]:
(m#∗k < n#∗k) ←→ (0 < natify(k) ∧ natify(m) < natify(n))

〈proof 〉

lemma mult-less-cancel1 [simp]:
(k#∗m < k#∗n) ←→ (0 < natify(k) ∧ natify(m) < natify(n))

〈proof 〉

lemma mult-le-cancel2 [simp]: (m#∗k ≤ n#∗k)←→ (0 < natify(k) −→ natify(m)
≤ natify(n))
〈proof 〉

lemma mult-le-cancel1 [simp]: (k#∗m ≤ k#∗n)←→ (0 < natify(k) −→ natify(m)
≤ natify(n))
〈proof 〉

lemma mult-le-cancel-le1 : k ∈ nat =⇒ k #∗ m ≤ k ←→ (0 < k −→ natify(m) ≤
1)
〈proof 〉

203

lemma Ord-eq-iff-le: [[Ord(m); Ord(n)]] =⇒ m=n ←→ (m ≤ n ∧ n ≤ m)
〈proof 〉

lemma mult-cancel2-lemma:
[[k: nat; m: nat; n: nat]] =⇒ (m#∗k = n#∗k) ←→ (m=n | k=0)

〈proof 〉

lemma mult-cancel2 [simp]:
(m#∗k = n#∗k) ←→ (natify(m) = natify(n) | natify(k) = 0)

〈proof 〉

lemma mult-cancel1 [simp]:
(k#∗m = k#∗n) ←→ (natify(m) = natify(n) | natify(k) = 0)

〈proof 〉

lemma div-cancel-raw:
[[0<n; 0<k; k:nat; m:nat; n:nat]] =⇒ (k#∗m) div (k#∗n) = m div n

〈proof 〉

lemma div-cancel:
[[0 < natify(n); 0 < natify(k)]] =⇒ (k#∗m) div (k#∗n) = m div n

〈proof 〉

28.8 More Lemmas about Remainder
lemma mult-mod-distrib-raw:

[[k:nat; m:nat; n:nat]] =⇒ (k#∗m) mod (k#∗n) = k #∗ (m mod n)
〈proof 〉

lemma mod-mult-distrib2 : k #∗ (m mod n) = (k#∗m) mod (k#∗n)
〈proof 〉

lemma mult-mod-distrib: (m mod n) #∗ k = (m#∗k) mod (n#∗k)
〈proof 〉

lemma mod-add-self2-raw: n ∈ nat =⇒ (m #+ n) mod n = m mod n
〈proof 〉

lemma mod-add-self2 [simp]: (m #+ n) mod n = m mod n
〈proof 〉

lemma mod-add-self1 [simp]: (n#+m) mod n = m mod n
〈proof 〉

lemma mod-mult-self1-raw: k ∈ nat =⇒ (m #+ k#∗n) mod n = m mod n

204

〈proof 〉

lemma mod-mult-self1 [simp]: (m #+ k#∗n) mod n = m mod n
〈proof 〉

lemma mod-mult-self2 [simp]: (m #+ n#∗k) mod n = m mod n
〈proof 〉

lemma mult-eq-self-implies-10 : m = m#∗n =⇒ natify(n)=1 | m=0
〈proof 〉

lemma less-imp-succ-add [rule-format]:
[[m<n; n: nat]] =⇒ ∃ k∈nat. n = succ(m#+k)

〈proof 〉

lemma less-iff-succ-add:
[[m: nat; n: nat]] =⇒ (m<n) ←→ (∃ k∈nat. n = succ(m#+k))

〈proof 〉

lemma add-lt-elim2 :
[[a #+ d = b #+ c; a < b; b ∈ nat; c ∈ nat; d ∈ nat]] =⇒ c < d

〈proof 〉

lemma add-le-elim2 :
[[a #+ d = b #+ c; a ≤ b; b ∈ nat; c ∈ nat; d ∈ nat]] =⇒ c ≤ d

〈proof 〉

28.8.1 More Lemmas About Difference
lemma diff-is-0-lemma:

[[m: nat; n: nat]] =⇒ m #− n = 0 ←→ m ≤ n
〈proof 〉

lemma diff-is-0-iff : m #− n = 0 ←→ natify(m) ≤ natify(n)
〈proof 〉

lemma nat-lt-imp-diff-eq-0 :
[[a:nat; b:nat; a<b]] =⇒ a #− b = 0

〈proof 〉

lemma raw-nat-diff-split:
[[a:nat; b:nat]] =⇒
(P(a #− b)) ←→ ((a < b −→P(0)) ∧ (∀ d∈nat. a = b #+ d −→ P(d)))

〈proof 〉

lemma nat-diff-split:
(P(a #− b)) ←→
(natify(a) < natify(b) −→P(0)) ∧ (∀ d∈nat. natify(a) = b #+ d −→ P(d))

205

〈proof 〉

Difference and less-than
lemma diff-lt-imp-lt: [[(k#−i) < (k#−j); i∈nat; j∈nat; k∈nat]] =⇒ j<i
〈proof 〉

lemma lt-imp-diff-lt: [[j<i; i≤k; k∈nat]] =⇒ (k#−i) < (k#−j)
〈proof 〉

lemma diff-lt-iff-lt: [[i≤k; j∈nat; k∈nat]] =⇒ (k#−i) < (k#−j) ←→ j<i
〈proof 〉

end

29 Lists in Zermelo-Fraenkel Set Theory
theory List imports Datatype ArithSimp begin

consts
list :: i⇒i

datatype
list(A) = Nil | Cons (a ∈ A, l ∈ list(A))

notation Nil (‹[]›)

syntax
-List :: is ⇒ i (‹(‹indent=1 notation=‹mixfix list enumeration››[-])›)

translations
[x, xs] == CONST Cons(x, [xs])
[x] == CONST Cons(x, [])

consts
length :: i⇒i
hd :: i⇒i
tl :: i⇒i

primrec
length([]) = 0
length(Cons(a,l)) = succ(length(l))

primrec
hd([]) = 0
hd(Cons(a,l)) = a

primrec
tl([]) = []
tl(Cons(a,l)) = l

206

consts
map :: [i⇒i, i] ⇒ i
set-of-list :: i⇒i
app :: [i,i]⇒i (infixr ‹@› 60)

primrec
map(f ,[]) = []
map(f ,Cons(a,l)) = Cons(f (a), map(f ,l))

primrec
set-of-list([]) = 0
set-of-list(Cons(a,l)) = cons(a, set-of-list(l))

primrec
app-Nil: [] @ ys = ys
app-Cons: (Cons(a,l)) @ ys = Cons(a, l @ ys)

consts
rev :: i⇒i
flat :: i⇒i
list-add :: i⇒i

primrec
rev([]) = []
rev(Cons(a,l)) = rev(l) @ [a]

primrec
flat([]) = []
flat(Cons(l,ls)) = l @ flat(ls)

primrec
list-add([]) = 0
list-add(Cons(a,l)) = a #+ list-add(l)

consts
drop :: [i,i]⇒i

primrec
drop-0 : drop(0 ,l) = l
drop-succ: drop(succ(i), l) = tl (drop(i,l))

definition

207

take :: [i,i]⇒i where
take(n, as) ≡ list-rec(λn∈nat. [],

λa l r . λn∈nat. nat-case([], λm. Cons(a, r‘m), n), as)‘n

definition
nth :: [i, i]⇒i where
— returns the (n+1)th element of a list, or 0 if the list is too short.
nth(n, as) ≡ list-rec(λn∈nat. 0 ,

λa l r . λn∈nat. nat-case(a, λm. r‘m, n), as) ‘ n

definition
list-update :: [i, i, i]⇒i where
list-update(xs, i, v) ≡ list-rec(λn∈nat. Nil,

λu us vs. λn∈nat. nat-case(Cons(v, us), λm. Cons(u, vs‘m), n), xs)‘i

consts
filter :: [i⇒o, i] ⇒ i
upt :: [i, i] ⇒i

primrec
filter(P, Nil) = Nil
filter(P, Cons(x, xs)) =

(if P(x) then Cons(x, filter(P, xs)) else filter(P, xs))

primrec
upt(i, 0) = Nil
upt(i, succ(j)) = (if i ≤ j then upt(i, j)@[j] else Nil)

definition
min :: [i,i] ⇒i where

min(x, y) ≡ (if x ≤ y then x else y)

definition
max :: [i, i] ⇒i where

max(x, y) ≡ (if x ≤ y then y else x)

declare list.intros [simp,TC]

inductive-cases ConsE : Cons(a,l) ∈ list(A)

lemma Cons-type-iff [simp]: Cons(a,l) ∈ list(A) ←→ a ∈ A ∧ l ∈ list(A)
〈proof 〉

lemma Cons-iff : Cons(a,l)=Cons(a ′,l ′) ←→ a=a ′ ∧ l=l ′

208

〈proof 〉

lemma Nil-Cons-iff : ¬ Nil=Cons(a,l)
〈proof 〉

lemma list-unfold: list(A) = {0} + (A ∗ list(A))
〈proof 〉

lemma list-mono: A<=B =⇒ list(A) ⊆ list(B)
〈proof 〉

lemma list-univ: list(univ(A)) ⊆ univ(A)
〈proof 〉

lemmas list-subset-univ = subset-trans [OF list-mono list-univ]

lemma list-into-univ: [[l ∈ list(A); A ⊆ univ(B)]] =⇒ l ∈ univ(B)
〈proof 〉

lemma list-case-type:
[[l ∈ list(A);

c ∈ C (Nil);∧
x y. [[x ∈ A; y ∈ list(A)]] =⇒ h(x,y): C (Cons(x,y))

]] =⇒ list-case(c,h,l) ∈ C (l)
〈proof 〉

lemma list-0-triv: list(0) = {Nil}
〈proof 〉

lemma tl-type: l ∈ list(A) =⇒ tl(l) ∈ list(A)
〈proof 〉

lemma drop-Nil [simp]: i ∈ nat =⇒ drop(i, Nil) = Nil
〈proof 〉

lemma drop-succ-Cons [simp]: i ∈ nat =⇒ drop(succ(i), Cons(a,l)) = drop(i,l)
〈proof 〉

lemma drop-type [simp,TC]: [[i ∈ nat; l ∈ list(A)]] =⇒ drop(i,l) ∈ list(A)

209

〈proof 〉

declare drop-succ [simp del]

lemma list-rec-type [TC]:
[[l ∈ list(A);

c ∈ C (Nil);∧
x y r . [[x ∈ A; y ∈ list(A); r ∈ C (y)]] =⇒ h(x,y,r): C (Cons(x,y))

]] =⇒ list-rec(c,h,l) ∈ C (l)
〈proof 〉

lemma map-type [TC]:
[[l ∈ list(A);

∧
x. x ∈ A =⇒ h(x): B]] =⇒ map(h,l) ∈ list(B)

〈proof 〉

lemma map-type2 [TC]: l ∈ list(A) =⇒ map(h,l) ∈ list({h(u). u ∈ A})
〈proof 〉

lemma length-type [TC]: l ∈ list(A) =⇒ length(l) ∈ nat
〈proof 〉

lemma lt-length-in-nat:
[[x < length(xs); xs ∈ list(A)]] =⇒ x ∈ nat

〈proof 〉

lemma app-type [TC]: [[xs: list(A); ys: list(A)]] =⇒ xs@ys ∈ list(A)
〈proof 〉

lemma rev-type [TC]: xs: list(A) =⇒ rev(xs) ∈ list(A)
〈proof 〉

lemma flat-type [TC]: ls: list(list(A)) =⇒ flat(ls) ∈ list(A)
〈proof 〉

210

lemma set-of-list-type [TC]: l ∈ list(A) =⇒ set-of-list(l) ∈ Pow(A)
〈proof 〉

lemma set-of-list-append:
xs: list(A) =⇒ set-of-list (xs@ys) = set-of-list(xs) ∪ set-of-list(ys)

〈proof 〉

lemma list-add-type [TC]: xs: list(nat) =⇒ list-add(xs) ∈ nat
〈proof 〉

lemma map-ident [simp]: l ∈ list(A) =⇒ map(λu. u, l) = l
〈proof 〉

lemma map-compose: l ∈ list(A) =⇒ map(h, map(j,l)) = map(λu. h(j(u)), l)
〈proof 〉

lemma map-app-distrib: xs: list(A) =⇒ map(h, xs@ys) = map(h,xs) @ map(h,ys)
〈proof 〉

lemma map-flat: ls: list(list(A)) =⇒ map(h, flat(ls)) = flat(map(map(h),ls))
〈proof 〉

lemma list-rec-map:
l ∈ list(A) =⇒
list-rec(c, d, map(h,l)) =
list-rec(c, λx xs r . d(h(x), map(h,xs), r), l)

〈proof 〉

lemmas list-CollectD = Collect-subset [THEN list-mono, THEN subsetD]

lemma map-list-Collect: l ∈ list({x ∈ A. h(x)=j(x)}) =⇒ map(h,l) = map(j,l)
〈proof 〉

lemma length-map [simp]: xs: list(A) =⇒ length(map(h,xs)) = length(xs)
〈proof 〉

211

lemma length-app [simp]:
[[xs: list(A); ys: list(A)]]
=⇒ length(xs@ys) = length(xs) #+ length(ys)

〈proof 〉

lemma length-rev [simp]: xs: list(A) =⇒ length(rev(xs)) = length(xs)
〈proof 〉

lemma length-flat:
ls: list(list(A)) =⇒ length(flat(ls)) = list-add(map(length,ls))

〈proof 〉

lemma drop-length-Cons [rule-format]:
xs: list(A) =⇒

∀ x. ∃ z zs. drop(length(xs), Cons(x,xs)) = Cons(z,zs)
〈proof 〉

lemma drop-length [rule-format]:
l ∈ list(A) =⇒ ∀ i ∈ length(l). (∃ z zs. drop(i,l) = Cons(z,zs))

〈proof 〉

lemma app-right-Nil [simp]: xs: list(A) =⇒ xs@Nil=xs
〈proof 〉

lemma app-assoc: xs: list(A) =⇒ (xs@ys)@zs = xs@(ys@zs)
〈proof 〉

lemma flat-app-distrib: ls: list(list(A)) =⇒ flat(ls@ms) = flat(ls)@flat(ms)
〈proof 〉

lemma rev-map-distrib: l ∈ list(A) =⇒ rev(map(h,l)) = map(h,rev(l))
〈proof 〉

lemma rev-app-distrib:
[[xs: list(A); ys: list(A)]] =⇒ rev(xs@ys) = rev(ys)@rev(xs)

〈proof 〉

lemma rev-rev-ident [simp]: l ∈ list(A) =⇒ rev(rev(l))=l
〈proof 〉

212

lemma rev-flat: ls: list(list(A)) =⇒ rev(flat(ls)) = flat(map(rev,rev(ls)))
〈proof 〉

lemma list-add-app:
[[xs: list(nat); ys: list(nat)]]
=⇒ list-add(xs@ys) = list-add(ys) #+ list-add(xs)

〈proof 〉

lemma list-add-rev: l ∈ list(nat) =⇒ list-add(rev(l)) = list-add(l)
〈proof 〉

lemma list-add-flat:
ls: list(list(nat)) =⇒ list-add(flat(ls)) = list-add(map(list-add,ls))

〈proof 〉

lemma list-append-induct [case-names Nil snoc, consumes 1]:
[[l ∈ list(A);

P(Nil);∧
x y. [[x ∈ A; y ∈ list(A); P(y)]] =⇒ P(y @ [x])

]] =⇒ P(l)
〈proof 〉

lemma list-complete-induct-lemma [rule-format]:
assumes ih:∧

l. [[l ∈ list(A);
∀ l ′ ∈ list(A). length(l ′) < length(l) −→ P(l ′)]]

=⇒ P(l)
shows n ∈ nat =⇒ ∀ l ∈ list(A). length(l) < n −→ P(l)
〈proof 〉

theorem list-complete-induct:
[[l ∈ list(A);∧

l. [[l ∈ list(A);
∀ l ′ ∈ list(A). length(l ′) < length(l) −→ P(l ′)]]

=⇒ P(l)
]] =⇒ P(l)
〈proof 〉

lemma min-sym: [[i ∈ nat; j ∈ nat]] =⇒ min(i,j)=min(j,i)

213

〈proof 〉

lemma min-type [simp,TC]: [[i ∈ nat; j ∈ nat]] =⇒ min(i,j):nat
〈proof 〉

lemma min-0 [simp]: i ∈ nat =⇒ min(0 ,i) = 0
〈proof 〉

lemma min-02 [simp]: i ∈ nat =⇒ min(i, 0) = 0
〈proof 〉

lemma lt-min-iff : [[i ∈ nat; j ∈ nat; k ∈ nat]] =⇒ i<min(j,k) ←→ i<j ∧ i<k
〈proof 〉

lemma min-succ-succ [simp]:
[[i ∈ nat; j ∈ nat]] =⇒ min(succ(i), succ(j))= succ(min(i, j))

〈proof 〉

lemma filter-append [simp]:
xs:list(A) =⇒ filter(P, xs@ys) = filter(P, xs) @ filter(P, ys)

〈proof 〉

lemma filter-type [simp,TC]: xs:list(A) =⇒ filter(P, xs):list(A)
〈proof 〉

lemma length-filter : xs:list(A) =⇒ length(filter(P, xs)) ≤ length(xs)
〈proof 〉

lemma filter-is-subset: xs:list(A) =⇒ set-of-list(filter(P,xs)) ⊆ set-of-list(xs)
〈proof 〉

lemma filter-False [simp]: xs:list(A) =⇒ filter(λp. False, xs) = Nil
〈proof 〉

lemma filter-True [simp]: xs:list(A) =⇒ filter(λp. True, xs) = xs
〈proof 〉

lemma length-is-0-iff [simp]: xs:list(A) =⇒ length(xs)=0 ←→ xs=Nil
〈proof 〉

lemma length-is-0-iff2 [simp]: xs:list(A) =⇒ 0 = length(xs) ←→ xs=Nil
〈proof 〉

214

lemma length-tl [simp]: xs:list(A) =⇒ length(tl(xs)) = length(xs) #− 1
〈proof 〉

lemma length-greater-0-iff : xs:list(A) =⇒ 0<length(xs) ←→ xs 6= Nil
〈proof 〉

lemma length-succ-iff : xs:list(A) =⇒ length(xs)=succ(n)←→ (∃ y ys. xs=Cons(y,
ys) ∧ length(ys)=n)
〈proof 〉

lemma append-is-Nil-iff [simp]:
xs:list(A) =⇒ (xs@ys = Nil) ←→ (xs=Nil ∧ ys = Nil)

〈proof 〉

lemma append-is-Nil-iff2 [simp]:
xs:list(A) =⇒ (Nil = xs@ys) ←→ (xs=Nil ∧ ys = Nil)

〈proof 〉

lemma append-left-is-self-iff [simp]:
xs:list(A) =⇒ (xs@ys = xs) ←→ (ys = Nil)

〈proof 〉

lemma append-left-is-self-iff2 [simp]:
xs:list(A) =⇒ (xs = xs@ys) ←→ (ys = Nil)

〈proof 〉

lemma append-left-is-Nil-iff [rule-format]:
[[xs:list(A); ys:list(A); zs:list(A)]] =⇒

length(ys)=length(zs) −→ (xs@ys=zs ←→ (xs=Nil ∧ ys=zs))
〈proof 〉

lemma append-left-is-Nil-iff2 [rule-format]:
[[xs:list(A); ys:list(A); zs:list(A)]] =⇒

length(ys)=length(zs) −→ (zs=ys@xs ←→ (xs=Nil ∧ ys=zs))
〈proof 〉

lemma append-eq-append-iff [rule-format]:
xs:list(A) =⇒ ∀ ys ∈ list(A).
length(xs)=length(ys) −→ (xs@us = ys@vs) ←→ (xs=ys ∧ us=vs)

〈proof 〉
declare append-eq-append-iff [simp]

lemma append-eq-append [rule-format]:
xs:list(A) =⇒
∀ ys ∈ list(A). ∀ us ∈ list(A). ∀ vs ∈ list(A).

215

length(us) = length(vs) −→ (xs@us = ys@vs) −→ (xs=ys ∧ us=vs)
〈proof 〉

lemma append-eq-append-iff2 [simp]:
[[xs:list(A); ys:list(A); us:list(A); vs:list(A); length(us)=length(vs)]]
=⇒ xs@us = ys@vs ←→ (xs=ys ∧ us=vs)
〈proof 〉

lemma append-self-iff [simp]:
[[xs:list(A); ys:list(A); zs:list(A)]] =⇒ xs@ys=xs@zs ←→ ys=zs

〈proof 〉

lemma append-self-iff2 [simp]:
[[xs:list(A); ys:list(A); zs:list(A)]] =⇒ ys@xs=zs@xs ←→ ys=zs

〈proof 〉

lemma append1-eq-iff [rule-format]:
xs:list(A) =⇒ ∀ ys ∈ list(A). xs@[x] = ys@[y] ←→ (xs = ys ∧ x=y)

〈proof 〉
declare append1-eq-iff [simp]

lemma append-right-is-self-iff [simp]:
[[xs:list(A); ys:list(A)]] =⇒ (xs@ys = ys) ←→ (xs=Nil)

〈proof 〉

lemma append-right-is-self-iff2 [simp]:
[[xs:list(A); ys:list(A)]] =⇒ (ys = xs@ys) ←→ (xs=Nil)

〈proof 〉

lemma hd-append [rule-format]:
xs:list(A) =⇒ xs 6= Nil −→ hd(xs @ ys) = hd(xs)

〈proof 〉
declare hd-append [simp]

lemma tl-append [rule-format]:
xs:list(A) =⇒ xs 6=Nil −→ tl(xs @ ys) = tl(xs)@ys

〈proof 〉
declare tl-append [simp]

lemma rev-is-Nil-iff [simp]: xs:list(A) =⇒ (rev(xs) = Nil ←→ xs = Nil)
〈proof 〉

lemma Nil-is-rev-iff [simp]: xs:list(A) =⇒ (Nil = rev(xs) ←→ xs = Nil)
〈proof 〉

lemma rev-is-rev-iff [rule-format]:
xs:list(A) =⇒ ∀ ys ∈ list(A). rev(xs)=rev(ys) ←→ xs=ys

216

〈proof 〉
declare rev-is-rev-iff [simp]

lemma rev-list-elim [rule-format]:
xs:list(A) =⇒
(xs=Nil −→ P) −→ (∀ ys ∈ list(A). ∀ y ∈ A. xs =ys@[y] −→P)−→P

〈proof 〉

lemma length-drop [rule-format]:
n ∈ nat =⇒ ∀ xs ∈ list(A). length(drop(n, xs)) = length(xs) #− n

〈proof 〉
declare length-drop [simp]

lemma drop-all [rule-format]:
n ∈ nat =⇒ ∀ xs ∈ list(A). length(xs) ≤ n −→ drop(n, xs)=Nil

〈proof 〉
declare drop-all [simp]

lemma drop-append [rule-format]:
n ∈ nat =⇒
∀ xs ∈ list(A). drop(n, xs@ys) = drop(n,xs) @ drop(n #− length(xs), ys)

〈proof 〉

lemma drop-drop:
m ∈ nat =⇒ ∀ xs ∈ list(A). ∀n ∈ nat. drop(n, drop(m, xs))=drop(n #+ m, xs)

〈proof 〉

lemma take-0 [simp]: xs:list(A) =⇒ take(0 , xs) = Nil
〈proof 〉

lemma take-succ-Cons [simp]:
n ∈ nat =⇒ take(succ(n), Cons(a, xs)) = Cons(a, take(n, xs))

〈proof 〉

lemma take-Nil [simp]: n ∈ nat =⇒ take(n, Nil) = Nil
〈proof 〉

lemma take-all [rule-format]:
n ∈ nat =⇒ ∀ xs ∈ list(A). length(xs) ≤ n −→ take(n, xs) = xs

〈proof 〉
declare take-all [simp]

lemma take-type [rule-format]:

217

xs:list(A) =⇒ ∀n ∈ nat. take(n, xs):list(A)
〈proof 〉
declare take-type [simp,TC]

lemma take-append [rule-format]:
xs:list(A) =⇒
∀ ys ∈ list(A). ∀n ∈ nat. take(n, xs @ ys) =

take(n, xs) @ take(n #− length(xs), ys)
〈proof 〉
declare take-append [simp]

lemma take-take [rule-format]:
m ∈ nat =⇒
∀ xs ∈ list(A). ∀n ∈ nat. take(n, take(m,xs))= take(min(n, m), xs)

〈proof 〉

lemma nth-0 [simp]: nth(0 , Cons(a, l)) = a
〈proof 〉

lemma nth-Cons [simp]: n ∈ nat =⇒ nth(succ(n), Cons(a,l)) = nth(n,l)
〈proof 〉

lemma nth-empty [simp]: nth(n, Nil) = 0
〈proof 〉

lemma nth-type [rule-format]:
xs:list(A) =⇒ ∀n. n < length(xs) −→ nth(n,xs) ∈ A

〈proof 〉
declare nth-type [simp,TC]

lemma nth-eq-0 [rule-format]:
xs:list(A) =⇒ ∀n ∈ nat. length(xs) ≤ n −→ nth(n,xs) = 0

〈proof 〉

lemma nth-append [rule-format]:
xs:list(A) =⇒
∀n ∈ nat. nth(n, xs @ ys) = (if n < length(xs) then nth(n,xs)

else nth(n #− length(xs), ys))
〈proof 〉

lemma set-of-list-conv-nth:
xs:list(A)
=⇒ set-of-list(xs) = {x ∈ A. ∃ i∈nat. i<length(xs) ∧ x = nth(i,xs)}

〈proof 〉

218

lemma nth-take-lemma [rule-format]:
k ∈ nat =⇒
∀ xs ∈ list(A). (∀ ys ∈ list(A). k ≤ length(xs) −→ k ≤ length(ys) −→

(∀ i ∈ nat. i<k −→ nth(i,xs) = nth(i,ys))−→ take(k,xs) = take(k,ys))
〈proof 〉

lemma nth-equalityI [rule-format]:
[[xs:list(A); ys:list(A); length(xs) = length(ys);
∀ i ∈ nat. i < length(xs) −→ nth(i,xs) = nth(i,ys)]]

=⇒ xs = ys
〈proof 〉

lemma take-equalityI [rule-format]:
[[xs:list(A); ys:list(A); (∀ i ∈ nat. take(i, xs) = take(i,ys))]]
=⇒ xs = ys

〈proof 〉

lemma nth-drop [rule-format]:
n ∈ nat =⇒ ∀ i ∈ nat. ∀ xs ∈ list(A). nth(i, drop(n, xs)) = nth(n #+ i, xs)
〈proof 〉

lemma take-succ [rule-format]:
xs∈list(A)
=⇒ ∀ i. i < length(xs) −→ take(succ(i), xs) = take(i,xs) @ [nth(i, xs)]

〈proof 〉

lemma take-add [rule-format]:
[[xs∈list(A); j∈nat]]
=⇒ ∀ i∈nat. take(i #+ j, xs) = take(i,xs) @ take(j, drop(i,xs))

〈proof 〉

lemma length-take:
l∈list(A) =⇒ ∀n∈nat. length(take(n,l)) = min(n, length(l))

〈proof 〉

29.1 The function zip

Crafty definition to eliminate a type argument
consts

zip-aux :: [i,i]⇒i

primrec
zip-aux(B,[]) =

(λys ∈ list(B). list-case([], λy l. [], ys))

zip-aux(B,Cons(x,l)) =
(λys ∈ list(B).

219

list-case(Nil, λy zs. Cons(〈x,y〉, zip-aux(B,l)‘zs), ys))

definition
zip :: [i, i]⇒i where
zip(xs, ys) ≡ zip-aux(set-of-list(ys),xs)‘ys

lemma list-on-set-of-list: xs ∈ list(A) =⇒ xs ∈ list(set-of-list(xs))
〈proof 〉

lemma zip-Nil [simp]: ys:list(A) =⇒ zip(Nil, ys)=Nil
〈proof 〉

lemma zip-Nil2 [simp]: xs:list(A) =⇒ zip(xs, Nil)=Nil
〈proof 〉

lemma zip-aux-unique [rule-format]:
[[B<=C ; xs ∈ list(A)]]
=⇒ ∀ ys ∈ list(B). zip-aux(C ,xs) ‘ ys = zip-aux(B,xs) ‘ ys

〈proof 〉

lemma zip-Cons-Cons [simp]:
[[xs:list(A); ys:list(B); x ∈ A; y ∈ B]] =⇒
zip(Cons(x,xs), Cons(y, ys)) = Cons(〈x,y〉, zip(xs, ys))

〈proof 〉

lemma zip-type [rule-format]:
xs:list(A) =⇒ ∀ ys ∈ list(B). zip(xs, ys):list(A∗B)

〈proof 〉
declare zip-type [simp,TC]

lemma length-zip [rule-format]:
xs:list(A) =⇒ ∀ ys ∈ list(B). length(zip(xs,ys)) =

min(length(xs), length(ys))
〈proof 〉

declare length-zip [simp]

lemma zip-append1 [rule-format]:
[[ys:list(A); zs:list(B)]] =⇒
∀ xs ∈ list(A). zip(xs @ ys, zs) =

zip(xs, take(length(xs), zs)) @ zip(ys, drop(length(xs),zs))
〈proof 〉

lemma zip-append2 [rule-format]:
[[xs:list(A); zs:list(B)]] =⇒ ∀ ys ∈ list(B). zip(xs, ys@zs) =

zip(take(length(ys), xs), ys) @ zip(drop(length(ys), xs), zs)

220

〈proof 〉

lemma zip-append [simp]:
[[length(xs) = length(us); length(ys) = length(vs);

xs:list(A); us:list(B); ys:list(A); vs:list(B)]]
=⇒ zip(xs@ys,us@vs) = zip(xs, us) @ zip(ys, vs)
〈proof 〉

lemma zip-rev [rule-format]:
ys:list(B) =⇒ ∀ xs ∈ list(A).

length(xs) = length(ys) −→ zip(rev(xs), rev(ys)) = rev(zip(xs, ys))
〈proof 〉
declare zip-rev [simp]

lemma nth-zip [rule-format]:
ys:list(B) =⇒ ∀ i ∈ nat. ∀ xs ∈ list(A).

i < length(xs) −→ i < length(ys) −→
nth(i,zip(xs, ys)) = <nth(i,xs),nth(i, ys)>

〈proof 〉
declare nth-zip [simp]

lemma set-of-list-zip [rule-format]:
[[xs:list(A); ys:list(B); i ∈ nat]]
=⇒ set-of-list(zip(xs, ys)) =
{〈x, y〉:A∗B. ∃ i∈nat. i < min(length(xs), length(ys))
∧ x = nth(i, xs) ∧ y = nth(i, ys)}

〈proof 〉

lemma list-update-Nil [simp]: i ∈ nat =⇒list-update(Nil, i, v) = Nil
〈proof 〉

lemma list-update-Cons-0 [simp]: list-update(Cons(x, xs), 0 , v)= Cons(v, xs)
〈proof 〉

lemma list-update-Cons-succ [simp]:
n ∈ nat =⇒

list-update(Cons(x, xs), succ(n), v)= Cons(x, list-update(xs, n, v))
〈proof 〉

lemma list-update-type [rule-format]:
[[xs:list(A); v ∈ A]] =⇒ ∀n ∈ nat. list-update(xs, n, v):list(A)

〈proof 〉
declare list-update-type [simp,TC]

lemma length-list-update [rule-format]:
xs:list(A) =⇒ ∀ i ∈ nat. length(list-update(xs, i, v))=length(xs)

221

〈proof 〉
declare length-list-update [simp]

lemma nth-list-update [rule-format]:
[[xs:list(A)]] =⇒ ∀ i ∈ nat. ∀ j ∈ nat. i < length(xs) −→

nth(j, list-update(xs, i, x)) = (if i=j then x else nth(j, xs))
〈proof 〉

lemma nth-list-update-eq [simp]:
[[i < length(xs); xs:list(A)]] =⇒ nth(i, list-update(xs, i,x)) = x

〈proof 〉

lemma nth-list-update-neq [rule-format]:
xs:list(A) =⇒
∀ i ∈ nat. ∀ j ∈ nat. i 6= j −→ nth(j, list-update(xs,i,x)) = nth(j,xs)

〈proof 〉
declare nth-list-update-neq [simp]

lemma list-update-overwrite [rule-format]:
xs:list(A) =⇒ ∀ i ∈ nat. i < length(xs)
−→ list-update(list-update(xs, i, x), i, y) = list-update(xs, i,y)

〈proof 〉
declare list-update-overwrite [simp]

lemma list-update-same-conv [rule-format]:
xs:list(A) =⇒
∀ i ∈ nat. i < length(xs) −→

(list-update(xs, i, x) = xs) ←→ (nth(i, xs) = x)
〈proof 〉

lemma update-zip [rule-format]:
ys:list(B) =⇒
∀ i ∈ nat. ∀ xy ∈ A∗B. ∀ xs ∈ list(A).

length(xs) = length(ys) −→
list-update(zip(xs, ys), i, xy) = zip(list-update(xs, i, fst(xy)),

list-update(ys, i, snd(xy)))
〈proof 〉

lemma set-update-subset-cons [rule-format]:
xs:list(A) =⇒
∀ i ∈ nat. set-of-list(list-update(xs, i, x)) ⊆ cons(x, set-of-list(xs))

〈proof 〉

lemma set-of-list-update-subsetI :
[[set-of-list(xs) ⊆ A; xs:list(A); x ∈ A; i ∈ nat]]

=⇒ set-of-list(list-update(xs, i,x)) ⊆ A
〈proof 〉

222

lemma upt-rec:
j ∈ nat =⇒ upt(i,j) = (if i<j then Cons(i, upt(succ(i), j)) else Nil)

〈proof 〉

lemma upt-conv-Nil [simp]: [[j ≤ i; j ∈ nat]] =⇒ upt(i,j) = Nil
〈proof 〉

lemma upt-succ-append:
[[i ≤ j; j ∈ nat]] =⇒ upt(i,succ(j)) = upt(i, j)@[j]

〈proof 〉

lemma upt-conv-Cons:
[[i<j; j ∈ nat]] =⇒ upt(i,j) = Cons(i,upt(succ(i),j))

〈proof 〉

lemma upt-type [simp,TC]: j ∈ nat =⇒ upt(i,j):list(nat)
〈proof 〉

lemma upt-add-eq-append:
[[i ≤ j; j ∈ nat; k ∈ nat]] =⇒ upt(i, j #+k) = upt(i,j)@upt(j,j#+k)

〈proof 〉

lemma length-upt [simp]: [[i ∈ nat; j ∈ nat]] =⇒length(upt(i,j)) = j #− i
〈proof 〉

lemma nth-upt [simp]:
[[i ∈ nat; j ∈ nat; k ∈ nat; i #+ k < j]] =⇒ nth(k, upt(i,j)) = i #+ k

〈proof 〉

lemma take-upt [rule-format]:
[[m ∈ nat; n ∈ nat]] =⇒
∀ i ∈ nat. i #+ m ≤ n −→ take(m, upt(i,n)) = upt(i,i#+m)

〈proof 〉
declare take-upt [simp]

lemma map-succ-upt:
[[m ∈ nat; n ∈ nat]] =⇒ map(succ, upt(m,n))= upt(succ(m), succ(n))

〈proof 〉

lemma nth-map [rule-format]:
xs:list(A) =⇒
∀n ∈ nat. n < length(xs) −→ nth(n, map(f , xs)) = f (nth(n, xs))

〈proof 〉
declare nth-map [simp]

223

lemma nth-map-upt [rule-format]:
[[m ∈ nat; n ∈ nat]] =⇒
∀ i ∈ nat. i < n #− m −→ nth(i, map(f , upt(m,n))) = f (m #+ i)

〈proof 〉

definition
sublist :: [i, i] ⇒ i where

sublist(xs, A)≡
map(fst, (filter(λp. snd(p): A, zip(xs, upt(0 ,length(xs))))))

lemma sublist-0 [simp]: xs:list(A) =⇒sublist(xs, 0) =Nil
〈proof 〉

lemma sublist-Nil [simp]: sublist(Nil, A) = Nil
〈proof 〉

lemma sublist-shift-lemma:
[[xs:list(B); i ∈ nat]] =⇒
map(fst, filter(λp. snd(p):A, zip(xs, upt(i,i #+ length(xs))))) =
map(fst, filter(λp. snd(p):nat ∧ snd(p) #+ i ∈ A, zip(xs,upt(0 ,length(xs)))))
〈proof 〉

lemma sublist-type [simp,TC]:
xs:list(B) =⇒ sublist(xs, A):list(B)

〈proof 〉

lemma upt-add-eq-append2 :
[[i ∈ nat; j ∈ nat]] =⇒ upt(0 , i #+ j) = upt(0 , i) @ upt(i, i #+ j)

〈proof 〉

lemma sublist-append:
[[xs:list(B); ys:list(B)]] =⇒
sublist(xs@ys, A) = sublist(xs, A) @ sublist(ys, {j ∈ nat. j #+ length(xs): A})
〈proof 〉

lemma sublist-Cons:
[[xs:list(B); x ∈ B]] =⇒
sublist(Cons(x, xs), A) =
(if 0 ∈ A then [x] else []) @ sublist(xs, {j ∈ nat. succ(j) ∈ A})

〈proof 〉

lemma sublist-singleton [simp]:
sublist([x], A) = (if 0 ∈ A then [x] else [])

〈proof 〉

lemma sublist-upt-eq-take [rule-format]:

224

xs:list(A) =⇒ ∀n∈nat. sublist(xs,n) = take(n,xs)
〈proof 〉
declare sublist-upt-eq-take [simp]

lemma sublist-Int-eq:
xs ∈ list(B) =⇒ sublist(xs, A ∩ nat) = sublist(xs, A)

〈proof 〉

Repetition of a List Element
consts repeat :: [i,i]⇒i
primrec

repeat(a,0) = []

repeat(a,succ(n)) = Cons(a,repeat(a,n))

lemma length-repeat: n ∈ nat =⇒ length(repeat(a,n)) = n
〈proof 〉

lemma repeat-succ-app: n ∈ nat =⇒ repeat(a,succ(n)) = repeat(a,n) @ [a]
〈proof 〉

lemma repeat-type [TC]: [[a ∈ A; n ∈ nat]] =⇒ repeat(a,n) ∈ list(A)
〈proof 〉

end

30 Equivalence Relations
theory EquivClass imports Trancl Perm begin

definition
quotient :: [i,i]⇒i (infixl ‹ ′/ ′/› 90) where

A//r ≡ {r‘‘{x} . x ∈ A}

definition
congruent :: [i,i⇒i]⇒o where

congruent(r ,b) ≡ ∀ y z. 〈y,z〉:r −→ b(y)=b(z)

definition
congruent2 :: [i,i,[i,i]⇒i]⇒o where

congruent2 (r1 ,r2 ,b) ≡ ∀ y1 z1 y2 z2 .
〈y1 ,z1 〉:r1 −→ 〈y2 ,z2 〉:r2 −→ b(y1 ,y2) = b(z1 ,z2)

abbreviation
RESPECTS ::[i⇒i, i] ⇒ o (infixr ‹respects› 80) where
f respects r ≡ congruent(r ,f)

abbreviation
RESPECTS2 ::[i⇒i⇒i, i] ⇒ o (infixr ‹respects2 › 80) where

225

f respects2 r ≡ congruent2 (r ,r ,f)
— Abbreviation for the common case where the relations are identical

30.1 Suppes, Theorem 70: r is an equiv relation iff converse(r)
O r = r

lemma sym-trans-comp-subset:
[[sym(r); trans(r)]] =⇒ converse(r) O r ⊆ r

〈proof 〉

lemma refl-comp-subset:
[[refl(A,r); r ⊆ A∗A]] =⇒ r ⊆ converse(r) O r

〈proof 〉

lemma equiv-comp-eq:
equiv(A,r) =⇒ converse(r) O r = r
〈proof 〉

lemma comp-equivI :
[[converse(r) O r = r ; domain(r) = A]] =⇒ equiv(A,r)
〈proof 〉

lemma equiv-class-subset:
[[sym(r); trans(r); 〈a,b〉: r]] =⇒ r‘‘{a} ⊆ r‘‘{b}

〈proof 〉

lemma equiv-class-eq:
[[equiv(A,r); 〈a,b〉: r]] =⇒ r‘‘{a} = r‘‘{b}
〈proof 〉

lemma equiv-class-self :
[[equiv(A,r); a ∈ A]] =⇒ a ∈ r‘‘{a}

〈proof 〉

lemma subset-equiv-class:
[[equiv(A,r); r‘‘{b} ⊆ r‘‘{a}; b ∈ A]] =⇒ 〈a,b〉: r

〈proof 〉

lemma eq-equiv-class: [[r‘‘{a} = r‘‘{b}; equiv(A,r); b ∈ A]] =⇒ 〈a,b〉: r
〈proof 〉

lemma equiv-class-nondisjoint:
[[equiv(A,r); x: (r‘‘{a} ∩ r‘‘{b})]] =⇒ 〈a,b〉: r

226

〈proof 〉

lemma equiv-type: equiv(A,r) =⇒ r ⊆ A∗A
〈proof 〉

lemma equiv-class-eq-iff :
equiv(A,r) =⇒ 〈x,y〉: r ←→ r‘‘{x} = r‘‘{y} ∧ x ∈ A ∧ y ∈ A

〈proof 〉

lemma eq-equiv-class-iff :
[[equiv(A,r); x ∈ A; y ∈ A]] =⇒ r‘‘{x} = r‘‘{y} ←→ 〈x,y〉: r

〈proof 〉

lemma quotientI [TC]: x ∈ A =⇒ r‘‘{x}: A//r
〈proof 〉

lemma quotientE :
[[X ∈ A//r ;

∧
x. [[X = r‘‘{x}; x ∈ A]] =⇒ P]] =⇒ P

〈proof 〉

lemma Union-quotient:
equiv(A,r) =⇒

⋃
(A//r) = A

〈proof 〉

lemma quotient-disj:
[[equiv(A,r); X ∈ A//r ; Y ∈ A//r]] =⇒ X=Y | (X ∩ Y ⊆ 0)
〈proof 〉

30.2 Defining Unary Operations upon Equivalence Classes
lemma UN-equiv-class:

[[equiv(A,r); b respects r ; a ∈ A]] =⇒ (
⋃

x∈r‘‘{a}. b(x)) = b(a)
〈proof 〉

lemma UN-equiv-class-type:
[[equiv(A,r); b respects r ; X ∈ A//r ;

∧
x. x ∈ A =⇒ b(x) ∈ B]]

=⇒ (
⋃

x∈X . b(x)) ∈ B
〈proof 〉

lemma UN-equiv-class-inject:
[[equiv(A,r); b respects r ;

(
⋃

x∈X . b(x))=(
⋃

y∈Y . b(y)); X ∈ A//r ; Y ∈ A//r ;∧
x y. [[x ∈ A; y ∈ A; b(x)=b(y)]] =⇒ 〈x,y〉:r]]

227

=⇒ X=Y
〈proof 〉

30.3 Defining Binary Operations upon Equivalence Classes
lemma congruent2-implies-congruent:

[[equiv(A,r1); congruent2 (r1 ,r2 ,b); a ∈ A]] =⇒ congruent(r2 ,b(a))
〈proof 〉

lemma congruent2-implies-congruent-UN :
[[equiv(A1 ,r1); equiv(A2 ,r2); congruent2 (r1 ,r2 ,b); a ∈ A2]] =⇒
congruent(r1 , λx1 .

⋃
x2 ∈ r2‘‘{a}. b(x1 ,x2))

〈proof 〉

lemma UN-equiv-class2 :
[[equiv(A1 ,r1); equiv(A2 ,r2); congruent2 (r1 ,r2 ,b); a1 : A1 ; a2 : A2]]
=⇒ (

⋃
x1 ∈ r1‘‘{a1}.

⋃
x2 ∈ r2‘‘{a2}. b(x1 ,x2)) = b(a1 ,a2)

〈proof 〉

lemma UN-equiv-class-type2 :
[[equiv(A,r); b respects2 r ;

X1 : A//r ; X2 : A//r ;∧
x1 x2 . [[x1 : A; x2 : A]] =⇒ b(x1 ,x2) ∈ B

]] =⇒ (
⋃

x1∈X1 .
⋃

x2∈X2 . b(x1 ,x2)) ∈ B
〈proof 〉

lemma congruent2I :
[[equiv(A1 ,r1); equiv(A2 ,r2);∧

y z w. [[w ∈ A2 ; 〈y,z〉 ∈ r1]] =⇒ b(y,w) = b(z,w);∧
y z w. [[w ∈ A1 ; 〈y,z〉 ∈ r2]] =⇒ b(w,y) = b(w,z)

]] =⇒ congruent2 (r1 ,r2 ,b)
〈proof 〉

lemma congruent2-commuteI :
assumes equivA: equiv(A,r)

and commute:
∧

y z. [[y ∈ A; z ∈ A]] =⇒ b(y,z) = b(z,y)
and congt:

∧
y z w. [[w ∈ A; 〈y,z〉: r]] =⇒ b(w,y) = b(w,z)

shows b respects2 r
〈proof 〉

lemma congruent-commuteI :
[[equiv(A,r); Z ∈ A//r ;∧

w. [[w ∈ A]] =⇒ congruent(r , λz. b(w,z));∧
x y. [[x ∈ A; y ∈ A]] =⇒ b(y,x) = b(x,y)

]] =⇒ congruent(r , λw.
⋃

z∈Z . b(w,z))

228

〈proof 〉

end

31 The Integers as Equivalence Classes Over Pairs
of Natural Numbers

theory Int imports EquivClass ArithSimp begin

definition
intrel :: i where

intrel ≡ {p ∈ (nat∗nat)∗(nat∗nat).
∃ x1 y1 x2 y2 . p=<〈x1 ,y1 〉,〈x2 ,y2 〉> ∧ x1#+y2 = x2#+y1}

definition
int :: i where

int ≡ (nat∗nat)//intrel

definition
int-of :: i⇒i — coercion from nat to int (‹(‹open-block notation=‹prefix $#››$#

-)› [80] 80)
where $# m ≡ intrel ‘‘ {<natify(m), 0>}

definition
intify :: i⇒i — coercion from ANYTHING to int where

intify(m) ≡ if m ∈ int then m else $#0

definition
raw-zminus :: i⇒i where

raw-zminus(z) ≡
⋃
〈x,y〉∈z. intrel‘‘{〈y,x〉}

definition
zminus :: i⇒i (‹(‹open-block notation=‹prefix $−››$− -)› [80] 80)
where $− z ≡ raw-zminus (intify(z))

definition
znegative :: i⇒o where

znegative(z) ≡ ∃ x y. x<y ∧ y∈nat ∧ 〈x,y〉∈z

definition
iszero :: i⇒o where

iszero(z) ≡ z = $# 0

definition
raw-nat-of :: i⇒i where
raw-nat-of (z) ≡ natify (

⋃
〈x,y〉∈z. x#−y)

definition

229

nat-of :: i⇒i where
nat-of (z) ≡ raw-nat-of (intify(z))

definition
zmagnitude :: i⇒i where
— could be replaced by an absolute value function from int to int?

zmagnitude(z) ≡
THE m. m∈nat ∧ ((¬ znegative(z) ∧ z = $# m) |

(znegative(z) ∧ $− z = $# m))

definition
raw-zmult :: [i,i]⇒i where

raw-zmult(z1 ,z2) ≡⋃
p1∈z1 .

⋃
p2∈z2 . split(λx1 y1 . split(λx2 y2 .

intrel‘‘{<x1#∗x2 #+ y1#∗y2 , x1#∗y2 #+ y1#∗x2>}, p2), p1)

definition
zmult :: [i,i]⇒i (infixl ‹$∗› 70) where

z1 $∗ z2 ≡ raw-zmult (intify(z1),intify(z2))

definition
raw-zadd :: [i,i]⇒i where

raw-zadd (z1 , z2) ≡⋃
z1∈z1 .

⋃
z2∈z2 . let 〈x1 ,y1 〉=z1 ; 〈x2 ,y2 〉=z2

in intrel‘‘{<x1#+x2 , y1#+y2>}

definition
zadd :: [i,i]⇒i (infixl ‹$+› 65) where

z1 $+ z2 ≡ raw-zadd (intify(z1),intify(z2))

definition
zdiff :: [i,i]⇒i (infixl ‹$−› 65) where

z1 $− z2 ≡ z1 $+ zminus(z2)

definition
zless :: [i,i]⇒o (infixl ‹$<› 50) where

z1 $< z2 ≡ znegative(z1 $− z2)

definition
zle :: [i,i]⇒o (infixl ‹$≤› 50) where

z1 $≤ z2 ≡ z1 $< z2 | intify(z1)=intify(z2)

declare quotientE [elim!]

31.1 Proving that intrel is an equivalence relation
lemma intrel-iff [simp]:

230

<〈x1 ,y1 〉,〈x2 ,y2 〉>: intrel ←→
x1∈nat ∧ y1∈nat ∧ x2∈nat ∧ y2∈nat ∧ x1#+y2 = x2#+y1

〈proof 〉

lemma intrelI [intro!]:
[[x1#+y2 = x2#+y1 ; x1∈nat; y1∈nat; x2∈nat; y2∈nat]]
=⇒ <〈x1 ,y1 〉,〈x2 ,y2 〉>: intrel

〈proof 〉

lemma intrelE [elim!]:
[[p ∈ intrel;∧

x1 y1 x2 y2 . [[p = <〈x1 ,y1 〉,〈x2 ,y2 〉>; x1#+y2 = x2#+y1 ;
x1∈nat; y1∈nat; x2∈nat; y2∈nat]] =⇒ Q]]

=⇒ Q
〈proof 〉

lemma int-trans-lemma:
[[x1 #+ y2 = x2 #+ y1 ; x2 #+ y3 = x3 #+ y2]] =⇒ x1 #+ y3 = x3 #+

y1
〈proof 〉

lemma equiv-intrel: equiv(nat∗nat, intrel)
〈proof 〉

lemma image-intrel-int: [[m∈nat; n∈nat]] =⇒ intrel ‘‘ {〈m,n〉} ∈ int
〈proof 〉

declare equiv-intrel [THEN eq-equiv-class-iff , simp]
declare conj-cong [cong]

lemmas eq-intrelD = eq-equiv-class [OF - equiv-intrel]

lemma int-of-type [simp,TC]: $#m ∈ int
〈proof 〉

lemma int-of-eq [iff]: ($# m = $# n) ←→ natify(m)=natify(n)
〈proof 〉

lemma int-of-inject: [[$#m = $#n; m∈nat; n∈nat]] =⇒ m=n
〈proof 〉

lemma intify-in-int [iff ,TC]: intify(x) ∈ int
〈proof 〉

231

lemma intify-ident [simp]: n ∈ int =⇒ intify(n) = n
〈proof 〉

31.2 Collapsing rules: to remove intify from arithmetic ex-
pressions

lemma intify-idem [simp]: intify(intify(x)) = intify(x)
〈proof 〉

lemma int-of-natify [simp]: $# (natify(m)) = $# m
〈proof 〉

lemma zminus-intify [simp]: $− (intify(m)) = $− m
〈proof 〉

lemma zadd-intify1 [simp]: intify(x) $+ y = x $+ y
〈proof 〉

lemma zadd-intify2 [simp]: x $+ intify(y) = x $+ y
〈proof 〉

lemma zdiff-intify1 [simp]:intify(x) $− y = x $− y
〈proof 〉

lemma zdiff-intify2 [simp]:x $− intify(y) = x $− y
〈proof 〉

lemma zmult-intify1 [simp]:intify(x) $∗ y = x $∗ y
〈proof 〉

lemma zmult-intify2 [simp]:x $∗ intify(y) = x $∗ y
〈proof 〉

lemma zless-intify1 [simp]:intify(x) $< y ←→ x $< y
〈proof 〉

lemma zless-intify2 [simp]:x $< intify(y) ←→ x $< y
〈proof 〉

lemma zle-intify1 [simp]:intify(x) $≤ y ←→ x $≤ y
〈proof 〉

232

lemma zle-intify2 [simp]:x $≤ intify(y) ←→ x $≤ y
〈proof 〉

31.3 zminus: unary negation on int
lemma zminus-congruent: (λ〈x,y〉. intrel‘‘{〈y,x〉}) respects intrel
〈proof 〉

lemma raw-zminus-type: z ∈ int =⇒ raw-zminus(z) ∈ int
〈proof 〉

lemma zminus-type [TC ,iff]: $−z ∈ int
〈proof 〉

lemma raw-zminus-inject:
[[raw-zminus(z) = raw-zminus(w); z ∈ int; w ∈ int]] =⇒ z=w

〈proof 〉

lemma zminus-inject-intify [dest!]: $−z = $−w =⇒ intify(z) = intify(w)
〈proof 〉

lemma zminus-inject: [[$−z = $−w; z ∈ int; w ∈ int]] =⇒ z=w
〈proof 〉

lemma raw-zminus:
[[x∈nat; y∈nat]] =⇒ raw-zminus(intrel‘‘{〈x,y〉}) = intrel ‘‘ {〈y,x〉}

〈proof 〉

lemma zminus:
[[x∈nat; y∈nat]]
=⇒ $− (intrel‘‘{〈x,y〉}) = intrel ‘‘ {〈y,x〉}

〈proof 〉

lemma raw-zminus-zminus: z ∈ int =⇒ raw-zminus (raw-zminus(z)) = z
〈proof 〉

lemma zminus-zminus-intify [simp]: $− ($− z) = intify(z)
〈proof 〉

lemma zminus-int0 [simp]: $− ($#0) = $#0
〈proof 〉

lemma zminus-zminus: z ∈ int =⇒ $− ($− z) = z
〈proof 〉

31.4 znegative: the test for negative integers
lemma znegative: [[x∈nat; y∈nat]] =⇒ znegative(intrel‘‘{〈x,y〉}) ←→ x<y
〈proof 〉

233

lemma not-znegative-int-of [iff]: ¬ znegative($# n)
〈proof 〉

lemma znegative-zminus-int-of [simp]: znegative($− $# succ(n))
〈proof 〉

lemma not-znegative-imp-zero: ¬ znegative($− $# n) =⇒ natify(n)=0
〈proof 〉

31.5 nat-of : Coercion of an Integer to a Natural Number
lemma nat-of-intify [simp]: nat-of (intify(z)) = nat-of (z)
〈proof 〉

lemma nat-of-congruent: (λx. (λ〈x,y〉. x #− y)(x)) respects intrel
〈proof 〉

lemma raw-nat-of :
[[x∈nat; y∈nat]] =⇒ raw-nat-of (intrel‘‘{〈x,y〉}) = x#−y

〈proof 〉

lemma raw-nat-of-int-of : raw-nat-of ($# n) = natify(n)
〈proof 〉

lemma nat-of-int-of [simp]: nat-of ($# n) = natify(n)
〈proof 〉

lemma raw-nat-of-type: raw-nat-of (z) ∈ nat
〈proof 〉

lemma nat-of-type [iff ,TC]: nat-of (z) ∈ nat
〈proof 〉

31.6 zmagnitude: magnitide of an integer, as a natural num-
ber

lemma zmagnitude-int-of [simp]: zmagnitude($# n) = natify(n)
〈proof 〉

lemma natify-int-of-eq: natify(x)=n =⇒ $#x = $# n
〈proof 〉

lemma zmagnitude-zminus-int-of [simp]: zmagnitude($− $# n) = natify(n)
〈proof 〉

lemma zmagnitude-type [iff ,TC]: zmagnitude(z)∈nat
〈proof 〉

234

lemma not-zneg-int-of :
[[z ∈ int; ¬ znegative(z)]] =⇒ ∃n∈nat. z = $# n

〈proof 〉

lemma not-zneg-mag [simp]:
[[z ∈ int; ¬ znegative(z)]] =⇒ $# (zmagnitude(z)) = z

〈proof 〉

lemma zneg-int-of :
[[znegative(z); z ∈ int]] =⇒ ∃n∈nat. z = $− ($# succ(n))

〈proof 〉

lemma zneg-mag [simp]:
[[znegative(z); z ∈ int]] =⇒ $# (zmagnitude(z)) = $− z

〈proof 〉

lemma int-cases: z ∈ int =⇒ ∃n∈nat. z = $# n | z = $− ($# succ(n))
〈proof 〉

lemma not-zneg-raw-nat-of :
[[¬ znegative(z); z ∈ int]] =⇒ $# (raw-nat-of (z)) = z

〈proof 〉

lemma not-zneg-nat-of-intify:
¬ znegative(intify(z)) =⇒ $# (nat-of (z)) = intify(z)

〈proof 〉

lemma not-zneg-nat-of : [[¬ znegative(z); z ∈ int]] =⇒ $# (nat-of (z)) = z
〈proof 〉

lemma zneg-nat-of [simp]: znegative(intify(z)) =⇒ nat-of (z) = 0
〈proof 〉

31.7 ($+): addition on int

Congruence Property for Addition
lemma zadd-congruent2 :

(λz1 z2 . let 〈x1 ,y1 〉=z1 ; 〈x2 ,y2 〉=z2
in intrel‘‘{<x1#+x2 , y1#+y2>})

respects2 intrel
〈proof 〉

lemma raw-zadd-type: [[z ∈ int; w ∈ int]] =⇒ raw-zadd(z,w) ∈ int
〈proof 〉

lemma zadd-type [iff ,TC]: z $+ w ∈ int
〈proof 〉

235

lemma raw-zadd:
[[x1∈nat; y1∈nat; x2∈nat; y2∈nat]]
=⇒ raw-zadd (intrel‘‘{〈x1 ,y1 〉}, intrel‘‘{〈x2 ,y2 〉}) =

intrel ‘‘ {<x1#+x2 , y1#+y2>}
〈proof 〉

lemma zadd:
[[x1∈nat; y1∈nat; x2∈nat; y2∈nat]]
=⇒ (intrel‘‘{〈x1 ,y1 〉}) $+ (intrel‘‘{〈x2 ,y2 〉}) =

intrel ‘‘ {<x1#+x2 , y1#+y2>}
〈proof 〉

lemma raw-zadd-int0 : z ∈ int =⇒ raw-zadd ($#0 ,z) = z
〈proof 〉

lemma zadd-int0-intify [simp]: $#0 $+ z = intify(z)
〈proof 〉

lemma zadd-int0 : z ∈ int =⇒ $#0 $+ z = z
〈proof 〉

lemma raw-zminus-zadd-distrib:
[[z ∈ int; w ∈ int]] =⇒ $− raw-zadd(z,w) = raw-zadd($− z, $− w)

〈proof 〉

lemma zminus-zadd-distrib [simp]: $− (z $+ w) = $− z $+ $− w
〈proof 〉

lemma raw-zadd-commute:
[[z ∈ int; w ∈ int]] =⇒ raw-zadd(z,w) = raw-zadd(w,z)

〈proof 〉

lemma zadd-commute: z $+ w = w $+ z
〈proof 〉

lemma raw-zadd-assoc:
[[z1 : int; z2 : int; z3 : int]]
=⇒ raw-zadd (raw-zadd(z1 ,z2),z3) = raw-zadd(z1 ,raw-zadd(z2 ,z3))

〈proof 〉

lemma zadd-assoc: (z1 $+ z2) $+ z3 = z1 $+ (z2 $+ z3)
〈proof 〉

lemma zadd-left-commute: z1$+(z2$+z3) = z2$+(z1$+z3)
〈proof 〉

lemmas zadd-ac = zadd-assoc zadd-commute zadd-left-commute

236

lemma int-of-add: $# (m #+ n) = ($#m) $+ ($#n)
〈proof 〉

lemma int-succ-int-1 : $# succ(m) = $# 1 $+ ($# m)
〈proof 〉

lemma int-of-diff :
[[m∈nat; n ≤ m]] =⇒ $# (m #− n) = ($#m) $− ($#n)

〈proof 〉

lemma raw-zadd-zminus-inverse: z ∈ int =⇒ raw-zadd (z, $− z) = $#0
〈proof 〉

lemma zadd-zminus-inverse [simp]: z $+ ($− z) = $#0
〈proof 〉

lemma zadd-zminus-inverse2 [simp]: ($− z) $+ z = $#0
〈proof 〉

lemma zadd-int0-right-intify [simp]: z $+ $#0 = intify(z)
〈proof 〉

lemma zadd-int0-right: z ∈ int =⇒ z $+ $#0 = z
〈proof 〉

31.8 ($∗): Integer Multiplication

Congruence property for multiplication
lemma zmult-congruent2 :

(λp1 p2 . split(λx1 y1 . split(λx2 y2 .
intrel‘‘{<x1#∗x2 #+ y1#∗y2 , x1#∗y2 #+ y1#∗x2>}, p2), p1))

respects2 intrel
〈proof 〉

lemma raw-zmult-type: [[z ∈ int; w ∈ int]] =⇒ raw-zmult(z,w) ∈ int
〈proof 〉

lemma zmult-type [iff ,TC]: z $∗ w ∈ int
〈proof 〉

lemma raw-zmult:
[[x1∈nat; y1∈nat; x2∈nat; y2∈nat]]
=⇒ raw-zmult(intrel‘‘{〈x1 ,y1 〉}, intrel‘‘{〈x2 ,y2 〉}) =

intrel ‘‘ {<x1#∗x2 #+ y1#∗y2 , x1#∗y2 #+ y1#∗x2>}
〈proof 〉

lemma zmult:

237

[[x1∈nat; y1∈nat; x2∈nat; y2∈nat]]
=⇒ (intrel‘‘{〈x1 ,y1 〉}) $∗ (intrel‘‘{〈x2 ,y2 〉}) =

intrel ‘‘ {<x1#∗x2 #+ y1#∗y2 , x1#∗y2 #+ y1#∗x2>}
〈proof 〉

lemma raw-zmult-int0 : z ∈ int =⇒ raw-zmult ($#0 ,z) = $#0
〈proof 〉

lemma zmult-int0 [simp]: $#0 $∗ z = $#0
〈proof 〉

lemma raw-zmult-int1 : z ∈ int =⇒ raw-zmult ($#1 ,z) = z
〈proof 〉

lemma zmult-int1-intify [simp]: $#1 $∗ z = intify(z)
〈proof 〉

lemma zmult-int1 : z ∈ int =⇒ $#1 $∗ z = z
〈proof 〉

lemma raw-zmult-commute:
[[z ∈ int; w ∈ int]] =⇒ raw-zmult(z,w) = raw-zmult(w,z)

〈proof 〉

lemma zmult-commute: z $∗ w = w $∗ z
〈proof 〉

lemma raw-zmult-zminus:
[[z ∈ int; w ∈ int]] =⇒ raw-zmult($− z, w) = $− raw-zmult(z, w)

〈proof 〉

lemma zmult-zminus [simp]: ($− z) $∗ w = $− (z $∗ w)
〈proof 〉

lemma zmult-zminus-right [simp]: w $∗ ($− z) = $− (w $∗ z)
〈proof 〉

lemma raw-zmult-assoc:
[[z1 : int; z2 : int; z3 : int]]
=⇒ raw-zmult (raw-zmult(z1 ,z2),z3) = raw-zmult(z1 ,raw-zmult(z2 ,z3))

〈proof 〉

lemma zmult-assoc: (z1 $∗ z2) $∗ z3 = z1 $∗ (z2 $∗ z3)
〈proof 〉

lemma zmult-left-commute: z1$∗(z2$∗z3) = z2$∗(z1$∗z3)
〈proof 〉

238

lemmas zmult-ac = zmult-assoc zmult-commute zmult-left-commute

lemma raw-zadd-zmult-distrib:
[[z1 : int; z2 : int; w ∈ int]]
=⇒ raw-zmult(raw-zadd(z1 ,z2), w) =

raw-zadd (raw-zmult(z1 ,w), raw-zmult(z2 ,w))
〈proof 〉

lemma zadd-zmult-distrib: (z1 $+ z2) $∗ w = (z1 $∗ w) $+ (z2 $∗ w)
〈proof 〉

lemma zadd-zmult-distrib2 : w $∗ (z1 $+ z2) = (w $∗ z1) $+ (w $∗ z2)
〈proof 〉

lemmas int-typechecks =
int-of-type zminus-type zmagnitude-type zadd-type zmult-type

lemma zdiff-type [iff ,TC]: z $− w ∈ int
〈proof 〉

lemma zminus-zdiff-eq [simp]: $− (z $− y) = y $− z
〈proof 〉

lemma zdiff-zmult-distrib: (z1 $− z2) $∗ w = (z1 $∗ w) $− (z2 $∗ w)
〈proof 〉

lemma zdiff-zmult-distrib2 : w $∗ (z1 $− z2) = (w $∗ z1) $− (w $∗ z2)
〈proof 〉

lemma zadd-zdiff-eq: x $+ (y $− z) = (x $+ y) $− z
〈proof 〉

lemma zdiff-zadd-eq: (x $− y) $+ z = (x $+ z) $− y
〈proof 〉

31.9 The "Less Than" Relation
lemma zless-linear-lemma:

[[z ∈ int; w ∈ int]] =⇒ z$<w | z=w | w$<z
〈proof 〉

lemma zless-linear : z$<w | intify(z)=intify(w) | w$<z
〈proof 〉

lemma zless-not-refl [iff]: ¬ (z$<z)

239

〈proof 〉

lemma neq-iff-zless: [[x ∈ int; y ∈ int]] =⇒ (x 6= y) ←→ (x $< y | y $< x)
〈proof 〉

lemma zless-imp-intify-neq: w $< z =⇒ intify(w) 6= intify(z)
〈proof 〉

lemma zless-imp-succ-zadd-lemma:
[[w $< z; w ∈ int; z ∈ int]] =⇒ (∃n∈nat. z = w $+ $#(succ(n)))

〈proof 〉

lemma zless-imp-succ-zadd:
w $< z =⇒ (∃n∈nat. w $+ $#(succ(n)) = intify(z))

〈proof 〉

lemma zless-succ-zadd-lemma:
w ∈ int =⇒ w $< w $+ $# succ(n)

〈proof 〉

lemma zless-succ-zadd: w $< w $+ $# succ(n)
〈proof 〉

lemma zless-iff-succ-zadd:
w $< z ←→ (∃n∈nat. w $+ $#(succ(n)) = intify(z))

〈proof 〉

lemma zless-int-of [simp]: [[m∈nat; n∈nat]] =⇒ ($#m $< $#n) ←→ (m<n)
〈proof 〉

lemma zless-trans-lemma:
[[x $< y; y $< z; x ∈ int; y ∈ int; z ∈ int]] =⇒ x $< z

〈proof 〉

lemma zless-trans [trans]: [[x $< y; y $< z]] =⇒ x $< z
〈proof 〉

lemma zless-not-sym: z $< w =⇒ ¬ (w $< z)
〈proof 〉

lemmas zless-asym = zless-not-sym [THEN swap]

lemma zless-imp-zle: z $< w =⇒ z $≤ w
〈proof 〉

lemma zle-linear : z $≤ w | w $≤ z
〈proof 〉

240

31.10 Less Than or Equals
lemma zle-refl: z $≤ z
〈proof 〉

lemma zle-eq-refl: x=y =⇒ x $≤ y
〈proof 〉

lemma zle-anti-sym-intify: [[x $≤ y; y $≤ x]] =⇒ intify(x) = intify(y)
〈proof 〉

lemma zle-anti-sym: [[x $≤ y; y $≤ x; x ∈ int; y ∈ int]] =⇒ x=y
〈proof 〉

lemma zle-trans-lemma:
[[x ∈ int; y ∈ int; z ∈ int; x $≤ y; y $≤ z]] =⇒ x $≤ z

〈proof 〉

lemma zle-trans [trans]: [[x $≤ y; y $≤ z]] =⇒ x $≤ z
〈proof 〉

lemma zle-zless-trans [trans]: [[i $≤ j; j $< k]] =⇒ i $< k
〈proof 〉

lemma zless-zle-trans [trans]: [[i $< j; j $≤ k]] =⇒ i $< k
〈proof 〉

lemma not-zless-iff-zle: ¬ (z $< w) ←→ (w $≤ z)
〈proof 〉

lemma not-zle-iff-zless: ¬ (z $≤ w) ←→ (w $< z)
〈proof 〉

31.11 More subtraction laws (for zcompare-rls)
lemma zdiff-zdiff-eq: (x $− y) $− z = x $− (y $+ z)
〈proof 〉

lemma zdiff-zdiff-eq2 : x $− (y $− z) = (x $+ z) $− y
〈proof 〉

lemma zdiff-zless-iff : (x$−y $< z) ←→ (x $< z $+ y)
〈proof 〉

lemma zless-zdiff-iff : (x $< z$−y) ←→ (x $+ y $< z)
〈proof 〉

lemma zdiff-eq-iff : [[x ∈ int; z ∈ int]] =⇒ (x$−y = z) ←→ (x = z $+ y)
〈proof 〉

241

lemma eq-zdiff-iff : [[x ∈ int; z ∈ int]] =⇒ (x = z$−y) ←→ (x $+ y = z)
〈proof 〉

lemma zdiff-zle-iff-lemma:
[[x ∈ int; z ∈ int]] =⇒ (x$−y $≤ z) ←→ (x $≤ z $+ y)

〈proof 〉

lemma zdiff-zle-iff : (x$−y $≤ z) ←→ (x $≤ z $+ y)
〈proof 〉

lemma zle-zdiff-iff-lemma:
[[x ∈ int; z ∈ int]] =⇒(x $≤ z$−y) ←→ (x $+ y $≤ z)

〈proof 〉

lemma zle-zdiff-iff : (x $≤ z$−y) ←→ (x $+ y $≤ z)
〈proof 〉

This list of rewrites simplifies (in)equalities by bringing subtractions to the
top and then moving negative terms to the other side. Use with zadd-ac
lemmas zcompare-rls =

zdiff-def [symmetric]
zadd-zdiff-eq zdiff-zadd-eq zdiff-zdiff-eq zdiff-zdiff-eq2
zdiff-zless-iff zless-zdiff-iff zdiff-zle-iff zle-zdiff-iff
zdiff-eq-iff eq-zdiff-iff

31.12 Monotonicity and Cancellation Results for Instantia-
tion of the CancelNumerals Simprocs

lemma zadd-left-cancel:
[[w ∈ int; w ′: int]] =⇒ (z $+ w ′ = z $+ w) ←→ (w ′ = w)

〈proof 〉

lemma zadd-left-cancel-intify [simp]:
(z $+ w ′ = z $+ w) ←→ intify(w ′) = intify(w)

〈proof 〉

lemma zadd-right-cancel:
[[w ∈ int; w ′: int]] =⇒ (w ′ $+ z = w $+ z) ←→ (w ′ = w)

〈proof 〉

lemma zadd-right-cancel-intify [simp]:
(w ′ $+ z = w $+ z) ←→ intify(w ′) = intify(w)

〈proof 〉

lemma zadd-right-cancel-zless [simp]: (w ′ $+ z $< w $+ z) ←→ (w ′ $< w)
〈proof 〉

lemma zadd-left-cancel-zless [simp]: (z $+ w ′ $< z $+ w) ←→ (w ′ $< w)
〈proof 〉

242

lemma zadd-right-cancel-zle [simp]: (w ′ $+ z $≤ w $+ z) ←→ w ′ $≤ w
〈proof 〉

lemma zadd-left-cancel-zle [simp]: (z $+ w ′ $≤ z $+ w) ←→ w ′ $≤ w
〈proof 〉

lemmas zadd-zless-mono1 = zadd-right-cancel-zless [THEN iffD2]

lemmas zadd-zless-mono2 = zadd-left-cancel-zless [THEN iffD2]

lemmas zadd-zle-mono1 = zadd-right-cancel-zle [THEN iffD2]

lemmas zadd-zle-mono2 = zadd-left-cancel-zle [THEN iffD2]

lemma zadd-zle-mono: [[w ′ $≤ w; z ′ $≤ z]] =⇒ w ′ $+ z ′ $≤ w $+ z
〈proof 〉

lemma zadd-zless-mono: [[w ′ $< w; z ′ $≤ z]] =⇒ w ′ $+ z ′ $< w $+ z
〈proof 〉

31.13 Comparison laws
lemma zminus-zless-zminus [simp]: ($− x $< $− y) ←→ (y $< x)
〈proof 〉

lemma zminus-zle-zminus [simp]: ($− x $≤ $− y) ←→ (y $≤ x)
〈proof 〉

31.13.1 More inequality lemmas
lemma equation-zminus: [[x ∈ int; y ∈ int]] =⇒ (x = $− y) ←→ (y = $− x)
〈proof 〉

lemma zminus-equation: [[x ∈ int; y ∈ int]] =⇒ ($− x = y) ←→ ($− y = x)
〈proof 〉

lemma equation-zminus-intify: (intify(x) = $− y) ←→ (intify(y) = $− x)
〈proof 〉

lemma zminus-equation-intify: ($− x = intify(y)) ←→ ($− y = intify(x))
〈proof 〉

243

31.13.2 The next several equations are permutative: watch out!
lemma zless-zminus: (x $< $− y) ←→ (y $< $− x)
〈proof 〉

lemma zminus-zless: ($− x $< y) ←→ ($− y $< x)
〈proof 〉

lemma zle-zminus: (x $≤ $− y) ←→ (y $≤ $− x)
〈proof 〉

lemma zminus-zle: ($− x $≤ y) ←→ ($− y $≤ x)
〈proof 〉

end

32 Arithmetic on Binary Integers
theory Bin
imports Int Datatype
begin

consts bin :: i
datatype

bin = Pls
| Min
| Bit (w ∈ bin, b ∈ bool) (infixl ‹BIT › 90)

consts
integ-of :: i⇒i
NCons :: [i,i]⇒i
bin-succ :: i⇒i
bin-pred :: i⇒i
bin-minus :: i⇒i
bin-adder :: i⇒i
bin-mult :: [i,i]⇒i

primrec
integ-of-Pls: integ-of (Pls) = $# 0
integ-of-Min: integ-of (Min) = $−($#1)
integ-of-BIT : integ-of (w BIT b) = $#b $+ integ-of (w) $+ integ-of (w)

primrec
NCons-Pls: NCons (Pls,b) = cond(b,Pls BIT b,Pls)
NCons-Min: NCons (Min,b) = cond(b,Min,Min BIT b)
NCons-BIT : NCons (w BIT c,b) = w BIT c BIT b

244

primrec
bin-succ-Pls: bin-succ (Pls) = Pls BIT 1
bin-succ-Min: bin-succ (Min) = Pls
bin-succ-BIT : bin-succ (w BIT b) = cond(b, bin-succ(w) BIT 0 , NCons(w,1))

primrec
bin-pred-Pls: bin-pred (Pls) = Min
bin-pred-Min: bin-pred (Min) = Min BIT 0
bin-pred-BIT : bin-pred (w BIT b) = cond(b, NCons(w,0), bin-pred(w) BIT 1)

primrec
bin-minus-Pls:

bin-minus (Pls) = Pls
bin-minus-Min:

bin-minus (Min) = Pls BIT 1
bin-minus-BIT :

bin-minus (w BIT b) = cond(b, bin-pred(NCons(bin-minus(w),0)),
bin-minus(w) BIT 0)

primrec
bin-adder-Pls:

bin-adder (Pls) = (λw∈bin. w)
bin-adder-Min:

bin-adder (Min) = (λw∈bin. bin-pred(w))
bin-adder-BIT :

bin-adder (v BIT x) =
(λw∈bin.

bin-case (v BIT x, bin-pred(v BIT x),
λw y. NCons(bin-adder (v) ‘ cond(x and y, bin-succ(w), w),

x xor y),
w))

definition
bin-add :: [i,i]⇒i where

bin-add(v,w) ≡ bin-adder(v)‘w

primrec
bin-mult-Pls:

bin-mult (Pls,w) = Pls
bin-mult-Min:

bin-mult (Min,w) = bin-minus(w)
bin-mult-BIT :

bin-mult (v BIT b,w) = cond(b, bin-add(NCons(bin-mult(v,w),0),w),
NCons(bin-mult(v,w),0))

syntax

245

-Int0 :: i (‹#()0 ›)
-Int1 :: i (‹#()1 ›)
-Int2 :: i (‹#()2 ›)
-Neg-Int1 :: i (‹#−()1 ›)
-Neg-Int2 :: i (‹#−()2 ›)

translations
#0
 CONST integ-of (CONST Pls)
#1
 CONST integ-of (CONST Pls BIT 1)
#2
 CONST integ-of (CONST Pls BIT 1 BIT 0)
#−1
 CONST integ-of (CONST Min)
#−2
 CONST integ-of (CONST Min BIT 0)

syntax
-Int :: num-token ⇒ i (‹(‹open-block notation=‹literal number››#-)› 1000)
-Neg-Int :: num-token ⇒ i (‹(‹open-block notation=‹literal number››#−-)› 1000)

syntax-consts
-Int0 -Int1 -Int2 -Int -Neg-Int1 -Neg-Int2 -Neg-Int
 integ-of

〈ML〉

declare bin.intros [simp,TC]

lemma NCons-Pls-0 : NCons(Pls,0) = Pls
〈proof 〉

lemma NCons-Pls-1 : NCons(Pls,1) = Pls BIT 1
〈proof 〉

lemma NCons-Min-0 : NCons(Min,0) = Min BIT 0
〈proof 〉

lemma NCons-Min-1 : NCons(Min,1) = Min
〈proof 〉

lemma NCons-BIT : NCons(w BIT x,b) = w BIT x BIT b
〈proof 〉

lemmas NCons-simps [simp] =
NCons-Pls-0 NCons-Pls-1 NCons-Min-0 NCons-Min-1 NCons-BIT

lemma integ-of-type [TC]: w ∈ bin =⇒ integ-of (w) ∈ int
〈proof 〉

246

lemma NCons-type [TC]: [[w ∈ bin; b ∈ bool]] =⇒ NCons(w,b) ∈ bin
〈proof 〉

lemma bin-succ-type [TC]: w ∈ bin =⇒ bin-succ(w) ∈ bin
〈proof 〉

lemma bin-pred-type [TC]: w ∈ bin =⇒ bin-pred(w) ∈ bin
〈proof 〉

lemma bin-minus-type [TC]: w ∈ bin =⇒ bin-minus(w) ∈ bin
〈proof 〉

lemma bin-add-type [rule-format]:
v ∈ bin =⇒ ∀w∈bin. bin-add(v,w) ∈ bin

〈proof 〉

declare bin-add-type [TC]

lemma bin-mult-type [TC]: [[v ∈ bin; w ∈ bin]] =⇒ bin-mult(v,w) ∈ bin
〈proof 〉

32.0.1 The Carry and Borrow Functions, bin-succ and bin-pred
lemma integ-of-NCons [simp]:

[[w ∈ bin; b ∈ bool]] =⇒ integ-of (NCons(w,b)) = integ-of (w BIT b)
〈proof 〉

lemma integ-of-succ [simp]:
w ∈ bin =⇒ integ-of (bin-succ(w)) = $#1 $+ integ-of (w)

〈proof 〉

lemma integ-of-pred [simp]:
w ∈ bin =⇒ integ-of (bin-pred(w)) = $− ($#1) $+ integ-of (w)

〈proof 〉

32.0.2 bin-minus: Unary Negation of Binary Integers
lemma integ-of-minus: w ∈ bin =⇒ integ-of (bin-minus(w)) = $− integ-of (w)
〈proof 〉

32.0.3 bin-add: Binary Addition
lemma bin-add-Pls [simp]: w ∈ bin =⇒ bin-add(Pls,w) = w
〈proof 〉

lemma bin-add-Pls-right: w ∈ bin =⇒ bin-add(w,Pls) = w
〈proof 〉

lemma bin-add-Min [simp]: w ∈ bin =⇒ bin-add(Min,w) = bin-pred(w)

247

〈proof 〉

lemma bin-add-Min-right: w ∈ bin =⇒ bin-add(w,Min) = bin-pred(w)
〈proof 〉

lemma bin-add-BIT-Pls [simp]: bin-add(v BIT x,Pls) = v BIT x
〈proof 〉

lemma bin-add-BIT-Min [simp]: bin-add(v BIT x,Min) = bin-pred(v BIT x)
〈proof 〉

lemma bin-add-BIT-BIT [simp]:
[[w ∈ bin; y ∈ bool]]
=⇒ bin-add(v BIT x, w BIT y) =

NCons(bin-add(v, cond(x and y, bin-succ(w), w)), x xor y)
〈proof 〉

lemma integ-of-add [rule-format]:
v ∈ bin =⇒
∀w∈bin. integ-of (bin-add(v,w)) = integ-of (v) $+ integ-of (w)

〈proof 〉

lemma diff-integ-of-eq:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $− integ-of (w) = integ-of (bin-add (v, bin-minus(w)))

〈proof 〉

32.0.4 bin-mult: Binary Multiplication
lemma integ-of-mult:

[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (bin-mult(v,w)) = integ-of (v) $∗ integ-of (w)

〈proof 〉

32.1 Computations
lemma bin-succ-1 : bin-succ(w BIT 1) = bin-succ(w) BIT 0
〈proof 〉

lemma bin-succ-0 : bin-succ(w BIT 0) = NCons(w,1)
〈proof 〉

lemma bin-pred-1 : bin-pred(w BIT 1) = NCons(w,0)
〈proof 〉

lemma bin-pred-0 : bin-pred(w BIT 0) = bin-pred(w) BIT 1
〈proof 〉

248

lemma bin-minus-1 : bin-minus(w BIT 1) = bin-pred(NCons(bin-minus(w), 0))
〈proof 〉

lemma bin-minus-0 : bin-minus(w BIT 0) = bin-minus(w) BIT 0
〈proof 〉

lemma bin-add-BIT-11 : w ∈ bin =⇒ bin-add(v BIT 1 , w BIT 1) =
NCons(bin-add(v, bin-succ(w)), 0)

〈proof 〉

lemma bin-add-BIT-10 : w ∈ bin =⇒ bin-add(v BIT 1 , w BIT 0) =
NCons(bin-add(v,w), 1)

〈proof 〉

lemma bin-add-BIT-0 : [[w ∈ bin; y ∈ bool]]
=⇒ bin-add(v BIT 0 , w BIT y) = NCons(bin-add(v,w), y)

〈proof 〉

lemma bin-mult-1 : bin-mult(v BIT 1 , w) = bin-add(NCons(bin-mult(v,w),0), w)
〈proof 〉

lemma bin-mult-0 : bin-mult(v BIT 0 , w) = NCons(bin-mult(v,w),0)
〈proof 〉

lemma int-of-0 : $#0 = #0
〈proof 〉

lemma int-of-succ: $# succ(n) = #1 $+ $#n
〈proof 〉

lemma zminus-0 [simp]: $− #0 = #0
〈proof 〉

lemma zadd-0-intify [simp]: #0 $+ z = intify(z)
〈proof 〉

lemma zadd-0-right-intify [simp]: z $+ #0 = intify(z)
〈proof 〉

lemma zmult-1-intify [simp]: #1 $∗ z = intify(z)
〈proof 〉

249

lemma zmult-1-right-intify [simp]: z $∗ #1 = intify(z)
〈proof 〉

lemma zmult-0 [simp]: #0 $∗ z = #0
〈proof 〉

lemma zmult-0-right [simp]: z $∗ #0 = #0
〈proof 〉

lemma zmult-minus1 [simp]: #−1 $∗ z = $−z
〈proof 〉

lemma zmult-minus1-right [simp]: z $∗ #−1 = $−z
〈proof 〉

32.2 Simplification Rules for Comparison of Binary Num-
bers

Thanks to Norbert Voelker
lemma eq-integ-of-eq:

[[v ∈ bin; w ∈ bin]]
=⇒ ((integ-of (v)) = integ-of (w)) ←→

iszero (integ-of (bin-add (v, bin-minus(w))))
〈proof 〉

lemma iszero-integ-of-Pls: iszero (integ-of (Pls))
〈proof 〉

lemma nonzero-integ-of-Min: ¬ iszero (integ-of (Min))
〈proof 〉

lemma iszero-integ-of-BIT :
[[w ∈ bin; x ∈ bool]]
=⇒ iszero (integ-of (w BIT x)) ←→ (x=0 ∧ iszero (integ-of (w)))

〈proof 〉

lemma iszero-integ-of-0 :
w ∈ bin =⇒ iszero (integ-of (w BIT 0)) ←→ iszero (integ-of (w))

〈proof 〉

lemma iszero-integ-of-1 : w ∈ bin =⇒ ¬ iszero (integ-of (w BIT 1))
〈proof 〉

250

lemma less-integ-of-eq-neg:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $< integ-of (w)
←→ znegative (integ-of (bin-add (v, bin-minus(w))))

〈proof 〉

lemma not-neg-integ-of-Pls: ¬ znegative (integ-of (Pls))
〈proof 〉

lemma neg-integ-of-Min: znegative (integ-of (Min))
〈proof 〉

lemma neg-integ-of-BIT :
[[w ∈ bin; x ∈ bool]]
=⇒ znegative (integ-of (w BIT x)) ←→ znegative (integ-of (w))

〈proof 〉

lemma le-integ-of-eq-not-less:
(integ-of (x) $≤ (integ-of (w))) ←→ ¬ (integ-of (w) $< (integ-of (x)))

〈proof 〉

declare bin-succ-BIT [simp del]
bin-pred-BIT [simp del]
bin-minus-BIT [simp del]
NCons-Pls [simp del]
NCons-Min [simp del]
bin-adder-BIT [simp del]
bin-mult-BIT [simp del]

declare integ-of-Pls [simp del] integ-of-Min [simp del] integ-of-BIT [simp del]

lemmas bin-arith-extra-simps =
integ-of-add [symmetric]
integ-of-minus [symmetric]
integ-of-mult [symmetric]
bin-succ-1 bin-succ-0
bin-pred-1 bin-pred-0
bin-minus-1 bin-minus-0
bin-add-Pls-right bin-add-Min-right
bin-add-BIT-0 bin-add-BIT-10 bin-add-BIT-11
diff-integ-of-eq
bin-mult-1 bin-mult-0 NCons-simps

251

lemmas bin-arith-simps =
bin-pred-Pls bin-pred-Min
bin-succ-Pls bin-succ-Min
bin-add-Pls bin-add-Min
bin-minus-Pls bin-minus-Min
bin-mult-Pls bin-mult-Min
bin-arith-extra-simps

lemmas bin-rel-simps =
eq-integ-of-eq iszero-integ-of-Pls nonzero-integ-of-Min
iszero-integ-of-0 iszero-integ-of-1
less-integ-of-eq-neg
not-neg-integ-of-Pls neg-integ-of-Min neg-integ-of-BIT
le-integ-of-eq-not-less

declare bin-arith-simps [simp]
declare bin-rel-simps [simp]

lemma add-integ-of-left [simp]:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $+ (integ-of (w) $+ z) = (integ-of (bin-add(v,w)) $+ z)

〈proof 〉

lemma mult-integ-of-left [simp]:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $∗ (integ-of (w) $∗ z) = (integ-of (bin-mult(v,w)) $∗ z)

〈proof 〉

lemma add-integ-of-diff1 [simp]:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $+ (integ-of (w) $− c) = integ-of (bin-add(v,w)) $− (c)

〈proof 〉

lemma add-integ-of-diff2 [simp]:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $+ (c $− integ-of (w)) =

integ-of (bin-add (v, bin-minus(w))) $+ (c)
〈proof 〉

declare int-of-0 [simp] int-of-succ [simp]

252

lemma zdiff0 [simp]: #0 $− x = $−x
〈proof 〉

lemma zdiff0-right [simp]: x $− #0 = intify(x)
〈proof 〉

lemma zdiff-self [simp]: x $− x = #0
〈proof 〉

lemma znegative-iff-zless-0 : k ∈ int =⇒ znegative(k) ←→ k $< #0
〈proof 〉

lemma zero-zless-imp-znegative-zminus: [[#0 $< k; k ∈ int]] =⇒ znegative($−k)
〈proof 〉

lemma zero-zle-int-of [simp]: #0 $≤ $# n
〈proof 〉

lemma nat-of-0 [simp]: nat-of (#0) = 0
〈proof 〉

lemma nat-le-int0-lemma: [[z $≤ $#0 ; z ∈ int]] =⇒ nat-of (z) = 0
〈proof 〉

lemma nat-le-int0 : z $≤ $#0 =⇒ nat-of (z) = 0
〈proof 〉

lemma int-of-eq-0-imp-natify-eq-0 : $# n = #0 =⇒ natify(n) = 0
〈proof 〉

lemma nat-of-zminus-int-of : nat-of ($− $# n) = 0
〈proof 〉

lemma int-of-nat-of : #0 $≤ z =⇒ $# nat-of (z) = intify(z)
〈proof 〉

declare int-of-nat-of [simp] nat-of-zminus-int-of [simp]

lemma int-of-nat-of-if : $# nat-of (z) = (if #0 $≤ z then intify(z) else #0)
〈proof 〉

lemma zless-nat-iff-int-zless: [[m ∈ nat; z ∈ int]] =⇒ (m < nat-of (z)) ←→ ($#m
$< z)
〈proof 〉

253

lemma zless-nat-conj-lemma: $#0 $< z =⇒ (nat-of (w) < nat-of (z)) ←→ (w $<
z)
〈proof 〉

lemma zless-nat-conj: (nat-of (w) < nat-of (z)) ←→ ($#0 $< z ∧ w $< z)
〈proof 〉

lemma integ-of-minus-reorient [simp]:
(integ-of (w) = $− x) ←→ ($− x = integ-of (w))

〈proof 〉

lemma integ-of-add-reorient [simp]:
(integ-of (w) = x $+ y) ←→ (x $+ y = integ-of (w))

〈proof 〉

lemma integ-of-diff-reorient [simp]:
(integ-of (w) = x $− y) ←→ (x $− y = integ-of (w))

〈proof 〉

lemma integ-of-mult-reorient [simp]:
(integ-of (w) = x $∗ y) ←→ (x $∗ y = integ-of (w))

〈proof 〉

lemmas [simp] =
zminus-equation [where y = integ-of (w)]
equation-zminus [where x = integ-of (w)]
for w

lemmas [iff] =
zminus-zless [where y = integ-of (w)]
zless-zminus [where x = integ-of (w)]
for w

lemmas [iff] =
zminus-zle [where y = integ-of (w)]
zle-zminus [where x = integ-of (w)]
for w

lemmas [simp] =
Let-def [where s = integ-of (w)] for w

254

lemma zless-iff-zdiff-zless-0 : (x $< y) ←→ (x$−y $< #0)
〈proof 〉

lemma eq-iff-zdiff-eq-0 : [[x ∈ int; y ∈ int]] =⇒ (x = y) ←→ (x$−y = #0)
〈proof 〉

lemma zle-iff-zdiff-zle-0 : (x $≤ y) ←→ (x$−y $≤ #0)
〈proof 〉

lemma left-zadd-zmult-distrib: i$∗u $+ (j$∗u $+ k) = (i$+j)$∗u $+ k
〈proof 〉

lemma eq-add-iff1 : (i$∗u $+ m = j$∗u $+ n) ←→ ((i$−j)$∗u $+ m = intify(n))
〈proof 〉

lemma eq-add-iff2 : (i$∗u $+ m = j$∗u $+ n) ←→ (intify(m) = (j$−i)$∗u $+ n)
〈proof 〉

context fixes n :: i
begin

lemmas rel-iff-rel-0-rls =
zless-iff-zdiff-zless-0 [where y = u $+ v]
eq-iff-zdiff-eq-0 [where y = u $+ v]
zle-iff-zdiff-zle-0 [where y = u $+ v]
zless-iff-zdiff-zless-0 [where y = n]
eq-iff-zdiff-eq-0 [where y = n]
zle-iff-zdiff-zle-0 [where y = n]
for u v

lemma less-add-iff1 : (i$∗u $+ m $< j$∗u $+ n) ←→ ((i$−j)$∗u $+ m $< n)
〈proof 〉

lemma less-add-iff2 : (i$∗u $+ m $< j$∗u $+ n) ←→ (m $< (j$−i)$∗u $+ n)
〈proof 〉

end

lemma le-add-iff1 : (i$∗u $+ m $≤ j$∗u $+ n) ←→ ((i$−j)$∗u $+ m $≤ n)
〈proof 〉

255

lemma le-add-iff2 : (i$∗u $+ m $≤ j$∗u $+ n) ←→ (m $≤ (j$−i)$∗u $+ n)
〈proof 〉

〈ML〉

32.2.1 Examples

combine-numerals-prod (products of separate literals)
lemma #5 $∗ x $∗ #3 = y 〈proof 〉

schematic-goal y2 $+ ?x42 = y $+ y2 〈proof 〉

lemma oo : int =⇒ l $+ (l $+ #2) $+ oo = oo 〈proof 〉

lemma #9$∗x $+ y = x$∗#23 $+ z 〈proof 〉
lemma y $+ x = x $+ z 〈proof 〉

lemma x : int =⇒ x $+ y $+ z = x $+ z 〈proof 〉
lemma x : int =⇒ y $+ (z $+ x) = z $+ x 〈proof 〉
lemma z : int =⇒ x $+ y $+ z = (z $+ y) $+ (x $+ w) 〈proof 〉
lemma z : int =⇒ x$∗y $+ z = (z $+ y) $+ (y$∗x $+ w) 〈proof 〉

lemma #−3 $∗ x $+ y $≤ x $∗ #2 $+ z 〈proof 〉
lemma y $+ x $≤ x $+ z 〈proof 〉
lemma x $+ y $+ z $≤ x $+ z 〈proof 〉

lemma y $+ (z $+ x) $< z $+ x 〈proof 〉
lemma x $+ y $+ z $< (z $+ y) $+ (x $+ w) 〈proof 〉
lemma x$∗y $+ z $< (z $+ y) $+ (y$∗x $+ w) 〈proof 〉

lemma l $+ #2 $+ #2 $+ #2 $+ (l $+ #2) $+ (oo $+ #2) = uu 〈proof 〉
lemma u : int =⇒ #2 $∗ u = u 〈proof 〉
lemma (i $+ j $+ #12 $+ k) $− #15 = y 〈proof 〉
lemma (i $+ j $+ #12 $+ k) $− #5 = y 〈proof 〉

lemma y $− b $< b 〈proof 〉
lemma y $− (#3 $∗ b $+ c) $< b $− #2 $∗ c 〈proof 〉

lemma (#2 $∗ x $− (u $∗ v) $+ y) $− v $∗ #3 $∗ u = w 〈proof 〉
lemma (#2 $∗ x $∗ u $∗ v $+ (u $∗ v) $∗ #4 $+ y) $− v $∗ u $∗ #4 = w
〈proof 〉
lemma (#2 $∗ x $∗ u $∗ v $+ (u $∗ v) $∗ #4 $+ y) $− v $∗ u = w 〈proof 〉
lemma u $∗ v $− (x $∗ u $∗ v $+ (u $∗ v) $∗ #4 $+ y) = w 〈proof 〉

lemma (i $+ j $+ #12 $+ k) = u $+ #15 $+ y 〈proof 〉
lemma (i $+ j $∗ #2 $+ #12 $+ k) = j $+ #5 $+ y 〈proof 〉

lemma #2 $∗ y $+ #3 $∗ z $+ #6 $∗ w $+ #2 $∗ y $+ #3 $∗ z $+ #2 $∗
u = #2 $∗ y ′ $+ #3 $∗ z ′ $+ #6 $∗ w ′ $+ #2 $∗ y ′ $+ #3 $∗ z ′ $+ u $+ vv

256

〈proof 〉

lemma a $+ $−(b$+c) $+ b = d 〈proof 〉
lemma a $+ $−(b$+c) $− b = d 〈proof 〉

negative numerals
lemma (i $+ j $+ #−2 $+ k) $− (u $+ #5 $+ y) = zz 〈proof 〉
lemma (i $+ j $+ #−3 $+ k) $< u $+ #5 $+ y 〈proof 〉
lemma (i $+ j $+ #3 $+ k) $< u $+ #−6 $+ y 〈proof 〉
lemma (i $+ j $+ #−12 $+ k) $− #15 = y 〈proof 〉
lemma (i $+ j $+ #12 $+ k) $− #−15 = y 〈proof 〉
lemma (i $+ j $+ #−12 $+ k) $− #−15 = y 〈proof 〉

Multiplying separated numerals
lemma #6 $∗ ($# x $∗ #2) = uu 〈proof 〉
lemma #4 $∗ ($# x $∗ $# x) $∗ (#2 $∗ $# x) = uu 〈proof 〉

end

33 The Division Operators Div and Mod
theory IntDiv
imports Bin OrderArith
begin

definition
quorem :: [i,i] ⇒ o where

quorem ≡ λ〈a,b〉 〈q,r〉.
a = b$∗q $+ r ∧
(#0$<b ∧ #0$≤r ∧ r$<b | ¬(#0$<b) ∧ b$<r ∧ r $≤ #0)

definition
adjust :: [i,i] ⇒ i where

adjust(b) ≡ λ〈q,r〉. if #0 $≤ r$−b then <#2$∗q $+ #1 ,r$−b>
else <#2$∗q,r>

definition
posDivAlg :: i ⇒ i where

posDivAlg(ab) ≡
wfrec(measure(int∗int, λ〈a,b〉. nat-of (a $− b $+ #1)),

ab,
λ〈a,b〉 f . if (a$<b | b$≤#0) then <#0 ,a>

else adjust(b, f ‘ <a,#2$∗b>))

257

definition
negDivAlg :: i ⇒ i where

negDivAlg(ab) ≡
wfrec(measure(int∗int, λ〈a,b〉. nat-of ($− a $− b)),

ab,
λ〈a,b〉 f . if (#0 $≤ a$+b | b$≤#0) then <#−1 ,a$+b>

else adjust(b, f ‘ <a,#2$∗b>))

definition
negateSnd :: i ⇒ i where

negateSnd ≡ λ〈q,r〉. <q, $−r>

definition
divAlg :: i ⇒ i where

divAlg ≡
λ〈a,b〉. if #0 $≤ a then

if #0 $≤ b then posDivAlg (〈a,b〉)
else if a=#0 then <#0 ,#0>

else negateSnd (negDivAlg (<$−a,$−b>))
else

if #0$<b then negDivAlg (〈a,b〉)
else negateSnd (posDivAlg (<$−a,$−b>))

definition
zdiv :: [i,i]⇒i (infixl ‹zdiv› 70) where

a zdiv b ≡ fst (divAlg (<intify(a), intify(b)>))

definition
zmod :: [i,i]⇒i (infixl ‹zmod› 70) where

a zmod b ≡ snd (divAlg (<intify(a), intify(b)>))

lemma zspos-add-zspos-imp-zspos: [[#0 $< x; #0 $< y]] =⇒ #0 $< x $+ y
〈proof 〉

lemma zpos-add-zpos-imp-zpos: [[#0 $≤ x; #0 $≤ y]] =⇒ #0 $≤ x $+ y
〈proof 〉

lemma zneg-add-zneg-imp-zneg: [[x $< #0 ; y $< #0]] =⇒ x $+ y $< #0
〈proof 〉

258

lemma zneg-or-0-add-zneg-or-0-imp-zneg-or-0 :
[[x $≤ #0 ; y $≤ #0]] =⇒ x $+ y $≤ #0

〈proof 〉

lemma zero-lt-zmagnitude: [[#0 $< k; k ∈ int]] =⇒ 0 < zmagnitude(k)
〈proof 〉

lemma zless-add-succ-iff :
(w $< z $+ $# succ(m)) ←→ (w $< z $+ $#m | intify(w) = z $+ $#m)

〈proof 〉

lemma zadd-succ-lemma:
z ∈ int =⇒ (w $+ $# succ(m) $≤ z) ←→ (w $+ $#m $< z)

〈proof 〉

lemma zadd-succ-zle-iff : (w $+ $# succ(m) $≤ z) ←→ (w $+ $#m $< z)
〈proof 〉

lemma zless-add1-iff-zle: (w $< z $+ #1) ←→ (w$≤z)
〈proof 〉

lemma add1-zle-iff : (w $+ #1 $≤ z) ←→ (w $< z)
〈proof 〉

lemma add1-left-zle-iff : (#1 $+ w $≤ z) ←→ (w $< z)
〈proof 〉

lemma zmult-mono-lemma: k ∈ nat =⇒ i $≤ j =⇒ i $∗ $#k $≤ j $∗ $#k
〈proof 〉

lemma zmult-zle-mono1 : [[i $≤ j; #0 $≤ k]] =⇒ i$∗k $≤ j$∗k
〈proof 〉

lemma zmult-zle-mono1-neg: [[i $≤ j; k $≤ #0]] =⇒ j$∗k $≤ i$∗k
〈proof 〉

lemma zmult-zle-mono2 : [[i $≤ j; #0 $≤ k]] =⇒ k$∗i $≤ k$∗j
〈proof 〉

259

lemma zmult-zle-mono2-neg: [[i $≤ j; k $≤ #0]] =⇒ k$∗j $≤ k$∗i
〈proof 〉

lemma zmult-zle-mono:
[[i $≤ j; k $≤ l; #0 $≤ j; #0 $≤ k]] =⇒ i$∗k $≤ j$∗l

〈proof 〉

lemma zmult-zless-mono2-lemma [rule-format]:
[[i$<j; k ∈ nat]] =⇒ 0<k −→ $#k $∗ i $< $#k $∗ j

〈proof 〉

lemma zmult-zless-mono2 : [[i$<j; #0 $< k]] =⇒ k$∗i $< k$∗j
〈proof 〉

lemma zmult-zless-mono1 : [[i$<j; #0 $< k]] =⇒ i$∗k $< j$∗k
〈proof 〉

lemma zmult-zless-mono:
[[i $< j; k $< l; #0 $< j; #0 $< k]] =⇒ i$∗k $< j$∗l

〈proof 〉

lemma zmult-zless-mono1-neg: [[i $< j; k $< #0]] =⇒ j$∗k $< i$∗k
〈proof 〉

lemma zmult-zless-mono2-neg: [[i $< j; k $< #0]] =⇒ k$∗j $< k$∗i
〈proof 〉

lemma zmult-eq-lemma:
[[m ∈ int; n ∈ int]] =⇒ (m = #0 | n = #0) ←→ (m$∗n = #0)

〈proof 〉

lemma zmult-eq-0-iff [iff]: (m$∗n = #0) ←→ (intify(m) = #0 | intify(n) = #0)
〈proof 〉

lemma zmult-zless-lemma:
[[k ∈ int; m ∈ int; n ∈ int]]
=⇒ (m$∗k $< n$∗k) ←→ ((#0 $< k ∧ m$<n) | (k $< #0 ∧ n$<m))

〈proof 〉

260

lemma zmult-zless-cancel2 :
(m$∗k $< n$∗k) ←→ ((#0 $< k ∧ m$<n) | (k $< #0 ∧ n$<m))

〈proof 〉

lemma zmult-zless-cancel1 :
(k$∗m $< k$∗n) ←→ ((#0 $< k ∧ m$<n) | (k $< #0 ∧ n$<m))

〈proof 〉

lemma zmult-zle-cancel2 :
(m$∗k $≤ n$∗k) ←→ ((#0 $< k −→ m$≤n) ∧ (k $< #0 −→ n$≤m))

〈proof 〉

lemma zmult-zle-cancel1 :
(k$∗m $≤ k$∗n) ←→ ((#0 $< k −→ m$≤n) ∧ (k $< #0 −→ n$≤m))

〈proof 〉

lemma int-eq-iff-zle: [[m ∈ int; n ∈ int]] =⇒ m=n ←→ (m $≤ n ∧ n $≤ m)
〈proof 〉

lemma zmult-cancel2-lemma:
[[k ∈ int; m ∈ int; n ∈ int]] =⇒ (m$∗k = n$∗k) ←→ (k=#0 | m=n)

〈proof 〉

lemma zmult-cancel2 [simp]:
(m$∗k = n$∗k) ←→ (intify(k) = #0 | intify(m) = intify(n))

〈proof 〉

lemma zmult-cancel1 [simp]:
(k$∗m = k$∗n) ←→ (intify(k) = #0 | intify(m) = intify(n))

〈proof 〉

33.1 Uniqueness and monotonicity of quotients and remain-
ders

lemma unique-quotient-lemma:
[[b$∗q ′ $+ r ′ $≤ b$∗q $+ r ; #0 $≤ r ′; #0 $< b; r $< b]]
=⇒ q ′ $≤ q

〈proof 〉

lemma unique-quotient-lemma-neg:
[[b$∗q ′ $+ r ′ $≤ b$∗q $+ r ; r $≤ #0 ; b $< #0 ; b $< r ′]]
=⇒ q $≤ q ′

〈proof 〉

lemma unique-quotient:
[[quorem (〈a,b〉, 〈q,r〉); quorem (〈a,b〉, <q ′,r ′>); b ∈ int; b 6= #0 ;

q ∈ int; q ′ ∈ int]] =⇒ q = q ′

261

〈proof 〉

lemma unique-remainder :
[[quorem (〈a,b〉, 〈q,r〉); quorem (〈a,b〉, <q ′,r ′>); b ∈ int; b 6= #0 ;

q ∈ int; q ′ ∈ int;
r ∈ int; r ′ ∈ int]] =⇒ r = r ′

〈proof 〉

33.2 Correctness of posDivAlg, the Division Algorithm for
a≥0 and b>0

lemma adjust-eq [simp]:
adjust(b, 〈q,r〉) = (let diff = r$−b in

if #0 $≤ diff then <#2$∗q $+ #1 ,diff>
else <#2$∗q,r>)

〈proof 〉

lemma posDivAlg-termination:
[[#0 $< b; ¬ a $< b]]
=⇒ nat-of (a $− #2 $∗ b $+ #1) < nat-of (a $− b $+ #1)

〈proof 〉

lemmas posDivAlg-unfold = def-wfrec [OF posDivAlg-def wf-measure]

lemma posDivAlg-eqn:
[[#0 $< b; a ∈ int; b ∈ int]] =⇒
posDivAlg(〈a,b〉) =
(if a$<b then <#0 ,a> else adjust(b, posDivAlg (<a, #2$∗b>)))

〈proof 〉

lemma posDivAlg-induct-lemma [rule-format]:
assumes prem:∧

a b. [[a ∈ int; b ∈ int;
¬ (a $< b | b $≤ #0) −→ P(<a, #2 $∗ b>)]] =⇒ P(〈a,b〉)

shows 〈u,v〉 ∈ int∗int =⇒ P(〈u,v〉)
〈proof 〉

lemma posDivAlg-induct [consumes 2]:
assumes u-int: u ∈ int

and v-int: v ∈ int
and ih:

∧
a b. [[a ∈ int; b ∈ int;
¬ (a $< b | b $≤ #0) −→ P(a, #2 $∗ b)]] =⇒ P(a,b)

shows P(u,v)
〈proof 〉

lemma intify-eq-0-iff-zle: intify(m) = #0 ←→ (m $≤ #0 ∧ #0 $≤ m)

262

〈proof 〉

33.3 Some convenient biconditionals for products of signs
lemma zmult-pos: [[#0 $< i; #0 $< j]] =⇒ #0 $< i $∗ j
〈proof 〉

lemma zmult-neg: [[i $< #0 ; j $< #0]] =⇒ #0 $< i $∗ j
〈proof 〉

lemma zmult-pos-neg: [[#0 $< i; j $< #0]] =⇒ i $∗ j $< #0
〈proof 〉

lemma int-0-less-lemma:
[[x ∈ int; y ∈ int]]
=⇒ (#0 $< x $∗ y) ←→ (#0 $< x ∧ #0 $< y | x $< #0 ∧ y $< #0)

〈proof 〉

lemma int-0-less-mult-iff :
(#0 $< x $∗ y) ←→ (#0 $< x ∧ #0 $< y | x $< #0 ∧ y $< #0)

〈proof 〉

lemma int-0-le-lemma:
[[x ∈ int; y ∈ int]]
=⇒ (#0 $≤ x $∗ y) ←→ (#0 $≤ x ∧ #0 $≤ y | x $≤ #0 ∧ y $≤ #0)

〈proof 〉

lemma int-0-le-mult-iff :
(#0 $≤ x $∗ y) ←→ ((#0 $≤ x ∧ #0 $≤ y) | (x $≤ #0 ∧ y $≤ #0))

〈proof 〉

lemma zmult-less-0-iff :
(x $∗ y $< #0) ←→ (#0 $< x ∧ y $< #0 | x $< #0 ∧ #0 $< y)

〈proof 〉

lemma zmult-le-0-iff :
(x $∗ y $≤ #0) ←→ (#0 $≤ x ∧ y $≤ #0 | x $≤ #0 ∧ #0 $≤ y)

〈proof 〉

lemma posDivAlg-type [rule-format]:
[[a ∈ int; b ∈ int]] =⇒ posDivAlg(〈a,b〉) ∈ int ∗ int

〈proof 〉

263

lemma posDivAlg-correct [rule-format]:
[[a ∈ int; b ∈ int]]
=⇒ #0 $≤ a −→ #0 $< b −→ quorem (〈a,b〉, posDivAlg(〈a,b〉))

〈proof 〉

33.4 Correctness of negDivAlg, the division algorithm for
a<0 and b>0

lemma negDivAlg-termination:
[[#0 $< b; a $+ b $< #0]]
=⇒ nat-of ($− a $− #2 $∗ b) < nat-of ($− a $− b)

〈proof 〉

lemmas negDivAlg-unfold = def-wfrec [OF negDivAlg-def wf-measure]

lemma negDivAlg-eqn:
[[#0 $< b; a ∈ int; b ∈ int]] =⇒
negDivAlg(〈a,b〉) =
(if #0 $≤ a$+b then <#−1 ,a$+b>

else adjust(b, negDivAlg (<a, #2$∗b>)))
〈proof 〉

lemma negDivAlg-induct-lemma [rule-format]:
assumes prem:∧

a b. [[a ∈ int; b ∈ int;
¬ (#0 $≤ a $+ b | b $≤ #0) −→ P(<a, #2 $∗ b>)]]

=⇒ P(〈a,b〉)
shows 〈u,v〉 ∈ int∗int =⇒ P(〈u,v〉)
〈proof 〉

lemma negDivAlg-induct [consumes 2]:
assumes u-int: u ∈ int

and v-int: v ∈ int
and ih:

∧
a b. [[a ∈ int; b ∈ int;

¬ (#0 $≤ a $+ b | b $≤ #0) −→ P(a, #2 $∗ b)]]
=⇒ P(a,b)

shows P(u,v)
〈proof 〉

lemma negDivAlg-type:
[[a ∈ int; b ∈ int]] =⇒ negDivAlg(〈a,b〉) ∈ int ∗ int

〈proof 〉

lemma negDivAlg-correct [rule-format]:
[[a ∈ int; b ∈ int]]

264

=⇒ a $< #0 −→ #0 $< b −→ quorem (〈a,b〉, negDivAlg(〈a,b〉))
〈proof 〉

33.5 Existence shown by proving the division algorithm to
be correct

lemma quorem-0 : [[b 6= #0 ; b ∈ int]] =⇒ quorem (<#0 ,b>, <#0 ,#0>)
〈proof 〉

lemma posDivAlg-zero-divisor : posDivAlg(<a,#0>) = <#0 ,a>
〈proof 〉

lemma posDivAlg-0 [simp]: posDivAlg (<#0 ,b>) = <#0 ,#0>
〈proof 〉

lemma linear-arith-lemma: ¬ (#0 $≤ #−1 $+ b) =⇒ (b $≤ #0)
〈proof 〉

lemma negDivAlg-minus1 [simp]: negDivAlg (<#−1 ,b>) = <#−1 , b$−#1>
〈proof 〉

lemma negateSnd-eq [simp]: negateSnd (〈q,r〉) = <q, $−r>
〈proof 〉

lemma negateSnd-type: qr ∈ int ∗ int =⇒ negateSnd (qr) ∈ int ∗ int
〈proof 〉

lemma quorem-neg:
[[quorem (<$−a,$−b>, qr); a ∈ int; b ∈ int; qr ∈ int ∗ int]]
=⇒ quorem (〈a,b〉, negateSnd(qr))

〈proof 〉

lemma divAlg-correct:
[[b 6= #0 ; a ∈ int; b ∈ int]] =⇒ quorem (〈a,b〉, divAlg(〈a,b〉))

〈proof 〉

lemma divAlg-type: [[a ∈ int; b ∈ int]] =⇒ divAlg(〈a,b〉) ∈ int ∗ int
〈proof 〉

lemma zdiv-intify1 [simp]: intify(x) zdiv y = x zdiv y
〈proof 〉

lemma zdiv-intify2 [simp]: x zdiv intify(y) = x zdiv y
〈proof 〉

265

lemma zdiv-type [iff ,TC]: z zdiv w ∈ int
〈proof 〉

lemma zmod-intify1 [simp]: intify(x) zmod y = x zmod y
〈proof 〉

lemma zmod-intify2 [simp]: x zmod intify(y) = x zmod y
〈proof 〉

lemma zmod-type [iff ,TC]: z zmod w ∈ int
〈proof 〉

lemma DIVISION-BY-ZERO-ZDIV : a zdiv #0 = #0
〈proof 〉

lemma DIVISION-BY-ZERO-ZMOD: a zmod #0 = intify(a)
〈proof 〉

lemma raw-zmod-zdiv-equality:
[[a ∈ int; b ∈ int]] =⇒ a = b $∗ (a zdiv b) $+ (a zmod b)

〈proof 〉

lemma zmod-zdiv-equality: intify(a) = b $∗ (a zdiv b) $+ (a zmod b)
〈proof 〉

lemma pos-mod: #0 $< b =⇒ #0 $≤ a zmod b ∧ a zmod b $< b
〈proof 〉

lemmas pos-mod-sign = pos-mod [THEN conjunct1]
and pos-mod-bound = pos-mod [THEN conjunct2]

lemma neg-mod: b $< #0 =⇒ a zmod b $≤ #0 ∧ b $< a zmod b
〈proof 〉

lemmas neg-mod-sign = neg-mod [THEN conjunct1]
and neg-mod-bound = neg-mod [THEN conjunct2]

lemma quorem-div-mod:
[[b 6= #0 ; a ∈ int; b ∈ int]]

266

=⇒ quorem (〈a,b〉, <a zdiv b, a zmod b>)
〈proof 〉

lemma quorem-div:
[[quorem(〈a,b〉,〈q,r〉); b 6= #0 ; a ∈ int; b ∈ int; q ∈ int]]
=⇒ a zdiv b = q

〈proof 〉

lemma quorem-mod:
[[quorem(〈a,b〉,〈q,r〉); b 6= #0 ; a ∈ int; b ∈ int; q ∈ int; r ∈ int]]
=⇒ a zmod b = r

〈proof 〉

lemma zdiv-pos-pos-trivial-raw:
[[a ∈ int; b ∈ int; #0 $≤ a; a $< b]] =⇒ a zdiv b = #0

〈proof 〉

lemma zdiv-pos-pos-trivial: [[#0 $≤ a; a $< b]] =⇒ a zdiv b = #0
〈proof 〉

lemma zdiv-neg-neg-trivial-raw:
[[a ∈ int; b ∈ int; a $≤ #0 ; b $< a]] =⇒ a zdiv b = #0

〈proof 〉

lemma zdiv-neg-neg-trivial: [[a $≤ #0 ; b $< a]] =⇒ a zdiv b = #0
〈proof 〉

lemma zadd-le-0-lemma: [[a$+b $≤ #0 ; #0 $< a; #0 $< b]] =⇒ False
〈proof 〉

lemma zdiv-pos-neg-trivial-raw:
[[a ∈ int; b ∈ int; #0 $< a; a$+b $≤ #0]] =⇒ a zdiv b = #−1

〈proof 〉

lemma zdiv-pos-neg-trivial: [[#0 $< a; a$+b $≤ #0]] =⇒ a zdiv b = #−1
〈proof 〉

lemma zmod-pos-pos-trivial-raw:
[[a ∈ int; b ∈ int; #0 $≤ a; a $< b]] =⇒ a zmod b = a

〈proof 〉

lemma zmod-pos-pos-trivial: [[#0 $≤ a; a $< b]] =⇒ a zmod b = intify(a)
〈proof 〉

lemma zmod-neg-neg-trivial-raw:

267

[[a ∈ int; b ∈ int; a $≤ #0 ; b $< a]] =⇒ a zmod b = a
〈proof 〉

lemma zmod-neg-neg-trivial: [[a $≤ #0 ; b $< a]] =⇒ a zmod b = intify(a)
〈proof 〉

lemma zmod-pos-neg-trivial-raw:
[[a ∈ int; b ∈ int; #0 $< a; a$+b $≤ #0]] =⇒ a zmod b = a$+b

〈proof 〉

lemma zmod-pos-neg-trivial: [[#0 $< a; a$+b $≤ #0]] =⇒ a zmod b = a$+b
〈proof 〉

lemma zdiv-zminus-zminus-raw:
[[a ∈ int; b ∈ int]] =⇒ ($−a) zdiv ($−b) = a zdiv b

〈proof 〉

lemma zdiv-zminus-zminus [simp]: ($−a) zdiv ($−b) = a zdiv b
〈proof 〉

lemma zmod-zminus-zminus-raw:
[[a ∈ int; b ∈ int]] =⇒ ($−a) zmod ($−b) = $− (a zmod b)

〈proof 〉

lemma zmod-zminus-zminus [simp]: ($−a) zmod ($−b) = $− (a zmod b)
〈proof 〉

33.6 division of a number by itself
lemma self-quotient-aux1 : [[#0 $< a; a = r $+ a$∗q; r $< a]] =⇒ #1 $≤ q
〈proof 〉

lemma self-quotient-aux2 : [[#0 $< a; a = r $+ a$∗q; #0 $≤ r]] =⇒ q $≤ #1
〈proof 〉

lemma self-quotient:
[[quorem(〈a,a〉,〈q,r〉); a ∈ int; q ∈ int; a 6= #0]] =⇒ q = #1

〈proof 〉

lemma self-remainder :
[[quorem(〈a,a〉,〈q,r〉); a ∈ int; q ∈ int; r ∈ int; a 6= #0]] =⇒ r = #0

〈proof 〉

268

lemma zdiv-self-raw: [[a 6= #0 ; a ∈ int]] =⇒ a zdiv a = #1
〈proof 〉

lemma zdiv-self [simp]: intify(a) 6= #0 =⇒ a zdiv a = #1
〈proof 〉

lemma zmod-self-raw: a ∈ int =⇒ a zmod a = #0
〈proof 〉

lemma zmod-self [simp]: a zmod a = #0
〈proof 〉

33.7 Computation of division and remainder
lemma zdiv-zero [simp]: #0 zdiv b = #0
〈proof 〉

lemma zdiv-eq-minus1 : #0 $< b =⇒ #−1 zdiv b = #−1
〈proof 〉

lemma zmod-zero [simp]: #0 zmod b = #0
〈proof 〉

lemma zdiv-minus1 : #0 $< b =⇒ #−1 zdiv b = #−1
〈proof 〉

lemma zmod-minus1 : #0 $< b =⇒ #−1 zmod b = b $− #1
〈proof 〉

lemma zdiv-pos-pos: [[#0 $< a; #0 $≤ b]]
=⇒ a zdiv b = fst (posDivAlg(<intify(a), intify(b)>))

〈proof 〉

lemma zmod-pos-pos:
[[#0 $< a; #0 $≤ b]]
=⇒ a zmod b = snd (posDivAlg(<intify(a), intify(b)>))

〈proof 〉

lemma zdiv-neg-pos:
[[a $< #0 ; #0 $< b]]
=⇒ a zdiv b = fst (negDivAlg(<intify(a), intify(b)>))

〈proof 〉

lemma zmod-neg-pos:

269

[[a $< #0 ; #0 $< b]]
=⇒ a zmod b = snd (negDivAlg(<intify(a), intify(b)>))

〈proof 〉

lemma zdiv-pos-neg:
[[#0 $< a; b $< #0]]
=⇒ a zdiv b = fst (negateSnd(negDivAlg (<$−a, $−b>)))

〈proof 〉

lemma zmod-pos-neg:
[[#0 $< a; b $< #0]]
=⇒ a zmod b = snd (negateSnd(negDivAlg (<$−a, $−b>)))

〈proof 〉

lemma zdiv-neg-neg:
[[a $< #0 ; b $≤ #0]]
=⇒ a zdiv b = fst (negateSnd(posDivAlg(<$−a, $−b>)))

〈proof 〉

lemma zmod-neg-neg:
[[a $< #0 ; b $≤ #0]]
=⇒ a zmod b = snd (negateSnd(posDivAlg(<$−a, $−b>)))

〈proof 〉

declare zdiv-pos-pos [of integ-of (v) integ-of (w), simp] for v w
declare zdiv-neg-pos [of integ-of (v) integ-of (w), simp] for v w
declare zdiv-pos-neg [of integ-of (v) integ-of (w), simp] for v w
declare zdiv-neg-neg [of integ-of (v) integ-of (w), simp] for v w
declare zmod-pos-pos [of integ-of (v) integ-of (w), simp] for v w
declare zmod-neg-pos [of integ-of (v) integ-of (w), simp] for v w
declare zmod-pos-neg [of integ-of (v) integ-of (w), simp] for v w
declare zmod-neg-neg [of integ-of (v) integ-of (w), simp] for v w
declare posDivAlg-eqn [of concl: integ-of (v) integ-of (w), simp] for v w
declare negDivAlg-eqn [of concl: integ-of (v) integ-of (w), simp] for v w

lemma zmod-1 [simp]: a zmod #1 = #0
〈proof 〉

lemma zdiv-1 [simp]: a zdiv #1 = intify(a)
〈proof 〉

lemma zmod-minus1-right [simp]: a zmod #−1 = #0

270

〈proof 〉

lemma zdiv-minus1-right-raw: a ∈ int =⇒ a zdiv #−1 = $−a
〈proof 〉

lemma zdiv-minus1-right: a zdiv #−1 = $−a
〈proof 〉
declare zdiv-minus1-right [simp]

33.8 Monotonicity in the first argument (divisor)
lemma zdiv-mono1 : [[a $≤ a ′; #0 $< b]] =⇒ a zdiv b $≤ a ′ zdiv b
〈proof 〉

lemma zdiv-mono1-neg: [[a $≤ a ′; b $< #0]] =⇒ a ′ zdiv b $≤ a zdiv b
〈proof 〉

33.9 Monotonicity in the second argument (dividend)
lemma q-pos-lemma:

[[#0 $≤ b ′$∗q ′ $+ r ′; r ′ $< b ′; #0 $< b ′]] =⇒ #0 $≤ q ′

〈proof 〉

lemma zdiv-mono2-lemma:
[[b$∗q $+ r = b ′$∗q ′ $+ r ′; #0 $≤ b ′$∗q ′ $+ r ′;

r ′ $< b ′; #0 $≤ r ; #0 $< b ′; b ′ $≤ b]]
=⇒ q $≤ q ′

〈proof 〉

lemma zdiv-mono2-raw:
[[#0 $≤ a; #0 $< b ′; b ′ $≤ b; a ∈ int]]
=⇒ a zdiv b $≤ a zdiv b ′

〈proof 〉

lemma zdiv-mono2 :
[[#0 $≤ a; #0 $< b ′; b ′ $≤ b]]
=⇒ a zdiv b $≤ a zdiv b ′

〈proof 〉

lemma q-neg-lemma:
[[b ′$∗q ′ $+ r ′ $< #0 ; #0 $≤ r ′; #0 $< b ′]] =⇒ q ′ $< #0

〈proof 〉

lemma zdiv-mono2-neg-lemma:
[[b$∗q $+ r = b ′$∗q ′ $+ r ′; b ′$∗q ′ $+ r ′ $< #0 ;

r $< b; #0 $≤ r ′; #0 $< b ′; b ′ $≤ b]]
=⇒ q ′ $≤ q

271

〈proof 〉

lemma zdiv-mono2-neg-raw:
[[a $< #0 ; #0 $< b ′; b ′ $≤ b; a ∈ int]]
=⇒ a zdiv b ′ $≤ a zdiv b

〈proof 〉

lemma zdiv-mono2-neg: [[a $< #0 ; #0 $< b ′; b ′ $≤ b]]
=⇒ a zdiv b ′ $≤ a zdiv b

〈proof 〉

33.10 More algebraic laws for zdiv and zmod
lemma zmult1-lemma:

[[quorem(〈b,c〉, 〈q,r〉); c ∈ int; c 6= #0]]
=⇒ quorem (<a$∗b, c>, <a$∗q $+ (a$∗r) zdiv c, (a$∗r) zmod c>)

〈proof 〉

lemma zdiv-zmult1-eq-raw:
[[b ∈ int; c ∈ int]]
=⇒ (a$∗b) zdiv c = a$∗(b zdiv c) $+ a$∗(b zmod c) zdiv c

〈proof 〉

lemma zdiv-zmult1-eq: (a$∗b) zdiv c = a$∗(b zdiv c) $+ a$∗(b zmod c) zdiv c
〈proof 〉

lemma zmod-zmult1-eq-raw:
[[b ∈ int; c ∈ int]] =⇒ (a$∗b) zmod c = a$∗(b zmod c) zmod c

〈proof 〉

lemma zmod-zmult1-eq: (a$∗b) zmod c = a$∗(b zmod c) zmod c
〈proof 〉

lemma zmod-zmult1-eq ′: (a$∗b) zmod c = ((a zmod c) $∗ b) zmod c
〈proof 〉

lemma zmod-zmult-distrib: (a$∗b) zmod c = ((a zmod c) $∗ (b zmod c)) zmod c
〈proof 〉

lemma zdiv-zmult-self1 [simp]: intify(b) 6= #0 =⇒ (a$∗b) zdiv b = intify(a)
〈proof 〉

lemma zdiv-zmult-self2 [simp]: intify(b) 6= #0 =⇒ (b$∗a) zdiv b = intify(a)
〈proof 〉

lemma zmod-zmult-self1 [simp]: (a$∗b) zmod b = #0
〈proof 〉

lemma zmod-zmult-self2 [simp]: (b$∗a) zmod b = #0

272

〈proof 〉

lemma zadd1-lemma:
[[quorem(〈a,c〉, 〈aq,ar〉); quorem(〈b,c〉, 〈bq,br〉);

c ∈ int; c 6= #0]]
=⇒ quorem (<a$+b, c>, <aq $+ bq $+ (ar$+br) zdiv c, (ar$+br) zmod c>)

〈proof 〉

lemma zdiv-zadd1-eq-raw:
[[a ∈ int; b ∈ int; c ∈ int]] =⇒
(a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)

〈proof 〉

lemma zdiv-zadd1-eq:
(a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)

〈proof 〉

lemma zmod-zadd1-eq-raw:
[[a ∈ int; b ∈ int; c ∈ int]]
=⇒ (a$+b) zmod c = (a zmod c $+ b zmod c) zmod c

〈proof 〉

lemma zmod-zadd1-eq: (a$+b) zmod c = (a zmod c $+ b zmod c) zmod c
〈proof 〉

lemma zmod-div-trivial-raw:
[[a ∈ int; b ∈ int]] =⇒ (a zmod b) zdiv b = #0

〈proof 〉

lemma zmod-div-trivial [simp]: (a zmod b) zdiv b = #0
〈proof 〉

lemma zmod-mod-trivial-raw:
[[a ∈ int; b ∈ int]] =⇒ (a zmod b) zmod b = a zmod b

〈proof 〉

lemma zmod-mod-trivial [simp]: (a zmod b) zmod b = a zmod b
〈proof 〉

lemma zmod-zadd-left-eq: (a$+b) zmod c = ((a zmod c) $+ b) zmod c
〈proof 〉

lemma zmod-zadd-right-eq: (a$+b) zmod c = (a $+ (b zmod c)) zmod c
〈proof 〉

273

lemma zdiv-zadd-self1 [simp]:
intify(a) 6= #0 =⇒ (a$+b) zdiv a = b zdiv a $+ #1

〈proof 〉

lemma zdiv-zadd-self2 [simp]:
intify(a) 6= #0 =⇒ (b$+a) zdiv a = b zdiv a $+ #1

〈proof 〉

lemma zmod-zadd-self1 [simp]: (a$+b) zmod a = b zmod a
〈proof 〉

lemma zmod-zadd-self2 [simp]: (b$+a) zmod a = b zmod a
〈proof 〉

33.11 proving a zdiv (b*c) = (a zdiv b) zdiv c
lemma zdiv-zmult2-aux1 :

[[#0 $< c; b $< r ; r $≤ #0]] =⇒ b$∗c $< b$∗(q zmod c) $+ r
〈proof 〉

lemma zdiv-zmult2-aux2 :
[[#0 $< c; b $< r ; r $≤ #0]] =⇒ b $∗ (q zmod c) $+ r $≤ #0

〈proof 〉

lemma zdiv-zmult2-aux3 :
[[#0 $< c; #0 $≤ r ; r $< b]] =⇒ #0 $≤ b $∗ (q zmod c) $+ r

〈proof 〉

lemma zdiv-zmult2-aux4 :
[[#0 $< c; #0 $≤ r ; r $< b]] =⇒ b $∗ (q zmod c) $+ r $< b $∗ c

〈proof 〉

lemma zdiv-zmult2-lemma:
[[quorem (〈a,b〉, 〈q,r〉); a ∈ int; b ∈ int; b 6= #0 ; #0 $< c]]
=⇒ quorem (<a,b$∗c>, <q zdiv c, b$∗(q zmod c) $+ r>)

〈proof 〉

lemma zdiv-zmult2-eq-raw:
[[#0 $< c; a ∈ int; b ∈ int]] =⇒ a zdiv (b$∗c) = (a zdiv b) zdiv c

〈proof 〉

lemma zdiv-zmult2-eq: #0 $< c =⇒ a zdiv (b$∗c) = (a zdiv b) zdiv c
〈proof 〉

lemma zmod-zmult2-eq-raw:
[[#0 $< c; a ∈ int; b ∈ int]]
=⇒ a zmod (b$∗c) = b$∗(a zdiv b zmod c) $+ a zmod b

〈proof 〉

274

lemma zmod-zmult2-eq:
#0 $< c =⇒ a zmod (b$∗c) = b$∗(a zdiv b zmod c) $+ a zmod b

〈proof 〉

33.12 Cancellation of common factors in "zdiv"
lemma zdiv-zmult-zmult1-aux1 :

[[#0 $< b; intify(c) 6= #0]] =⇒ (c$∗a) zdiv (c$∗b) = a zdiv b
〈proof 〉

lemma zdiv-zmult-zmult1-aux2 :
[[b $< #0 ; intify(c) 6= #0]] =⇒ (c$∗a) zdiv (c$∗b) = a zdiv b

〈proof 〉

lemma zdiv-zmult-zmult1-raw:
[[intify(c) 6= #0 ; b ∈ int]] =⇒ (c$∗a) zdiv (c$∗b) = a zdiv b

〈proof 〉

lemma zdiv-zmult-zmult1 : intify(c) 6= #0 =⇒ (c$∗a) zdiv (c$∗b) = a zdiv b
〈proof 〉

lemma zdiv-zmult-zmult2 : intify(c) 6= #0 =⇒ (a$∗c) zdiv (b$∗c) = a zdiv b
〈proof 〉

33.13 Distribution of factors over "zmod"
lemma zmod-zmult-zmult1-aux1 :

[[#0 $< b; intify(c) 6= #0]]
=⇒ (c$∗a) zmod (c$∗b) = c $∗ (a zmod b)

〈proof 〉

lemma zmod-zmult-zmult1-aux2 :
[[b $< #0 ; intify(c) 6= #0]]
=⇒ (c$∗a) zmod (c$∗b) = c $∗ (a zmod b)

〈proof 〉

lemma zmod-zmult-zmult1-raw:
[[b ∈ int; c ∈ int]] =⇒ (c$∗a) zmod (c$∗b) = c $∗ (a zmod b)

〈proof 〉

lemma zmod-zmult-zmult1 : (c$∗a) zmod (c$∗b) = c $∗ (a zmod b)
〈proof 〉

lemma zmod-zmult-zmult2 : (a$∗c) zmod (b$∗c) = (a zmod b) $∗ c
〈proof 〉

275

lemma zdiv-neg-pos-less0 : [[a $< #0 ; #0 $< b]] =⇒ a zdiv b $< #0
〈proof 〉

lemma zdiv-nonneg-neg-le0 : [[#0 $≤ a; b $< #0]] =⇒ a zdiv b $≤ #0
〈proof 〉

lemma pos-imp-zdiv-nonneg-iff : #0 $< b =⇒ (#0 $≤ a zdiv b) ←→ (#0 $≤ a)
〈proof 〉

lemma neg-imp-zdiv-nonneg-iff : b $< #0 =⇒ (#0 $≤ a zdiv b) ←→ (a $≤ #0)
〈proof 〉

lemma pos-imp-zdiv-neg-iff : #0 $< b =⇒ (a zdiv b $< #0) ←→ (a $< #0)
〈proof 〉

lemma neg-imp-zdiv-neg-iff : b $< #0 =⇒ (a zdiv b $< #0) ←→ (#0 $< a)
〈proof 〉

end

34 Cardinal Arithmetic Without the Axiom of Choice
theory CardinalArith imports Cardinal OrderArith ArithSimp Finite begin

definition
InfCard :: i⇒o where

InfCard(i) ≡ Card(i) ∧ nat ≤ i

definition
cmult :: [i,i]⇒i (infixl ‹⊗› 70) where

i ⊗ j ≡ |i∗j|

definition
cadd :: [i,i]⇒i (infixl ‹⊕› 65) where

i ⊕ j ≡ |i+j|

definition
csquare-rel :: i⇒i where

csquare-rel(K) ≡
rvimage(K∗K ,

lam 〈x,y〉:K∗K . <x ∪ y, x, y>,
rmult(K ,Memrel(K), K∗K , rmult(K ,Memrel(K), K ,Memrel(K))))

definition
jump-cardinal :: i⇒i where

276

— This definition is more complex than Kunen’s but it more easily proved to
be a cardinal

jump-cardinal(K) ≡⋃
X∈Pow(K). {z. r ∈ Pow(K∗K), well-ord(X ,r) ∧ z = ordertype(X ,r)}

definition
csucc :: i⇒i where

— needed because jump-cardinal(K) might not be the successor of K
csucc(K) ≡ µ L. Card(L) ∧ K<L

lemma Card-Union [simp,intro,TC]:
assumes A:

∧
x. x∈A =⇒ Card(x) shows Card(

⋃
(A))

〈proof 〉

lemma Card-UN : (
∧

x. x ∈ A =⇒ Card(K (x))) =⇒ Card(
⋃

x∈A. K (x))
〈proof 〉

lemma Card-OUN [simp,intro,TC]:
(
∧

x. x ∈ A =⇒ Card(K (x))) =⇒ Card(
⋃

x<A. K (x))
〈proof 〉

lemma in-Card-imp-lesspoll: [[Card(K); b ∈ K]] =⇒ b ≺ K
〈proof 〉

34.1 Cardinal addition

Note: Could omit proving the algebraic laws for cardinal addition and mul-
tiplication. On finite cardinals these operations coincide with addition and
multiplication of natural numbers; on infinite cardinals they coincide with
union (maximum). Either way we get most laws for free.

34.1.1 Cardinal addition is commutative
lemma sum-commute-eqpoll: A+B ≈ B+A
〈proof 〉

lemma cadd-commute: i ⊕ j = j ⊕ i
〈proof 〉

34.1.2 Cardinal addition is associative
lemma sum-assoc-eqpoll: (A+B)+C ≈ A+(B+C)
〈proof 〉

Unconditional version requires AC
lemma well-ord-cadd-assoc:

assumes i: well-ord(i,ri) and j: well-ord(j,rj) and k: well-ord(k,rk)

277

shows (i ⊕ j) ⊕ k = i ⊕ (j ⊕ k)
〈proof 〉

34.1.3 0 is the identity for addition
lemma sum-0-eqpoll: 0+A ≈ A
〈proof 〉

lemma cadd-0 [simp]: Card(K) =⇒ 0 ⊕ K = K
〈proof 〉

34.1.4 Addition by another cardinal
lemma sum-lepoll-self : A . A+B
〈proof 〉

lemma cadd-le-self :
assumes K : Card(K) and L: Ord(L) shows K ≤ (K ⊕ L)
〈proof 〉

34.1.5 Monotonicity of addition
lemma sum-lepoll-mono:

[[A . C ; B . D]] =⇒ A + B . C + D
〈proof 〉

lemma cadd-le-mono:
[[K ′ ≤ K ; L ′ ≤ L]] =⇒ (K ′ ⊕ L ′) ≤ (K ⊕ L)
〈proof 〉

34.1.6 Addition of finite cardinals is "ordinary" addition
lemma sum-succ-eqpoll: succ(A)+B ≈ succ(A+B)
〈proof 〉

lemma cadd-succ-lemma:
assumes Ord(m) Ord(n) shows succ(m) ⊕ n = |succ(m ⊕ n)|
〈proof 〉

lemma nat-cadd-eq-add:
assumes m: m ∈ nat and [simp]: n ∈ nat showsm ⊕ n = m #+ n
〈proof 〉

278

34.2 Cardinal multiplication
34.2.1 Cardinal multiplication is commutative
lemma prod-commute-eqpoll: A∗B ≈ B∗A
〈proof 〉

lemma cmult-commute: i ⊗ j = j ⊗ i
〈proof 〉

34.2.2 Cardinal multiplication is associative
lemma prod-assoc-eqpoll: (A∗B)∗C ≈ A∗(B∗C)
〈proof 〉

Unconditional version requires AC
lemma well-ord-cmult-assoc:

assumes i: well-ord(i,ri) and j: well-ord(j,rj) and k: well-ord(k,rk)
shows (i ⊗ j) ⊗ k = i ⊗ (j ⊗ k)
〈proof 〉

34.2.3 Cardinal multiplication distributes over addition
lemma sum-prod-distrib-eqpoll: (A+B)∗C ≈ (A∗C)+(B∗C)
〈proof 〉

lemma well-ord-cadd-cmult-distrib:
assumes i: well-ord(i,ri) and j: well-ord(j,rj) and k: well-ord(k,rk)
shows (i ⊕ j) ⊗ k = (i ⊗ k) ⊕ (j ⊗ k)
〈proof 〉

34.2.4 Multiplication by 0 yields 0
lemma prod-0-eqpoll: 0∗A ≈ 0
〈proof 〉

lemma cmult-0 [simp]: 0 ⊗ i = 0
〈proof 〉

34.2.5 1 is the identity for multiplication
lemma prod-singleton-eqpoll: {x}∗A ≈ A
〈proof 〉

lemma cmult-1 [simp]: Card(K) =⇒ 1 ⊗ K = K
〈proof 〉

34.3 Some inequalities for multiplication
lemma prod-square-lepoll: A . A∗A
〈proof 〉

279

lemma cmult-square-le: Card(K) =⇒ K ≤ K ⊗ K
〈proof 〉

34.3.1 Multiplication by a non-zero cardinal
lemma prod-lepoll-self : b ∈ B =⇒ A . A∗B
〈proof 〉

lemma cmult-le-self :
[[Card(K); Ord(L); 0<L]] =⇒ K ≤ (K ⊗ L)
〈proof 〉

34.3.2 Monotonicity of multiplication
lemma prod-lepoll-mono:

[[A . C ; B . D]] =⇒ A ∗ B . C ∗ D
〈proof 〉

lemma cmult-le-mono:
[[K ′ ≤ K ; L ′ ≤ L]] =⇒ (K ′ ⊗ L ′) ≤ (K ⊗ L)
〈proof 〉

34.4 Multiplication of finite cardinals is "ordinary" multipli-
cation

lemma prod-succ-eqpoll: succ(A)∗B ≈ B + A∗B
〈proof 〉

lemma cmult-succ-lemma:
[[Ord(m); Ord(n)]] =⇒ succ(m) ⊗ n = n ⊕ (m ⊗ n)
〈proof 〉

lemma nat-cmult-eq-mult: [[m ∈ nat; n ∈ nat]] =⇒ m ⊗ n = m#∗n
〈proof 〉

lemma cmult-2 : Card(n) =⇒ 2 ⊗ n = n ⊕ n
〈proof 〉

lemma sum-lepoll-prod:
assumes C : 2 . C shows B+B . C∗B
〈proof 〉

lemma lepoll-imp-sum-lepoll-prod: [[A . B; 2 . A]] =⇒ A+B . A∗B
〈proof 〉

280

34.5 Infinite Cardinals are Limit Ordinals
lemma nat-cons-lepoll: nat . A =⇒ cons(u,A) . A
〈proof 〉

lemma nat-cons-eqpoll: nat . A =⇒ cons(u,A) ≈ A
〈proof 〉

lemma nat-succ-eqpoll: nat ⊆ A =⇒ succ(A) ≈ A
〈proof 〉

lemma InfCard-nat: InfCard(nat)
〈proof 〉

lemma InfCard-is-Card: InfCard(K) =⇒ Card(K)
〈proof 〉

lemma InfCard-Un:
[[InfCard(K); Card(L)]] =⇒ InfCard(K ∪ L)
〈proof 〉

lemma InfCard-is-Limit: InfCard(K) =⇒ Limit(K)
〈proof 〉

lemma ordermap-eqpoll-pred:
[[well-ord(A,r); x ∈ A]] =⇒ ordermap(A,r)‘x ≈ Order .pred(A,x,r)
〈proof 〉

34.5.1 Establishing the well-ordering
lemma well-ord-csquare:

assumes K : Ord(K) shows well-ord(K∗K , csquare-rel(K))
〈proof 〉

34.5.2 Characterising initial segments of the well-ordering
lemma csquareD:
[[<〈x,y〉, 〈z,z〉> ∈ csquare-rel(K); x<K ; y<K ; z<K]] =⇒ x ≤ z ∧ y ≤ z
〈proof 〉

lemma pred-csquare-subset:
z<K =⇒ Order .pred(K∗K , 〈z,z〉, csquare-rel(K)) ⊆ succ(z)∗succ(z)
〈proof 〉

281

lemma csquare-ltI :
[[x<z; y<z; z<K]] =⇒ <〈x,y〉, 〈z,z〉> ∈ csquare-rel(K)
〈proof 〉

lemma csquare-or-eqI :
[[x ≤ z; y ≤ z; z<K]] =⇒ <〈x,y〉, 〈z,z〉> ∈ csquare-rel(K) | x=z ∧ y=z
〈proof 〉

34.5.3 The cardinality of initial segments
lemma ordermap-z-lt:

[[Limit(K); x<K ; y<K ; z=succ(x ∪ y)]] =⇒
ordermap(K∗K , csquare-rel(K)) ‘ 〈x,y〉 <
ordermap(K∗K , csquare-rel(K)) ‘ 〈z,z〉

〈proof 〉

Kunen: "each 〈x, y〉 ∈ K × K has no more than z × z predecessors..." (page
29)
lemma ordermap-csquare-le:

assumes K : Limit(K) and x: x<K and y: y<K
defines z ≡ succ(x ∪ y)
shows |ordermap(K × K , csquare-rel(K)) ‘ 〈x,y〉| ≤ |succ(z)| ⊗ |succ(z)|
〈proof 〉

Kunen: "... so the order type is ≤ K"
lemma ordertype-csquare-le:

assumes IK : InfCard(K) and eq:
∧

y. y∈K =⇒ InfCard(y) =⇒ y ⊗ y = y
shows ordertype(K∗K , csquare-rel(K)) ≤ K
〈proof 〉

lemma InfCard-csquare-eq:
assumes IK : InfCard(K) shows K ⊗ K = K
〈proof 〉

lemma well-ord-InfCard-square-eq:
assumes r : well-ord(A,r) and I : InfCard(|A|) shows A × A ≈ A
〈proof 〉

lemma InfCard-square-eqpoll: InfCard(K) =⇒ K × K ≈ K
〈proof 〉

lemma Inf-Card-is-InfCard: [[Card(i); ¬ Finite(i)]] =⇒ InfCard(i)
〈proof 〉

34.5.4 Toward’s Kunen’s Corollary 10.13 (1)
lemma InfCard-le-cmult-eq: [[InfCard(K); L ≤ K ; 0<L]] =⇒ K ⊗ L = K

282

〈proof 〉

lemma InfCard-cmult-eq: [[InfCard(K); InfCard(L)]] =⇒ K ⊗ L = K ∪ L
〈proof 〉

lemma InfCard-cdouble-eq: InfCard(K) =⇒ K ⊕ K = K
〈proof 〉

lemma InfCard-le-cadd-eq: [[InfCard(K); L ≤ K]] =⇒ K ⊕ L = K
〈proof 〉

lemma InfCard-cadd-eq: [[InfCard(K); InfCard(L)]] =⇒ K ⊕ L = K ∪ L
〈proof 〉

34.6 For Every Cardinal Number There Exists A Greater
One

This result is Kunen’s Theorem 10.16, which would be trivial using AC
lemma Ord-jump-cardinal: Ord(jump-cardinal(K))
〈proof 〉

lemma jump-cardinal-iff :
i ∈ jump-cardinal(K) ←→
(∃ r X . r ⊆ K∗K ∧ X ⊆ K ∧ well-ord(X ,r) ∧ i = ordertype(X ,r))

〈proof 〉

lemma K-lt-jump-cardinal: Ord(K) =⇒ K < jump-cardinal(K)
〈proof 〉

lemma Card-jump-cardinal-lemma:
[[well-ord(X ,r); r ⊆ K ∗ K ; X ⊆ K ;

f ∈ bij(ordertype(X ,r), jump-cardinal(K))]]
=⇒ jump-cardinal(K) ∈ jump-cardinal(K)

〈proof 〉

lemma Card-jump-cardinal: Card(jump-cardinal(K))
〈proof 〉

34.7 Basic Properties of Successor Cardinals
lemma csucc-basic: Ord(K) =⇒ Card(csucc(K)) ∧ K < csucc(K)
〈proof 〉

283

lemmas Card-csucc = csucc-basic [THEN conjunct1]

lemmas lt-csucc = csucc-basic [THEN conjunct2]

lemma Ord-0-lt-csucc: Ord(K) =⇒ 0 < csucc(K)
〈proof 〉

lemma csucc-le: [[Card(L); K<L]] =⇒ csucc(K) ≤ L
〈proof 〉

lemma lt-csucc-iff : [[Ord(i); Card(K)]] =⇒ i < csucc(K) ←→ |i| ≤ K
〈proof 〉

lemma Card-lt-csucc-iff :
[[Card(K ′); Card(K)]] =⇒ K ′ < csucc(K) ←→ K ′ ≤ K

〈proof 〉

lemma InfCard-csucc: InfCard(K) =⇒ InfCard(csucc(K))
〈proof 〉

34.7.1 Removing elements from a finite set decreases its cardi-
nality

lemma Finite-imp-cardinal-cons [simp]:
assumes FA: Finite(A) and a: a /∈A shows |cons(a,A)| = succ(|A|)
〈proof 〉

lemma Finite-imp-succ-cardinal-Diff :
[[Finite(A); a ∈ A]] =⇒ succ(|A−{a}|) = |A|

〈proof 〉

lemma Finite-imp-cardinal-Diff : [[Finite(A); a ∈ A]] =⇒ |A−{a}| < |A|
〈proof 〉

lemma Finite-cardinal-in-nat [simp]: Finite(A) =⇒ |A| ∈ nat
〈proof 〉

lemma card-Un-Int:
[[Finite(A); Finite(B)]] =⇒ |A| #+ |B| = |A ∪ B| #+ |A ∩ B|

〈proof 〉

lemma card-Un-disjoint:
[[Finite(A); Finite(B); A ∩ B = 0]] =⇒ |A ∪ B| = |A| #+ |B|

〈proof 〉

lemma card-partition:
assumes FC : Finite(C)
shows

Finite (
⋃

C) =⇒

284

(∀ c∈C . |c| = k) =⇒
(∀ c1 ∈ C . ∀ c2 ∈ C . c1 6= c2 −→ c1 ∩ c2 = 0) =⇒
k #∗ |C | = |

⋃
C |

〈proof 〉

34.7.2 Theorems by Krzysztof Grabczewski, proofs by lcp
lemmas nat-implies-well-ord = nat-into-Ord [THEN well-ord-Memrel]

lemma nat-sum-eqpoll-sum:
assumes m: m ∈ nat and n: n ∈ nat shows m + n ≈ m #+ n
〈proof 〉

lemma Ord-subset-natD [rule-format]: Ord(i) =⇒ i ⊆ nat =⇒ i ∈ nat | i=nat
〈proof 〉

lemma Ord-nat-subset-into-Card: [[Ord(i); i ⊆ nat]] =⇒ Card(i)
〈proof 〉

end

35 Main ZF Theory: Everything Except AC
theory ZF imports List IntDiv CardinalArith begin

35.1 Iteration of the function F
consts iterates :: [i⇒i,i,i]⇒ i (‹(‹notation=‹mixfix iterates››-^- ′(- ′))› [60 ,1000 ,1000]
60)

primrec
F^0 (x) = x
F^(succ(n)) (x) = F(F^n (x))

definition
iterates-omega :: [i⇒i,i] ⇒ i (‹(‹notation=‹mixfix iterates-omega››-^ω ′(- ′))›

[60 ,1000] 60) where
F^ω (x) ≡

⋃
n∈nat. F^n (x)

lemma iterates-triv:
[[n∈nat; F(x) = x]] =⇒ F^n (x) = x

〈proof 〉

lemma iterates-type [TC]:
[[n ∈ nat; a ∈ A;

∧
x. x ∈ A =⇒ F(x) ∈ A]]

=⇒ F^n (a) ∈ A
〈proof 〉

lemma iterates-omega-triv:

285

F(x) = x =⇒ F^ω (x) = x
〈proof 〉

lemma Ord-iterates [simp]:
[[n∈nat;

∧
i. Ord(i) =⇒ Ord(F(i)); Ord(x)]]

=⇒ Ord(F^n (x))
〈proof 〉

lemma iterates-commute: n ∈ nat =⇒ F(F^n (x)) = F^n (F(x))
〈proof 〉

35.2 Transfinite Recursion

Transfinite recursion for definitions based on the three cases of ordinals
definition

transrec3 :: [i, i, [i,i]⇒i, [i,i]⇒i] ⇒i where
transrec3 (k, a, b, c) ≡

transrec(k, λx r .
if x=0 then a
else if Limit(x) then c(x, λy∈x. r‘y)
else b(Arith.pred(x), r ‘ Arith.pred(x)))

lemma transrec3-0 [simp]: transrec3 (0 ,a,b,c) = a
〈proof 〉

lemma transrec3-succ [simp]:
transrec3 (succ(i),a,b,c) = b(i, transrec3 (i,a,b,c))

〈proof 〉

lemma transrec3-Limit:
Limit(i) =⇒
transrec3 (i,a,b,c) = c(i, λj∈i. transrec3 (j,a,b,c))

〈proof 〉

〈ML〉

end

36 The Axiom of Choice
theory AC imports ZF begin

This definition comes from Halmos (1960), page 59.
axiomatization where

AC : [[a ∈ A;
∧

x. x ∈ A =⇒ (∃ y. y ∈ B(x))]] =⇒ ∃ z. z ∈ Pi(A,B)

286

lemma AC-Pi: [[
∧

x. x ∈ A =⇒ (∃ y. y ∈ B(x))]] =⇒ ∃ z. z ∈ Pi(A,B)
〈proof 〉

lemma AC-ball-Pi: ∀ x ∈ A. ∃ y. y ∈ B(x) =⇒ ∃ y. y ∈ Pi(A,B)
〈proof 〉

lemma AC-Pi-Pow: ∃ f . f ∈ (
∏

X ∈ Pow(C)−{0}. X)
〈proof 〉

lemma AC-func:
[[
∧

x. x ∈ A =⇒ (∃ y. y ∈ x)]] =⇒ ∃ f ∈ A−>
⋃
(A). ∀ x ∈ A. f‘x ∈ x

〈proof 〉

lemma non-empty-family: [[0 /∈ A; x ∈ A]] =⇒ ∃ y. y ∈ x
〈proof 〉

lemma AC-func0 : 0 /∈ A =⇒ ∃ f ∈ A−>
⋃
(A). ∀ x ∈ A. f‘x ∈ x

〈proof 〉

lemma AC-func-Pow: ∃ f ∈ (Pow(C)−{0}) −> C . ∀ x ∈ Pow(C)−{0}. f‘x ∈ x
〈proof 〉

lemma AC-Pi0 : 0 /∈ A =⇒ ∃ f . f ∈ (
∏

x ∈ A. x)
〈proof 〉

end

37 Zorn’s Lemma
theory Zorn imports OrderArith AC Inductive begin

Based upon the unpublished article “Towards the Mechanization of the
Proofs of Some Classical Theorems of Set Theory,” by Abrial and Laffitte.
definition

Subset-rel :: i⇒i where
Subset-rel(A) ≡ {z ∈ A∗A . ∃ x y. z=〈x,y〉 ∧ x<=y ∧ x 6=y}

definition
chain :: i⇒i where
chain(A) ≡ {F ∈ Pow(A). ∀X∈F . ∀Y∈F . X<=Y | Y<=X}

definition
super :: [i,i]⇒i where
super(A,c) ≡ {d ∈ chain(A). c<=d ∧ c 6=d}

definition
maxchain :: i⇒i where
maxchain(A) ≡ {c ∈ chain(A). super(A,c)=0}

287

definition
increasing :: i⇒i where

increasing(A) ≡ {f ∈ Pow(A)−>Pow(A). ∀ x. x<=A −→ x<=f‘x}

Lemma for the inductive definition below
lemma Union-in-Pow: Y ∈ Pow(Pow(A)) =⇒

⋃
(Y) ∈ Pow(A)

〈proof 〉

We could make the inductive definition conditional on next ∈ increasing(S)
but instead we make this a side-condition of an introduction rule. Thus
the induction rule lets us assume that condition! Many inductive proofs are
therefore unconditional.
consts

TFin :: [i,i]⇒i

inductive
domains TFin(S ,next) ⊆ Pow(S)
intros

nextI : [[x ∈ TFin(S ,next); next ∈ increasing(S)]]
=⇒ next‘x ∈ TFin(S ,next)

Pow-UnionI : Y ∈ Pow(TFin(S ,next)) =⇒
⋃
(Y) ∈ TFin(S ,next)

monos Pow-mono
con-defs increasing-def
type-intros CollectD1 [THEN apply-funtype] Union-in-Pow

37.1 Mathematical Preamble
lemma Union-lemma0 : (∀ x∈C . x<=A | B<=x) =⇒

⋃
(C)<=A | B<=

⋃
(C)

〈proof 〉

lemma Inter-lemma0 :
[[c ∈ C ; ∀ x∈C . A<=x | x<=B]] =⇒ A ⊆

⋂
(C) |

⋂
(C) ⊆ B

〈proof 〉

37.2 The Transfinite Construction
lemma increasingD1 : f ∈ increasing(A) =⇒ f ∈ Pow(A)−>Pow(A)
〈proof 〉

lemma increasingD2 : [[f ∈ increasing(A); x<=A]] =⇒ x ⊆ f‘x
〈proof 〉

lemmas TFin-UnionI = PowI [THEN TFin.Pow-UnionI]

lemmas TFin-is-subset = TFin.dom-subset [THEN subsetD, THEN PowD]

288

Structural induction on TFin(S , next)
lemma TFin-induct:
[[n ∈ TFin(S ,next);∧

x. [[x ∈ TFin(S ,next); P(x); next ∈ increasing(S)]] =⇒ P(next‘x);∧
Y . [[Y ⊆ TFin(S ,next); ∀ y∈Y . P(y)]] =⇒ P(

⋃
(Y))

]] =⇒ P(n)
〈proof 〉

37.3 Some Properties of the Transfinite Construction
lemmas increasing-trans = subset-trans [OF - increasingD2 ,

OF - - TFin-is-subset]

Lemma 1 of section 3.1
lemma TFin-linear-lemma1 :

[[n ∈ TFin(S ,next); m ∈ TFin(S ,next);
∀ x ∈ TFin(S ,next) . x<=m −→ x=m | next‘x<=m]]

=⇒ n<=m | next‘m<=n
〈proof 〉

Lemma 2 of section 3.2. Interesting in its own right! Requires next ∈ in-
creasing(S) in the second induction step.
lemma TFin-linear-lemma2 :

[[m ∈ TFin(S ,next); next ∈ increasing(S)]]
=⇒ ∀n ∈ TFin(S ,next). n<=m −→ n=m | next‘n ⊆ m

〈proof 〉

a more convenient form for Lemma 2
lemma TFin-subsetD:

[[n<=m; m ∈ TFin(S ,next); n ∈ TFin(S ,next); next ∈ increasing(S)]]
=⇒ n=m | next‘n ⊆ m

〈proof 〉

Consequences from section 3.3 – Property 3.2, the ordering is total
lemma TFin-subset-linear :

[[m ∈ TFin(S ,next); n ∈ TFin(S ,next); next ∈ increasing(S)]]
=⇒ n ⊆ m | m<=n

〈proof 〉

Lemma 3 of section 3.3
lemma equal-next-upper :

[[n ∈ TFin(S ,next); m ∈ TFin(S ,next); m = next‘m]] =⇒ n ⊆ m
〈proof 〉

Property 3.3 of section 3.3
lemma equal-next-Union:

[[m ∈ TFin(S ,next); next ∈ increasing(S)]]
=⇒ m = next‘m <−> m =

⋃
(TFin(S ,next))

〈proof 〉

289

37.4 Hausdorff’s Theorem: Every Set Contains a Maximal
Chain

NOTE: We assume the partial ordering is ⊆, the subset relation!

* Defining the "next" operation for Hausdorff’s Theorem *
lemma chain-subset-Pow: chain(A) ⊆ Pow(A)
〈proof 〉

lemma super-subset-chain: super(A,c) ⊆ chain(A)
〈proof 〉

lemma maxchain-subset-chain: maxchain(A) ⊆ chain(A)
〈proof 〉

lemma choice-super :
[[ch ∈ (

∏
X ∈ Pow(chain(S)) − {0}. X); X ∈ chain(S); X /∈ maxchain(S)]]

=⇒ ch ‘ super(S ,X) ∈ super(S ,X)
〈proof 〉

lemma choice-not-equals:
[[ch ∈ (

∏
X ∈ Pow(chain(S)) − {0}. X); X ∈ chain(S); X /∈ maxchain(S)]]

=⇒ ch ‘ super(S ,X) 6= X
〈proof 〉

This justifies Definition 4.4
lemma Hausdorff-next-exists:

ch ∈ (
∏

X ∈ Pow(chain(S))−{0}. X) =⇒
∃next ∈ increasing(S). ∀X ∈ Pow(S).

next‘X = if (X ∈ chain(S)−maxchain(S), ch‘super(S ,X), X)
〈proof 〉

Lemma 4
lemma TFin-chain-lemma4 :

[[c ∈ TFin(S ,next);
ch ∈ (

∏
X ∈ Pow(chain(S))−{0}. X);

next ∈ increasing(S);
∀X ∈ Pow(S). next‘X =

if (X ∈ chain(S)−maxchain(S), ch‘super(S ,X), X)]]
=⇒ c ∈ chain(S)

〈proof 〉

theorem Hausdorff : ∃ c. c ∈ maxchain(S)
〈proof 〉

37.5 Zorn’s Lemma: If All Chains in S Have Upper Bounds
In S, then S contains a Maximal Element

Used in the proof of Zorn’s Lemma

290

lemma chain-extend:
[[c ∈ chain(A); z ∈ A; ∀ x ∈ c. x<=z]] =⇒ cons(z,c) ∈ chain(A)

〈proof 〉

lemma Zorn: ∀ c ∈ chain(S).
⋃
(c) ∈ S =⇒ ∃ y ∈ S . ∀ z ∈ S . y<=z −→ y=z

〈proof 〉

Alternative version of Zorn’s Lemma
theorem Zorn2 :
∀ c ∈ chain(S). ∃ y ∈ S . ∀ x ∈ c. x ⊆ y =⇒ ∃ y ∈ S . ∀ z ∈ S . y<=z −→ y=z
〈proof 〉

37.6 Zermelo’s Theorem: Every Set can be Well-Ordered

Lemma 5
lemma TFin-well-lemma5 :

[[n ∈ TFin(S ,next); Z ⊆ TFin(S ,next); z:Z ; ¬
⋂
(Z) ∈ Z]]

=⇒ ∀m ∈ Z . n ⊆ m
〈proof 〉

Well-ordering of TFin(S , next)
lemma well-ord-TFin-lemma: [[Z ⊆ TFin(S ,next); z ∈ Z]] =⇒

⋂
(Z) ∈ Z

〈proof 〉

This theorem just packages the previous result
lemma well-ord-TFin:

next ∈ increasing(S)
=⇒ well-ord(TFin(S ,next), Subset-rel(TFin(S ,next)))

〈proof 〉

* Defining the "next" operation for Zermelo’s Theorem *
lemma choice-Diff :

[[ch ∈ (
∏

X ∈ Pow(S) − {0}. X); X ⊆ S ; X 6=S]] =⇒ ch ‘ (S−X) ∈ S−X
〈proof 〉

This justifies Definition 6.1
lemma Zermelo-next-exists:

ch ∈ (
∏

X ∈ Pow(S)−{0}. X) =⇒
∃next ∈ increasing(S). ∀X ∈ Pow(S).

next‘X = (if X=S then S else cons(ch‘(S−X), X))
〈proof 〉

The construction of the injection
lemma choice-imp-injection:

[[ch ∈ (
∏

X ∈ Pow(S)−{0}. X);
next ∈ increasing(S);
∀X ∈ Pow(S). next‘X = if (X=S , S , cons(ch‘(S−X), X))]]

291

=⇒ (λ x ∈ S .
⋃
({y ∈ TFin(S ,next). x /∈ y}))

∈ inj(S , TFin(S ,next) − {S})
〈proof 〉

The wellordering theorem
theorem AC-well-ord: ∃ r . well-ord(S ,r)
〈proof 〉

37.7 Zorn’s Lemma for Partial Orders

Reimported from HOL by Clemens Ballarin.
definition Chain :: i ⇒ i where

Chain(r) = {A ∈ Pow(field(r)). ∀ a∈A. ∀ b∈A. 〈a, b〉 ∈ r | 〈b, a〉 ∈ r}

lemma mono-Chain:
r ⊆ s =⇒ Chain(r) ⊆ Chain(s)
〈proof 〉

theorem Zorn-po:
assumes po: Partial-order(r)

and u: ∀C∈Chain(r). ∃ u∈field(r). ∀ a∈C . 〈a, u〉 ∈ r
shows ∃m∈field(r). ∀ a∈field(r). 〈m, a〉 ∈ r −→ a = m
〈proof 〉

end

38 Cardinal Arithmetic Using AC
theory Cardinal-AC imports CardinalArith Zorn begin

38.1 Strengthened Forms of Existing Theorems on Cardinals
lemma cardinal-eqpoll: |A| ≈ A
〈proof 〉

The theorem ||A|| = |A|
lemmas cardinal-idem = cardinal-eqpoll [THEN cardinal-cong, simp]

lemma cardinal-eqE : |X | = |Y | =⇒ X ≈ Y
〈proof 〉

lemma cardinal-eqpoll-iff : |X | = |Y | ←→ X ≈ Y
〈proof 〉

lemma cardinal-disjoint-Un:
[[|A|=|B|; |C |=|D|; A ∩ C = 0 ; B ∩ D = 0]]
=⇒ |A ∪ C | = |B ∪ D|

〈proof 〉

292

lemma lepoll-imp-cardinal-le: A . B =⇒ |A| ≤ |B|
〈proof 〉

lemma cadd-assoc: (i ⊕ j) ⊕ k = i ⊕ (j ⊕ k)
〈proof 〉

lemma cmult-assoc: (i ⊗ j) ⊗ k = i ⊗ (j ⊗ k)
〈proof 〉

lemma cadd-cmult-distrib: (i ⊕ j) ⊗ k = (i ⊗ k) ⊕ (j ⊗ k)
〈proof 〉

lemma InfCard-square-eq: InfCard(|A|) =⇒ A∗A ≈ A
〈proof 〉

38.2 The relationship between cardinality and le-pollence
lemma Card-le-imp-lepoll:

assumes |A| ≤ |B| shows A . B
〈proof 〉

lemma le-Card-iff : Card(K) =⇒ |A| ≤ K ←→ A . K
〈proof 〉

lemma cardinal-0-iff-0 [simp]: |A| = 0 ←→ A = 0
〈proof 〉

lemma cardinal-lt-iff-lesspoll:
assumes i: Ord(i) shows i < |A| ←→ i ≺ A
〈proof 〉

lemma cardinal-le-imp-lepoll: i ≤ |A| =⇒ i . A
〈proof 〉

38.3 Other Applications of AC
lemma surj-implies-inj:

assumes f : f ∈ surj(X ,Y) shows ∃ g. g ∈ inj(Y ,X)
〈proof 〉

Kunen’s Lemma 10.20
lemma surj-implies-cardinal-le:

assumes f : f ∈ surj(X ,Y) shows |Y | ≤ |X |
〈proof 〉

Kunen’s Lemma 10.21
lemma cardinal-UN-le:

assumes K : InfCard(K)

293

shows (
∧

i. i∈K =⇒ |X(i)| ≤ K) =⇒ |
⋃

i∈K . X(i)| ≤ K
〈proof 〉

The same again, using csucc
lemma cardinal-UN-lt-csucc:

[[InfCard(K);
∧

i. i∈K =⇒ |X(i)| < csucc(K)]]
=⇒ |

⋃
i∈K . X(i)| < csucc(K)

〈proof 〉

The same again, for a union of ordinals. In use, j(i) is a bit like rank(i), the
least ordinal j such that i:Vfrom(A,j).
lemma cardinal-UN-Ord-lt-csucc:

[[InfCard(K);
∧

i. i∈K =⇒ j(i) < csucc(K)]]
=⇒ (

⋃
i∈K . j(i)) < csucc(K)

〈proof 〉

38.4 The Main Result for Infinite-Branching Datatypes

As above, but the index set need not be a cardinal. Work backwards along
the injection from W into K, given that W 6= 0.
lemma inj-UN-subset:

assumes f : f ∈ inj(A,B) and a: a ∈ A
shows (

⋃
x∈A. C (x)) ⊆ (

⋃
y∈B. C (if y ∈ range(f) then converse(f)‘y else a))

〈proof 〉

theorem le-UN-Ord-lt-csucc:
assumes IK : InfCard(K) and WK : |W | ≤ K and j:

∧
w. w∈W =⇒ j(w) <

csucc(K)
shows (

⋃
w∈W . j(w)) < csucc(K)

〈proof 〉

end

39 Infinite-Branching Datatype Definitions
theory InfDatatype imports Datatype Univ Finite Cardinal-AC begin

lemmas fun-Limit-VfromE =
Limit-VfromE [OF apply-funtype InfCard-csucc [THEN InfCard-is-Limit]]

lemma fun-Vcsucc-lemma:
assumes f : f ∈ D −> Vfrom(A,csucc(K)) and DK : |D| ≤ K and ICK : Inf-

Card(K)
shows ∃ j. f ∈ D −> Vfrom(A,j) ∧ j < csucc(K)
〈proof 〉

lemma subset-Vcsucc:

294

[[D ⊆ Vfrom(A,csucc(K)); |D| ≤ K ; InfCard(K)]]
=⇒ ∃ j. D ⊆ Vfrom(A,j) ∧ j < csucc(K)

〈proof 〉

lemma fun-Vcsucc:
[[|D| ≤ K ; InfCard(K); D ⊆ Vfrom(A,csucc(K))]] =⇒

D −> Vfrom(A,csucc(K)) ⊆ Vfrom(A,csucc(K))
〈proof 〉

lemma fun-in-Vcsucc:
[[f : D −> Vfrom(A, csucc(K)); |D| ≤ K ; InfCard(K);

D ⊆ Vfrom(A,csucc(K))]]
=⇒ f : Vfrom(A,csucc(K))

〈proof 〉

Remove ⊆ from the rule above
lemmas fun-in-Vcsucc ′ = fun-in-Vcsucc [OF - - - subsetI]

lemma Card-fun-Vcsucc:
InfCard(K) =⇒ K −> Vfrom(A,csucc(K)) ⊆ Vfrom(A,csucc(K))

〈proof 〉

lemma Card-fun-in-Vcsucc:
[[f : K −> Vfrom(A, csucc(K)); InfCard(K)]] =⇒ f : Vfrom(A,csucc(K))

〈proof 〉

lemma Limit-csucc: InfCard(K) =⇒ Limit(csucc(K))
〈proof 〉

lemmas Pair-in-Vcsucc = Pair-in-VLimit [OF - - Limit-csucc]
lemmas Inl-in-Vcsucc = Inl-in-VLimit [OF - Limit-csucc]
lemmas Inr-in-Vcsucc = Inr-in-VLimit [OF - Limit-csucc]
lemmas zero-in-Vcsucc = Limit-csucc [THEN zero-in-VLimit]
lemmas nat-into-Vcsucc = nat-into-VLimit [OF - Limit-csucc]

lemmas InfCard-nat-Un-cardinal = InfCard-Un [OF InfCard-nat Card-cardinal]

lemmas le-nat-Un-cardinal =
Un-upper2-le [OF Ord-nat Card-cardinal [THEN Card-is-Ord]]

lemmas UN-upper-cardinal = UN-upper [THEN subset-imp-lepoll, THEN lep-
oll-imp-cardinal-le]

295

lemmas Data-Arg-intros =
SigmaI InlI InrI
Pair-in-univ Inl-in-univ Inr-in-univ
zero-in-univ A-into-univ nat-into-univ UnCI

lemmas inf-datatype-intros =
InfCard-nat InfCard-nat-Un-cardinal
Pair-in-Vcsucc Inl-in-Vcsucc Inr-in-Vcsucc
zero-in-Vcsucc A-into-Vfrom nat-into-Vcsucc
Card-fun-in-Vcsucc fun-in-Vcsucc ′ UN-I

end
theory ZFC imports ZF InfDatatype
begin

end

296

	Base of Zermelo-Fraenkel Set Theory
	Signature
	Bounded Quantifiers
	Variations on Replacement
	General union and intersection
	Finite sets and binary operations
	Axioms
	Definite descriptions – via Replace over the set "1"
	Ordered Pairing
	Relations and Functions
	ASCII syntax
	Substitution
	Bounded universal quantifier
	Bounded existential quantifier
	Rules for subsets
	Rules for equality
	Rules for Replace – the derived form of replacement
	Rules for RepFun
	Rules for Collect – forming a subset by separation
	Rules for Unions
	Rules for Unions of families
	Rules for the empty set
	Rules for Inter
	Rules for Intersections of families
	Rules for Powersets
	Cantor's Theorem: There is no surjection from a set to its powerset.

	Unordered Pairs
	Unordered Pairs: constant 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Upair
	Rules for Binary Union, Defined via 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Upair
	Rules for Binary Intersection, Defined via 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Upair
	Rules for Set Difference, Defined via 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Upair
	Rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cons
	Singletons
	Descriptions
	Conditional Terms: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 if-then-else
	Consequences of Foundation
	Rules for Successor
	Miniscoping of the Bounded Universal Quantifier
	Miniscoping of the Bounded Existential Quantifier
	Miniscoping of the Replacement Operator
	Miniscoping of Unions
	Miniscoping of Intersections
	Other simprules

	Ordered Pairs
	Sigma: Disjoint Union of a Family of Sets
	Projections 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fst and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 snd
	The Eliminator, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 split
	A version of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 split for Formulae: Result Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 o

	Basic Equalities and Inclusions
	Bounded Quantifiers
	Converse of a Relation
	Finite Set Constructions Using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cons
	Binary Intersection
	Binary Union
	Set Difference
	Big Union and Intersection
	Unions and Intersections of Families
	Image of a Set under a Function or Relation
	Inverse Image of a Set under a Function or Relation
	Powerset Operator
	RepFun
	Collect

	Least and Greatest Fixed Points; the Knaster-Tarski Theorem
	Monotone Operators
	Proof of Knaster-Tarski Theorem using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lfp
	General Induction Rule for Least Fixedpoints
	Proof of Knaster-Tarski Theorem using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 gfp
	Coinduction Rules for Greatest Fixed Points

	Booleans in Zermelo-Fraenkel Set Theory
	Laws About 'not'
	Laws About 'and'
	Laws About 'or'

	Disjoint Sums
	Rules for the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Part Primitive
	Rules for Disjoint Sums
	The Eliminator: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 case
	More Rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Part(A, h)

	Functions, Function Spaces, Lambda-Abstraction
	The Pi Operator: Dependent Function Space
	Function Application
	Lambda Abstraction
	Extensionality
	Images of Functions
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 restrict(f, A)
	Unions of Functions
	Domain and Range of a Function or Relation
	Extensions of Functions
	Function Updates
	Monotonicity Theorems
	Replacement in its Various Forms
	Standard Products, Sums and Function Spaces
	Converse, Domain, Range, Field
	Images

	Quine-Inspired Ordered Pairs and Disjoint Sums
	Quine ordered pairing
	QSigma: Disjoint union of a family of sets Generalizes Cartesian product
	Projections: qfst, qsnd
	Eliminator: qsplit
	qsplit for predicates: result type o
	qconverse

	The Quine-inspired notion of disjoint sum
	Eliminator – qcase
	Monotonicity

	Injections, Surjections, Bijections, Composition
	Surjective Function Space
	Injective Function Space
	Bijections
	Identity Function
	Converse of a Function
	Converses of Injections, Surjections, Bijections
	Composition of Two Relations
	Domain and Range – see Suppes, Section 3.1
	Other Results
	Composition Preserves Functions, Injections, and Surjections
	Dual Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inj and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 surj
	Inverses of Composition
	Proving that a Function is a Bijection
	Unions of Functions
	Restrictions as Surjections and Bijections
	Lemmas for Ramsey's Theorem

	Relations: Their General Properties and Transitive Closure
	General properties of relations
	irreflexivity
	symmetry
	antisymmetry
	transitivity

	Transitive closure of a relation

	Well-Founded Recursion
	Well-Founded Relations
	Equivalences between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wf and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wf-on
	Introduction Rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wf-on
	Well-founded Induction

	Basic Properties of Well-Founded Relations
	The Predicate 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 is-recfun
	Recursion: Main Existence Lemma
	Unfolding 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wftrec(r, a, H)
	Removal of the Premise 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 trans(r)

	Transitive Sets and Ordinals
	Rules for Transset
	Three Neat Characterisations of Transset
	Consequences of Downwards Closure
	Closure Properties

	Lemmas for Ordinals
	The Construction of Ordinals: 0, succ, Union
	< is 'less Than' for Ordinals
	Natural Deduction Rules for Memrel
	Transfinite Induction

	Fundamental properties of the epsilon ordering (< on ordinals)
	Proving That < is a Linear Ordering on the Ordinals
	Some Rewrite Rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 <, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000

	Results about Less-Than or Equals
	Transitivity Laws
	Union and Intersection

	Results about Limits
	Limit Ordinals – General Properties
	Traditional 3-Way Case Analysis on Ordinals

	Special quantifiers
	Quantifiers and union operator for ordinals
	simplification of the new quantifiers
	Union over ordinals
	universal quantifier for ordinals
	existential quantifier for ordinals
	Rules for Ordinal-Indexed Unions

	Quantification over a class
	Relativized universal quantifier
	Relativized existential quantifier
	One-point rule for bounded quantifiers
	Sets as Classes

	The Natural numbers As a Least Fixed Point
	Injectivity Properties and Induction
	Variations on Mathematical Induction
	quasinat: to allow a case-split rule for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat-case
	Recursion on the Natural Numbers

	Inductive and Coinductive Definitions
	Epsilon Induction and Recursion
	Basic Closure Properties
	Leastness of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eclose
	Epsilon Recursion
	Rank
	Corollaries of Leastness

	Partial and Total Orderings: Basic Definitions and Properties
	Immediate Consequences of the Definitions
	Restricting an Ordering's Domain
	Empty and Unit Domains
	Relations over the Empty Set
	The Empty Relation Well-Orders the Unit Set

	Order-Isomorphisms
	Main results of Kunen, Chapter 1 section 6
	Towards Kunen's Theorem 6.3: Linearity of the Similarity Relation
	Miscellaneous Results by Krzysztof Grabczewski
	Lemmas for the Reflexive Orders

	Combining Orderings: Foundations of Ordinal Arithmetic
	Addition of Relations – Disjoint Sum
	Rewrite rules. Can be used to obtain introduction rules
	Elimination Rule
	Type checking
	Linearity
	Well-foundedness
	An 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ord-iso congruence law
	Associativity

	Multiplication of Relations – Lexicographic Product
	Rewrite rule. Can be used to obtain introduction rules
	Type checking
	Linearity
	Well-foundedness
	An 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ord-iso congruence law
	Distributive law
	Associativity

	Inverse Image of a Relation
	Rewrite rule
	Type checking
	Partial Ordering Properties
	Linearity
	Well-foundedness

	Every well-founded relation is a subset of some inverse image of an ordinal
	Other Results
	The Empty Relation
	The "measure" relation is useful with wfrec
	Well-foundedness of Unions
	Bijections involving Powersets

	Order Types and Ordinal Arithmetic
	Proofs needing the combination of Ordinal.thy and Order.thy
	Ordermap and ordertype
	Unfolding of ordermap
	Showing that ordermap, ordertype yield ordinals
	ordermap preserves the orderings in both directions
	Isomorphisms involving ordertype
	Basic equalities for ordertype
	A fundamental unfolding law for ordertype.

	Alternative definition of ordinal
	Ordinal Addition
	Order Type calculations for radd
	ordify: trivial coercion to an ordinal
	Basic laws for ordinal addition
	Ordinal addition with successor – via associativity!

	Ordinal Subtraction
	Ordinal Multiplication
	A useful unfolding law
	Basic laws for ordinal multiplication
	Ordering/monotonicity properties of ordinal multiplication

	The Relation 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Lt

	Finite Powerset Operator and Finite Function Space
	Finite Powerset Operator
	Finite Function Space
	The Contents of a Singleton Set

	Cardinal Numbers Without the Axiom of Choice
	The Schroeder-Bernstein Theorem
	lesspoll: contributions by Krzysztof Grabczewski
	Basic Properties of Cardinals
	The finite cardinals
	The first infinite cardinal: Omega, or nat
	Towards Cardinal Arithmetic
	Lemmas by Krzysztof Grabczewski
	Finite and infinite sets

	The Cumulative Hierarchy and a Small Universe for Recursive Types
	Immediate Consequences of the Definition of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Vfrom(A, i)
	Monotonicity
	A fundamental equality: Vfrom does not require ordinals!

	Basic Closure Properties
	Finite sets and ordered pairs

	0, Successor and Limit Equations for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Vfrom
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Vfrom applied to Limit Ordinals
	Closure under Disjoint Union

	Properties assuming 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Transset(A)
	Products
	Disjoint Sums, or Quine Ordered Pairs
	Function Space!

	The Set 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Vset(i)
	Characterisation of the elements of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Vset(i)
	Reasoning about Sets in Terms of Their Elements' Ranks
	Set Up an Environment for Simplification
	Recursion over Vset Levels!

	The Datatype Universe: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 univ(A)
	The Set 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 univ(A) as a Limit

	Closure Properties for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 univ(A)
	Closure under Unordered and Ordered Pairs
	The Natural Numbers
	Instances for 1 and 2
	Closure under Disjoint Union

	Finite Branching Closure Properties
	Closure under Finite Powerset
	Closure under Finite Powers: Functions from a Natural Number
	Closure under Finite Function Space

	* For QUniv. Properties of Vfrom analogous to the "take-lemma" *

	A Small Universe for Lazy Recursive Types
	Properties involving Transset and Sum
	Introduction and Elimination Rules
	Closure Properties
	Quine Disjoint Sum
	Closure for Quine-Inspired Products and Sums
	Quine Disjoint Sum
	The Natural Numbers
	"Take-Lemma" Rules

	Datatype and CoDatatype Definitions
	Arithmetic Operators and Their Definitions
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 natify, the Coercion to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat
	Typing rules
	Addition
	Monotonicity of Addition
	Multiplication

	Arithmetic with simplification
	Arithmetic simplification
	Examples

	Difference
	Remainder
	Division
	Further Facts about Remainder
	Additional theorems about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Cancellation Laws for Common Factors in Comparisons
	More Lemmas about Remainder
	More Lemmas About Difference

	Lists in Zermelo-Fraenkel Set Theory
	The function zip

	Equivalence Relations
	Suppes, Theorem 70: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 r is an equiv relation iff 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 converse(r) O r = r
	Defining Unary Operations upon Equivalence Classes
	Defining Binary Operations upon Equivalence Classes

	The Integers as Equivalence Classes Over Pairs of Natural Numbers
	Proving that 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 intrel is an equivalence relation
	Collapsing rules: to remove 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 intify from arithmetic expressions
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 zminus: unary negation on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 int
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 znegative: the test for negative integers
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat-of: Coercion of an Integer to a Natural Number
	zmagnitude: magnitide of an integer, as a natural number
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ($+): addition on int
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ($*): Integer Multiplication
	The "Less Than" Relation
	Less Than or Equals
	More subtraction laws (for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 zcompare-rls)
	Monotonicity and Cancellation Results for Instantiation of the CancelNumerals Simprocs
	Comparison laws
	More inequality lemmas
	The next several equations are permutative: watch out!

	Arithmetic on Binary Integers
	The Carry and Borrow Functions, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bin-succ and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bin-pred
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bin-minus: Unary Negation of Binary Integers
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bin-add: Binary Addition
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bin-mult: Binary Multiplication

	Computations
	Simplification Rules for Comparison of Binary Numbers
	Examples

	The Division Operators Div and Mod
	Uniqueness and monotonicity of quotients and remainders
	Correctness of posDivAlg, the Division Algorithm for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 a0 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 b>0
	Some convenient biconditionals for products of signs
	Correctness of negDivAlg, the division algorithm for a<0 and b>0
	Existence shown by proving the division algorithm to be correct
	division of a number by itself
	Computation of division and remainder
	Monotonicity in the first argument (divisor)
	Monotonicity in the second argument (dividend)
	More algebraic laws for zdiv and zmod
	proving a zdiv (b*c) = (a zdiv b) zdiv c
	Cancellation of common factors in "zdiv"
	Distribution of factors over "zmod"

	Cardinal Arithmetic Without the Axiom of Choice
	Cardinal addition
	Cardinal addition is commutative
	Cardinal addition is associative
	0 is the identity for addition
	Addition by another cardinal
	Monotonicity of addition
	Addition of finite cardinals is "ordinary" addition

	Cardinal multiplication
	Cardinal multiplication is commutative
	Cardinal multiplication is associative
	Cardinal multiplication distributes over addition
	Multiplication by 0 yields 0
	1 is the identity for multiplication

	Some inequalities for multiplication
	Multiplication by a non-zero cardinal
	Monotonicity of multiplication

	Multiplication of finite cardinals is "ordinary" multiplication
	Infinite Cardinals are Limit Ordinals
	Establishing the well-ordering
	Characterising initial segments of the well-ordering
	The cardinality of initial segments
	Toward's Kunen's Corollary 10.13 (1)

	For Every Cardinal Number There Exists A Greater One
	Basic Properties of Successor Cardinals
	Removing elements from a finite set decreases its cardinality
	Theorems by Krzysztof Grabczewski, proofs by lcp

	Main ZF Theory: Everything Except AC
	Iteration of the function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 F
	Transfinite Recursion

	The Axiom of Choice
	Zorn's Lemma
	Mathematical Preamble
	The Transfinite Construction
	Some Properties of the Transfinite Construction
	Hausdorff's Theorem: Every Set Contains a Maximal Chain
	Zorn's Lemma: If All Chains in S Have Upper Bounds In S, then S contains a Maximal Element
	Zermelo's Theorem: Every Set can be Well-Ordered
	Zorn's Lemma for Partial Orders

	Cardinal Arithmetic Using AC
	Strengthened Forms of Existing Theorems on Cardinals
	The relationship between cardinality and le-pollence
	Other Applications of AC
	The Main Result for Infinite-Branching Datatypes

	Infinite-Branching Datatype Definitions

