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1 Base of Zermelo-Fraenkel Set Theory
theory ZF-Base
imports FOL
begin

1.1 Signature
declare [[eta-contract = false]]

typedecl i
instance i :: term ..

axiomatization mem :: [i, i] ⇒ o (infixl ‹∈› 50 ) — membership relation
and zero :: i (‹0 ›) — the empty set
and Pow :: i ⇒ i — power sets
and Inf :: i — infinite set
and Union :: i ⇒ i (‹(‹open-block notation=‹prefix

⋃
››
⋃

-)› [90 ] 90 )
and PrimReplace :: [i, [i, i] ⇒ o] ⇒ i

abbreviation not-mem :: [i, i] ⇒ o (infixl ‹/∈› 50 ) — negated membership
relation

where x /∈ y ≡ ¬ (x ∈ y)

1.2 Bounded Quantifiers
definition Ball :: [i, i ⇒ o] ⇒ o

where Ball(A, P) ≡ ∀ x. x∈A −→ P(x)

definition Bex :: [i, i ⇒ o] ⇒ o
where Bex(A, P) ≡ ∃ x. x∈A ∧ P(x)

syntax
-Ball :: [pttrn, i, o] ⇒ o (‹(‹indent=3 notation=‹binder ∀∈››∀ -∈-./ -)› 10 )
-Bex :: [pttrn, i, o] ⇒ o (‹(‹indent=3 notation=‹binder ∃∈››∃ -∈-./ -)› 10 )

syntax-consts
-Ball 
 Ball and
-Bex 
 Bex

translations
∀ x∈A. P 
 CONST Ball(A, λx. P)
∃ x∈A. P 
 CONST Bex(A, λx. P)

1.3 Variations on Replacement
definition Replace :: [i, [i, i] ⇒ o] ⇒ i

where Replace(A,P) ≡ PrimReplace(A, λx y. (∃ !z. P(x,z)) ∧ P(x,y))

syntax
-Replace :: [pttrn, pttrn, i, o] ⇒ i (‹(‹indent=1 notation=‹mixfix relational

replacement››{- ./ - ∈ -, -})›)
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syntax-consts
-Replace 
 Replace

translations
{y. x∈A, Q} 
 CONST Replace(A, λx y. Q)

definition RepFun :: [i, i ⇒ i] ⇒ i
where RepFun(A,f ) ≡ {y . x∈A, y=f (x)}

syntax
-RepFun :: [i, pttrn, i] ⇒ i (‹(‹indent=1 notation=‹mixfix functional replace-

ment››{- ./ - ∈ -})› [51 ,0 ,51 ])
syntax-consts

-RepFun 
 RepFun
translations
{b. x∈A} 
 CONST RepFun(A, λx. b)

definition Collect :: [i, i ⇒ o] ⇒ i
where Collect(A,P) ≡ {y . x∈A, x=y ∧ P(x)}

syntax
-Collect :: [pttrn, i, o] ⇒ i (‹(‹indent=1 notation=‹mixfix set comprehension››{-
∈ - ./ -})›)
syntax-consts

-Collect 
 Collect
translations
{x∈A. P} 
 CONST Collect(A, λx. P)

1.4 General union and intersection
definition Inter :: i ⇒ i (‹(‹open-block notation=‹prefix

⋂
››
⋂

-)› [90 ] 90 )
where

⋂
(A) ≡ { x∈

⋃
(A) . ∀ y∈A. x∈y}

syntax
-UNION :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder

⋃
∈››

⋃
-∈-./ -)› 10 )

-INTER :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder
⋂
∈››

⋂
-∈-./ -)› 10 )

syntax-consts
-UNION == Union and
-INTER == Inter

translations⋃
x∈A. B == CONST Union({B. x∈A})⋂
x∈A. B == CONST Inter({B. x∈A})

1.5 Finite sets and binary operations
definition Upair :: [i, i] ⇒ i

where Upair(a,b) ≡ {y. x∈Pow(Pow(0 )), (x=0 ∧ y=a) | (x=Pow(0 ) ∧ y=b)}
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definition Subset :: [i, i] ⇒ o (infixl ‹⊆› 50 ) — subset relation
where subset-def : A ⊆ B ≡ ∀ x∈A. x∈B

definition Diff :: [i, i] ⇒ i (infixl ‹−› 65 ) — set difference
where A − B ≡ { x∈A . ¬(x∈B) }

definition Un :: [i, i] ⇒ i (infixl ‹∪› 65 ) — binary union
where A ∪ B ≡

⋃
(Upair(A,B))

definition Int :: [i, i] ⇒ i (infixl ‹∩› 70 ) — binary intersection
where A ∩ B ≡

⋂
(Upair(A,B))

definition cons :: [i, i] ⇒ i
where cons(a,A) ≡ Upair(a,a) ∪ A

definition succ :: i ⇒ i
where succ(i) ≡ cons(i, i)

nonterminal is
syntax

:: i ⇒ is (‹-›)
-Enum :: [i, is] ⇒ is (‹-,/ -›)
-Finset :: is ⇒ i (‹(‹indent=1 notation=‹mixfix set enumeration››{-})›)

translations
{x, xs} == CONST cons(x, {xs})
{x} == CONST cons(x, 0 )

1.6 Axioms
axiomatization
where

extension: A = B ←→ A ⊆ B ∧ B ⊆ A and
Union-iff : A ∈

⋃
(C ) ←→ (∃B∈C . A∈B) and

Pow-iff : A ∈ Pow(B) ←→ A ⊆ B and

infinity: 0 ∈ Inf ∧ (∀ y∈Inf . succ(y) ∈ Inf ) and

foundation: A = 0 ∨ (∃ x∈A. ∀ y∈x. y /∈A) and

replacement: (∀ x∈A. ∀ y z. P(x,y) ∧ P(x,z) −→ y = z) =⇒
b ∈ PrimReplace(A,P) ←→ (∃ x∈A. P(x,b))

1.7 Definite descriptions – via Replace over the set "1"
definition The :: (i ⇒ o) ⇒ i (binder ‹THE › 10 )

where the-def : The(P) ≡
⋃
({y . x ∈ {0}, P(y)})
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definition If :: [o, i, i] ⇒ i (‹(‹notation=‹mixfix if then else››if (-)/ then (-)/
else (-))› [10 ] 10 )

where if-def : if P then a else b ≡ THE z . P ∧ z=a | ¬P ∧ z=b

abbreviation (input)
old-if :: [o, i, i] ⇒ i (‹if ′(-,-,- ′)›)
where if (P,a,b) ≡ If (P,a,b)

1.8 Ordered Pairing
definition Pair :: [i, i] ⇒ i

where Pair(a,b) ≡ {{a,a}, {a,b}}

definition fst :: i ⇒ i
where fst(p) ≡ THE a. ∃ b. p = Pair(a, b)

definition snd :: i ⇒ i
where snd(p) ≡ THE b. ∃ a. p = Pair(a, b)

definition split :: [[i, i] ⇒ ′a, i] ⇒ ′a::{} — for pattern-matching
where split(c) ≡ λp. c(fst(p), snd(p))

nonterminal tuple-args
syntax

:: i ⇒ tuple-args (‹-›)
-Tuple-args :: [i, tuple-args] ⇒ tuple-args (‹-,/ -›)
-Tuple :: [i, tuple-args] ⇒ i (‹(‹indent=1 notation=‹mixfix tuple enumera-

tion››〈-,/ -〉)›)
translations
〈x, y, z〉 == 〈x, 〈y, z〉〉
〈x, y〉 == CONST Pair(x, y)

nonterminal patterns
syntax

-pattern :: patterns ⇒ pttrn (‹(‹open-block notation=‹pattern tuple››〈-〉)›)
:: pttrn ⇒ patterns (‹-›)

-patterns :: [pttrn, patterns] ⇒ patterns (‹-,/-›)
syntax-consts

-pattern -patterns == split
translations
λ〈x,y,zs〉.b == CONST split(λx 〈y,zs〉.b)
λ〈x,y〉.b == CONST split(λx y. b)

definition Sigma :: [i, i ⇒ i] ⇒ i
where Sigma(A,B) ≡

⋃
x∈A.

⋃
y∈B(x). {〈x,y〉}

abbreviation cart-prod :: [i, i] ⇒ i (infixr ‹×› 80 ) — Cartesian product
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where A × B ≡ Sigma(A, λ-. B)

1.9 Relations and Functions
definition converse :: i ⇒ i

where converse(r) ≡ {z. w∈r , ∃ x y. w=〈x,y〉 ∧ z=〈y,x〉}

definition domain :: i ⇒ i
where domain(r) ≡ {x. w∈r , ∃ y. w=〈x,y〉}

definition range :: i ⇒ i
where range(r) ≡ domain(converse(r))

definition field :: i ⇒ i
where field(r) ≡ domain(r) ∪ range(r)

definition relation :: i ⇒ o — recognizes sets of pairs
where relation(r) ≡ ∀ z∈r . ∃ x y. z = 〈x,y〉

definition function :: i ⇒ o — recognizes functions; can have non-pairs
where function(r) ≡ ∀ x y. 〈x,y〉 ∈ r −→ (∀ y ′. 〈x,y ′〉 ∈ r −→ y = y ′)

definition Image :: [i, i] ⇒ i (infixl ‹‘‘› 90 ) — image
where image-def : r ‘‘ A ≡ {y ∈ range(r). ∃ x∈A. 〈x,y〉 ∈ r}

definition vimage :: [i, i] ⇒ i (infixl ‹−‘‘› 90 ) — inverse image
where vimage-def : r −‘‘ A ≡ converse(r)‘‘A

definition restrict :: [i, i] ⇒ i
where restrict(r ,A) ≡ {z ∈ r . ∃ x∈A. ∃ y. z = 〈x,y〉}

definition Lambda :: [i, i ⇒ i] ⇒ i
where lam-def : Lambda(A,b) ≡ {〈x,b(x)〉. x∈A}

definition apply :: [i, i] ⇒ i (infixl ‹‘› 90 ) — function application
where f‘a ≡

⋃
(f‘‘{a})

definition Pi :: [i, i ⇒ i] ⇒ i
where Pi(A,B) ≡ {f∈Pow(Sigma(A,B)). A⊆domain(f ) ∧ function(f )}

abbreviation function-space :: [i, i] ⇒ i (infixr ‹→› 60 ) — function space
where A → B ≡ Pi(A, λ-. B)
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syntax
-PROD :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹mixfix

∏
∈››

∏
-∈-./

-)› 10 )
-SUM :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹mixfix

∑
∈››

∑
-∈-./

-)› 10 )
-lam :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹mixfix λ∈››λ-∈-./ -)›

10 )
syntax-consts

-PROD == Pi and
-SUM == Sigma and
-lam == Lambda

translations∏
x∈A. B == CONST Pi(A, λx. B)∑
x∈A. B == CONST Sigma(A, λx. B)

λx∈A. f == CONST Lambda(A, λx. f )

1.10 ASCII syntax
notation (ASCII )

cart-prod (infixr ‹∗› 80 ) and
Int (infixl ‹Int› 70 ) and
Un (infixl ‹Un› 65 ) and
function-space (infixr ‹−>› 60 ) and
Subset (infixl ‹<=› 50 ) and
mem (infixl ‹:› 50 ) and
not-mem (infixl ‹¬:› 50 )

syntax (ASCII )
-Ball :: [pttrn, i, o] ⇒ o (‹(‹indent=3 notation=‹binder ALL:››ALL -:-./

-)› 10 )
-Bex :: [pttrn, i, o] ⇒ o (‹(‹indent=3 notation=‹binder EX :››EX -:-./

-)› 10 )
-Collect :: [pttrn, i, o] ⇒ i (‹(‹indent=1 notation=‹mixfix set comprehen-

sion››{-: - ./ -})›)
-Replace :: [pttrn, pttrn, i, o] ⇒ i (‹(‹indent=1 notation=‹mixfix relational

replacement››{- ./ -: -, -})›)
-RepFun :: [i, pttrn, i] ⇒ i (‹(‹indent=1 notation=‹mixfix functional

replacement››{- ./ -: -})› [51 ,0 ,51 ])
-UNION :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder UN :››UN -:-./

-)› 10 )
-INTER :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder INT :››INT

-:-./ -)› 10 )
-PROD :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder PROD:››PROD

-:-./ -)› 10 )
-SUM :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder SUM :››SUM

-:-./ -)› 10 )
-lam :: [pttrn, i, i] ⇒ i (‹(‹indent=3 notation=‹binder lam:››lam -:-./

-)› 10 )
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-Tuple :: [i, tuple-args] ⇒ i (‹(‹indent=1 notation=‹mixfix tuple enumera-
tion››<-,/ ->)›)

-pattern :: patterns ⇒ pttrn (‹<->›)

1.11 Substitution
lemma subst-elem: [[b∈A; a=b]] =⇒ a∈A
by (erule ssubst, assumption)

1.12 Bounded universal quantifier
lemma ballI [intro!]: [[

∧
x. x∈A =⇒ P(x)]] =⇒ ∀ x∈A. P(x)

by (simp add: Ball-def )

lemmas strip = impI allI ballI

lemma bspec [dest?]: [[∀ x∈A. P(x); x: A]] =⇒ P(x)
by (simp add: Ball-def )

lemma rev-ballE [elim]:
[[∀ x∈A. P(x); x /∈A =⇒ Q; P(x) =⇒ Q]] =⇒ Q

by (simp add: Ball-def , blast)

lemma ballE : [[∀ x∈A. P(x); P(x) =⇒ Q; x /∈A =⇒ Q]] =⇒ Q
by blast

lemma rev-bspec: [[x: A; ∀ x∈A. P(x)]] =⇒ P(x)
by (simp add: Ball-def )

lemma ball-triv [simp]: (∀ x∈A. P) ←→ ((∃ x. x∈A) −→ P)
by (simp add: Ball-def )

lemma ball-cong [cong]:
[[A=A ′;

∧
x. x∈A ′ =⇒ P(x)←→ P ′(x)]] =⇒ (∀ x∈A. P(x))←→ (∀ x∈A ′. P ′(x))

by (simp add: Ball-def )

lemma atomize-ball:
(
∧

x. x ∈ A =⇒ P(x)) ≡ Trueprop (∀ x∈A. P(x))
by (simp only: Ball-def atomize-all atomize-imp)

lemmas [symmetric, rulify] = atomize-ball
and [symmetric, defn] = atomize-ball

1.13 Bounded existential quantifier
lemma bexI [intro]: [[P(x); x: A]] =⇒ ∃ x∈A. P(x)
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by (simp add: Bex-def , blast)

lemma rev-bexI : [[x∈A; P(x)]] =⇒ ∃ x∈A. P(x)
by blast

lemma bexCI : [[∀ x∈A. ¬P(x) =⇒ P(a); a: A]] =⇒ ∃ x∈A. P(x)
by blast

lemma bexE [elim!]: [[∃ x∈A. P(x);
∧

x. [[x∈A; P(x)]] =⇒ Q]] =⇒ Q
by (simp add: Bex-def , blast)

lemma bex-triv [simp]: (∃ x∈A. P) ←→ ((∃ x. x∈A) ∧ P)
by (simp add: Bex-def )

lemma bex-cong [cong]:
[[A=A ′;

∧
x. x∈A ′ =⇒ P(x) ←→ P ′(x)]]

=⇒ (∃ x∈A. P(x)) ←→ (∃ x∈A ′. P ′(x))
by (simp add: Bex-def cong: conj-cong)

1.14 Rules for subsets
lemma subsetI [intro!]:

(
∧

x. x∈A =⇒ x∈B) =⇒ A ⊆ B
by (simp add: subset-def )

lemma subsetD [elim]: [[A ⊆ B; c∈A]] =⇒ c∈B
unfolding subset-def

apply (erule bspec, assumption)
done

lemma subsetCE [elim]:
[[A ⊆ B; c/∈A =⇒ P; c∈B =⇒ P]] =⇒ P

by (simp add: subset-def , blast)

lemma rev-subsetD: [[c∈A; A⊆B]] =⇒ c∈B
by blast

lemma contra-subsetD: [[A ⊆ B; c /∈ B]] =⇒ c /∈ A
by blast

lemma rev-contra-subsetD: [[c /∈ B; A ⊆ B]] =⇒ c /∈ A
by blast
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lemma subset-refl [simp]: A ⊆ A
by blast

lemma subset-trans: [[A⊆B; B⊆C ]] =⇒ A⊆C
by blast

lemma subset-iff :
A⊆B ←→ (∀ x. x∈A −→ x∈B)

by auto

For calculations
declare subsetD [trans] rev-subsetD [trans] subset-trans [trans]

1.15 Rules for equality
lemma equalityI [intro]: [[A ⊆ B; B ⊆ A]] =⇒ A = B

by (rule extension [THEN iffD2 ], rule conjI )

lemma equality-iffI : (
∧

x. x∈A ←→ x∈B) =⇒ A = B
by (rule equalityI , blast+)

lemmas equalityD1 = extension [THEN iffD1 , THEN conjunct1 ]
lemmas equalityD2 = extension [THEN iffD1 , THEN conjunct2 ]

lemma equalityE : [[A = B; [[A⊆B; B⊆A]] =⇒ P]] =⇒ P
by (blast dest: equalityD1 equalityD2 )

lemma equalityCE :
[[A = B; [[c∈A; c∈B]] =⇒ P; [[c/∈A; c/∈B]] =⇒ P]] =⇒ P
by (erule equalityE , blast)

lemma equality-iffD:
A = B =⇒ (

∧
x. x ∈ A ←→ x ∈ B)

by auto

1.16 Rules for Replace – the derived form of replacement
lemma Replace-iff :

b ∈ {y. x∈A, P(x,y)} ←→ (∃ x∈A. P(x,b) ∧ (∀ y. P(x,y) −→ y=b))
unfolding Replace-def
by (rule replacement [THEN iff-trans], blast+)

lemma ReplaceI [intro]:
[[P(x,b); x: A;

∧
y. P(x,y) =⇒ y=b]] =⇒

b ∈ {y. x∈A, P(x,y)}
by (rule Replace-iff [THEN iffD2 ], blast)
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lemma ReplaceE :
[[b ∈ {y. x∈A, P(x,y)};∧

x. [[x: A; P(x,b); ∀ y. P(x,y)−→y=b]] =⇒ R
]] =⇒ R
by (rule Replace-iff [THEN iffD1 , THEN bexE ], simp+)

lemma ReplaceE2 [elim!]:
[[b ∈ {y. x∈A, P(x,y)};∧

x. [[x: A; P(x,b)]] =⇒ R
]] =⇒ R

by (erule ReplaceE , blast)

lemma Replace-cong [cong]:
[[A=B;

∧
x y. x∈B =⇒ P(x,y) ←→ Q(x,y)]] =⇒ Replace(A,P) = Replace(B,Q)

apply (rule equality-iffI )
apply (simp add: Replace-iff )
done

1.17 Rules for RepFun
lemma RepFunI : a ∈ A =⇒ f (a) ∈ {f (x). x∈A}
by (simp add: RepFun-def Replace-iff , blast)

lemma RepFun-eqI [intro]: [[b=f (a); a ∈ A]] =⇒ b ∈ {f (x). x∈A}
by (blast intro: RepFunI )

lemma RepFunE [elim!]:
[[b ∈ {f (x). x∈A};∧

x.[[x∈A; b=f (x)]] =⇒ P]] =⇒
P

by (simp add: RepFun-def Replace-iff , blast)

lemma RepFun-cong [cong]:
[[A=B;

∧
x. x∈B =⇒ f (x)=g(x)]] =⇒ RepFun(A,f ) = RepFun(B,g)

by (simp add: RepFun-def )

lemma RepFun-iff [simp]: b ∈ {f (x). x∈A} ←→ (∃ x∈A. b=f (x))
by (unfold Bex-def , blast)

lemma triv-RepFun [simp]: {x. x∈A} = A
by blast

1.18 Rules for Collect – forming a subset by separation
lemma separation [simp]: a ∈ {x∈A. P(x)} ←→ a∈A ∧ P(a)

by (auto simp: Collect-def )
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lemma CollectI [intro!]: [[a∈A; P(a)]] =⇒ a ∈ {x∈A. P(x)}
by simp

lemma CollectE [elim!]: [[a ∈ {x∈A. P(x)}; [[a∈A; P(a)]] =⇒ R]] =⇒ R
by simp

lemma CollectD1 : a ∈ {x∈A. P(x)} =⇒ a∈A and CollectD2 : a ∈ {x∈A. P(x)}
=⇒ P(a)

by auto

lemma Collect-cong [cong]:
[[A=B;

∧
x. x∈B =⇒ P(x) ←→ Q(x)]]

=⇒ Collect(A, λx. P(x)) = Collect(B, λx. Q(x))
by (simp add: Collect-def )

1.19 Rules for Unions
declare Union-iff [simp]

lemma UnionI [intro]: [[B: C ; A: B]] =⇒ A:
⋃

(C )
by auto

lemma UnionE [elim!]: [[A ∈
⋃
(C );

∧
B.[[A: B; B: C ]] =⇒ R]] =⇒ R

by auto

1.20 Rules for Unions of families
lemma UN-iff [simp]: b ∈ (

⋃
x∈A. B(x)) ←→ (∃ x∈A. b ∈ B(x))

by blast

lemma UN-I : [[a: A; b: B(a)]] =⇒ b: (
⋃

x∈A. B(x))
by force

lemma UN-E [elim!]:
[[b ∈ (

⋃
x∈A. B(x));

∧
x.[[x: A; b: B(x)]] =⇒ R]] =⇒ R

by blast

lemma UN-cong:
[[A=B;

∧
x. x∈B =⇒ C (x)=D(x)]] =⇒ (

⋃
x∈A. C (x)) = (

⋃
x∈B. D(x))

by simp

1.21 Rules for the empty set
lemma not-mem-empty [simp]: a /∈ 0

using foundation by (best dest: equalityD2 )
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lemmas emptyE [elim!] = not-mem-empty [THEN notE ]

lemma empty-subsetI [simp]: 0 ⊆ A
by blast

lemma equals0I : [[
∧

y. y∈A =⇒ False]] =⇒ A=0
by blast

lemma equals0D [dest]: A=0 =⇒ a /∈ A
by blast

declare sym [THEN equals0D, dest]

lemma not-emptyI : a∈A =⇒ A 6= 0
by blast

lemma not-emptyE : [[A 6= 0 ;
∧

x. x∈A =⇒ R]] =⇒ R
by blast

1.22 Rules for Inter
lemma Inter-iff : A ∈

⋂
(C ) ←→ (∀ x∈C . A: x) ∧ C 6=0

by (force simp: Inter-def )

lemma InterI [intro!]:
[[
∧

x. x: C =⇒ A: x; C 6=0 ]] =⇒ A ∈
⋂

(C )
by (simp add: Inter-iff )

lemma InterD [elim, Pure.elim]: [[A ∈
⋂
(C ); B ∈ C ]] =⇒ A ∈ B

by (force simp: Inter-def )

lemma InterE [elim]:
[[A ∈

⋂
(C ); B /∈C =⇒ R; A∈B =⇒ R]] =⇒ R

by (auto simp: Inter-def )

1.23 Rules for Intersections of families
lemma INT-iff : b ∈ (

⋂
x∈A. B(x)) ←→ (∀ x∈A. b ∈ B(x)) ∧ A 6=0

by (force simp add: Inter-def )

lemma INT-I : [[
∧

x. x: A =⇒ b: B(x); A 6=0 ]] =⇒ b: (
⋂

x∈A. B(x))
by blast

lemma INT-E : [[b ∈ (
⋂

x∈A. B(x)); a: A]] =⇒ b ∈ B(a)
by blast
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lemma INT-cong:
[[A=B;

∧
x. x∈B =⇒ C (x)=D(x)]] =⇒ (

⋂
x∈A. C (x)) = (

⋂
x∈B. D(x))

by simp

1.24 Rules for Powersets
lemma PowI : A ⊆ B =⇒ A ∈ Pow(B)

by (erule Pow-iff [THEN iffD2 ])

lemma PowD: A ∈ Pow(B) =⇒ A⊆B
by (erule Pow-iff [THEN iffD1 ])

declare Pow-iff [iff ]

lemmas Pow-bottom = empty-subsetI [THEN PowI ] — 0 ∈ Pow(B)
lemmas Pow-top = subset-refl [THEN PowI ] — A ∈ Pow(A)

1.25 Cantor’s Theorem: There is no surjection from a set to
its powerset.

lemma cantor : ∃S ∈ Pow(A). ∀ x∈A. b(x) 6= S
by (best elim!: equalityCE del: ReplaceI RepFun-eqI )

end

2 Unordered Pairs
theory upair
imports ZF-Base
keywords print-tcset :: diag
begin

ML-file ‹Tools/typechk.ML›

2.1 Unordered Pairs: constant Upair
lemma Upair-iff [simp]: c ∈ Upair(a,b) ←→ (c=a | c=b)
by (unfold Upair-def , blast)

lemma UpairI1 : a ∈ Upair(a,b)
by simp

lemma UpairI2 : b ∈ Upair(a,b)
by simp

lemma UpairE : [[a ∈ Upair(b,c); a=b =⇒ P; a=c =⇒ P]] =⇒ P
by (simp, blast)
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2.2 Rules for Binary Union, Defined via Upair
lemma Un-iff [simp]: c ∈ A ∪ B ←→ (c ∈ A | c ∈ B)
apply (simp add: Un-def )
apply (blast intro: UpairI1 UpairI2 elim: UpairE)
done

lemma UnI1 : c ∈ A =⇒ c ∈ A ∪ B
by simp

lemma UnI2 : c ∈ B =⇒ c ∈ A ∪ B
by simp

declare UnI1 [elim?] UnI2 [elim?]

lemma UnE [elim!]: [[c ∈ A ∪ B; c ∈ A =⇒ P; c ∈ B =⇒ P]] =⇒ P
by (simp, blast)

lemma UnE ′: [[c ∈ A ∪ B; c ∈ A =⇒ P; [[c ∈ B; c/∈A]] =⇒ P]] =⇒ P
by (simp, blast)

lemma UnCI [intro!]: (c /∈ B =⇒ c ∈ A) =⇒ c ∈ A ∪ B
by (simp, blast)

2.3 Rules for Binary Intersection, Defined via Upair
lemma Int-iff [simp]: c ∈ A ∩ B ←→ (c ∈ A ∧ c ∈ B)

unfolding Int-def
apply (blast intro: UpairI1 UpairI2 elim: UpairE)
done

lemma IntI [intro!]: [[c ∈ A; c ∈ B]] =⇒ c ∈ A ∩ B
by simp

lemma IntD1 : c ∈ A ∩ B =⇒ c ∈ A
by simp

lemma IntD2 : c ∈ A ∩ B =⇒ c ∈ B
by simp

lemma IntE [elim!]: [[c ∈ A ∩ B; [[c ∈ A; c ∈ B]] =⇒ P]] =⇒ P
by simp

2.4 Rules for Set Difference, Defined via Upair
lemma Diff-iff [simp]: c ∈ A−B ←→ (c ∈ A ∧ c/∈B)
by (unfold Diff-def , blast)
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lemma DiffI [intro!]: [[c ∈ A; c /∈ B]] =⇒ c ∈ A − B
by simp

lemma DiffD1 : c ∈ A − B =⇒ c ∈ A
by simp

lemma DiffD2 : c ∈ A − B =⇒ c /∈ B
by simp

lemma DiffE [elim!]: [[c ∈ A − B; [[c ∈ A; c/∈B]] =⇒ P]] =⇒ P
by simp

2.5 Rules for cons
lemma cons-iff [simp]: a ∈ cons(b,A) ←→ (a=b | a ∈ A)

unfolding cons-def
apply (blast intro: UpairI1 UpairI2 elim: UpairE)
done

lemma consI1 [simp,TC ]: a ∈ cons(a,B)
by simp

lemma consI2 : a ∈ B =⇒ a ∈ cons(b,B)
by simp

lemma consE [elim!]: [[a ∈ cons(b,A); a=b =⇒ P; a ∈ A =⇒ P]] =⇒ P
by (simp, blast)

lemma consE ′:
[[a ∈ cons(b,A); a=b =⇒ P; [[a ∈ A; a 6=b]] =⇒ P]] =⇒ P

by (simp, blast)

lemma consCI [intro!]: (a /∈B =⇒ a=b) =⇒ a ∈ cons(b,B)
by (simp, blast)

lemma cons-not-0 [simp]: cons(a,B) 6= 0
by (blast elim: equalityE)

lemmas cons-neq-0 = cons-not-0 [THEN notE ]

declare cons-not-0 [THEN not-sym, simp]

2.6 Singletons
lemma singleton-iff : a ∈ {b} ←→ a=b
by simp
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lemma singletonI [intro!]: a ∈ {a}
by (rule consI1 )

lemmas singletonE = singleton-iff [THEN iffD1 , elim-format, elim!]

2.7 Descriptions
lemma the-equality [intro]:

[[P(a);
∧

x. P(x) =⇒ x=a]] =⇒ (THE x . P(x)) = a
unfolding the-def

apply (fast dest: subst)
done

lemma the-equality2 : [[∃ !x. P(x); P(a)]] =⇒ (THE x . P(x)) = a
by blast

lemma theI : ∃ !x. P(x) =⇒ P(THE x . P(x))
apply (erule ex1E)
apply (subst the-equality)
apply (blast+)
done

lemma the-0 : ¬ (∃ !x. P(x)) =⇒ (THE x . P(x))=0
unfolding the-def

apply (blast elim!: ReplaceE)
done

lemma theI2 :
assumes p1 : ¬ Q(0 ) =⇒ ∃ !x. P(x)

and p2 :
∧

x. P(x) =⇒ Q(x)
shows Q(THE x . P(x))

apply (rule classical)
apply (rule p2 )
apply (rule theI )
apply (rule classical)
apply (rule p1 )
apply (erule the-0 [THEN subst], assumption)
done

lemma the-eq-trivial [simp]: (THE x . x = a) = a
by blast

lemma the-eq-trivial2 [simp]: (THE x. a = x) = a
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by blast

2.8 Conditional Terms: if−then−else
lemma if-true [simp]: (if True then a else b) = a
by (unfold if-def , blast)

lemma if-false [simp]: (if False then a else b) = b
by (unfold if-def , blast)

lemma if-cong:
[[P←→Q; Q =⇒ a=c; ¬Q =⇒ b=d]]
=⇒ (if P then a else b) = (if Q then c else d)

by (simp add: if-def cong add: conj-cong)

lemma if-weak-cong: P←→Q =⇒ (if P then x else y) = (if Q then x else y)
by simp

lemma if-P: P =⇒ (if P then a else b) = a
by (unfold if-def , blast)

lemma if-not-P: ¬P =⇒ (if P then a else b) = b
by (unfold if-def , blast)

lemma split-if [split]:
P(if Q then x else y) ←→ ((Q −→ P(x)) ∧ (¬Q −→ P(y)))

by (case-tac Q, simp-all)

lemmas split-if-eq1 = split-if [of λx. x = b] for b
lemmas split-if-eq2 = split-if [of λx. a = x] for a

lemmas split-if-mem1 = split-if [of λx. x ∈ b] for b
lemmas split-if-mem2 = split-if [of λx. a ∈ x] for a

lemmas split-ifs = split-if-eq1 split-if-eq2 split-if-mem1 split-if-mem2

lemma if-iff : a: (if P then x else y) ←→ P ∧ a ∈ x | ¬P ∧ a ∈ y
by simp

lemma if-type [TC ]:
[[P =⇒ a ∈ A; ¬P =⇒ b ∈ A]] =⇒ (if P then a else b): A

by simp
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lemma split-if-asm: P(if Q then x else y) ←→ (¬((Q ∧ ¬P(x)) | (¬Q ∧ ¬P(y))))
by simp

lemmas if-splits = split-if split-if-asm

2.9 Consequences of Foundation
lemma mem-asym: [[a ∈ b; ¬P =⇒ b ∈ a]] =⇒ P
apply (rule classical)
apply (rule-tac A1 = {a,b} in foundation [THEN disjE ])
apply (blast elim!: equalityE)+
done

lemma mem-irrefl: a ∈ a =⇒ P
by (blast intro: mem-asym)

lemma mem-not-refl: a /∈ a
apply (rule notI )
apply (erule mem-irrefl)
done

lemma mem-imp-not-eq: a ∈ A =⇒ a 6= A
by (blast elim!: mem-irrefl)

lemma eq-imp-not-mem: a=A =⇒ a /∈ A
by (blast intro: elim: mem-irrefl)

2.10 Rules for Successor
lemma succ-iff : i ∈ succ(j) ←→ i=j | i ∈ j
by (unfold succ-def , blast)

lemma succI1 [simp]: i ∈ succ(i)
by (simp add: succ-iff )

lemma succI2 : i ∈ j =⇒ i ∈ succ(j)
by (simp add: succ-iff )

lemma succE [elim!]:
[[i ∈ succ(j); i=j =⇒ P; i ∈ j =⇒ P]] =⇒ P

apply (simp add: succ-iff , blast)
done
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lemma succCI [intro!]: (i /∈j =⇒ i=j) =⇒ i ∈ succ(j)
by (simp add: succ-iff , blast)

lemma succ-not-0 [simp]: succ(n) 6= 0
by (blast elim!: equalityE)

lemmas succ-neq-0 = succ-not-0 [THEN notE , elim!]

declare succ-not-0 [THEN not-sym, simp]
declare sym [THEN succ-neq-0 , elim!]

lemmas succ-subsetD = succI1 [THEN [2 ] subsetD]

lemmas succ-neq-self = succI1 [THEN mem-imp-not-eq, THEN not-sym]

lemma succ-inject-iff [simp]: succ(m) = succ(n) ←→ m=n
by (blast elim: mem-asym elim!: equalityE)

lemmas succ-inject = succ-inject-iff [THEN iffD1 , dest!]

2.11 Miniscoping of the Bounded Universal Quantifier
lemma ball-simps1 :

(∀ x∈A. P(x) ∧ Q) ←→ (∀ x∈A. P(x)) ∧ (A=0 | Q)
(∀ x∈A. P(x) | Q) ←→ ((∀ x∈A. P(x)) | Q)
(∀ x∈A. P(x) −→ Q) ←→ ((∃ x∈A. P(x)) −→ Q)
(¬(∀ x∈A. P(x))) ←→ (∃ x∈A. ¬P(x))
(∀ x∈0 .P(x)) ←→ True
(∀ x∈succ(i).P(x)) ←→ P(i) ∧ (∀ x∈i. P(x))
(∀ x∈cons(a,B).P(x)) ←→ P(a) ∧ (∀ x∈B. P(x))
(∀ x∈RepFun(A,f ). P(x)) ←→ (∀ y∈A. P(f (y)))
(∀ x∈

⋃
(A).P(x)) ←→ (∀ y∈A. ∀ x∈y. P(x))

by blast+

lemma ball-simps2 :
(∀ x∈A. P ∧ Q(x)) ←→ (A=0 | P) ∧ (∀ x∈A. Q(x))
(∀ x∈A. P | Q(x)) ←→ (P | (∀ x∈A. Q(x)))
(∀ x∈A. P −→ Q(x)) ←→ (P −→ (∀ x∈A. Q(x)))

by blast+

lemma ball-simps3 :
(∀ x∈Collect(A,Q).P(x)) ←→ (∀ x∈A. Q(x) −→ P(x))

by blast+

lemmas ball-simps [simp] = ball-simps1 ball-simps2 ball-simps3
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lemma ball-conj-distrib:
(∀ x∈A. P(x) ∧ Q(x)) ←→ ((∀ x∈A. P(x)) ∧ (∀ x∈A. Q(x)))

by blast

2.12 Miniscoping of the Bounded Existential Quantifier
lemma bex-simps1 :

(∃ x∈A. P(x) ∧ Q) ←→ ((∃ x∈A. P(x)) ∧ Q)
(∃ x∈A. P(x) | Q) ←→ (∃ x∈A. P(x)) | (A 6=0 ∧ Q)
(∃ x∈A. P(x) −→ Q) ←→ ((∀ x∈A. P(x)) −→ (A 6=0 ∧ Q))
(∃ x∈0 .P(x)) ←→ False
(∃ x∈succ(i).P(x)) ←→ P(i) | (∃ x∈i. P(x))
(∃ x∈cons(a,B).P(x)) ←→ P(a) | (∃ x∈B. P(x))
(∃ x∈RepFun(A,f ). P(x)) ←→ (∃ y∈A. P(f (y)))
(∃ x∈

⋃
(A).P(x)) ←→ (∃ y∈A. ∃ x∈y. P(x))

(¬(∃ x∈A. P(x))) ←→ (∀ x∈A. ¬P(x))
by blast+

lemma bex-simps2 :
(∃ x∈A. P ∧ Q(x)) ←→ (P ∧ (∃ x∈A. Q(x)))
(∃ x∈A. P | Q(x)) ←→ (A 6=0 ∧ P) | (∃ x∈A. Q(x))
(∃ x∈A. P −→ Q(x)) ←→ ((A=0 | P) −→ (∃ x∈A. Q(x)))

by blast+

lemma bex-simps3 :
(∃ x∈Collect(A,Q).P(x)) ←→ (∃ x∈A. Q(x) ∧ P(x))

by blast

lemmas bex-simps [simp] = bex-simps1 bex-simps2 bex-simps3

lemma bex-disj-distrib:
(∃ x∈A. P(x) | Q(x)) ←→ ((∃ x∈A. P(x)) | (∃ x∈A. Q(x)))

by blast

lemma bex-triv-one-point1 [simp]: (∃ x∈A. x=a) ←→ (a ∈ A)
by blast

lemma bex-triv-one-point2 [simp]: (∃ x∈A. a=x) ←→ (a ∈ A)
by blast

lemma bex-one-point1 [simp]: (∃ x∈A. x=a ∧ P(x)) ←→ (a ∈ A ∧ P(a))
by blast

lemma bex-one-point2 [simp]: (∃ x∈A. a=x ∧ P(x)) ←→ (a ∈ A ∧ P(a))
by blast
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lemma ball-one-point1 [simp]: (∀ x∈A. x=a −→ P(x)) ←→ (a ∈ A −→ P(a))
by blast

lemma ball-one-point2 [simp]: (∀ x∈A. a=x −→ P(x)) ←→ (a ∈ A −→ P(a))
by blast

2.13 Miniscoping of the Replacement Operator

These cover both Replace and Collect
lemma Rep-simps [simp]:
{x. y ∈ 0 , R(x,y)} = 0
{x ∈ 0 . P(x)} = 0
{x ∈ A. Q} = (if Q then A else 0 )
RepFun(0 ,f ) = 0
RepFun(succ(i),f ) = cons(f (i), RepFun(i,f ))
RepFun(cons(a,B),f ) = cons(f (a), RepFun(B,f ))

by (simp-all, blast+)

2.14 Miniscoping of Unions
lemma UN-simps1 :

(
⋃

x∈C . cons(a, B(x))) = (if C=0 then 0 else cons(a,
⋃

x∈C . B(x)))
(
⋃

x∈C . A(x) ∪ B ′) = (if C=0 then 0 else (
⋃

x∈C . A(x)) ∪ B ′)
(
⋃

x∈C . A ′ ∪ B(x)) = (if C=0 then 0 else A ′ ∪ (
⋃

x∈C . B(x)))
(
⋃

x∈C . A(x) ∩ B ′) = ((
⋃

x∈C . A(x)) ∩ B ′)
(
⋃

x∈C . A ′ ∩ B(x)) = (A ′ ∩ (
⋃

x∈C . B(x)))
(
⋃

x∈C . A(x) − B ′) = ((
⋃

x∈C . A(x)) − B ′)
(
⋃

x∈C . A ′ − B(x)) = (if C=0 then 0 else A ′ − (
⋂

x∈C . B(x)))
apply (simp-all add: Inter-def )
apply (blast intro!: equalityI )+
done

lemma UN-simps2 :
(
⋃

x∈
⋃

(A). B(x)) = (
⋃

y∈A.
⋃

x∈y. B(x))
(
⋃

z∈(
⋃

x∈A. B(x)). C (z)) = (
⋃

x∈A.
⋃

z∈B(x). C (z))
(
⋃

x∈RepFun(A,f ). B(x)) = (
⋃

a∈A. B(f (a)))
by blast+

lemmas UN-simps [simp] = UN-simps1 UN-simps2

Opposite of miniscoping: pull the operator out
lemma UN-extend-simps1 :

(
⋃

x∈C . A(x)) ∪ B = (if C=0 then B else (
⋃

x∈C . A(x) ∪ B))
((
⋃

x∈C . A(x)) ∩ B) = (
⋃

x∈C . A(x) ∩ B)
((
⋃

x∈C . A(x)) − B) = (
⋃

x∈C . A(x) − B)
apply simp-all
apply blast+
done
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lemma UN-extend-simps2 :
cons(a,

⋃
x∈C . B(x)) = (if C=0 then {a} else (

⋃
x∈C . cons(a, B(x))))

A ∪ (
⋃

x∈C . B(x)) = (if C=0 then A else (
⋃

x∈C . A ∪ B(x)))
(A ∩ (

⋃
x∈C . B(x))) = (

⋃
x∈C . A ∩ B(x))

A − (
⋂

x∈C . B(x)) = (if C=0 then A else (
⋃

x∈C . A − B(x)))
(
⋃

y∈A.
⋃

x∈y. B(x)) = (
⋃

x∈
⋃
(A). B(x))

(
⋃

a∈A. B(f (a))) = (
⋃

x∈RepFun(A,f ). B(x))
apply (simp-all add: Inter-def )
apply (blast intro!: equalityI )+
done

lemma UN-UN-extend:
(
⋃

x∈A.
⋃

z∈B(x). C (z)) = (
⋃

z∈(
⋃

x∈A. B(x)). C (z))
by blast

lemmas UN-extend-simps = UN-extend-simps1 UN-extend-simps2 UN-UN-extend

2.15 Miniscoping of Intersections
lemma INT-simps1 :

(
⋂

x∈C . A(x) ∩ B) = (
⋂

x∈C . A(x)) ∩ B
(
⋂

x∈C . A(x) − B) = (
⋂

x∈C . A(x)) − B
(
⋂

x∈C . A(x) ∪ B) = (if C=0 then 0 else (
⋂

x∈C . A(x)) ∪ B)
by (simp-all add: Inter-def , blast+)

lemma INT-simps2 :
(
⋂

x∈C . A ∩ B(x)) = A ∩ (
⋂

x∈C . B(x))
(
⋂

x∈C . A − B(x)) = (if C=0 then 0 else A − (
⋃

x∈C . B(x)))
(
⋂

x∈C . cons(a, B(x))) = (if C=0 then 0 else cons(a,
⋂

x∈C . B(x)))
(
⋂

x∈C . A ∪ B(x)) = (if C=0 then 0 else A ∪ (
⋂

x∈C . B(x)))
apply (simp-all add: Inter-def )
apply (blast intro!: equalityI )+
done

lemmas INT-simps [simp] = INT-simps1 INT-simps2

Opposite of miniscoping: pull the operator out
lemma INT-extend-simps1 :

(
⋂

x∈C . A(x)) ∩ B = (
⋂

x∈C . A(x) ∩ B)
(
⋂

x∈C . A(x)) − B = (
⋂

x∈C . A(x) − B)
(
⋂

x∈C . A(x)) ∪ B = (if C=0 then B else (
⋂

x∈C . A(x) ∪ B))
apply (simp-all add: Inter-def , blast+)
done

lemma INT-extend-simps2 :
A ∩ (

⋂
x∈C . B(x)) = (

⋂
x∈C . A ∩ B(x))

A − (
⋃

x∈C . B(x)) = (if C=0 then A else (
⋂

x∈C . A − B(x)))
cons(a,

⋂
x∈C . B(x)) = (if C=0 then {a} else (

⋂
x∈C . cons(a, B(x))))

A ∪ (
⋂

x∈C . B(x)) = (if C=0 then A else (
⋂

x∈C . A ∪ B(x)))
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apply (simp-all add: Inter-def )
apply (blast intro!: equalityI )+
done

lemmas INT-extend-simps = INT-extend-simps1 INT-extend-simps2

2.16 Other simprules
lemma misc-simps [simp]:

0 ∪ A = A
A ∪ 0 = A
0 ∩ A = 0
A ∩ 0 = 0
0 − A = 0
A − 0 = A⋃

(0 ) = 0⋃
(cons(b,A)) = b ∪

⋃
(A)⋂

({b}) = b
by blast+

end

3 Ordered Pairs
theory pair imports upair
begin

ML-file ‹simpdata.ML›

setup ‹
map-theory-simpset
(Simplifier .set-mksimps (fn ctxt => map mk-eq o ZF-atomize o Variable.gen-all

ctxt)
#> Simplifier .add-cong @{thm if-weak-cong})

›

ML ‹val ZF-ss = simpset-of context ›

simproc-setup defined-Bex (∃ x∈A. P(x) ∧ Q(x)) = ‹
K (Quantifier1 .rearrange-Bex (fn ctxt => unfold-tac ctxt @{thms Bex-def }))

›

simproc-setup defined-Ball (∀ x∈A. P(x) −→ Q(x)) = ‹
K (Quantifier1 .rearrange-Ball (fn ctxt => unfold-tac ctxt @{thms Ball-def }))

›
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lemma singleton-eq-iff [iff ]: {a} = {b} ←→ a=b
by (rule extension [THEN iff-trans], blast)

lemma doubleton-eq-iff : {a,b} = {c,d} ←→ (a=c ∧ b=d) | (a=d ∧ b=c)
by (rule extension [THEN iff-trans], blast)

lemma Pair-iff [simp]: 〈a,b〉 = 〈c,d〉 ←→ a=c ∧ b=d
by (simp add: Pair-def doubleton-eq-iff , blast)

lemmas Pair-inject = Pair-iff [THEN iffD1 , THEN conjE , elim!]

lemmas Pair-inject1 = Pair-iff [THEN iffD1 , THEN conjunct1 ]
lemmas Pair-inject2 = Pair-iff [THEN iffD1 , THEN conjunct2 ]

lemma Pair-not-0 : 〈a,b〉 6= 0
unfolding Pair-def

apply (blast elim: equalityE)
done

lemmas Pair-neq-0 = Pair-not-0 [THEN notE , elim!]

declare sym [THEN Pair-neq-0 , elim!]

lemma Pair-neq-fst: 〈a,b〉=a =⇒ P
proof (unfold Pair-def )

assume eq: {{a, a}, {a, b}} = a
have {a, a} ∈ {{a, a}, {a, b}} by (rule consI1 )
hence {a, a} ∈ a by (simp add: eq)
moreover have a ∈ {a, a} by (rule consI1 )
ultimately show P by (rule mem-asym)

qed

lemma Pair-neq-snd: 〈a,b〉=b =⇒ P
proof (unfold Pair-def )

assume eq: {{a, a}, {a, b}} = b
have {a, b} ∈ {{a, a}, {a, b}} by blast
hence {a, b} ∈ b by (simp add: eq)
moreover have b ∈ {a, b} by blast
ultimately show P by (rule mem-asym)

qed

3.1 Sigma: Disjoint Union of a Family of Sets

Generalizes Cartesian product
lemma Sigma-iff [simp]: 〈a,b〉: Sigma(A,B) ←→ a ∈ A ∧ b ∈ B(a)
by (simp add: Sigma-def )

lemma SigmaI [TC ,intro!]: [[a ∈ A; b ∈ B(a)]] =⇒ 〈a,b〉 ∈ Sigma(A,B)
by simp
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lemmas SigmaD1 = Sigma-iff [THEN iffD1 , THEN conjunct1 ]
lemmas SigmaD2 = Sigma-iff [THEN iffD1 , THEN conjunct2 ]

lemma SigmaE [elim!]:
[[c ∈ Sigma(A,B);∧

x y.[[x ∈ A; y ∈ B(x); c=〈x,y〉]] =⇒ P
]] =⇒ P
by (unfold Sigma-def , blast)

lemma SigmaE2 [elim!]:
[[〈a,b〉 ∈ Sigma(A,B);

[[a ∈ A; b ∈ B(a)]] =⇒ P
]] =⇒ P
by (unfold Sigma-def , blast)

lemma Sigma-cong:
[[A=A ′;

∧
x. x ∈ A ′ =⇒ B(x)=B ′(x)]] =⇒

Sigma(A,B) = Sigma(A ′,B ′)
by (simp add: Sigma-def )

lemma Sigma-empty1 [simp]: Sigma(0 ,B) = 0
by blast

lemma Sigma-empty2 [simp]: A∗0 = 0
by blast

lemma Sigma-empty-iff : A∗B=0 ←→ A=0 | B=0
by blast

3.2 Projections fst and snd
lemma fst-conv [simp]: fst(〈a,b〉) = a
by (simp add: fst-def )

lemma snd-conv [simp]: snd(〈a,b〉) = b
by (simp add: snd-def )

lemma fst-type [TC ]: p ∈ Sigma(A,B) =⇒ fst(p) ∈ A
by auto

lemma snd-type [TC ]: p ∈ Sigma(A,B) =⇒ snd(p) ∈ B(fst(p))
by auto

lemma Pair-fst-snd-eq: a ∈ Sigma(A,B) =⇒ <fst(a),snd(a)> = a
by auto
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3.3 The Eliminator, split
lemma split [simp]: split(λx y. c(x,y), 〈a,b〉) ≡ c(a,b)
by (simp add: split-def )

lemma split-type [TC ]:
[[p ∈ Sigma(A,B);∧

x y.[[x ∈ A; y ∈ B(x)]] =⇒ c(x,y):C (〈x,y〉)
]] =⇒ split(λx y. c(x,y), p) ∈ C (p)
by (erule SigmaE , auto)

lemma expand-split:
u ∈ A∗B =⇒

R(split(c,u)) ←→ (∀ x∈A. ∀ y∈B. u = 〈x,y〉 −→ R(c(x,y)))
by (auto simp add: split-def )

3.4 A version of split for Formulae: Result Type o
lemma splitI : R(a,b) =⇒ split(R, 〈a,b〉)
by (simp add: split-def )

lemma splitE :
[[split(R,z); z ∈ Sigma(A,B);∧

x y. [[z = 〈x,y〉; R(x,y)]] =⇒ P
]] =⇒ P
by (auto simp add: split-def )

lemma splitD: split(R,〈a,b〉) =⇒ R(a,b)
by (simp add: split-def )

Complex rules for Sigma.
lemma split-paired-Bex-Sigma [simp]:

(∃ z ∈ Sigma(A,B). P(z)) ←→ (∃ x ∈ A. ∃ y ∈ B(x). P(〈x,y〉))
by blast

lemma split-paired-Ball-Sigma [simp]:
(∀ z ∈ Sigma(A,B). P(z)) ←→ (∀ x ∈ A. ∀ y ∈ B(x). P(〈x,y〉))

by blast

end

4 Basic Equalities and Inclusions
theory equalities imports pair begin

These cover union, intersection, converse, domain, range, etc. Philippe de
Groote proved many of the inclusions.
lemma in-mono: A⊆B =⇒ x∈A −→ x∈B
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by blast

lemma the-eq-0 [simp]: (THE x . False) = 0
by (blast intro: the-0 )

4.1 Bounded Quantifiers

The following are not added to the default simpset because (a) they duplicate
the body and (b) there are no similar rules for Int.
lemma ball-Un: (∀ x ∈ A∪B. P(x)) ←→ (∀ x ∈ A. P(x)) ∧ (∀ x ∈ B. P(x))

by blast

lemma bex-Un: (∃ x ∈ A∪B. P(x)) ←→ (∃ x ∈ A. P(x)) | (∃ x ∈ B. P(x))
by blast

lemma ball-UN : (∀ z ∈ (
⋃

x∈A. B(x)). P(z)) ←→ (∀ x∈A. ∀ z ∈ B(x). P(z))
by blast

lemma bex-UN : (∃ z ∈ (
⋃

x∈A. B(x)). P(z)) ←→ (∃ x∈A. ∃ z∈B(x). P(z))
by blast

4.2 Converse of a Relation
lemma converse-iff [simp]: 〈a,b〉∈ converse(r) ←→ 〈b,a〉∈r
by (unfold converse-def , blast)

lemma converseI [intro!]: 〈a,b〉∈r =⇒ 〈b,a〉∈converse(r)
by (unfold converse-def , blast)

lemma converseD: 〈a,b〉 ∈ converse(r) =⇒ 〈b,a〉 ∈ r
by (unfold converse-def , blast)

lemma converseE [elim!]:
[[yx ∈ converse(r);∧

x y. [[yx=〈y,x〉; 〈x,y〉∈r ]] =⇒ P]]
=⇒ P

by (unfold converse-def , blast)

lemma converse-converse: r⊆Sigma(A,B) =⇒ converse(converse(r)) = r
by blast

lemma converse-type: r⊆A∗B =⇒ converse(r)⊆B∗A
by blast

lemma converse-prod [simp]: converse(A∗B) = B∗A
by blast

lemma converse-empty [simp]: converse(0 ) = 0
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by blast

lemma converse-subset-iff :
A ⊆ Sigma(X ,Y ) =⇒ converse(A) ⊆ converse(B) ←→ A ⊆ B

by blast

4.3 Finite Set Constructions Using cons
lemma cons-subsetI : [[a∈C ; B⊆C ]] =⇒ cons(a,B) ⊆ C
by blast

lemma subset-consI : B ⊆ cons(a,B)
by blast

lemma cons-subset-iff [iff ]: cons(a,B)⊆C ←→ a∈C ∧ B⊆C
by blast

lemmas cons-subsetE = cons-subset-iff [THEN iffD1 , THEN conjE ]

lemma subset-empty-iff : A⊆0 ←→ A=0
by blast

lemma subset-cons-iff : C⊆cons(a,B) ←→ C⊆B | (a∈C ∧ C−{a} ⊆ B)
by blast

lemma cons-eq: {a} ∪ B = cons(a,B)
by blast

lemma cons-commute: cons(a, cons(b, C )) = cons(b, cons(a, C ))
by blast

lemma cons-absorb: a: B =⇒ cons(a,B) = B
by blast

lemma cons-Diff : a: B =⇒ cons(a, B−{a}) = B
by blast

lemma Diff-cons-eq: cons(a,B) − C = (if a∈C then B−C else cons(a,B−C ))
by auto

lemma equal-singleton: [[a: C ;
∧

y. y ∈C =⇒ y=b]] =⇒ C = {b}
by blast

lemma [simp]: cons(a,cons(a,B)) = cons(a,B)
by blast
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lemma singleton-subsetI : a∈C =⇒ {a} ⊆ C
by blast

lemma singleton-subsetD: {a} ⊆ C =⇒ a∈C
by blast

lemma subset-succI : i ⊆ succ(i)
by blast

lemma succ-subsetI : [[i∈j; i⊆j]] =⇒ succ(i)⊆j
by (unfold succ-def , blast)

lemma succ-subsetE :
[[succ(i) ⊆ j; [[i∈j; i⊆j]] =⇒ P]] =⇒ P

by (unfold succ-def , blast)

lemma succ-subset-iff : succ(a) ⊆ B ←→ (a ⊆ B ∧ a ∈ B)
by (unfold succ-def , blast)

4.4 Binary Intersection
lemma Int-subset-iff : C ⊆ A ∩ B ←→ C ⊆ A ∧ C ⊆ B
by blast

lemma Int-lower1 : A ∩ B ⊆ A
by blast

lemma Int-lower2 : A ∩ B ⊆ B
by blast

lemma Int-greatest: [[C⊆A; C⊆B]] =⇒ C ⊆ A ∩ B
by blast

lemma Int-cons: cons(a,B) ∩ C ⊆ cons(a, B ∩ C )
by blast

lemma Int-absorb [simp]: A ∩ A = A
by blast

lemma Int-left-absorb: A ∩ (A ∩ B) = A ∩ B
by blast

lemma Int-commute: A ∩ B = B ∩ A
by blast
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lemma Int-left-commute: A ∩ (B ∩ C ) = B ∩ (A ∩ C )
by blast

lemma Int-assoc: (A ∩ B) ∩ C = A ∩ (B ∩ C )
by blast

lemmas Int-ac= Int-assoc Int-left-absorb Int-commute Int-left-commute

lemma Int-absorb1 : B ⊆ A =⇒ A ∩ B = B
by blast

lemma Int-absorb2 : A ⊆ B =⇒ A ∩ B = A
by blast

lemma Int-Un-distrib: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )
by blast

lemma Int-Un-distrib2 : (B ∪ C ) ∩ A = (B ∩ A) ∪ (C ∩ A)
by blast

lemma subset-Int-iff : A⊆B ←→ A ∩ B = A
by (blast elim!: equalityE)

lemma subset-Int-iff2 : A⊆B ←→ B ∩ A = A
by (blast elim!: equalityE)

lemma Int-Diff-eq: C⊆A =⇒ (A−B) ∩ C = C−B
by blast

lemma Int-cons-left:
cons(a,A) ∩ B = (if a ∈ B then cons(a, A ∩ B) else A ∩ B)

by auto

lemma Int-cons-right:
A ∩ cons(a, B) = (if a ∈ A then cons(a, A ∩ B) else A ∩ B)

by auto

lemma cons-Int-distrib: cons(x, A ∩ B) = cons(x, A) ∩ cons(x, B)
by auto

4.5 Binary Union
lemma Un-subset-iff : A ∪ B ⊆ C ←→ A ⊆ C ∧ B ⊆ C
by blast

lemma Un-upper1 : A ⊆ A ∪ B
by blast
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lemma Un-upper2 : B ⊆ A ∪ B
by blast

lemma Un-least: [[A⊆C ; B⊆C ]] =⇒ A ∪ B ⊆ C
by blast

lemma Un-cons: cons(a,B) ∪ C = cons(a, B ∪ C )
by blast

lemma Un-absorb [simp]: A ∪ A = A
by blast

lemma Un-left-absorb: A ∪ (A ∪ B) = A ∪ B
by blast

lemma Un-commute: A ∪ B = B ∪ A
by blast

lemma Un-left-commute: A ∪ (B ∪ C ) = B ∪ (A ∪ C )
by blast

lemma Un-assoc: (A ∪ B) ∪ C = A ∪ (B ∪ C )
by blast

lemmas Un-ac = Un-assoc Un-left-absorb Un-commute Un-left-commute

lemma Un-absorb1 : A ⊆ B =⇒ A ∪ B = B
by blast

lemma Un-absorb2 : B ⊆ A =⇒ A ∪ B = A
by blast

lemma Un-Int-distrib: (A ∩ B) ∪ C = (A ∪ C ) ∩ (B ∪ C )
by blast

lemma subset-Un-iff : A⊆B ←→ A ∪ B = B
by (blast elim!: equalityE)

lemma subset-Un-iff2 : A⊆B ←→ B ∪ A = B
by (blast elim!: equalityE)

lemma Un-empty [iff ]: (A ∪ B = 0 ) ←→ (A = 0 ∧ B = 0 )
by blast

lemma Un-eq-Union: A ∪ B =
⋃
({A, B})

by blast
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4.6 Set Difference
lemma Diff-subset: A−B ⊆ A
by blast

lemma Diff-contains: [[C⊆A; C ∩ B = 0 ]] =⇒ C ⊆ A−B
by blast

lemma subset-Diff-cons-iff : B ⊆ A − cons(c,C ) ←→ B⊆A−C ∧ c /∈ B
by blast

lemma Diff-cancel: A − A = 0
by blast

lemma Diff-triv: A ∩ B = 0 =⇒ A − B = A
by blast

lemma empty-Diff [simp]: 0 − A = 0
by blast

lemma Diff-0 [simp]: A − 0 = A
by blast

lemma Diff-eq-0-iff : A − B = 0 ←→ A ⊆ B
by (blast elim: equalityE)

lemma Diff-cons: A − cons(a,B) = A − B − {a}
by blast

lemma Diff-cons2 : A − cons(a,B) = A − {a} − B
by blast

lemma Diff-disjoint: A ∩ (B−A) = 0
by blast

lemma Diff-partition: A⊆B =⇒ A ∪ (B−A) = B
by blast

lemma subset-Un-Diff : A ⊆ B ∪ (A − B)
by blast

lemma double-complement: [[A⊆B; B⊆C ]] =⇒ B−(C−A) = A
by blast

lemma double-complement-Un: (A ∪ B) − (B−A) = A
by blast

lemma Un-Int-crazy:
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(A ∩ B) ∪ (B ∩ C ) ∪ (C ∩ A) = (A ∪ B) ∩ (B ∪ C ) ∩ (C ∪ A)
apply blast
done

lemma Diff-Un: A − (B ∪ C ) = (A−B) ∩ (A−C )
by blast

lemma Diff-Int: A − (B ∩ C ) = (A−B) ∪ (A−C )
by blast

lemma Un-Diff : (A ∪ B) − C = (A − C ) ∪ (B − C )
by blast

lemma Int-Diff : (A ∩ B) − C = A ∩ (B − C )
by blast

lemma Diff-Int-distrib: C ∩ (A−B) = (C ∩ A) − (C ∩ B)
by blast

lemma Diff-Int-distrib2 : (A−B) ∩ C = (A ∩ C ) − (B ∩ C )
by blast

lemma Un-Int-assoc-iff : (A ∩ B) ∪ C = A ∩ (B ∪ C ) ←→ C⊆A
by (blast elim!: equalityE)

4.7 Big Union and Intersection
lemma Union-subset-iff :

⋃
(A) ⊆ C ←→ (∀ x∈A. x ⊆ C )

by blast

lemma Union-upper : B∈A =⇒ B ⊆
⋃
(A)

by blast

lemma Union-least: [[
∧

x. x∈A =⇒ x⊆C ]] =⇒
⋃

(A) ⊆ C
by blast

lemma Union-cons [simp]:
⋃
(cons(a,B)) = a ∪

⋃
(B)

by blast

lemma Union-Un-distrib:
⋃
(A ∪ B) =

⋃
(A) ∪

⋃
(B)

by blast

lemma Union-Int-subset:
⋃
(A ∩ B) ⊆

⋃
(A) ∩

⋃
(B)

by blast

lemma Union-disjoint:
⋃
(C ) ∩ A = 0 ←→ (∀B∈C . B ∩ A = 0 )

by (blast elim!: equalityE)
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lemma Union-empty-iff :
⋃
(A) = 0 ←→ (∀B∈A. B=0 )

by blast

lemma Int-Union2 :
⋃
(B) ∩ A = (

⋃
C∈B. C ∩ A)

by blast

lemma Inter-subset-iff : A 6=0 =⇒ C ⊆
⋂
(A) ←→ (∀ x∈A. C ⊆ x)

by blast

lemma Inter-lower : B∈A =⇒
⋂
(A) ⊆ B

by blast

lemma Inter-greatest: [[A 6=0 ;
∧

x. x∈A =⇒ C⊆x]] =⇒ C ⊆
⋂

(A)
by blast

lemma INT-lower : x∈A =⇒ (
⋂

x∈A. B(x)) ⊆ B(x)
by blast

lemma INT-greatest: [[A 6=0 ;
∧

x. x∈A =⇒ C⊆B(x)]] =⇒ C ⊆ (
⋂

x∈A. B(x))
by force

lemma Inter-0 [simp]:
⋂
(0 ) = 0

by (unfold Inter-def , blast)

lemma Inter-Un-subset:
[[z∈A; z∈B]] =⇒

⋂
(A) ∪

⋂
(B) ⊆

⋂
(A ∩ B)

by blast

lemma Inter-Un-distrib:
[[A6=0 ; B 6=0 ]] =⇒

⋂
(A ∪ B) =

⋂
(A) ∩

⋂
(B)

by blast

lemma Union-singleton:
⋃
({b}) = b

by blast

lemma Inter-singleton:
⋂
({b}) = b

by blast

lemma Inter-cons [simp]:⋂
(cons(a,B)) = (if B=0 then a else a ∩

⋂
(B))

by force
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4.8 Unions and Intersections of Families
lemma subset-UN-iff-eq: A ⊆ (

⋃
i∈I . B(i)) ←→ A = (

⋃
i∈I . A ∩ B(i))

by (blast elim!: equalityE)

lemma UN-subset-iff : (
⋃

x∈A. B(x)) ⊆ C ←→ (∀ x∈A. B(x) ⊆ C )
by blast

lemma UN-upper : x∈A =⇒ B(x) ⊆ (
⋃

x∈A. B(x))
by (erule RepFunI [THEN Union-upper ])

lemma UN-least: [[
∧

x. x∈A =⇒ B(x)⊆C ]] =⇒ (
⋃

x∈A. B(x)) ⊆ C
by blast

lemma Union-eq-UN :
⋃
(A) = (

⋃
x∈A. x)

by blast

lemma Inter-eq-INT :
⋂
(A) = (

⋂
x∈A. x)

by (unfold Inter-def , blast)

lemma UN-0 [simp]: (
⋃

i∈0 . A(i)) = 0
by blast

lemma UN-singleton: (
⋃

x∈A. {x}) = A
by blast

lemma UN-Un: (
⋃

i∈ A ∪ B. C (i)) = (
⋃

i∈ A. C (i)) ∪ (
⋃

i∈B. C (i))
by blast

lemma INT-Un: (
⋂

i∈I ∪ J . A(i)) =
(if I=0 then

⋂
j∈J . A(j)

else if J=0 then
⋂

i∈I . A(i)
else ((

⋂
i∈I . A(i)) ∩ (

⋂
j∈J . A(j))))

by (simp, blast intro!: equalityI )

lemma UN-UN-flatten: (
⋃

x ∈ (
⋃

y∈A. B(y)). C (x)) = (
⋃

y∈A.
⋃

x∈ B(y). C (x))
by blast

lemma Int-UN-distrib: B ∩ (
⋃

i∈I . A(i)) = (
⋃

i∈I . B ∩ A(i))
by blast

lemma Un-INT-distrib: I 6=0 =⇒ B ∪ (
⋂

i∈I . A(i)) = (
⋂

i∈I . B ∪ A(i))
by auto

lemma Int-UN-distrib2 :
(
⋃

i∈I . A(i)) ∩ (
⋃

j∈J . B(j)) = (
⋃

i∈I .
⋃

j∈J . A(i) ∩ B(j))
by blast

lemma Un-INT-distrib2 : [[I 6=0 ; J 6=0 ]] =⇒
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(
⋂

i∈I . A(i)) ∪ (
⋂

j∈J . B(j)) = (
⋂

i∈I .
⋂

j∈J . A(i) ∪ B(j))
by auto

lemma UN-constant [simp]: (
⋃

y∈A. c) = (if A=0 then 0 else c)
by force

lemma INT-constant [simp]: (
⋂

y∈A. c) = (if A=0 then 0 else c)
by force

lemma UN-RepFun [simp]: (
⋃

y∈ RepFun(A,f ). B(y)) = (
⋃

x∈A. B(f (x)))
by blast

lemma INT-RepFun [simp]: (
⋂

x∈RepFun(A,f ). B(x)) = (
⋂

a∈A. B(f (a)))
by (auto simp add: Inter-def )

lemma INT-Union-eq:
0 /∈ A =⇒ (

⋂
x∈

⋃
(A). B(x)) = (

⋂
y∈A.

⋂
x∈y. B(x))

apply (subgoal-tac ∀ x∈A. x 6=0 )
prefer 2 apply blast

apply (force simp add: Inter-def ball-conj-distrib)
done

lemma INT-UN-eq:
(∀ x∈A. B(x) 6= 0 )
=⇒ (

⋂
z∈ (

⋃
x∈A. B(x)). C (z)) = (

⋂
x∈A.

⋂
z∈ B(x). C (z))

apply (subst INT-Union-eq, blast)
apply (simp add: Inter-def )
done

lemma UN-Un-distrib:
(
⋃

i∈I . A(i) ∪ B(i)) = (
⋃

i∈I . A(i)) ∪ (
⋃

i∈I . B(i))
by blast

lemma INT-Int-distrib:
I 6=0 =⇒ (

⋂
i∈I . A(i) ∩ B(i)) = (

⋂
i∈I . A(i)) ∩ (

⋂
i∈I . B(i))

by (blast elim!: not-emptyE)

lemma UN-Int-subset:
(
⋃

z∈I ∩ J . A(z)) ⊆ (
⋃

z∈I . A(z)) ∩ (
⋃

z∈J . A(z))
by blast

lemma Diff-UN : I 6=0 =⇒ B − (
⋃

i∈I . A(i)) = (
⋂

i∈I . B − A(i))
by (blast elim!: not-emptyE)
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lemma Diff-INT : I 6=0 =⇒ B − (
⋂

i∈I . A(i)) = (
⋃

i∈I . B − A(i))
by (blast elim!: not-emptyE)

lemma Sigma-cons1 : Sigma(cons(a,B), C ) = ({a}∗C (a)) ∪ Sigma(B,C )
by blast

lemma Sigma-cons2 : A ∗ cons(b,B) = A∗{b} ∪ A∗B
by blast

lemma Sigma-succ1 : Sigma(succ(A), B) = ({A}∗B(A)) ∪ Sigma(A,B)
by blast

lemma Sigma-succ2 : A ∗ succ(B) = A∗{B} ∪ A∗B
by blast

lemma SUM-UN-distrib1 :
(
∑

x ∈ (
⋃

y∈A. C (y)). B(x)) = (
⋃

y∈A.
∑

x∈C (y). B(x))
by blast

lemma SUM-UN-distrib2 :
(
∑

i∈I .
⋃

j∈J . C (i,j)) = (
⋃

j∈J .
∑

i∈I . C (i,j))
by blast

lemma SUM-Un-distrib1 :
(
∑

i∈I ∪ J . C (i)) = (
∑

i∈I . C (i)) ∪ (
∑

j∈J . C (j))
by blast

lemma SUM-Un-distrib2 :
(
∑

i∈I . A(i) ∪ B(i)) = (
∑

i∈I . A(i)) ∪ (
∑

i∈I . B(i))
by blast

lemma prod-Un-distrib2 : I ∗ (A ∪ B) = I∗A ∪ I∗B
by (rule SUM-Un-distrib2 )

lemma SUM-Int-distrib1 :
(
∑

i∈I ∩ J . C (i)) = (
∑

i∈I . C (i)) ∩ (
∑

j∈J . C (j))
by blast

lemma SUM-Int-distrib2 :
(
∑

i∈I . A(i) ∩ B(i)) = (
∑

i∈I . A(i)) ∩ (
∑

i∈I . B(i))
by blast
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lemma prod-Int-distrib2 : I ∗ (A ∩ B) = I∗A ∩ I∗B
by (rule SUM-Int-distrib2 )

lemma SUM-eq-UN : (
∑

i∈I . A(i)) = (
⋃

i∈I . {i} ∗ A(i))
by blast

lemma times-subset-iff :
(A ′∗B ′ ⊆ A∗B) ←→ (A ′ = 0 | B ′ = 0 | (A ′⊆A) ∧ (B ′⊆B))

by blast

lemma Int-Sigma-eq:
(
∑

x ∈ A ′. B ′(x)) ∩ (
∑

x ∈ A. B(x)) = (
∑

x ∈ A ′ ∩ A. B ′(x) ∩ B(x))
by blast

lemma domain-iff : a: domain(r) ←→ (∃ y. 〈a,y〉∈ r)
by (unfold domain-def , blast)

lemma domainI [intro]: 〈a,b〉∈ r =⇒ a: domain(r)
by (unfold domain-def , blast)

lemma domainE [elim!]:
[[a ∈ domain(r);

∧
y. 〈a,y〉∈ r =⇒ P]] =⇒ P

by (unfold domain-def , blast)

lemma domain-subset: domain(Sigma(A,B)) ⊆ A
by blast

lemma domain-of-prod: b∈B =⇒ domain(A∗B) = A
by blast

lemma domain-0 [simp]: domain(0 ) = 0
by blast

lemma domain-cons [simp]: domain(cons(〈a,b〉,r)) = cons(a, domain(r))
by blast

lemma domain-Un-eq [simp]: domain(A ∪ B) = domain(A) ∪ domain(B)
by blast

lemma domain-Int-subset: domain(A ∩ B) ⊆ domain(A) ∩ domain(B)
by blast

lemma domain-Diff-subset: domain(A) − domain(B) ⊆ domain(A − B)
by blast

lemma domain-UN : domain(
⋃

x∈A. B(x)) = (
⋃

x∈A. domain(B(x)))
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by blast

lemma domain-Union: domain(
⋃
(A)) = (

⋃
x∈A. domain(x))

by blast

lemma rangeI [intro]: 〈a,b〉∈ r =⇒ b ∈ range(r)
unfolding range-def

apply (erule converseI [THEN domainI ])
done

lemma rangeE [elim!]: [[b ∈ range(r);
∧

x. 〈x,b〉∈ r =⇒ P]] =⇒ P
by (unfold range-def , blast)

lemma range-subset: range(A∗B) ⊆ B
unfolding range-def

apply (subst converse-prod)
apply (rule domain-subset)
done

lemma range-of-prod: a∈A =⇒ range(A∗B) = B
by blast

lemma range-0 [simp]: range(0 ) = 0
by blast

lemma range-cons [simp]: range(cons(〈a,b〉,r)) = cons(b, range(r))
by blast

lemma range-Un-eq [simp]: range(A ∪ B) = range(A) ∪ range(B)
by blast

lemma range-Int-subset: range(A ∩ B) ⊆ range(A) ∩ range(B)
by blast

lemma range-Diff-subset: range(A) − range(B) ⊆ range(A − B)
by blast

lemma domain-converse [simp]: domain(converse(r)) = range(r)
by blast

lemma range-converse [simp]: range(converse(r)) = domain(r)
by blast
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lemma fieldI1 : 〈a,b〉∈ r =⇒ a ∈ field(r)
by (unfold field-def , blast)

lemma fieldI2 : 〈a,b〉∈ r =⇒ b ∈ field(r)
by (unfold field-def , blast)

lemma fieldCI [intro]:
(¬ 〈c,a〉∈r =⇒ 〈a,b〉∈ r) =⇒ a ∈ field(r)

apply (unfold field-def , blast)
done

lemma fieldE [elim!]:
[[a ∈ field(r);∧

x. 〈a,x〉∈ r =⇒ P;∧
x. 〈x,a〉∈ r =⇒ P]] =⇒ P

by (unfold field-def , blast)

lemma field-subset: field(A∗B) ⊆ A ∪ B
by blast

lemma domain-subset-field: domain(r) ⊆ field(r)
unfolding field-def

apply (rule Un-upper1 )
done

lemma range-subset-field: range(r) ⊆ field(r)
unfolding field-def

apply (rule Un-upper2 )
done

lemma domain-times-range: r ⊆ Sigma(A,B) =⇒ r ⊆ domain(r)∗range(r)
by blast

lemma field-times-field: r ⊆ Sigma(A,B) =⇒ r ⊆ field(r)∗field(r)
by blast

lemma relation-field-times-field: relation(r) =⇒ r ⊆ field(r)∗field(r)
by (simp add: relation-def , blast)

lemma field-of-prod: field(A∗A) = A
by blast

lemma field-0 [simp]: field(0 ) = 0
by blast

lemma field-cons [simp]: field(cons(〈a,b〉,r)) = cons(a, cons(b, field(r)))
by blast

lemma field-Un-eq [simp]: field(A ∪ B) = field(A) ∪ field(B)
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by blast

lemma field-Int-subset: field(A ∩ B) ⊆ field(A) ∩ field(B)
by blast

lemma field-Diff-subset: field(A) − field(B) ⊆ field(A − B)
by blast

lemma field-converse [simp]: field(converse(r)) = field(r)
by blast

lemma rel-Union: (∀ x∈S . ∃A B. x ⊆ A∗B) =⇒⋃
(S) ⊆ domain(

⋃
(S)) ∗ range(

⋃
(S))

by blast

lemma rel-Un: [[r ⊆ A∗B; s ⊆ C∗D]] =⇒ (r ∪ s) ⊆ (A ∪ C ) ∗ (B ∪ D)
by blast

lemma domain-Diff-eq: [[〈a,c〉 ∈ r ; c 6=b]] =⇒ domain(r−{〈a,b〉}) = domain(r)
by blast

lemma range-Diff-eq: [[〈c,b〉 ∈ r ; c 6=a]] =⇒ range(r−{〈a,b〉}) = range(r)
by blast

4.9 Image of a Set under a Function or Relation
lemma image-iff : b ∈ r‘‘A ←→ (∃ x∈A. 〈x,b〉∈r)
by (unfold image-def , blast)

lemma image-singleton-iff : b ∈ r‘‘{a} ←→ 〈a,b〉∈r
by (rule image-iff [THEN iff-trans], blast)

lemma imageI [intro]: [[〈a,b〉∈ r ; a∈A]] =⇒ b ∈ r‘‘A
by (unfold image-def , blast)

lemma imageE [elim!]:
[[b: r‘‘A;

∧
x.[[〈x,b〉∈ r ; x∈A]] =⇒ P]] =⇒ P

by (unfold image-def , blast)

lemma image-subset: r ⊆ A∗B =⇒ r‘‘C ⊆ B
by blast

lemma image-0 [simp]: r‘‘0 = 0
by blast

lemma image-Un [simp]: r‘‘(A ∪ B) = (r‘‘A) ∪ (r‘‘B)
by blast
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lemma image-UN : r ‘‘ (
⋃

x∈A. B(x)) = (
⋃

x∈A. r ‘‘ B(x))
by blast

lemma Collect-image-eq:
{z ∈ Sigma(A,B). P(z)} ‘‘ C = (

⋃
x ∈ A. {y ∈ B(x). x ∈ C ∧ P(〈x,y〉)})

by blast

lemma image-Int-subset: r‘‘(A ∩ B) ⊆ (r‘‘A) ∩ (r‘‘B)
by blast

lemma image-Int-square-subset: (r ∩ A∗A)‘‘B ⊆ (r‘‘B) ∩ A
by blast

lemma image-Int-square: B⊆A =⇒ (r ∩ A∗A)‘‘B = (r‘‘B) ∩ A
by blast

lemma image-0-left [simp]: 0‘‘A = 0
by blast

lemma image-Un-left: (r ∪ s)‘‘A = (r‘‘A) ∪ (s‘‘A)
by blast

lemma image-Int-subset-left: (r ∩ s)‘‘A ⊆ (r‘‘A) ∩ (s‘‘A)
by blast

4.10 Inverse Image of a Set under a Function or Relation
lemma vimage-iff :

a ∈ r−‘‘B ←→ (∃ y∈B. 〈a,y〉∈r)
by (unfold vimage-def image-def converse-def , blast)

lemma vimage-singleton-iff : a ∈ r−‘‘{b} ←→ 〈a,b〉∈r
by (rule vimage-iff [THEN iff-trans], blast)

lemma vimageI [intro]: [[〈a,b〉∈ r ; b∈B]] =⇒ a ∈ r−‘‘B
by (unfold vimage-def , blast)

lemma vimageE [elim!]:
[[a: r−‘‘B;

∧
x.[[〈a,x〉∈ r ; x∈B]] =⇒ P]] =⇒ P

apply (unfold vimage-def , blast)
done

lemma vimage-subset: r ⊆ A∗B =⇒ r−‘‘C ⊆ A
unfolding vimage-def

apply (erule converse-type [THEN image-subset])
done
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lemma vimage-0 [simp]: r−‘‘0 = 0
by blast

lemma vimage-Un [simp]: r−‘‘(A ∪ B) = (r−‘‘A) ∪ (r−‘‘B)
by blast

lemma vimage-Int-subset: r−‘‘(A ∩ B) ⊆ (r−‘‘A) ∩ (r−‘‘B)
by blast

lemma vimage-eq-UN : f −‘‘B = (
⋃

y∈B. f−‘‘{y})
by blast

lemma function-vimage-Int:
function(f ) =⇒ f−‘‘(A ∩ B) = (f−‘‘A) ∩ (f−‘‘B)

by (unfold function-def , blast)

lemma function-vimage-Diff : function(f ) =⇒ f−‘‘(A−B) = (f−‘‘A) − (f−‘‘B)
by (unfold function-def , blast)

lemma function-image-vimage: function(f ) =⇒ f ‘‘ (f−‘‘ A) ⊆ A
by (unfold function-def , blast)

lemma vimage-Int-square-subset: (r ∩ A∗A)−‘‘B ⊆ (r−‘‘B) ∩ A
by blast

lemma vimage-Int-square: B⊆A =⇒ (r ∩ A∗A)−‘‘B = (r−‘‘B) ∩ A
by blast

lemma vimage-0-left [simp]: 0−‘‘A = 0
by blast

lemma vimage-Un-left: (r ∪ s)−‘‘A = (r−‘‘A) ∪ (s−‘‘A)
by blast

lemma vimage-Int-subset-left: (r ∩ s)−‘‘A ⊆ (r−‘‘A) ∩ (s−‘‘A)
by blast

lemma converse-Un [simp]: converse(A ∪ B) = converse(A) ∪ converse(B)
by blast

lemma converse-Int [simp]: converse(A ∩ B) = converse(A) ∩ converse(B)
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by blast

lemma converse-Diff [simp]: converse(A − B) = converse(A) − converse(B)
by blast

lemma converse-UN [simp]: converse(
⋃

x∈A. B(x)) = (
⋃

x∈A. converse(B(x)))
by blast

lemma converse-INT [simp]:
converse(

⋂
x∈A. B(x)) = (

⋂
x∈A. converse(B(x)))

apply (unfold Inter-def , blast)
done

4.11 Powerset Operator
lemma Pow-0 [simp]: Pow(0 ) = {0}
by blast

lemma Pow-insert: Pow (cons(a,A)) = Pow(A) ∪ {cons(a,X) . X : Pow(A)}
apply (rule equalityI , safe)
apply (erule swap)
apply (rule-tac a = x−{a} in RepFun-eqI , auto)
done

lemma Un-Pow-subset: Pow(A) ∪ Pow(B) ⊆ Pow(A ∪ B)
by blast

lemma UN-Pow-subset: (
⋃

x∈A. Pow(B(x))) ⊆ Pow(
⋃

x∈A. B(x))
by blast

lemma subset-Pow-Union: A ⊆ Pow(
⋃
(A))

by blast

lemma Union-Pow-eq [simp]:
⋃
(Pow(A)) = A

by blast

lemma Union-Pow-iff :
⋃
(A) ∈ Pow(B) ←→ A ∈ Pow(Pow(B))

by blast

lemma Pow-Int-eq [simp]: Pow(A ∩ B) = Pow(A) ∩ Pow(B)
by blast

lemma Pow-INT-eq: A 6=0 =⇒ Pow(
⋂

x∈A. B(x)) = (
⋂

x∈A. Pow(B(x)))
by (blast elim!: not-emptyE)

4.12 RepFun
lemma RepFun-subset: [[

∧
x. x∈A =⇒ f (x) ∈ B]] =⇒ {f (x). x∈A} ⊆ B

by blast
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lemma RepFun-eq-0-iff [simp]: {f (x).x∈A}=0 ←→ A=0
by blast

lemma RepFun-constant [simp]: {c. x∈A} = (if A=0 then 0 else {c})
by force

4.13 Collect
lemma Collect-subset: Collect(A,P) ⊆ A
by blast

lemma Collect-Un: Collect(A ∪ B, P) = Collect(A,P) ∪ Collect(B,P)
by blast

lemma Collect-Int: Collect(A ∩ B, P) = Collect(A,P) ∩ Collect(B,P)
by blast

lemma Collect-Diff : Collect(A − B, P) = Collect(A,P) − Collect(B,P)
by blast

lemma Collect-cons: {x∈cons(a,B). P(x)} =
(if P(a) then cons(a, {x∈B. P(x)}) else {x∈B. P(x)})

by (simp, blast)

lemma Int-Collect-self-eq: A ∩ Collect(A,P) = Collect(A,P)
by blast

lemma Collect-Collect-eq [simp]:
Collect(Collect(A,P), Q) = Collect(A, λx. P(x) ∧ Q(x))

by blast

lemma Collect-Int-Collect-eq:
Collect(A,P) ∩ Collect(A,Q) = Collect(A, λx. P(x) ∧ Q(x))

by blast

lemma Collect-Union-eq [simp]:
Collect(

⋃
x∈A. B(x), P) = (

⋃
x∈A. Collect(B(x), P))

by blast

lemma Collect-Int-left: {x∈A. P(x)} ∩ B = {x ∈ A ∩ B. P(x)}
by blast

lemma Collect-Int-right: A ∩ {x∈B. P(x)} = {x ∈ A ∩ B. P(x)}
by blast

lemma Collect-disj-eq: {x∈A. P(x) | Q(x)} = Collect(A, P) ∪ Collect(A, Q)
by blast
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lemma Collect-conj-eq: {x∈A. P(x) ∧ Q(x)} = Collect(A, P) ∩ Collect(A, Q)
by blast

lemmas subset-SIs = subset-refl cons-subsetI subset-consI
Union-least UN-least Un-least
Inter-greatest Int-greatest RepFun-subset
Un-upper1 Un-upper2 Int-lower1 Int-lower2

ML ‹
val subset-cs =

claset-of (context
delrules [@{thm subsetI}, @{thm subsetCE}]
addSIs @{thms subset-SIs}
addIs [@{thm Union-upper}, @{thm Inter-lower}]
addSEs [@{thm cons-subsetE}]);

val ZF-cs = claset-of (context delrules [@{thm equalityI}]);
›

end

5 Least and Greatest Fixed Points; the Knaster-
Tarski Theorem

theory Fixedpt imports equalities begin

definition

bnd-mono :: [i,i⇒i]⇒o where
bnd-mono(D,h) ≡ h(D)<=D ∧ (∀W X . W<=X −→ X<=D −→ h(W ) ⊆

h(X))

definition
lfp :: [i,i⇒i]⇒i where

lfp(D,h) ≡
⋂
({X : Pow(D). h(X) ⊆ X})

definition
gfp :: [i,i⇒i]⇒i where

gfp(D,h) ≡
⋃
({X : Pow(D). X ⊆ h(X)})

The theorem is proved in the lattice of subsets of D, namely Pow(D), with
Inter as the greatest lower bound.

5.1 Monotone Operators
lemma bnd-monoI :

[[h(D)<=D;∧
W X . [[W<=D; X<=D; W<=X ]] =⇒ h(W ) ⊆ h(X)
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]] =⇒ bnd-mono(D,h)
by (unfold bnd-mono-def , clarify, blast)

lemma bnd-monoD1 : bnd-mono(D,h) =⇒ h(D) ⊆ D
unfolding bnd-mono-def

apply (erule conjunct1 )
done

lemma bnd-monoD2 : [[bnd-mono(D,h); W<=X ; X<=D]] =⇒ h(W ) ⊆ h(X)
by (unfold bnd-mono-def , blast)

lemma bnd-mono-subset:
[[bnd-mono(D,h); X<=D]] =⇒ h(X) ⊆ D

by (unfold bnd-mono-def , clarify, blast)

lemma bnd-mono-Un:
[[bnd-mono(D,h); A ⊆ D; B ⊆ D]] =⇒ h(A) ∪ h(B) ⊆ h(A ∪ B)

unfolding bnd-mono-def
apply (rule Un-least, blast+)
done

lemma bnd-mono-UN :
[[bnd-mono(D,h); ∀ i∈I . A(i) ⊆ D]]
=⇒ (

⋃
i∈I . h(A(i))) ⊆ h((

⋃
i∈I . A(i)))

unfolding bnd-mono-def
apply (rule UN-least)
apply (elim conjE)
apply (drule-tac x=A(i) in spec)
apply (drule-tac x=(

⋃
i∈I . A(i)) in spec)

apply blast
done

lemma bnd-mono-Int:
[[bnd-mono(D,h); A ⊆ D; B ⊆ D]] =⇒ h(A ∩ B) ⊆ h(A) ∩ h(B)

apply (rule Int-greatest)
apply (erule bnd-monoD2 , rule Int-lower1 , assumption)
apply (erule bnd-monoD2 , rule Int-lower2 , assumption)
done

5.2 Proof of Knaster-Tarski Theorem using lfp
lemma lfp-lowerbound:

[[h(A) ⊆ A; A<=D]] =⇒ lfp(D,h) ⊆ A
by (unfold lfp-def , blast)

lemma lfp-subset: lfp(D,h) ⊆ D

59



by (unfold lfp-def Inter-def , blast)

lemma def-lfp-subset: A ≡ lfp(D,h) =⇒ A ⊆ D
apply simp
apply (rule lfp-subset)
done

lemma lfp-greatest:
[[h(D) ⊆ D;

∧
X . [[h(X) ⊆ X ; X<=D]] =⇒ A<=X ]] =⇒ A ⊆ lfp(D,h)

by (unfold lfp-def , blast)

lemma lfp-lemma1 :
[[bnd-mono(D,h); h(A)<=A; A<=D]] =⇒ h(lfp(D,h)) ⊆ A

apply (erule bnd-monoD2 [THEN subset-trans])
apply (rule lfp-lowerbound, assumption+)
done

lemma lfp-lemma2 : bnd-mono(D,h) =⇒ h(lfp(D,h)) ⊆ lfp(D,h)
apply (rule bnd-monoD1 [THEN lfp-greatest])
apply (rule-tac [2 ] lfp-lemma1 )
apply (assumption+)
done

lemma lfp-lemma3 :
bnd-mono(D,h) =⇒ lfp(D,h) ⊆ h(lfp(D,h))

apply (rule lfp-lowerbound)
apply (rule bnd-monoD2 , assumption)
apply (rule lfp-lemma2 , assumption)
apply (erule-tac [2 ] bnd-mono-subset)
apply (rule lfp-subset)+
done

lemma lfp-unfold: bnd-mono(D,h) =⇒ lfp(D,h) = h(lfp(D,h))
apply (rule equalityI )
apply (erule lfp-lemma3 )
apply (erule lfp-lemma2 )
done

lemma def-lfp-unfold:
[[A≡lfp(D,h); bnd-mono(D,h)]] =⇒ A = h(A)

apply simp
apply (erule lfp-unfold)
done

5.3 General Induction Rule for Least Fixedpoints
lemma Collect-is-pre-fixedpt:
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[[bnd-mono(D,h);
∧

x. x ∈ h(Collect(lfp(D,h),P)) =⇒ P(x)]]
=⇒ h(Collect(lfp(D,h),P)) ⊆ Collect(lfp(D,h),P)

by (blast intro: lfp-lemma2 [THEN subsetD] bnd-monoD2 [THEN subsetD]
lfp-subset [THEN subsetD])

lemma induct:
[[bnd-mono(D,h); a ∈ lfp(D,h);∧

x. x ∈ h(Collect(lfp(D,h),P)) =⇒ P(x)
]] =⇒ P(a)
apply (rule Collect-is-pre-fixedpt

[THEN lfp-lowerbound, THEN subsetD, THEN CollectD2 ])
apply (rule-tac [3 ] lfp-subset [THEN Collect-subset [THEN subset-trans]],

blast+)
done

lemma def-induct:
[[A ≡ lfp(D,h); bnd-mono(D,h); a:A;∧

x. x ∈ h(Collect(A,P)) =⇒ P(x)
]] =⇒ P(a)
by (rule induct, blast+)

lemma lfp-Int-lowerbound:
[[h(D ∩ A) ⊆ A; bnd-mono(D,h)]] =⇒ lfp(D,h) ⊆ A

apply (rule lfp-lowerbound [THEN subset-trans])
apply (erule bnd-mono-subset [THEN Int-greatest], blast+)
done

lemma lfp-mono:
assumes hmono: bnd-mono(D,h)

and imono: bnd-mono(E ,i)
and subhi:

∧
X . X<=D =⇒ h(X) ⊆ i(X)

shows lfp(D,h) ⊆ lfp(E ,i)
apply (rule bnd-monoD1 [THEN lfp-greatest])
apply (rule imono)
apply (rule hmono [THEN [2 ] lfp-Int-lowerbound])
apply (rule Int-lower1 [THEN subhi, THEN subset-trans])
apply (rule imono [THEN bnd-monoD2 , THEN subset-trans], auto)
done

lemma lfp-mono2 :
[[i(D) ⊆ D;

∧
X . X<=D =⇒ h(X) ⊆ i(X)]] =⇒ lfp(D,h) ⊆ lfp(D,i)

apply (rule lfp-greatest, assumption)
apply (rule lfp-lowerbound, blast, assumption)
done
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lemma lfp-cong:
[[D=D ′;

∧
X . X ⊆ D ′ =⇒ h(X) = h ′(X)]] =⇒ lfp(D,h) = lfp(D ′,h ′)

apply (simp add: lfp-def )
apply (rule-tac t=Inter in subst-context)
apply (rule Collect-cong, simp-all)
done

5.4 Proof of Knaster-Tarski Theorem using gfp
lemma gfp-upperbound: [[A ⊆ h(A); A<=D]] =⇒ A ⊆ gfp(D,h)

unfolding gfp-def
apply (rule PowI [THEN CollectI , THEN Union-upper ])
apply (assumption+)
done

lemma gfp-subset: gfp(D,h) ⊆ D
by (unfold gfp-def , blast)

lemma def-gfp-subset: A≡gfp(D,h) =⇒ A ⊆ D
apply simp
apply (rule gfp-subset)
done

lemma gfp-least:
[[bnd-mono(D,h);

∧
X . [[X ⊆ h(X); X<=D]] =⇒ X<=A]] =⇒

gfp(D,h) ⊆ A
unfolding gfp-def

apply (blast dest: bnd-monoD1 )
done

lemma gfp-lemma1 :
[[bnd-mono(D,h); A<=h(A); A<=D]] =⇒ A ⊆ h(gfp(D,h))

apply (rule subset-trans, assumption)
apply (erule bnd-monoD2 )
apply (rule-tac [2 ] gfp-subset)
apply (simp add: gfp-upperbound)
done

lemma gfp-lemma2 : bnd-mono(D,h) =⇒ gfp(D,h) ⊆ h(gfp(D,h))
apply (rule gfp-least)
apply (rule-tac [2 ] gfp-lemma1 )
apply (assumption+)
done

lemma gfp-lemma3 :
bnd-mono(D,h) =⇒ h(gfp(D,h)) ⊆ gfp(D,h)

apply (rule gfp-upperbound)
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apply (rule bnd-monoD2 , assumption)
apply (rule gfp-lemma2 , assumption)
apply (erule bnd-mono-subset, rule gfp-subset)+
done

lemma gfp-unfold: bnd-mono(D,h) =⇒ gfp(D,h) = h(gfp(D,h))
apply (rule equalityI )
apply (erule gfp-lemma2 )
apply (erule gfp-lemma3 )
done

lemma def-gfp-unfold:
[[A≡gfp(D,h); bnd-mono(D,h)]] =⇒ A = h(A)

apply simp
apply (erule gfp-unfold)
done

5.5 Coinduction Rules for Greatest Fixed Points
lemma weak-coinduct: [[a: X ; X ⊆ h(X); X ⊆ D]] =⇒ a ∈ gfp(D,h)
by (blast intro: gfp-upperbound [THEN subsetD])

lemma coinduct-lemma:
[[X ⊆ h(X ∪ gfp(D,h)); X ⊆ D; bnd-mono(D,h)]] =⇒
X ∪ gfp(D,h) ⊆ h(X ∪ gfp(D,h))

apply (erule Un-least)
apply (rule gfp-lemma2 [THEN subset-trans], assumption)
apply (rule Un-upper2 [THEN subset-trans])
apply (rule bnd-mono-Un, assumption+)
apply (rule gfp-subset)
done

lemma coinduct:
[[bnd-mono(D,h); a: X ; X ⊆ h(X ∪ gfp(D,h)); X ⊆ D]]
=⇒ a ∈ gfp(D,h)

apply (rule weak-coinduct)
apply (erule-tac [2 ] coinduct-lemma)
apply (simp-all add: gfp-subset Un-subset-iff )
done

lemma def-coinduct:
[[A ≡ gfp(D,h); bnd-mono(D,h); a: X ; X ⊆ h(X ∪ A); X ⊆ D]] =⇒
a ∈ A

apply simp
apply (rule coinduct, assumption+)
done
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lemma def-Collect-coinduct:
[[A ≡ gfp(D, λw. Collect(D,P(w))); bnd-mono(D, λw. Collect(D,P(w)));

a: X ; X ⊆ D;
∧

z. z: X =⇒ P(X ∪ A, z)]] =⇒
a ∈ A

apply (rule def-coinduct, assumption+, blast+)
done

lemma gfp-mono:
[[bnd-mono(D,h); D ⊆ E ;∧

X . X<=D =⇒ h(X) ⊆ i(X)]] =⇒ gfp(D,h) ⊆ gfp(E ,i)
apply (rule gfp-upperbound)
apply (rule gfp-lemma2 [THEN subset-trans], assumption)
apply (blast del: subsetI intro: gfp-subset)
apply (blast del: subsetI intro: subset-trans gfp-subset)
done

end

6 Booleans in Zermelo-Fraenkel Set Theory
theory Bool imports pair begin

abbreviation
one (‹1 ›) where
1 ≡ succ(0 )

abbreviation
two (‹2 ›) where
2 ≡ succ(1 )

2 is equal to bool, but is used as a number rather than a type.
definition bool ≡ {0 ,1}

definition cond(b,c,d) ≡ if (b=1 ,c,d)

definition not(b) ≡ cond(b,0 ,1 )

definition
and :: [i,i]⇒i (infixl ‹and› 70 ) where

a and b ≡ cond(a,b,0 )

definition
or :: [i,i]⇒i (infixl ‹or› 65 ) where

a or b ≡ cond(a,1 ,b)

definition

64



xor :: [i,i]⇒i (infixl ‹xor› 65 ) where
a xor b ≡ cond(a,not(b),b)

lemmas bool-defs = bool-def cond-def

lemma singleton-0 : {0} = 1
by (simp add: succ-def )

lemma bool-1I [simp,TC ]: 1 ∈ bool
by (simp add: bool-defs )

lemma bool-0I [simp,TC ]: 0 ∈ bool
by (simp add: bool-defs)

lemma one-not-0 : 1 6=0
by (simp add: bool-defs )

lemmas one-neq-0 = one-not-0 [THEN notE ]

lemma boolE :
[[c: bool; c=1 =⇒ P; c=0 =⇒ P]] =⇒ P

by (simp add: bool-defs, blast)

lemma cond-1 [simp]: cond(1 ,c,d) = c
by (simp add: bool-defs )

lemma cond-0 [simp]: cond(0 ,c,d) = d
by (simp add: bool-defs )

lemma cond-type [TC ]: [[b: bool; c: A(1 ); d: A(0 )]] =⇒ cond(b,c,d): A(b)
by (simp add: bool-defs, blast)

lemma cond-simple-type: [[b: bool; c: A; d: A]] =⇒ cond(b,c,d): A
by (simp add: bool-defs )

lemma def-cond-1 : [[
∧

b. j(b)≡cond(b,c,d)]] =⇒ j(1 ) = c
by simp

lemma def-cond-0 : [[
∧

b. j(b)≡cond(b,c,d)]] =⇒ j(0 ) = d
by simp
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lemmas not-1 = not-def [THEN def-cond-1 , simp]
lemmas not-0 = not-def [THEN def-cond-0 , simp]

lemmas and-1 = and-def [THEN def-cond-1 , simp]
lemmas and-0 = and-def [THEN def-cond-0 , simp]

lemmas or-1 = or-def [THEN def-cond-1 , simp]
lemmas or-0 = or-def [THEN def-cond-0 , simp]

lemmas xor-1 = xor-def [THEN def-cond-1 , simp]
lemmas xor-0 = xor-def [THEN def-cond-0 , simp]

lemma not-type [TC ]: a:bool =⇒ not(a) ∈ bool
by (simp add: not-def )

lemma and-type [TC ]: [[a:bool; b:bool]] =⇒ a and b ∈ bool
by (simp add: and-def )

lemma or-type [TC ]: [[a:bool; b:bool]] =⇒ a or b ∈ bool
by (simp add: or-def )

lemma xor-type [TC ]: [[a:bool; b:bool]] =⇒ a xor b ∈ bool
by (simp add: xor-def )

lemmas bool-typechecks = bool-1I bool-0I cond-type not-type and-type
or-type xor-type

6.1 Laws About ’not’
lemma not-not [simp]: a:bool =⇒ not(not(a)) = a
by (elim boolE , auto)

lemma not-and [simp]: a:bool =⇒ not(a and b) = not(a) or not(b)
by (elim boolE , auto)

lemma not-or [simp]: a:bool =⇒ not(a or b) = not(a) and not(b)
by (elim boolE , auto)

6.2 Laws About ’and’
lemma and-absorb [simp]: a: bool =⇒ a and a = a
by (elim boolE , auto)

lemma and-commute: [[a: bool; b:bool]] =⇒ a and b = b and a
by (elim boolE , auto)

lemma and-assoc: a: bool =⇒ (a and b) and c = a and (b and c)
by (elim boolE , auto)
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lemma and-or-distrib: [[a: bool; b:bool; c:bool]] =⇒
(a or b) and c = (a and c) or (b and c)

by (elim boolE , auto)

6.3 Laws About ’or’
lemma or-absorb [simp]: a: bool =⇒ a or a = a
by (elim boolE , auto)

lemma or-commute: [[a: bool; b:bool]] =⇒ a or b = b or a
by (elim boolE , auto)

lemma or-assoc: a: bool =⇒ (a or b) or c = a or (b or c)
by (elim boolE , auto)

lemma or-and-distrib: [[a: bool; b: bool; c: bool]] =⇒
(a and b) or c = (a or c) and (b or c)

by (elim boolE , auto)

definition
bool-of-o :: o⇒i where
bool-of-o(P) ≡ (if P then 1 else 0 )

lemma [simp]: bool-of-o(True) = 1
by (simp add: bool-of-o-def )

lemma [simp]: bool-of-o(False) = 0
by (simp add: bool-of-o-def )

lemma [simp,TC ]: bool-of-o(P) ∈ bool
by (simp add: bool-of-o-def )

lemma [simp]: (bool-of-o(P) = 1 ) ←→ P
by (simp add: bool-of-o-def )

lemma [simp]: (bool-of-o(P) = 0 ) ←→ ¬P
by (simp add: bool-of-o-def )

end

7 Disjoint Sums
theory Sum imports Bool equalities begin

And the "Part" primitive for simultaneous recursive type definitions
definition sum :: [i,i]⇒i (infixr ‹+› 65 ) where

A+B ≡ {0}∗A ∪ {1}∗B
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definition Inl :: i⇒i where
Inl(a) ≡ 〈0 ,a〉

definition Inr :: i⇒i where
Inr(b) ≡ 〈1 ,b〉

definition case :: [i⇒i, i⇒i, i]⇒i where
case(c,d) ≡ (λ〈y,z〉. cond(y, d(z), c(z)))

definition Part :: [i,i⇒i] ⇒ i where
Part(A,h) ≡ {x ∈ A. ∃ z. x = h(z)}

7.1 Rules for the Part Primitive
lemma Part-iff :

a ∈ Part(A,h) ←→ a ∈ A ∧ (∃ y. a=h(y))
unfolding Part-def

apply (rule separation)
done

lemma Part-eqI [intro]:
[[a ∈ A; a=h(b)]] =⇒ a ∈ Part(A,h)

by (unfold Part-def , blast)

lemmas PartI = refl [THEN [2 ] Part-eqI ]

lemma PartE [elim!]:
[[a ∈ Part(A,h);

∧
z. [[a ∈ A; a=h(z)]] =⇒ P

]] =⇒ P
apply (unfold Part-def , blast)
done

lemma Part-subset: Part(A,h) ⊆ A
unfolding Part-def

apply (rule Collect-subset)
done

7.2 Rules for Disjoint Sums
lemmas sum-defs = sum-def Inl-def Inr-def case-def

lemma Sigma-bool: Sigma(bool,C ) = C (0 ) + C (1 )
by (unfold bool-def sum-def , blast)

lemma InlI [intro!,simp,TC ]: a ∈ A =⇒ Inl(a) ∈ A+B
by (unfold sum-defs, blast)
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lemma InrI [intro!,simp,TC ]: b ∈ B =⇒ Inr(b) ∈ A+B
by (unfold sum-defs, blast)

lemma sumE [elim!]:
[[u ∈ A+B;∧

x. [[x ∈ A; u=Inl(x)]] =⇒ P;∧
y. [[y ∈ B; u=Inr(y)]] =⇒ P

]] =⇒ P
by (unfold sum-defs, blast)

lemma Inl-iff [iff ]: Inl(a)=Inl(b) ←→ a=b
by (simp add: sum-defs)

lemma Inr-iff [iff ]: Inr(a)=Inr(b) ←→ a=b
by (simp add: sum-defs)

lemma Inl-Inr-iff [simp]: Inl(a)=Inr(b) ←→ False
by (simp add: sum-defs)

lemma Inr-Inl-iff [simp]: Inr(b)=Inl(a) ←→ False
by (simp add: sum-defs)

lemma sum-empty [simp]: 0+0 = 0
by (simp add: sum-defs)

lemmas Inl-inject = Inl-iff [THEN iffD1 ]
lemmas Inr-inject = Inr-iff [THEN iffD1 ]
lemmas Inl-neq-Inr = Inl-Inr-iff [THEN iffD1 , THEN FalseE , elim!]
lemmas Inr-neq-Inl = Inr-Inl-iff [THEN iffD1 , THEN FalseE , elim!]

lemma InlD: Inl(a): A+B =⇒ a ∈ A
by blast

lemma InrD: Inr(b): A+B =⇒ b ∈ B
by blast

lemma sum-iff : u ∈ A+B ←→ (∃ x. x ∈ A ∧ u=Inl(x)) | (∃ y. y ∈ B ∧ u=Inr(y))
by blast

lemma Inl-in-sum-iff [simp]: (Inl(x) ∈ A+B) ←→ (x ∈ A)
by auto
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lemma Inr-in-sum-iff [simp]: (Inr(y) ∈ A+B) ←→ (y ∈ B)
by auto

lemma sum-subset-iff : A+B ⊆ C+D ←→ A<=C ∧ B<=D
by blast

lemma sum-equal-iff : A+B = C+D ←→ A=C ∧ B=D
by (simp add: extension sum-subset-iff , blast)

lemma sum-eq-2-times: A+A = 2∗A
by (simp add: sum-def , blast)

7.3 The Eliminator: case
lemma case-Inl [simp]: case(c, d, Inl(a)) = c(a)
by (simp add: sum-defs)

lemma case-Inr [simp]: case(c, d, Inr(b)) = d(b)
by (simp add: sum-defs)

lemma case-type [TC ]:
[[u ∈ A+B;∧

x. x ∈ A =⇒ c(x): C (Inl(x));∧
y. y ∈ B =⇒ d(y): C (Inr(y))

]] =⇒ case(c,d,u) ∈ C (u)
by auto

lemma expand-case: u ∈ A+B =⇒
R(case(c,d,u)) ←→
((∀ x∈A. u = Inl(x) −→ R(c(x))) ∧
(∀ y∈B. u = Inr(y) −→ R(d(y))))

by auto

lemma case-cong:
[[z ∈ A+B;∧

x. x ∈ A =⇒ c(x)=c ′(x);∧
y. y ∈ B =⇒ d(y)=d ′(y)

]] =⇒ case(c,d,z) = case(c ′,d ′,z)
by auto

lemma case-case: z ∈ A+B =⇒
case(c, d, case(λx. Inl(c ′(x)), λy. Inr(d ′(y)), z)) =
case(λx. c(c ′(x)), λy. d(d ′(y)), z)

by auto

7.4 More Rules for Part(A, h)
lemma Part-mono: A<=B =⇒ Part(A,h)<=Part(B,h)
by blast

70



lemma Part-Collect: Part(Collect(A,P), h) = Collect(Part(A,h), P)
by blast

lemmas Part-CollectE =
Part-Collect [THEN equalityD1 , THEN subsetD, THEN CollectE ]

lemma Part-Inl: Part(A+B,Inl) = {Inl(x). x ∈ A}
by blast

lemma Part-Inr : Part(A+B,Inr) = {Inr(y). y ∈ B}
by blast

lemma PartD1 : a ∈ Part(A,h) =⇒ a ∈ A
by (simp add: Part-def )

lemma Part-id: Part(A,λx. x) = A
by blast

lemma Part-Inr2 : Part(A+B, λx. Inr(h(x))) = {Inr(y). y ∈ Part(B,h)}
by blast

lemma Part-sum-equality: C ⊆ A+B =⇒ Part(C ,Inl) ∪ Part(C ,Inr) = C
by blast

end

8 Functions, Function Spaces, Lambda-Abstraction
theory func imports equalities Sum begin

8.1 The Pi Operator: Dependent Function Space
lemma subset-Sigma-imp-relation: r ⊆ Sigma(A,B) =⇒ relation(r)
by (simp add: relation-def , blast)

lemma relation-converse-converse [simp]:
relation(r) =⇒ converse(converse(r)) = r

by (simp add: relation-def , blast)

lemma relation-restrict [simp]: relation(restrict(r ,A))
by (simp add: restrict-def relation-def , blast)

lemma Pi-iff :
f ∈ Pi(A,B) ←→ function(f ) ∧ f<=Sigma(A,B) ∧ A<=domain(f )

by (unfold Pi-def , blast)

lemma Pi-iff-old:
f ∈ Pi(A,B) ←→ f<=Sigma(A,B) ∧ (∀ x∈A. ∃ !y. 〈x,y〉: f )
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by (unfold Pi-def function-def , blast)

lemma fun-is-function: f ∈ Pi(A,B) =⇒ function(f )
by (simp only: Pi-iff )

lemma function-imp-Pi:
[[function(f ); relation(f )]] =⇒ f ∈ domain(f ) −> range(f )

by (simp add: Pi-iff relation-def , blast)

lemma functionI :
[[
∧

x y y ′. [[〈x,y〉:r ; <x,y ′>:r ]] =⇒ y=y ′]] =⇒ function(r)
by (simp add: function-def , blast)

lemma fun-is-rel: f ∈ Pi(A,B) =⇒ f ⊆ Sigma(A,B)
by (unfold Pi-def , blast)

lemma Pi-cong:
[[A=A ′;

∧
x. x ∈ A ′ =⇒ B(x)=B ′(x)]] =⇒ Pi(A,B) = Pi(A ′,B ′)

by (simp add: Pi-def cong add: Sigma-cong)

lemma fun-weaken-type: [[f ∈ A−>B; B<=D]] =⇒ f ∈ A−>D
by (unfold Pi-def , best)

8.2 Function Application
lemma apply-equality2 : [[〈a,b〉: f ; 〈a,c〉: f ; f ∈ Pi(A,B)]] =⇒ b=c
by (unfold Pi-def function-def , blast)

lemma function-apply-equality: [[〈a,b〉: f ; function(f )]] =⇒ f‘a = b
by (unfold apply-def function-def , blast)

lemma apply-equality: [[〈a,b〉: f ; f ∈ Pi(A,B)]] =⇒ f‘a = b
unfolding Pi-def

apply (blast intro: function-apply-equality)
done

lemma apply-0 : a /∈ domain(f ) =⇒ f‘a = 0
by (unfold apply-def , blast)

lemma Pi-memberD: [[f ∈ Pi(A,B); c ∈ f ]] =⇒ ∃ x∈A. c = <x,f‘x>
apply (frule fun-is-rel)
apply (blast dest: apply-equality)
done
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lemma function-apply-Pair : [[function(f ); a ∈ domain(f )]] =⇒ <a,f‘a>: f
apply (simp add: function-def , clarify)
apply (subgoal-tac f‘a = y, blast)
apply (simp add: apply-def , blast)
done

lemma apply-Pair : [[f ∈ Pi(A,B); a ∈ A]] =⇒ <a,f‘a>: f
apply (simp add: Pi-iff )
apply (blast intro: function-apply-Pair)
done

lemma apply-type [TC ]: [[f ∈ Pi(A,B); a ∈ A]] =⇒ f‘a ∈ B(a)
by (blast intro: apply-Pair dest: fun-is-rel)

lemma apply-funtype: [[f ∈ A−>B; a ∈ A]] =⇒ f‘a ∈ B
by (blast dest: apply-type)

lemma apply-iff : f ∈ Pi(A,B) =⇒ 〈a,b〉: f ←→ a ∈ A ∧ f‘a = b
apply (frule fun-is-rel)
apply (blast intro!: apply-Pair apply-equality)
done

lemma Pi-type: [[f ∈ Pi(A,C );
∧

x. x ∈ A =⇒ f‘x ∈ B(x)]] =⇒ f ∈ Pi(A,B)
apply (simp only: Pi-iff )
apply (blast dest: function-apply-equality)
done

lemma Pi-Collect-iff :
(f ∈ Pi(A, λx. {y ∈ B(x). P(x,y)}))
←→ f ∈ Pi(A,B) ∧ (∀ x∈A. P(x, f‘x))

by (blast intro: Pi-type dest: apply-type)

lemma Pi-weaken-type:
[[f ∈ Pi(A,B);

∧
x. x ∈ A =⇒ B(x)<=C (x)]] =⇒ f ∈ Pi(A,C )

by (blast intro: Pi-type dest: apply-type)

lemma domain-type: [[〈a,b〉 ∈ f ; f ∈ Pi(A,B)]] =⇒ a ∈ A
by (blast dest: fun-is-rel)

lemma range-type: [[〈a,b〉 ∈ f ; f ∈ Pi(A,B)]] =⇒ b ∈ B(a)
by (blast dest: fun-is-rel)
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lemma Pair-mem-PiD: [[〈a,b〉: f ; f ∈ Pi(A,B)]] =⇒ a ∈ A ∧ b ∈ B(a) ∧ f‘a = b
by (blast intro: domain-type range-type apply-equality)

8.3 Lambda Abstraction
lemma lamI : a ∈ A =⇒ <a,b(a)> ∈ (λx∈A. b(x))

unfolding lam-def
apply (erule RepFunI )
done

lemma lamE :
[[p: (λx∈A. b(x));

∧
x.[[x ∈ A; p=<x,b(x)>]] =⇒ P

]] =⇒ P
by (simp add: lam-def , blast)

lemma lamD: [[〈a,c〉: (λx∈A. b(x))]] =⇒ c = b(a)
by (simp add: lam-def )

lemma lam-type [TC ]:
[[
∧

x. x ∈ A =⇒ b(x): B(x)]] =⇒ (λx∈A. b(x)) ∈ Pi(A,B)
by (simp add: lam-def Pi-def function-def , blast)

lemma lam-funtype: (λx∈A. b(x)) ∈ A −> {b(x). x ∈ A}
by (blast intro: lam-type)

lemma function-lam: function (λx∈A. b(x))
by (simp add: function-def lam-def )

lemma relation-lam: relation (λx∈A. b(x))
by (simp add: relation-def lam-def )

lemma beta-if [simp]: (λx∈A. b(x)) ‘ a = (if a ∈ A then b(a) else 0 )
by (simp add: apply-def lam-def , blast)

lemma beta: a ∈ A =⇒ (λx∈A. b(x)) ‘ a = b(a)
by (simp add: apply-def lam-def , blast)

lemma lam-empty [simp]: (λx∈0 . b(x)) = 0
by (simp add: lam-def )

lemma domain-lam [simp]: domain(Lambda(A,b)) = A
by (simp add: lam-def , blast)

lemma lam-cong [cong]:
[[A=A ′;

∧
x. x ∈ A ′ =⇒ b(x)=b ′(x)]] =⇒ Lambda(A,b) = Lambda(A ′,b ′)

by (simp only: lam-def cong add: RepFun-cong)

lemma lam-theI :
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(
∧

x. x ∈ A =⇒ ∃ !y. Q(x,y)) =⇒ ∃ f . ∀ x∈A. Q(x, f‘x)
apply (rule-tac x = λx∈A. THE y. Q (x,y) in exI )
apply simp
apply (blast intro: theI )
done

lemma lam-eqE : [[(λx∈A. f (x)) = (λx∈A. g(x)); a ∈ A]] =⇒ f (a)=g(a)
by (fast intro!: lamI elim: equalityE lamE)

lemma Pi-empty1 [simp]: Pi(0 ,A) = {0}
by (unfold Pi-def function-def , blast)

lemma singleton-fun [simp]: {〈a,b〉} ∈ {a} −> {b}
by (unfold Pi-def function-def , blast)

lemma Pi-empty2 [simp]: (A−>0 ) = (if A=0 then {0} else 0 )
by (unfold Pi-def function-def , force)

lemma fun-space-empty-iff [iff ]: (A−>X)=0 ←→ X=0 ∧ (A 6= 0 )
apply auto
apply (fast intro!: equals0I intro: lam-type)
done

8.4 Extensionality
lemma fun-subset:

[[f ∈ Pi(A,B); g ∈ Pi(C ,D); A<=C ;∧
x. x ∈ A =⇒ f‘x = g‘x]] =⇒ f<=g

by (force dest: Pi-memberD intro: apply-Pair)

lemma fun-extension:
[[f ∈ Pi(A,B); g ∈ Pi(A,D);∧

x. x ∈ A =⇒ f‘x = g‘x]] =⇒ f=g
by (blast del: subsetI intro: subset-refl sym fun-subset)

lemma eta [simp]: f ∈ Pi(A,B) =⇒ (λx∈A. f‘x) = f
apply (rule fun-extension)
apply (auto simp add: lam-type apply-type beta)
done

lemma fun-extension-iff :
[[f ∈ Pi(A,B); g ∈ Pi(A,C )]] =⇒ (∀ a∈A. f‘a = g‘a) ←→ f=g

by (blast intro: fun-extension)

lemma fun-subset-eq: [[f ∈ Pi(A,B); g ∈ Pi(A,C )]] =⇒ f ⊆ g ←→ (f = g)
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by (blast dest: apply-Pair
intro: fun-extension apply-equality [symmetric])

lemma Pi-lamE :
assumes major : f ∈ Pi(A,B)

and minor :
∧

b. [[∀ x∈A. b(x):B(x); f = (λx∈A. b(x))]] =⇒ P
shows P

apply (rule minor)
apply (rule-tac [2 ] eta [symmetric])
apply (blast intro: major apply-type)+
done

8.5 Images of Functions
lemma image-lam: C ⊆ A =⇒ (λx∈A. b(x)) ‘‘ C = {b(x). x ∈ C}
by (unfold lam-def , blast)

lemma Repfun-function-if :
function(f )
=⇒ {f‘x. x ∈ C} = (if C ⊆ domain(f ) then f‘‘C else cons(0 ,f‘‘C ))

apply simp
apply (intro conjI impI )
apply (blast dest: function-apply-equality intro: function-apply-Pair)

apply (rule equalityI )
apply (blast intro!: function-apply-Pair apply-0 )

apply (blast dest: function-apply-equality intro: apply-0 [symmetric])
done

lemma image-function:
[[function(f ); C ⊆ domain(f )]] =⇒ f‘‘C = {f‘x. x ∈ C}

by (simp add: Repfun-function-if )

lemma image-fun: [[f ∈ Pi(A,B); C ⊆ A]] =⇒ f‘‘C = {f‘x. x ∈ C}
apply (simp add: Pi-iff )
apply (blast intro: image-function)
done

lemma image-eq-UN :
assumes f : f ∈ Pi(A,B) C ⊆ A shows f‘‘C = (

⋃
x∈C . {f ‘ x})

by (auto simp add: image-fun [OF f ])

lemma Pi-image-cons:
[[f ∈ Pi(A,B); x ∈ A]] =⇒ f ‘‘ cons(x,y) = cons(f‘x, f‘‘y)

by (blast dest: apply-equality apply-Pair)
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8.6 Properties of restrict(f , A)

lemma restrict-subset: restrict(f ,A) ⊆ f
by (unfold restrict-def , blast)

lemma function-restrictI :
function(f ) =⇒ function(restrict(f ,A))

by (unfold restrict-def function-def , blast)

lemma restrict-type2 : [[f ∈ Pi(C ,B); A<=C ]] =⇒ restrict(f ,A) ∈ Pi(A,B)
by (simp add: Pi-iff function-def restrict-def , blast)

lemma restrict: restrict(f ,A) ‘ a = (if a ∈ A then f‘a else 0 )
by (simp add: apply-def restrict-def , blast)

lemma restrict-empty [simp]: restrict(f ,0 ) = 0
by (unfold restrict-def , simp)

lemma restrict-iff : z ∈ restrict(r ,A) ←→ z ∈ r ∧ (∃ x∈A. ∃ y. z = 〈x, y〉)
by (simp add: restrict-def )

lemma restrict-restrict [simp]:
restrict(restrict(r ,A),B) = restrict(r , A ∩ B)

by (unfold restrict-def , blast)

lemma domain-restrict [simp]: domain(restrict(f ,C )) = domain(f ) ∩ C
unfolding restrict-def

apply (auto simp add: domain-def )
done

lemma restrict-idem: f ⊆ Sigma(A,B) =⇒ restrict(f ,A) = f
by (simp add: restrict-def , blast)

lemma domain-restrict-idem:
[[domain(r) ⊆ A; relation(r)]] =⇒ restrict(r ,A) = r

by (simp add: restrict-def relation-def , blast)

lemma domain-restrict-lam [simp]: domain(restrict(Lambda(A,f ),C )) = A ∩ C
unfolding restrict-def lam-def

apply (rule equalityI )
apply (auto simp add: domain-iff )
done

lemma restrict-if [simp]: restrict(f ,A) ‘ a = (if a ∈ A then f‘a else 0 )
by (simp add: restrict apply-0 )

lemma restrict-lam-eq:
A<=C =⇒ restrict(λx∈C . b(x), A) = (λx∈A. b(x))
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by (unfold restrict-def lam-def , auto)

lemma fun-cons-restrict-eq:
f ∈ cons(a, b) −> B =⇒ f = cons(<a, f ‘ a>, restrict(f , b))

apply (rule equalityI )
prefer 2 apply (blast intro: apply-Pair restrict-subset [THEN subsetD])

apply (auto dest!: Pi-memberD simp add: restrict-def lam-def )
done

8.7 Unions of Functions
lemma function-Union:

[[∀ x∈S . function(x);
∀ x∈S . ∀ y∈S . x<=y | y<=x]]

=⇒ function(
⋃
(S))

by (unfold function-def , blast)

lemma fun-Union:
[[∀ f∈S . ∃C D. f ∈ C−>D;

∀ f∈S . ∀ y∈S . f<=y | y<=f ]] =⇒⋃
(S) ∈ domain(

⋃
(S)) −> range(

⋃
(S))

unfolding Pi-def
apply (blast intro!: rel-Union function-Union)
done

lemma gen-relation-Union:
(
∧

f . f∈F =⇒ relation(f )) =⇒ relation(
⋃
(F))

by (simp add: relation-def )

lemmas Un-rls = Un-subset-iff SUM-Un-distrib1 prod-Un-distrib2
subset-trans [OF - Un-upper1 ]
subset-trans [OF - Un-upper2 ]

lemma fun-disjoint-Un:
[[f ∈ A−>B; g ∈ C−>D; A ∩ C = 0 ]]
=⇒ (f ∪ g) ∈ (A ∪ C ) −> (B ∪ D)

apply (simp add: Pi-iff extension Un-rls)
apply (unfold function-def , blast)
done

lemma fun-disjoint-apply1 : a /∈ domain(g) =⇒ (f ∪ g)‘a = f‘a
by (simp add: apply-def , blast)

lemma fun-disjoint-apply2 : c /∈ domain(f ) =⇒ (f ∪ g)‘c = g‘c
by (simp add: apply-def , blast)
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8.8 Domain and Range of a Function or Relation
lemma domain-of-fun: f ∈ Pi(A,B) =⇒ domain(f )=A
by (unfold Pi-def , blast)

lemma apply-rangeI : [[f ∈ Pi(A,B); a ∈ A]] =⇒ f‘a ∈ range(f )
by (erule apply-Pair [THEN rangeI ], assumption)

lemma range-of-fun: f ∈ Pi(A,B) =⇒ f ∈ A−>range(f )
by (blast intro: Pi-type apply-rangeI )

8.9 Extensions of Functions
lemma fun-extend:

[[f ∈ A−>B; c/∈A]] =⇒ cons(〈c,b〉,f ) ∈ cons(c,A) −> cons(b,B)
apply (frule singleton-fun [THEN fun-disjoint-Un], blast)
apply (simp add: cons-eq)
done

lemma fun-extend3 :
[[f ∈ A−>B; c/∈A; b ∈ B]] =⇒ cons(〈c,b〉,f ) ∈ cons(c,A) −> B

by (blast intro: fun-extend [THEN fun-weaken-type])

lemma extend-apply:
c /∈ domain(f ) =⇒ cons(〈c,b〉,f )‘a = (if a=c then b else f‘a)

by (auto simp add: apply-def )

lemma fun-extend-apply [simp]:
[[f ∈ A−>B; c/∈A]] =⇒ cons(〈c,b〉,f )‘a = (if a=c then b else f‘a)

apply (rule extend-apply)
apply (simp add: Pi-def , blast)
done

lemmas singleton-apply = apply-equality [OF singletonI singleton-fun, simp]

lemma cons-fun-eq:
c /∈ A =⇒ cons(c,A) −> B = (

⋃
f ∈ A−>B.

⋃
b∈B. {cons(〈c,b〉, f )})

apply (rule equalityI )
apply (safe elim!: fun-extend3 )

apply (subgoal-tac restrict (x, A) ∈ A −> B)
prefer 2 apply (blast intro: restrict-type2 )

apply (rule UN-I , assumption)
apply (rule apply-funtype [THEN UN-I ])

apply assumption
apply (rule consI1 )

apply (simp (no-asm))
apply (rule fun-extension)

apply assumption
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apply (blast intro: fun-extend)
apply (erule consE , simp-all)
done

lemma succ-fun-eq: succ(n) −> B = (
⋃

f ∈ n−>B.
⋃

b∈B. {cons(〈n,b〉, f )})
by (simp add: succ-def mem-not-refl cons-fun-eq)

8.10 Function Updates
definition

update :: [i,i,i] ⇒ i where
update(f ,a,b) ≡ λx∈cons(a, domain(f )). if (x=a, b, f‘x)

nonterminal updbinds and updbind

syntax
-updbind :: [i, i] ⇒ updbind (‹(‹indent=2 notation=‹infix update››- :=/ -)›)

:: updbind ⇒ updbinds (‹-›)
-updbinds :: [updbind, updbinds] ⇒ updbinds (‹-,/ -›)
-Update :: [i, updbinds] ⇒ i (‹(‹open-block notation=‹mixfix function up-

date››-/ ′((-) ′))› [900 ,0 ] 900 )
syntax-consts

-Update 
 update
translations

-Update (f , -updbinds(b,bs)) == -Update (-Update(f ,b), bs)
f (x:=y) == CONST update(f ,x,y)

lemma update-apply [simp]: f (x:=y) ‘ z = (if z=x then y else f‘z)
apply (simp add: update-def )
apply (case-tac z ∈ domain(f ))
apply (simp-all add: apply-0 )
done

lemma update-idem: [[f‘x = y; f ∈ Pi(A,B); x ∈ A]] =⇒ f (x:=y) = f
unfolding update-def

apply (simp add: domain-of-fun cons-absorb)
apply (rule fun-extension)
apply (best intro: apply-type if-type lam-type, assumption, simp)
done

declare refl [THEN update-idem, simp]

lemma domain-update [simp]: domain(f (x:=y)) = cons(x, domain(f ))
by (unfold update-def , simp)

lemma update-type: [[f ∈ Pi(A,B); x ∈ A; y ∈ B(x)]] =⇒ f (x:=y) ∈ Pi(A, B)
unfolding update-def
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apply (simp add: domain-of-fun cons-absorb apply-funtype lam-type)
done

8.11 Monotonicity Theorems
8.11.1 Replacement in its Various Forms
lemma Replace-mono: A<=B =⇒ Replace(A,P) ⊆ Replace(B,P)
by (blast elim!: ReplaceE)

lemma RepFun-mono: A<=B =⇒ {f (x). x ∈ A} ⊆ {f (x). x ∈ B}
by blast

lemma Pow-mono: A<=B =⇒ Pow(A) ⊆ Pow(B)
by blast

lemma Union-mono: A<=B =⇒
⋃
(A) ⊆

⋃
(B)

by blast

lemma UN-mono:
[[A<=C ;

∧
x. x ∈ A =⇒ B(x)<=D(x)]] =⇒ (

⋃
x∈A. B(x)) ⊆ (

⋃
x∈C . D(x))

by blast

lemma Inter-anti-mono: [[A<=B; A6=0 ]] =⇒
⋂
(B) ⊆

⋂
(A)

by blast

lemma cons-mono: C<=D =⇒ cons(a,C ) ⊆ cons(a,D)
by blast

lemma Un-mono: [[A<=C ; B<=D]] =⇒ A ∪ B ⊆ C ∪ D
by blast

lemma Int-mono: [[A<=C ; B<=D]] =⇒ A ∩ B ⊆ C ∩ D
by blast

lemma Diff-mono: [[A<=C ; D<=B]] =⇒ A−B ⊆ C−D
by blast

8.11.2 Standard Products, Sums and Function Spaces
lemma Sigma-mono [rule-format]:

[[A<=C ;
∧

x. x ∈ A −→ B(x) ⊆ D(x)]] =⇒ Sigma(A,B) ⊆ Sigma(C ,D)
by blast

lemma sum-mono: [[A<=C ; B<=D]] =⇒ A+B ⊆ C+D
by (unfold sum-def , blast)

lemma Pi-mono: B<=C =⇒ A−>B ⊆ A−>C
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by (blast intro: lam-type elim: Pi-lamE)

lemma lam-mono: A<=B =⇒ Lambda(A,c) ⊆ Lambda(B,c)
unfolding lam-def

apply (erule RepFun-mono)
done

8.11.3 Converse, Domain, Range, Field
lemma converse-mono: r<=s =⇒ converse(r) ⊆ converse(s)
by blast

lemma domain-mono: r<=s =⇒ domain(r)<=domain(s)
by blast

lemmas domain-rel-subset = subset-trans [OF domain-mono domain-subset]

lemma range-mono: r<=s =⇒ range(r)<=range(s)
by blast

lemmas range-rel-subset = subset-trans [OF range-mono range-subset]

lemma field-mono: r<=s =⇒ field(r)<=field(s)
by blast

lemma field-rel-subset: r ⊆ A∗A =⇒ field(r) ⊆ A
by (erule field-mono [THEN subset-trans], blast)

8.11.4 Images
lemma image-pair-mono:

[[
∧

x y. 〈x,y〉:r =⇒ 〈x,y〉:s; A<=B]] =⇒ r‘‘A ⊆ s‘‘B
by blast

lemma vimage-pair-mono:
[[
∧

x y. 〈x,y〉:r =⇒ 〈x,y〉:s; A<=B]] =⇒ r−‘‘A ⊆ s−‘‘B
by blast

lemma image-mono: [[r<=s; A<=B]] =⇒ r‘‘A ⊆ s‘‘B
by blast

lemma vimage-mono: [[r<=s; A<=B]] =⇒ r−‘‘A ⊆ s−‘‘B
by blast

lemma Collect-mono:
[[A<=B;

∧
x. x ∈ A =⇒ P(x) −→ Q(x)]] =⇒ Collect(A,P) ⊆ Collect(B,Q)

by blast

lemmas basic-monos = subset-refl imp-refl disj-mono conj-mono ex-mono
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Collect-mono Part-mono in-mono

lemma bex-image-simp:
[[f ∈ Pi(X , Y ); A ⊆ X ]] =⇒ (∃ x∈f‘‘A. P(x)) ←→ (∃ x∈A. P(f‘x))
apply safe
apply rule
prefer 2 apply assumption

apply (simp add: apply-equality)
apply (blast intro: apply-Pair)
done

lemma ball-image-simp:
[[f ∈ Pi(X , Y ); A ⊆ X ]] =⇒ (∀ x∈f‘‘A. P(x)) ←→ (∀ x∈A. P(f‘x))
apply safe
apply (blast intro: apply-Pair)

apply (drule bspec) apply assumption
apply (simp add: apply-equality)
done

end

9 Quine-Inspired Ordered Pairs and Disjoint Sums
theory QPair imports Sum func begin

For non-well-founded data structures in ZF. Does not precisely follow Quine’s
construction. Thanks to Thomas Forster for suggesting this approach!
W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
1966.
definition

QPair :: [i, i] ⇒ i (‹(‹indent=1 notation=‹mixfix Quine pair››<-;/ ->)›)
where <a;b> ≡ a+b

definition
qfst :: i ⇒ i where

qfst(p) ≡ THE a. ∃ b. p=<a;b>

definition
qsnd :: i ⇒ i where

qsnd(p) ≡ THE b. ∃ a. p=<a;b>

definition
qsplit :: [[i, i] ⇒ ′a, i] ⇒ ′a::{} where

qsplit(c,p) ≡ c(qfst(p), qsnd(p))

definition
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qconverse :: i ⇒ i where
qconverse(r) ≡ {z. w ∈ r , ∃ x y. w=<x;y> ∧ z=<y;x>}

definition
QSigma :: [i, i ⇒ i] ⇒ i where

QSigma(A,B) ≡
⋃

x∈A.
⋃

y∈B(x). {<x;y>}

syntax
-QSUM :: [idt, i, i] ⇒ i (‹(‹indent=3 notation=‹binder QSUM∈››QSUM - ∈

-./ -)› 10 )
syntax-consts

-QSUM 
 QSigma
translations

QSUM x ∈ A. B => CONST QSigma(A, λx. B)

abbreviation
qprod (infixr ‹<∗>› 80 ) where
A <∗> B ≡ QSigma(A, λ-. B)

definition
qsum :: [i,i]⇒i (infixr ‹<+>› 65 ) where

A <+> B ≡ ({0} <∗> A) ∪ ({1} <∗> B)

definition
QInl :: i⇒i where

QInl(a) ≡ <0 ;a>

definition
QInr :: i⇒i where

QInr(b) ≡ <1 ;b>

definition
qcase :: [i⇒i, i⇒i, i]⇒i where

qcase(c,d) ≡ qsplit(λy z . cond(y, d(z), c(z)))

9.1 Quine ordered pairing
lemma QPair-empty [simp]: <0 ;0> = 0
by (simp add: QPair-def )

lemma QPair-iff [simp]: <a;b> = <c;d> ←→ a=c ∧ b=d
apply (simp add: QPair-def )
apply (rule sum-equal-iff )
done

lemmas QPair-inject = QPair-iff [THEN iffD1 , THEN conjE , elim!]

lemma QPair-inject1 : <a;b> = <c;d> =⇒ a=c
by blast
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lemma QPair-inject2 : <a;b> = <c;d> =⇒ b=d
by blast

9.1.1 QSigma: Disjoint union of a family of sets Generalizes Carte-
sian product

lemma QSigmaI [intro!]: [[a ∈ A; b ∈ B(a)]] =⇒ <a;b> ∈ QSigma(A,B)
by (simp add: QSigma-def )

lemma QSigmaE [elim!]:
[[c ∈ QSigma(A,B);∧

x y.[[x ∈ A; y ∈ B(x); c=<x;y>]] =⇒ P
]] =⇒ P
by (simp add: QSigma-def , blast)

lemma QSigmaE2 [elim!]:
[[<a;b>: QSigma(A,B); [[a ∈ A; b ∈ B(a)]] =⇒ P]] =⇒ P

by (simp add: QSigma-def )

lemma QSigmaD1 : <a;b> ∈ QSigma(A,B) =⇒ a ∈ A
by blast

lemma QSigmaD2 : <a;b> ∈ QSigma(A,B) =⇒ b ∈ B(a)
by blast

lemma QSigma-cong:
[[A=A ′;

∧
x. x ∈ A ′ =⇒ B(x)=B ′(x)]] =⇒

QSigma(A,B) = QSigma(A ′,B ′)
by (simp add: QSigma-def )

lemma QSigma-empty1 [simp]: QSigma(0 ,B) = 0
by blast

lemma QSigma-empty2 [simp]: A <∗> 0 = 0
by blast

9.1.2 Projections: qfst, qsnd
lemma qfst-conv [simp]: qfst(<a;b>) = a
by (simp add: qfst-def )

lemma qsnd-conv [simp]: qsnd(<a;b>) = b
by (simp add: qsnd-def )

lemma qfst-type [TC ]: p ∈ QSigma(A,B) =⇒ qfst(p) ∈ A
by auto
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lemma qsnd-type [TC ]: p ∈ QSigma(A,B) =⇒ qsnd(p) ∈ B(qfst(p))
by auto

lemma QPair-qfst-qsnd-eq: a ∈ QSigma(A,B) =⇒ <qfst(a); qsnd(a)> = a
by auto

9.1.3 Eliminator: qsplit
lemma qsplit [simp]: qsplit(λx y. c(x,y), <a;b>) ≡ c(a,b)
by (simp add: qsplit-def )

lemma qsplit-type [elim!]:
[[p ∈ QSigma(A,B);∧

x y.[[x ∈ A; y ∈ B(x)]] =⇒ c(x,y):C (<x;y>)
]] =⇒ qsplit(λx y. c(x,y), p) ∈ C (p)
by auto

lemma expand-qsplit:
u ∈ A<∗>B =⇒ R(qsplit(c,u)) ←→ (∀ x∈A. ∀ y∈B. u = <x;y> −→ R(c(x,y)))

apply (simp add: qsplit-def , auto)
done

9.1.4 qsplit for predicates: result type o
lemma qsplitI : R(a,b) =⇒ qsplit(R, <a;b>)
by (simp add: qsplit-def )

lemma qsplitE :
[[qsplit(R,z); z ∈ QSigma(A,B);∧

x y. [[z = <x;y>; R(x,y)]] =⇒ P
]] =⇒ P
by (simp add: qsplit-def , auto)

lemma qsplitD: qsplit(R,<a;b>) =⇒ R(a,b)
by (simp add: qsplit-def )

9.1.5 qconverse
lemma qconverseI [intro!]: <a;b>:r =⇒ <b;a>:qconverse(r)
by (simp add: qconverse-def , blast)

lemma qconverseD [elim!]: <a;b> ∈ qconverse(r) =⇒ <b;a> ∈ r
by (simp add: qconverse-def , blast)

lemma qconverseE [elim!]:
[[yx ∈ qconverse(r);∧

x y. [[yx=<y;x>; <x;y>:r ]] =⇒ P
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]] =⇒ P
by (simp add: qconverse-def , blast)

lemma qconverse-qconverse: r<=QSigma(A,B) =⇒ qconverse(qconverse(r)) = r
by blast

lemma qconverse-type: r ⊆ A <∗> B =⇒ qconverse(r) ⊆ B <∗> A
by blast

lemma qconverse-prod: qconverse(A <∗> B) = B <∗> A
by blast

lemma qconverse-empty: qconverse(0 ) = 0
by blast

9.2 The Quine-inspired notion of disjoint sum
lemmas qsum-defs = qsum-def QInl-def QInr-def qcase-def

lemma QInlI [intro!]: a ∈ A =⇒ QInl(a) ∈ A <+> B
by (simp add: qsum-defs, blast)

lemma QInrI [intro!]: b ∈ B =⇒ QInr(b) ∈ A <+> B
by (simp add: qsum-defs, blast)

lemma qsumE [elim!]:
[[u ∈ A <+> B;∧

x. [[x ∈ A; u=QInl(x)]] =⇒ P;∧
y. [[y ∈ B; u=QInr(y)]] =⇒ P

]] =⇒ P
by (simp add: qsum-defs, blast)

lemma QInl-iff [iff ]: QInl(a)=QInl(b) ←→ a=b
by (simp add: qsum-defs )

lemma QInr-iff [iff ]: QInr(a)=QInr(b) ←→ a=b
by (simp add: qsum-defs )

lemma QInl-QInr-iff [simp]: QInl(a)=QInr(b) ←→ False
by (simp add: qsum-defs )

lemma QInr-QInl-iff [simp]: QInr(b)=QInl(a) ←→ False
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by (simp add: qsum-defs )

lemma qsum-empty [simp]: 0<+>0 = 0
by (simp add: qsum-defs )

lemmas QInl-inject = QInl-iff [THEN iffD1 ]
lemmas QInr-inject = QInr-iff [THEN iffD1 ]
lemmas QInl-neq-QInr = QInl-QInr-iff [THEN iffD1 , THEN FalseE , elim!]
lemmas QInr-neq-QInl = QInr-QInl-iff [THEN iffD1 , THEN FalseE , elim!]

lemma QInlD: QInl(a): A<+>B =⇒ a ∈ A
by blast

lemma QInrD: QInr(b): A<+>B =⇒ b ∈ B
by blast

lemma qsum-iff :
u ∈ A <+> B ←→ (∃ x. x ∈ A ∧ u=QInl(x)) | (∃ y. y ∈ B ∧ u=QInr(y))

by blast

lemma qsum-subset-iff : A <+> B ⊆ C <+> D ←→ A<=C ∧ B<=D
by blast

lemma qsum-equal-iff : A <+> B = C <+> D ←→ A=C ∧ B=D
apply (simp (no-asm) add: extension qsum-subset-iff )
apply blast
done

9.2.1 Eliminator – qcase
lemma qcase-QInl [simp]: qcase(c, d, QInl(a)) = c(a)
by (simp add: qsum-defs )

lemma qcase-QInr [simp]: qcase(c, d, QInr(b)) = d(b)
by (simp add: qsum-defs )

lemma qcase-type:
[[u ∈ A <+> B;∧

x. x ∈ A =⇒ c(x): C (QInl(x));∧
y. y ∈ B =⇒ d(y): C (QInr(y))

]] =⇒ qcase(c,d,u) ∈ C (u)
by (simp add: qsum-defs, auto)
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lemma Part-QInl: Part(A <+> B,QInl) = {QInl(x). x ∈ A}
by blast

lemma Part-QInr : Part(A <+> B,QInr) = {QInr(y). y ∈ B}
by blast

lemma Part-QInr2 : Part(A <+> B, λx. QInr(h(x))) = {QInr(y). y ∈ Part(B,h)}
by blast

lemma Part-qsum-equality: C ⊆ A <+> B =⇒ Part(C ,QInl) ∪ Part(C ,QInr) =
C
by blast

9.2.2 Monotonicity
lemma QPair-mono: [[a<=c; b<=d]] =⇒ <a;b> ⊆ <c;d>
by (simp add: QPair-def sum-mono)

lemma QSigma-mono [rule-format]:
[[A<=C ; ∀ x∈A. B(x) ⊆ D(x)]] =⇒ QSigma(A,B) ⊆ QSigma(C ,D)

by blast

lemma QInl-mono: a<=b =⇒ QInl(a) ⊆ QInl(b)
by (simp add: QInl-def subset-refl [THEN QPair-mono])

lemma QInr-mono: a<=b =⇒ QInr(a) ⊆ QInr(b)
by (simp add: QInr-def subset-refl [THEN QPair-mono])

lemma qsum-mono: [[A<=C ; B<=D]] =⇒ A <+> B ⊆ C <+> D
by blast

end

10 Injections, Surjections, Bijections, Composition
theory Perm imports func begin

definition

comp :: [i,i]⇒i (infixr ‹O› 60 ) where
r O s ≡ {xz ∈ domain(s)∗range(r) .

∃ x y z. xz=〈x,z〉 ∧ 〈x,y〉:s ∧ 〈y,z〉:r}

definition

id :: i⇒i where
id(A) ≡ (λx∈A. x)
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definition

inj :: [i,i]⇒i where
inj(A,B) ≡ { f ∈ A−>B. ∀w∈A. ∀ x∈A. f‘w=f‘x −→ w=x}

definition

surj :: [i,i]⇒i where
surj(A,B) ≡ { f ∈ A−>B . ∀ y∈B. ∃ x∈A. f‘x=y}

definition

bij :: [i,i]⇒i where
bij(A,B) ≡ inj(A,B) ∩ surj(A,B)

10.1 Surjective Function Space
lemma surj-is-fun: f ∈ surj(A,B) =⇒ f ∈ A−>B

unfolding surj-def
apply (erule CollectD1 )
done

lemma fun-is-surj: f ∈ Pi(A,B) =⇒ f ∈ surj(A,range(f ))
unfolding surj-def

apply (blast intro: apply-equality range-of-fun domain-type)
done

lemma surj-range: f ∈ surj(A,B) =⇒ range(f )=B
unfolding surj-def

apply (best intro: apply-Pair elim: range-type)
done

A function with a right inverse is a surjection
lemma f-imp-surjective:

[[f ∈ A−>B;
∧

y. y ∈ B =⇒ d(y): A;
∧

y. y ∈ B =⇒ f‘d(y) = y]]
=⇒ f ∈ surj(A,B)

by (simp add: surj-def , blast)

lemma lam-surjective:
[[
∧

x. x ∈ A =⇒ c(x): B;∧
y. y ∈ B =⇒ d(y): A;∧
y. y ∈ B =⇒ c(d(y)) = y

]] =⇒ (λx∈A. c(x)) ∈ surj(A,B)
apply (rule-tac d = d in f-imp-surjective)
apply (simp-all add: lam-type)
done

Cantor’s theorem revisited
lemma cantor-surj: f /∈ surj(A,Pow(A))
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apply (unfold surj-def , safe)
apply (cut-tac cantor)
apply (best del: subsetI )
done

10.2 Injective Function Space
lemma inj-is-fun: f ∈ inj(A,B) =⇒ f ∈ A−>B

unfolding inj-def
apply (erule CollectD1 )
done

Good for dealing with sets of pairs, but a bit ugly in use [used in AC]
lemma inj-equality:

[[〈a,b〉:f ; 〈c,b〉:f ; f ∈ inj(A,B)]] =⇒ a=c
unfolding inj-def

apply (blast dest: Pair-mem-PiD)
done

lemma inj-apply-equality: [[f ∈ inj(A,B); f‘a=f‘b; a ∈ A; b ∈ A]] =⇒ a=b
by (unfold inj-def , blast)

A function with a left inverse is an injection
lemma f-imp-injective: [[f ∈ A−>B; ∀ x∈A. d(f‘x)=x]] =⇒ f ∈ inj(A,B)
apply (simp (no-asm-simp) add: inj-def )
apply (blast intro: subst-context [THEN box-equals])
done

lemma lam-injective:
[[
∧

x. x ∈ A =⇒ c(x): B;∧
x. x ∈ A =⇒ d(c(x)) = x]]

=⇒ (λx∈A. c(x)) ∈ inj(A,B)
apply (rule-tac d = d in f-imp-injective)
apply (simp-all add: lam-type)
done

10.3 Bijections
lemma bij-is-inj: f ∈ bij(A,B) =⇒ f ∈ inj(A,B)

unfolding bij-def
apply (erule IntD1 )
done

lemma bij-is-surj: f ∈ bij(A,B) =⇒ f ∈ surj(A,B)
unfolding bij-def

apply (erule IntD2 )
done

lemma bij-is-fun: f ∈ bij(A,B) =⇒ f ∈ A−>B
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by (rule bij-is-inj [THEN inj-is-fun])

lemma lam-bijective:
[[
∧

x. x ∈ A =⇒ c(x): B;∧
y. y ∈ B =⇒ d(y): A;∧
x. x ∈ A =⇒ d(c(x)) = x;∧
y. y ∈ B =⇒ c(d(y)) = y

]] =⇒ (λx∈A. c(x)) ∈ bij(A,B)
unfolding bij-def

apply (blast intro!: lam-injective lam-surjective)
done

lemma RepFun-bijective: (∀ y∈x. ∃ !y ′. f (y ′) = f (y))
=⇒ (λz∈{f (y). y ∈ x}. THE y. f (y) = z) ∈ bij({f (y). y ∈ x}, x)

apply (rule-tac d = f in lam-bijective)
apply (auto simp add: the-equality2 )
done

10.4 Identity Function
lemma idI [intro!]: a ∈ A =⇒ 〈a,a〉 ∈ id(A)

unfolding id-def
apply (erule lamI )
done

lemma idE [elim!]: [[p ∈ id(A);
∧

x.[[x ∈ A; p=〈x,x〉]] =⇒ P]] =⇒ P
by (simp add: id-def lam-def , blast)

lemma id-type: id(A) ∈ A−>A
unfolding id-def

apply (rule lam-type, assumption)
done

lemma id-conv [simp]: x ∈ A =⇒ id(A)‘x = x
unfolding id-def

apply (simp (no-asm-simp))
done

lemma id-mono: A<=B =⇒ id(A) ⊆ id(B)
unfolding id-def

apply (erule lam-mono)
done

lemma id-subset-inj: A<=B =⇒ id(A): inj(A,B)
apply (simp add: inj-def id-def )
apply (blast intro: lam-type)
done

lemmas id-inj = subset-refl [THEN id-subset-inj]
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lemma id-surj: id(A): surj(A,A)
unfolding id-def surj-def

apply (simp (no-asm-simp))
done

lemma id-bij: id(A): bij(A,A)
unfolding bij-def

apply (blast intro: id-inj id-surj)
done

lemma subset-iff-id: A ⊆ B ←→ id(A) ∈ A−>B
unfolding id-def

apply (force intro!: lam-type dest: apply-type)
done

id as the identity relation
lemma id-iff [simp]: 〈x,y〉 ∈ id(A) ←→ x=y ∧ y ∈ A
by auto

10.5 Converse of a Function
lemma inj-converse-fun: f ∈ inj(A,B) =⇒ converse(f ) ∈ range(f )−>A

unfolding inj-def
apply (simp (no-asm-simp) add: Pi-iff function-def )
apply (erule CollectE)
apply (simp (no-asm-simp) add: apply-iff )
apply (blast dest: fun-is-rel)
done

Equations for converse(f)

The premises are equivalent to saying that f is injective...
lemma left-inverse-lemma:

[[f ∈ A−>B; converse(f ): C−>A; a ∈ A]] =⇒ converse(f )‘(f‘a) = a
by (blast intro: apply-Pair apply-equality converseI )

lemma left-inverse [simp]: [[f ∈ inj(A,B); a ∈ A]] =⇒ converse(f )‘(f‘a) = a
by (blast intro: left-inverse-lemma inj-converse-fun inj-is-fun)

lemma left-inverse-eq:
[[f ∈ inj(A,B); f ‘ x = y; x ∈ A]] =⇒ converse(f ) ‘ y = x

by auto

lemmas left-inverse-bij = bij-is-inj [THEN left-inverse]

lemma right-inverse-lemma:
[[f ∈ A−>B; converse(f ): C−>A; b ∈ C ]] =⇒ f‘(converse(f )‘b) = b

by (rule apply-Pair [THEN converseD [THEN apply-equality]], auto)
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lemma right-inverse [simp]:
[[f ∈ inj(A,B); b ∈ range(f )]] =⇒ f‘(converse(f )‘b) = b

by (blast intro: right-inverse-lemma inj-converse-fun inj-is-fun)

lemma right-inverse-bij: [[f ∈ bij(A,B); b ∈ B]] =⇒ f‘(converse(f )‘b) = b
by (force simp add: bij-def surj-range)

10.6 Converses of Injections, Surjections, Bijections
lemma inj-converse-inj: f ∈ inj(A,B) =⇒ converse(f ): inj(range(f ), A)
apply (rule f-imp-injective)
apply (erule inj-converse-fun, clarify)
apply (rule right-inverse)
apply assumption

apply blast
done

lemma inj-converse-surj: f ∈ inj(A,B) =⇒ converse(f ): surj(range(f ), A)
by (blast intro: f-imp-surjective inj-converse-fun left-inverse inj-is-fun

range-of-fun [THEN apply-type])

Adding this as an intro! rule seems to cause looping
lemma bij-converse-bij [TC ]: f ∈ bij(A,B) =⇒ converse(f ): bij(B,A)

unfolding bij-def
apply (fast elim: surj-range [THEN subst] inj-converse-inj inj-converse-surj)
done

10.7 Composition of Two Relations

The inductive definition package could derive these theorems for r O s
lemma compI [intro]: [[〈a,b〉:s; 〈b,c〉:r ]] =⇒ 〈a,c〉 ∈ r O s
by (unfold comp-def , blast)

lemma compE [elim!]:
[[xz ∈ r O s;∧

x y z. [[xz=〈x,z〉; 〈x,y〉:s; 〈y,z〉:r ]] =⇒ P]]
=⇒ P

by (unfold comp-def , blast)

lemma compEpair :
[[〈a,c〉 ∈ r O s;∧

y. [[〈a,y〉:s; 〈y,c〉:r ]] =⇒ P]]
=⇒ P

by (erule compE , simp)

lemma converse-comp: converse(R O S) = converse(S) O converse(R)
by blast
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10.8 Domain and Range – see Suppes, Section 3.1

Boyer et al., Set Theory in First-Order Logic, JAR 2 (1986), 287-327
lemma range-comp: range(r O s) ⊆ range(r)
by blast

lemma range-comp-eq: domain(r) ⊆ range(s) =⇒ range(r O s) = range(r)
by (rule range-comp [THEN equalityI ], blast)

lemma domain-comp: domain(r O s) ⊆ domain(s)
by blast

lemma domain-comp-eq: range(s) ⊆ domain(r) =⇒ domain(r O s) = domain(s)
by (rule domain-comp [THEN equalityI ], blast)

lemma image-comp: (r O s)‘‘A = r‘‘(s‘‘A)
by blast

lemma inj-inj-range: f ∈ inj(A,B) =⇒ f ∈ inj(A,range(f ))
by (auto simp add: inj-def Pi-iff function-def )

lemma inj-bij-range: f ∈ inj(A,B) =⇒ f ∈ bij(A,range(f ))
by (auto simp add: bij-def intro: inj-inj-range inj-is-fun fun-is-surj)

10.9 Other Results
lemma comp-mono: [[r ′<=r ; s ′<=s]] =⇒ (r ′ O s ′) ⊆ (r O s)
by blast

composition preserves relations
lemma comp-rel: [[s<=A∗B; r<=B∗C ]] =⇒ (r O s) ⊆ A∗C
by blast

associative law for composition
lemma comp-assoc: (r O s) O t = r O (s O t)
by blast

lemma left-comp-id: r<=A∗B =⇒ id(B) O r = r
by blast

lemma right-comp-id: r<=A∗B =⇒ r O id(A) = r
by blast

10.10 Composition Preserves Functions, Injections, and Sur-
jections

lemma comp-function: [[function(g); function(f )]] =⇒ function(f O g)
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by (unfold function-def , blast)

Don’t think the premises can be weakened much
lemma comp-fun: [[g ∈ A−>B; f ∈ B−>C ]] =⇒ (f O g) ∈ A−>C
apply (auto simp add: Pi-def comp-function Pow-iff comp-rel)
apply (subst range-rel-subset [THEN domain-comp-eq], auto)
done

lemma comp-fun-apply [simp]:
[[g ∈ A−>B; a ∈ A]] =⇒ (f O g)‘a = f‘(g‘a)

apply (frule apply-Pair , assumption)
apply (simp add: apply-def image-comp)
apply (blast dest: apply-equality)
done

Simplifies compositions of lambda-abstractions
lemma comp-lam:

[[
∧

x. x ∈ A =⇒ b(x): B]]
=⇒ (λy∈B. c(y)) O (λx∈A. b(x)) = (λx∈A. c(b(x)))

apply (subgoal-tac (λx∈A. b(x)) ∈ A −> B)
apply (rule fun-extension)

apply (blast intro: comp-fun lam-funtype)
apply (rule lam-funtype)

apply simp
apply (simp add: lam-type)
done

lemma comp-inj:
[[g ∈ inj(A,B); f ∈ inj(B,C )]] =⇒ (f O g) ∈ inj(A,C )

apply (frule inj-is-fun [of g])
apply (frule inj-is-fun [of f ])
apply (rule-tac d = λy. converse (g) ‘ (converse (f ) ‘ y) in f-imp-injective)
apply (blast intro: comp-fun, simp)

done

lemma comp-surj:
[[g ∈ surj(A,B); f ∈ surj(B,C )]] =⇒ (f O g) ∈ surj(A,C )

unfolding surj-def
apply (blast intro!: comp-fun comp-fun-apply)
done

lemma comp-bij:
[[g ∈ bij(A,B); f ∈ bij(B,C )]] =⇒ (f O g) ∈ bij(A,C )

unfolding bij-def
apply (blast intro: comp-inj comp-surj)
done
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10.11 Dual Properties of inj and surj

Useful for proofs from D Pastre. Automatic theorem proving in set theory.
Artificial Intelligence, 10:1–27, 1978.
lemma comp-mem-injD1 :

[[(f O g): inj(A,C ); g ∈ A−>B; f ∈ B−>C ]] =⇒ g ∈ inj(A,B)
by (unfold inj-def , force)

lemma comp-mem-injD2 :
[[(f O g): inj(A,C ); g ∈ surj(A,B); f ∈ B−>C ]] =⇒ f ∈ inj(B,C )

apply (unfold inj-def surj-def , safe)
apply (rule-tac x1 = x in bspec [THEN bexE ])
apply (erule-tac [3 ] x1 = w in bspec [THEN bexE ], assumption+, safe)
apply (rule-tac t = (‘) (g) in subst-context)
apply (erule asm-rl bspec [THEN bspec, THEN mp])+
apply (simp (no-asm-simp))
done

lemma comp-mem-surjD1 :
[[(f O g): surj(A,C ); g ∈ A−>B; f ∈ B−>C ]] =⇒ f ∈ surj(B,C )

unfolding surj-def
apply (blast intro!: comp-fun-apply [symmetric] apply-funtype)
done

lemma comp-mem-surjD2 :
[[(f O g): surj(A,C ); g ∈ A−>B; f ∈ inj(B,C )]] =⇒ g ∈ surj(A,B)

apply (unfold inj-def surj-def , safe)
apply (drule-tac x = f‘y in bspec, auto)
apply (blast intro: apply-funtype)
done

10.11.1 Inverses of Composition

left inverse of composition; one inclusion is f ∈ A → B =⇒ id(A) ⊆ con-
verse(f ) O f
lemma left-comp-inverse: f ∈ inj(A,B) =⇒ converse(f ) O f = id(A)
apply (unfold inj-def , clarify)
apply (rule equalityI )
apply (auto simp add: apply-iff , blast)

done

right inverse of composition; one inclusion is f ∈ A→ B =⇒ f O converse(f )
⊆ id(B)

lemma right-comp-inverse:
f ∈ surj(A,B) =⇒ f O converse(f ) = id(B)

apply (simp add: surj-def , clarify)
apply (rule equalityI )
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apply (best elim: domain-type range-type dest: apply-equality2 )
apply (blast intro: apply-Pair)
done

10.11.2 Proving that a Function is a Bijection
lemma comp-eq-id-iff :

[[f ∈ A−>B; g ∈ B−>A]] =⇒ f O g = id(B) ←→ (∀ y∈B. f‘(g‘y)=y)
apply (unfold id-def , safe)
apply (drule-tac t = λh. h‘y in subst-context)
apply simp

apply (rule fun-extension)
apply (blast intro: comp-fun lam-type)

apply auto
done

lemma fg-imp-bijective:
[[f ∈ A−>B; g ∈ B−>A; f O g = id(B); g O f = id(A)]] =⇒ f ∈ bij(A,B)

unfolding bij-def
apply (simp add: comp-eq-id-iff )
apply (blast intro: f-imp-injective f-imp-surjective apply-funtype)
done

lemma nilpotent-imp-bijective: [[f ∈ A−>A; f O f = id(A)]] =⇒ f ∈ bij(A,A)
by (blast intro: fg-imp-bijective)

lemma invertible-imp-bijective:
[[converse(f ): B−>A; f ∈ A−>B]] =⇒ f ∈ bij(A,B)

by (simp add: fg-imp-bijective comp-eq-id-iff
left-inverse-lemma right-inverse-lemma)

10.11.3 Unions of Functions

See similar theorems in func.thy

Theorem by KG, proof by LCP
lemma inj-disjoint-Un:

[[f ∈ inj(A,B); g ∈ inj(C ,D); B ∩ D = 0 ]]
=⇒ (λa∈A ∪ C . if a ∈ A then f‘a else g‘a) ∈ inj(A ∪ C , B ∪ D)

apply (rule-tac d = λz. if z ∈ B then converse (f ) ‘z else converse (g) ‘z
in lam-injective)

apply (auto simp add: inj-is-fun [THEN apply-type])
done

lemma surj-disjoint-Un:
[[f ∈ surj(A,B); g ∈ surj(C ,D); A ∩ C = 0 ]]
=⇒ (f ∪ g) ∈ surj(A ∪ C , B ∪ D)

apply (simp add: surj-def fun-disjoint-Un)
apply (blast dest!: domain-of-fun
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intro!: fun-disjoint-apply1 fun-disjoint-apply2 )
done

A simple, high-level proof; the version for injections follows from it, using f
∈ inj(A, B) ←→ f ∈ bij(A, range(f ))
lemma bij-disjoint-Un:

[[f ∈ bij(A,B); g ∈ bij(C ,D); A ∩ C = 0 ; B ∩ D = 0 ]]
=⇒ (f ∪ g) ∈ bij(A ∪ C , B ∪ D)

apply (rule invertible-imp-bijective)
apply (subst converse-Un)
apply (auto intro: fun-disjoint-Un bij-is-fun bij-converse-bij)
done

10.11.4 Restrictions as Surjections and Bijections
lemma surj-image:

f ∈ Pi(A,B) =⇒ f ∈ surj(A, f‘‘A)
apply (simp add: surj-def )
apply (blast intro: apply-equality apply-Pair Pi-type)
done

lemma surj-image-eq: f ∈ surj(A, B) =⇒ f‘‘A = B
by (auto simp add: surj-def image-fun) (blast dest: apply-type)

lemma restrict-image [simp]: restrict(f ,A) ‘‘ B = f ‘‘ (A ∩ B)
by (auto simp add: restrict-def )

lemma restrict-inj:
[[f ∈ inj(A,B); C<=A]] =⇒ restrict(f ,C ): inj(C ,B)

unfolding inj-def
apply (safe elim!: restrict-type2 , auto)
done

lemma restrict-surj: [[f ∈ Pi(A,B); C<=A]] =⇒ restrict(f ,C ): surj(C , f‘‘C )
apply (insert restrict-type2 [THEN surj-image])
apply (simp add: restrict-image)
done

lemma restrict-bij:
[[f ∈ inj(A,B); C<=A]] =⇒ restrict(f ,C ): bij(C , f‘‘C )

apply (simp add: inj-def bij-def )
apply (blast intro: restrict-surj surj-is-fun)
done

10.11.5 Lemmas for Ramsey’s Theorem
lemma inj-weaken-type: [[f ∈ inj(A,B); B<=D]] =⇒ f ∈ inj(A,D)

unfolding inj-def
apply (blast intro: fun-weaken-type)
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done

lemma inj-succ-restrict:
[[f ∈ inj(succ(m), A)]] =⇒ restrict(f ,m) ∈ inj(m, A−{f‘m})

apply (rule restrict-bij [THEN bij-is-inj, THEN inj-weaken-type], assumption, blast)
unfolding inj-def

apply (fast elim: range-type mem-irrefl dest: apply-equality)
done

lemma inj-extend:
[[f ∈ inj(A,B); a /∈A; b/∈B]]
=⇒ cons(〈a,b〉,f ) ∈ inj(cons(a,A), cons(b,B))

unfolding inj-def
apply (force intro: apply-type simp add: fun-extend)
done

end

11 Relations: Their General Properties and Tran-
sitive Closure

theory Trancl imports Fixedpt Perm begin

definition
refl :: [i,i]⇒o where

refl(A,r) ≡ (∀ x∈A. 〈x,x〉 ∈ r)

definition
irrefl :: [i,i]⇒o where

irrefl(A,r) ≡ ∀ x∈A. 〈x,x〉 /∈ r

definition
sym :: i⇒o where

sym(r) ≡ ∀ x y. 〈x,y〉: r −→ 〈y,x〉: r

definition
asym :: i⇒o where

asym(r) ≡ ∀ x y. 〈x,y〉:r −→ ¬ 〈y,x〉:r

definition
antisym :: i⇒o where

antisym(r) ≡ ∀ x y.〈x,y〉:r −→ 〈y,x〉:r −→ x=y

definition
trans :: i⇒o where

trans(r) ≡ ∀ x y z. 〈x,y〉: r −→ 〈y,z〉: r −→ 〈x,z〉: r
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definition
trans-on :: [i,i]⇒o (‹(‹open-block notation=‹mixfix trans-on››trans[-] ′(- ′))›) where

trans[A](r) ≡ ∀ x∈A. ∀ y∈A. ∀ z∈A.
〈x,y〉: r −→ 〈y,z〉: r −→ 〈x,z〉: r

definition
rtrancl :: i⇒i (‹(‹notation=‹postfix ^∗››-^∗)› [100 ] 100 ) where

r^∗ ≡ lfp(field(r)∗field(r), λs. id(field(r)) ∪ (r O s))

definition
trancl :: i⇒i (‹(‹notation=‹postfix ^+››-^+)› [100 ] 100 ) where

r^+ ≡ r O r^∗

definition
equiv :: [i,i]⇒o where

equiv(A,r) ≡ r ⊆ A∗A ∧ refl(A,r) ∧ sym(r) ∧ trans(r)

11.1 General properties of relations
11.1.1 irreflexivity
lemma irreflI :

[[
∧

x. x ∈ A =⇒ 〈x,x〉 /∈ r ]] =⇒ irrefl(A,r)
by (simp add: irrefl-def )

lemma irreflE : [[irrefl(A,r); x ∈ A]] =⇒ 〈x,x〉 /∈ r
by (simp add: irrefl-def )

11.1.2 symmetry
lemma symI :

[[
∧

x y.〈x,y〉: r =⇒ 〈y,x〉: r ]] =⇒ sym(r)
by (unfold sym-def , blast)

lemma symE : [[sym(r); 〈x,y〉: r ]] =⇒ 〈y,x〉: r
by (unfold sym-def , blast)

11.1.3 antisymmetry
lemma antisymI :

[[
∧

x y.[[〈x,y〉: r ; 〈y,x〉: r ]] =⇒ x=y]] =⇒ antisym(r)
by (simp add: antisym-def , blast)

lemma antisymE : [[antisym(r); 〈x,y〉: r ; 〈y,x〉: r ]] =⇒ x=y
by (simp add: antisym-def , blast)

11.1.4 transitivity
lemma transD: [[trans(r); 〈a,b〉:r ; 〈b,c〉:r ]] =⇒ 〈a,c〉:r
by (unfold trans-def , blast)
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lemma trans-onD:
[[trans[A](r); 〈a,b〉:r ; 〈b,c〉:r ; a ∈ A; b ∈ A; c ∈ A]] =⇒ 〈a,c〉:r

by (unfold trans-on-def , blast)

lemma trans-imp-trans-on: trans(r) =⇒ trans[A](r)
by (unfold trans-def trans-on-def , blast)

lemma trans-on-imp-trans: [[trans[A](r); r ⊆ A∗A]] =⇒ trans(r)
by (simp add: trans-on-def trans-def , blast)

11.2 Transitive closure of a relation
lemma rtrancl-bnd-mono:

bnd-mono(field(r)∗field(r), λs. id(field(r)) ∪ (r O s))
by (rule bnd-monoI , blast+)

lemma rtrancl-mono: r<=s =⇒ r^∗ ⊆ s^∗
unfolding rtrancl-def

apply (rule lfp-mono)
apply (rule rtrancl-bnd-mono)+
apply blast
done

lemmas rtrancl-unfold =
rtrancl-bnd-mono [THEN rtrancl-def [THEN def-lfp-unfold]]

lemmas rtrancl-type = rtrancl-def [THEN def-lfp-subset]

lemma relation-rtrancl: relation(r^∗)
apply (simp add: relation-def )
apply (blast dest: rtrancl-type [THEN subsetD])
done

lemma rtrancl-refl: [[a ∈ field(r)]] =⇒ 〈a,a〉 ∈ r^∗
apply (rule rtrancl-unfold [THEN ssubst])
apply (erule idI [THEN UnI1 ])
done

lemma rtrancl-into-rtrancl: [[〈a,b〉 ∈ r^∗; 〈b,c〉 ∈ r ]] =⇒ 〈a,c〉 ∈ r^∗
apply (rule rtrancl-unfold [THEN ssubst])
apply (rule compI [THEN UnI2 ], assumption, assumption)
done
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lemma r-into-rtrancl: 〈a,b〉 ∈ r =⇒ 〈a,b〉 ∈ r^∗
by (rule rtrancl-refl [THEN rtrancl-into-rtrancl], blast+)

lemma r-subset-rtrancl: relation(r) =⇒ r ⊆ r^∗
by (simp add: relation-def , blast intro: r-into-rtrancl)

lemma rtrancl-field: field(r^∗) = field(r)
by (blast intro: r-into-rtrancl dest!: rtrancl-type [THEN subsetD])

lemma rtrancl-full-induct [case-names initial step, consumes 1 ]:
[[〈a,b〉 ∈ r^∗;∧

x. x ∈ field(r) =⇒ P(〈x,x〉);∧
x y z.[[P(〈x,y〉); 〈x,y〉: r^∗; 〈y,z〉: r ]] =⇒ P(〈x,z〉)]]

=⇒ P(〈a,b〉)
by (erule def-induct [OF rtrancl-def rtrancl-bnd-mono], blast)

lemma rtrancl-induct [case-names initial step, induct set: rtrancl]:
[[〈a,b〉 ∈ r^∗;

P(a);∧
y z.[[〈a,y〉 ∈ r^∗; 〈y,z〉 ∈ r ; P(y)]] =⇒ P(z)

]] =⇒ P(b)

apply (subgoal-tac ∀ y. 〈a,b〉 = 〈a,y〉 −→ P (y) )

apply (erule spec [THEN mp], rule refl)

apply (erule rtrancl-full-induct, blast+)
done

lemma trans-rtrancl: trans(r^∗)
unfolding trans-def

apply (intro allI impI )
apply (erule-tac b = z in rtrancl-induct, assumption)
apply (blast intro: rtrancl-into-rtrancl)
done

lemmas rtrancl-trans = trans-rtrancl [THEN transD]

lemma rtranclE :
[[〈a,b〉 ∈ r^∗; (a=b) =⇒ P;
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∧
y.[[〈a,y〉 ∈ r^∗; 〈y,b〉 ∈ r ]] =⇒ P]]

=⇒ P
apply (subgoal-tac a = b | (∃ y. 〈a,y〉 ∈ r^∗ ∧ 〈y,b〉 ∈ r) )

apply blast
apply (erule rtrancl-induct, blast+)
done

lemma trans-trancl: trans(r^+)
unfolding trans-def trancl-def

apply (blast intro: rtrancl-into-rtrancl
trans-rtrancl [THEN transD, THEN compI ])

done

lemmas trans-on-trancl = trans-trancl [THEN trans-imp-trans-on]

lemmas trancl-trans = trans-trancl [THEN transD]

lemma trancl-into-rtrancl: 〈a,b〉 ∈ r^+ =⇒ 〈a,b〉 ∈ r^∗
unfolding trancl-def

apply (blast intro: rtrancl-into-rtrancl)
done

lemma r-into-trancl: 〈a,b〉 ∈ r =⇒ 〈a,b〉 ∈ r^+
unfolding trancl-def

apply (blast intro!: rtrancl-refl)
done

lemma r-subset-trancl: relation(r) =⇒ r ⊆ r^+
by (simp add: relation-def , blast intro: r-into-trancl)

lemma rtrancl-into-trancl1 : [[〈a,b〉 ∈ r^∗; 〈b,c〉 ∈ r ]] =⇒ 〈a,c〉 ∈ r^+
by (unfold trancl-def , blast)

lemma rtrancl-into-trancl2 :
[[〈a,b〉 ∈ r ; 〈b,c〉 ∈ r^∗]] =⇒ 〈a,c〉 ∈ r^+

apply (erule rtrancl-induct)
apply (erule r-into-trancl)
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apply (blast intro: r-into-trancl trancl-trans)
done

lemma trancl-induct [case-names initial step, induct set: trancl]:
[[〈a,b〉 ∈ r^+;∧

y. [[〈a,y〉 ∈ r ]] =⇒ P(y);∧
y z.[[〈a,y〉 ∈ r^+; 〈y,z〉 ∈ r ; P(y)]] =⇒ P(z)

]] =⇒ P(b)
apply (rule compEpair)
apply (unfold trancl-def , assumption)

apply (subgoal-tac ∀ z. 〈y,z〉 ∈ r −→ P (z) )

apply blast
apply (erule rtrancl-induct)
apply (blast intro: rtrancl-into-trancl1 )+
done

lemma tranclE :
[[〈a,b〉 ∈ r^+;
〈a,b〉 ∈ r =⇒ P;∧

y.[[〈a,y〉 ∈ r^+; 〈y,b〉 ∈ r ]] =⇒ P
]] =⇒ P
apply (subgoal-tac 〈a,b〉 ∈ r | (∃ y. 〈a,y〉 ∈ r^+ ∧ 〈y,b〉 ∈ r) )
apply blast
apply (rule compEpair)
apply (unfold trancl-def , assumption)
apply (erule rtranclE)
apply (blast intro: rtrancl-into-trancl1 )+
done

lemma trancl-type: r^+ ⊆ field(r)∗field(r)
unfolding trancl-def

apply (blast elim: rtrancl-type [THEN subsetD, THEN SigmaE2 ])
done

lemma relation-trancl: relation(r^+)
apply (simp add: relation-def )
apply (blast dest: trancl-type [THEN subsetD])
done

lemma trancl-subset-times: r ⊆ A ∗ A =⇒ r^+ ⊆ A ∗ A
by (insert trancl-type [of r ], blast)

lemma trancl-mono: r<=s =⇒ r^+ ⊆ s^+
by (unfold trancl-def , intro comp-mono rtrancl-mono)
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lemma trancl-eq-r : [[relation(r); trans(r)]] =⇒ r^+ = r
apply (rule equalityI )
prefer 2 apply (erule r-subset-trancl, clarify)

apply (frule trancl-type [THEN subsetD], clarify)
apply (erule trancl-induct, assumption)
apply (blast dest: transD)
done

lemma rtrancl-idemp [simp]: (r^∗)^∗ = r^∗
apply (rule equalityI , auto)
prefer 2
apply (frule rtrancl-type [THEN subsetD])
apply (blast intro: r-into-rtrancl )

converse direction

apply (frule rtrancl-type [THEN subsetD], clarify)
apply (erule rtrancl-induct)
apply (simp add: rtrancl-refl rtrancl-field)
apply (blast intro: rtrancl-trans)
done

lemma rtrancl-subset: [[R ⊆ S ; S ⊆ R^∗]] =⇒ S^∗ = R^∗
apply (drule rtrancl-mono)
apply (drule rtrancl-mono, simp-all, blast)
done

lemma rtrancl-Un-rtrancl:
[[relation(r); relation(s)]] =⇒ (r^∗ ∪ s^∗)^∗ = (r ∪ s)^∗

apply (rule rtrancl-subset)
apply (blast dest: r-subset-rtrancl)
apply (blast intro: rtrancl-mono [THEN subsetD])
done

lemma rtrancl-converseD: 〈x,y〉:converse(r)^∗ =⇒ 〈x,y〉:converse(r^∗)
apply (rule converseI )
apply (frule rtrancl-type [THEN subsetD])
apply (erule rtrancl-induct)
apply (blast intro: rtrancl-refl)
apply (blast intro: r-into-rtrancl rtrancl-trans)
done

lemma rtrancl-converseI : 〈x,y〉:converse(r^∗) =⇒ 〈x,y〉:converse(r)^∗
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apply (drule converseD)
apply (frule rtrancl-type [THEN subsetD])
apply (erule rtrancl-induct)
apply (blast intro: rtrancl-refl)
apply (blast intro: r-into-rtrancl rtrancl-trans)
done

lemma rtrancl-converse: converse(r)^∗ = converse(r^∗)
apply (safe intro!: equalityI )
apply (frule rtrancl-type [THEN subsetD])
apply (safe dest!: rtrancl-converseD intro!: rtrancl-converseI )
done

lemma trancl-converseD: 〈a, b〉:converse(r)^+ =⇒ 〈a, b〉:converse(r^+)
apply (erule trancl-induct)
apply (auto intro: r-into-trancl trancl-trans)
done

lemma trancl-converseI : 〈x,y〉:converse(r^+) =⇒ 〈x,y〉:converse(r)^+
apply (drule converseD)
apply (erule trancl-induct)
apply (auto intro: r-into-trancl trancl-trans)
done

lemma trancl-converse: converse(r)^+ = converse(r^+)
apply (safe intro!: equalityI )
apply (frule trancl-type [THEN subsetD])
apply (safe dest!: trancl-converseD intro!: trancl-converseI )
done

lemma converse-trancl-induct [case-names initial step, consumes 1 ]:
[[〈a, b〉:r^+;

∧
y. 〈y, b〉 :r =⇒ P(y);∧

y z. [[〈y, z〉 ∈ r ; 〈z, b〉 ∈ r^+; P(z)]] =⇒ P(y)]]
=⇒ P(a)

apply (drule converseI )
apply (simp (no-asm-use) add: trancl-converse [symmetric])
apply (erule trancl-induct)
apply (auto simp add: trancl-converse)
done

end

12 Well-Founded Recursion
theory WF imports Trancl begin

definition
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wf :: i⇒o where

wf (r) ≡ ∀Z . Z=0 | (∃ x∈Z . ∀ y. 〈y,x〉:r −→ ¬ y ∈ Z )

definition
wf-on :: [i,i]⇒o (‹(‹open-block notation=‹mixfix wf-on››wf [-] ′(- ′))›) where

wf-on(A,r) ≡ wf (r ∩ A∗A)

definition
is-recfun :: [i, i, [i,i]⇒i, i] ⇒o where

is-recfun(r ,a,H ,f ) ≡ (f = (λx∈r−‘‘{a}. H (x, restrict(f , r−‘‘{x}))))

definition
the-recfun :: [i, i, [i,i]⇒i] ⇒i where

the-recfun(r ,a,H ) ≡ (THE f . is-recfun(r ,a,H ,f ))

definition
wftrec :: [i, i, [i,i]⇒i] ⇒i where

wftrec(r ,a,H ) ≡ H (a, the-recfun(r ,a,H ))

definition
wfrec :: [i, i, [i,i]⇒i] ⇒i where

wfrec(r ,a,H ) ≡ wftrec(r^+, a, λx f . H (x, restrict(f ,r−‘‘{x})))

definition
wfrec-on :: [i, i, i, [i,i]⇒i]⇒i (‹(‹open-block notation=‹mixfix wfrec-on››wfrec[-] ′(-,-,- ′))›)
where wfrec[A](r ,a,H ) ≡ wfrec(r ∩ A∗A, a, H )

12.1 Well-Founded Relations
12.1.1 Equivalences between wf and wf-on
lemma wf-imp-wf-on: wf (r) =⇒ wf [A](r)
by (unfold wf-def wf-on-def , force)

lemma wf-on-imp-wf : [[wf [A](r); r ⊆ A∗A]] =⇒ wf (r)
by (simp add: wf-on-def subset-Int-iff )

lemma wf-on-field-imp-wf : wf [field(r)](r) =⇒ wf (r)
by (unfold wf-def wf-on-def , fast)

lemma wf-iff-wf-on-field: wf (r) ←→ wf [field(r)](r)
by (blast intro: wf-imp-wf-on wf-on-field-imp-wf )

lemma wf-on-subset-A: [[wf [A](r); B<=A]] =⇒ wf [B](r)
by (unfold wf-on-def wf-def , fast)

lemma wf-on-subset-r : [[wf [A](r); s<=r ]] =⇒ wf [A](s)
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by (unfold wf-on-def wf-def , fast)

lemma wf-subset: [[wf (s); r<=s]] =⇒ wf (r)
by (simp add: wf-def , fast)

12.1.2 Introduction Rules for wf-on

If every non-empty subset of A has an r-minimal element then we have
wf [A](r).
lemma wf-onI :
assumes prem:

∧
Z u. [[Z<=A; u ∈ Z ; ∀ x∈Z . ∃ y∈Z . 〈y,x〉:r ]] =⇒ False

shows wf [A](r)
unfolding wf-on-def wf-def

apply (rule equals0I [THEN disjCI , THEN allI ])
apply (rule-tac Z = Z in prem, blast+)
done

If r allows well-founded induction over A then we have wf [A](r). Premise
is equivalent to

∧
B. ∀ x∈A. (∀ y. 〈y, x〉 ∈ r −→ y ∈ B) −→ x ∈ B =⇒ A

⊆ B
lemma wf-onI2 :
assumes prem:

∧
y B. [[∀ x∈A. (∀ y∈A. 〈y,x〉:r −→ y ∈ B) −→ x ∈ B; y ∈ A]]
=⇒ y ∈ B

shows wf [A](r)
apply (rule wf-onI )
apply (rule-tac c=u in prem [THEN DiffE ])

prefer 3 apply blast
apply fast+

done

12.1.3 Well-founded Induction

Consider the least z in domain(r) such that P(z) does not hold...
lemma wf-induct-raw:

[[wf (r);∧
x.[[∀ y. 〈y,x〉: r −→ P(y)]] =⇒ P(x)]]

=⇒ P(a)
unfolding wf-def

apply (erule-tac x = {z ∈ domain(r). ¬ P(z)} in allE)
apply blast
done

lemmas wf-induct = wf-induct-raw [rule-format, consumes 1 , case-names step,
induct set: wf ]

The form of this rule is designed to match wfI
lemma wf-induct2 :
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[[wf (r); a ∈ A; field(r)<=A;∧
x.[[x ∈ A; ∀ y. 〈y,x〉: r −→ P(y)]] =⇒ P(x)]]

=⇒ P(a)
apply (erule-tac P=a ∈ A in rev-mp)
apply (erule-tac a=a in wf-induct, blast)
done

lemma field-Int-square: field(r ∩ A∗A) ⊆ A
by blast

lemma wf-on-induct-raw [consumes 2 , induct set: wf-on]:
[[wf [A](r); a ∈ A;∧

x.[[x ∈ A; ∀ y∈A. 〈y,x〉: r −→ P(y)]] =⇒ P(x)
]] =⇒ P(a)

unfolding wf-on-def
apply (erule wf-induct2 , assumption)
apply (rule field-Int-square, blast)
done

lemma wf-on-induct [consumes 2 , case-names step, induct set: wf-on]:
wf [A](r) =⇒ a ∈ A =⇒ (

∧
x. x ∈ A =⇒ (

∧
y. y ∈ A =⇒ 〈y, x〉 ∈ r =⇒ P(y))

=⇒ P(x)) =⇒ P(a)
using wf-on-induct-raw [of A r a P] by simp

If r allows well-founded induction then we have wf (r).
lemma wfI :

[[field(r)<=A;∧
y B. [[∀ x∈A. (∀ y∈A. 〈y,x〉:r −→ y ∈ B) −→ x ∈ B; y ∈ A]]

=⇒ y ∈ B]]
=⇒ wf (r)

apply (rule wf-on-subset-A [THEN wf-on-field-imp-wf ])
apply (rule wf-onI2 )
prefer 2 apply blast

apply blast
done

12.2 Basic Properties of Well-Founded Relations
lemma wf-not-refl: wf (r) =⇒ 〈a,a〉 /∈ r
by (erule-tac a=a in wf-induct, blast)

lemma wf-not-sym [rule-format]: wf (r) =⇒ ∀ x. 〈a,x〉:r −→ 〈x,a〉 /∈ r
by (erule-tac a=a in wf-induct, blast)

lemmas wf-asym = wf-not-sym [THEN swap]

lemma wf-on-not-refl: [[wf [A](r); a ∈ A]] =⇒ 〈a,a〉 /∈ r
by (erule-tac a=a in wf-on-induct, assumption, blast)
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lemma wf-on-not-sym:
[[wf [A](r); a ∈ A]] =⇒ (

∧
b. b∈A =⇒ 〈a,b〉:r =⇒ 〈b,a〉/∈r)

apply (atomize (full), intro impI )
apply (erule-tac a=a in wf-on-induct, assumption, blast)
done

lemma wf-on-asym:
[[wf [A](r); ¬Z =⇒ 〈a,b〉 ∈ r ;
〈b,a〉 /∈ r =⇒ Z ; ¬Z =⇒ a ∈ A; ¬Z =⇒ b ∈ A]] =⇒ Z

by (blast dest: wf-on-not-sym)

lemma wf-on-chain3 :
[[wf [A](r); 〈a,b〉:r ; 〈b,c〉:r ; 〈c,a〉:r ; a ∈ A; b ∈ A; c ∈ A]] =⇒ P

apply (subgoal-tac ∀ y∈A. ∀ z∈A. 〈a,y〉:r −→ 〈y,z〉:r −→ 〈z,a〉:r −→ P,
blast)

apply (erule-tac a=a in wf-on-induct, assumption, blast)
done

transitive closure of a WF relation is WF provided A is downward closed
lemma wf-on-trancl:

[[wf [A](r); r−‘‘A ⊆ A]] =⇒ wf [A](r^+)
apply (rule wf-onI2 )
apply (frule bspec [THEN mp], assumption+)
apply (erule-tac a = y in wf-on-induct, assumption)
apply (blast elim: tranclE , blast)
done

lemma wf-trancl: wf (r) =⇒ wf (r^+)
apply (simp add: wf-iff-wf-on-field)
apply (rule wf-on-subset-A)
apply (erule wf-on-trancl)
apply blast

apply (rule trancl-type [THEN field-rel-subset])
done

r −‘‘ {a} is the set of everything under a in r
lemmas underI = vimage-singleton-iff [THEN iffD2 ]
lemmas underD = vimage-singleton-iff [THEN iffD1 ]

12.3 The Predicate is-recfun
lemma is-recfun-type: is-recfun(r ,a,H ,f ) =⇒ f ∈ r−‘‘{a} −> range(f )

unfolding is-recfun-def
apply (erule ssubst)
apply (rule lamI [THEN rangeI , THEN lam-type], assumption)
done
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lemmas is-recfun-imp-function = is-recfun-type [THEN fun-is-function]

lemma apply-recfun:
[[is-recfun(r ,a,H ,f ); 〈x,a〉:r ]] =⇒ f‘x = H (x, restrict(f ,r−‘‘{x}))

unfolding is-recfun-def

replace f only on the left-hand side
apply (erule-tac P = λx. t(x) = u for t u in ssubst)
apply (simp add: underI )
done

lemma is-recfun-equal [rule-format]:
[[wf (r); trans(r); is-recfun(r ,a,H ,f ); is-recfun(r ,b,H ,g)]]
=⇒ 〈x,a〉:r −→ 〈x,b〉:r −→ f‘x=g‘x

apply (frule-tac f = f in is-recfun-type)
apply (frule-tac f = g in is-recfun-type)
apply (simp add: is-recfun-def )
apply (erule-tac a=x in wf-induct)
apply (intro impI )
apply (elim ssubst)
apply (simp (no-asm-simp) add: vimage-singleton-iff restrict-def )
apply (rule-tac t = λz. H (x, z) for x in subst-context)
apply (subgoal-tac ∀ y∈r−‘‘{x}. ∀ z. 〈y,z〉:f ←→ 〈y,z〉:g)
apply (blast dest: transD)

apply (simp add: apply-iff )
apply (blast dest: transD intro: sym)
done

lemma is-recfun-cut:
[[wf (r); trans(r);

is-recfun(r ,a,H ,f ); is-recfun(r ,b,H ,g); 〈b,a〉:r ]]
=⇒ restrict(f , r−‘‘{b}) = g

apply (frule-tac f = f in is-recfun-type)
apply (rule fun-extension)

apply (blast dest: transD intro: restrict-type2 )
apply (erule is-recfun-type, simp)

apply (blast dest: transD intro: is-recfun-equal)
done

12.4 Recursion: Main Existence Lemma
lemma is-recfun-functional:

[[wf (r); trans(r); is-recfun(r ,a,H ,f ); is-recfun(r ,a,H ,g)]] =⇒ f=g
by (blast intro: fun-extension is-recfun-type is-recfun-equal)

lemma the-recfun-eq:
[[is-recfun(r ,a,H ,f ); wf (r); trans(r)]] =⇒ the-recfun(r ,a,H ) = f

unfolding the-recfun-def
apply (blast intro: is-recfun-functional)
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done

lemma is-the-recfun:
[[is-recfun(r ,a,H ,f ); wf (r); trans(r)]]
=⇒ is-recfun(r , a, H , the-recfun(r ,a,H ))

by (simp add: the-recfun-eq)

lemma unfold-the-recfun:
[[wf (r); trans(r)]] =⇒ is-recfun(r , a, H , the-recfun(r ,a,H ))

apply (rule-tac a=a in wf-induct, assumption)
apply (rename-tac a1 )
apply (rule-tac f = λy∈r−‘‘{a1}. wftrec (r ,y,H ) in is-the-recfun)

apply typecheck
unfolding is-recfun-def wftrec-def
— Applying the substitution: must keep the quantified assumption!

apply (rule lam-cong [OF refl])
apply (drule underD)
apply (fold is-recfun-def )
apply (rule-tac t = λz. H (x, z) for x in subst-context)
apply (rule fun-extension)

apply (blast intro: is-recfun-type)
apply (rule lam-type [THEN restrict-type2 ])
apply blast

apply (blast dest: transD)
apply atomize
apply (frule spec [THEN mp], assumption)
apply (subgoal-tac 〈xa,a1 〉 ∈ r)
apply (drule-tac x1 = xa in spec [THEN mp], assumption)

apply (simp add: vimage-singleton-iff
apply-recfun is-recfun-cut)

apply (blast dest: transD)
done

12.5 Unfolding wftrec(r , a, H )

lemma the-recfun-cut:
[[wf (r); trans(r); 〈b,a〉:r ]]
=⇒ restrict(the-recfun(r ,a,H ), r−‘‘{b}) = the-recfun(r ,b,H )

by (blast intro: is-recfun-cut unfold-the-recfun)

lemma wftrec:
[[wf (r); trans(r)]] =⇒

wftrec(r ,a,H ) = H (a, λx∈r−‘‘{a}. wftrec(r ,x,H ))
unfolding wftrec-def

apply (subst unfold-the-recfun [unfolded is-recfun-def ])
apply (simp-all add: vimage-singleton-iff [THEN iff-sym] the-recfun-cut)
done
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12.5.1 Removal of the Premise trans(r)
lemma wfrec:

wf (r) =⇒ wfrec(r ,a,H ) = H (a, λx∈r−‘‘{a}. wfrec(r ,x,H ))
unfolding wfrec-def

apply (erule wf-trancl [THEN wftrec, THEN ssubst])
apply (rule trans-trancl)

apply (rule vimage-pair-mono [THEN restrict-lam-eq, THEN subst-context])
apply (erule r-into-trancl)

apply (rule subset-refl)
done

lemma def-wfrec:
[[
∧

x. h(x)≡wfrec(r ,x,H ); wf (r)]] =⇒
h(a) = H (a, λx∈r−‘‘{a}. h(x))

apply simp
apply (elim wfrec)
done

lemma wfrec-type:
[[wf (r); a ∈ A; field(r)<=A;∧

x u. [[x ∈ A; u ∈ Pi(r−‘‘{x}, B)]] =⇒ H (x,u) ∈ B(x)
]] =⇒ wfrec(r ,a,H ) ∈ B(a)
apply (rule-tac a = a in wf-induct2 , assumption+)
apply (subst wfrec, assumption)
apply (simp add: lam-type underD)
done

lemma wfrec-on:
[[wf [A](r); a ∈ A]] =⇒

wfrec[A](r ,a,H ) = H (a, λx∈(r−‘‘{a}) ∩ A. wfrec[A](r ,x,H ))
unfolding wf-on-def wfrec-on-def

apply (erule wfrec [THEN trans])
apply (simp add: vimage-Int-square)
done

Minimal-element characterization of well-foundedness
lemma wf-eq-minimal: wf (r) ←→ (∀Q x. x ∈ Q −→ (∃ z∈Q. ∀ y. 〈y,z〉:r −→
y /∈Q))

unfolding wf-def by blast

end

13 Transitive Sets and Ordinals
theory Ordinal imports WF Bool equalities begin
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definition
Memrel :: i⇒i where

Memrel(A) ≡ {z∈A∗A . ∃ x y. z=〈x,y〉 ∧ x∈y }

definition
Transset :: i⇒o where

Transset(i) ≡ ∀ x∈i. x<=i

definition
Ord :: i⇒o where

Ord(i) ≡ Transset(i) ∧ (∀ x∈i. Transset(x))

definition
lt :: [i,i] ⇒ o (infixl ‹<› 50 ) where

i<j ≡ i∈j ∧ Ord(j)

definition
Limit :: i⇒o where

Limit(i) ≡ Ord(i) ∧ 0<i ∧ (∀ y. y<i −→ succ(y)<i)

abbreviation
le (infixl ‹≤› 50 ) where
x ≤ y ≡ x < succ(y)

13.1 Rules for Transset
13.1.1 Three Neat Characterisations of Transset
lemma Transset-iff-Pow: Transset(A) <−> A<=Pow(A)
by (unfold Transset-def , blast)

lemma Transset-iff-Union-succ: Transset(A) <−>
⋃
(succ(A)) = A

unfolding Transset-def
apply (blast elim!: equalityE)
done

lemma Transset-iff-Union-subset: Transset(A) <−>
⋃
(A) ⊆ A

by (unfold Transset-def , blast)

13.1.2 Consequences of Downwards Closure
lemma Transset-doubleton-D:

[[Transset(C ); {a,b}: C ]] =⇒ a∈C ∧ b∈C
by (unfold Transset-def , blast)

lemma Transset-Pair-D:
[[Transset(C ); 〈a,b〉∈C ]] =⇒ a∈C ∧ b∈C

apply (simp add: Pair-def )
apply (blast dest: Transset-doubleton-D)
done
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lemma Transset-includes-domain:
[[Transset(C ); A∗B ⊆ C ; b ∈ B]] =⇒ A ⊆ C

by (blast dest: Transset-Pair-D)

lemma Transset-includes-range:
[[Transset(C ); A∗B ⊆ C ; a ∈ A]] =⇒ B ⊆ C

by (blast dest: Transset-Pair-D)

13.1.3 Closure Properties
lemma Transset-0 : Transset(0 )
by (unfold Transset-def , blast)

lemma Transset-Un:
[[Transset(i); Transset(j)]] =⇒ Transset(i ∪ j)

by (unfold Transset-def , blast)

lemma Transset-Int:
[[Transset(i); Transset(j)]] =⇒ Transset(i ∩ j)

by (unfold Transset-def , blast)

lemma Transset-succ: Transset(i) =⇒ Transset(succ(i))
by (unfold Transset-def , blast)

lemma Transset-Pow: Transset(i) =⇒ Transset(Pow(i))
by (unfold Transset-def , blast)

lemma Transset-Union: Transset(A) =⇒ Transset(
⋃

(A))
by (unfold Transset-def , blast)

lemma Transset-Union-family:
[[
∧

i. i∈A =⇒ Transset(i)]] =⇒ Transset(
⋃
(A))

by (unfold Transset-def , blast)

lemma Transset-Inter-family:
[[
∧

i. i∈A =⇒ Transset(i)]] =⇒ Transset(
⋂
(A))

by (unfold Inter-def Transset-def , blast)

lemma Transset-UN :
(
∧

x. x ∈ A =⇒ Transset(B(x))) =⇒ Transset (
⋃

x∈A. B(x))
by (rule Transset-Union-family, auto)

lemma Transset-INT :
(
∧

x. x ∈ A =⇒ Transset(B(x))) =⇒ Transset (
⋂

x∈A. B(x))
by (rule Transset-Inter-family, auto)

13.2 Lemmas for Ordinals
lemma OrdI :
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[[Transset(i);
∧

x. x∈i =⇒ Transset(x)]] =⇒ Ord(i)
by (simp add: Ord-def )

lemma Ord-is-Transset: Ord(i) =⇒ Transset(i)
by (simp add: Ord-def )

lemma Ord-contains-Transset:
[[Ord(i); j∈i]] =⇒ Transset(j)

by (unfold Ord-def , blast)

lemma Ord-in-Ord: [[Ord(i); j∈i]] =⇒ Ord(j)
by (unfold Ord-def Transset-def , blast)

lemma Ord-in-Ord ′: [[j∈i; Ord(i)]] =⇒ Ord(j)
by (blast intro: Ord-in-Ord)

lemmas Ord-succD = Ord-in-Ord [OF - succI1 ]

lemma Ord-subset-Ord: [[Ord(i); Transset(j); j<=i]] =⇒ Ord(j)
by (simp add: Ord-def Transset-def , blast)

lemma OrdmemD: [[j∈i; Ord(i)]] =⇒ j<=i
by (unfold Ord-def Transset-def , blast)

lemma Ord-trans: [[i∈j; j∈k; Ord(k)]] =⇒ i∈k
by (blast dest: OrdmemD)

lemma Ord-succ-subsetI : [[i∈j; Ord(j)]] =⇒ succ(i) ⊆ j
by (blast dest: OrdmemD)

13.3 The Construction of Ordinals: 0, succ, Union
lemma Ord-0 [iff ,TC ]: Ord(0 )
by (blast intro: OrdI Transset-0 )

lemma Ord-succ [TC ]: Ord(i) =⇒ Ord(succ(i))
by (blast intro: OrdI Transset-succ Ord-is-Transset Ord-contains-Transset)

lemmas Ord-1 = Ord-0 [THEN Ord-succ]

lemma Ord-succ-iff [iff ]: Ord(succ(i)) <−> Ord(i)
by (blast intro: Ord-succ dest!: Ord-succD)

lemma Ord-Un [intro,simp,TC ]: [[Ord(i); Ord(j)]] =⇒ Ord(i ∪ j)
unfolding Ord-def

apply (blast intro!: Transset-Un)
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done

lemma Ord-Int [TC ]: [[Ord(i); Ord(j)]] =⇒ Ord(i ∩ j)
unfolding Ord-def

apply (blast intro!: Transset-Int)
done

There is no set of all ordinals, for then it would contain itself
lemma ON-class: ¬ (∀ i. i∈X <−> Ord(i))
proof (rule notI )

assume X : ∀ i. i ∈ X ←→ Ord(i)
have ∀ x y. x∈X −→ y∈x −→ y∈X

by (simp add: X , blast intro: Ord-in-Ord)
hence Transset(X)

by (auto simp add: Transset-def )
moreover have

∧
x. x ∈ X =⇒ Transset(x)

by (simp add: X Ord-def )
ultimately have Ord(X) by (rule OrdI )
hence X ∈ X by (simp add: X)
thus False by (rule mem-irrefl)

qed

13.4 < is ’less Than’ for Ordinals
lemma ltI : [[i∈j; Ord(j)]] =⇒ i<j
by (unfold lt-def , blast)

lemma ltE :
[[i<j; [[i∈j; Ord(i); Ord(j)]] =⇒ P]] =⇒ P

unfolding lt-def
apply (blast intro: Ord-in-Ord)
done

lemma ltD: i<j =⇒ i∈j
by (erule ltE , assumption)

lemma not-lt0 [simp]: ¬ i<0
by (unfold lt-def , blast)

lemma lt-Ord: j<i =⇒ Ord(j)
by (erule ltE , assumption)

lemma lt-Ord2 : j<i =⇒ Ord(i)
by (erule ltE , assumption)

lemmas le-Ord2 = lt-Ord2 [THEN Ord-succD]
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lemmas lt0E = not-lt0 [THEN notE , elim!]

lemma lt-trans [trans]: [[i<j; j<k]] =⇒ i<k
by (blast intro!: ltI elim!: ltE intro: Ord-trans)

lemma lt-not-sym: i<j =⇒ ¬ (j<i)
unfolding lt-def

apply (blast elim: mem-asym)
done

lemmas lt-asym = lt-not-sym [THEN swap]

lemma lt-irrefl [elim!]: i<i =⇒ P
by (blast intro: lt-asym)

lemma lt-not-refl: ¬ i<i
apply (rule notI )
apply (erule lt-irrefl)
done

Recall that i ≤ j abbreviates i ≤ j!
lemma le-iff : i ≤ j <−> i<j | (i=j ∧ Ord(j))
by (unfold lt-def , blast)

lemma leI : i<j =⇒ i ≤ j
by (simp add: le-iff )

lemma le-eqI : [[i=j; Ord(j)]] =⇒ i ≤ j
by (simp add: le-iff )

lemmas le-refl = refl [THEN le-eqI ]

lemma le-refl-iff [iff ]: i ≤ i <−> Ord(i)
by (simp (no-asm-simp) add: lt-not-refl le-iff )

lemma leCI : (¬ (i=j ∧ Ord(j)) =⇒ i<j) =⇒ i ≤ j
by (simp add: le-iff , blast)

lemma leE :
[[i ≤ j; i<j =⇒ P; [[i=j; Ord(j)]] =⇒ P]] =⇒ P

by (simp add: le-iff , blast)

lemma le-anti-sym: [[i ≤ j; j ≤ i]] =⇒ i=j
apply (simp add: le-iff )
apply (blast elim: lt-asym)
done
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lemma le0-iff [simp]: i ≤ 0 <−> i=0
by (blast elim!: leE)

lemmas le0D = le0-iff [THEN iffD1 , dest!]

13.5 Natural Deduction Rules for Memrel
lemma Memrel-iff [simp]: 〈a,b〉 ∈ Memrel(A) <−> a∈b ∧ a∈A ∧ b∈A
by (unfold Memrel-def , blast)

lemma MemrelI [intro!]: [[a ∈ b; a ∈ A; b ∈ A]] =⇒ 〈a,b〉 ∈ Memrel(A)
by auto

lemma MemrelE [elim!]:
[[〈a,b〉 ∈ Memrel(A);

[[a ∈ A; b ∈ A; a∈b]] =⇒ P]]
=⇒ P

by auto

lemma Memrel-type: Memrel(A) ⊆ A∗A
by (unfold Memrel-def , blast)

lemma Memrel-mono: A<=B =⇒ Memrel(A) ⊆ Memrel(B)
by (unfold Memrel-def , blast)

lemma Memrel-0 [simp]: Memrel(0 ) = 0
by (unfold Memrel-def , blast)

lemma Memrel-1 [simp]: Memrel(1 ) = 0
by (unfold Memrel-def , blast)

lemma relation-Memrel: relation(Memrel(A))
by (simp add: relation-def Memrel-def )

lemma wf-Memrel: wf (Memrel(A))
unfolding wf-def

apply (rule foundation [THEN disjE , THEN allI ], erule disjI1 , blast)
done

The premise Ord(i) does not suffice.
lemma trans-Memrel:

Ord(i) =⇒ trans(Memrel(i))
by (unfold Ord-def Transset-def trans-def , blast)

However, the following premise is strong enough.
lemma Transset-trans-Memrel:
∀ j∈i. Transset(j) =⇒ trans(Memrel(i))

by (unfold Transset-def trans-def , blast)
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lemma Transset-Memrel-iff :
Transset(A) =⇒ 〈a,b〉 ∈ Memrel(A) <−> a∈b ∧ b∈A

by (unfold Transset-def , blast)

13.6 Transfinite Induction
lemma Transset-induct:

[[i ∈ k; Transset(k);∧
x.[[x ∈ k; ∀ y∈x. P(y)]] =⇒ P(x)]]

=⇒ P(i)
apply (simp add: Transset-def )
apply (erule wf-Memrel [THEN wf-induct2 ], blast+)
done

lemma Ord-induct [consumes 2 ]:
i ∈ k =⇒ Ord(k) =⇒ (

∧
x. x ∈ k =⇒ (

∧
y. y ∈ x =⇒ P(y)) =⇒ P(x)) =⇒ P(i)

using Transset-induct [OF - Ord-is-Transset, of i k P] by simp

lemma trans-induct [consumes 1 , case-names step]:
Ord(i) =⇒ (

∧
x. Ord(x) =⇒ (

∧
y. y ∈ x =⇒ P(y)) =⇒ P(x)) =⇒ P(i)

apply (rule Ord-succ [THEN succI1 [THEN Ord-induct]], assumption)
apply (blast intro: Ord-succ [THEN Ord-in-Ord])
done

14 Fundamental properties of the epsilon ordering
(< on ordinals)

14.0.1 Proving That < is a Linear Ordering on the Ordinals
lemma Ord-linear :

Ord(i) =⇒ Ord(j) =⇒ i∈j | i=j | j∈i
proof (induct i arbitrary: j rule: trans-induct)

case (step i)
note step-i = step
show ?case using ‹Ord(j)›

proof (induct j rule: trans-induct)
case (step j)
thus ?case using step-i

by (blast dest: Ord-trans)
qed

qed

The trichotomy law for ordinals
lemma Ord-linear-lt:
assumes o: Ord(i) Ord(j)
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obtains (lt) i<j | (eq) i=j | (gt) j<i
apply (simp add: lt-def )
apply (rule-tac i1=i and j1=j in Ord-linear [THEN disjE ])
apply (blast intro: o)+
done

lemma Ord-linear2 :
assumes o: Ord(i) Ord(j)
obtains (lt) i<j | (ge) j ≤ i

apply (rule-tac i = i and j = j in Ord-linear-lt)
apply (blast intro: leI le-eqI sym o) +
done

lemma Ord-linear-le:
assumes o: Ord(i) Ord(j)
obtains (le) i ≤ j | (ge) j ≤ i

apply (rule-tac i = i and j = j in Ord-linear-lt)
apply (blast intro: leI le-eqI o) +
done

lemma le-imp-not-lt: j ≤ i =⇒ ¬ i<j
by (blast elim!: leE elim: lt-asym)

lemma not-lt-imp-le: [[¬ i<j; Ord(i); Ord(j)]] =⇒ j ≤ i
by (rule-tac i = i and j = j in Ord-linear2 , auto)

14.0.2 Some Rewrite Rules for <, ≤
lemma Ord-mem-iff-lt: Ord(j) =⇒ i∈j <−> i<j
by (unfold lt-def , blast)

lemma not-lt-iff-le: [[Ord(i); Ord(j)]] =⇒ ¬ i<j <−> j ≤ i
by (blast dest: le-imp-not-lt not-lt-imp-le)

lemma not-le-iff-lt: [[Ord(i); Ord(j)]] =⇒ ¬ i ≤ j <−> j<i
by (simp (no-asm-simp) add: not-lt-iff-le [THEN iff-sym])

lemma Ord-0-le: Ord(i) =⇒ 0 ≤ i
by (erule not-lt-iff-le [THEN iffD1 ], auto)

lemma Ord-0-lt: [[Ord(i); i 6=0 ]] =⇒ 0<i
apply (erule not-le-iff-lt [THEN iffD1 ])
apply (rule Ord-0 , blast)
done

lemma Ord-0-lt-iff : Ord(i) =⇒ i 6=0 <−> 0<i
by (blast intro: Ord-0-lt)
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14.1 Results about Less-Than or Equals
lemma zero-le-succ-iff [iff ]: 0 ≤ succ(x) <−> Ord(x)
by (blast intro: Ord-0-le elim: ltE)

lemma subset-imp-le: [[j<=i; Ord(i); Ord(j)]] =⇒ j ≤ i
apply (rule not-lt-iff-le [THEN iffD1 ], assumption+)
apply (blast elim: ltE mem-irrefl)
done

lemma le-imp-subset: i ≤ j =⇒ i<=j
by (blast dest: OrdmemD elim: ltE leE)

lemma le-subset-iff : j ≤ i <−> j<=i ∧ Ord(i) ∧ Ord(j)
by (blast dest: subset-imp-le le-imp-subset elim: ltE)

lemma le-succ-iff : i ≤ succ(j) <−> i ≤ j | i=succ(j) ∧ Ord(i)
apply (simp (no-asm) add: le-iff )
apply blast
done

lemma all-lt-imp-le: [[Ord(i); Ord(j);
∧

x. x<j =⇒ x<i]] =⇒ j ≤ i
by (blast intro: not-lt-imp-le dest: lt-irrefl)

14.1.1 Transitivity Laws
lemma lt-trans1 : [[i ≤ j; j<k]] =⇒ i<k
by (blast elim!: leE intro: lt-trans)

lemma lt-trans2 : [[i<j; j ≤ k]] =⇒ i<k
by (blast elim!: leE intro: lt-trans)

lemma le-trans: [[i ≤ j; j ≤ k]] =⇒ i ≤ k
by (blast intro: lt-trans1 )

lemma succ-leI : i<j =⇒ succ(i) ≤ j
apply (rule not-lt-iff-le [THEN iffD1 ])
apply (blast elim: ltE leE lt-asym)+
done

lemma succ-leE : succ(i) ≤ j =⇒ i<j
apply (rule not-le-iff-lt [THEN iffD1 ])
apply (blast elim: ltE leE lt-asym)+
done

lemma succ-le-iff [iff ]: succ(i) ≤ j <−> i<j
by (blast intro: succ-leI succ-leE)
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lemma succ-le-imp-le: succ(i) ≤ succ(j) =⇒ i ≤ j
by (blast dest!: succ-leE)

lemma lt-subset-trans: [[i ⊆ j; j<k; Ord(i)]] =⇒ i<k
apply (rule subset-imp-le [THEN lt-trans1 ])
apply (blast intro: elim: ltE) +
done

lemma lt-imp-0-lt: j<i =⇒ 0<i
by (blast intro: lt-trans1 Ord-0-le [OF lt-Ord])

lemma succ-lt-iff : succ(i) < j <−> i<j ∧ succ(i) 6= j
apply auto
apply (blast intro: lt-trans le-refl dest: lt-Ord)
apply (frule lt-Ord)
apply (rule not-le-iff-lt [THEN iffD1 ])

apply (blast intro: lt-Ord2 )
apply blast

apply (simp add: lt-Ord lt-Ord2 le-iff )
apply (blast dest: lt-asym)
done

lemma Ord-succ-mem-iff : Ord(j) =⇒ succ(i) ∈ succ(j) <−> i∈j
apply (insert succ-le-iff [of i j])
apply (simp add: lt-def )
done

14.1.2 Union and Intersection
lemma Un-upper1-le: [[Ord(i); Ord(j)]] =⇒ i ≤ i ∪ j
by (rule Un-upper1 [THEN subset-imp-le], auto)

lemma Un-upper2-le: [[Ord(i); Ord(j)]] =⇒ j ≤ i ∪ j
by (rule Un-upper2 [THEN subset-imp-le], auto)

lemma Un-least-lt: [[i<k; j<k]] =⇒ i ∪ j < k
apply (rule-tac i = i and j = j in Ord-linear-le)
apply (auto simp add: Un-commute le-subset-iff subset-Un-iff lt-Ord)
done

lemma Un-least-lt-iff : [[Ord(i); Ord(j)]] =⇒ i ∪ j < k <−> i<k ∧ j<k
apply (safe intro!: Un-least-lt)
apply (rule-tac [2 ] Un-upper2-le [THEN lt-trans1 ])
apply (rule Un-upper1-le [THEN lt-trans1 ], auto)
done

lemma Un-least-mem-iff :
[[Ord(i); Ord(j); Ord(k)]] =⇒ i ∪ j ∈ k <−> i∈k ∧ j∈k
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apply (insert Un-least-lt-iff [of i j k])
apply (simp add: lt-def )
done

lemma Int-greatest-lt: [[i<k; j<k]] =⇒ i ∩ j < k
apply (rule-tac i = i and j = j in Ord-linear-le)
apply (auto simp add: Int-commute le-subset-iff subset-Int-iff lt-Ord)
done

lemma Ord-Un-if :
[[Ord(i); Ord(j)]] =⇒ i ∪ j = (if j<i then i else j)

by (simp add: not-lt-iff-le le-imp-subset leI
subset-Un-iff [symmetric] subset-Un-iff2 [symmetric])

lemma succ-Un-distrib:
[[Ord(i); Ord(j)]] =⇒ succ(i ∪ j) = succ(i) ∪ succ(j)

by (simp add: Ord-Un-if lt-Ord le-Ord2 )

lemma lt-Un-iff :
[[Ord(i); Ord(j)]] =⇒ k < i ∪ j <−> k < i | k < j

apply (simp add: Ord-Un-if not-lt-iff-le)
apply (blast intro: leI lt-trans2 )+
done

lemma le-Un-iff :
[[Ord(i); Ord(j)]] =⇒ k ≤ i ∪ j <−> k ≤ i | k ≤ j

by (simp add: succ-Un-distrib lt-Un-iff [symmetric])

lemma Un-upper1-lt: [[k < i; Ord(j)]] =⇒ k < i ∪ j
by (simp add: lt-Un-iff lt-Ord2 )

lemma Un-upper2-lt: [[k < j; Ord(i)]] =⇒ k < i ∪ j
by (simp add: lt-Un-iff lt-Ord2 )

lemma Ord-Union-succ-eq: Ord(i) =⇒
⋃
(succ(i)) = i

by (blast intro: Ord-trans)

14.2 Results about Limits
lemma Ord-Union [intro,simp,TC ]: [[

∧
i. i∈A =⇒ Ord(i)]] =⇒ Ord(

⋃
(A))

apply (rule Ord-is-Transset [THEN Transset-Union-family, THEN OrdI ])
apply (blast intro: Ord-contains-Transset)+
done

lemma Ord-UN [intro,simp,TC ]:
[[
∧

x. x∈A =⇒ Ord(B(x))]] =⇒ Ord(
⋃

x∈A. B(x))
by (rule Ord-Union, blast)
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lemma Ord-Inter [intro,simp,TC ]:
[[
∧

i. i∈A =⇒ Ord(i)]] =⇒ Ord(
⋂

(A))
apply (rule Transset-Inter-family [THEN OrdI ])
apply (blast intro: Ord-is-Transset)
apply (simp add: Inter-def )
apply (blast intro: Ord-contains-Transset)
done

lemma Ord-INT [intro,simp,TC ]:
[[
∧

x. x∈A =⇒ Ord(B(x))]] =⇒ Ord(
⋂

x∈A. B(x))
by (rule Ord-Inter , blast)

lemma UN-least-le:
[[Ord(i);

∧
x. x∈A =⇒ b(x) ≤ i]] =⇒ (

⋃
x∈A. b(x)) ≤ i

apply (rule le-imp-subset [THEN UN-least, THEN subset-imp-le])
apply (blast intro: Ord-UN elim: ltE)+
done

lemma UN-succ-least-lt:
[[j<i;

∧
x. x∈A =⇒ b(x)<j]] =⇒ (

⋃
x∈A. succ(b(x))) < i

apply (rule ltE , assumption)
apply (rule UN-least-le [THEN lt-trans2 ])
apply (blast intro: succ-leI )+
done

lemma UN-upper-lt:
[[a∈A; i < b(a); Ord(

⋃
x∈A. b(x))]] =⇒ i < (

⋃
x∈A. b(x))

by (unfold lt-def , blast)

lemma UN-upper-le:
[[a ∈ A; i ≤ b(a); Ord(

⋃
x∈A. b(x))]] =⇒ i ≤ (

⋃
x∈A. b(x))

apply (frule ltD)
apply (rule le-imp-subset [THEN subset-trans, THEN subset-imp-le])
apply (blast intro: lt-Ord UN-upper)+
done

lemma lt-Union-iff : ∀ i∈A. Ord(i) =⇒ (j <
⋃

(A)) <−> (∃ i∈A. j<i)
by (auto simp: lt-def Ord-Union)

lemma Union-upper-le:
[[j ∈ J ; i≤j; Ord(

⋃
(J ))]] =⇒ i ≤

⋃
J

apply (subst Union-eq-UN )
apply (rule UN-upper-le, auto)
done

lemma le-implies-UN-le-UN :
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[[
∧

x. x∈A =⇒ c(x) ≤ d(x)]] =⇒ (
⋃

x∈A. c(x)) ≤ (
⋃

x∈A. d(x))
apply (rule UN-least-le)
apply (rule-tac [2 ] UN-upper-le)
apply (blast intro: Ord-UN le-Ord2 )+
done

lemma Ord-equality: Ord(i) =⇒ (
⋃

y∈i. succ(y)) = i
by (blast intro: Ord-trans)

lemma Ord-Union-subset: Ord(i) =⇒
⋃
(i) ⊆ i

by (blast intro: Ord-trans)

14.3 Limit Ordinals – General Properties
lemma Limit-Union-eq: Limit(i) =⇒

⋃
(i) = i

unfolding Limit-def
apply (fast intro!: ltI elim!: ltE elim: Ord-trans)
done

lemma Limit-is-Ord: Limit(i) =⇒ Ord(i)
unfolding Limit-def

apply (erule conjunct1 )
done

lemma Limit-has-0 : Limit(i) =⇒ 0 < i
unfolding Limit-def

apply (erule conjunct2 [THEN conjunct1 ])
done

lemma Limit-nonzero: Limit(i) =⇒ i 6= 0
by (drule Limit-has-0 , blast)

lemma Limit-has-succ: [[Limit(i); j<i]] =⇒ succ(j) < i
by (unfold Limit-def , blast)

lemma Limit-succ-lt-iff [simp]: Limit(i) =⇒ succ(j) < i <−> (j<i)
apply (safe intro!: Limit-has-succ)
apply (frule lt-Ord)
apply (blast intro: lt-trans)
done

lemma zero-not-Limit [iff ]: ¬ Limit(0 )
by (simp add: Limit-def )

lemma Limit-has-1 : Limit(i) =⇒ 1 < i
by (blast intro: Limit-has-0 Limit-has-succ)

lemma increasing-LimitI : [[0<l; ∀ x∈l. ∃ y∈l. x<y]] =⇒ Limit(l)

127



apply (unfold Limit-def , simp add: lt-Ord2 , clarify)
apply (drule-tac i=y in ltD)
apply (blast intro: lt-trans1 [OF - ltI ] lt-Ord2 )
done

lemma non-succ-LimitI :
assumes i: 0<i and nsucc:

∧
y. succ(y) 6= i

shows Limit(i)
proof −

have Oi: Ord(i) using i by (simp add: lt-def )
{ fix y

assume yi: y<i
hence Osy: Ord(succ(y)) by (simp add: lt-Ord Ord-succ)
have ¬ i ≤ y using yi by (blast dest: le-imp-not-lt)
hence succ(y) < i using nsucc [of y]

by (blast intro: Ord-linear-lt [OF Osy Oi]) }
thus ?thesis using i Oi by (auto simp add: Limit-def )

qed

lemma succ-LimitE [elim!]: Limit(succ(i)) =⇒ P
apply (rule lt-irrefl)
apply (rule Limit-has-succ, assumption)
apply (erule Limit-is-Ord [THEN Ord-succD, THEN le-refl])
done

lemma not-succ-Limit [simp]: ¬ Limit(succ(i))
by blast

lemma Limit-le-succD: [[Limit(i); i ≤ succ(j)]] =⇒ i ≤ j
by (blast elim!: leE)

14.3.1 Traditional 3-Way Case Analysis on Ordinals
lemma Ord-cases-disj: Ord(i) =⇒ i=0 | (∃ j. Ord(j) ∧ i=succ(j)) | Limit(i)
by (blast intro!: non-succ-LimitI Ord-0-lt)

lemma Ord-cases:
assumes i: Ord(i)
obtains (0 ) i=0 | (succ) j where Ord(j) i=succ(j) | (limit) Limit(i)

by (insert Ord-cases-disj [OF i], auto)

lemma trans-induct3-raw:
[[Ord(i);

P(0 );∧
x. [[Ord(x); P(x)]] =⇒ P(succ(x));∧
x. [[Limit(x); ∀ y∈x. P(y)]] =⇒ P(x)

]] =⇒ P(i)
apply (erule trans-induct)
apply (erule Ord-cases, blast+)
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done

lemma trans-induct3 [case-names 0 succ limit, consumes 1 ]:
Ord(i) =⇒ P(0 ) =⇒ (

∧
x. Ord(x) =⇒ P(x) =⇒ P(succ(x))) =⇒ (

∧
x. Limit(x)

=⇒ (
∧

y. y ∈ x =⇒ P(y)) =⇒ P(x)) =⇒ P(i)
using trans-induct3-raw [of i P] by simp

A set of ordinals is either empty, contains its own union, or its union is a
limit ordinal.
lemma Union-le: [[

∧
x. x∈I =⇒ x≤j; Ord(j)]] =⇒

⋃
(I ) ≤ j

by (auto simp add: le-subset-iff Union-least)

lemma Ord-set-cases:
assumes I : ∀ i∈I . Ord(i)
shows I=0 ∨

⋃
(I ) ∈ I ∨ (

⋃
(I ) /∈ I ∧ Limit(

⋃
(I )))

proof (cases
⋃

(I ) rule: Ord-cases)
show Ord(

⋃
I ) using I by (blast intro: Ord-Union)

next
assume

⋃
I = 0 thus ?thesis by (simp, blast intro: subst-elem)

next
fix j
assume j: Ord(j) and UIj:

⋃
(I ) = succ(j)

{ assume ∀ i∈I . i≤j
hence

⋃
(I ) ≤ j

by (simp add: Union-le j)
hence False

by (simp add: UIj lt-not-refl) }
then obtain i where i: i ∈ I succ(j) ≤ i using I j

by (atomize, auto simp add: not-le-iff-lt)
have

⋃
(I ) ≤ succ(j) using UIj j by auto

hence i ≤ succ(j) using i
by (simp add: le-subset-iff Union-subset-iff )

hence succ(j) = i using i
by (blast intro: le-anti-sym)

hence succ(j) ∈ I by (simp add: i)
thus ?thesis by (simp add: UIj)

next
assume Limit(

⋃
I ) thus ?thesis by auto

qed

If the union of a set of ordinals is a successor, then it is an element of that
set.
lemma Ord-Union-eq-succD: [[∀ x∈X . Ord(x);

⋃
X = succ(j)]] =⇒ succ(j) ∈ X

by (drule Ord-set-cases, auto)

lemma Limit-Union [rule-format]: [[I 6= 0 ; (
∧

i. i∈I =⇒ Limit(i))]] =⇒ Limit(
⋃

I )
apply (simp add: Limit-def lt-def )
apply (blast intro!: equalityI )
done
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end

15 Special quantifiers
theory OrdQuant imports Ordinal begin

15.1 Quantifiers and union operator for ordinals
definition

oall :: [i, i ⇒ o] ⇒ o where
oall(A, P) ≡ ∀ x. x<A −→ P(x)

definition
oex :: [i, i ⇒ o] ⇒ o where

oex(A, P) ≡ ∃ x. x<A ∧ P(x)

definition

OUnion :: [i, i ⇒ i] ⇒ i where
OUnion(i,B) ≡ {z:

⋃
x∈i. B(x). Ord(i)}

syntax
-oall :: [idt, i, o] ⇒ o (‹(‹indent=3 notation=‹binder ∀<››∀ -<-./ -)› 10 )
-oex :: [idt, i, o] ⇒ o (‹(‹indent=3 notation=‹binder ∃<››∃ -<-./ -)› 10 )
-OUNION :: [idt, i, i] ⇒ i (‹(‹indent=3 notation=‹binder

⋃
<››

⋃
-<-./ -)›

10 )
syntax-consts

-oall 
 oall and
-oex 
 oex and
-OUNION 
 OUnion

translations
∀ x<a. P 
 CONST oall(a, λx. P)
∃ x<a. P 
 CONST oex(a, λx. P)⋃

x<a. B 
 CONST OUnion(a, λx. B)

15.1.1 simplification of the new quantifiers
lemma [simp]: (∀ x<0 . P(x))
by (simp add: oall-def )

lemma [simp]: ¬(∃ x<0 . P(x))
by (simp add: oex-def )

lemma [simp]: (∀ x<succ(i). P(x)) <−> (Ord(i) −→ P(i) ∧ (∀ x<i. P(x)))
apply (simp add: oall-def le-iff )
apply (blast intro: lt-Ord2 )
done
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lemma [simp]: (∃ x<succ(i). P(x)) <−> (Ord(i) ∧ (P(i) | (∃ x<i. P(x))))
apply (simp add: oex-def le-iff )
apply (blast intro: lt-Ord2 )
done

15.1.2 Union over ordinals
lemma Ord-OUN [intro,simp]:

[[
∧

x. x<A =⇒ Ord(B(x))]] =⇒ Ord(
⋃

x<A. B(x))
by (simp add: OUnion-def ltI Ord-UN )

lemma OUN-upper-lt:
[[a<A; i < b(a); Ord(

⋃
x<A. b(x))]] =⇒ i < (

⋃
x<A. b(x))

by (unfold OUnion-def lt-def , blast )

lemma OUN-upper-le:
[[a<A; i≤b(a); Ord(

⋃
x<A. b(x))]] =⇒ i ≤ (

⋃
x<A. b(x))

apply (unfold OUnion-def , auto)
apply (rule UN-upper-le )
apply (auto simp add: lt-def )
done

lemma Limit-OUN-eq: Limit(i) =⇒ (
⋃

x<i. x) = i
by (simp add: OUnion-def Limit-Union-eq Limit-is-Ord)

lemma OUN-least:
(
∧

x. x<A =⇒ B(x) ⊆ C ) =⇒ (
⋃

x<A. B(x)) ⊆ C
by (simp add: OUnion-def UN-least ltI )

lemma OUN-least-le:
[[Ord(i);

∧
x. x<A =⇒ b(x) ≤ i]] =⇒ (

⋃
x<A. b(x)) ≤ i

by (simp add: OUnion-def UN-least-le ltI Ord-0-le)

lemma le-implies-OUN-le-OUN :
[[
∧

x. x<A =⇒ c(x) ≤ d(x)]] =⇒ (
⋃

x<A. c(x)) ≤ (
⋃

x<A. d(x))
by (blast intro: OUN-least-le OUN-upper-le le-Ord2 Ord-OUN )

lemma OUN-UN-eq:
(
∧

x. x ∈ A =⇒ Ord(B(x)))
=⇒ (

⋃
z < (

⋃
x∈A. B(x)). C (z)) = (

⋃
x∈A.

⋃
z < B(x). C (z))

by (simp add: OUnion-def )

lemma OUN-Union-eq:
(
∧

x. x ∈ X =⇒ Ord(x))
=⇒ (

⋃
z <

⋃
(X). C (z)) = (

⋃
x∈X .

⋃
z < x. C (z))

by (simp add: OUnion-def )
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lemma atomize-oall [symmetric, rulify]:
(
∧

x. x<A =⇒ P(x)) ≡ Trueprop (∀ x<A. P(x))
by (simp add: oall-def atomize-all atomize-imp)

15.1.3 universal quantifier for ordinals
lemma oallI [intro!]:

[[
∧

x. x<A =⇒ P(x)]] =⇒ ∀ x<A. P(x)
by (simp add: oall-def )

lemma ospec: [[∀ x<A. P(x); x<A]] =⇒ P(x)
by (simp add: oall-def )

lemma oallE :
[[∀ x<A. P(x); P(x) =⇒ Q; ¬x<A =⇒ Q]] =⇒ Q

by (simp add: oall-def , blast)

lemma rev-oallE [elim]:
[[∀ x<A. P(x); ¬x<A =⇒ Q; P(x) =⇒ Q]] =⇒ Q

by (simp add: oall-def , blast)

lemma oall-simp [simp]: (∀ x<a. True) <−> True
by blast

lemma oall-cong [cong]:
[[a=a ′;

∧
x. x<a ′ =⇒ P(x) <−> P ′(x)]]

=⇒ oall(a, λx. P(x)) <−> oall(a ′, λx. P ′(x))
by (simp add: oall-def )

15.1.4 existential quantifier for ordinals
lemma oexI [intro]:

[[P(x); x<A]] =⇒ ∃ x<A. P(x)
apply (simp add: oex-def , blast)
done

lemma oexCI :
[[∀ x<A. ¬P(x) =⇒ P(a); a<A]] =⇒ ∃ x<A. P(x)

apply (simp add: oex-def , blast)
done

lemma oexE [elim!]:
[[∃ x<A. P(x);

∧
x. [[x<A; P(x)]] =⇒ Q]] =⇒ Q

apply (simp add: oex-def , blast)
done
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lemma oex-cong [cong]:
[[a=a ′;

∧
x. x<a ′ =⇒ P(x) <−> P ′(x)]]

=⇒ oex(a, λx. P(x)) <−> oex(a ′, λx. P ′(x))
apply (simp add: oex-def cong add: conj-cong)
done

15.1.5 Rules for Ordinal-Indexed Unions
lemma OUN-I [intro]: [[a<i; b ∈ B(a)]] =⇒ b: (

⋃
z<i. B(z))

by (unfold OUnion-def lt-def , blast)

lemma OUN-E [elim!]:
[[b ∈ (

⋃
z<i. B(z));

∧
a.[[b ∈ B(a); a<i]] =⇒ R]] =⇒ R

apply (unfold OUnion-def lt-def , blast)
done

lemma OUN-iff : b ∈ (
⋃

x<i. B(x)) <−> (∃ x<i. b ∈ B(x))
by (unfold OUnion-def oex-def lt-def , blast)

lemma OUN-cong [cong]:
[[i=j;

∧
x. x<j =⇒ C (x)=D(x)]] =⇒ (

⋃
x<i. C (x)) = (

⋃
x<j. D(x))

by (simp add: OUnion-def lt-def OUN-iff )

lemma lt-induct:
[[i<k;

∧
x.[[x<k; ∀ y<x. P(y)]] =⇒ P(x)]] =⇒ P(i)

apply (simp add: lt-def oall-def )
apply (erule conjE)
apply (erule Ord-induct, assumption, blast)
done

15.2 Quantification over a class
definition

rall :: [i⇒o, i⇒o] ⇒ o where
rall(M , P) ≡ ∀ x. M (x) −→ P(x)

definition
rex :: [i⇒o, i⇒o] ⇒ o where

rex(M , P) ≡ ∃ x. M (x) ∧ P(x)

syntax
-rall :: [pttrn, i⇒o, o] ⇒ o (‹(‹indent=3 notation=‹binder ∀ []››∀ -[-]./ -)›

10 )
-rex :: [pttrn, i⇒o, o] ⇒ o (‹(‹indent=3 notation=‹binder ∃ []››∃ -[-]./ -)›

10 )
syntax-consts

-rall 
 rall and
-rex 
 rex

translations
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∀ x[M ]. P 
 CONST rall(M , λx. P)
∃ x[M ]. P 
 CONST rex(M , λx. P)

15.2.1 Relativized universal quantifier
lemma rallI [intro!]: [[

∧
x. M (x) =⇒ P(x)]] =⇒ ∀ x[M ]. P(x)

by (simp add: rall-def )

lemma rspec: [[∀ x[M ]. P(x); M (x)]] =⇒ P(x)
by (simp add: rall-def )

lemma rev-rallE [elim]:
[[∀ x[M ]. P(x); ¬ M (x) =⇒ Q; P(x) =⇒ Q]] =⇒ Q

by (simp add: rall-def , blast)

lemma rallE : [[∀ x[M ]. P(x); P(x) =⇒ Q; ¬ M (x) =⇒ Q]] =⇒ Q
by blast

lemma rall-triv [simp]: (∀ x[M ]. P) ←→ ((∃ x. M (x)) −→ P)
by (simp add: rall-def )

lemma rall-cong [cong]:
(
∧

x. M (x) =⇒ P(x) <−> P ′(x)) =⇒ (∀ x[M ]. P(x)) <−> (∀ x[M ]. P ′(x))
by (simp add: rall-def )

15.2.2 Relativized existential quantifier
lemma rexI [intro]: [[P(x); M (x)]] =⇒ ∃ x[M ]. P(x)
by (simp add: rex-def , blast)

lemma rev-rexI : [[M (x); P(x)]] =⇒ ∃ x[M ]. P(x)
by blast

lemma rexCI : [[∀ x[M ]. ¬P(x) =⇒ P(a); M (a)]] =⇒ ∃ x[M ]. P(x)
by blast

lemma rexE [elim!]: [[∃ x[M ]. P(x);
∧

x. [[M (x); P(x)]] =⇒ Q]] =⇒ Q
by (simp add: rex-def , blast)

lemma rex-triv [simp]: (∃ x[M ]. P) ←→ ((∃ x. M (x)) ∧ P)
by (simp add: rex-def )

lemma rex-cong [cong]:
(
∧

x. M (x) =⇒ P(x) <−> P ′(x)) =⇒ (∃ x[M ]. P(x)) <−> (∃ x[M ]. P ′(x))
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by (simp add: rex-def cong: conj-cong)

lemma rall-is-ball [simp]: (∀ x[λz. z∈A]. P(x)) <−> (∀ x∈A. P(x))
by blast

lemma rex-is-bex [simp]: (∃ x[λz. z∈A]. P(x)) <−> (∃ x∈A. P(x))
by blast

lemma atomize-rall: (
∧

x. M (x) =⇒ P(x)) ≡ Trueprop (∀ x[M ]. P(x))
by (simp add: rall-def atomize-all atomize-imp)

declare atomize-rall [symmetric, rulify]

lemma rall-simps1 :
(∀ x[M ]. P(x) ∧ Q) <−> (∀ x[M ]. P(x)) ∧ ((∀ x[M ]. False) | Q)
(∀ x[M ]. P(x) | Q) <−> ((∀ x[M ]. P(x)) | Q)
(∀ x[M ]. P(x) −→ Q) <−> ((∃ x[M ]. P(x)) −→ Q)
(¬(∀ x[M ]. P(x))) <−> (∃ x[M ]. ¬P(x))

by blast+

lemma rall-simps2 :
(∀ x[M ]. P ∧ Q(x)) <−> ((∀ x[M ]. False) | P) ∧ (∀ x[M ]. Q(x))
(∀ x[M ]. P | Q(x)) <−> (P | (∀ x[M ]. Q(x)))
(∀ x[M ]. P −→ Q(x)) <−> (P −→ (∀ x[M ]. Q(x)))

by blast+

lemmas rall-simps [simp] = rall-simps1 rall-simps2

lemma rall-conj-distrib:
(∀ x[M ]. P(x) ∧ Q(x)) <−> ((∀ x[M ]. P(x)) ∧ (∀ x[M ]. Q(x)))

by blast

lemma rex-simps1 :
(∃ x[M ]. P(x) ∧ Q) <−> ((∃ x[M ]. P(x)) ∧ Q)
(∃ x[M ]. P(x) | Q) <−> (∃ x[M ]. P(x)) | ((∃ x[M ]. True) ∧ Q)
(∃ x[M ]. P(x) −→ Q) <−> ((∀ x[M ]. P(x)) −→ ((∃ x[M ]. True) ∧ Q))
(¬(∃ x[M ]. P(x))) <−> (∀ x[M ]. ¬P(x))

by blast+

lemma rex-simps2 :
(∃ x[M ]. P ∧ Q(x)) <−> (P ∧ (∃ x[M ]. Q(x)))
(∃ x[M ]. P | Q(x)) <−> ((∃ x[M ]. True) ∧ P) | (∃ x[M ]. Q(x))
(∃ x[M ]. P −→ Q(x)) <−> (((∀ x[M ]. False) | P) −→ (∃ x[M ]. Q(x)))

by blast+

lemmas rex-simps [simp] = rex-simps1 rex-simps2

lemma rex-disj-distrib:
(∃ x[M ]. P(x) | Q(x)) <−> ((∃ x[M ]. P(x)) | (∃ x[M ]. Q(x)))
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by blast

15.2.3 One-point rule for bounded quantifiers
lemma rex-triv-one-point1 [simp]: (∃ x[M ]. x=a) <−> ( M (a))
by blast

lemma rex-triv-one-point2 [simp]: (∃ x[M ]. a=x) <−> ( M (a))
by blast

lemma rex-one-point1 [simp]: (∃ x[M ]. x=a ∧ P(x)) <−> ( M (a) ∧ P(a))
by blast

lemma rex-one-point2 [simp]: (∃ x[M ]. a=x ∧ P(x)) <−> ( M (a) ∧ P(a))
by blast

lemma rall-one-point1 [simp]: (∀ x[M ]. x=a −→ P(x)) <−> ( M (a) −→ P(a))
by blast

lemma rall-one-point2 [simp]: (∀ x[M ]. a=x −→ P(x)) <−> ( M (a) −→ P(a))
by blast

15.2.4 Sets as Classes
definition

setclass :: [i,i] ⇒ o (‹(‹open-block notation=‹prefix setclass››##-)› [40 ] 40 )
where

setclass(A) ≡ λx. x ∈ A

lemma setclass-iff [simp]: setclass(A,x) <−> x ∈ A
by (simp add: setclass-def )

lemma rall-setclass-is-ball [simp]: (∀ x[##A]. P(x)) <−> (∀ x∈A. P(x))
by auto

lemma rex-setclass-is-bex [simp]: (∃ x[##A]. P(x)) <−> (∃ x∈A. P(x))
by auto

ML
‹
val Ord-atomize =
atomize ([(const-name ‹oall›, @{thms ospec}), (const-name ‹rall›, @{thms rspec})]

@
ZF-conn-pairs, ZF-mem-pairs);

›
declaration ‹fn - =>

Simplifier .map-ss (Simplifier .set-mksimps (fn ctxt =>
map mk-eq o Ord-atomize o Variable.gen-all ctxt))

›
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Setting up the one-point-rule simproc
simproc-setup defined-rex (∃ x[M ]. P(x) ∧ Q(x)) = ‹

K (Quantifier1 .rearrange-Bex (fn ctxt => unfold-tac ctxt @{thms rex-def }))
›

simproc-setup defined-rall (∀ x[M ]. P(x) −→ Q(x)) = ‹
K (Quantifier1 .rearrange-Ball (fn ctxt => unfold-tac ctxt @{thms rall-def }))

›

end

16 The Natural numbers As a Least Fixed Point
theory Nat imports OrdQuant Bool begin

definition
nat :: i where

nat ≡ lfp(Inf , λX . {0} ∪ {succ(i). i ∈ X})

definition
quasinat :: i ⇒ o where

quasinat(n) ≡ n=0 | (∃m. n = succ(m))

definition

nat-case :: [i, i⇒i, i]⇒i where
nat-case(a,b,k) ≡ THE y. k=0 ∧ y=a | (∃ x. k=succ(x) ∧ y=b(x))

definition
nat-rec :: [i, i, [i,i]⇒i]⇒i where

nat-rec(k,a,b) ≡
wfrec(Memrel(nat), k, λn f . nat-case(a, λm. b(m, f‘m), n))

definition
Le :: i where

Le ≡ {〈x,y〉:nat∗nat. x ≤ y}

definition
Lt :: i where

Lt ≡ {〈x, y〉:nat∗nat. x < y}

definition
Ge :: i where

Ge ≡ {〈x,y〉:nat∗nat. y ≤ x}

definition
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Gt :: i where
Gt ≡ {〈x,y〉:nat∗nat. y < x}

definition
greater-than :: i⇒i where

greater-than(n) ≡ {i ∈ nat. n < i}

No need for a less-than operator: a natural number is its list of predecessors!
lemma nat-bnd-mono: bnd-mono(Inf , λX . {0} ∪ {succ(i). i ∈ X})
apply (rule bnd-monoI )
apply (cut-tac infinity, blast, blast)
done

lemmas nat-unfold = nat-bnd-mono [THEN nat-def [THEN def-lfp-unfold]]

lemma nat-0I [iff ,TC ]: 0 ∈ nat
apply (subst nat-unfold)
apply (rule singletonI [THEN UnI1 ])
done

lemma nat-succI [intro!,TC ]: n ∈ nat =⇒ succ(n) ∈ nat
apply (subst nat-unfold)
apply (erule RepFunI [THEN UnI2 ])
done

lemma nat-1I [iff ,TC ]: 1 ∈ nat
by (rule nat-0I [THEN nat-succI ])

lemma nat-2I [iff ,TC ]: 2 ∈ nat
by (rule nat-1I [THEN nat-succI ])

lemma bool-subset-nat: bool ⊆ nat
by (blast elim!: boolE)

lemmas bool-into-nat = bool-subset-nat [THEN subsetD]

16.1 Injectivity Properties and Induction
lemma nat-induct [case-names 0 succ, induct set: nat]:

[[n ∈ nat; P(0 );
∧

x. [[x ∈ nat; P(x)]] =⇒ P(succ(x))]] =⇒ P(n)
by (erule def-induct [OF nat-def nat-bnd-mono], blast)

lemma natE :
assumes n ∈ nat
obtains (0 ) n=0 | (succ) x where x ∈ nat n=succ(x)

using assms
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by (rule nat-unfold [THEN equalityD1 , THEN subsetD, THEN UnE ]) auto

lemma nat-into-Ord [simp]: n ∈ nat =⇒ Ord(n)
by (erule nat-induct, auto)

lemmas nat-0-le = nat-into-Ord [THEN Ord-0-le]

lemmas nat-le-refl = nat-into-Ord [THEN le-refl]

lemma Ord-nat [iff ]: Ord(nat)
apply (rule OrdI )
apply (erule-tac [2 ] nat-into-Ord [THEN Ord-is-Transset])

unfolding Transset-def
apply (rule ballI )
apply (erule nat-induct, auto)
done

lemma Limit-nat [iff ]: Limit(nat)
unfolding Limit-def

apply (safe intro!: ltI Ord-nat)
apply (erule ltD)
done

lemma naturals-not-limit: a ∈ nat =⇒ ¬ Limit(a)
by (induct a rule: nat-induct, auto)

lemma succ-natD: succ(i): nat =⇒ i ∈ nat
by (rule Ord-trans [OF succI1 ], auto)

lemma nat-succ-iff [iff ]: succ(n): nat ←→ n ∈ nat
by (blast dest!: succ-natD)

lemma nat-le-Limit: Limit(i) =⇒ nat ≤ i
apply (rule subset-imp-le)
apply (simp-all add: Limit-is-Ord)
apply (rule subsetI )
apply (erule nat-induct)
apply (erule Limit-has-0 [THEN ltD])

apply (blast intro: Limit-has-succ [THEN ltD] ltI Limit-is-Ord)
done

lemmas succ-in-naturalD = Ord-trans [OF succI1 - nat-into-Ord]

lemma lt-nat-in-nat: [[m<n; n ∈ nat]] =⇒ m ∈ nat
apply (erule ltE)
apply (erule Ord-trans, assumption, simp)
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done

lemma le-in-nat: [[m ≤ n; n ∈ nat]] =⇒ m ∈ nat
by (blast dest!: lt-nat-in-nat)

16.2 Variations on Mathematical Induction
lemmas complete-induct = Ord-induct [OF - Ord-nat, case-names less, consumes
1 ]

lemma complete-induct-rule [case-names less, consumes 1 ]:
i ∈ nat =⇒ (

∧
x. x ∈ nat =⇒ (

∧
y. y ∈ x =⇒ P(y)) =⇒ P(x)) =⇒ P(i)

using complete-induct [of i P] by simp

lemma nat-induct-from:
assumes m ≤ n m ∈ nat n ∈ nat

and P(m)
and

∧
x. [[x ∈ nat; m ≤ x; P(x)]] =⇒ P(succ(x))

shows P(n)
proof −

from assms(3 ) have m ≤ n −→ P(m) −→ P(n)
by (rule nat-induct) (use assms(5 ) in ‹simp-all add: distrib-simps le-succ-iff ›)

with assms(1 ,2 ,4 ) show ?thesis by blast
qed

lemma diff-induct [case-names 0 0-succ succ-succ, consumes 2 ]:
[[m ∈ nat; n ∈ nat;∧

x. x ∈ nat =⇒ P(x,0 );∧
y. y ∈ nat =⇒ P(0 ,succ(y));∧
x y. [[x ∈ nat; y ∈ nat; P(x,y)]] =⇒ P(succ(x),succ(y))]]

=⇒ P(m,n)
apply (erule-tac x = m in rev-bspec)
apply (erule nat-induct, simp)
apply (rule ballI )
apply (rename-tac i j)
apply (erule-tac n=j in nat-induct, auto)
done

lemma succ-lt-induct-lemma [rule-format]:
m ∈ nat =⇒ P(m,succ(m)) −→ (∀ x∈nat. P(m,x) −→ P(m,succ(x))) −→

(∀n∈nat. m<n −→ P(m,n))
apply (erule nat-induct)
apply (intro impI , rule nat-induct [THEN ballI ])

prefer 4 apply (intro impI , rule nat-induct [THEN ballI ])
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apply (auto simp add: le-iff )
done

lemma succ-lt-induct:
[[m<n; n ∈ nat;

P(m,succ(m));∧
x. [[x ∈ nat; P(m,x)]] =⇒ P(m,succ(x))]]

=⇒ P(m,n)
by (blast intro: succ-lt-induct-lemma lt-nat-in-nat)

16.3 quasinat: to allow a case-split rule for nat-case

True if the argument is zero or any successor
lemma [iff ]: quasinat(0 )
by (simp add: quasinat-def )

lemma [iff ]: quasinat(succ(x))
by (simp add: quasinat-def )

lemma nat-imp-quasinat: n ∈ nat =⇒ quasinat(n)
by (erule natE , simp-all)

lemma non-nat-case: ¬ quasinat(x) =⇒ nat-case(a,b,x) = 0
by (simp add: quasinat-def nat-case-def )

lemma nat-cases-disj: k=0 | (∃ y. k = succ(y)) | ¬ quasinat(k)
apply (case-tac k=0 , simp)
apply (case-tac ∃m. k = succ(m))
apply (simp-all add: quasinat-def )
done

lemma nat-cases:
[[k=0 =⇒ P;

∧
y. k = succ(y) =⇒ P; ¬ quasinat(k) =⇒ P]] =⇒ P

by (insert nat-cases-disj [of k], blast)

lemma nat-case-0 [simp]: nat-case(a,b,0 ) = a
by (simp add: nat-case-def )

lemma nat-case-succ [simp]: nat-case(a,b,succ(n)) = b(n)
by (simp add: nat-case-def )

lemma nat-case-type [TC ]:
[[n ∈ nat; a ∈ C (0 );

∧
m. m ∈ nat =⇒ b(m): C (succ(m))]]

=⇒ nat-case(a,b,n) ∈ C (n)
by (erule nat-induct, auto)

lemma split-nat-case:
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P(nat-case(a,b,k)) ←→
((k=0 −→ P(a)) ∧ (∀ x. k=succ(x) −→ P(b(x))) ∧ (¬ quasinat(k) −→ P(0 )))

apply (rule nat-cases [of k])
apply (auto simp add: non-nat-case)
done

16.4 Recursion on the Natural Numbers
lemma nat-rec-0 : nat-rec(0 ,a,b) = a
apply (rule nat-rec-def [THEN def-wfrec, THEN trans])
apply (rule wf-Memrel)

apply (rule nat-case-0 )
done

lemma nat-rec-succ: m ∈ nat =⇒ nat-rec(succ(m),a,b) = b(m, nat-rec(m,a,b))
apply (rule nat-rec-def [THEN def-wfrec, THEN trans])
apply (rule wf-Memrel)

apply (simp add: vimage-singleton-iff )
done

lemma Un-nat-type [TC ]: [[i ∈ nat; j ∈ nat]] =⇒ i ∪ j ∈ nat
apply (rule Un-least-lt [THEN ltD])
apply (simp-all add: lt-def )
done

lemma Int-nat-type [TC ]: [[i ∈ nat; j ∈ nat]] =⇒ i ∩ j ∈ nat
apply (rule Int-greatest-lt [THEN ltD])
apply (simp-all add: lt-def )
done

lemma nat-nonempty [simp]: nat 6= 0
by blast

A natural number is the set of its predecessors
lemma nat-eq-Collect-lt: i ∈ nat =⇒ {j∈nat. j<i} = i
apply (rule equalityI )
apply (blast dest: ltD)
apply (auto simp add: Ord-mem-iff-lt)
apply (blast intro: lt-trans)
done

lemma Le-iff [iff ]: 〈x,y〉 ∈ Le ←→ x ≤ y ∧ x ∈ nat ∧ y ∈ nat
by (force simp add: Le-def )

end
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17 Inductive and Coinductive Definitions
theory Inductive
imports Fixedpt QPair Nat
keywords

inductive coinductive inductive-cases rep-datatype primrec :: thy-decl and
domains intros monos con-defs type-intros type-elims

elimination induction case-eqns recursor-eqns :: quasi-command
begin

lemma def-swap-iff : a ≡ b =⇒ a = c ←→ c = b
by blast

lemma def-trans: f ≡ g =⇒ g(a) = b =⇒ f (a) = b
by simp

lemma refl-thin:
∧

P. a = a =⇒ P =⇒ P .

ML-file ‹ind-syntax.ML›
ML-file ‹Tools/ind-cases.ML›
ML-file ‹Tools/cartprod.ML›
ML-file ‹Tools/inductive-package.ML›
ML-file ‹Tools/induct-tacs.ML›
ML-file ‹Tools/primrec-package.ML›

ML ‹
structure Lfp =

struct
val oper = Const ‹lfp›
val bnd-mono = Const ‹bnd-mono›
val bnd-monoI = @{thm bnd-monoI}
val subs = @{thm def-lfp-subset}
val Tarski = @{thm def-lfp-unfold}
val induct = @{thm def-induct}
end;

structure Standard-Prod =
struct
val sigma = Const ‹Sigma›
val pair = Const ‹Pair›
val split-name = const-name ‹split›
val pair-iff = @{thm Pair-iff }
val split-eq = @{thm split}
val fsplitI = @{thm splitI}
val fsplitD = @{thm splitD}
val fsplitE = @{thm splitE}
end;

structure Standard-CP = CartProd-Fun (Standard-Prod);
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structure Standard-Sum =
struct
val sum = Const ‹sum›
val inl = Const ‹Inl›
val inr = Const ‹Inr›
val elim = Const ‹case›
val case-inl = @{thm case-Inl}
val case-inr = @{thm case-Inr}
val inl-iff = @{thm Inl-iff }
val inr-iff = @{thm Inr-iff }
val distinct = @{thm Inl-Inr-iff }
val distinct ′ = @{thm Inr-Inl-iff }
val free-SEs = Ind-Syntax.mk-free-SEs

[distinct, distinct ′, inl-iff , inr-iff , Standard-Prod.pair-iff ]
end;

structure Ind-Package =
Add-inductive-def-Fun
(structure Fp=Lfp and Pr=Standard-Prod and CP=Standard-CP
and Su=Standard-Sum val coind = false);

structure Gfp =
struct
val oper = Const ‹gfp›
val bnd-mono = Const ‹bnd-mono›
val bnd-monoI = @{thm bnd-monoI}
val subs = @{thm def-gfp-subset}
val Tarski = @{thm def-gfp-unfold}
val induct = @{thm def-Collect-coinduct}
end;

structure Quine-Prod =
struct
val sigma = Const ‹QSigma›
val pair = Const ‹QPair›
val split-name = const-name ‹qsplit›
val pair-iff = @{thm QPair-iff }
val split-eq = @{thm qsplit}
val fsplitI = @{thm qsplitI}
val fsplitD = @{thm qsplitD}
val fsplitE = @{thm qsplitE}
end;

structure Quine-CP = CartProd-Fun (Quine-Prod);

structure Quine-Sum =

144



struct
val sum = Const ‹qsum›
val inl = Const ‹QInl›
val inr = Const ‹QInr›
val elim = Const ‹qcase›
val case-inl = @{thm qcase-QInl}
val case-inr = @{thm qcase-QInr}
val inl-iff = @{thm QInl-iff }
val inr-iff = @{thm QInr-iff }
val distinct = @{thm QInl-QInr-iff }
val distinct ′ = @{thm QInr-QInl-iff }
val free-SEs = Ind-Syntax.mk-free-SEs

[distinct, distinct ′, inl-iff , inr-iff , Quine-Prod.pair-iff ]
end;

structure CoInd-Package =
Add-inductive-def-Fun(structure Fp=Gfp and Pr=Quine-Prod and CP=Quine-CP

and Su=Quine-Sum val coind = true);

›

end

18 Epsilon Induction and Recursion
theory Epsilon imports Nat begin

definition
eclose :: i⇒i where

eclose(A) ≡
⋃

n∈nat. nat-rec(n, A, λm r .
⋃
(r))

definition
transrec :: [i, [i,i]⇒i] ⇒i where

transrec(a,H ) ≡ wfrec(Memrel(eclose({a})), a, H )

definition
rank :: i⇒i where

rank(a) ≡ transrec(a, λx f .
⋃

y∈x. succ(f‘y))

definition
transrec2 :: [i, i, [i,i]⇒i] ⇒i where

transrec2 (k, a, b) ≡
transrec(k,

λi r . if (i=0 , a,
if (∃ j. i=succ(j),

b(THE j. i=succ(j), r‘(THE j. i=succ(j))),⋃
j<i. r‘j)))
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definition
recursor :: [i, [i,i]⇒i, i]⇒i where

recursor(a,b,k) ≡ transrec(k, λn f . nat-case(a, λm. b(m, f‘m), n))

definition
rec :: [i, i, [i,i]⇒i]⇒i where

rec(k,a,b) ≡ recursor(a,b,k)

18.1 Basic Closure Properties
lemma arg-subset-eclose: A ⊆ eclose(A)

unfolding eclose-def
apply (rule nat-rec-0 [THEN equalityD2 , THEN subset-trans])
apply (rule nat-0I [THEN UN-upper ])
done

lemmas arg-into-eclose = arg-subset-eclose [THEN subsetD]

lemma Transset-eclose: Transset(eclose(A))
unfolding eclose-def Transset-def

apply (rule subsetI [THEN ballI ])
apply (erule UN-E)
apply (rule nat-succI [THEN UN-I ], assumption)
apply (erule nat-rec-succ [THEN ssubst])
apply (erule UnionI , assumption)
done

lemmas eclose-subset =
Transset-eclose [unfolded Transset-def , THEN bspec]

lemmas ecloseD = eclose-subset [THEN subsetD]

lemmas arg-in-eclose-sing = arg-subset-eclose [THEN singleton-subsetD]
lemmas arg-into-eclose-sing = arg-in-eclose-sing [THEN ecloseD]

lemmas eclose-induct =
Transset-induct [OF - Transset-eclose, induct set: eclose]

lemma eps-induct:
[[
∧

x. ∀ y∈x. P(y) =⇒ P(x)]] =⇒ P(a)
by (rule arg-in-eclose-sing [THEN eclose-induct], blast)

18.2 Leastness of eclose
lemma eclose-least-lemma:

146



[[Transset(X); A<=X ; n ∈ nat]] =⇒ nat-rec(n, A, λm r .
⋃
(r)) ⊆ X

unfolding Transset-def
apply (erule nat-induct)
apply (simp add: nat-rec-0 )
apply (simp add: nat-rec-succ, blast)
done

lemma eclose-least:
[[Transset(X); A<=X ]] =⇒ eclose(A) ⊆ X

unfolding eclose-def
apply (rule eclose-least-lemma [THEN UN-least], assumption+)
done

lemma eclose-induct-down [consumes 1 ]:
[[a ∈ eclose(b);∧

y. [[y ∈ b]] =⇒ P(y);∧
y z. [[y ∈ eclose(b); P(y); z ∈ y]] =⇒ P(z)

]] =⇒ P(a)
apply (rule eclose-least [THEN subsetD, THEN CollectD2 , of eclose(b)])

prefer 3 apply assumption
unfolding Transset-def

apply (blast intro: ecloseD)
apply (blast intro: arg-subset-eclose [THEN subsetD])
done

lemma Transset-eclose-eq-arg: Transset(X) =⇒ eclose(X) = X
apply (erule equalityI [OF eclose-least arg-subset-eclose])
apply (rule subset-refl)
done

A transitive set either is empty or contains the empty set.
lemma Transset-0-lemma [rule-format]: Transset(A) =⇒ x∈A −→ 0∈A
apply (simp add: Transset-def )
apply (rule-tac a=x in eps-induct, clarify)
apply (drule bspec, assumption)
apply (case-tac x=0 , auto)
done

lemma Transset-0-disj: Transset(A) =⇒ A=0 | 0∈A
by (blast dest: Transset-0-lemma)

18.3 Epsilon Recursion
lemma mem-eclose-trans: [[A ∈ eclose(B); B ∈ eclose(C )]] =⇒ A ∈ eclose(C )
by (rule eclose-least [OF Transset-eclose eclose-subset, THEN subsetD],

assumption+)
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lemma mem-eclose-sing-trans:
[[A ∈ eclose({B}); B ∈ eclose({C})]] =⇒ A ∈ eclose({C})

by (rule eclose-least [OF Transset-eclose singleton-subsetI , THEN subsetD],
assumption+)

lemma under-Memrel: [[Transset(i); j ∈ i]] =⇒ Memrel(i)−‘‘{j} = j
by (unfold Transset-def , blast)

lemma lt-Memrel: j < i =⇒ Memrel(i) −‘‘ {j} = j
by (simp add: lt-def Ord-def under-Memrel)

lemmas under-Memrel-eclose = Transset-eclose [THEN under-Memrel]

lemmas wfrec-ssubst = wf-Memrel [THEN wfrec, THEN ssubst]

lemma wfrec-eclose-eq:
[[k ∈ eclose({j}); j ∈ eclose({i})]] =⇒
wfrec(Memrel(eclose({i})), k, H ) = wfrec(Memrel(eclose({j})), k, H )

apply (erule eclose-induct)
apply (rule wfrec-ssubst)
apply (rule wfrec-ssubst)
apply (simp add: under-Memrel-eclose mem-eclose-sing-trans [of - j i])
done

lemma wfrec-eclose-eq2 :
k ∈ i =⇒ wfrec(Memrel(eclose({i})),k,H ) = wfrec(Memrel(eclose({k})),k,H )

apply (rule arg-in-eclose-sing [THEN wfrec-eclose-eq])
apply (erule arg-into-eclose-sing)
done

lemma transrec: transrec(a,H ) = H (a, λx∈a. transrec(x,H ))
unfolding transrec-def

apply (rule wfrec-ssubst)
apply (simp add: wfrec-eclose-eq2 arg-in-eclose-sing under-Memrel-eclose)
done

lemma def-transrec:
[[
∧

x. f (x)≡transrec(x,H )]] =⇒ f (a) = H (a, λx∈a. f (x))
apply simp
apply (rule transrec)
done

lemma transrec-type:
[[
∧

x u. [[x ∈ eclose({a}); u ∈ Pi(x,B)]] =⇒ H (x,u) ∈ B(x)]]
=⇒ transrec(a,H ) ∈ B(a)

apply (rule-tac i = a in arg-in-eclose-sing [THEN eclose-induct])
apply (subst transrec)
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apply (simp add: lam-type)
done

lemma eclose-sing-Ord: Ord(i) =⇒ eclose({i}) ⊆ succ(i)
apply (erule Ord-is-Transset [THEN Transset-succ, THEN eclose-least])
apply (rule succI1 [THEN singleton-subsetI ])
done

lemma succ-subset-eclose-sing: succ(i) ⊆ eclose({i})
apply (insert arg-subset-eclose [of {i}], simp)
apply (frule eclose-subset, blast)
done

lemma eclose-sing-Ord-eq: Ord(i) =⇒ eclose({i}) = succ(i)
apply (rule equalityI )
apply (erule eclose-sing-Ord)
apply (rule succ-subset-eclose-sing)
done

lemma Ord-transrec-type:
assumes jini: j ∈ i

and ordi: Ord(i)
and minor :

∧
x u. [[x ∈ i; u ∈ Pi(x,B)]] =⇒ H (x,u) ∈ B(x)

shows transrec(j,H ) ∈ B(j)
apply (rule transrec-type)
apply (insert jini ordi)
apply (blast intro!: minor

intro: Ord-trans
dest: Ord-in-Ord [THEN eclose-sing-Ord, THEN subsetD])

done

18.4 Rank
lemma rank: rank(a) = (

⋃
y∈a. succ(rank(y)))

by (subst rank-def [THEN def-transrec], simp)

lemma Ord-rank [simp]: Ord(rank(a))
apply (rule-tac a=a in eps-induct)
apply (subst rank)
apply (rule Ord-succ [THEN Ord-UN ])
apply (erule bspec, assumption)
done

lemma rank-of-Ord: Ord(i) =⇒ rank(i) = i
apply (erule trans-induct)
apply (subst rank)
apply (simp add: Ord-equality)
done
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lemma rank-lt: a ∈ b =⇒ rank(a) < rank(b)
apply (rule-tac a1 = b in rank [THEN ssubst])
apply (erule UN-I [THEN ltI ])
apply (rule-tac [2 ] Ord-UN , auto)
done

lemma eclose-rank-lt: a ∈ eclose(b) =⇒ rank(a) < rank(b)
apply (erule eclose-induct-down)
apply (erule rank-lt)
apply (erule rank-lt [THEN lt-trans], assumption)
done

lemma rank-mono: a<=b =⇒ rank(a) ≤ rank(b)
apply (rule subset-imp-le)
apply (auto simp add: rank [of a] rank [of b])
done

lemma rank-Pow: rank(Pow(a)) = succ(rank(a))
apply (rule rank [THEN trans])
apply (rule le-anti-sym)
apply (rule-tac [2 ] UN-upper-le)
apply (rule UN-least-le)
apply (auto intro: rank-mono simp add: Ord-UN )
done

lemma rank-0 [simp]: rank(0 ) = 0
by (rule rank [THEN trans], blast)

lemma rank-succ [simp]: rank(succ(x)) = succ(rank(x))
apply (rule rank [THEN trans])
apply (rule equalityI [OF UN-least succI1 [THEN UN-upper ]])
apply (erule succE , blast)
apply (erule rank-lt [THEN leI , THEN succ-leI , THEN le-imp-subset])
done

lemma rank-Union: rank(
⋃
(A)) = (

⋃
x∈A. rank(x))

apply (rule equalityI )
apply (rule-tac [2 ] rank-mono [THEN le-imp-subset, THEN UN-least])
apply (erule-tac [2 ] Union-upper)
apply (subst rank)
apply (rule UN-least)
apply (erule UnionE)
apply (rule subset-trans)
apply (erule-tac [2 ] RepFunI [THEN Union-upper ])
apply (erule rank-lt [THEN succ-leI , THEN le-imp-subset])
done

lemma rank-eclose: rank(eclose(a)) = rank(a)
apply (rule le-anti-sym)
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apply (rule-tac [2 ] arg-subset-eclose [THEN rank-mono])
apply (rule-tac a1 = eclose (a) in rank [THEN ssubst])
apply (rule Ord-rank [THEN UN-least-le])
apply (erule eclose-rank-lt [THEN succ-leI ])
done

lemma rank-pair1 : rank(a) < rank(〈a,b〉)
unfolding Pair-def

apply (rule consI1 [THEN rank-lt, THEN lt-trans])
apply (rule consI1 [THEN consI2 , THEN rank-lt])
done

lemma rank-pair2 : rank(b) < rank(〈a,b〉)
unfolding Pair-def

apply (rule consI1 [THEN consI2 , THEN rank-lt, THEN lt-trans])
apply (rule consI1 [THEN consI2 , THEN rank-lt])
done

lemma the-equality-if :
P(a) =⇒ (THE x . P(x)) = (if (∃ !x. P(x)) then a else 0 )

by (simp add: the-0 the-equality2 )

lemma rank-apply: [[i ∈ domain(f ); function(f )]] =⇒ rank(f‘i) < rank(f )
apply clarify
apply (simp add: function-apply-equality)
apply (blast intro: lt-trans rank-lt rank-pair2 )
done

18.5 Corollaries of Leastness
lemma mem-eclose-subset: A ∈ B =⇒ eclose(A)<=eclose(B)
apply (rule Transset-eclose [THEN eclose-least])
apply (erule arg-into-eclose [THEN eclose-subset])
done

lemma eclose-mono: A<=B =⇒ eclose(A) ⊆ eclose(B)
apply (rule Transset-eclose [THEN eclose-least])
apply (erule subset-trans)
apply (rule arg-subset-eclose)
done

lemma eclose-idem: eclose(eclose(A)) = eclose(A)
apply (rule equalityI )
apply (rule eclose-least [OF Transset-eclose subset-refl])
apply (rule arg-subset-eclose)
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done

lemma transrec2-0 [simp]: transrec2 (0 ,a,b) = a
by (rule transrec2-def [THEN def-transrec, THEN trans], simp)

lemma transrec2-succ [simp]: transrec2 (succ(i),a,b) = b(i, transrec2 (i,a,b))
apply (rule transrec2-def [THEN def-transrec, THEN trans])
apply (simp add: the-equality if-P)
done

lemma transrec2-Limit:
Limit(i) =⇒ transrec2 (i,a,b) = (

⋃
j<i. transrec2 (j,a,b))

apply (rule transrec2-def [THEN def-transrec, THEN trans])
apply (auto simp add: OUnion-def )
done

lemma def-transrec2 :
(
∧

x. f (x)≡transrec2 (x,a,b))
=⇒ f (0 ) = a ∧

f (succ(i)) = b(i, f (i)) ∧
(Limit(K ) −→ f (K ) = (

⋃
j<K . f (j)))

by (simp add: transrec2-Limit)

lemmas recursor-lemma = recursor-def [THEN def-transrec, THEN trans]

lemma recursor-0 : recursor(a,b,0 ) = a
by (rule nat-case-0 [THEN recursor-lemma])

lemma recursor-succ: recursor(a,b,succ(m)) = b(m, recursor(a,b,m))
by (rule recursor-lemma, simp)

lemma rec-0 [simp]: rec(0 ,a,b) = a
unfolding rec-def

apply (rule recursor-0 )
done

lemma rec-succ [simp]: rec(succ(m),a,b) = b(m, rec(m,a,b))
unfolding rec-def

apply (rule recursor-succ)
done
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lemma rec-type:
[[n ∈ nat;

a ∈ C (0 );∧
m z. [[m ∈ nat; z ∈ C (m)]] =⇒ b(m,z): C (succ(m))]]

=⇒ rec(n,a,b) ∈ C (n)
by (erule nat-induct, auto)

end

19 Partial and Total Orderings: Basic Definitions
and Properties

theory Order imports WF Perm begin

We adopt the following convention: ord is used for strict orders and order is
used for their reflexive counterparts.
definition

part-ord :: [i,i]⇒o where
part-ord(A,r) ≡ irrefl(A,r) ∧ trans[A](r)

definition
linear :: [i,i]⇒o where
linear(A,r) ≡ (∀ x∈A. ∀ y∈A. 〈x,y〉:r | x=y | 〈y,x〉:r)

definition
tot-ord :: [i,i]⇒o where
tot-ord(A,r) ≡ part-ord(A,r) ∧ linear(A,r)

definition
preorder-on(A, r) ≡ refl(A, r) ∧ trans[A](r)

definition
partial-order-on(A, r) ≡ preorder-on(A, r) ∧ antisym(r)

abbreviation
Preorder(r) ≡ preorder-on(field(r), r)

abbreviation
Partial-order(r) ≡ partial-order-on(field(r), r)

definition
well-ord :: [i,i]⇒o where
well-ord(A,r) ≡ tot-ord(A,r) ∧ wf [A](r)

definition
mono-map :: [i,i,i,i]⇒i where
mono-map(A,r ,B,s) ≡
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{f ∈ A−>B. ∀ x∈A. ∀ y∈A. 〈x,y〉:r −→ <f‘x,f‘y>:s}

definition
ord-iso :: [i,i,i,i]⇒i (‹(‹notation=‹infix ord-iso››〈-, -〉 ∼=/ 〈-, -〉)› 51 ) where
〈A,r〉 ∼= 〈B,s〉 ≡

{f ∈ bij(A,B). ∀ x∈A. ∀ y∈A. 〈x,y〉:r ←→ <f‘x,f‘y>:s}

definition
pred :: [i,i,i]⇒i where
pred(A,x,r) ≡ {y ∈ A. 〈y,x〉:r}

definition
ord-iso-map :: [i,i,i,i]⇒i where
ord-iso-map(A,r ,B,s) ≡⋃

x∈A.
⋃

y∈B.
⋃

f ∈ ord-iso(pred(A,x,r), r , pred(B,y,s), s). {〈x,y〉}

definition
first :: [i, i, i] ⇒ o where

first(u, X , R) ≡ u ∈ X ∧ (∀ v∈X . v 6=u −→ 〈u,v〉 ∈ R)

19.1 Immediate Consequences of the Definitions
lemma part-ord-Imp-asym:

part-ord(A,r) =⇒ asym(r ∩ A∗A)
by (unfold part-ord-def irrefl-def trans-on-def asym-def , blast)

lemma linearE :
[[linear(A,r); x ∈ A; y ∈ A;
〈x,y〉:r =⇒ P; x=y =⇒ P; 〈y,x〉:r =⇒ P]]

=⇒ P
by (simp add: linear-def , blast)

lemma well-ordI :
[[wf [A](r); linear(A,r)]] =⇒ well-ord(A,r)

apply (simp add: irrefl-def part-ord-def tot-ord-def
trans-on-def well-ord-def wf-on-not-refl)

apply (fast elim: linearE wf-on-asym wf-on-chain3 )
done

lemma well-ord-is-wf :
well-ord(A,r) =⇒ wf [A](r)

by (unfold well-ord-def , safe)

lemma well-ord-is-trans-on:
well-ord(A,r) =⇒ trans[A](r)

by (unfold well-ord-def tot-ord-def part-ord-def , safe)
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lemma well-ord-is-linear : well-ord(A,r) =⇒ linear(A,r)
by (unfold well-ord-def tot-ord-def , blast)

lemma pred-iff : y ∈ pred(A,x,r) ←→ 〈y,x〉:r ∧ y ∈ A
by (unfold pred-def , blast)

lemmas predI = conjI [THEN pred-iff [THEN iffD2 ]]

lemma predE : [[y ∈ pred(A,x,r); [[y ∈ A; 〈y,x〉:r ]] =⇒ P]] =⇒ P
by (simp add: pred-def )

lemma pred-subset-under : pred(A,x,r) ⊆ r −‘‘ {x}
by (simp add: pred-def , blast)

lemma pred-subset: pred(A,x,r) ⊆ A
by (simp add: pred-def , blast)

lemma pred-pred-eq:
pred(pred(A,x,r), y, r) = pred(A,x,r) ∩ pred(A,y,r)

by (simp add: pred-def , blast)

lemma trans-pred-pred-eq:
[[trans[A](r); 〈y,x〉:r ; x ∈ A; y ∈ A]]
=⇒ pred(pred(A,x,r), y, r) = pred(A,y,r)

by (unfold trans-on-def pred-def , blast)

19.2 Restricting an Ordering’s Domain
lemma part-ord-subset:

[[part-ord(A,r); B<=A]] =⇒ part-ord(B,r)
by (unfold part-ord-def irrefl-def trans-on-def , blast)

lemma linear-subset:
[[linear(A,r); B<=A]] =⇒ linear(B,r)

by (unfold linear-def , blast)

lemma tot-ord-subset:
[[tot-ord(A,r); B<=A]] =⇒ tot-ord(B,r)

unfolding tot-ord-def
apply (fast elim!: part-ord-subset linear-subset)
done

lemma well-ord-subset:
[[well-ord(A,r); B<=A]] =⇒ well-ord(B,r)

unfolding well-ord-def
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apply (fast elim!: tot-ord-subset wf-on-subset-A)
done

lemma irrefl-Int-iff : irrefl(A,r ∩ A∗A) ←→ irrefl(A,r)
by (unfold irrefl-def , blast)

lemma trans-on-Int-iff : trans[A](r ∩ A∗A) ←→ trans[A](r)
by (unfold trans-on-def , blast)

lemma part-ord-Int-iff : part-ord(A,r ∩ A∗A) ←→ part-ord(A,r)
unfolding part-ord-def

apply (simp add: irrefl-Int-iff trans-on-Int-iff )
done

lemma linear-Int-iff : linear(A,r ∩ A∗A) ←→ linear(A,r)
by (unfold linear-def , blast)

lemma tot-ord-Int-iff : tot-ord(A,r ∩ A∗A) ←→ tot-ord(A,r)
unfolding tot-ord-def

apply (simp add: part-ord-Int-iff linear-Int-iff )
done

lemma wf-on-Int-iff : wf [A](r ∩ A∗A) ←→ wf [A](r)
apply (unfold wf-on-def wf-def , fast)
done

lemma well-ord-Int-iff : well-ord(A,r ∩ A∗A) ←→ well-ord(A,r)
unfolding well-ord-def

apply (simp add: tot-ord-Int-iff wf-on-Int-iff )
done

19.3 Empty and Unit Domains
lemma wf-on-any-0 : wf [A](0 )
by (simp add: wf-on-def wf-def , fast)

19.3.1 Relations over the Empty Set
lemma irrefl-0 : irrefl(0 ,r)
by (unfold irrefl-def , blast)

lemma trans-on-0 : trans[0 ](r)
by (unfold trans-on-def , blast)

lemma part-ord-0 : part-ord(0 ,r)
unfolding part-ord-def

apply (simp add: irrefl-0 trans-on-0 )
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done

lemma linear-0 : linear(0 ,r)
by (unfold linear-def , blast)

lemma tot-ord-0 : tot-ord(0 ,r)
unfolding tot-ord-def

apply (simp add: part-ord-0 linear-0 )
done

lemma wf-on-0 : wf [0 ](r)
by (unfold wf-on-def wf-def , blast)

lemma well-ord-0 : well-ord(0 ,r)
unfolding well-ord-def

apply (simp add: tot-ord-0 wf-on-0 )
done

19.3.2 The Empty Relation Well-Orders the Unit Set

by Grabczewski
lemma tot-ord-unit: tot-ord({a},0 )
by (simp add: irrefl-def trans-on-def part-ord-def linear-def tot-ord-def )

lemma well-ord-unit: well-ord({a},0 )
unfolding well-ord-def

apply (simp add: tot-ord-unit wf-on-any-0 )
done

19.4 Order-Isomorphisms

Suppes calls them "similarities"
lemma mono-map-is-fun: f ∈ mono-map(A,r ,B,s) =⇒ f ∈ A−>B
by (simp add: mono-map-def )

lemma mono-map-is-inj:
[[linear(A,r); wf [B](s); f ∈ mono-map(A,r ,B,s)]] =⇒ f ∈ inj(A,B)

apply (unfold mono-map-def inj-def , clarify)
apply (erule-tac x=w and y=x in linearE , assumption+)
apply (force intro: apply-type dest: wf-on-not-refl)+
done

lemma ord-isoI :
[[f ∈ bij(A, B);∧

x y. [[x ∈ A; y ∈ A]] =⇒ 〈x, y〉 ∈ r ←→ <f‘x, f‘y> ∈ s]]
=⇒ f ∈ ord-iso(A,r ,B,s)

by (simp add: ord-iso-def )
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lemma ord-iso-is-mono-map:
f ∈ ord-iso(A,r ,B,s) =⇒ f ∈ mono-map(A,r ,B,s)

apply (simp add: ord-iso-def mono-map-def )
apply (blast dest!: bij-is-fun)
done

lemma ord-iso-is-bij:
f ∈ ord-iso(A,r ,B,s) =⇒ f ∈ bij(A,B)

by (simp add: ord-iso-def )

lemma ord-iso-apply:
[[f ∈ ord-iso(A,r ,B,s); 〈x,y〉: r ; x ∈ A; y ∈ A]] =⇒ <f‘x, f‘y> ∈ s

by (simp add: ord-iso-def )

lemma ord-iso-converse:
[[f ∈ ord-iso(A,r ,B,s); 〈x,y〉: s; x ∈ B; y ∈ B]]
=⇒ <converse(f ) ‘ x, converse(f ) ‘ y> ∈ r

apply (simp add: ord-iso-def , clarify)
apply (erule bspec [THEN bspec, THEN iffD2 ])
apply (erule asm-rl bij-converse-bij [THEN bij-is-fun, THEN apply-type])+
apply (auto simp add: right-inverse-bij)
done

lemma ord-iso-refl: id(A): ord-iso(A,r ,A,r)
by (rule id-bij [THEN ord-isoI ], simp)

lemma ord-iso-sym: f ∈ ord-iso(A,r ,B,s) =⇒ converse(f ): ord-iso(B,s,A,r)
apply (simp add: ord-iso-def )
apply (auto simp add: right-inverse-bij bij-converse-bij

bij-is-fun [THEN apply-funtype])
done

lemma mono-map-trans:
[[g ∈ mono-map(A,r ,B,s); f ∈ mono-map(B,s,C ,t)]]
=⇒ (f O g): mono-map(A,r ,C ,t)

unfolding mono-map-def
apply (auto simp add: comp-fun)
done

lemma ord-iso-trans:
[[g ∈ ord-iso(A,r ,B,s); f ∈ ord-iso(B,s,C ,t)]]
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=⇒ (f O g): ord-iso(A,r ,C ,t)
apply (unfold ord-iso-def , clarify)
apply (frule bij-is-fun [of f ])
apply (frule bij-is-fun [of g])
apply (auto simp add: comp-bij)
done

lemma mono-ord-isoI :
[[f ∈ mono-map(A,r ,B,s); g ∈ mono-map(B,s,A,r);

f O g = id(B); g O f = id(A)]] =⇒ f ∈ ord-iso(A,r ,B,s)
apply (simp add: ord-iso-def mono-map-def , safe)
apply (intro fg-imp-bijective, auto)
apply (subgoal-tac <g‘ (f‘x), g‘ (f‘y) > ∈ r)
apply (simp add: comp-eq-id-iff [THEN iffD1 ])
apply (blast intro: apply-funtype)
done

lemma well-ord-mono-ord-isoI :
[[well-ord(A,r); well-ord(B,s);

f ∈ mono-map(A,r ,B,s); converse(f ): mono-map(B,s,A,r)]]
=⇒ f ∈ ord-iso(A,r ,B,s)

apply (intro mono-ord-isoI , auto)
apply (frule mono-map-is-fun [THEN fun-is-rel])
apply (erule converse-converse [THEN subst], rule left-comp-inverse)
apply (blast intro: left-comp-inverse mono-map-is-inj well-ord-is-linear

well-ord-is-wf )+
done

lemma part-ord-ord-iso:
[[part-ord(B,s); f ∈ ord-iso(A,r ,B,s)]] =⇒ part-ord(A,r)

apply (simp add: part-ord-def irrefl-def trans-on-def ord-iso-def )
apply (fast intro: bij-is-fun [THEN apply-type])
done

lemma linear-ord-iso:
[[linear(B,s); f ∈ ord-iso(A,r ,B,s)]] =⇒ linear(A,r)

apply (simp add: linear-def ord-iso-def , safe)
apply (drule-tac x1 = f‘x and x = f‘y in bspec [THEN bspec])
apply (safe elim!: bij-is-fun [THEN apply-type])
apply (drule-tac t = (‘) (converse (f )) in subst-context)
apply (simp add: left-inverse-bij)
done

lemma wf-on-ord-iso:
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[[wf [B](s); f ∈ ord-iso(A,r ,B,s)]] =⇒ wf [A](r)
apply (simp add: wf-on-def wf-def ord-iso-def , safe)
apply (drule-tac x = {f‘z. z ∈ Z ∩ A} in spec)
apply (safe intro!: equalityI )
apply (blast dest!: equalityD1 intro: bij-is-fun [THEN apply-type])+
done

lemma well-ord-ord-iso:
[[well-ord(B,s); f ∈ ord-iso(A,r ,B,s)]] =⇒ well-ord(A,r)

unfolding well-ord-def tot-ord-def
apply (fast elim!: part-ord-ord-iso linear-ord-iso wf-on-ord-iso)
done

19.5 Main results of Kunen, Chapter 1 section 6
lemma well-ord-iso-subset-lemma:

[[well-ord(A,r); f ∈ ord-iso(A,r , A ′,r); A ′<= A; y ∈ A]]
=⇒ ¬ <f‘y, y>: r

apply (simp add: well-ord-def ord-iso-def )
apply (elim conjE CollectE)
apply (rule-tac a=y in wf-on-induct, assumption+)
apply (blast dest: bij-is-fun [THEN apply-type])
done

lemma well-ord-iso-predE :
[[well-ord(A,r); f ∈ ord-iso(A, r , pred(A,x,r), r); x ∈ A]] =⇒ P

apply (insert well-ord-iso-subset-lemma [of A r f pred(A,x,r) x])
apply (simp add: pred-subset)

apply (drule ord-iso-is-bij [THEN bij-is-fun, THEN apply-type], assumption)

apply (simp add: well-ord-def pred-def )
done

lemma well-ord-iso-pred-eq:
[[well-ord(A,r); f ∈ ord-iso(pred(A,a,r), r , pred(A,c,r), r);

a ∈ A; c ∈ A]] =⇒ a=c
apply (frule well-ord-is-trans-on)
apply (frule well-ord-is-linear)
apply (erule-tac x=a and y=c in linearE , assumption+)
apply (drule ord-iso-sym)

apply (auto elim!: well-ord-subset [OF - pred-subset, THEN well-ord-iso-predE ]
intro!: predI
simp add: trans-pred-pred-eq)

done

160



lemma ord-iso-image-pred:
[[f ∈ ord-iso(A,r ,B,s); a ∈ A]] =⇒ f ‘‘ pred(A,a,r) = pred(B, f‘a, s)

unfolding ord-iso-def pred-def
apply (erule CollectE)
apply (simp (no-asm-simp) add: image-fun [OF bij-is-fun Collect-subset])
apply (rule equalityI )
apply (safe elim!: bij-is-fun [THEN apply-type])
apply (rule RepFun-eqI )
apply (blast intro!: right-inverse-bij [symmetric])
apply (auto simp add: right-inverse-bij bij-is-fun [THEN apply-funtype])
done

lemma ord-iso-restrict-image:
[[f ∈ ord-iso(A,r ,B,s); C<=A]]
=⇒ restrict(f ,C ) ∈ ord-iso(C , r , f‘‘C , s)

apply (simp add: ord-iso-def )
apply (blast intro: bij-is-inj restrict-bij)
done

lemma ord-iso-restrict-pred:
[[f ∈ ord-iso(A,r ,B,s); a ∈ A]]
=⇒ restrict(f , pred(A,a,r)) ∈ ord-iso(pred(A,a,r), r , pred(B, f‘a, s), s)

apply (simp add: ord-iso-image-pred [symmetric])
apply (blast intro: ord-iso-restrict-image elim: predE)
done

lemma well-ord-iso-preserving:
[[well-ord(A,r); well-ord(B,s); 〈a,c〉: r ;

f ∈ ord-iso(pred(A,a,r), r , pred(B,b,s), s);
g ∈ ord-iso(pred(A,c,r), r , pred(B,d,s), s);
a ∈ A; c ∈ A; b ∈ B; d ∈ B]] =⇒ 〈b,d〉: s

apply (frule ord-iso-is-bij [THEN bij-is-fun, THEN apply-type], (erule asm-rl predI
predE)+)
apply (subgoal-tac b = g‘a)
apply (simp (no-asm-simp))
apply (rule well-ord-iso-pred-eq, auto)
apply (frule ord-iso-restrict-pred, (erule asm-rl predI )+)
apply (simp add: well-ord-is-trans-on trans-pred-pred-eq)
apply (erule ord-iso-sym [THEN ord-iso-trans], assumption)
done

lemma well-ord-iso-unique-lemma:
[[well-ord(A,r);

f ∈ ord-iso(A,r , B,s); g ∈ ord-iso(A,r , B,s); y ∈ A]]
=⇒ ¬ <g‘y, f‘y> ∈ s
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apply (frule well-ord-iso-subset-lemma)
apply (rule-tac f = converse (f ) and g = g in ord-iso-trans)
apply auto
apply (blast intro: ord-iso-sym)
apply (frule ord-iso-is-bij [of f ])
apply (frule ord-iso-is-bij [of g])
apply (frule ord-iso-converse)
apply (blast intro!: bij-converse-bij

intro: bij-is-fun apply-funtype)+
apply (erule notE)
apply (simp add: left-inverse-bij bij-is-fun comp-fun-apply [of - A B])
done

lemma well-ord-iso-unique: [[well-ord(A,r);
f ∈ ord-iso(A,r , B,s); g ∈ ord-iso(A,r , B,s)]] =⇒ f = g

apply (rule fun-extension)
apply (erule ord-iso-is-bij [THEN bij-is-fun])+
apply (subgoal-tac f‘x ∈ B ∧ g‘x ∈ B ∧ linear(B,s))
apply (simp add: linear-def )
apply (blast dest: well-ord-iso-unique-lemma)

apply (blast intro: ord-iso-is-bij bij-is-fun apply-funtype
well-ord-is-linear well-ord-ord-iso ord-iso-sym)

done

19.6 Towards Kunen’s Theorem 6.3: Linearity of the Simi-
larity Relation

lemma ord-iso-map-subset: ord-iso-map(A,r ,B,s) ⊆ A∗B
by (unfold ord-iso-map-def , blast)

lemma domain-ord-iso-map: domain(ord-iso-map(A,r ,B,s)) ⊆ A
by (unfold ord-iso-map-def , blast)

lemma range-ord-iso-map: range(ord-iso-map(A,r ,B,s)) ⊆ B
by (unfold ord-iso-map-def , blast)

lemma converse-ord-iso-map:
converse(ord-iso-map(A,r ,B,s)) = ord-iso-map(B,s,A,r)

unfolding ord-iso-map-def
apply (blast intro: ord-iso-sym)
done

lemma function-ord-iso-map:
well-ord(B,s) =⇒ function(ord-iso-map(A,r ,B,s))

unfolding ord-iso-map-def function-def
apply (blast intro: well-ord-iso-pred-eq ord-iso-sym ord-iso-trans)
done

162



lemma ord-iso-map-fun: well-ord(B,s) =⇒ ord-iso-map(A,r ,B,s)
∈ domain(ord-iso-map(A,r ,B,s)) −> range(ord-iso-map(A,r ,B,s))

by (simp add: Pi-iff function-ord-iso-map
ord-iso-map-subset [THEN domain-times-range])

lemma ord-iso-map-mono-map:
[[well-ord(A,r); well-ord(B,s)]]
=⇒ ord-iso-map(A,r ,B,s)

∈ mono-map(domain(ord-iso-map(A,r ,B,s)), r ,
range(ord-iso-map(A,r ,B,s)), s)

unfolding mono-map-def
apply (simp (no-asm-simp) add: ord-iso-map-fun)
apply safe
apply (subgoal-tac x ∈ A ∧ ya:A ∧ y ∈ B ∧ yb:B)
apply (simp add: apply-equality [OF - ord-iso-map-fun])

unfolding ord-iso-map-def
apply (blast intro: well-ord-iso-preserving, blast)

done

lemma ord-iso-map-ord-iso:
[[well-ord(A,r); well-ord(B,s)]] =⇒ ord-iso-map(A,r ,B,s)

∈ ord-iso(domain(ord-iso-map(A,r ,B,s)), r ,
range(ord-iso-map(A,r ,B,s)), s)

apply (rule well-ord-mono-ord-isoI )
prefer 4
apply (rule converse-ord-iso-map [THEN subst])
apply (simp add: ord-iso-map-mono-map

ord-iso-map-subset [THEN converse-converse])
apply (blast intro!: domain-ord-iso-map range-ord-iso-map

intro: well-ord-subset ord-iso-map-mono-map)+
done

lemma domain-ord-iso-map-subset:
[[well-ord(A,r); well-ord(B,s);

a ∈ A; a /∈ domain(ord-iso-map(A,r ,B,s))]]
=⇒ domain(ord-iso-map(A,r ,B,s)) ⊆ pred(A, a, r)

unfolding ord-iso-map-def
apply (safe intro!: predI )

apply (simp (no-asm-simp))
apply (frule-tac A = A in well-ord-is-linear)
apply (rename-tac b y f )
apply (erule-tac x=b and y=a in linearE , assumption+)

apply clarify
apply blast
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apply (frule ord-iso-is-bij [THEN bij-is-fun, THEN apply-type],
(erule asm-rl predI predE)+)

apply (frule ord-iso-restrict-pred)
apply (simp add: pred-iff )

apply (simp split: split-if-asm
add: well-ord-is-trans-on trans-pred-pred-eq domain-UN domain-Union,

blast)
done

lemma domain-ord-iso-map-cases:
[[well-ord(A,r); well-ord(B,s)]]
=⇒ domain(ord-iso-map(A,r ,B,s)) = A |

(∃ x∈A. domain(ord-iso-map(A,r ,B,s)) = pred(A,x,r))
apply (frule well-ord-is-wf )

unfolding wf-on-def wf-def
apply (drule-tac x = A−domain (ord-iso-map (A,r ,B,s)) in spec)
apply safe

apply (rule domain-ord-iso-map [THEN equalityI ])
apply (erule Diff-eq-0-iff [THEN iffD1 ])

apply (blast del: domainI subsetI
elim!: predE
intro!: domain-ord-iso-map-subset
intro: subsetI )+

done

lemma range-ord-iso-map-cases:
[[well-ord(A,r); well-ord(B,s)]]
=⇒ range(ord-iso-map(A,r ,B,s)) = B |

(∃ y∈B. range(ord-iso-map(A,r ,B,s)) = pred(B,y,s))
apply (rule converse-ord-iso-map [THEN subst])
apply (simp add: domain-ord-iso-map-cases)
done

Kunen’s Theorem 6.3: Fundamental Theorem for Well-Ordered Sets
theorem well-ord-trichotomy:

[[well-ord(A,r); well-ord(B,s)]]
=⇒ ord-iso-map(A,r ,B,s) ∈ ord-iso(A, r , B, s) |

(∃ x∈A. ord-iso-map(A,r ,B,s) ∈ ord-iso(pred(A,x,r), r , B, s)) |
(∃ y∈B. ord-iso-map(A,r ,B,s) ∈ ord-iso(A, r , pred(B,y,s), s))

apply (frule-tac B = B in domain-ord-iso-map-cases, assumption)
apply (frule-tac B = B in range-ord-iso-map-cases, assumption)
apply (drule ord-iso-map-ord-iso, assumption)
apply (elim disjE bexE)

apply (simp-all add: bexI )
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apply (rule wf-on-not-refl [THEN notE ])
apply (erule well-ord-is-wf )

apply assumption
apply (subgoal-tac 〈x,y〉: ord-iso-map (A,r ,B,s) )
apply (drule rangeI )
apply (simp add: pred-def )

apply (unfold ord-iso-map-def , blast)
done

19.7 Miscellaneous Results by Krzysztof Grabczewski
lemma irrefl-converse: irrefl(A,r) =⇒ irrefl(A,converse(r))
by (unfold irrefl-def , blast)

lemma trans-on-converse: trans[A](r) =⇒ trans[A](converse(r))
by (unfold trans-on-def , blast)

lemma part-ord-converse: part-ord(A,r) =⇒ part-ord(A,converse(r))
unfolding part-ord-def

apply (blast intro!: irrefl-converse trans-on-converse)
done

lemma linear-converse: linear(A,r) =⇒ linear(A,converse(r))
by (unfold linear-def , blast)

lemma tot-ord-converse: tot-ord(A,r) =⇒ tot-ord(A,converse(r))
unfolding tot-ord-def

apply (blast intro!: part-ord-converse linear-converse)
done

lemma first-is-elem: first(b,B,r) =⇒ b ∈ B
by (unfold first-def , blast)

lemma well-ord-imp-ex1-first:
[[well-ord(A,r); B<=A; B 6=0 ]] =⇒ (∃ !b. first(b,B,r))

unfolding well-ord-def wf-on-def wf-def first-def
apply (elim conjE allE disjE , blast)
apply (erule bexE)
apply (rule-tac a = x in ex1I , auto)
apply (unfold tot-ord-def linear-def , blast)
done

lemma the-first-in:
[[well-ord(A,r); B<=A; B 6=0 ]] =⇒ (THE b. first(b,B,r)) ∈ B

apply (drule well-ord-imp-ex1-first, assumption+)
apply (rule first-is-elem)
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apply (erule theI )
done

19.8 Lemmas for the Reflexive Orders
lemma subset-vimage-vimage-iff :
[[Preorder(r); A ⊆ field(r); B ⊆ field(r)]] =⇒
r −‘‘ A ⊆ r −‘‘ B ←→ (∀ a∈A. ∃ b∈B. 〈a, b〉 ∈ r)
apply (auto simp: subset-def preorder-on-def refl-def vimage-def image-def )
apply blast

unfolding trans-on-def
apply (erule-tac P = (λx. ∀ y∈field(r).

∀ z∈field(r). 〈x, y〉 ∈ r −→ 〈y, z〉 ∈ r −→ 〈x, z〉 ∈ r) for r in rev-ballE)

apply best
apply blast
done

lemma subset-vimage1-vimage1-iff :
[[Preorder(r); a ∈ field(r); b ∈ field(r)]] =⇒
r −‘‘ {a} ⊆ r −‘‘ {b} ←→ 〈a, b〉 ∈ r
by (simp add: subset-vimage-vimage-iff )

lemma Refl-antisym-eq-Image1-Image1-iff :
[[refl(field(r), r); antisym(r); a ∈ field(r); b ∈ field(r)]] =⇒
r ‘‘ {a} = r ‘‘ {b} ←→ a = b
apply rule
apply (frule equality-iffD)
apply (drule equality-iffD)
apply (simp add: antisym-def refl-def )
apply best

apply (simp add: antisym-def refl-def )
done

lemma Partial-order-eq-Image1-Image1-iff :
[[Partial-order(r); a ∈ field(r); b ∈ field(r)]] =⇒
r ‘‘ {a} = r ‘‘ {b} ←→ a = b
by (simp add: partial-order-on-def preorder-on-def

Refl-antisym-eq-Image1-Image1-iff )

lemma Refl-antisym-eq-vimage1-vimage1-iff :
[[refl(field(r), r); antisym(r); a ∈ field(r); b ∈ field(r)]] =⇒
r −‘‘ {a} = r −‘‘ {b} ←→ a = b
apply rule
apply (frule equality-iffD)
apply (drule equality-iffD)
apply (simp add: antisym-def refl-def )
apply best

apply (simp add: antisym-def refl-def )
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done

lemma Partial-order-eq-vimage1-vimage1-iff :
[[Partial-order(r); a ∈ field(r); b ∈ field(r)]] =⇒
r −‘‘ {a} = r −‘‘ {b} ←→ a = b
by (simp add: partial-order-on-def preorder-on-def

Refl-antisym-eq-vimage1-vimage1-iff )

end

20 Combining Orderings: Foundations of Ordinal
Arithmetic

theory OrderArith imports Order Sum Ordinal begin

definition

radd :: [i,i,i,i]⇒i where
radd(A,r ,B,s) ≡

{z: (A+B) ∗ (A+B).
(∃ x y. z = 〈Inl(x), Inr(y)〉) |
(∃ x ′ x. z = 〈Inl(x ′), Inl(x)〉 ∧ 〈x ′,x〉:r) |
(∃ y ′ y. z = 〈Inr(y ′), Inr(y)〉 ∧ 〈y ′,y〉:s)}

definition

rmult :: [i,i,i,i]⇒i where
rmult(A,r ,B,s) ≡

{z: (A∗B) ∗ (A∗B).
∃ x ′ y ′ x y. z = 〈〈x ′,y ′〉, 〈x,y〉〉 ∧

(〈x ′,x〉: r | (x ′=x ∧ 〈y ′,y〉: s))}

definition

rvimage :: [i,i,i]⇒i where
rvimage(A,f ,r) ≡ {z ∈ A∗A. ∃ x y. z = 〈x,y〉 ∧ 〈f‘x,f‘y〉: r}

definition
measure :: [i, i⇒i] ⇒ i where

measure(A,f ) ≡ {〈x,y〉: A∗A. f (x) < f (y)}

20.1 Addition of Relations – Disjoint Sum
20.1.1 Rewrite rules. Can be used to obtain introduction rules
lemma radd-Inl-Inr-iff [iff ]:
〈Inl(a), Inr(b)〉 ∈ radd(A,r ,B,s) ←→ a ∈ A ∧ b ∈ B

by (unfold radd-def , blast)
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lemma radd-Inl-iff [iff ]:
〈Inl(a ′), Inl(a)〉 ∈ radd(A,r ,B,s) ←→ a ′:A ∧ a ∈ A ∧ 〈a ′,a〉:r

by (unfold radd-def , blast)

lemma radd-Inr-iff [iff ]:
〈Inr(b ′), Inr(b)〉 ∈ radd(A,r ,B,s) ←→ b ′:B ∧ b ∈ B ∧ 〈b ′,b〉:s

by (unfold radd-def , blast)

lemma radd-Inr-Inl-iff [simp]:
〈Inr(b), Inl(a)〉 ∈ radd(A,r ,B,s) ←→ False

by (unfold radd-def , blast)

declare radd-Inr-Inl-iff [THEN iffD1 , dest!]

20.1.2 Elimination Rule
lemma raddE :

[[〈p ′,p〉 ∈ radd(A,r ,B,s);∧
x y. [[p ′=Inl(x); x ∈ A; p=Inr(y); y ∈ B]] =⇒ Q;∧
x ′ x. [[p ′=Inl(x ′); p=Inl(x); 〈x ′,x〉: r ; x ′:A; x ∈ A]] =⇒ Q;∧
y ′ y. [[p ′=Inr(y ′); p=Inr(y); 〈y ′,y〉: s; y ′:B; y ∈ B]] =⇒ Q

]] =⇒ Q
by (unfold radd-def , blast)

20.1.3 Type checking
lemma radd-type: radd(A,r ,B,s) ⊆ (A+B) ∗ (A+B)

unfolding radd-def
apply (rule Collect-subset)
done

lemmas field-radd = radd-type [THEN field-rel-subset]

20.1.4 Linearity
lemma linear-radd:

[[linear(A,r); linear(B,s)]] =⇒ linear(A+B,radd(A,r ,B,s))
by (unfold linear-def , blast)

20.1.5 Well-foundedness
lemma wf-on-radd: [[wf [A](r); wf [B](s)]] =⇒ wf [A+B](radd(A,r ,B,s))
apply (rule wf-onI2 )
apply (subgoal-tac ∀ x∈A. Inl (x) ∈ Ba)
— Proving the lemma, which is needed twice!
prefer 2
apply (erule-tac V = y ∈ A + B in thin-rl)
apply (rule-tac ballI )
apply (erule-tac r = r and a = x in wf-on-induct, assumption)
apply blast
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Returning to main part of proof

apply safe
apply blast
apply (erule-tac r = s and a = ya in wf-on-induct, assumption, blast)
done

lemma wf-radd: [[wf (r); wf (s)]] =⇒ wf (radd(field(r),r ,field(s),s))
apply (simp add: wf-iff-wf-on-field)
apply (rule wf-on-subset-A [OF - field-radd])
apply (blast intro: wf-on-radd)
done

lemma well-ord-radd:
[[well-ord(A,r); well-ord(B,s)]] =⇒ well-ord(A+B, radd(A,r ,B,s))

apply (rule well-ordI )
apply (simp add: well-ord-def wf-on-radd)
apply (simp add: well-ord-def tot-ord-def linear-radd)
done

20.1.6 An ord-iso congruence law
lemma sum-bij:

[[f ∈ bij(A,C ); g ∈ bij(B,D)]]
=⇒ (λz∈A+B. case(λx. Inl(f‘x), λy. Inr(g‘y), z)) ∈ bij(A+B, C+D)

apply (rule-tac d = case (λx. Inl (converse(f )‘x), λy. Inr(converse(g)‘y))
in lam-bijective)

apply (typecheck add: bij-is-inj inj-is-fun)
apply (auto simp add: left-inverse-bij right-inverse-bij)
done

lemma sum-ord-iso-cong:
[[f ∈ ord-iso(A,r ,A ′,r ′); g ∈ ord-iso(B,s,B ′,s ′)]] =⇒

(λz∈A+B. case(λx. Inl(f‘x), λy. Inr(g‘y), z))
∈ ord-iso(A+B, radd(A,r ,B,s), A ′+B ′, radd(A ′,r ′,B ′,s ′))

unfolding ord-iso-def
apply (safe intro!: sum-bij)

apply (auto cong add: conj-cong simp add: bij-is-fun [THEN apply-type])
done

lemma sum-disjoint-bij: A ∩ B = 0 =⇒
(λz∈A+B. case(λx. x, λy. y, z)) ∈ bij(A+B, A ∪ B)

apply (rule-tac d = λz. if z ∈ A then Inl (z) else Inr (z) in lam-bijective)
apply auto
done
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20.1.7 Associativity
lemma sum-assoc-bij:

(λz∈(A+B)+C . case(case(Inl, λy. Inr(Inl(y))), λy. Inr(Inr(y)), z))
∈ bij((A+B)+C , A+(B+C ))

apply (rule-tac d = case (λx. Inl (Inl (x)), case (λx. Inl (Inr (x)), Inr))
in lam-bijective)

apply auto
done

lemma sum-assoc-ord-iso:
(λz∈(A+B)+C . case(case(Inl, λy. Inr(Inl(y))), λy. Inr(Inr(y)), z))
∈ ord-iso((A+B)+C , radd(A+B, radd(A,r ,B,s), C , t),

A+(B+C ), radd(A, r , B+C , radd(B,s,C ,t)))
by (rule sum-assoc-bij [THEN ord-isoI ], auto)

20.2 Multiplication of Relations – Lexicographic Product
20.2.1 Rewrite rule. Can be used to obtain introduction rules
lemma rmult-iff [iff ]:
〈〈a ′,b ′〉, 〈a,b〉〉 ∈ rmult(A,r ,B,s) ←→

(〈a ′,a〉: r ∧ a ′:A ∧ a ∈ A ∧ b ′: B ∧ b ∈ B) |
(〈b ′,b〉: s ∧ a ′=a ∧ a ∈ A ∧ b ′: B ∧ b ∈ B)

by (unfold rmult-def , blast)

lemma rmultE :
[[〈〈a ′,b ′〉, 〈a,b〉〉 ∈ rmult(A,r ,B,s);

[[〈a ′,a〉: r ; a ′:A; a ∈ A; b ′:B; b ∈ B]] =⇒ Q;
[[〈b ′,b〉: s; a ∈ A; a ′=a; b ′:B; b ∈ B]] =⇒ Q

]] =⇒ Q
by blast

20.2.2 Type checking
lemma rmult-type: rmult(A,r ,B,s) ⊆ (A∗B) ∗ (A∗B)
by (unfold rmult-def , rule Collect-subset)

lemmas field-rmult = rmult-type [THEN field-rel-subset]

20.2.3 Linearity
lemma linear-rmult:

[[linear(A,r); linear(B,s)]] =⇒ linear(A∗B,rmult(A,r ,B,s))
by (simp add: linear-def , blast)

20.2.4 Well-foundedness
lemma wf-on-rmult: [[wf [A](r); wf [B](s)]] =⇒ wf [A∗B](rmult(A,r ,B,s))
apply (rule wf-onI2 )
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apply (erule SigmaE)
apply (erule ssubst)
apply (subgoal-tac ∀ b∈B. 〈x,b〉: Ba, blast)
apply (erule-tac a = x in wf-on-induct, assumption)
apply (rule ballI )
apply (erule-tac a = b in wf-on-induct, assumption)
apply (best elim!: rmultE bspec [THEN mp])
done

lemma wf-rmult: [[wf (r); wf (s)]] =⇒ wf (rmult(field(r),r ,field(s),s))
apply (simp add: wf-iff-wf-on-field)
apply (rule wf-on-subset-A [OF - field-rmult])
apply (blast intro: wf-on-rmult)
done

lemma well-ord-rmult:
[[well-ord(A,r); well-ord(B,s)]] =⇒ well-ord(A∗B, rmult(A,r ,B,s))

apply (rule well-ordI )
apply (simp add: well-ord-def wf-on-rmult)
apply (simp add: well-ord-def tot-ord-def linear-rmult)
done

20.2.5 An ord-iso congruence law
lemma prod-bij:

[[f ∈ bij(A,C ); g ∈ bij(B,D)]]
=⇒ (lam 〈x,y〉:A∗B. 〈f‘x, g‘y〉) ∈ bij(A∗B, C∗D)

apply (rule-tac d = λ〈x,y〉. 〈converse (f ) ‘x, converse (g) ‘y〉
in lam-bijective)

apply (typecheck add: bij-is-inj inj-is-fun)
apply (auto simp add: left-inverse-bij right-inverse-bij)
done

lemma prod-ord-iso-cong:
[[f ∈ ord-iso(A,r ,A ′,r ′); g ∈ ord-iso(B,s,B ′,s ′)]]
=⇒ (lam 〈x,y〉:A∗B. 〈f‘x, g‘y〉)
∈ ord-iso(A∗B, rmult(A,r ,B,s), A ′∗B ′, rmult(A ′,r ′,B ′,s ′))

unfolding ord-iso-def
apply (safe intro!: prod-bij)
apply (simp-all add: bij-is-fun [THEN apply-type])
apply (blast intro: bij-is-inj [THEN inj-apply-equality])
done

lemma singleton-prod-bij: (λz∈A. 〈x,z〉) ∈ bij(A, {x}∗A)
by (rule-tac d = snd in lam-bijective, auto)

lemma singleton-prod-ord-iso:
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well-ord({x},xr) =⇒
(λz∈A. 〈x,z〉) ∈ ord-iso(A, r , {x}∗A, rmult({x}, xr , A, r))

apply (rule singleton-prod-bij [THEN ord-isoI ])
apply (simp (no-asm-simp))
apply (blast dest: well-ord-is-wf [THEN wf-on-not-refl])
done

lemma prod-sum-singleton-bij:
a /∈C =⇒
(λx∈C∗B + D. case(λx. x, λy.〈a,y〉, x))
∈ bij(C∗B + D, C∗B ∪ {a}∗D)

apply (rule subst-elem)
apply (rule id-bij [THEN sum-bij, THEN comp-bij])
apply (rule singleton-prod-bij)
apply (rule sum-disjoint-bij, blast)
apply (simp (no-asm-simp) cong add: case-cong)
apply (rule comp-lam [THEN trans, symmetric])
apply (fast elim!: case-type)
apply (simp (no-asm-simp) add: case-case)
done

lemma prod-sum-singleton-ord-iso:
[[a ∈ A; well-ord(A,r)]] =⇒

(λx∈pred(A,a,r)∗B + pred(B,b,s). case(λx. x, λy.〈a,y〉, x))
∈ ord-iso(pred(A,a,r)∗B + pred(B,b,s),

radd(A∗B, rmult(A,r ,B,s), B, s),
pred(A,a,r)∗B ∪ {a}∗pred(B,b,s), rmult(A,r ,B,s))

apply (rule prod-sum-singleton-bij [THEN ord-isoI ])
apply (simp (no-asm-simp) add: pred-iff well-ord-is-wf [THEN wf-on-not-refl])
apply (auto elim!: well-ord-is-wf [THEN wf-on-asym] predE)
done

20.2.6 Distributive law
lemma sum-prod-distrib-bij:

(lam 〈x,z〉:(A+B)∗C . case(λy. Inl(〈y,z〉), λy. Inr(〈y,z〉), x))
∈ bij((A+B)∗C , (A∗C )+(B∗C ))

by (rule-tac d = case (λ〈x,y〉.〈Inl (x),y〉, λ〈x,y〉.〈Inr (x),y〉)
in lam-bijective, auto)

lemma sum-prod-distrib-ord-iso:
(lam 〈x,z〉:(A+B)∗C . case(λy. Inl(〈y,z〉), λy. Inr(〈y,z〉), x))
∈ ord-iso((A+B)∗C , rmult(A+B, radd(A,r ,B,s), C , t),

(A∗C )+(B∗C ), radd(A∗C , rmult(A,r ,C ,t), B∗C , rmult(B,s,C ,t)))
by (rule sum-prod-distrib-bij [THEN ord-isoI ], auto)

20.2.7 Associativity
lemma prod-assoc-bij:
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(lam 〈〈x,y〉, z〉:(A∗B)∗C . 〈x,〈y,z〉〉) ∈ bij((A∗B)∗C , A∗(B∗C ))
by (rule-tac d = λ〈x, 〈y,z〉〉. 〈〈x,y〉, z〉 in lam-bijective, auto)

lemma prod-assoc-ord-iso:
(lam 〈〈x,y〉, z〉:(A∗B)∗C . 〈x,〈y,z〉〉)
∈ ord-iso((A∗B)∗C , rmult(A∗B, rmult(A,r ,B,s), C , t),

A∗(B∗C ), rmult(A, r , B∗C , rmult(B,s,C ,t)))
by (rule prod-assoc-bij [THEN ord-isoI ], auto)

20.3 Inverse Image of a Relation
20.3.1 Rewrite rule
lemma rvimage-iff : 〈a,b〉 ∈ rvimage(A,f ,r) ←→ 〈f‘a,f‘b〉: r ∧ a ∈ A ∧ b ∈ A
by (unfold rvimage-def , blast)

20.3.2 Type checking
lemma rvimage-type: rvimage(A,f ,r) ⊆ A∗A
by (unfold rvimage-def , rule Collect-subset)

lemmas field-rvimage = rvimage-type [THEN field-rel-subset]

lemma rvimage-converse: rvimage(A,f , converse(r)) = converse(rvimage(A,f ,r))
by (unfold rvimage-def , blast)

20.3.3 Partial Ordering Properties
lemma irrefl-rvimage:

[[f ∈ inj(A,B); irrefl(B,r)]] =⇒ irrefl(A, rvimage(A,f ,r))
unfolding irrefl-def rvimage-def

apply (blast intro: inj-is-fun [THEN apply-type])
done

lemma trans-on-rvimage:
[[f ∈ inj(A,B); trans[B](r)]] =⇒ trans[A](rvimage(A,f ,r))

unfolding trans-on-def rvimage-def
apply (blast intro: inj-is-fun [THEN apply-type])
done

lemma part-ord-rvimage:
[[f ∈ inj(A,B); part-ord(B,r)]] =⇒ part-ord(A, rvimage(A,f ,r))

unfolding part-ord-def
apply (blast intro!: irrefl-rvimage trans-on-rvimage)
done

20.3.4 Linearity
lemma linear-rvimage:

[[f ∈ inj(A,B); linear(B,r)]] =⇒ linear(A,rvimage(A,f ,r))
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apply (simp add: inj-def linear-def rvimage-iff )
apply (blast intro: apply-funtype)
done

lemma tot-ord-rvimage:
[[f ∈ inj(A,B); tot-ord(B,r)]] =⇒ tot-ord(A, rvimage(A,f ,r))

unfolding tot-ord-def
apply (blast intro!: part-ord-rvimage linear-rvimage)
done

20.3.5 Well-foundedness
lemma wf-rvimage [intro!]: wf (r) =⇒ wf (rvimage(A,f ,r))
apply (simp (no-asm-use) add: rvimage-def wf-eq-minimal)
apply clarify
apply (subgoal-tac ∃w. w ∈ {w: {f‘x. x ∈ Q}. ∃ x. x ∈ Q ∧ (f‘x = w) })
apply (erule allE)
apply (erule impE)
apply assumption
apply blast

apply blast
done

But note that the combination of wf-imp-wf-on and wf-rvimage gives wf (r)
=⇒ wf [C ](rvimage(A, f , r))
lemma wf-on-rvimage: [[f ∈ A→B; wf [B](r)]] =⇒ wf [A](rvimage(A,f ,r))
apply (rule wf-onI2 )
apply (subgoal-tac ∀ z∈A. f‘z=f‘y −→ z ∈ Ba)
apply blast

apply (erule-tac a = f‘y in wf-on-induct)
apply (blast intro!: apply-funtype)

apply (blast intro!: apply-funtype dest!: rvimage-iff [THEN iffD1 ])
done

lemma well-ord-rvimage:
[[f ∈ inj(A,B); well-ord(B,r)]] =⇒ well-ord(A, rvimage(A,f ,r))

apply (rule well-ordI )
unfolding well-ord-def tot-ord-def

apply (blast intro!: wf-on-rvimage inj-is-fun)
apply (blast intro!: linear-rvimage)
done

lemma ord-iso-rvimage:
f ∈ bij(A,B) =⇒ f ∈ ord-iso(A, rvimage(A,f ,s), B, s)

unfolding ord-iso-def
apply (simp add: rvimage-iff )
done
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lemma ord-iso-rvimage-eq:
f ∈ ord-iso(A,r , B,s) =⇒ rvimage(A,f ,s) = r ∩ A∗A

by (unfold ord-iso-def rvimage-def , blast)

20.4 Every well-founded relation is a subset of some inverse
image of an ordinal

lemma wf-rvimage-Ord: Ord(i) =⇒ wf (rvimage(A, f , Memrel(i)))
by (blast intro: wf-rvimage wf-Memrel)

definition
wfrank :: [i,i]⇒i where

wfrank(r ,a) ≡ wfrec(r , a, λx f .
⋃

y ∈ r−‘‘{x}. succ(f‘y))

definition
wftype :: i⇒i where

wftype(r) ≡
⋃

y ∈ range(r). succ(wfrank(r ,y))

lemma wfrank: wf (r) =⇒ wfrank(r ,a) = (
⋃

y ∈ r−‘‘{a}. succ(wfrank(r ,y)))
by (subst wfrank-def [THEN def-wfrec], simp-all)

lemma Ord-wfrank: wf (r) =⇒ Ord(wfrank(r ,a))
apply (rule-tac a=a in wf-induct, assumption)
apply (subst wfrank, assumption)
apply (rule Ord-succ [THEN Ord-UN ], blast)
done

lemma wfrank-lt: [[wf (r); 〈a,b〉 ∈ r ]] =⇒ wfrank(r ,a) < wfrank(r ,b)
apply (rule-tac a1 = b in wfrank [THEN ssubst], assumption)
apply (rule UN-I [THEN ltI ])
apply (simp add: Ord-wfrank vimage-iff )+
done

lemma Ord-wftype: wf (r) =⇒ Ord(wftype(r))
by (simp add: wftype-def Ord-wfrank)

lemma wftypeI : [[wf (r); x ∈ field(r)]] =⇒ wfrank(r ,x) ∈ wftype(r)
apply (simp add: wftype-def )
apply (blast intro: wfrank-lt [THEN ltD])
done

lemma wf-imp-subset-rvimage:
[[wf (r); r ⊆ A∗A]] =⇒ ∃ i f . Ord(i) ∧ r ⊆ rvimage(A, f , Memrel(i))

apply (rule-tac x=wftype(r) in exI )
apply (rule-tac x=λx∈A. wfrank(r ,x) in exI )
apply (simp add: Ord-wftype, clarify)
apply (frule subsetD, assumption, clarify)
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apply (simp add: rvimage-iff wfrank-lt [THEN ltD])
apply (blast intro: wftypeI )
done

theorem wf-iff-subset-rvimage:
relation(r) =⇒ wf (r) ←→ (∃ i f A. Ord(i) ∧ r ⊆ rvimage(A, f , Memrel(i)))

by (blast dest!: relation-field-times-field wf-imp-subset-rvimage
intro: wf-rvimage-Ord [THEN wf-subset])

20.5 Other Results
lemma wf-times: A ∩ B = 0 =⇒ wf (A∗B)
by (simp add: wf-def , blast)

Could also be used to prove wf-radd
lemma wf-Un:

[[range(r) ∩ domain(s) = 0 ; wf (r); wf (s)]] =⇒ wf (r ∪ s)
apply (simp add: wf-def , clarify)
apply (rule equalityI )
prefer 2 apply blast

apply clarify
apply (drule-tac x=Z in spec)
apply (drule-tac x=Z ∩ domain(s) in spec)
apply simp
apply (blast intro: elim: equalityE)
done

20.5.1 The Empty Relation
lemma wf0 : wf (0 )
by (simp add: wf-def , blast)

lemma linear0 : linear(0 ,0 )
by (simp add: linear-def )

lemma well-ord0 : well-ord(0 ,0 )
by (blast intro: wf-imp-wf-on well-ordI wf0 linear0 )

20.5.2 The "measure" relation is useful with wfrec
lemma measure-eq-rvimage-Memrel:

measure(A,f ) = rvimage(A,Lambda(A,f ),Memrel(Collect(RepFun(A,f ),Ord)))
apply (simp (no-asm) add: measure-def rvimage-def Memrel-iff )
apply (rule equalityI , auto)
apply (auto intro: Ord-in-Ord simp add: lt-def )
done

lemma wf-measure [iff ]: wf (measure(A,f ))
by (simp (no-asm) add: measure-eq-rvimage-Memrel wf-Memrel wf-rvimage)
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lemma measure-iff [iff ]: 〈x,y〉 ∈ measure(A,f ) ←→ x ∈ A ∧ y ∈ A ∧ f (x)<f (y)
by (simp (no-asm) add: measure-def )

lemma linear-measure:
assumes Ordf :

∧
x. x ∈ A =⇒ Ord(f (x))

and inj:
∧

x y. [[x ∈ A; y ∈ A; f (x) = f (y)]] =⇒ x=y
shows linear(A, measure(A,f ))

apply (auto simp add: linear-def )
apply (rule-tac i=f (x) and j=f (y) in Ord-linear-lt)

apply (simp-all add: Ordf )
apply (blast intro: inj)
done

lemma wf-on-measure: wf [B](measure(A,f ))
by (rule wf-imp-wf-on [OF wf-measure])

lemma well-ord-measure:
assumes Ordf :

∧
x. x ∈ A =⇒ Ord(f (x))

and inj:
∧

x y. [[x ∈ A; y ∈ A; f (x) = f (y)]] =⇒ x=y
shows well-ord(A, measure(A,f ))

apply (rule well-ordI )
apply (rule wf-on-measure)
apply (blast intro: linear-measure Ordf inj)
done

lemma measure-type: measure(A,f ) ⊆ A∗A
by (auto simp add: measure-def )

20.5.3 Well-foundedness of Unions
lemma wf-on-Union:
assumes wfA: wf [A](r)

and wfB:
∧

a. a∈A =⇒ wf [B(a)](s)
and ok:

∧
a u v. [[〈u,v〉 ∈ s; v ∈ B(a); a ∈ A]]

=⇒ (∃ a ′∈A. 〈a ′,a〉 ∈ r ∧ u ∈ B(a ′)) | u ∈ B(a)
shows wf [

⋃
a∈A. B(a)](s)

apply (rule wf-onI2 )
apply (erule UN-E)
apply (subgoal-tac ∀ z ∈ B(a). z ∈ Ba, blast)
apply (rule-tac a = a in wf-on-induct [OF wfA], assumption)
apply (rule ballI )
apply (rule-tac a = z in wf-on-induct [OF wfB], assumption, assumption)
apply (rename-tac u)
apply (drule-tac x=u in bspec, blast)
apply (erule mp, clarify)
apply (frule ok, assumption+, blast)
done
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20.5.4 Bijections involving Powersets
lemma Pow-sum-bij:

(λZ ∈ Pow(A+B). 〈{x ∈ A. Inl(x) ∈ Z}, {y ∈ B. Inr(y) ∈ Z}〉)
∈ bij(Pow(A+B), Pow(A)∗Pow(B))

apply (rule-tac d = λ〈X ,Y 〉. {Inl (x). x ∈ X} ∪ {Inr (y). y ∈ Y }
in lam-bijective)

apply force+
done

As a special case, we have bij(Pow(A × B), A → Pow(B))

lemma Pow-Sigma-bij:
(λr ∈ Pow(Sigma(A,B)). λx ∈ A. r‘‘{x})
∈ bij(Pow(Sigma(A,B)),

∏
x ∈ A. Pow(B(x)))

apply (rule-tac d = λf .
⋃

x ∈ A.
⋃

y ∈ f‘x. {〈x,y〉} in lam-bijective)
apply (blast intro: lam-type)
apply (blast dest: apply-type, simp-all)
apply fast
apply (rule fun-extension, auto)
by blast

end

21 Order Types and Ordinal Arithmetic
theory OrderType imports OrderArith OrdQuant Nat begin

The order type of a well-ordering is the least ordinal isomorphic to it. Ordi-
nal arithmetic is traditionally defined in terms of order types, as it is here.
But a definition by transfinite recursion would be much simpler!
definition

ordermap :: [i,i]⇒i where
ordermap(A,r) ≡ λx∈A. wfrec[A](r , x, λx f . f ‘‘ pred(A,x,r))

definition
ordertype :: [i,i]⇒i where
ordertype(A,r) ≡ ordermap(A,r)‘‘A

definition

Ord-alt :: i ⇒ o where
Ord-alt(X) ≡ well-ord(X , Memrel(X)) ∧ (∀ u∈X . u=pred(X , u, Memrel(X)))

definition

ordify :: i⇒i where
ordify(x) ≡ if Ord(x) then x else 0

definition
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omult :: [i,i]⇒i (infixl ‹∗∗› 70 ) where
i ∗∗ j ≡ ordertype(j∗i, rmult(j,Memrel(j),i,Memrel(i)))

definition

raw-oadd :: [i,i]⇒i where
raw-oadd(i,j) ≡ ordertype(i+j, radd(i,Memrel(i),j,Memrel(j)))

definition
oadd :: [i,i]⇒i (infixl ‹++› 65 ) where

i ++ j ≡ raw-oadd(ordify(i),ordify(j))

definition

odiff :: [i,i]⇒i (infixl ‹−−› 65 ) where
i −− j ≡ ordertype(i−j, Memrel(i))

21.1 Proofs needing the combination of Ordinal.thy and Or-
der.thy

lemma le-well-ord-Memrel: j ≤ i =⇒ well-ord(j, Memrel(i))
apply (rule well-ordI )
apply (rule wf-Memrel [THEN wf-imp-wf-on])
apply (simp add: ltD lt-Ord linear-def

ltI [THEN lt-trans2 [of - j i]])
apply (intro ballI Ord-linear)
apply (blast intro: Ord-in-Ord lt-Ord)+
done

lemmas well-ord-Memrel = le-refl [THEN le-well-ord-Memrel]

lemma lt-pred-Memrel:
j<i =⇒ pred(i, j, Memrel(i)) = j

apply (simp add: pred-def lt-def )
apply (blast intro: Ord-trans)
done

lemma pred-Memrel:
x ∈ A =⇒ pred(A, x, Memrel(A)) = A ∩ x

by (unfold pred-def Memrel-def , blast)

lemma Ord-iso-implies-eq-lemma:
[[j<i; f ∈ ord-iso(i,Memrel(i),j,Memrel(j))]] =⇒ R

apply (frule lt-pred-Memrel)
apply (erule ltE)
apply (rule well-ord-Memrel [THEN well-ord-iso-predE , of i f j], auto)
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unfolding ord-iso-def

apply (simp (no-asm-simp))
apply (blast intro: bij-is-fun [THEN apply-type] Ord-trans)
done

lemma Ord-iso-implies-eq:
[[Ord(i); Ord(j); f ∈ ord-iso(i,Memrel(i),j,Memrel(j))]]
=⇒ i=j

apply (rule-tac i = i and j = j in Ord-linear-lt)
apply (blast intro: ord-iso-sym Ord-iso-implies-eq-lemma)+
done

21.2 Ordermap and ordertype
lemma ordermap-type:

ordermap(A,r) ∈ A −> ordertype(A,r)
unfolding ordermap-def ordertype-def

apply (rule lam-type)
apply (rule lamI [THEN imageI ], assumption+)
done

21.2.1 Unfolding of ordermap
lemma ordermap-eq-image:

[[wf [A](r); x ∈ A]]
=⇒ ordermap(A,r) ‘ x = ordermap(A,r) ‘‘ pred(A,x,r)

unfolding ordermap-def pred-def
apply (simp (no-asm-simp))
apply (erule wfrec-on [THEN trans], assumption)
apply (simp (no-asm-simp) add: subset-iff image-lam vimage-singleton-iff )
done

lemma ordermap-pred-unfold:
[[wf [A](r); x ∈ A]]
=⇒ ordermap(A,r) ‘ x = {ordermap(A,r)‘y . y ∈ pred(A,x,r)}

by (simp add: ordermap-eq-image pred-subset ordermap-type [THEN image-fun])

lemmas ordermap-unfold = ordermap-pred-unfold [simplified pred-def ]

21.2.2 Showing that ordermap, ordertype yield ordinals
lemma Ord-ordermap:

[[well-ord(A,r); x ∈ A]] =⇒ Ord(ordermap(A,r) ‘ x)
apply (unfold well-ord-def tot-ord-def part-ord-def , safe)
apply (rule-tac a=x in wf-on-induct, assumption+)
apply (simp (no-asm-simp) add: ordermap-pred-unfold)
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apply (rule OrdI [OF - Ord-is-Transset])
unfolding pred-def Transset-def

apply (blast intro: trans-onD
dest!: ordermap-unfold [THEN equalityD1 ])+

done

lemma Ord-ordertype:
well-ord(A,r) =⇒ Ord(ordertype(A,r))

unfolding ordertype-def
apply (subst image-fun [OF ordermap-type subset-refl])
apply (rule OrdI [OF - Ord-is-Transset])
prefer 2 apply (blast intro: Ord-ordermap)

unfolding Transset-def well-ord-def
apply (blast intro: trans-onD

dest!: ordermap-unfold [THEN equalityD1 ])
done

21.2.3 ordermap preserves the orderings in both directions
lemma ordermap-mono:

[[〈w,x〉: r ; wf [A](r); w ∈ A; x ∈ A]]
=⇒ ordermap(A,r)‘w ∈ ordermap(A,r)‘x

apply (erule-tac x1 = x in ordermap-unfold [THEN ssubst], assumption, blast)
done

lemma converse-ordermap-mono:
[[ordermap(A,r)‘w ∈ ordermap(A,r)‘x; well-ord(A,r); w ∈ A; x ∈ A]]
=⇒ 〈w,x〉: r

apply (unfold well-ord-def tot-ord-def , safe)
apply (erule-tac x=w and y=x in linearE , assumption+)
apply (blast elim!: mem-not-refl [THEN notE ])
apply (blast dest: ordermap-mono intro: mem-asym)
done

lemma ordermap-surj: ordermap(A, r) ∈ surj(A, ordertype(A, r))
unfolding ordertype-def
by (rule surj-image) (rule ordermap-type)

lemma ordermap-bij:
well-ord(A,r) =⇒ ordermap(A,r) ∈ bij(A, ordertype(A,r))

unfolding well-ord-def tot-ord-def bij-def inj-def
apply (force intro!: ordermap-type ordermap-surj

elim: linearE dest: ordermap-mono
simp add: mem-not-refl)

done

21.2.4 Isomorphisms involving ordertype
lemma ordertype-ord-iso:
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well-ord(A,r)
=⇒ ordermap(A,r) ∈ ord-iso(A,r , ordertype(A,r), Memrel(ordertype(A,r)))
unfolding ord-iso-def

apply (safe elim!: well-ord-is-wf
intro!: ordermap-type [THEN apply-type] ordermap-mono ordermap-bij)

apply (blast dest!: converse-ordermap-mono)
done

lemma ordertype-eq:
[[f ∈ ord-iso(A,r ,B,s); well-ord(B,s)]]
=⇒ ordertype(A,r) = ordertype(B,s)

apply (frule well-ord-ord-iso, assumption)
apply (rule Ord-iso-implies-eq, (erule Ord-ordertype)+)
apply (blast intro: ord-iso-trans ord-iso-sym ordertype-ord-iso)
done

lemma ordertype-eq-imp-ord-iso:
[[ordertype(A,r) = ordertype(B,s); well-ord(A,r); well-ord(B,s)]]
=⇒ ∃ f . f ∈ ord-iso(A,r ,B,s)

apply (rule exI )
apply (rule ordertype-ord-iso [THEN ord-iso-trans], assumption)
apply (erule ssubst)
apply (erule ordertype-ord-iso [THEN ord-iso-sym])
done

21.2.5 Basic equalities for ordertype
lemma le-ordertype-Memrel: j ≤ i =⇒ ordertype(j,Memrel(i)) = j
apply (rule Ord-iso-implies-eq [symmetric])
apply (erule ltE , assumption)
apply (blast intro: le-well-ord-Memrel Ord-ordertype)
apply (rule ord-iso-trans)
apply (erule-tac [2 ] le-well-ord-Memrel [THEN ordertype-ord-iso])
apply (rule id-bij [THEN ord-isoI ])
apply (simp (no-asm-simp))
apply (fast elim: ltE Ord-in-Ord Ord-trans)
done

lemmas ordertype-Memrel = le-refl [THEN le-ordertype-Memrel]

lemma ordertype-0 [simp]: ordertype(0 ,r) = 0
apply (rule id-bij [THEN ord-isoI , THEN ordertype-eq, THEN trans])
apply (erule emptyE)
apply (rule well-ord-0 )
apply (rule Ord-0 [THEN ordertype-Memrel])
done
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lemmas bij-ordertype-vimage = ord-iso-rvimage [THEN ordertype-eq]

21.2.6 A fundamental unfolding law for ordertype.
lemma ordermap-pred-eq-ordermap:

[[well-ord(A,r); y ∈ A; z ∈ pred(A,y,r)]]
=⇒ ordermap(pred(A,y,r), r) ‘ z = ordermap(A, r) ‘ z

apply (frule wf-on-subset-A [OF well-ord-is-wf pred-subset])
apply (rule-tac a=z in wf-on-induct, assumption+)
apply (safe elim!: predE)
apply (simp (no-asm-simp) add: ordermap-pred-unfold well-ord-is-wf pred-iff )

apply (simp (no-asm-simp) add: pred-pred-eq)
apply (simp add: pred-def )
apply (rule RepFun-cong [OF - refl])
apply (drule well-ord-is-trans-on)
apply (fast elim!: trans-onD)
done

lemma ordertype-unfold:
ordertype(A,r) = {ordermap(A,r)‘y . y ∈ A}

unfolding ordertype-def
apply (rule image-fun [OF ordermap-type subset-refl])
done

Theorems by Krzysztof Grabczewski; proofs simplified by lcp
lemma ordertype-pred-subset: [[well-ord(A,r); x ∈ A]] =⇒

ordertype(pred(A,x,r),r) ⊆ ordertype(A,r)
apply (simp add: ordertype-unfold well-ord-subset [OF - pred-subset])
apply (fast intro: ordermap-pred-eq-ordermap elim: predE)
done

lemma ordertype-pred-lt:
[[well-ord(A,r); x ∈ A]]
=⇒ ordertype(pred(A,x,r),r) < ordertype(A,r)

apply (rule ordertype-pred-subset [THEN subset-imp-le, THEN leE ])
apply (simp-all add: Ord-ordertype well-ord-subset [OF - pred-subset])
apply (erule sym [THEN ordertype-eq-imp-ord-iso, THEN exE ])
apply (erule-tac [3 ] well-ord-iso-predE)
apply (simp-all add: well-ord-subset [OF - pred-subset])
done

lemma ordertype-pred-unfold:
well-ord(A,r)
=⇒ ordertype(A,r) = {ordertype(pred(A,x,r),r). x ∈ A}

apply (rule equalityI )
apply (safe intro!: ordertype-pred-lt [THEN ltD])
apply (auto simp add: ordertype-def well-ord-is-wf [THEN ordermap-eq-image]
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ordermap-type [THEN image-fun]
ordermap-pred-eq-ordermap pred-subset)

done

21.3 Alternative definition of ordinal
lemma Ord-is-Ord-alt: Ord(i) =⇒ Ord-alt(i)

unfolding Ord-alt-def
apply (rule conjI )
apply (erule well-ord-Memrel)
apply (unfold Ord-def Transset-def pred-def Memrel-def , blast)
done

lemma Ord-alt-is-Ord:
Ord-alt(i) =⇒ Ord(i)

apply (unfold Ord-alt-def Ord-def Transset-def well-ord-def
tot-ord-def part-ord-def trans-on-def )

apply (simp add: pred-Memrel)
apply (blast elim!: equalityE)
done

21.4 Ordinal Addition
21.4.1 Order Type calculations for radd

Addition with 0
lemma bij-sum-0 : (λz∈A+0 . case(λx. x, λy. y, z)) ∈ bij(A+0 , A)
apply (rule-tac d = Inl in lam-bijective, safe)
apply (simp-all (no-asm-simp))
done

lemma ordertype-sum-0-eq:
well-ord(A,r) =⇒ ordertype(A+0 , radd(A,r ,0 ,s)) = ordertype(A,r)

apply (rule bij-sum-0 [THEN ord-isoI , THEN ordertype-eq])
prefer 2 apply assumption
apply force
done

lemma bij-0-sum: (λz∈0+A. case(λx. x, λy. y, z)) ∈ bij(0+A, A)
apply (rule-tac d = Inr in lam-bijective, safe)
apply (simp-all (no-asm-simp))
done

lemma ordertype-0-sum-eq:
well-ord(A,r) =⇒ ordertype(0+A, radd(0 ,s,A,r)) = ordertype(A,r)

apply (rule bij-0-sum [THEN ord-isoI , THEN ordertype-eq])
prefer 2 apply assumption
apply force
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done

Initial segments of radd. Statements by Grabczewski
lemma pred-Inl-bij:
a ∈ A =⇒ (λx∈pred(A,a,r). Inl(x))

∈ bij(pred(A,a,r), pred(A+B, Inl(a), radd(A,r ,B,s)))
unfolding pred-def

apply (rule-tac d = case (λx. x, λy. y) in lam-bijective)
apply auto
done

lemma ordertype-pred-Inl-eq:
[[a ∈ A; well-ord(A,r)]]
=⇒ ordertype(pred(A+B, Inl(a), radd(A,r ,B,s)), radd(A,r ,B,s)) =

ordertype(pred(A,a,r), r)
apply (rule pred-Inl-bij [THEN ord-isoI , THEN ord-iso-sym, THEN ordertype-eq])
apply (simp-all add: well-ord-subset [OF - pred-subset])
apply (simp add: pred-def )
done

lemma pred-Inr-bij:
b ∈ B =⇒

id(A+pred(B,b,s))
∈ bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r ,B,s)))

unfolding pred-def id-def
apply (rule-tac d = λz. z in lam-bijective, auto)
done

lemma ordertype-pred-Inr-eq:
[[b ∈ B; well-ord(A,r); well-ord(B,s)]]
=⇒ ordertype(pred(A+B, Inr(b), radd(A,r ,B,s)), radd(A,r ,B,s)) =

ordertype(A+pred(B,b,s), radd(A,r ,pred(B,b,s),s))
apply (rule pred-Inr-bij [THEN ord-isoI , THEN ord-iso-sym, THEN ordertype-eq])
prefer 2 apply (force simp add: pred-def id-def , assumption)
apply (blast intro: well-ord-radd well-ord-subset [OF - pred-subset])
done

21.4.2 ordify: trivial coercion to an ordinal
lemma Ord-ordify [iff , TC ]: Ord(ordify(x))
by (simp add: ordify-def )

lemma ordify-idem [simp]: ordify(ordify(x)) = ordify(x)
by (simp add: ordify-def )

21.4.3 Basic laws for ordinal addition
lemma Ord-raw-oadd: [[Ord(i); Ord(j)]] =⇒ Ord(raw-oadd(i,j))
by (simp add: raw-oadd-def ordify-def Ord-ordertype well-ord-radd
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well-ord-Memrel)

lemma Ord-oadd [iff ,TC ]: Ord(i++j)
by (simp add: oadd-def Ord-raw-oadd)

Ordinal addition with zero
lemma raw-oadd-0 : Ord(i) =⇒ raw-oadd(i,0 ) = i
by (simp add: raw-oadd-def ordify-def ordertype-sum-0-eq

ordertype-Memrel well-ord-Memrel)

lemma oadd-0 [simp]: Ord(i) =⇒ i++0 = i
apply (simp (no-asm-simp) add: oadd-def raw-oadd-0 ordify-def )
done

lemma raw-oadd-0-left: Ord(i) =⇒ raw-oadd(0 ,i) = i
by (simp add: raw-oadd-def ordify-def ordertype-0-sum-eq ordertype-Memrel

well-ord-Memrel)

lemma oadd-0-left [simp]: Ord(i) =⇒ 0++i = i
by (simp add: oadd-def raw-oadd-0-left ordify-def )

lemma oadd-eq-if-raw-oadd:
i++j = (if Ord(i) then (if Ord(j) then raw-oadd(i,j) else i)

else (if Ord(j) then j else 0 ))
by (simp add: oadd-def ordify-def raw-oadd-0-left raw-oadd-0 )

lemma raw-oadd-eq-oadd: [[Ord(i); Ord(j)]] =⇒ raw-oadd(i,j) = i++j
by (simp add: oadd-def ordify-def )

lemma lt-oadd1 : k<i =⇒ k < i++j
apply (simp add: oadd-def ordify-def lt-Ord2 raw-oadd-0 , clarify)
apply (simp add: raw-oadd-def )
apply (rule ltE , assumption)
apply (rule ltI )
apply (force simp add: ordertype-pred-unfold well-ord-radd well-ord-Memrel

ordertype-pred-Inl-eq lt-pred-Memrel leI [THEN le-ordertype-Memrel])
apply (blast intro: Ord-ordertype well-ord-radd well-ord-Memrel)
done

lemma oadd-le-self : Ord(i) =⇒ i ≤ i++j
apply (rule all-lt-imp-le)
apply (auto simp add: Ord-oadd lt-oadd1 )
done

Various other results
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lemma id-ord-iso-Memrel: A<=B =⇒ id(A) ∈ ord-iso(A, Memrel(A), A, Mem-
rel(B))
apply (rule id-bij [THEN ord-isoI ])
apply (simp (no-asm-simp))
apply blast
done

lemma subset-ord-iso-Memrel:
[[f ∈ ord-iso(A,Memrel(B),C ,r); A<=B]] =⇒ f ∈ ord-iso(A,Memrel(A),C ,r)

apply (frule ord-iso-is-bij [THEN bij-is-fun, THEN fun-is-rel])
apply (frule ord-iso-trans [OF id-ord-iso-Memrel], assumption)
apply (simp add: right-comp-id)
done

lemma restrict-ord-iso:
[[f ∈ ord-iso(i, Memrel(i), Order .pred(A,a,r), r); a ∈ A; j < i;

trans[A](r)]]
=⇒ restrict(f ,j) ∈ ord-iso(j, Memrel(j), Order .pred(A,f‘j,r), r)

apply (frule ltD)
apply (frule ord-iso-is-bij [THEN bij-is-fun, THEN apply-type], assumption)
apply (frule ord-iso-restrict-pred, assumption)
apply (simp add: pred-iff trans-pred-pred-eq lt-pred-Memrel)
apply (blast intro!: subset-ord-iso-Memrel le-imp-subset [OF leI ])
done

lemma restrict-ord-iso2 :
[[f ∈ ord-iso(Order .pred(A,a,r), r , i, Memrel(i)); a ∈ A;

j < i; trans[A](r)]]
=⇒ converse(restrict(converse(f ), j))
∈ ord-iso(Order .pred(A, converse(f )‘j, r), r , j, Memrel(j))

by (blast intro: restrict-ord-iso ord-iso-sym ltI )

lemma ordertype-sum-Memrel:
[[well-ord(A,r); k<j]]
=⇒ ordertype(A+k, radd(A, r , k, Memrel(j))) =

ordertype(A+k, radd(A, r , k, Memrel(k)))
apply (erule ltE)
apply (rule ord-iso-refl [THEN sum-ord-iso-cong, THEN ordertype-eq])
apply (erule OrdmemD [THEN id-ord-iso-Memrel, THEN ord-iso-sym])
apply (simp-all add: well-ord-radd well-ord-Memrel)
done

lemma oadd-lt-mono2 : k<j =⇒ i++k < i++j
apply (simp add: oadd-def ordify-def raw-oadd-0-left lt-Ord lt-Ord2 , clarify)
apply (simp add: raw-oadd-def )
apply (rule ltE , assumption)
apply (rule ordertype-pred-unfold [THEN equalityD2 , THEN subsetD, THEN ltI ])
apply (simp-all add: Ord-ordertype well-ord-radd well-ord-Memrel)
apply (rule bexI )
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apply (erule-tac [2 ] InrI )
apply (simp add: ordertype-pred-Inr-eq well-ord-Memrel lt-pred-Memrel

leI [THEN le-ordertype-Memrel] ordertype-sum-Memrel)
done

lemma oadd-lt-cancel2 : [[i++j < i++k; Ord(j)]] =⇒ j<k
apply (simp (asm-lr) add: oadd-eq-if-raw-oadd split: split-if-asm)
prefer 2
apply (frule-tac i = i and j = j in oadd-le-self )
apply (simp (asm-lr) add: oadd-def ordify-def lt-Ord not-lt-iff-le [THEN iff-sym])

apply (rule Ord-linear-lt, auto)
apply (simp-all add: raw-oadd-eq-oadd)
apply (blast dest: oadd-lt-mono2 elim: lt-irrefl lt-asym)+
done

lemma oadd-lt-iff2 : Ord(j) =⇒ i++j < i++k ←→ j<k
by (blast intro!: oadd-lt-mono2 dest!: oadd-lt-cancel2 )

lemma oadd-inject: [[i++j = i++k; Ord(j); Ord(k)]] =⇒ j=k
apply (simp add: oadd-eq-if-raw-oadd split: split-if-asm)
apply (simp add: raw-oadd-eq-oadd)
apply (rule Ord-linear-lt, auto)
apply (force dest: oadd-lt-mono2 [of concl: i] simp add: lt-not-refl)+
done

lemma lt-oadd-disj: k < i++j =⇒ k<i | (∃ l∈j. k = i++l )
apply (simp add: Ord-in-Ord ′ [of - j] oadd-eq-if-raw-oadd

split: split-if-asm)
prefer 2
apply (simp add: Ord-in-Ord ′ [of - j] lt-def )

apply (simp add: ordertype-pred-unfold well-ord-radd well-ord-Memrel raw-oadd-def )
apply (erule ltD [THEN RepFunE ])
apply (force simp add: ordertype-pred-Inl-eq well-ord-Memrel ltI

lt-pred-Memrel le-ordertype-Memrel leI
ordertype-pred-Inr-eq ordertype-sum-Memrel)

done

21.4.4 Ordinal addition with successor – via associativity!
lemma oadd-assoc: (i++j)++k = i++(j++k)
apply (simp add: oadd-eq-if-raw-oadd Ord-raw-oadd raw-oadd-0 raw-oadd-0-left,
clarify)
apply (simp add: raw-oadd-def )
apply (rule ordertype-eq [THEN trans])
apply (rule sum-ord-iso-cong [OF ordertype-ord-iso [THEN ord-iso-sym]

ord-iso-refl])
apply (simp-all add: Ord-ordertype well-ord-radd well-ord-Memrel)
apply (rule sum-assoc-ord-iso [THEN ordertype-eq, THEN trans])
apply (rule-tac [2 ] ordertype-eq)

188



apply (rule-tac [2 ] sum-ord-iso-cong [OF ord-iso-refl ordertype-ord-iso])
apply (blast intro: Ord-ordertype well-ord-radd well-ord-Memrel)+
done

lemma oadd-unfold: [[Ord(i); Ord(j)]] =⇒ i++j = i ∪ (
⋃

k∈j. {i++k})
apply (rule subsetI [THEN equalityI ])
apply (erule ltI [THEN lt-oadd-disj, THEN disjE ])
apply (blast intro: Ord-oadd)
apply (blast elim!: ltE , blast)
apply (force intro: lt-oadd1 oadd-lt-mono2 simp add: Ord-mem-iff-lt)
done

lemma oadd-1 : Ord(i) =⇒ i++1 = succ(i)
apply (simp (no-asm-simp) add: oadd-unfold Ord-1 oadd-0 )
apply blast
done

lemma oadd-succ [simp]: Ord(j) =⇒ i++succ(j) = succ(i++j)
apply (simp add: oadd-eq-if-raw-oadd, clarify)
apply (simp add: raw-oadd-eq-oadd)
apply (simp add: oadd-1 [of j, symmetric] oadd-1 [of i++j, symmetric]

oadd-assoc)
done

Ordinal addition with limit ordinals
lemma oadd-UN :

[[
∧

x. x ∈ A =⇒ Ord(j(x)); a ∈ A]]
=⇒ i ++ (

⋃
x∈A. j(x)) = (

⋃
x∈A. i++j(x))

by (blast intro: ltI Ord-UN Ord-oadd lt-oadd1 [THEN ltD]
oadd-lt-mono2 [THEN ltD]

elim!: ltE dest!: ltI [THEN lt-oadd-disj])

lemma oadd-Limit: Limit(j) =⇒ i++j = (
⋃

k∈j. i++k)
apply (frule Limit-has-0 [THEN ltD])
apply (simp add: Limit-is-Ord [THEN Ord-in-Ord] oadd-UN [symmetric]

Union-eq-UN [symmetric] Limit-Union-eq)
done

lemma oadd-eq-0-iff : [[Ord(i); Ord(j)]] =⇒ (i ++ j) = 0 ←→ i=0 ∧ j=0
apply (erule trans-induct3 [of j])
apply (simp-all add: oadd-Limit)
apply (simp add: Union-empty-iff Limit-def lt-def , blast)
done

lemma oadd-eq-lt-iff : [[Ord(i); Ord(j)]] =⇒ 0 < (i ++ j) ←→ 0<i | 0<j
by (simp add: Ord-0-lt-iff [symmetric] oadd-eq-0-iff )

lemma oadd-LimitI : [[Ord(i); Limit(j)]] =⇒ Limit(i ++ j)
apply (simp add: oadd-Limit)
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apply (frule Limit-has-1 [THEN ltD])
apply (rule increasing-LimitI )
apply (rule Ord-0-lt)
apply (blast intro: Ord-in-Ord [OF Limit-is-Ord])

apply (force simp add: Union-empty-iff oadd-eq-0-iff
Limit-is-Ord [of j, THEN Ord-in-Ord], auto)

apply (rule-tac x=succ(y) in bexI )
apply (simp add: ltI Limit-is-Ord [of j, THEN Ord-in-Ord])

apply (simp add: Limit-def lt-def )
done

Order/monotonicity properties of ordinal addition
lemma oadd-le-self2 : Ord(i) =⇒ i ≤ j++i
proof (induct i rule: trans-induct3 )

case 0 thus ?case by (simp add: Ord-0-le)
next

case (succ i) thus ?case by (simp add: oadd-succ succ-leI )
next

case (limit l)
hence l = (

⋃
x∈l. x)

by (simp add: Union-eq-UN [symmetric] Limit-Union-eq)
also have ... ≤ (

⋃
x∈l. j++x)

by (rule le-implies-UN-le-UN ) (rule limit.hyps)
finally have l ≤ (

⋃
x∈l. j++x) .

thus ?case using limit.hyps by (simp add: oadd-Limit)
qed

lemma oadd-le-mono1 : k ≤ j =⇒ k++i ≤ j++i
apply (frule lt-Ord)
apply (frule le-Ord2 )
apply (simp add: oadd-eq-if-raw-oadd, clarify)
apply (simp add: raw-oadd-eq-oadd)
apply (erule-tac i = i in trans-induct3 )
apply (simp (no-asm-simp))
apply (simp (no-asm-simp) add: oadd-succ succ-le-iff )
apply (simp (no-asm-simp) add: oadd-Limit)
apply (rule le-implies-UN-le-UN , blast)
done

lemma oadd-lt-mono: [[i ′ ≤ i; j ′<j]] =⇒ i ′++j ′ < i++j
by (blast intro: lt-trans1 oadd-le-mono1 oadd-lt-mono2 Ord-succD elim: ltE)

lemma oadd-le-mono: [[i ′ ≤ i; j ′ ≤ j]] =⇒ i ′++j ′ ≤ i++j
by (simp del: oadd-succ add: oadd-succ [symmetric] le-Ord2 oadd-lt-mono)

lemma oadd-le-iff2 : [[Ord(j); Ord(k)]] =⇒ i++j ≤ i++k ←→ j ≤ k
by (simp del: oadd-succ add: oadd-lt-iff2 oadd-succ [symmetric] Ord-succ)

lemma oadd-lt-self : [[Ord(i); 0<j]] =⇒ i < i++j
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apply (rule lt-trans2 )
apply (erule le-refl)
apply (simp only: lt-Ord2 oadd-1 [of i, symmetric])
apply (blast intro: succ-leI oadd-le-mono)
done

Every ordinal is exceeded by some limit ordinal.
lemma Ord-imp-greater-Limit: Ord(i) =⇒ ∃ k. i<k ∧ Limit(k)
apply (rule-tac x=i ++ nat in exI )
apply (blast intro: oadd-LimitI oadd-lt-self Limit-nat [THEN Limit-has-0 ])
done

lemma Ord2-imp-greater-Limit: [[Ord(i); Ord(j)]] =⇒ ∃ k. i<k ∧ j<k ∧ Limit(k)
apply (insert Ord-Un [of i j, THEN Ord-imp-greater-Limit])
apply (simp add: Un-least-lt-iff )
done

21.5 Ordinal Subtraction

The difference is ordertype(j − i, Memrel(j)). It’s probably simpler to define
the difference recursively!
lemma bij-sum-Diff :

A<=B =⇒ (λy∈B. if (y ∈ A, Inl(y), Inr(y))) ∈ bij(B, A+(B−A))
apply (rule-tac d = case (λx. x, λy. y) in lam-bijective)
apply (blast intro!: if-type)
apply (fast intro!: case-type)
apply (erule-tac [2 ] sumE)
apply (simp-all (no-asm-simp))
done

lemma ordertype-sum-Diff :
i ≤ j =⇒

ordertype(i+(j−i), radd(i,Memrel(j),j−i,Memrel(j))) =
ordertype(j, Memrel(j))

apply (safe dest!: le-subset-iff [THEN iffD1 ])
apply (rule bij-sum-Diff [THEN ord-isoI , THEN ord-iso-sym, THEN ordertype-eq])
apply (erule-tac [3 ] well-ord-Memrel, assumption)
apply (simp (no-asm-simp))
apply (frule-tac j = y in Ord-in-Ord, assumption)
apply (frule-tac j = x in Ord-in-Ord, assumption)
apply (simp (no-asm-simp) add: Ord-mem-iff-lt lt-Ord not-lt-iff-le)
apply (blast intro: lt-trans2 lt-trans)
done

lemma Ord-odiff [simp,TC ]:
[[Ord(i); Ord(j)]] =⇒ Ord(i−−j)

unfolding odiff-def
apply (blast intro: Ord-ordertype Diff-subset well-ord-subset well-ord-Memrel)
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done

lemma raw-oadd-ordertype-Diff :
i ≤ j
=⇒ raw-oadd(i,j−−i) = ordertype(i+(j−i), radd(i,Memrel(j),j−i,Memrel(j)))

apply (simp add: raw-oadd-def odiff-def )
apply (safe dest!: le-subset-iff [THEN iffD1 ])
apply (rule sum-ord-iso-cong [THEN ordertype-eq])
apply (erule id-ord-iso-Memrel)
apply (rule ordertype-ord-iso [THEN ord-iso-sym])
apply (blast intro: well-ord-radd Diff-subset well-ord-subset well-ord-Memrel)+
done

lemma oadd-odiff-inverse: i ≤ j =⇒ i ++ (j−−i) = j
by (simp add: lt-Ord le-Ord2 oadd-def ordify-def raw-oadd-ordertype-Diff

ordertype-sum-Diff ordertype-Memrel lt-Ord2 [THEN Ord-succD])

lemma odiff-oadd-inverse: [[Ord(i); Ord(j)]] =⇒ (i++j) −− i = j
apply (rule oadd-inject)
apply (blast intro: oadd-odiff-inverse oadd-le-self )
apply (blast intro: Ord-ordertype Ord-oadd Ord-odiff )+
done

lemma odiff-lt-mono2 : [[i<j; k ≤ i]] =⇒ i−−k < j−−k
apply (rule-tac i = k in oadd-lt-cancel2 )
apply (simp add: oadd-odiff-inverse)
apply (subst oadd-odiff-inverse)
apply (blast intro: le-trans leI , assumption)
apply (simp (no-asm-simp) add: lt-Ord le-Ord2 )
done

21.6 Ordinal Multiplication
lemma Ord-omult [simp,TC ]:

[[Ord(i); Ord(j)]] =⇒ Ord(i∗∗j)
unfolding omult-def

apply (blast intro: Ord-ordertype well-ord-rmult well-ord-Memrel)
done

21.6.1 A useful unfolding law
lemma pred-Pair-eq:
[[a ∈ A; b ∈ B]] =⇒ pred(A∗B, 〈a,b〉, rmult(A,r ,B,s)) =

pred(A,a,r)∗B ∪ ({a} ∗ pred(B,b,s))
apply (unfold pred-def , blast)
done

lemma ordertype-pred-Pair-eq:
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[[a ∈ A; b ∈ B; well-ord(A,r); well-ord(B,s)]] =⇒
ordertype(pred(A∗B, 〈a,b〉, rmult(A,r ,B,s)), rmult(A,r ,B,s)) =
ordertype(pred(A,a,r)∗B + pred(B,b,s),

radd(A∗B, rmult(A,r ,B,s), B, s))
apply (simp (no-asm-simp) add: pred-Pair-eq)
apply (rule ordertype-eq [symmetric])
apply (rule prod-sum-singleton-ord-iso)
apply (simp-all add: pred-subset well-ord-rmult [THEN well-ord-subset])
apply (blast intro: pred-subset well-ord-rmult [THEN well-ord-subset]

elim!: predE)
done

lemma ordertype-pred-Pair-lemma:
[[i ′<i; j ′<j]]
=⇒ ordertype(pred(i∗j, <i ′,j ′>, rmult(i,Memrel(i),j,Memrel(j))),

rmult(i,Memrel(i),j,Memrel(j))) =
raw-oadd (j∗∗i ′, j ′)

unfolding raw-oadd-def omult-def
apply (simp add: ordertype-pred-Pair-eq lt-pred-Memrel ltD lt-Ord2

well-ord-Memrel)
apply (rule trans)
apply (rule-tac [2 ] ordertype-ord-iso

[THEN sum-ord-iso-cong, THEN ordertype-eq])
apply (rule-tac [3 ] ord-iso-refl)

apply (rule id-bij [THEN ord-isoI , THEN ordertype-eq])
apply (elim SigmaE sumE ltE ssubst)
apply (simp-all add: well-ord-rmult well-ord-radd well-ord-Memrel

Ord-ordertype lt-Ord lt-Ord2 )
apply (blast intro: Ord-trans)+
done

lemma lt-omult:
[[Ord(i); Ord(j); k<j∗∗i]]
=⇒ ∃ j ′ i ′. k = j∗∗i ′ ++ j ′ ∧ j ′<j ∧ i ′<i
unfolding omult-def

apply (simp add: ordertype-pred-unfold well-ord-rmult well-ord-Memrel)
apply (safe elim!: ltE)
apply (simp add: ordertype-pred-Pair-lemma ltI raw-oadd-eq-oadd

omult-def [symmetric] Ord-in-Ord ′ [of - i] Ord-in-Ord ′ [of - j])
apply (blast intro: ltI )
done

lemma omult-oadd-lt:
[[j ′<j; i ′<i]] =⇒ j∗∗i ′ ++ j ′ < j∗∗i

unfolding omult-def
apply (rule ltI )
prefer 2
apply (simp add: Ord-ordertype well-ord-rmult well-ord-Memrel lt-Ord2 )

apply (simp add: ordertype-pred-unfold well-ord-rmult well-ord-Memrel lt-Ord2 )
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apply (rule bexI [of - i ′])
apply (rule bexI [of - j ′])
apply (simp add: ordertype-pred-Pair-lemma ltI omult-def [symmetric])
apply (simp add: lt-Ord lt-Ord2 raw-oadd-eq-oadd)
apply (simp-all add: lt-def )
done

lemma omult-unfold:
[[Ord(i); Ord(j)]] =⇒ j∗∗i = (

⋃
j ′∈j.

⋃
i ′∈i. {j∗∗i ′ ++ j ′})

apply (rule subsetI [THEN equalityI ])
apply (rule lt-omult [THEN exE ])
apply (erule-tac [3 ] ltI )
apply (simp-all add: Ord-omult)
apply (blast elim!: ltE)
apply (blast intro: omult-oadd-lt [THEN ltD] ltI )
done

21.6.2 Basic laws for ordinal multiplication

Ordinal multiplication by zero
lemma omult-0 [simp]: i∗∗0 = 0

unfolding omult-def
apply (simp (no-asm-simp))
done

lemma omult-0-left [simp]: 0∗∗i = 0
unfolding omult-def

apply (simp (no-asm-simp))
done

Ordinal multiplication by 1
lemma omult-1 [simp]: Ord(i) =⇒ i∗∗1 = i

unfolding omult-def
apply (rule-tac s1=Memrel(i)

in ord-isoI [THEN ordertype-eq, THEN trans])
apply (rule-tac c = snd and d = λz.〈0 ,z〉 in lam-bijective)
apply (auto elim!: snd-type well-ord-Memrel ordertype-Memrel)
done

lemma omult-1-left [simp]: Ord(i) =⇒ 1∗∗i = i
unfolding omult-def

apply (rule-tac s1=Memrel(i)
in ord-isoI [THEN ordertype-eq, THEN trans])

apply (rule-tac c = fst and d = λz.〈z,0 〉 in lam-bijective)
apply (auto elim!: fst-type well-ord-Memrel ordertype-Memrel)
done

Distributive law for ordinal multiplication and addition
lemma oadd-omult-distrib:
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[[Ord(i); Ord(j); Ord(k)]] =⇒ i∗∗(j++k) = (i∗∗j)++(i∗∗k)
apply (simp add: oadd-eq-if-raw-oadd)
apply (simp add: omult-def raw-oadd-def )
apply (rule ordertype-eq [THEN trans])
apply (rule prod-ord-iso-cong [OF ordertype-ord-iso [THEN ord-iso-sym]

ord-iso-refl])
apply (simp-all add: well-ord-rmult well-ord-radd well-ord-Memrel

Ord-ordertype)
apply (rule sum-prod-distrib-ord-iso [THEN ordertype-eq, THEN trans])
apply (rule-tac [2 ] ordertype-eq)
apply (rule-tac [2 ] sum-ord-iso-cong [OF ordertype-ord-iso ordertype-ord-iso])
apply (simp-all add: well-ord-rmult well-ord-radd well-ord-Memrel

Ord-ordertype)
done

lemma omult-succ: [[Ord(i); Ord(j)]] =⇒ i∗∗succ(j) = (i∗∗j)++i
by (simp del: oadd-succ add: oadd-1 [of j, symmetric] oadd-omult-distrib)

Associative law
lemma omult-assoc:

[[Ord(i); Ord(j); Ord(k)]] =⇒ (i∗∗j)∗∗k = i∗∗(j∗∗k)
unfolding omult-def

apply (rule ordertype-eq [THEN trans])
apply (rule prod-ord-iso-cong [OF ord-iso-refl

ordertype-ord-iso [THEN ord-iso-sym]])
apply (blast intro: well-ord-rmult well-ord-Memrel)+
apply (rule prod-assoc-ord-iso

[THEN ord-iso-sym, THEN ordertype-eq, THEN trans])
apply (rule-tac [2 ] ordertype-eq)
apply (rule-tac [2 ] prod-ord-iso-cong [OF ordertype-ord-iso ord-iso-refl])
apply (blast intro: well-ord-rmult well-ord-Memrel Ord-ordertype)+
done

Ordinal multiplication with limit ordinals
lemma omult-UN :

[[Ord(i);
∧

x. x ∈ A =⇒ Ord(j(x))]]
=⇒ i ∗∗ (

⋃
x∈A. j(x)) = (

⋃
x∈A. i∗∗j(x))

by (simp (no-asm-simp) add: Ord-UN omult-unfold, blast)

lemma omult-Limit: [[Ord(i); Limit(j)]] =⇒ i∗∗j = (
⋃

k∈j. i∗∗k)
by (simp add: Limit-is-Ord [THEN Ord-in-Ord] omult-UN [symmetric]

Union-eq-UN [symmetric] Limit-Union-eq)

21.6.3 Ordering/monotonicity properties of ordinal multiplica-
tion

lemma lt-omult1 : [[k<i; 0<j]] =⇒ k < i∗∗j
apply (safe elim!: ltE intro!: ltI Ord-omult)
apply (force simp add: omult-unfold)
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done

lemma omult-le-self : [[Ord(i); 0<j]] =⇒ i ≤ i∗∗j
by (blast intro: all-lt-imp-le Ord-omult lt-omult1 lt-Ord2 )

lemma omult-le-mono1 :
assumes kj: k ≤ j and i: Ord(i) shows k∗∗i ≤ j∗∗i

proof −
have o: Ord(k) Ord(j) by (rule lt-Ord [OF kj] le-Ord2 [OF kj])+
show ?thesis using i
proof (induct i rule: trans-induct3 )

case 0 thus ?case
by simp

next
case (succ i) thus ?case

by (simp add: o kj omult-succ oadd-le-mono)
next

case (limit l)
thus ?case

by (auto simp add: o kj omult-Limit le-implies-UN-le-UN )
qed

qed

lemma omult-lt-mono2 : [[k<j; 0<i]] =⇒ i∗∗k < i∗∗j
apply (rule ltI )
apply (simp (no-asm-simp) add: omult-unfold lt-Ord2 )
apply (safe elim!: ltE intro!: Ord-omult)
apply (force simp add: Ord-omult)
done

lemma omult-le-mono2 : [[k ≤ j; Ord(i)]] =⇒ i∗∗k ≤ i∗∗j
apply (rule subset-imp-le)
apply (safe elim!: ltE dest!: Ord-succD intro!: Ord-omult)
apply (simp add: omult-unfold)
apply (blast intro: Ord-trans)
done

lemma omult-le-mono: [[i ′ ≤ i; j ′ ≤ j]] =⇒ i ′∗∗j ′ ≤ i∗∗j
by (blast intro: le-trans omult-le-mono1 omult-le-mono2 Ord-succD elim: ltE)

lemma omult-lt-mono: [[i ′ ≤ i; j ′<j; 0<i]] =⇒ i ′∗∗j ′ < i∗∗j
by (blast intro: lt-trans1 omult-le-mono1 omult-lt-mono2 Ord-succD elim: ltE)

lemma omult-le-self2 :
assumes i: Ord(i) and j: 0<j shows i ≤ j∗∗i

proof −
have oj: Ord(j) by (rule lt-Ord2 [OF j])
show ?thesis using i
proof (induct i rule: trans-induct3 )
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case 0 thus ?case
by simp

next
case (succ i)
have j ∗∗ i ++ 0 < j ∗∗ i ++ j

by (rule oadd-lt-mono2 [OF j])
with succ.hyps show ?case

by (simp add: oj j omult-succ ) (rule lt-trans1 )
next

case (limit l)
hence l = (

⋃
x∈l. x)

by (simp add: Union-eq-UN [symmetric] Limit-Union-eq)
also have ... ≤ (

⋃
x∈l. j∗∗x)

by (rule le-implies-UN-le-UN ) (rule limit.hyps)
finally have l ≤ (

⋃
x∈l. j∗∗x) .

thus ?case using limit.hyps by (simp add: oj omult-Limit)
qed

qed

Further properties of ordinal multiplication
lemma omult-inject: [[i∗∗j = i∗∗k; 0<i; Ord(j); Ord(k)]] =⇒ j=k
apply (rule Ord-linear-lt)
prefer 4 apply assumption
apply auto
apply (force dest: omult-lt-mono2 simp add: lt-not-refl)+
done

21.7 The Relation Lt
lemma wf-Lt: wf (Lt)
apply (rule wf-subset)
apply (rule wf-Memrel)
apply (auto simp add: Lt-def Memrel-def lt-def )
done

lemma irrefl-Lt: irrefl(A,Lt)
by (auto simp add: Lt-def irrefl-def )

lemma trans-Lt: trans[A](Lt)
apply (simp add: Lt-def trans-on-def )
apply (blast intro: lt-trans)
done

lemma part-ord-Lt: part-ord(A,Lt)
by (simp add: part-ord-def irrefl-Lt trans-Lt)

lemma linear-Lt: linear(nat,Lt)
apply (auto dest!: not-lt-imp-le simp add: Lt-def linear-def le-iff )
apply (drule lt-asym, auto)
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done

lemma tot-ord-Lt: tot-ord(nat,Lt)
by (simp add: tot-ord-def linear-Lt part-ord-Lt)

lemma well-ord-Lt: well-ord(nat,Lt)
by (simp add: well-ord-def wf-Lt wf-imp-wf-on tot-ord-Lt)

end

22 Finite Powerset Operator and Finite Function
Space

theory Finite imports Inductive Epsilon Nat begin

rep-datatype
elimination natE
induction nat-induct
case-eqns nat-case-0 nat-case-succ
recursor-eqns recursor-0 recursor-succ

consts
Fin :: i⇒i
FiniteFun :: [i,i]⇒i (‹(‹notation=‹infix −||>››- −||>/ -)› [61 , 60 ] 60 )

inductive
domains Fin(A) ⊆ Pow(A)
intros

emptyI : 0 ∈ Fin(A)
consI : [[a ∈ A; b ∈ Fin(A)]] =⇒ cons(a,b) ∈ Fin(A)

type-intros empty-subsetI cons-subsetI PowI
type-elims PowD [elim-format]

inductive
domains FiniteFun(A,B) ⊆ Fin(A∗B)
intros

emptyI : 0 ∈ A −||> B
consI : [[a ∈ A; b ∈ B; h ∈ A −||> B; a /∈ domain(h)]]

=⇒ cons(〈a,b〉,h) ∈ A −||> B
type-intros Fin.intros

22.1 Finite Powerset Operator
lemma Fin-mono: A<=B =⇒ Fin(A) ⊆ Fin(B)

unfolding Fin.defs
apply (rule lfp-mono)
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apply (rule Fin.bnd-mono)+
apply blast
done

lemmas FinD = Fin.dom-subset [THEN subsetD, THEN PowD]

lemma Fin-induct [case-names 0 cons, induct set: Fin]:
[[b ∈ Fin(A);

P(0 );∧
x y. [[x ∈ A; y ∈ Fin(A); x /∈y; P(y)]] =⇒ P(cons(x,y))

]] =⇒ P(b)
apply (erule Fin.induct, simp)
apply (case-tac a ∈ b)
apply (erule cons-absorb [THEN ssubst], assumption)

apply simp
done

declare Fin.intros [simp]

lemma Fin-0 : Fin(0 ) = {0}
by (blast intro: Fin.emptyI dest: FinD)

lemma Fin-UnI [simp]: [[b ∈ Fin(A); c ∈ Fin(A)]] =⇒ b ∪ c ∈ Fin(A)
apply (erule Fin-induct)
apply (simp-all add: Un-cons)
done

lemma Fin-UnionI : C ∈ Fin(Fin(A)) =⇒
⋃
(C ) ∈ Fin(A)

by (erule Fin-induct, simp-all)

lemma Fin-subset-lemma [rule-format]: b ∈ Fin(A) =⇒ ∀ z. z<=b −→ z ∈ Fin(A)
apply (erule Fin-induct)
apply (simp add: subset-empty-iff )
apply (simp add: subset-cons-iff distrib-simps, safe)
apply (erule-tac b = z in cons-Diff [THEN subst], simp)
done

lemma Fin-subset: [[c<=b; b ∈ Fin(A)]] =⇒ c ∈ Fin(A)
by (blast intro: Fin-subset-lemma)
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lemma Fin-IntI1 [intro,simp]: b ∈ Fin(A) =⇒ b ∩ c ∈ Fin(A)
by (blast intro: Fin-subset)

lemma Fin-IntI2 [intro,simp]: c ∈ Fin(A) =⇒ b ∩ c ∈ Fin(A)
by (blast intro: Fin-subset)

lemma Fin-0-induct-lemma [rule-format]:
[[c ∈ Fin(A); b ∈ Fin(A); P(b);∧

x y. [[x ∈ A; y ∈ Fin(A); x ∈ y; P(y)]] =⇒ P(y−{x})
]] =⇒ c<=b −→ P(b−c)
apply (erule Fin-induct, simp)
apply (subst Diff-cons)
apply (simp add: cons-subset-iff Diff-subset [THEN Fin-subset])
done

lemma Fin-0-induct:
[[b ∈ Fin(A);

P(b);∧
x y. [[x ∈ A; y ∈ Fin(A); x ∈ y; P(y)]] =⇒ P(y−{x})

]] =⇒ P(0 )
apply (rule Diff-cancel [THEN subst])
apply (blast intro: Fin-0-induct-lemma)
done

lemma nat-fun-subset-Fin: n ∈ nat =⇒ n−>A ⊆ Fin(nat∗A)
apply (induct-tac n)
apply (simp add: subset-iff )
apply (simp add: succ-def mem-not-refl [THEN cons-fun-eq])
apply (fast intro!: Fin.consI )
done

22.2 Finite Function Space
lemma FiniteFun-mono:

[[A<=C ; B<=D]] =⇒ A −||> B ⊆ C −||> D
unfolding FiniteFun.defs

apply (rule lfp-mono)
apply (rule FiniteFun.bnd-mono)+
apply (intro Fin-mono Sigma-mono basic-monos, assumption+)
done

lemma FiniteFun-mono1 : A<=B =⇒ A −||> A ⊆ B −||> B
by (blast dest: FiniteFun-mono)

lemma FiniteFun-is-fun: h ∈ A −||>B =⇒ h ∈ domain(h) −> B
apply (erule FiniteFun.induct, simp)
apply (simp add: fun-extend3 )
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done

lemma FiniteFun-domain-Fin: h ∈ A −||>B =⇒ domain(h) ∈ Fin(A)
by (erule FiniteFun.induct, simp, simp)

lemmas FiniteFun-apply-type = FiniteFun-is-fun [THEN apply-type]

lemma FiniteFun-subset-lemma [rule-format]:
b ∈ A−||>B =⇒ ∀ z. z<=b −→ z ∈ A−||>B

apply (erule FiniteFun.induct)
apply (simp add: subset-empty-iff FiniteFun.intros)
apply (simp add: subset-cons-iff distrib-simps, safe)
apply (erule-tac b = z in cons-Diff [THEN subst])
apply (drule spec [THEN mp], assumption)
apply (fast intro!: FiniteFun.intros)
done

lemma FiniteFun-subset: [[c<=b; b ∈ A−||>B]] =⇒ c ∈ A−||>B
by (blast intro: FiniteFun-subset-lemma)

lemma fun-FiniteFunI [rule-format]: A ∈ Fin(X) =⇒ ∀ f . f ∈ A−>B −→ f ∈
A−||>B
apply (erule Fin.induct)
apply (simp add: FiniteFun.intros, clarify)

apply (case-tac a ∈ b)
apply (simp add: cons-absorb)

apply (subgoal-tac restrict (f ,b) ∈ b −||> B)
prefer 2 apply (blast intro: restrict-type2 )

apply (subst fun-cons-restrict-eq, assumption)
apply (simp add: restrict-def lam-def )
apply (blast intro: apply-funtype FiniteFun.intros

FiniteFun-mono [THEN [2 ] rev-subsetD])
done

lemma lam-FiniteFun: A ∈ Fin(X) =⇒ (λx∈A. b(x)) ∈ A −||> {b(x). x ∈ A}
by (blast intro: fun-FiniteFunI lam-funtype)

lemma FiniteFun-Collect-iff :
f ∈ FiniteFun(A, {y ∈ B. P(y)})
←→ f ∈ FiniteFun(A,B) ∧ (∀ x∈domain(f ). P(f‘x))

apply auto
apply (blast intro: FiniteFun-mono [THEN [2 ] rev-subsetD])
apply (blast dest: Pair-mem-PiD FiniteFun-is-fun)
apply (rule-tac A1=domain(f ) in

subset-refl [THEN [2 ] FiniteFun-mono, THEN subsetD])
apply (fast dest: FiniteFun-domain-Fin Fin.dom-subset [THEN subsetD])
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apply (rule fun-FiniteFunI )
apply (erule FiniteFun-domain-Fin)
apply (rule-tac B = range (f ) in fun-weaken-type)
apply (blast dest: FiniteFun-is-fun range-of-fun range-type apply-equality)+

done

22.3 The Contents of a Singleton Set
definition

contents :: i⇒i where
contents(X) ≡ THE x . X = {x}

lemma contents-eq [simp]: contents ({x}) = x
by (simp add: contents-def )

end

23 Cardinal Numbers Without the Axiom of Choice
theory Cardinal imports OrderType Finite Nat Sum begin

definition

Least :: (i⇒o) ⇒ i (binder ‹µ › 10 ) where
Least(P) ≡ THE i. Ord(i) ∧ P(i) ∧ (∀ j. j<i −→ ¬P(j))

definition
eqpoll :: [i,i] ⇒ o (infixl ‹≈› 50 ) where

A ≈ B ≡ ∃ f . f ∈ bij(A,B)

definition
lepoll :: [i,i] ⇒ o (infixl ‹.› 50 ) where

A . B ≡ ∃ f . f ∈ inj(A,B)

definition
lesspoll :: [i,i] ⇒ o (infixl ‹≺› 50 ) where

A ≺ B ≡ A . B ∧ ¬(A ≈ B)

definition
cardinal :: i⇒i (‹(‹open-block notation=‹mixfix cardinal››|-|)›)
where |A| ≡ (µ i. i ≈ A)

definition
Finite :: i⇒o where

Finite(A) ≡ ∃n∈nat. A ≈ n

definition
Card :: i⇒o where

Card(i) ≡ (i = |i|)
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23.1 The Schroeder-Bernstein Theorem

See Davey and Priestly, page 106
lemma decomp-bnd-mono: bnd-mono(X , λW . X − g‘‘(Y − f‘‘W ))
by (rule bnd-monoI , blast+)

lemma Banach-last-equation:
g ∈ Y−>X
=⇒ g‘‘(Y − f‘‘ lfp(X , λW . X − g‘‘(Y − f‘‘W ))) =

X − lfp(X , λW . X − g‘‘(Y − f‘‘W ))
apply (rule-tac P = λu. v = X−u for v

in decomp-bnd-mono [THEN lfp-unfold, THEN ssubst])
apply (simp add: double-complement fun-is-rel [THEN image-subset])
done

lemma decomposition:
[[f ∈ X−>Y ; g ∈ Y−>X ]] =⇒
∃XA XB YA YB. (XA ∩ XB = 0 ) ∧ (XA ∪ XB = X) ∧

(YA ∩ YB = 0 ) ∧ (YA ∪ YB = Y ) ∧
f‘‘XA=YA ∧ g‘‘YB=XB

apply (intro exI conjI )
apply (rule-tac [6 ] Banach-last-equation)
apply (rule-tac [5 ] refl)
apply (assumption |

rule Diff-disjoint Diff-partition fun-is-rel image-subset lfp-subset)+
done

lemma schroeder-bernstein:
[[f ∈ inj(X ,Y ); g ∈ inj(Y ,X)]] =⇒ ∃ h. h ∈ bij(X ,Y )

apply (insert decomposition [of f X Y g])
apply (simp add: inj-is-fun)
apply (blast intro!: restrict-bij bij-disjoint-Un intro: bij-converse-bij)

done

lemma bij-imp-eqpoll: f ∈ bij(A,B) =⇒ A ≈ B
unfolding eqpoll-def

apply (erule exI )
done

lemmas eqpoll-refl = id-bij [THEN bij-imp-eqpoll, simp]

lemma eqpoll-sym: X ≈ Y =⇒ Y ≈ X
unfolding eqpoll-def

apply (blast intro: bij-converse-bij)
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done

lemma eqpoll-trans [trans]:
[[X ≈ Y ; Y ≈ Z ]] =⇒ X ≈ Z

unfolding eqpoll-def
apply (blast intro: comp-bij)
done

lemma subset-imp-lepoll: X<=Y =⇒ X . Y
unfolding lepoll-def

apply (rule exI )
apply (erule id-subset-inj)
done

lemmas lepoll-refl = subset-refl [THEN subset-imp-lepoll, simp]

lemmas le-imp-lepoll = le-imp-subset [THEN subset-imp-lepoll]

lemma eqpoll-imp-lepoll: X ≈ Y =⇒ X . Y
by (unfold eqpoll-def bij-def lepoll-def , blast)

lemma lepoll-trans [trans]: [[X . Y ; Y . Z ]] =⇒ X . Z
unfolding lepoll-def

apply (blast intro: comp-inj)
done

lemma eq-lepoll-trans [trans]: [[X ≈ Y ; Y . Z ]] =⇒ X . Z
by (blast intro: eqpoll-imp-lepoll lepoll-trans)

lemma lepoll-eq-trans [trans]: [[X . Y ; Y ≈ Z ]] =⇒ X . Z
by (blast intro: eqpoll-imp-lepoll lepoll-trans)

lemma eqpollI : [[X . Y ; Y . X ]] =⇒ X ≈ Y
unfolding lepoll-def eqpoll-def

apply (elim exE)
apply (rule schroeder-bernstein, assumption+)
done

lemma eqpollE :
[[X ≈ Y ; [[X . Y ; Y . X ]] =⇒ P]] =⇒ P

by (blast intro: eqpoll-imp-lepoll eqpoll-sym)

lemma eqpoll-iff : X ≈ Y ←→ X . Y ∧ Y . X
by (blast intro: eqpollI elim!: eqpollE)

lemma lepoll-0-is-0 : A . 0 =⇒ A = 0
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unfolding lepoll-def inj-def
apply (blast dest: apply-type)
done

lemmas empty-lepollI = empty-subsetI [THEN subset-imp-lepoll]

lemma lepoll-0-iff : A . 0 ←→ A=0
by (blast intro: lepoll-0-is-0 lepoll-refl)

lemma Un-lepoll-Un:
[[A . B; C . D; B ∩ D = 0 ]] =⇒ A ∪ C . B ∪ D

unfolding lepoll-def
apply (blast intro: inj-disjoint-Un)
done

lemmas eqpoll-0-is-0 = eqpoll-imp-lepoll [THEN lepoll-0-is-0 ]

lemma eqpoll-0-iff : A ≈ 0 ←→ A=0
by (blast intro: eqpoll-0-is-0 eqpoll-refl)

lemma eqpoll-disjoint-Un:
[[A ≈ B; C ≈ D; A ∩ C = 0 ; B ∩ D = 0 ]]
=⇒ A ∪ C ≈ B ∪ D

unfolding eqpoll-def
apply (blast intro: bij-disjoint-Un)
done

23.2 lesspoll: contributions by Krzysztof Grabczewski
lemma lesspoll-not-refl: ¬ (i ≺ i)
by (simp add: lesspoll-def )

lemma lesspoll-irrefl [elim!]: i ≺ i =⇒ P
by (simp add: lesspoll-def )

lemma lesspoll-imp-lepoll: A ≺ B =⇒ A . B
by (unfold lesspoll-def , blast)

lemma lepoll-well-ord: [[A . B; well-ord(B,r)]] =⇒ ∃ s. well-ord(A,s)
unfolding lepoll-def

apply (blast intro: well-ord-rvimage)
done

lemma lepoll-iff-leqpoll: A . B ←→ A ≺ B | A ≈ B
unfolding lesspoll-def

apply (blast intro!: eqpollI elim!: eqpollE)
done
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lemma inj-not-surj-succ:
assumes fi: f ∈ inj(A, succ(m)) and fns: f /∈ surj(A, succ(m))
shows ∃ f . f ∈ inj(A,m)

proof −
from fi [THEN inj-is-fun] fns
obtain y where y: y ∈ succ(m)

∧
x. x∈A =⇒ f ‘ x 6= y

by (auto simp add: surj-def )
show ?thesis

proof
show (λz∈A. if f‘z = m then y else f‘z) ∈ inj(A, m) using y fi

by (simp add: inj-def )
(auto intro!: if-type [THEN lam-type] intro: Pi-type dest: apply-funtype)

qed
qed

lemma lesspoll-trans [trans]:
[[X ≺ Y ; Y ≺ Z ]] =⇒ X ≺ Z

unfolding lesspoll-def
apply (blast elim!: eqpollE intro: eqpollI lepoll-trans)
done

lemma lesspoll-trans1 [trans]:
[[X . Y ; Y ≺ Z ]] =⇒ X ≺ Z

unfolding lesspoll-def
apply (blast elim!: eqpollE intro: eqpollI lepoll-trans)
done

lemma lesspoll-trans2 [trans]:
[[X ≺ Y ; Y . Z ]] =⇒ X ≺ Z

unfolding lesspoll-def
apply (blast elim!: eqpollE intro: eqpollI lepoll-trans)
done

lemma eq-lesspoll-trans [trans]:
[[X ≈ Y ; Y ≺ Z ]] =⇒ X ≺ Z

by (blast intro: eqpoll-imp-lepoll lesspoll-trans1 )

lemma lesspoll-eq-trans [trans]:
[[X ≺ Y ; Y ≈ Z ]] =⇒ X ≺ Z

by (blast intro: eqpoll-imp-lepoll lesspoll-trans2 )

lemma Least-equality:
[[P(i); Ord(i);

∧
x. x<i =⇒ ¬P(x)]] =⇒ (µ x. P(x)) = i
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unfolding Least-def
apply (rule the-equality, blast)
apply (elim conjE)
apply (erule Ord-linear-lt, assumption, blast+)
done

lemma LeastI :
assumes P: P(i) and i: Ord(i) shows P(µ x. P(x))

proof −
{ from i have P(i) =⇒ P(µ x. P(x))

proof (induct i rule: trans-induct)
case (step i)
show ?case

proof (cases P(µ a. P(a)))
case True thus ?thesis .

next
case False
hence

∧
x. x ∈ i =⇒ ¬P(x) using step

by blast
hence (µ a. P(a)) = i using step

by (blast intro: Least-equality ltD)
thus ?thesis using step.prems

by simp
qed

qed
}
thus ?thesis using P .

qed

The proof is almost identical to the one above!
lemma Least-le:

assumes P: P(i) and i: Ord(i) shows (µ x. P(x)) ≤ i
proof −

{ from i have P(i) =⇒ (µ x. P(x)) ≤ i
proof (induct i rule: trans-induct)

case (step i)
show ?case

proof (cases (µ a. P(a)) ≤ i)
case True thus ?thesis .

next
case False
hence

∧
x. x ∈ i =⇒ ¬ (µ a. P(a)) ≤ i using step

by blast
hence (µ a. P(a)) = i using step

by (blast elim: ltE intro: ltI Least-equality lt-trans1 )
thus ?thesis using step

by simp
qed

qed
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}
thus ?thesis using P .

qed

lemma less-LeastE : [[P(i); i < (µ x. P(x))]] =⇒ Q
apply (rule Least-le [THEN [2 ] lt-trans2 , THEN lt-irrefl], assumption+)
apply (simp add: lt-Ord)
done

lemma LeastI2 :
[[P(i); Ord(i);

∧
j. P(j) =⇒ Q(j)]] =⇒ Q(µ j. P(j))

by (blast intro: LeastI )

lemma Least-0 :
[[¬ (∃ i. Ord(i) ∧ P(i))]] =⇒ (µ x. P(x)) = 0

unfolding Least-def
apply (rule the-0 , blast)
done

lemma Ord-Least [intro,simp,TC ]: Ord(µ x. P(x))
proof (cases ∃ i. Ord(i) ∧ P(i))

case True
then obtain i where P(i) Ord(i) by auto
hence (µ x. P(x)) ≤ i by (rule Least-le)
thus ?thesis

by (elim ltE)
next

case False
hence (µ x. P(x)) = 0 by (rule Least-0 )
thus ?thesis

by auto
qed

23.3 Basic Properties of Cardinals
lemma Least-cong: (

∧
y. P(y) ←→ Q(y)) =⇒ (µ x. P(x)) = (µ x. Q(x))

by simp

lemma cardinal-cong: X ≈ Y =⇒ |X | = |Y |
unfolding eqpoll-def cardinal-def

apply (rule Least-cong)
apply (blast intro: comp-bij bij-converse-bij)
done
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lemma well-ord-cardinal-eqpoll:
assumes r : well-ord(A,r) shows |A| ≈ A

proof (unfold cardinal-def )
show (µ i. i ≈ A) ≈ A

by (best intro: LeastI Ord-ordertype ordermap-bij bij-converse-bij bij-imp-eqpoll
r)
qed

lemmas Ord-cardinal-eqpoll = well-ord-Memrel [THEN well-ord-cardinal-eqpoll]

lemma Ord-cardinal-idem: Ord(A) =⇒ ||A|| = |A|
by (rule Ord-cardinal-eqpoll [THEN cardinal-cong])

lemma well-ord-cardinal-eqE :
assumes woX : well-ord(X ,r) and woY : well-ord(Y ,s) and eq: |X | = |Y |

shows X ≈ Y
proof −

have X ≈ |X | by (blast intro: well-ord-cardinal-eqpoll [OF woX ] eqpoll-sym)
also have ... = |Y | by (rule eq)
also have ... ≈ Y by (rule well-ord-cardinal-eqpoll [OF woY ])
finally show ?thesis .

qed

lemma well-ord-cardinal-eqpoll-iff :
[[well-ord(X ,r); well-ord(Y ,s)]] =⇒ |X | = |Y | ←→ X ≈ Y

by (blast intro: cardinal-cong well-ord-cardinal-eqE)

lemma Ord-cardinal-le: Ord(i) =⇒ |i| ≤ i
unfolding cardinal-def

apply (erule eqpoll-refl [THEN Least-le])
done

lemma Card-cardinal-eq: Card(K ) =⇒ |K | = K
unfolding Card-def

apply (erule sym)
done

lemma CardI : [[Ord(i);
∧

j. j<i =⇒ ¬(j ≈ i)]] =⇒ Card(i)
unfolding Card-def cardinal-def

apply (subst Least-equality)
apply (blast intro: eqpoll-refl)+
done

lemma Card-is-Ord: Card(i) =⇒ Ord(i)
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unfolding Card-def cardinal-def
apply (erule ssubst)
apply (rule Ord-Least)
done

lemma Card-cardinal-le: Card(K ) =⇒ K ≤ |K |
apply (simp (no-asm-simp) add: Card-is-Ord Card-cardinal-eq)
done

lemma Ord-cardinal [simp,intro!]: Ord(|A|)
unfolding cardinal-def

apply (rule Ord-Least)
done

The cardinals are the initial ordinals.
lemma Card-iff-initial: Card(K ) ←→ Ord(K ) ∧ (∀ j. j<K −→ ¬ j ≈ K )
proof −

{ fix j
assume K : Card(K ) j ≈ K
assume j < K
also have ... = (µ i. i ≈ K ) using K

by (simp add: Card-def cardinal-def )
finally have j < (µ i. i ≈ K ) .
hence False using K

by (best dest: less-LeastE)
}
then show ?thesis

by (blast intro: CardI Card-is-Ord)
qed

lemma lt-Card-imp-lesspoll: [[Card(a); i<a]] =⇒ i ≺ a
unfolding lesspoll-def

apply (drule Card-iff-initial [THEN iffD1 ])
apply (blast intro!: leI [THEN le-imp-lepoll])
done

lemma Card-0 : Card(0 )
apply (rule Ord-0 [THEN CardI ])
apply (blast elim!: ltE)
done

lemma Card-Un: [[Card(K ); Card(L)]] =⇒ Card(K ∪ L)
apply (rule Ord-linear-le [of K L])
apply (simp-all add: subset-Un-iff [THEN iffD1 ] Card-is-Ord le-imp-subset

subset-Un-iff2 [THEN iffD1 ])
done
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lemma Card-cardinal [iff ]: Card(|A|)
proof (unfold cardinal-def )

show Card(µ i. i ≈ A)
proof (cases ∃ i. Ord (i) ∧ i ≈ A)

case False thus ?thesis — degenerate case
by (simp add: Least-0 Card-0 )

next
case True — real case: A is isomorphic to some ordinal
then obtain i where i: Ord(i) i ≈ A by blast
show ?thesis

proof (rule CardI [OF Ord-Least], rule notI )
fix j
assume j: j < (µ i. i ≈ A)
assume j ≈ (µ i. i ≈ A)
also have ... ≈ A using i by (auto intro: LeastI )
finally have j ≈ A .
thus False

by (rule less-LeastE [OF - j])
qed

qed
qed

lemma cardinal-eq-lemma:
assumes i:|i| ≤ j and j: j ≤ i shows |j| = |i|

proof (rule eqpollI [THEN cardinal-cong])
show j . i by (rule le-imp-lepoll [OF j])

next
have Oi: Ord(i) using j by (rule le-Ord2 )
hence i ≈ |i|

by (blast intro: Ord-cardinal-eqpoll eqpoll-sym)
also have ... . j

by (blast intro: le-imp-lepoll i)
finally show i . j .

qed

lemma cardinal-mono:
assumes ij: i ≤ j shows |i| ≤ |j|

using Ord-cardinal [of i] Ord-cardinal [of j]
proof (cases rule: Ord-linear-le)

case le thus ?thesis .
next

case ge
have i: Ord(i) using ij

by (simp add: lt-Ord)
have ci: |i| ≤ j

by (blast intro: Ord-cardinal-le ij le-trans i)
have |i| = ||i||

by (auto simp add: Ord-cardinal-idem i)
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also have ... = |j|
by (rule cardinal-eq-lemma [OF ge ci])

finally have |i| = |j| .
thus ?thesis by simp

qed

Since we have |succ(nat)| ≤ |nat|, the converse of cardinal-mono fails!
lemma cardinal-lt-imp-lt: [[|i| < |j|; Ord(i); Ord(j)]] =⇒ i < j
apply (rule Ord-linear2 [of i j], assumption+)
apply (erule lt-trans2 [THEN lt-irrefl])
apply (erule cardinal-mono)
done

lemma Card-lt-imp-lt: [[|i| < K ; Ord(i); Card(K )]] =⇒ i < K
by (simp (no-asm-simp) add: cardinal-lt-imp-lt Card-is-Ord Card-cardinal-eq)

lemma Card-lt-iff : [[Ord(i); Card(K )]] =⇒ (|i| < K ) ←→ (i < K )
by (blast intro: Card-lt-imp-lt Ord-cardinal-le [THEN lt-trans1 ])

lemma Card-le-iff : [[Ord(i); Card(K )]] =⇒ (K ≤ |i|) ←→ (K ≤ i)
by (simp add: Card-lt-iff Card-is-Ord Ord-cardinal not-lt-iff-le [THEN iff-sym])

lemma well-ord-lepoll-imp-cardinal-le:
assumes wB: well-ord(B,r) and AB: A . B
shows |A| ≤ |B|

using Ord-cardinal [of A] Ord-cardinal [of B]
proof (cases rule: Ord-linear-le)

case le thus ?thesis .
next

case ge
from lepoll-well-ord [OF AB wB]
obtain s where s: well-ord(A, s) by blast
have B ≈ |B| by (blast intro: wB eqpoll-sym well-ord-cardinal-eqpoll)
also have ... . |A| by (rule le-imp-lepoll [OF ge])
also have ... ≈ A by (rule well-ord-cardinal-eqpoll [OF s])
finally have B . A .
hence A ≈ B by (blast intro: eqpollI AB)
hence |A| = |B| by (rule cardinal-cong)
thus ?thesis by simp

qed

lemma lepoll-cardinal-le: [[A . i; Ord(i)]] =⇒ |A| ≤ i
apply (rule le-trans)
apply (erule well-ord-Memrel [THEN well-ord-lepoll-imp-cardinal-le], assumption)
apply (erule Ord-cardinal-le)
done

lemma lepoll-Ord-imp-eqpoll: [[A . i; Ord(i)]] =⇒ |A| ≈ A
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by (blast intro: lepoll-cardinal-le well-ord-Memrel well-ord-cardinal-eqpoll dest!: lep-
oll-well-ord)

lemma lesspoll-imp-eqpoll: [[A ≺ i; Ord(i)]] =⇒ |A| ≈ A
unfolding lesspoll-def

apply (blast intro: lepoll-Ord-imp-eqpoll)
done

lemma cardinal-subset-Ord: [[A<=i; Ord(i)]] =⇒ |A| ⊆ i
apply (drule subset-imp-lepoll [THEN lepoll-cardinal-le])
apply (auto simp add: lt-def )
apply (blast intro: Ord-trans)
done

23.4 The finite cardinals
lemma cons-lepoll-consD:
[[cons(u,A) . cons(v,B); u /∈A; v /∈B]] =⇒ A . B

apply (unfold lepoll-def inj-def , safe)
apply (rule-tac x = λx∈A. if f‘x=v then f‘u else f‘x in exI )
apply (rule CollectI )

apply (rule if-type [THEN lam-type])
apply (blast dest: apply-funtype)
apply (blast elim!: mem-irrefl dest: apply-funtype)

apply (simp (no-asm-simp))
apply blast
done

lemma cons-eqpoll-consD: [[cons(u,A) ≈ cons(v,B); u /∈A; v /∈B]] =⇒ A ≈ B
apply (simp add: eqpoll-iff )
apply (blast intro: cons-lepoll-consD)
done

lemma succ-lepoll-succD: succ(m) . succ(n) =⇒ m . n
unfolding succ-def

apply (erule cons-lepoll-consD)
apply (rule mem-not-refl)+
done

lemma nat-lepoll-imp-le:
m ∈ nat =⇒ n ∈ nat =⇒ m . n =⇒ m ≤ n

proof (induct m arbitrary: n rule: nat-induct)
case 0 thus ?case by (blast intro!: nat-0-le)

next
case (succ m)
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show ?case using ‹n ∈ nat›
proof (cases rule: natE)

case 0 thus ?thesis using succ
by (simp add: lepoll-def inj-def )

next
case (succ n ′) thus ?thesis using succ.hyps ‹ succ(m) . n›

by (blast intro!: succ-leI dest!: succ-lepoll-succD)
qed

qed

lemma nat-eqpoll-iff : [[m ∈ nat; n ∈ nat]] =⇒ m ≈ n ←→ m = n
apply (rule iffI )
apply (blast intro: nat-lepoll-imp-le le-anti-sym elim!: eqpollE)
apply (simp add: eqpoll-refl)
done

lemma nat-into-Card:
assumes n: n ∈ nat shows Card(n)

proof (unfold Card-def cardinal-def , rule sym)
have Ord(n) using n by auto
moreover
{ fix i

assume i < n i ≈ n
hence False using n

by (auto simp add: lt-nat-in-nat [THEN nat-eqpoll-iff ])
}
ultimately show (µ i. i ≈ n) = n by (auto intro!: Least-equality)

qed

lemmas cardinal-0 = nat-0I [THEN nat-into-Card, THEN Card-cardinal-eq, iff ]
lemmas cardinal-1 = nat-1I [THEN nat-into-Card, THEN Card-cardinal-eq, iff ]

lemma succ-lepoll-natE : [[succ(n) . n; n ∈ nat]] =⇒ P
by (rule nat-lepoll-imp-le [THEN lt-irrefl], auto)

lemma nat-lepoll-imp-ex-eqpoll-n:
[[n ∈ nat; nat . X ]] =⇒ ∃Y . Y ⊆ X ∧ n ≈ Y

unfolding lepoll-def eqpoll-def
apply (fast del: subsetI subsetCE

intro!: subset-SIs
dest!: Ord-nat [THEN [2 ] OrdmemD, THEN [2 ] restrict-inj]
elim!: restrict-bij

inj-is-fun [THEN fun-is-rel, THEN image-subset])
done
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lemma lepoll-succ: i . succ(i)
by (blast intro: subset-imp-lepoll)

lemma lepoll-imp-lesspoll-succ:
assumes A: A . m and m: m ∈ nat
shows A ≺ succ(m)

proof −
{ assume A ≈ succ(m)

hence succ(m) ≈ A by (rule eqpoll-sym)
also have ... . m by (rule A)
finally have succ(m) . m .
hence False by (rule succ-lepoll-natE) (rule m) }

moreover have A . succ(m) by (blast intro: lepoll-trans A lepoll-succ)
ultimately show ?thesis by (auto simp add: lesspoll-def )

qed

lemma lesspoll-succ-imp-lepoll:
[[A ≺ succ(m); m ∈ nat]] =⇒ A . m

unfolding lesspoll-def lepoll-def eqpoll-def bij-def
apply (auto dest: inj-not-surj-succ)
done

lemma lesspoll-succ-iff : m ∈ nat =⇒ A ≺ succ(m) ←→ A . m
by (blast intro!: lepoll-imp-lesspoll-succ lesspoll-succ-imp-lepoll)

lemma lepoll-succ-disj: [[A . succ(m); m ∈ nat]] =⇒ A . m | A ≈ succ(m)
apply (rule disjCI )
apply (rule lesspoll-succ-imp-lepoll)
prefer 2 apply assumption
apply (simp (no-asm-simp) add: lesspoll-def )
done

lemma lesspoll-cardinal-lt: [[A ≺ i; Ord(i)]] =⇒ |A| < i
apply (unfold lesspoll-def , clarify)
apply (frule lepoll-cardinal-le, assumption)
apply (blast intro: well-ord-Memrel well-ord-cardinal-eqpoll [THEN eqpoll-sym]

dest: lepoll-well-ord elim!: leE)
done

23.5 The first infinite cardinal: Omega, or nat
lemma lt-not-lepoll:

assumes n: n<i n ∈ nat shows ¬ i . n
proof −

{ assume i: i . n
have succ(n) . i using n

by (elim ltE , blast intro: Ord-succ-subsetI [THEN subset-imp-lepoll])
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also have ... . n by (rule i)
finally have succ(n) . n .
hence False by (rule succ-lepoll-natE) (rule n) }

thus ?thesis by auto
qed

A slightly weaker version of nat-eqpoll-iff
lemma Ord-nat-eqpoll-iff :

assumes i: Ord(i) and n: n ∈ nat shows i ≈ n ←→ i=n
using i nat-into-Ord [OF n]
proof (cases rule: Ord-linear-lt)

case lt
hence i ∈ nat by (rule lt-nat-in-nat) (rule n)
thus ?thesis by (simp add: nat-eqpoll-iff n)

next
case eq
thus ?thesis by (simp add: eqpoll-refl)

next
case gt
hence ¬ i . n using n by (rule lt-not-lepoll)
hence ¬ i ≈ n using n by (blast intro: eqpoll-imp-lepoll)
moreover have i 6= n using ‹n<i› by auto
ultimately show ?thesis by blast

qed

lemma Card-nat: Card(nat)
proof −

{ fix i
assume i: i < nat i ≈ nat
hence ¬ nat . i

by (simp add: lt-def lt-not-lepoll)
hence False using i

by (simp add: eqpoll-iff )
}
hence (µ i. i ≈ nat) = nat by (blast intro: Least-equality eqpoll-refl)
thus ?thesis

by (auto simp add: Card-def cardinal-def )
qed

lemma nat-le-cardinal: nat ≤ i =⇒ nat ≤ |i|
apply (rule Card-nat [THEN Card-cardinal-eq, THEN subst])
apply (erule cardinal-mono)
done

lemma n-lesspoll-nat: n ∈ nat =⇒ n ≺ nat
by (blast intro: Ord-nat Card-nat ltI lt-Card-imp-lesspoll)
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23.6 Towards Cardinal Arithmetic
lemma cons-lepoll-cong:

[[A . B; b /∈ B]] =⇒ cons(a,A) . cons(b,B)
apply (unfold lepoll-def , safe)
apply (rule-tac x = λy∈cons (a,A) . if y=a then b else f‘y in exI )
apply (rule-tac d = λz. if z ∈ B then converse (f ) ‘z else a in lam-injective)
apply (safe elim!: consE ′)

apply simp-all
apply (blast intro: inj-is-fun [THEN apply-type])+
done

lemma cons-eqpoll-cong:
[[A ≈ B; a /∈ A; b /∈ B]] =⇒ cons(a,A) ≈ cons(b,B)

by (simp add: eqpoll-iff cons-lepoll-cong)

lemma cons-lepoll-cons-iff :
[[a /∈ A; b /∈ B]] =⇒ cons(a,A) . cons(b,B) ←→ A . B

by (blast intro: cons-lepoll-cong cons-lepoll-consD)

lemma cons-eqpoll-cons-iff :
[[a /∈ A; b /∈ B]] =⇒ cons(a,A) ≈ cons(b,B) ←→ A ≈ B

by (blast intro: cons-eqpoll-cong cons-eqpoll-consD)

lemma singleton-eqpoll-1 : {a} ≈ 1
unfolding succ-def

apply (blast intro!: eqpoll-refl [THEN cons-eqpoll-cong])
done

lemma cardinal-singleton: |{a}| = 1
apply (rule singleton-eqpoll-1 [THEN cardinal-cong, THEN trans])
apply (simp (no-asm) add: nat-into-Card [THEN Card-cardinal-eq])
done

lemma not-0-is-lepoll-1 : A 6= 0 =⇒ 1 . A
apply (erule not-emptyE)
apply (rule-tac a = cons (x, A−{x}) in subst)
apply (rule-tac [2 ] a = cons(0 ,0 ) and P= λy. y . cons (x, A−{x}) in subst)
prefer 3 apply (blast intro: cons-lepoll-cong subset-imp-lepoll, auto)
done

lemma succ-eqpoll-cong: A ≈ B =⇒ succ(A) ≈ succ(B)
unfolding succ-def

apply (simp add: cons-eqpoll-cong mem-not-refl)
done

lemma sum-eqpoll-cong: [[A ≈ C ; B ≈ D]] =⇒ A+B ≈ C+D
unfolding eqpoll-def
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apply (blast intro!: sum-bij)
done

lemma prod-eqpoll-cong:
[[A ≈ C ; B ≈ D]] =⇒ A∗B ≈ C∗D

unfolding eqpoll-def
apply (blast intro!: prod-bij)
done

lemma inj-disjoint-eqpoll:
[[f ∈ inj(A,B); A ∩ B = 0 ]] =⇒ A ∪ (B − range(f )) ≈ B

unfolding eqpoll-def
apply (rule exI )
apply (rule-tac c = λx. if x ∈ A then f‘x else x

and d = λy. if y ∈ range (f ) then converse (f ) ‘y else y
in lam-bijective)

apply (blast intro!: if-type inj-is-fun [THEN apply-type])
apply (simp (no-asm-simp) add: inj-converse-fun [THEN apply-funtype])
apply (safe elim!: UnE ′)

apply (simp-all add: inj-is-fun [THEN apply-rangeI ])
apply (blast intro: inj-converse-fun [THEN apply-type])+
done

23.7 Lemmas by Krzysztof Grabczewski

If A has at most n + 1 elements and a ∈ A then A − {a} has at most n.
lemma Diff-sing-lepoll:

[[a ∈ A; A . succ(n)]] =⇒ A − {a} . n
unfolding succ-def

apply (rule cons-lepoll-consD)
apply (rule-tac [3 ] mem-not-refl)
apply (erule cons-Diff [THEN ssubst], safe)
done

If A has at least n + 1 elements then A − {a} has at least n.
lemma lepoll-Diff-sing:

assumes A: succ(n) . A shows n . A − {a}
proof −

have cons(n,n) . A using A
by (unfold succ-def )

also have ... . cons(a, A−{a})
by (blast intro: subset-imp-lepoll)

finally have cons(n,n) . cons(a, A−{a}) .
thus ?thesis

by (blast intro: cons-lepoll-consD mem-irrefl)
qed

lemma Diff-sing-eqpoll: [[a ∈ A; A ≈ succ(n)]] =⇒ A − {a} ≈ n
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by (blast intro!: eqpollI
elim!: eqpollE
intro: Diff-sing-lepoll lepoll-Diff-sing)

lemma lepoll-1-is-sing: [[A . 1 ; a ∈ A]] =⇒ A = {a}
apply (frule Diff-sing-lepoll, assumption)
apply (drule lepoll-0-is-0 )
apply (blast elim: equalityE)
done

lemma Un-lepoll-sum: A ∪ B . A+B
unfolding lepoll-def

apply (rule-tac x = λx∈A ∪ B. if x∈A then Inl (x) else Inr (x) in exI )
apply (rule-tac d = λz. snd (z) in lam-injective)
apply force
apply (simp add: Inl-def Inr-def )
done

lemma well-ord-Un:
[[well-ord(X ,R); well-ord(Y ,S)]] =⇒ ∃T . well-ord(X ∪ Y , T )

by (erule well-ord-radd [THEN Un-lepoll-sum [THEN lepoll-well-ord]],
assumption)

lemma disj-Un-eqpoll-sum: A ∩ B = 0 =⇒ A ∪ B ≈ A + B
unfolding eqpoll-def

apply (rule-tac x = λa∈A ∪ B. if a ∈ A then Inl (a) else Inr (a) in exI )
apply (rule-tac d = λz. case (λx. x, λx. x, z) in lam-bijective)
apply auto
done

23.8 Finite and infinite sets
lemma eqpoll-imp-Finite-iff : A ≈ B =⇒ Finite(A) ←→ Finite(B)

unfolding Finite-def
apply (blast intro: eqpoll-trans eqpoll-sym)
done

lemma Finite-0 [simp]: Finite(0 )
unfolding Finite-def

apply (blast intro!: eqpoll-refl nat-0I )
done

lemma Finite-cons: Finite(x) =⇒ Finite(cons(y,x))
unfolding Finite-def

apply (case-tac y ∈ x)
apply (simp add: cons-absorb)
apply (erule bexE)
apply (rule bexI )
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apply (erule-tac [2 ] nat-succI )
apply (simp (no-asm-simp) add: succ-def cons-eqpoll-cong mem-not-refl)
done

lemma Finite-succ: Finite(x) =⇒ Finite(succ(x))
unfolding succ-def

apply (erule Finite-cons)
done

lemma lepoll-nat-imp-Finite:
assumes A: A . n and n: n ∈ nat shows Finite(A)

proof −
have A . n =⇒ Finite(A) using n

proof (induct n)
case 0
hence A = 0 by (rule lepoll-0-is-0 )
thus ?case by simp

next
case (succ n)
hence A . n ∨ A ≈ succ(n) by (blast dest: lepoll-succ-disj)
thus ?case using succ by (auto simp add: Finite-def )

qed
thus ?thesis using A .

qed

lemma lesspoll-nat-is-Finite:
A ≺ nat =⇒ Finite(A)

unfolding Finite-def
apply (blast dest: ltD lesspoll-cardinal-lt

lesspoll-imp-eqpoll [THEN eqpoll-sym])
done

lemma lepoll-Finite:
assumes Y : Y . X and X : Finite(X) shows Finite(Y )

proof −
obtain n where n: n ∈ nat X ≈ n using X

by (auto simp add: Finite-def )
have Y . X by (rule Y )
also have ... ≈ n by (rule n)
finally have Y . n .
thus ?thesis using n by (simp add: lepoll-nat-imp-Finite)

qed

lemmas subset-Finite = subset-imp-lepoll [THEN lepoll-Finite]

lemma Finite-cons-iff [iff ]: Finite(cons(y,x)) ←→ Finite(x)
by (blast intro: Finite-cons subset-Finite)

lemma Finite-succ-iff [iff ]: Finite(succ(x)) ←→ Finite(x)
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by (simp add: succ-def )

lemma Finite-Int: Finite(A) | Finite(B) =⇒ Finite(A ∩ B)
by (blast intro: subset-Finite)

lemmas Finite-Diff = Diff-subset [THEN subset-Finite]

lemma nat-le-infinite-Ord:
[[Ord(i); ¬ Finite(i)]] =⇒ nat ≤ i

unfolding Finite-def
apply (erule Ord-nat [THEN [2 ] Ord-linear2 ])
prefer 2 apply assumption
apply (blast intro!: eqpoll-refl elim!: ltE)
done

lemma Finite-imp-well-ord:
Finite(A) =⇒ ∃ r . well-ord(A,r)

unfolding Finite-def eqpoll-def
apply (blast intro: well-ord-rvimage bij-is-inj well-ord-Memrel nat-into-Ord)
done

lemma succ-lepoll-imp-not-empty: succ(x) . y =⇒ y 6= 0
by (fast dest!: lepoll-0-is-0 )

lemma eqpoll-succ-imp-not-empty: x ≈ succ(n) =⇒ x 6= 0
by (fast elim!: eqpoll-sym [THEN eqpoll-0-is-0 , THEN succ-neq-0 ])

lemma Finite-Fin-lemma [rule-format]:
n ∈ nat =⇒ ∀A. (A≈n ∧ A ⊆ X) −→ A ∈ Fin(X)

apply (induct-tac n)
apply (rule allI )
apply (fast intro!: Fin.emptyI dest!: eqpoll-imp-lepoll [THEN lepoll-0-is-0 ])
apply (rule allI )
apply (rule impI )
apply (erule conjE)
apply (rule eqpoll-succ-imp-not-empty [THEN not-emptyE ], assumption)
apply (frule Diff-sing-eqpoll, assumption)
apply (erule allE)
apply (erule impE , fast)
apply (drule subsetD, assumption)
apply (drule Fin.consI , assumption)
apply (simp add: cons-Diff )
done

lemma Finite-Fin: [[Finite(A); A ⊆ X ]] =⇒ A ∈ Fin(X)
by (unfold Finite-def , blast intro: Finite-Fin-lemma)

lemma Fin-lemma [rule-format]: n ∈ nat =⇒ ∀A. A ≈ n −→ A ∈ Fin(A)
apply (induct-tac n)
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apply (simp add: eqpoll-0-iff , clarify)
apply (subgoal-tac ∃ u. u ∈ A)
apply (erule exE)
apply (rule Diff-sing-eqpoll [elim-format])
prefer 2 apply assumption
apply assumption
apply (rule-tac b = A in cons-Diff [THEN subst], assumption)
apply (rule Fin.consI , blast)
apply (blast intro: subset-consI [THEN Fin-mono, THEN subsetD])

unfolding eqpoll-def
apply (blast intro: bij-converse-bij [THEN bij-is-fun, THEN apply-type])
done

lemma Finite-into-Fin: Finite(A) =⇒ A ∈ Fin(A)
unfolding Finite-def

apply (blast intro: Fin-lemma)
done

lemma Fin-into-Finite: A ∈ Fin(U ) =⇒ Finite(A)
by (fast intro!: Finite-0 Finite-cons elim: Fin-induct)

lemma Finite-Fin-iff : Finite(A) ←→ A ∈ Fin(A)
by (blast intro: Finite-into-Fin Fin-into-Finite)

lemma Finite-Un: [[Finite(A); Finite(B)]] =⇒ Finite(A ∪ B)
by (blast intro!: Fin-into-Finite Fin-UnI

dest!: Finite-into-Fin
intro: Un-upper1 [THEN Fin-mono, THEN subsetD]

Un-upper2 [THEN Fin-mono, THEN subsetD])

lemma Finite-Un-iff [simp]: Finite(A ∪ B) ←→ (Finite(A) ∧ Finite(B))
by (blast intro: subset-Finite Finite-Un)

The converse must hold too.
lemma Finite-Union: [[∀ y∈X . Finite(y); Finite(X)]] =⇒ Finite(

⋃
(X))

apply (simp add: Finite-Fin-iff )
apply (rule Fin-UnionI )
apply (erule Fin-induct, simp)
apply (blast intro: Fin.consI Fin-mono [THEN [2 ] rev-subsetD])
done

lemma Finite-induct [case-names 0 cons, induct set: Finite]:
[[Finite(A); P(0 );∧

x B. [[Finite(B); x /∈ B; P(B)]] =⇒ P(cons(x, B))]]
=⇒ P(A)

apply (erule Finite-into-Fin [THEN Fin-induct])
apply (blast intro: Fin-into-Finite)+
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done

lemma Diff-sing-Finite: Finite(A − {a}) =⇒ Finite(A)
unfolding Finite-def

apply (case-tac a ∈ A)
apply (subgoal-tac [2 ] A−{a}=A, auto)
apply (rule-tac x = succ (n) in bexI )
apply (subgoal-tac cons (a, A − {a}) = A ∧ cons (n, n) = succ (n) )
apply (drule-tac a = a and b = n in cons-eqpoll-cong)
apply (auto dest: mem-irrefl)
done

lemma Diff-Finite [rule-format]: Finite(B) =⇒ Finite(A−B) −→ Finite(A)
apply (erule Finite-induct, auto)
apply (case-tac x ∈ A)
apply (subgoal-tac [2 ] A−cons (x, B) = A − B)

apply (subgoal-tac A − cons (x, B) = (A − B) − {x}, simp)
apply (drule Diff-sing-Finite, auto)
done

lemma Finite-RepFun: Finite(A) =⇒ Finite(RepFun(A,f ))
by (erule Finite-induct, simp-all)

lemma Finite-RepFun-iff-lemma [rule-format]:
[[Finite(x);

∧
x y. f (x)=f (y) =⇒ x=y]]

=⇒ ∀A. x = RepFun(A,f ) −→ Finite(A)
apply (erule Finite-induct)
apply clarify
apply (case-tac A=0 , simp)
apply (blast del: allE , clarify)

apply (subgoal-tac ∃ z∈A. x = f (z))
prefer 2 apply (blast del: allE elim: equalityE , clarify)

apply (subgoal-tac B = {f (u) . u ∈ A − {z}})
apply (blast intro: Diff-sing-Finite)

apply (thin-tac ∀A. P(A) −→ Finite(A) for P)
apply (rule equalityI )
apply (blast intro: elim: equalityE)

apply (blast intro: elim: equalityCE)
done

I don’t know why, but if the premise is expressed using meta-connectives
then the simplifier cannot prove it automatically in conditional rewriting.
lemma Finite-RepFun-iff :

(∀ x y. f (x)=f (y) −→ x=y) =⇒ Finite(RepFun(A,f )) ←→ Finite(A)
by (blast intro: Finite-RepFun Finite-RepFun-iff-lemma [of - f ])

lemma Finite-Pow: Finite(A) =⇒ Finite(Pow(A))
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apply (erule Finite-induct)
apply (simp-all add: Pow-insert Finite-Un Finite-RepFun)
done

lemma Finite-Pow-imp-Finite: Finite(Pow(A)) =⇒ Finite(A)
apply (subgoal-tac Finite({{x} . x ∈ A}))
apply (simp add: Finite-RepFun-iff )

apply (blast intro: subset-Finite)
done

lemma Finite-Pow-iff [iff ]: Finite(Pow(A)) ←→ Finite(A)
by (blast intro: Finite-Pow Finite-Pow-imp-Finite)

lemma Finite-cardinal-iff :
assumes i: Ord(i) shows Finite(|i|) ←→ Finite(i)
by (auto simp add: Finite-def ) (blast intro: eqpoll-trans eqpoll-sym Ord-cardinal-eqpoll

[OF i])+

lemma nat-wf-on-converse-Memrel: n ∈ nat =⇒ wf [n](converse(Memrel(n)))
proof (induct n rule: nat-induct)

case 0 thus ?case by (blast intro: wf-onI )
next

case (succ x)
hence wfx:

∧
Z . Z = 0 ∨ (∃ z∈Z . ∀ y. z ∈ y ∧ z ∈ x ∧ y ∈ x ∧ z ∈ x −→ y /∈

Z )
by (simp add: wf-on-def wf-def ) — not easy to erase the duplicate z ∈ x!

show ?case
proof (rule wf-onI )

fix Z u
assume Z : u ∈ Z ∀ z∈Z . ∃ y∈Z . 〈y, z〉 ∈ converse(Memrel(succ(x)))
show False

proof (cases x ∈ Z )
case True thus False using Z

by (blast elim: mem-irrefl mem-asym)
next
case False thus False using wfx [of Z ] Z

by blast
qed

qed
qed

lemma nat-well-ord-converse-Memrel: n ∈ nat =⇒ well-ord(n,converse(Memrel(n)))
apply (frule Ord-nat [THEN Ord-in-Ord, THEN well-ord-Memrel])
apply (simp add: well-ord-def tot-ord-converse nat-wf-on-converse-Memrel)
done
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lemma well-ord-converse:
[[well-ord(A,r);

well-ord(ordertype(A,r), converse(Memrel(ordertype(A, r))))]]
=⇒ well-ord(A,converse(r))

apply (rule well-ord-Int-iff [THEN iffD1 ])
apply (frule ordermap-bij [THEN bij-is-inj, THEN well-ord-rvimage], assumption)
apply (simp add: rvimage-converse converse-Int converse-prod

ordertype-ord-iso [THEN ord-iso-rvimage-eq])
done

lemma ordertype-eq-n:
assumes r : well-ord(A,r) and A: A ≈ n and n: n ∈ nat
shows ordertype(A,r) = n

proof −
have ordertype(A,r) ≈ A

by (blast intro: bij-imp-eqpoll bij-converse-bij ordermap-bij r)
also have ... ≈ n by (rule A)
finally have ordertype(A,r) ≈ n .
thus ?thesis

by (simp add: Ord-nat-eqpoll-iff Ord-ordertype n r)
qed

lemma Finite-well-ord-converse:
[[Finite(A); well-ord(A,r)]] =⇒ well-ord(A,converse(r))

unfolding Finite-def
apply (rule well-ord-converse, assumption)
apply (blast dest: ordertype-eq-n intro!: nat-well-ord-converse-Memrel)
done

lemma nat-into-Finite: n ∈ nat =⇒ Finite(n)
by (auto simp add: Finite-def intro: eqpoll-refl)

lemma nat-not-Finite: ¬ Finite(nat)
proof −

{ fix n
assume n: n ∈ nat nat ≈ n
have n ∈ nat by (rule n)
also have ... = n using n

by (simp add: Ord-nat-eqpoll-iff Ord-nat)
finally have n ∈ n .
hence False

by (blast elim: mem-irrefl)
}
thus ?thesis

by (auto simp add: Finite-def )
qed

end
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24 The Cumulative Hierarchy and a Small Uni-
verse for Recursive Types

theory Univ imports Epsilon Cardinal begin

definition
Vfrom :: [i,i]⇒i where

Vfrom(A,i) ≡ transrec(i, λx f . A ∪ (
⋃

y∈x. Pow(f‘y)))

abbreviation
Vset :: i⇒i where
Vset(x) ≡ Vfrom(0 ,x)

definition
Vrec :: [i, [i,i]⇒i] ⇒i where

Vrec(a,H ) ≡ transrec(rank(a), λx g. λz∈Vset(succ(x)).
H (z, λw∈Vset(x). g‘rank(w)‘w)) ‘ a

definition
Vrecursor :: [[i,i]⇒i, i] ⇒i where

Vrecursor(H ,a) ≡ transrec(rank(a), λx g. λz∈Vset(succ(x)).
H (λw∈Vset(x). g‘rank(w)‘w, z)) ‘ a

definition
univ :: i⇒i where

univ(A) ≡ Vfrom(A,nat)

24.1 Immediate Consequences of the Definition of Vfrom(A,
i)

NOT SUITABLE FOR REWRITING – RECURSIVE!
lemma Vfrom: Vfrom(A,i) = A ∪ (

⋃
j∈i. Pow(Vfrom(A,j)))

by (subst Vfrom-def [THEN def-transrec], simp)

24.1.1 Monotonicity
lemma Vfrom-mono [rule-format]:

A<=B =⇒ ∀ j. i<=j −→ Vfrom(A,i) ⊆ Vfrom(B,j)
apply (rule-tac a=i in eps-induct)
apply (rule impI [THEN allI ])
apply (subst Vfrom [of A])
apply (subst Vfrom [of B])
apply (erule Un-mono)
apply (erule UN-mono, blast)
done

lemma VfromI : [[a ∈ Vfrom(A,j); j<i]] =⇒ a ∈ Vfrom(A,i)
by (blast dest: Vfrom-mono [OF subset-refl le-imp-subset [OF leI ]])
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24.1.2 A fundamental equality: Vfrom does not require ordinals!
lemma Vfrom-rank-subset1 : Vfrom(A,x) ⊆ Vfrom(A,rank(x))
proof (induct x rule: eps-induct)

fix x
assume ∀ y∈x. Vfrom(A,y) ⊆ Vfrom(A,rank(y))
thus Vfrom(A, x) ⊆ Vfrom(A, rank(x))

by (simp add: Vfrom [of - x] Vfrom [of - rank(x)],
blast intro!: rank-lt [THEN ltD])

qed

lemma Vfrom-rank-subset2 : Vfrom(A,rank(x)) ⊆ Vfrom(A,x)
apply (rule-tac a=x in eps-induct)
apply (subst Vfrom)
apply (subst Vfrom, rule subset-refl [THEN Un-mono])
apply (rule UN-least)

expand rank(x1 ) = (
⋃

y∈x1 . succ(rank(y))) in assumptions

apply (erule rank [THEN equalityD1 , THEN subsetD, THEN UN-E ])
apply (rule subset-trans)
apply (erule-tac [2 ] UN-upper)
apply (rule subset-refl [THEN Vfrom-mono, THEN subset-trans, THEN Pow-mono])
apply (erule ltI [THEN le-imp-subset])
apply (rule Ord-rank [THEN Ord-succ])
apply (erule bspec, assumption)
done

lemma Vfrom-rank-eq: Vfrom(A,rank(x)) = Vfrom(A,x)
apply (rule equalityI )
apply (rule Vfrom-rank-subset2 )
apply (rule Vfrom-rank-subset1 )
done

24.2 Basic Closure Properties
lemma zero-in-Vfrom: y:x =⇒ 0 ∈ Vfrom(A,x)
by (subst Vfrom, blast)

lemma i-subset-Vfrom: i ⊆ Vfrom(A,i)
apply (rule-tac a=i in eps-induct)
apply (subst Vfrom, blast)
done

lemma A-subset-Vfrom: A ⊆ Vfrom(A,i)
apply (subst Vfrom)
apply (rule Un-upper1 )
done

lemmas A-into-Vfrom = A-subset-Vfrom [THEN subsetD]
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lemma subset-mem-Vfrom: a ⊆ Vfrom(A,i) =⇒ a ∈ Vfrom(A,succ(i))
by (subst Vfrom, blast)

24.2.1 Finite sets and ordered pairs
lemma singleton-in-Vfrom: a ∈ Vfrom(A,i) =⇒ {a} ∈ Vfrom(A,succ(i))
by (rule subset-mem-Vfrom, safe)

lemma doubleton-in-Vfrom:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i)]] =⇒ {a,b} ∈ Vfrom(A,succ(i))

by (rule subset-mem-Vfrom, safe)

lemma Pair-in-Vfrom:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i)]] =⇒ 〈a,b〉 ∈ Vfrom(A,succ(succ(i)))

unfolding Pair-def
apply (blast intro: doubleton-in-Vfrom)
done

lemma succ-in-Vfrom: a ⊆ Vfrom(A,i) =⇒ succ(a) ∈ Vfrom(A,succ(succ(i)))
apply (intro subset-mem-Vfrom succ-subsetI , assumption)
apply (erule subset-trans)
apply (rule Vfrom-mono [OF subset-refl subset-succI ])
done

24.3 0, Successor and Limit Equations for Vfrom
lemma Vfrom-0 : Vfrom(A,0 ) = A
by (subst Vfrom, blast)

lemma Vfrom-succ-lemma: Ord(i) =⇒ Vfrom(A,succ(i)) = A ∪ Pow(Vfrom(A,i))
apply (rule Vfrom [THEN trans])
apply (rule equalityI [THEN subst-context,

OF - succI1 [THEN RepFunI , THEN Union-upper ]])
apply (rule UN-least)
apply (rule subset-refl [THEN Vfrom-mono, THEN Pow-mono])
apply (erule ltI [THEN le-imp-subset])
apply (erule Ord-succ)
done

lemma Vfrom-succ: Vfrom(A,succ(i)) = A ∪ Pow(Vfrom(A,i))
apply (rule-tac x1 = succ (i) in Vfrom-rank-eq [THEN subst])
apply (rule-tac x1 = i in Vfrom-rank-eq [THEN subst])
apply (subst rank-succ)
apply (rule Ord-rank [THEN Vfrom-succ-lemma])
done

lemma Vfrom-Union: y:X =⇒ Vfrom(A,
⋃

(X)) = (
⋃

y∈X . Vfrom(A,y))
apply (subst Vfrom)
apply (rule equalityI )
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first inclusion

apply (rule Un-least)
apply (rule A-subset-Vfrom [THEN subset-trans])
apply (rule UN-upper , assumption)
apply (rule UN-least)
apply (erule UnionE)
apply (rule subset-trans)
apply (erule-tac [2 ] UN-upper ,

subst Vfrom, erule subset-trans [OF UN-upper Un-upper2 ])

opposite inclusion

apply (rule UN-least)
apply (subst Vfrom, blast)
done

24.4 Vfrom applied to Limit Ordinals
lemma Limit-Vfrom-eq:

Limit(i) =⇒ Vfrom(A,i) = (
⋃

y∈i. Vfrom(A,y))
apply (rule Limit-has-0 [THEN ltD, THEN Vfrom-Union, THEN subst], assump-
tion)
apply (simp add: Limit-Union-eq)
done

lemma Limit-VfromE :
[[a ∈ Vfrom(A,i); ¬R =⇒ Limit(i);∧

x. [[x<i; a ∈ Vfrom(A,x)]] =⇒ R
]] =⇒ R
apply (rule classical)
apply (rule Limit-Vfrom-eq [THEN equalityD1 , THEN subsetD, THEN UN-E ])

prefer 2 apply assumption
apply blast

apply (blast intro: ltI Limit-is-Ord)
done

lemma singleton-in-VLimit:
[[a ∈ Vfrom(A,i); Limit(i)]] =⇒ {a} ∈ Vfrom(A,i)

apply (erule Limit-VfromE , assumption)
apply (erule singleton-in-Vfrom [THEN VfromI ])
apply (blast intro: Limit-has-succ)
done

lemmas Vfrom-UnI1 =
Un-upper1 [THEN subset-refl [THEN Vfrom-mono, THEN subsetD]]

lemmas Vfrom-UnI2 =
Un-upper2 [THEN subset-refl [THEN Vfrom-mono, THEN subsetD]]

Hard work is finding a single j:i such that a,b<=Vfrom(A,j)
lemma doubleton-in-VLimit:
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[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i)]] =⇒ {a,b} ∈ Vfrom(A,i)
apply (erule Limit-VfromE , assumption)
apply (erule Limit-VfromE , assumption)
apply (blast intro: VfromI [OF doubleton-in-Vfrom]

Vfrom-UnI1 Vfrom-UnI2 Limit-has-succ Un-least-lt)
done

lemma Pair-in-VLimit:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i)]] =⇒ 〈a,b〉 ∈ Vfrom(A,i)

Infer that a, b occur at ordinals x,xa < i.

apply (erule Limit-VfromE , assumption)
apply (erule Limit-VfromE , assumption)

Infer that succ(succ(x ∪ xa)) < i

apply (blast intro: VfromI [OF Pair-in-Vfrom]
Vfrom-UnI1 Vfrom-UnI2 Limit-has-succ Un-least-lt)

done

lemma product-VLimit: Limit(i) =⇒ Vfrom(A,i) ∗ Vfrom(A,i) ⊆ Vfrom(A,i)
by (blast intro: Pair-in-VLimit)

lemmas Sigma-subset-VLimit =
subset-trans [OF Sigma-mono product-VLimit]

lemmas nat-subset-VLimit =
subset-trans [OF nat-le-Limit [THEN le-imp-subset] i-subset-Vfrom]

lemma nat-into-VLimit: [[n: nat; Limit(i)]] =⇒ n ∈ Vfrom(A,i)
by (blast intro: nat-subset-VLimit [THEN subsetD])

24.4.1 Closure under Disjoint Union
lemmas zero-in-VLimit = Limit-has-0 [THEN ltD, THEN zero-in-Vfrom]

lemma one-in-VLimit: Limit(i) =⇒ 1 ∈ Vfrom(A,i)
by (blast intro: nat-into-VLimit)

lemma Inl-in-VLimit:
[[a ∈ Vfrom(A,i); Limit(i)]] =⇒ Inl(a) ∈ Vfrom(A,i)

unfolding Inl-def
apply (blast intro: zero-in-VLimit Pair-in-VLimit)
done

lemma Inr-in-VLimit:
[[b ∈ Vfrom(A,i); Limit(i)]] =⇒ Inr(b) ∈ Vfrom(A,i)

unfolding Inr-def
apply (blast intro: one-in-VLimit Pair-in-VLimit)
done
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lemma sum-VLimit: Limit(i) =⇒ Vfrom(C ,i)+Vfrom(C ,i) ⊆ Vfrom(C ,i)
by (blast intro!: Inl-in-VLimit Inr-in-VLimit)

lemmas sum-subset-VLimit = subset-trans [OF sum-mono sum-VLimit]

24.5 Properties assuming Transset(A)

lemma Transset-Vfrom: Transset(A) =⇒ Transset(Vfrom(A,i))
apply (rule-tac a=i in eps-induct)
apply (subst Vfrom)
apply (blast intro!: Transset-Union-family Transset-Un Transset-Pow)
done

lemma Transset-Vfrom-succ:
Transset(A) =⇒ Vfrom(A, succ(i)) = Pow(Vfrom(A,i))

apply (rule Vfrom-succ [THEN trans])
apply (rule equalityI [OF - Un-upper2 ])
apply (rule Un-least [OF - subset-refl])
apply (rule A-subset-Vfrom [THEN subset-trans])
apply (erule Transset-Vfrom [THEN Transset-iff-Pow [THEN iffD1 ]])
done

lemma Transset-Pair-subset: [[〈a,b〉 ⊆ C ; Transset(C )]] =⇒ a: C ∧ b: C
by (unfold Pair-def Transset-def , blast)

lemma Transset-Pair-subset-VLimit:
[[〈a,b〉 ⊆ Vfrom(A,i); Transset(A); Limit(i)]]
=⇒ 〈a,b〉 ∈ Vfrom(A,i)

apply (erule Transset-Pair-subset [THEN conjE ])
apply (erule Transset-Vfrom)
apply (blast intro: Pair-in-VLimit)
done

lemma Union-in-Vfrom:
[[X ∈ Vfrom(A,j); Transset(A)]] =⇒

⋃
(X) ∈ Vfrom(A, succ(j))

apply (drule Transset-Vfrom)
apply (rule subset-mem-Vfrom)
apply (unfold Transset-def , blast)
done

lemma Union-in-VLimit:
[[X ∈ Vfrom(A,i); Limit(i); Transset(A)]] =⇒

⋃
(X) ∈ Vfrom(A,i)

apply (rule Limit-VfromE , assumption+)
apply (blast intro: Limit-has-succ VfromI Union-in-Vfrom)
done

General theorem for membership in Vfrom(A,i) when i is a limit ordinal
lemma in-VLimit:
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[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i);∧
x y j. [[j<i; 1 :j; x ∈ Vfrom(A,j); y ∈ Vfrom(A,j)]]

=⇒ ∃ k. h(x,y) ∈ Vfrom(A,k) ∧ k<i]]
=⇒ h(a,b) ∈ Vfrom(A,i)

Infer that a, b occur at ordinals x,xa < i.

apply (erule Limit-VfromE , assumption)
apply (erule Limit-VfromE , assumption, atomize)
apply (drule-tac x=a in spec)
apply (drule-tac x=b in spec)
apply (drule-tac x=x ∪ xa ∪ 2 in spec)
apply (simp add: Un-least-lt-iff lt-Ord Vfrom-UnI1 Vfrom-UnI2 )
apply (blast intro: Limit-has-0 Limit-has-succ VfromI )
done

24.5.1 Products
lemma prod-in-Vfrom:

[[a ∈ Vfrom(A,j); b ∈ Vfrom(A,j); Transset(A)]]
=⇒ a∗b ∈ Vfrom(A, succ(succ(succ(j))))

apply (drule Transset-Vfrom)
apply (rule subset-mem-Vfrom)

unfolding Transset-def
apply (blast intro: Pair-in-Vfrom)
done

lemma prod-in-VLimit:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i); Transset(A)]]
=⇒ a∗b ∈ Vfrom(A,i)

apply (erule in-VLimit, assumption+)
apply (blast intro: prod-in-Vfrom Limit-has-succ)
done

24.5.2 Disjoint Sums, or Quine Ordered Pairs
lemma sum-in-Vfrom:

[[a ∈ Vfrom(A,j); b ∈ Vfrom(A,j); Transset(A); 1 :j]]
=⇒ a+b ∈ Vfrom(A, succ(succ(succ(j))))

unfolding sum-def
apply (drule Transset-Vfrom)
apply (rule subset-mem-Vfrom)

unfolding Transset-def
apply (blast intro: zero-in-Vfrom Pair-in-Vfrom i-subset-Vfrom [THEN subsetD])
done

lemma sum-in-VLimit:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i); Transset(A)]]
=⇒ a+b ∈ Vfrom(A,i)

apply (erule in-VLimit, assumption+)
apply (blast intro: sum-in-Vfrom Limit-has-succ)

232



done

24.5.3 Function Space!
lemma fun-in-Vfrom:

[[a ∈ Vfrom(A,j); b ∈ Vfrom(A,j); Transset(A)]] =⇒
a−>b ∈ Vfrom(A, succ(succ(succ(succ(j)))))

unfolding Pi-def
apply (drule Transset-Vfrom)
apply (rule subset-mem-Vfrom)
apply (rule Collect-subset [THEN subset-trans])
apply (subst Vfrom)
apply (rule subset-trans [THEN subset-trans])
apply (rule-tac [3 ] Un-upper2 )
apply (rule-tac [2 ] succI1 [THEN UN-upper ])
apply (rule Pow-mono)

unfolding Transset-def
apply (blast intro: Pair-in-Vfrom)
done

lemma fun-in-VLimit:
[[a ∈ Vfrom(A,i); b ∈ Vfrom(A,i); Limit(i); Transset(A)]]
=⇒ a−>b ∈ Vfrom(A,i)

apply (erule in-VLimit, assumption+)
apply (blast intro: fun-in-Vfrom Limit-has-succ)
done

lemma Pow-in-Vfrom:
[[a ∈ Vfrom(A,j); Transset(A)]] =⇒ Pow(a) ∈ Vfrom(A, succ(succ(j)))

apply (drule Transset-Vfrom)
apply (rule subset-mem-Vfrom)

unfolding Transset-def
apply (subst Vfrom, blast)
done

lemma Pow-in-VLimit:
[[a ∈ Vfrom(A,i); Limit(i); Transset(A)]] =⇒ Pow(a) ∈ Vfrom(A,i)

by (blast elim: Limit-VfromE intro: Limit-has-succ Pow-in-Vfrom VfromI )

24.6 The Set Vset(i)
lemma Vset: Vset(i) = (

⋃
j∈i. Pow(Vset(j)))

by (subst Vfrom, blast)

lemmas Vset-succ = Transset-0 [THEN Transset-Vfrom-succ]
lemmas Transset-Vset = Transset-0 [THEN Transset-Vfrom]

24.6.1 Characterisation of the elements of Vset(i)
lemma VsetD [rule-format]: Ord(i) =⇒ ∀ b. b ∈ Vset(i) −→ rank(b) < i
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apply (erule trans-induct)
apply (subst Vset, safe)
apply (subst rank)
apply (blast intro: ltI UN-succ-least-lt)
done

lemma VsetI-lemma [rule-format]:
Ord(i) =⇒ ∀ b. rank(b) ∈ i −→ b ∈ Vset(i)

apply (erule trans-induct)
apply (rule allI )
apply (subst Vset)
apply (blast intro!: rank-lt [THEN ltD])
done

lemma VsetI : rank(x)<i =⇒ x ∈ Vset(i)
by (blast intro: VsetI-lemma elim: ltE)

Merely a lemma for the next result
lemma Vset-Ord-rank-iff : Ord(i) =⇒ b ∈ Vset(i) ←→ rank(b) < i
by (blast intro: VsetD VsetI )

lemma Vset-rank-iff [simp]: b ∈ Vset(a) ←→ rank(b) < rank(a)
apply (rule Vfrom-rank-eq [THEN subst])
apply (rule Ord-rank [THEN Vset-Ord-rank-iff ])
done

This is rank(rank(a)) = rank(a)
declare Ord-rank [THEN rank-of-Ord, simp]

lemma rank-Vset: Ord(i) =⇒ rank(Vset(i)) = i
apply (subst rank)
apply (rule equalityI , safe)
apply (blast intro: VsetD [THEN ltD])
apply (blast intro: VsetD [THEN ltD] Ord-trans)
apply (blast intro: i-subset-Vfrom [THEN subsetD]

Ord-in-Ord [THEN rank-of-Ord, THEN ssubst])
done

lemma Finite-Vset: i ∈ nat =⇒ Finite(Vset(i))
apply (erule nat-induct)
apply (simp add: Vfrom-0 )

apply (simp add: Vset-succ)
done

24.6.2 Reasoning about Sets in Terms of Their Elements’ Ranks
lemma arg-subset-Vset-rank: a ⊆ Vset(rank(a))
apply (rule subsetI )
apply (erule rank-lt [THEN VsetI ])
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done

lemma Int-Vset-subset:
[[
∧

i. Ord(i) =⇒ a ∩ Vset(i) ⊆ b]] =⇒ a ⊆ b
apply (rule subset-trans)
apply (rule Int-greatest [OF subset-refl arg-subset-Vset-rank])
apply (blast intro: Ord-rank)
done

24.6.3 Set Up an Environment for Simplification
lemma rank-Inl: rank(a) < rank(Inl(a))

unfolding Inl-def
apply (rule rank-pair2 )
done

lemma rank-Inr : rank(a) < rank(Inr(a))
unfolding Inr-def

apply (rule rank-pair2 )
done

lemmas rank-rls = rank-Inl rank-Inr rank-pair1 rank-pair2

24.6.4 Recursion over Vset Levels!

NOT SUITABLE FOR REWRITING: recursive!
lemma Vrec: Vrec(a,H ) = H (a, λx∈Vset(rank(a)). Vrec(x,H ))

unfolding Vrec-def
apply (subst transrec, simp)
apply (rule refl [THEN lam-cong, THEN subst-context], simp add: lt-def )
done

This form avoids giant explosions in proofs. NOTE the form of the premise!
lemma def-Vrec:

[[
∧

x. h(x)≡Vrec(x,H )]] =⇒
h(a) = H (a, λx∈Vset(rank(a)). h(x))

apply simp
apply (rule Vrec)
done

NOT SUITABLE FOR REWRITING: recursive!
lemma Vrecursor :

Vrecursor(H ,a) = H (λx∈Vset(rank(a)). Vrecursor(H ,x), a)
unfolding Vrecursor-def

apply (subst transrec, simp)
apply (rule refl [THEN lam-cong, THEN subst-context], simp add: lt-def )
done

This form avoids giant explosions in proofs. NOTE the form of the premise!
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lemma def-Vrecursor :
h ≡ Vrecursor(H ) =⇒ h(a) = H (λx∈Vset(rank(a)). h(x), a)

apply simp
apply (rule Vrecursor)
done

24.7 The Datatype Universe: univ(A)

lemma univ-mono: A<=B =⇒ univ(A) ⊆ univ(B)
unfolding univ-def

apply (erule Vfrom-mono)
apply (rule subset-refl)
done

lemma Transset-univ: Transset(A) =⇒ Transset(univ(A))
unfolding univ-def

apply (erule Transset-Vfrom)
done

24.7.1 The Set univ(A) as a Limit
lemma univ-eq-UN : univ(A) = (

⋃
i∈nat. Vfrom(A,i))

unfolding univ-def
apply (rule Limit-nat [THEN Limit-Vfrom-eq])
done

lemma subset-univ-eq-Int: c ⊆ univ(A) =⇒ c = (
⋃

i∈nat. c ∩ Vfrom(A,i))
apply (rule subset-UN-iff-eq [THEN iffD1 ])
apply (erule univ-eq-UN [THEN subst])
done

lemma univ-Int-Vfrom-subset:
[[a ⊆ univ(X);∧

i. i:nat =⇒ a ∩ Vfrom(X ,i) ⊆ b]]
=⇒ a ⊆ b

apply (subst subset-univ-eq-Int, assumption)
apply (rule UN-least, simp)
done

lemma univ-Int-Vfrom-eq:
[[a ⊆ univ(X); b ⊆ univ(X);∧

i. i:nat =⇒ a ∩ Vfrom(X ,i) = b ∩ Vfrom(X ,i)
]] =⇒ a = b
apply (rule equalityI )
apply (rule univ-Int-Vfrom-subset, assumption)
apply (blast elim: equalityCE)
apply (rule univ-Int-Vfrom-subset, assumption)
apply (blast elim: equalityCE)
done
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24.8 Closure Properties for univ(A)

lemma zero-in-univ: 0 ∈ univ(A)
unfolding univ-def

apply (rule nat-0I [THEN zero-in-Vfrom])
done

lemma zero-subset-univ: {0} ⊆ univ(A)
by (blast intro: zero-in-univ)

lemma A-subset-univ: A ⊆ univ(A)
unfolding univ-def

apply (rule A-subset-Vfrom)
done

lemmas A-into-univ = A-subset-univ [THEN subsetD]

24.8.1 Closure under Unordered and Ordered Pairs
lemma singleton-in-univ: a: univ(A) =⇒ {a} ∈ univ(A)

unfolding univ-def
apply (blast intro: singleton-in-VLimit Limit-nat)
done

lemma doubleton-in-univ:
[[a: univ(A); b: univ(A)]] =⇒ {a,b} ∈ univ(A)

unfolding univ-def
apply (blast intro: doubleton-in-VLimit Limit-nat)
done

lemma Pair-in-univ:
[[a: univ(A); b: univ(A)]] =⇒ 〈a,b〉 ∈ univ(A)

unfolding univ-def
apply (blast intro: Pair-in-VLimit Limit-nat)
done

lemma Union-in-univ:
[[X : univ(A); Transset(A)]] =⇒

⋃
(X) ∈ univ(A)

unfolding univ-def
apply (blast intro: Union-in-VLimit Limit-nat)
done

lemma product-univ: univ(A)∗univ(A) ⊆ univ(A)
unfolding univ-def

apply (rule Limit-nat [THEN product-VLimit])
done

24.8.2 The Natural Numbers
lemma nat-subset-univ: nat ⊆ univ(A)
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unfolding univ-def
apply (rule i-subset-Vfrom)
done

lemma nat-into-univ: n ∈ nat =⇒ n ∈ univ(A)
by (rule nat-subset-univ [THEN subsetD])

24.8.3 Instances for 1 and 2
lemma one-in-univ: 1 ∈ univ(A)

unfolding univ-def
apply (rule Limit-nat [THEN one-in-VLimit])
done

unused!
lemma two-in-univ: 2 ∈ univ(A)
by (blast intro: nat-into-univ)

lemma bool-subset-univ: bool ⊆ univ(A)
unfolding bool-def

apply (blast intro!: zero-in-univ one-in-univ)
done

lemmas bool-into-univ = bool-subset-univ [THEN subsetD]

24.8.4 Closure under Disjoint Union
lemma Inl-in-univ: a: univ(A) =⇒ Inl(a) ∈ univ(A)

unfolding univ-def
apply (erule Inl-in-VLimit [OF - Limit-nat])
done

lemma Inr-in-univ: b: univ(A) =⇒ Inr(b) ∈ univ(A)
unfolding univ-def

apply (erule Inr-in-VLimit [OF - Limit-nat])
done

lemma sum-univ: univ(C )+univ(C ) ⊆ univ(C )
unfolding univ-def

apply (rule Limit-nat [THEN sum-VLimit])
done

lemmas sum-subset-univ = subset-trans [OF sum-mono sum-univ]

lemma Sigma-subset-univ:
[[A ⊆ univ(D);

∧
x. x ∈ A =⇒ B(x) ⊆ univ(D)]] =⇒ Sigma(A,B) ⊆ univ(D)

apply (simp add: univ-def )
apply (blast intro: Sigma-subset-VLimit del: subsetI )
done
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24.9 Finite Branching Closure Properties
24.9.1 Closure under Finite Powerset
lemma Fin-Vfrom-lemma:

[[b: Fin(Vfrom(A,i)); Limit(i)]] =⇒ ∃ j. b ⊆ Vfrom(A,j) ∧ j<i
apply (erule Fin-induct)
apply (blast dest!: Limit-has-0 , safe)
apply (erule Limit-VfromE , assumption)
apply (blast intro!: Un-least-lt intro: Vfrom-UnI1 Vfrom-UnI2 )
done

lemma Fin-VLimit: Limit(i) =⇒ Fin(Vfrom(A,i)) ⊆ Vfrom(A,i)
apply (rule subsetI )
apply (drule Fin-Vfrom-lemma, safe)
apply (rule Vfrom [THEN ssubst])
apply (blast dest!: ltD)
done

lemmas Fin-subset-VLimit = subset-trans [OF Fin-mono Fin-VLimit]

lemma Fin-univ: Fin(univ(A)) ⊆ univ(A)
unfolding univ-def

apply (rule Limit-nat [THEN Fin-VLimit])
done

24.9.2 Closure under Finite Powers: Functions from a Natural
Number

lemma nat-fun-VLimit:
[[n: nat; Limit(i)]] =⇒ n −> Vfrom(A,i) ⊆ Vfrom(A,i)

apply (erule nat-fun-subset-Fin [THEN subset-trans])
apply (blast del: subsetI

intro: subset-refl Fin-subset-VLimit Sigma-subset-VLimit nat-subset-VLimit)
done

lemmas nat-fun-subset-VLimit = subset-trans [OF Pi-mono nat-fun-VLimit]

lemma nat-fun-univ: n: nat =⇒ n −> univ(A) ⊆ univ(A)
unfolding univ-def

apply (erule nat-fun-VLimit [OF - Limit-nat])
done

24.9.3 Closure under Finite Function Space

General but seldom-used version; normally the domain is fixed
lemma FiniteFun-VLimit1 :

Limit(i) =⇒ Vfrom(A,i) −||> Vfrom(A,i) ⊆ Vfrom(A,i)
apply (rule FiniteFun.dom-subset [THEN subset-trans])
apply (blast del: subsetI
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intro: Fin-subset-VLimit Sigma-subset-VLimit subset-refl)
done

lemma FiniteFun-univ1 : univ(A) −||> univ(A) ⊆ univ(A)
unfolding univ-def

apply (rule Limit-nat [THEN FiniteFun-VLimit1 ])
done

Version for a fixed domain
lemma FiniteFun-VLimit:

[[W ⊆ Vfrom(A,i); Limit(i)]] =⇒ W −||> Vfrom(A,i) ⊆ Vfrom(A,i)
apply (rule subset-trans)
apply (erule FiniteFun-mono [OF - subset-refl])
apply (erule FiniteFun-VLimit1 )
done

lemma FiniteFun-univ:
W ⊆ univ(A) =⇒ W −||> univ(A) ⊆ univ(A)

unfolding univ-def
apply (erule FiniteFun-VLimit [OF - Limit-nat])
done

lemma FiniteFun-in-univ:
[[f : W −||> univ(A); W ⊆ univ(A)]] =⇒ f ∈ univ(A)

by (erule FiniteFun-univ [THEN subsetD], assumption)

Remove ⊆ from the rule above
lemmas FiniteFun-in-univ ′ = FiniteFun-in-univ [OF - subsetI ]

24.10 * For QUniv. Properties of Vfrom analogous to the
"take-lemma" *

Intersecting a*b with Vfrom...

This version says a, b exist one level down, in the smaller set Vfrom(X,i)
lemma doubleton-in-Vfrom-D:

[[{a,b} ∈ Vfrom(X ,succ(i)); Transset(X)]]
=⇒ a ∈ Vfrom(X ,i) ∧ b ∈ Vfrom(X ,i)

by (drule Transset-Vfrom-succ [THEN equalityD1 , THEN subsetD, THEN PowD],
assumption, fast)

This weaker version says a, b exist at the same level
lemmas Vfrom-doubleton-D = Transset-Vfrom [THEN Transset-doubleton-D]

lemma Pair-in-Vfrom-D:
[[〈a,b〉 ∈ Vfrom(X ,succ(i)); Transset(X)]]
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=⇒ a ∈ Vfrom(X ,i) ∧ b ∈ Vfrom(X ,i)
unfolding Pair-def

apply (blast dest!: doubleton-in-Vfrom-D Vfrom-doubleton-D)
done

lemma product-Int-Vfrom-subset:
Transset(X) =⇒
(a∗b) ∩ Vfrom(X , succ(i)) ⊆ (a ∩ Vfrom(X ,i)) ∗ (b ∩ Vfrom(X ,i))

by (blast dest!: Pair-in-Vfrom-D)

ML
‹
val rank-ss =

simpset-of (context |> Simplifier .add-simp @{thm VsetI}
|> Simplifier .add-simps (@{thms rank-rls} @ (@{thms rank-rls} RLN (2 ,

[@{thm lt-trans}]))));
›

end

25 A Small Universe for Lazy Recursive Types
theory QUniv imports Univ QPair begin

rep-datatype
elimination sumE
induction TrueI
case-eqns case-Inl case-Inr

rep-datatype
elimination qsumE
induction TrueI
case-eqns qcase-QInl qcase-QInr

definition
quniv :: i ⇒ i where
quniv(A) ≡ Pow(univ(eclose(A)))

25.1 Properties involving Transset and Sum
lemma Transset-includes-summands:

[[Transset(C ); A+B ⊆ C ]] =⇒ A ⊆ C ∧ B ⊆ C
apply (simp add: sum-def Un-subset-iff )
apply (blast dest: Transset-includes-range)
done
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lemma Transset-sum-Int-subset:
Transset(C ) =⇒ (A+B) ∩ C ⊆ (A ∩ C ) + (B ∩ C )

apply (simp add: sum-def Int-Un-distrib2 )
apply (blast dest: Transset-Pair-D)
done

25.2 Introduction and Elimination Rules
lemma qunivI : X ⊆ univ(eclose(A)) =⇒ X ∈ quniv(A)
by (simp add: quniv-def )

lemma qunivD: X ∈ quniv(A) =⇒ X ⊆ univ(eclose(A))
by (simp add: quniv-def )

lemma quniv-mono: A<=B =⇒ quniv(A) ⊆ quniv(B)
unfolding quniv-def

apply (erule eclose-mono [THEN univ-mono, THEN Pow-mono])
done

25.3 Closure Properties
lemma univ-eclose-subset-quniv: univ(eclose(A)) ⊆ quniv(A)
apply (simp add: quniv-def Transset-iff-Pow [symmetric])
apply (rule Transset-eclose [THEN Transset-univ])
done

lemma univ-subset-quniv: univ(A) ⊆ quniv(A)
apply (rule arg-subset-eclose [THEN univ-mono, THEN subset-trans])
apply (rule univ-eclose-subset-quniv)
done

lemmas univ-into-quniv = univ-subset-quniv [THEN subsetD]

lemma Pow-univ-subset-quniv: Pow(univ(A)) ⊆ quniv(A)
unfolding quniv-def

apply (rule arg-subset-eclose [THEN univ-mono, THEN Pow-mono])
done

lemmas univ-subset-into-quniv =
PowI [THEN Pow-univ-subset-quniv [THEN subsetD]]

lemmas zero-in-quniv = zero-in-univ [THEN univ-into-quniv]
lemmas one-in-quniv = one-in-univ [THEN univ-into-quniv]
lemmas two-in-quniv = two-in-univ [THEN univ-into-quniv]

lemmas A-subset-quniv = subset-trans [OF A-subset-univ univ-subset-quniv]

lemmas A-into-quniv = A-subset-quniv [THEN subsetD]
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lemma QPair-subset-univ:
[[a ⊆ univ(A); b ⊆ univ(A)]] =⇒ <a;b> ⊆ univ(A)

by (simp add: QPair-def sum-subset-univ)

25.4 Quine Disjoint Sum
lemma QInl-subset-univ: a ⊆ univ(A) =⇒ QInl(a) ⊆ univ(A)

unfolding QInl-def
apply (erule empty-subsetI [THEN QPair-subset-univ])
done

lemmas naturals-subset-nat =
Ord-nat [THEN Ord-is-Transset, unfolded Transset-def , THEN bspec]

lemmas naturals-subset-univ =
subset-trans [OF naturals-subset-nat nat-subset-univ]

lemma QInr-subset-univ: a ⊆ univ(A) =⇒ QInr(a) ⊆ univ(A)
unfolding QInr-def

apply (erule nat-1I [THEN naturals-subset-univ, THEN QPair-subset-univ])
done

25.5 Closure for Quine-Inspired Products and Sums
lemma QPair-in-quniv:

[[a: quniv(A); b: quniv(A)]] =⇒ <a;b> ∈ quniv(A)
by (simp add: quniv-def QPair-def sum-subset-univ)

lemma QSigma-quniv: quniv(A) <∗> quniv(A) ⊆ quniv(A)
by (blast intro: QPair-in-quniv)

lemmas QSigma-subset-quniv = subset-trans [OF QSigma-mono QSigma-quniv]

lemma quniv-QPair-D:
<a;b> ∈ quniv(A) =⇒ a: quniv(A) ∧ b: quniv(A)

unfolding quniv-def QPair-def
apply (rule Transset-includes-summands [THEN conjE ])
apply (rule Transset-eclose [THEN Transset-univ])
apply (erule PowD, blast)
done

lemmas quniv-QPair-E = quniv-QPair-D [THEN conjE ]

lemma quniv-QPair-iff : <a;b> ∈ quniv(A) ←→ a: quniv(A) ∧ b: quniv(A)
by (blast intro: QPair-in-quniv dest: quniv-QPair-D)
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25.6 Quine Disjoint Sum
lemma QInl-in-quniv: a: quniv(A) =⇒ QInl(a) ∈ quniv(A)
by (simp add: QInl-def zero-in-quniv QPair-in-quniv)

lemma QInr-in-quniv: b: quniv(A) =⇒ QInr(b) ∈ quniv(A)
by (simp add: QInr-def one-in-quniv QPair-in-quniv)

lemma qsum-quniv: quniv(C ) <+> quniv(C ) ⊆ quniv(C )
by (blast intro: QInl-in-quniv QInr-in-quniv)

lemmas qsum-subset-quniv = subset-trans [OF qsum-mono qsum-quniv]

25.7 The Natural Numbers
lemmas nat-subset-quniv = subset-trans [OF nat-subset-univ univ-subset-quniv]

lemmas nat-into-quniv = nat-subset-quniv [THEN subsetD]

lemmas bool-subset-quniv = subset-trans [OF bool-subset-univ univ-subset-quniv]

lemmas bool-into-quniv = bool-subset-quniv [THEN subsetD]

lemma QPair-Int-Vfrom-succ-subset:
Transset(X) =⇒

<a;b> ∩ Vfrom(X , succ(i)) ⊆ <a ∩ Vfrom(X ,i); b ∩ Vfrom(X ,i)>
by (simp add: QPair-def sum-def Int-Un-distrib2 Un-mono

product-Int-Vfrom-subset [THEN subset-trans]
Sigma-mono [OF Int-lower1 subset-refl])

25.8 "Take-Lemma" Rules
lemma QPair-Int-Vfrom-subset:
Transset(X) =⇒

<a;b> ∩ Vfrom(X ,i) ⊆ <a ∩ Vfrom(X ,i); b ∩ Vfrom(X ,i)>
unfolding QPair-def

apply (erule Transset-Vfrom [THEN Transset-sum-Int-subset])
done

lemmas QPair-Int-Vset-subset-trans =
subset-trans [OF Transset-0 [THEN QPair-Int-Vfrom-subset] QPair-mono]

lemma QPair-Int-Vset-subset-UN :
Ord(i) =⇒ <a;b> ∩ Vset(i) ⊆ (

⋃
j∈i. <a ∩ Vset(j); b ∩ Vset(j)>)

apply (erule Ord-cases)
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apply (simp add: Vfrom-0 )

apply (erule ssubst)
apply (rule Transset-0 [THEN QPair-Int-Vfrom-succ-subset, THEN subset-trans])
apply (rule succI1 [THEN UN-upper ])

apply (simp del: UN-simps
add: Limit-Vfrom-eq Int-UN-distrib UN-mono QPair-Int-Vset-subset-trans)

done

end

26 Datatype and CoDatatype Definitions
theory Datatype
imports Inductive Univ QUniv
keywords datatype codatatype :: thy-decl
begin

ML-file ‹Tools/datatype-package.ML›

ML ‹
(∗Typechecking rules for most datatypes involving univ∗)
structure Data-Arg =

struct
val intrs =

[@{thm SigmaI}, @{thm InlI}, @{thm InrI},
@{thm Pair-in-univ}, @{thm Inl-in-univ}, @{thm Inr-in-univ},
@{thm zero-in-univ}, @{thm A-into-univ}, @{thm nat-into-univ}, @{thm

UnCI}];

val elims = [make-elim @{thm InlD}, make-elim @{thm InrD}, (∗for mutual
recursion∗)

@{thm SigmaE}, @{thm sumE}]; (∗allows ∗ and + in
spec∗)

end;

structure Data-Package =
Add-datatype-def-Fun
(structure Fp=Lfp and Pr=Standard-Prod and CP=Standard-CP
and Su=Standard-Sum
and Ind-Package = Ind-Package
and Datatype-Arg = Data-Arg
val coind = false);
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(∗Typechecking rules for most codatatypes involving quniv∗)
structure CoData-Arg =

struct
val intrs =

[@{thm QSigmaI}, @{thm QInlI}, @{thm QInrI},
@{thm QPair-in-quniv}, @{thm QInl-in-quniv}, @{thm QInr-in-quniv},
@{thm zero-in-quniv}, @{thm A-into-quniv}, @{thm nat-into-quniv}, @{thm

UnCI}];

val elims = [make-elim @{thm QInlD}, make-elim @{thm QInrD}, (∗for mutual
recursion∗)

@{thm QSigmaE}, @{thm qsumE}]; (∗allows ∗ and +
in spec∗)

end;

structure CoData-Package =
Add-datatype-def-Fun
(structure Fp=Gfp and Pr=Quine-Prod and CP=Quine-CP
and Su=Quine-Sum
and Ind-Package = CoInd-Package
and Datatype-Arg = CoData-Arg
val coind = true);

(∗ Simproc for freeness reasoning: compare datatype constructors for equality ∗)

structure Data-Free:
sig

val trace: bool Config.T
val proc: Simplifier .proc

end =
struct

val trace = Attrib.setup-config-bool binding ‹data-free-trace› (K false);

fun mk-new ([],[]) = Const ‹True›
| mk-new (largs,rargs) =

Balanced-Tree.make FOLogic.mk-conj
(map FOLogic.mk-eq (ListPair .zip (largs,rargs)));

val datatype-ss = simpset-of context ;

fun proc ctxt ct =
let

val old = Thm.term-of ct
val thy = Proof-Context.theory-of ctxt
val - =
if Config.get ctxt trace then tracing (data-free: OLD = ^ Syntax.string-of-term
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ctxt old)
else ()

val (lhs,rhs) = FOLogic.dest-eq old
val (lhead, largs) = strip-comb lhs
and (rhead, rargs) = strip-comb rhs
val lname = dest-Const-name lhead handle TERM - => raise Match;
val rname = dest-Const-name rhead handle TERM - => raise Match;
val lcon-info = the (Symtab.lookup (ConstructorsData.get thy) lname)

handle Option.Option => raise Match;
val rcon-info = the (Symtab.lookup (ConstructorsData.get thy) rname)

handle Option.Option => raise Match;
val new =

if #big-rec-name lcon-info = #big-rec-name rcon-info
andalso not (null (#free-iffs lcon-info)) then

if lname = rname then mk-new (largs, rargs)
else Const ‹False›

else raise Match;
val - =

if Config.get ctxt trace then tracing (NEW = ^ Syntax .string-of-term ctxt
new)

else ();
val goal = Logic.mk-equals (old, new);
val thm = Goal.prove ctxt [] [] goal
(fn - => resolve-tac ctxt @{thms iff-reflection} 1 THEN

simp-tac (put-simpset datatype-ss ctxt
|> Simplifier .add-simps (map (Thm.transfer thy) (#free-iffs lcon-info)))

1 )
handle ERROR msg =>

(warning (msg ^ \ndata-free simproc:\nfailed to prove ^ Syntax.string-of-term
ctxt goal);

raise Match)
in SOME thm end
handle Match => NONE ;

end;
›

simproc-setup data-free ((x::i) = y) = ‹fn - => Data-Free.proc›

end

27 Arithmetic Operators and Their Definitions
theory Arith imports Univ begin

Proofs about elementary arithmetic: addition, multiplication, etc.
definition

pred :: i⇒i where
pred(y) ≡ nat-case(0 , λx. x, y)
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definition
natify :: i⇒i where

natify ≡ Vrecursor(λf a. if a = succ(pred(a)) then succ(f‘pred(a))
else 0 )

consts
raw-add :: [i,i]⇒i
raw-diff :: [i,i]⇒i
raw-mult :: [i,i]⇒i

primrec
raw-add (0 , n) = n
raw-add (succ(m), n) = succ(raw-add(m, n))

primrec
raw-diff-0 : raw-diff (m, 0 ) = m
raw-diff-succ: raw-diff (m, succ(n)) =

nat-case(0 , λx. x, raw-diff (m, n))

primrec
raw-mult(0 , n) = 0
raw-mult(succ(m), n) = raw-add (n, raw-mult(m, n))

definition
add :: [i,i]⇒i (infixl ‹#+› 65 ) where

m #+ n ≡ raw-add (natify(m), natify(n))

definition
diff :: [i,i]⇒i (infixl ‹#−› 65 ) where

m #− n ≡ raw-diff (natify(m), natify(n))

definition
mult :: [i,i]⇒i (infixl ‹#∗› 70 ) where

m #∗ n ≡ raw-mult (natify(m), natify(n))

definition
raw-div :: [i,i]⇒i where

raw-div (m, n) ≡
transrec(m, λj f . if j<n | n=0 then 0 else succ(f‘(j#−n)))

definition
raw-mod :: [i,i]⇒i where

raw-mod (m, n) ≡
transrec(m, λj f . if j<n | n=0 then j else f‘(j#−n))

definition
div :: [i,i]⇒i (infixl ‹div› 70 ) where

m div n ≡ raw-div (natify(m), natify(n))
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definition
mod :: [i,i]⇒i (infixl ‹mod› 70 ) where

m mod n ≡ raw-mod (natify(m), natify(n))

declare rec-type [simp]
nat-0-le [simp]

lemma zero-lt-lemma: [[0<k; k ∈ nat]] =⇒ ∃ j∈nat. k = succ(j)
apply (erule rev-mp)
apply (induct-tac k, auto)
done

lemmas zero-lt-natE = zero-lt-lemma [THEN bexE ]

27.1 natify, the Coercion to nat
lemma pred-succ-eq [simp]: pred(succ(y)) = y
by (unfold pred-def , auto)

lemma natify-succ: natify(succ(x)) = succ(natify(x))
by (rule natify-def [THEN def-Vrecursor , THEN trans], auto)

lemma natify-0 [simp]: natify(0 ) = 0
by (rule natify-def [THEN def-Vrecursor , THEN trans], auto)

lemma natify-non-succ: ∀ z. x 6= succ(z) =⇒ natify(x) = 0
by (rule natify-def [THEN def-Vrecursor , THEN trans], auto)

lemma natify-in-nat [iff ,TC ]: natify(x) ∈ nat
apply (rule-tac a=x in eps-induct)
apply (case-tac ∃ z. x = succ(z))
apply (auto simp add: natify-succ natify-non-succ)
done

lemma natify-ident [simp]: n ∈ nat =⇒ natify(n) = n
apply (induct-tac n)
apply (auto simp add: natify-succ)
done

lemma natify-eqE : [[natify(x) = y; x ∈ nat]] =⇒ x=y
by auto

lemma natify-idem [simp]: natify(natify(x)) = natify(x)
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by simp

lemma add-natify1 [simp]: natify(m) #+ n = m #+ n
by (simp add: add-def )

lemma add-natify2 [simp]: m #+ natify(n) = m #+ n
by (simp add: add-def )

lemma mult-natify1 [simp]: natify(m) #∗ n = m #∗ n
by (simp add: mult-def )

lemma mult-natify2 [simp]: m #∗ natify(n) = m #∗ n
by (simp add: mult-def )

lemma diff-natify1 [simp]: natify(m) #− n = m #− n
by (simp add: diff-def )

lemma diff-natify2 [simp]: m #− natify(n) = m #− n
by (simp add: diff-def )

lemma mod-natify1 [simp]: natify(m) mod n = m mod n
by (simp add: mod-def )

lemma mod-natify2 [simp]: m mod natify(n) = m mod n
by (simp add: mod-def )

lemma div-natify1 [simp]: natify(m) div n = m div n
by (simp add: div-def )

lemma div-natify2 [simp]: m div natify(n) = m div n
by (simp add: div-def )

27.2 Typing rules
lemma raw-add-type: [[m∈nat; n∈nat]] =⇒ raw-add (m, n) ∈ nat
by (induct-tac m, auto)

lemma add-type [iff ,TC ]: m #+ n ∈ nat
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by (simp add: add-def raw-add-type)

lemma raw-mult-type: [[m∈nat; n∈nat]] =⇒ raw-mult (m, n) ∈ nat
apply (induct-tac m)
apply (simp-all add: raw-add-type)
done

lemma mult-type [iff ,TC ]: m #∗ n ∈ nat
by (simp add: mult-def raw-mult-type)

lemma raw-diff-type: [[m∈nat; n∈nat]] =⇒ raw-diff (m, n) ∈ nat
by (induct-tac n, auto)

lemma diff-type [iff ,TC ]: m #− n ∈ nat
by (simp add: diff-def raw-diff-type)

lemma diff-0-eq-0 [simp]: 0 #− n = 0
unfolding diff-def

apply (rule natify-in-nat [THEN nat-induct], auto)
done

lemma diff-succ-succ [simp]: succ(m) #− succ(n) = m #− n
apply (simp add: natify-succ diff-def )
apply (rule-tac x1 = n in natify-in-nat [THEN nat-induct], auto)
done

declare raw-diff-succ [simp del]

lemma diff-0 [simp]: m #− 0 = natify(m)
by (simp add: diff-def )

lemma diff-le-self : m∈nat =⇒ (m #− n) ≤ m
apply (subgoal-tac (m #− natify (n)) ≤ m)
apply (rule-tac [2 ] m = m and n = natify (n) in diff-induct)
apply (erule-tac [6 ] leE)
apply (simp-all add: le-iff )
done

27.3 Addition
lemma add-0-natify [simp]: 0 #+ m = natify(m)
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by (simp add: add-def )

lemma add-succ [simp]: succ(m) #+ n = succ(m #+ n)
by (simp add: natify-succ add-def )

lemma add-0 : m ∈ nat =⇒ 0 #+ m = m
by simp

lemma add-assoc: (m #+ n) #+ k = m #+ (n #+ k)
apply (subgoal-tac (natify(m) #+ natify(n)) #+ natify(k) =

natify(m) #+ (natify(n) #+ natify(k)))
apply (rule-tac [2 ] n = natify(m) in nat-induct)
apply auto
done

lemma add-0-right-natify [simp]: m #+ 0 = natify(m)
apply (subgoal-tac natify(m) #+ 0 = natify(m))
apply (rule-tac [2 ] n = natify(m) in nat-induct)
apply auto
done

lemma add-succ-right [simp]: m #+ succ(n) = succ(m #+ n)
unfolding add-def

apply (rule-tac n = natify(m) in nat-induct)
apply (auto simp add: natify-succ)
done

lemma add-0-right: m ∈ nat =⇒ m #+ 0 = m
by auto

lemma add-commute: m #+ n = n #+ m
apply (subgoal-tac natify(m) #+ natify(n) = natify(n) #+ natify(m) )
apply (rule-tac [2 ] n = natify(m) in nat-induct)
apply auto
done

lemma add-left-commute: m#+(n#+k)=n#+(m#+k)
apply (rule add-commute [THEN trans])
apply (rule add-assoc [THEN trans])
apply (rule add-commute [THEN subst-context])
done

lemmas add-ac = add-assoc add-commute add-left-commute
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lemma raw-add-left-cancel:
[[raw-add(k, m) = raw-add(k, n); k∈nat]] =⇒ m=n

apply (erule rev-mp)
apply (induct-tac k, auto)
done

lemma add-left-cancel-natify: k #+ m = k #+ n =⇒ natify(m) = natify(n)
unfolding add-def

apply (drule raw-add-left-cancel, auto)
done

lemma add-left-cancel:
[[i = j; i #+ m = j #+ n; m∈nat; n∈nat]] =⇒ m = n

by (force dest!: add-left-cancel-natify)

lemma add-le-elim1-natify: k#+m ≤ k#+n =⇒ natify(m) ≤ natify(n)
apply (rule-tac P = natify(k) #+m ≤ natify(k) #+n in rev-mp)
apply (rule-tac [2 ] n = natify(k) in nat-induct)
apply auto
done

lemma add-le-elim1 : [[k#+m ≤ k#+n; m ∈ nat; n ∈ nat]] =⇒ m ≤ n
by (drule add-le-elim1-natify, auto)

lemma add-lt-elim1-natify: k#+m < k#+n =⇒ natify(m) < natify(n)
apply (rule-tac P = natify(k) #+m < natify(k) #+n in rev-mp)
apply (rule-tac [2 ] n = natify(k) in nat-induct)
apply auto
done

lemma add-lt-elim1 : [[k#+m < k#+n; m ∈ nat; n ∈ nat]] =⇒ m < n
by (drule add-lt-elim1-natify, auto)

lemma zero-less-add: [[n ∈ nat; m ∈ nat]] =⇒ 0 < m #+ n ←→ (0<m | 0<n)
by (induct-tac n, auto)

27.4 Monotonicity of Addition
lemma add-lt-mono1 : [[i<j; j∈nat]] =⇒ i#+k < j#+k
apply (frule lt-nat-in-nat, assumption)
apply (erule succ-lt-induct)
apply (simp-all add: leI )
done

strict, in second argument
lemma add-lt-mono2 : [[i<j; j∈nat]] =⇒ k#+i < k#+j
by (simp add: add-commute [of k] add-lt-mono1 )
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A [clumsy] way of lifting < monotonicity to ≤ monotonicity
lemma Ord-lt-mono-imp-le-mono:

assumes lt-mono:
∧

i j. [[i<j; j:k]] =⇒ f (i) < f (j)
and ford:

∧
i. i:k =⇒ Ord(f (i))

and leij: i ≤ j
and jink: j:k

shows f (i) ≤ f (j)
apply (insert leij jink)
apply (blast intro!: leCI lt-mono ford elim!: leE)
done

≤ monotonicity, 1st argument
lemma add-le-mono1 : [[i ≤ j; j∈nat]] =⇒ i#+k ≤ j#+k
apply (rule-tac f = λj. j#+k in Ord-lt-mono-imp-le-mono, typecheck)
apply (blast intro: add-lt-mono1 add-type [THEN nat-into-Ord])+
done

≤ monotonicity, both arguments
lemma add-le-mono: [[i ≤ j; k ≤ l; j∈nat; l∈nat]] =⇒ i#+k ≤ j#+l
apply (rule add-le-mono1 [THEN le-trans], assumption+)
apply (subst add-commute, subst add-commute, rule add-le-mono1 , assumption+)
done

Combinations of less-than and less-than-or-equals
lemma add-lt-le-mono: [[i<j; k≤l; j∈nat; l∈nat]] =⇒ i#+k < j#+l
apply (rule add-lt-mono1 [THEN lt-trans2 ], assumption+)
apply (subst add-commute, subst add-commute, rule add-le-mono1 , assumption+)
done

lemma add-le-lt-mono: [[i≤j; k<l; j∈nat; l∈nat]] =⇒ i#+k < j#+l
by (subst add-commute, subst add-commute, erule add-lt-le-mono, assumption+)

Less-than: in other words, strict in both arguments
lemma add-lt-mono: [[i<j; k<l; j∈nat; l∈nat]] =⇒ i#+k < j#+l
apply (rule add-lt-le-mono)
apply (auto intro: leI )
done

lemma diff-add-inverse: (n#+m) #− n = natify(m)
apply (subgoal-tac (natify(n) #+ m) #− natify(n) = natify(m) )
apply (rule-tac [2 ] n = natify(n) in nat-induct)
apply auto
done

lemma diff-add-inverse2 : (m#+n) #− n = natify(m)
by (simp add: add-commute [of m] diff-add-inverse)
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lemma diff-cancel: (k#+m) #− (k#+n) = m #− n
apply (subgoal-tac (natify(k) #+ natify(m)) #− (natify(k) #+ natify(n)) =

natify(m) #− natify(n) )
apply (rule-tac [2 ] n = natify(k) in nat-induct)
apply auto
done

lemma diff-cancel2 : (m#+k) #− (n#+k) = m #− n
by (simp add: add-commute [of - k] diff-cancel)

lemma diff-add-0 : n #− (n#+m) = 0
apply (subgoal-tac natify(n) #− (natify(n) #+ natify(m)) = 0 )
apply (rule-tac [2 ] n = natify(n) in nat-induct)
apply auto
done

lemma pred-0 [simp]: pred(0 ) = 0
by (simp add: pred-def )

lemma eq-succ-imp-eq-m1 : [[i = succ(j); i∈nat]] =⇒ j = i #− 1 ∧ j ∈nat
by simp

lemma pred-Un-distrib:
[[i∈nat; j∈nat]] =⇒ pred(i ∪ j) = pred(i) ∪ pred(j)

apply (erule-tac n=i in natE , simp)
apply (erule-tac n=j in natE , simp)
apply (simp add: succ-Un-distrib [symmetric])
done

lemma pred-type [TC ,simp]:
i ∈ nat =⇒ pred(i) ∈ nat

by (simp add: pred-def split: split-nat-case)

lemma nat-diff-pred: [[i∈nat; j∈nat]] =⇒ i #− succ(j) = pred(i #− j)
apply (rule-tac m=i and n=j in diff-induct)
apply (auto simp add: pred-def nat-imp-quasinat split: split-nat-case)
done

lemma diff-succ-eq-pred: i #− succ(j) = pred(i #− j)
apply (insert nat-diff-pred [of natify(i) natify(j)])
apply (simp add: natify-succ [symmetric])
done

lemma nat-diff-Un-distrib:
[[i∈nat; j∈nat; k∈nat]] =⇒ (i ∪ j) #− k = (i#−k) ∪ (j#−k)

apply (rule-tac n=k in nat-induct)
apply (simp-all add: diff-succ-eq-pred pred-Un-distrib)
done
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lemma diff-Un-distrib:
[[i∈nat; j∈nat]] =⇒ (i ∪ j) #− k = (i#−k) ∪ (j#−k)

by (insert nat-diff-Un-distrib [of i j natify(k)], simp)

We actually prove i #− j #− k = i #− (j #+ k)
lemma diff-diff-left [simplified]:

natify(i)#−natify(j)#−k = natify(i) #− (natify(j)#+k)
by (rule-tac m=natify(i) and n=natify(j) in diff-induct, auto)

lemma eq-add-iff : (u #+ m = u #+ n) ←→ (0 #+ m = natify(n))
apply auto
apply (blast dest: add-left-cancel-natify)
apply (simp add: add-def )
done

lemma less-add-iff : (u #+ m < u #+ n) ←→ (0 #+ m < natify(n))
apply (auto simp add: add-lt-elim1-natify)
apply (drule add-lt-mono1 )
apply (auto simp add: add-commute [of u])
done

lemma diff-add-eq: ((u #+ m) #− (u #+ n)) = ((0 #+ m) #− n)
by (simp add: diff-cancel)

lemma eq-cong2 : u = u ′ =⇒ (t≡u) ≡ (t≡u ′)
by auto

lemma iff-cong2 : u ←→ u ′ =⇒ (t≡u) ≡ (t≡u ′)
by auto

27.5 Multiplication
lemma mult-0 [simp]: 0 #∗ m = 0
by (simp add: mult-def )

lemma mult-succ [simp]: succ(m) #∗ n = n #+ (m #∗ n)
by (simp add: add-def mult-def natify-succ raw-mult-type)

lemma mult-0-right [simp]: m #∗ 0 = 0
unfolding mult-def

apply (rule-tac n = natify(m) in nat-induct)
apply auto
done

256



lemma mult-succ-right [simp]: m #∗ succ(n) = m #+ (m #∗ n)
apply (subgoal-tac natify(m) #∗ succ (natify(n)) =

natify(m) #+ (natify(m) #∗ natify(n)))
apply (simp (no-asm-use) add: natify-succ add-def mult-def )
apply (rule-tac n = natify(m) in nat-induct)
apply (simp-all add: add-ac)
done

lemma mult-1-natify [simp]: 1 #∗ n = natify(n)
by auto

lemma mult-1-right-natify [simp]: n #∗ 1 = natify(n)
by auto

lemma mult-1 : n ∈ nat =⇒ 1 #∗ n = n
by simp

lemma mult-1-right: n ∈ nat =⇒ n #∗ 1 = n
by simp

lemma mult-commute: m #∗ n = n #∗ m
apply (subgoal-tac natify(m) #∗ natify(n) = natify(n) #∗ natify(m) )
apply (rule-tac [2 ] n = natify(m) in nat-induct)
apply auto
done

lemma add-mult-distrib: (m #+ n) #∗ k = (m #∗ k) #+ (n #∗ k)
apply (subgoal-tac (natify(m) #+ natify(n)) #∗ natify(k) =

(natify(m) #∗ natify(k)) #+ (natify(n) #∗ natify(k)))
apply (rule-tac [2 ] n = natify(m) in nat-induct)
apply (simp-all add: add-assoc [symmetric])
done

lemma add-mult-distrib-left: k #∗ (m #+ n) = (k #∗ m) #+ (k #∗ n)
apply (subgoal-tac natify(k) #∗ (natify(m) #+ natify(n)) =

(natify(k) #∗ natify(m)) #+ (natify(k) #∗ natify(n)))
apply (rule-tac [2 ] n = natify(m) in nat-induct)
apply (simp-all add: add-ac)
done

lemma mult-assoc: (m #∗ n) #∗ k = m #∗ (n #∗ k)
apply (subgoal-tac (natify(m) #∗ natify(n)) #∗ natify(k) =

natify(m) #∗ (natify(n) #∗ natify(k)))
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apply (rule-tac [2 ] n = natify(m) in nat-induct)
apply (simp-all add: add-mult-distrib)
done

lemma mult-left-commute: m #∗ (n #∗ k) = n #∗ (m #∗ k)
apply (rule mult-commute [THEN trans])
apply (rule mult-assoc [THEN trans])
apply (rule mult-commute [THEN subst-context])
done

lemmas mult-ac = mult-assoc mult-commute mult-left-commute

lemma lt-succ-eq-0-disj:
[[m∈nat; n∈nat]]
=⇒ (m < succ(n)) ←→ (m = 0 | (∃ j∈nat. m = succ(j) ∧ j < n))

by (induct-tac m, auto)

lemma less-diff-conv [rule-format]:
[[j∈nat; k∈nat]] =⇒ ∀ i∈nat. (i < j #− k) ←→ (i #+ k < j)

by (erule-tac m = k in diff-induct, auto)

lemmas nat-typechecks = rec-type nat-0I nat-1I nat-succI Ord-nat

end

28 Arithmetic with simplification
theory ArithSimp
imports Arith
begin

28.1 Arithmetic simplification
ML-file ‹∼∼/src/Provers/Arith/cancel-numerals.ML›
ML-file ‹∼∼/src/Provers/Arith/combine-numerals.ML›
ML-file ‹arith-data.ML›

simproc-setup nateq-cancel-numerals
(l #+ m = n | l = m #+ n | l #∗ m = n | l = m #∗ n | succ(m) = n | m =

succ(n)) =
‹K ArithData.nateq-cancel-numerals-proc›

simproc-setup natless-cancel-numerals
(l #+ m < n | l < m #+ n | l #∗ m < n | l < m #∗ n | succ(m) < n | m <

succ(n)) =
‹K ArithData.natless-cancel-numerals-proc›
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simproc-setup natdiff-cancel-numerals
((l #+ m) #− n | l #− (m #+ n) | (l #∗ m) #− n | l #− (m #∗ n) |

succ(m) #− n | m #− succ(n)) =
‹K ArithData.natdiff-cancel-numerals-proc›

28.1.1 Examples
lemma x #+ y = x #+ z apply simp oops
lemma y #+ x = x #+ z apply simp oops
lemma x #+ y #+ z = x #+ z apply simp oops
lemma y #+ (z #+ x) = z #+ x apply simp oops
lemma x #+ y #+ z = (z #+ y) #+ (x #+ w) apply simp oops
lemma x#∗y #+ z = (z #+ y) #+ (y#∗x #+ w) apply simp oops

lemma x #+ succ(y) = x #+ z apply simp oops
lemma x #+ succ(y) = succ(z #+ x) apply simp oops
lemma succ(x) #+ succ(y) #+ z = succ(z #+ y) #+ succ(x #+ w) apply simp
oops

lemma (x #+ y) #− (x #+ z) = w apply simp oops
lemma (y #+ x) #− (x #+ z) = dd apply simp oops
lemma (x #+ y #+ z) #− (x #+ z) = dd apply simp oops
lemma (y #+ (z #+ x)) #− (z #+ x) = dd apply simp oops
lemma (x #+ y #+ z) #− ((z #+ y) #+ (x #+ w)) = dd apply simp oops
lemma (x#∗y #+ z) #− ((z #+ y) #+ (y#∗x #+ w)) = dd apply simp oops

lemma (x #+ succ(y)) #− (x #+ z) = dd apply simp oops

lemma x #∗ y2 #+ y #∗ x2 = y #∗ x2 #+ x #∗ y2 apply simp oops

lemma (x #+ succ(y)) #− (succ(z #+ x)) = dd apply simp oops
lemma (succ(x) #+ succ(y) #+ z) #− (succ(z #+ y) #+ succ(x #+ w)) = dd
apply simp oops

lemma x : nat ==> x #+ y = x apply simp oops
lemma x : nat −−> x #+ y = x apply simp oops
lemma x : nat ==> x #+ y < x apply simp oops
lemma x : nat ==> x < y#+x apply simp oops
lemma x : nat ==> x ≤ succ(x) apply simp oops

lemma x #+ y = x apply simp? oops

lemma x #+ y < x #+ z apply simp oops
lemma y #+ x < x #+ z apply simp oops
lemma x #+ y #+ z < x #+ z apply simp oops
lemma y #+ z #+ x < x #+ z apply simp oops

259



lemma y #+ (z #+ x) < z #+ x apply simp oops
lemma x #+ y #+ z < (z #+ y) #+ (x #+ w) apply simp oops
lemma x#∗y #+ z < (z #+ y) #+ (y#∗x #+ w) apply simp oops

lemma x #+ succ(y) < x #+ z apply simp oops
lemma x #+ succ(y) < succ(z #+ x) apply simp oops
lemma succ(x) #+ succ(y) #+ z < succ(z #+ y) #+ succ(x #+ w) apply simp
oops

lemma x #+ succ(y) ≤ succ(z #+ x) apply simp oops

28.2 Difference
lemma diff-self-eq-0 [simp]: m #− m = 0
apply (subgoal-tac natify (m) #− natify (m) = 0 )
apply (rule-tac [2 ] natify-in-nat [THEN nat-induct], auto)
done

lemma add-diff-inverse: [[n ≤ m; m:nat]] =⇒ n #+ (m#−n) = m
apply (frule lt-nat-in-nat, erule nat-succI )
apply (erule rev-mp)
apply (rule-tac m = m and n = n in diff-induct, auto)
done

lemma add-diff-inverse2 : [[n ≤ m; m:nat]] =⇒ (m#−n) #+ n = m
apply (frule lt-nat-in-nat, erule nat-succI )
apply (simp (no-asm-simp) add: add-commute add-diff-inverse)
done

lemma diff-succ: [[n ≤ m; m:nat]] =⇒ succ(m) #− n = succ(m#−n)
apply (frule lt-nat-in-nat, erule nat-succI )
apply (erule rev-mp)
apply (rule-tac m = m and n = n in diff-induct)
apply (simp-all (no-asm-simp))
done

lemma zero-less-diff [simp]:
[[m: nat; n: nat]] =⇒ 0 < (n #− m) ←→ m<n

apply (rule-tac m = m and n = n in diff-induct)
apply (simp-all (no-asm-simp))
done
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lemma diff-mult-distrib: (m #− n) #∗ k = (m #∗ k) #− (n #∗ k)
apply (subgoal-tac (natify (m) #− natify (n)) #∗ natify (k) = (natify (m) #∗
natify (k)) #− (natify (n) #∗ natify (k)))
apply (rule-tac [2 ] m = natify (m) and n = natify (n) in diff-induct)
apply (simp-all add: diff-cancel)
done

lemma diff-mult-distrib2 : k #∗ (m #− n) = (k #∗ m) #− (k #∗ n)
apply (simp (no-asm) add: mult-commute [of k] diff-mult-distrib)
done

28.3 Remainder
lemma div-termination: [[0<n; n ≤ m; m:nat]] =⇒ m #− n < m
apply (frule lt-nat-in-nat, erule nat-succI )
apply (erule rev-mp)
apply (erule rev-mp)
apply (rule-tac m = m and n = n in diff-induct)
apply (simp-all (no-asm-simp) add: diff-le-self )
done

lemmas div-rls =
nat-typechecks Ord-transrec-type apply-funtype
div-termination [THEN ltD]
nat-into-Ord not-lt-iff-le [THEN iffD1 ]

lemma raw-mod-type: [[m:nat; n:nat]] =⇒ raw-mod (m, n) ∈ nat
unfolding raw-mod-def

apply (rule Ord-transrec-type)
apply (auto simp add: nat-into-Ord [THEN Ord-0-lt-iff ])
apply (blast intro: div-rls)
done

lemma mod-type [TC ,iff ]: m mod n ∈ nat
unfolding mod-def

apply (simp (no-asm) add: mod-def raw-mod-type)
done

lemma DIVISION-BY-ZERO-DIV : a div 0 = 0
unfolding div-def

apply (rule raw-div-def [THEN def-transrec, THEN trans])
apply (simp (no-asm-simp))
done

lemma DIVISION-BY-ZERO-MOD: a mod 0 = natify(a)
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unfolding mod-def
apply (rule raw-mod-def [THEN def-transrec, THEN trans])
apply (simp (no-asm-simp))
done

lemma raw-mod-less: m<n =⇒ raw-mod (m,n) = m
apply (rule raw-mod-def [THEN def-transrec, THEN trans])
apply (simp (no-asm-simp) add: div-termination [THEN ltD])
done

lemma mod-less [simp]: [[m<n; n ∈ nat]] =⇒ m mod n = m
apply (frule lt-nat-in-nat, assumption)
apply (simp (no-asm-simp) add: mod-def raw-mod-less)
done

lemma raw-mod-geq:
[[0<n; n ≤ m; m:nat]] =⇒ raw-mod (m, n) = raw-mod (m#−n, n)

apply (frule lt-nat-in-nat, erule nat-succI )
apply (rule raw-mod-def [THEN def-transrec, THEN trans])
apply (simp (no-asm-simp) add: div-termination [THEN ltD] not-lt-iff-le [THEN
iffD2 ], blast)
done

lemma mod-geq: [[n ≤ m; m:nat]] =⇒ m mod n = (m#−n) mod n
apply (frule lt-nat-in-nat, erule nat-succI )
apply (case-tac n=0 )
apply (simp add: DIVISION-BY-ZERO-MOD)

apply (simp add: mod-def raw-mod-geq nat-into-Ord [THEN Ord-0-lt-iff ])
done

28.4 Division
lemma raw-div-type: [[m:nat; n:nat]] =⇒ raw-div (m, n) ∈ nat

unfolding raw-div-def
apply (rule Ord-transrec-type)
apply (auto simp add: nat-into-Ord [THEN Ord-0-lt-iff ])
apply (blast intro: div-rls)
done

lemma div-type [TC ,iff ]: m div n ∈ nat
unfolding div-def

apply (simp (no-asm) add: div-def raw-div-type)
done

lemma raw-div-less: m<n =⇒ raw-div (m,n) = 0
apply (rule raw-div-def [THEN def-transrec, THEN trans])
apply (simp (no-asm-simp) add: div-termination [THEN ltD])
done
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lemma div-less [simp]: [[m<n; n ∈ nat]] =⇒ m div n = 0
apply (frule lt-nat-in-nat, assumption)
apply (simp (no-asm-simp) add: div-def raw-div-less)
done

lemma raw-div-geq: [[0<n; n ≤ m; m:nat]] =⇒ raw-div(m,n) = succ(raw-div(m#−n,
n))
apply (subgoal-tac n 6= 0 )
prefer 2 apply blast
apply (frule lt-nat-in-nat, erule nat-succI )
apply (rule raw-div-def [THEN def-transrec, THEN trans])
apply (simp (no-asm-simp) add: div-termination [THEN ltD] not-lt-iff-le [THEN
iffD2 ] )
done

lemma div-geq [simp]:
[[0<n; n ≤ m; m:nat]] =⇒ m div n = succ ((m#−n) div n)

apply (frule lt-nat-in-nat, erule nat-succI )
apply (simp (no-asm-simp) add: div-def raw-div-geq)
done

declare div-less [simp] div-geq [simp]

lemma mod-div-lemma: [[m: nat; n: nat]] =⇒ (m div n)#∗n #+ m mod n = m
apply (case-tac n=0 )
apply (simp add: DIVISION-BY-ZERO-MOD)

apply (simp add: nat-into-Ord [THEN Ord-0-lt-iff ])
apply (erule complete-induct)
apply (case-tac x<n)

case x<n
apply (simp (no-asm-simp))

case n ≤ x
apply (simp add: not-lt-iff-le add-assoc mod-geq div-termination [THEN ltD] add-diff-inverse)
done

lemma mod-div-equality-natify: (m div n)#∗n #+ m mod n = natify(m)
apply (subgoal-tac (natify (m) div natify (n))#∗natify (n) #+ natify (m) mod
natify (n) = natify (m) )
apply force
apply (subst mod-div-lemma, auto)
done

lemma mod-div-equality: m: nat =⇒ (m div n)#∗n #+ m mod n = m
apply (simp (no-asm-simp) add: mod-div-equality-natify)
done
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28.5 Further Facts about Remainder

(mainly for mutilated chess board)
lemma mod-succ-lemma:

[[0<n; m:nat; n:nat]]
=⇒ succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))

apply (erule complete-induct)
apply (case-tac succ (x) <n)

case succ(x) < n

apply (simp (no-asm-simp) add: nat-le-refl [THEN lt-trans] succ-neq-self )
apply (simp add: ltD [THEN mem-imp-not-eq])

case n ≤ succ(x)

apply (simp add: mod-geq not-lt-iff-le)
apply (erule leE)
apply (simp (no-asm-simp) add: mod-geq div-termination [THEN ltD] diff-succ)

equality case

apply (simp add: diff-self-eq-0 )
done

lemma mod-succ:
n:nat =⇒ succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))

apply (case-tac n=0 )
apply (simp (no-asm-simp) add: natify-succ DIVISION-BY-ZERO-MOD)

apply (subgoal-tac natify (succ (m)) mod n = (if succ (natify (m) mod n) = n
then 0 else succ (natify (m) mod n)))
prefer 2
apply (subst natify-succ)
apply (rule mod-succ-lemma)
apply (auto simp del: natify-succ simp add: nat-into-Ord [THEN Ord-0-lt-iff ])

done

lemma mod-less-divisor : [[0<n; n:nat]] =⇒ m mod n < n
apply (subgoal-tac natify (m) mod n < n)
apply (rule-tac [2 ] i = natify (m) in complete-induct)
apply (case-tac [3 ] x<n, auto)

case n ≤ x

apply (simp add: mod-geq not-lt-iff-le div-termination [THEN ltD])
done

lemma mod-1-eq [simp]: m mod 1 = 0
by (cut-tac n = 1 in mod-less-divisor , auto)

lemma mod2-cases: b<2 =⇒ k mod 2 = b | k mod 2 = (if b=1 then 0 else 1 )
apply (subgoal-tac k mod 2 : 2 )
prefer 2 apply (simp add: mod-less-divisor [THEN ltD])
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apply (drule ltD, auto)
done

lemma mod2-succ-succ [simp]: succ(succ(m)) mod 2 = m mod 2
apply (subgoal-tac m mod 2 : 2 )
prefer 2 apply (simp add: mod-less-divisor [THEN ltD])

apply (auto simp add: mod-succ)
done

lemma mod2-add-more [simp]: (m#+m#+n) mod 2 = n mod 2
apply (subgoal-tac (natify (m) #+natify (m) #+n) mod 2 = n mod 2 )
apply (rule-tac [2 ] n = natify (m) in nat-induct)
apply auto
done

lemma mod2-add-self [simp]: (m#+m) mod 2 = 0
by (cut-tac n = 0 in mod2-add-more, auto)

28.6 Additional theorems about ≤
lemma add-le-self : m:nat =⇒ m ≤ (m #+ n)
apply (simp (no-asm-simp))
done

lemma add-le-self2 : m:nat =⇒ m ≤ (n #+ m)
apply (simp (no-asm-simp))
done

lemma mult-le-mono1 : [[i ≤ j; j:nat]] =⇒ (i#∗k) ≤ (j#∗k)
apply (subgoal-tac natify (i) #∗natify (k) ≤ j#∗natify (k) )
apply (frule-tac [2 ] lt-nat-in-nat)
apply (rule-tac [3 ] n = natify (k) in nat-induct)
apply (simp-all add: add-le-mono)
done

lemma mult-le-mono: [[i ≤ j; k ≤ l; j:nat; l:nat]] =⇒ i#∗k ≤ j#∗l
apply (rule mult-le-mono1 [THEN le-trans], assumption+)
apply (subst mult-commute, subst mult-commute, rule mult-le-mono1 , assump-
tion+)
done

lemma mult-lt-mono2 : [[i<j; 0<k; j:nat; k:nat]] =⇒ k#∗i < k#∗j
apply (erule zero-lt-natE)
apply (frule-tac [2 ] lt-nat-in-nat)
apply (simp-all (no-asm-simp))
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apply (induct-tac x)
apply (simp-all (no-asm-simp) add: add-lt-mono)
done

lemma mult-lt-mono1 : [[i<j; 0<k; j:nat; k:nat]] =⇒ i#∗k < j#∗k
apply (simp (no-asm-simp) add: mult-lt-mono2 mult-commute [of - k])
done

lemma add-eq-0-iff [iff ]: m#+n = 0 ←→ natify(m)=0 ∧ natify(n)=0
apply (subgoal-tac natify (m) #+ natify (n) = 0 ←→ natify (m) =0 ∧ natify (n)
=0 )
apply (rule-tac [2 ] n = natify (m) in natE)
apply (rule-tac [4 ] n = natify (n) in natE)

apply auto
done

lemma zero-lt-mult-iff [iff ]: 0 < m#∗n ←→ 0 < natify(m) ∧ 0 < natify(n)
apply (subgoal-tac 0 < natify (m) #∗natify (n) ←→ 0 < natify (m) ∧ 0 < natify
(n) )
apply (rule-tac [2 ] n = natify (m) in natE)
apply (rule-tac [4 ] n = natify (n) in natE)
apply (rule-tac [3 ] n = natify (n) in natE)

apply auto
done

lemma mult-eq-1-iff [iff ]: m#∗n = 1 ←→ natify(m)=1 ∧ natify(n)=1
apply (subgoal-tac natify (m) #∗ natify (n) = 1 ←→ natify (m) =1 ∧ natify (n)
=1 )
apply (rule-tac [2 ] n = natify (m) in natE)
apply (rule-tac [4 ] n = natify (n) in natE)

apply auto
done

lemma mult-is-zero: [[m: nat; n: nat]] =⇒ (m #∗ n = 0 ) ←→ (m = 0 | n = 0 )
apply auto
apply (erule natE)
apply (erule-tac [2 ] natE , auto)
done

lemma mult-is-zero-natify [iff ]:
(m #∗ n = 0 ) ←→ (natify(m) = 0 | natify(n) = 0 )

apply (cut-tac m = natify (m) and n = natify (n) in mult-is-zero)
apply auto
done

28.7 Cancellation Laws for Common Factors in Comparisons
lemma mult-less-cancel-lemma:
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[[k: nat; m: nat; n: nat]] =⇒ (m#∗k < n#∗k) ←→ (0<k ∧ m<n)
apply (safe intro!: mult-lt-mono1 )
apply (erule natE , auto)
apply (rule not-le-iff-lt [THEN iffD1 ])
apply (drule-tac [3 ] not-le-iff-lt [THEN [2 ] rev-iffD2 ])
prefer 5 apply (blast intro: mult-le-mono1 , auto)
done

lemma mult-less-cancel2 [simp]:
(m#∗k < n#∗k) ←→ (0 < natify(k) ∧ natify(m) < natify(n))

apply (rule iff-trans)
apply (rule-tac [2 ] mult-less-cancel-lemma, auto)
done

lemma mult-less-cancel1 [simp]:
(k#∗m < k#∗n) ←→ (0 < natify(k) ∧ natify(m) < natify(n))

apply (simp (no-asm) add: mult-less-cancel2 mult-commute [of k])
done

lemma mult-le-cancel2 [simp]: (m#∗k ≤ n#∗k)←→ (0 < natify(k) −→ natify(m)
≤ natify(n))
apply (simp (no-asm-simp) add: not-lt-iff-le [THEN iff-sym])
apply auto
done

lemma mult-le-cancel1 [simp]: (k#∗m ≤ k#∗n)←→ (0 < natify(k) −→ natify(m)
≤ natify(n))
apply (simp (no-asm-simp) add: not-lt-iff-le [THEN iff-sym])
apply auto
done

lemma mult-le-cancel-le1 : k ∈ nat =⇒ k #∗ m ≤ k ←→ (0 < k −→ natify(m) ≤
1 )
by (cut-tac k = k and m = m and n = 1 in mult-le-cancel1 , auto)

lemma Ord-eq-iff-le: [[Ord(m); Ord(n)]] =⇒ m=n ←→ (m ≤ n ∧ n ≤ m)
by (blast intro: le-anti-sym)

lemma mult-cancel2-lemma:
[[k: nat; m: nat; n: nat]] =⇒ (m#∗k = n#∗k) ←→ (m=n | k=0 )

apply (simp (no-asm-simp) add: Ord-eq-iff-le [of m#∗k] Ord-eq-iff-le [of m])
apply (auto simp add: Ord-0-lt-iff )
done

lemma mult-cancel2 [simp]:
(m#∗k = n#∗k) ←→ (natify(m) = natify(n) | natify(k) = 0 )

apply (rule iff-trans)
apply (rule-tac [2 ] mult-cancel2-lemma, auto)
done
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lemma mult-cancel1 [simp]:
(k#∗m = k#∗n) ←→ (natify(m) = natify(n) | natify(k) = 0 )

apply (simp (no-asm) add: mult-cancel2 mult-commute [of k])
done

lemma div-cancel-raw:
[[0<n; 0<k; k:nat; m:nat; n:nat]] =⇒ (k#∗m) div (k#∗n) = m div n

apply (erule-tac i = m in complete-induct)
apply (case-tac x<n)
apply (simp add: div-less zero-lt-mult-iff mult-lt-mono2 )

apply (simp add: not-lt-iff-le zero-lt-mult-iff le-refl [THEN mult-le-mono]
div-geq diff-mult-distrib2 [symmetric] div-termination [THEN ltD])

done

lemma div-cancel:
[[0 < natify(n); 0 < natify(k)]] =⇒ (k#∗m) div (k#∗n) = m div n

apply (cut-tac k = natify (k) and m = natify (m) and n = natify (n)
in div-cancel-raw)

apply auto
done

28.8 More Lemmas about Remainder
lemma mult-mod-distrib-raw:

[[k:nat; m:nat; n:nat]] =⇒ (k#∗m) mod (k#∗n) = k #∗ (m mod n)
apply (case-tac k=0 )
apply (simp add: DIVISION-BY-ZERO-MOD)

apply (case-tac n=0 )
apply (simp add: DIVISION-BY-ZERO-MOD)

apply (simp add: nat-into-Ord [THEN Ord-0-lt-iff ])
apply (erule-tac i = m in complete-induct)
apply (case-tac x<n)
apply (simp (no-asm-simp) add: mod-less zero-lt-mult-iff mult-lt-mono2 )

apply (simp add: not-lt-iff-le zero-lt-mult-iff le-refl [THEN mult-le-mono]
mod-geq diff-mult-distrib2 [symmetric] div-termination [THEN ltD])

done

lemma mod-mult-distrib2 : k #∗ (m mod n) = (k#∗m) mod (k#∗n)
apply (cut-tac k = natify (k) and m = natify (m) and n = natify (n)

in mult-mod-distrib-raw)
apply auto
done

lemma mult-mod-distrib: (m mod n) #∗ k = (m#∗k) mod (n#∗k)
apply (simp (no-asm) add: mult-commute mod-mult-distrib2 )
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done

lemma mod-add-self2-raw: n ∈ nat =⇒ (m #+ n) mod n = m mod n
apply (subgoal-tac (n #+ m) mod n = (n #+ m #− n) mod n)
apply (simp add: add-commute)
apply (subst mod-geq [symmetric], auto)
done

lemma mod-add-self2 [simp]: (m #+ n) mod n = m mod n
apply (cut-tac n = natify (n) in mod-add-self2-raw)
apply auto
done

lemma mod-add-self1 [simp]: (n#+m) mod n = m mod n
apply (simp (no-asm-simp) add: add-commute mod-add-self2 )
done

lemma mod-mult-self1-raw: k ∈ nat =⇒ (m #+ k#∗n) mod n = m mod n
apply (erule nat-induct)
apply (simp-all (no-asm-simp) add: add-left-commute [of - n])
done

lemma mod-mult-self1 [simp]: (m #+ k#∗n) mod n = m mod n
apply (cut-tac k = natify (k) in mod-mult-self1-raw)
apply auto
done

lemma mod-mult-self2 [simp]: (m #+ n#∗k) mod n = m mod n
apply (simp (no-asm) add: mult-commute mod-mult-self1 )
done

lemma mult-eq-self-implies-10 : m = m#∗n =⇒ natify(n)=1 | m=0
apply (subgoal-tac m: nat)
prefer 2
apply (erule ssubst)
apply simp

apply (rule disjCI )
apply (drule sym)
apply (rule Ord-linear-lt [of natify(n) 1 ])
apply simp-all
apply (subgoal-tac m #∗ n = 0 , simp)
apply (subst mult-natify2 [symmetric])
apply (simp del: mult-natify2 )

apply (drule nat-into-Ord [THEN Ord-0-lt, THEN [2 ] mult-lt-mono2 ], auto)
done

lemma less-imp-succ-add [rule-format]:
[[m<n; n: nat]] =⇒ ∃ k∈nat. n = succ(m#+k)
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apply (frule lt-nat-in-nat, assumption)
apply (erule rev-mp)
apply (induct-tac n)
apply (simp-all (no-asm) add: le-iff )
apply (blast elim!: leE intro!: add-0-right [symmetric] add-succ-right [symmetric])
done

lemma less-iff-succ-add:
[[m: nat; n: nat]] =⇒ (m<n) ←→ (∃ k∈nat. n = succ(m#+k))

by (auto intro: less-imp-succ-add)

lemma add-lt-elim2 :
[[a #+ d = b #+ c; a < b; b ∈ nat; c ∈ nat; d ∈ nat]] =⇒ c < d

by (drule less-imp-succ-add, auto)

lemma add-le-elim2 :
[[a #+ d = b #+ c; a ≤ b; b ∈ nat; c ∈ nat; d ∈ nat]] =⇒ c ≤ d

by (drule less-imp-succ-add, auto)

28.8.1 More Lemmas About Difference
lemma diff-is-0-lemma:

[[m: nat; n: nat]] =⇒ m #− n = 0 ←→ m ≤ n
apply (rule-tac m = m and n = n in diff-induct, simp-all)
done

lemma diff-is-0-iff : m #− n = 0 ←→ natify(m) ≤ natify(n)
by (simp add: diff-is-0-lemma [symmetric])

lemma nat-lt-imp-diff-eq-0 :
[[a:nat; b:nat; a<b]] =⇒ a #− b = 0

by (simp add: diff-is-0-iff le-iff )

lemma raw-nat-diff-split:
[[a:nat; b:nat]] =⇒
(P(a #− b)) ←→ ((a < b −→P(0 )) ∧ (∀ d∈nat. a = b #+ d −→ P(d)))

apply (case-tac a < b)
apply (force simp add: nat-lt-imp-diff-eq-0 )

apply (rule iffI , force, simp)
apply (drule-tac x=a#−b in bspec)
apply (simp-all add: Ordinal.not-lt-iff-le add-diff-inverse)
done

lemma nat-diff-split:
(P(a #− b)) ←→
(natify(a) < natify(b) −→P(0 )) ∧ (∀ d∈nat. natify(a) = b #+ d −→ P(d))

apply (cut-tac P=P and a=natify(a) and b=natify(b) in raw-nat-diff-split)
apply simp-all
done
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Difference and less-than
lemma diff-lt-imp-lt: [[(k#−i) < (k#−j); i∈nat; j∈nat; k∈nat]] =⇒ j<i
apply (erule rev-mp)
apply (simp split: nat-diff-split, auto)
apply (blast intro: add-le-self lt-trans1 )

apply (rule not-le-iff-lt [THEN iffD1 ], auto)
apply (subgoal-tac i #+ da < j #+ d, force)
apply (blast intro: add-le-lt-mono)
done

lemma lt-imp-diff-lt: [[j<i; i≤k; k∈nat]] =⇒ (k#−i) < (k#−j)
apply (frule le-in-nat, assumption)
apply (frule lt-nat-in-nat, assumption)
apply (simp split: nat-diff-split, auto)

apply (blast intro: lt-asym lt-trans2 )
apply (blast intro: lt-irrefl lt-trans2 )

apply (rule not-le-iff-lt [THEN iffD1 ], auto)
apply (subgoal-tac j #+ d < i #+ da, force)
apply (blast intro: add-lt-le-mono)
done

lemma diff-lt-iff-lt: [[i≤k; j∈nat; k∈nat]] =⇒ (k#−i) < (k#−j) ←→ j<i
apply (frule le-in-nat, assumption)
apply (blast intro: lt-imp-diff-lt diff-lt-imp-lt)
done

end

29 Lists in Zermelo-Fraenkel Set Theory
theory List imports Datatype ArithSimp begin

consts
list :: i⇒i

datatype
list(A) = Nil | Cons (a ∈ A, l ∈ list(A))

notation Nil (‹[]›)

syntax
-List :: is ⇒ i (‹(‹indent=1 notation=‹mixfix list enumeration››[-])›)

translations
[x, xs] == CONST Cons(x, [xs])
[x] == CONST Cons(x, [])

consts
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length :: i⇒i
hd :: i⇒i
tl :: i⇒i

primrec
length([]) = 0
length(Cons(a,l)) = succ(length(l))

primrec
hd([]) = 0
hd(Cons(a,l)) = a

primrec
tl([]) = []
tl(Cons(a,l)) = l

consts
map :: [i⇒i, i] ⇒ i
set-of-list :: i⇒i
app :: [i,i]⇒i (infixr ‹@› 60 )

primrec
map(f ,[]) = []
map(f ,Cons(a,l)) = Cons(f (a), map(f ,l))

primrec
set-of-list([]) = 0
set-of-list(Cons(a,l)) = cons(a, set-of-list(l))

primrec
app-Nil: [] @ ys = ys
app-Cons: (Cons(a,l)) @ ys = Cons(a, l @ ys)

consts
rev :: i⇒i
flat :: i⇒i
list-add :: i⇒i

primrec
rev([]) = []
rev(Cons(a,l)) = rev(l) @ [a]

primrec
flat([]) = []
flat(Cons(l,ls)) = l @ flat(ls)
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primrec
list-add([]) = 0
list-add(Cons(a,l)) = a #+ list-add(l)

consts
drop :: [i,i]⇒i

primrec
drop-0 : drop(0 ,l) = l
drop-succ: drop(succ(i), l) = tl (drop(i,l))

definition

take :: [i,i]⇒i where
take(n, as) ≡ list-rec(λn∈nat. [],

λa l r . λn∈nat. nat-case([], λm. Cons(a, r‘m), n), as)‘n

definition
nth :: [i, i]⇒i where
— returns the (n+1)th element of a list, or 0 if the list is too short.
nth(n, as) ≡ list-rec(λn∈nat. 0 ,

λa l r . λn∈nat. nat-case(a, λm. r‘m, n), as) ‘ n

definition
list-update :: [i, i, i]⇒i where
list-update(xs, i, v) ≡ list-rec(λn∈nat. Nil,

λu us vs. λn∈nat. nat-case(Cons(v, us), λm. Cons(u, vs‘m), n), xs)‘i

consts
filter :: [i⇒o, i] ⇒ i
upt :: [i, i] ⇒i

primrec
filter(P, Nil) = Nil
filter(P, Cons(x, xs)) =

(if P(x) then Cons(x, filter(P, xs)) else filter(P, xs))

primrec
upt(i, 0 ) = Nil
upt(i, succ(j)) = (if i ≤ j then upt(i, j)@[j] else Nil)

definition
min :: [i,i] ⇒i where

min(x, y) ≡ (if x ≤ y then x else y)

definition
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max :: [i, i] ⇒i where
max(x, y) ≡ (if x ≤ y then y else x)

declare list.intros [simp,TC ]

inductive-cases ConsE : Cons(a,l) ∈ list(A)

lemma Cons-type-iff [simp]: Cons(a,l) ∈ list(A) ←→ a ∈ A ∧ l ∈ list(A)
by (blast elim: ConsE)

lemma Cons-iff : Cons(a,l)=Cons(a ′,l ′) ←→ a=a ′ ∧ l=l ′
by auto

lemma Nil-Cons-iff : ¬ Nil=Cons(a,l)
by auto

lemma list-unfold: list(A) = {0} + (A ∗ list(A))
by (blast intro!: list.intros [unfolded list.con-defs]

elim: list.cases [unfolded list.con-defs])

lemma list-mono: A<=B =⇒ list(A) ⊆ list(B)
unfolding list.defs

apply (rule lfp-mono)
apply (simp-all add: list.bnd-mono)
apply (assumption | rule univ-mono basic-monos)+
done

lemma list-univ: list(univ(A)) ⊆ univ(A)
unfolding list.defs list.con-defs

apply (rule lfp-lowerbound)
apply (rule-tac [2 ] A-subset-univ [THEN univ-mono])
apply (blast intro!: zero-in-univ Inl-in-univ Inr-in-univ Pair-in-univ)
done

lemmas list-subset-univ = subset-trans [OF list-mono list-univ]

lemma list-into-univ: [[l ∈ list(A); A ⊆ univ(B)]] =⇒ l ∈ univ(B)
by (blast intro: list-subset-univ [THEN subsetD])

lemma list-case-type:

274



[[l ∈ list(A);
c ∈ C (Nil);∧

x y. [[x ∈ A; y ∈ list(A)]] =⇒ h(x,y): C (Cons(x,y))
]] =⇒ list-case(c,h,l) ∈ C (l)
by (erule list.induct, auto)

lemma list-0-triv: list(0 ) = {Nil}
apply (rule equalityI , auto)
apply (induct-tac x, auto)
done

lemma tl-type: l ∈ list(A) =⇒ tl(l) ∈ list(A)
apply (induct-tac l)
apply (simp-all (no-asm-simp) add: list.intros)
done

lemma drop-Nil [simp]: i ∈ nat =⇒ drop(i, Nil) = Nil
apply (induct-tac i)
apply (simp-all (no-asm-simp))
done

lemma drop-succ-Cons [simp]: i ∈ nat =⇒ drop(succ(i), Cons(a,l)) = drop(i,l)
apply (rule sym)
apply (induct-tac i)
apply (simp (no-asm))
apply (simp (no-asm-simp))
done

lemma drop-type [simp,TC ]: [[i ∈ nat; l ∈ list(A)]] =⇒ drop(i,l) ∈ list(A)
apply (induct-tac i)
apply (simp-all (no-asm-simp) add: tl-type)
done

declare drop-succ [simp del]

lemma list-rec-type [TC ]:
[[l ∈ list(A);

c ∈ C (Nil);∧
x y r . [[x ∈ A; y ∈ list(A); r ∈ C (y)]] =⇒ h(x,y,r): C (Cons(x,y))

]] =⇒ list-rec(c,h,l) ∈ C (l)
by (induct-tac l, auto)
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lemma map-type [TC ]:
[[l ∈ list(A);

∧
x. x ∈ A =⇒ h(x): B]] =⇒ map(h,l) ∈ list(B)

apply (simp add: map-list-def )
apply (typecheck add: list.intros list-rec-type, blast)
done

lemma map-type2 [TC ]: l ∈ list(A) =⇒ map(h,l) ∈ list({h(u). u ∈ A})
apply (erule map-type)
apply (erule RepFunI )
done

lemma length-type [TC ]: l ∈ list(A) =⇒ length(l) ∈ nat
by (simp add: length-list-def )

lemma lt-length-in-nat:
[[x < length(xs); xs ∈ list(A)]] =⇒ x ∈ nat

by (frule lt-nat-in-nat, typecheck)

lemma app-type [TC ]: [[xs: list(A); ys: list(A)]] =⇒ xs@ys ∈ list(A)
by (simp add: app-list-def )

lemma rev-type [TC ]: xs: list(A) =⇒ rev(xs) ∈ list(A)
by (simp add: rev-list-def )

lemma flat-type [TC ]: ls: list(list(A)) =⇒ flat(ls) ∈ list(A)
by (simp add: flat-list-def )

lemma set-of-list-type [TC ]: l ∈ list(A) =⇒ set-of-list(l) ∈ Pow(A)
unfolding set-of-list-list-def

apply (erule list-rec-type, auto)
done

lemma set-of-list-append:
xs: list(A) =⇒ set-of-list (xs@ys) = set-of-list(xs) ∪ set-of-list(ys)
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apply (erule list.induct)
apply (simp-all (no-asm-simp) add: Un-cons)
done

lemma list-add-type [TC ]: xs: list(nat) =⇒ list-add(xs) ∈ nat
by (simp add: list-add-list-def )

lemma map-ident [simp]: l ∈ list(A) =⇒ map(λu. u, l) = l
apply (induct-tac l)
apply (simp-all (no-asm-simp))
done

lemma map-compose: l ∈ list(A) =⇒ map(h, map(j,l)) = map(λu. h(j(u)), l)
apply (induct-tac l)
apply (simp-all (no-asm-simp))
done

lemma map-app-distrib: xs: list(A) =⇒ map(h, xs@ys) = map(h,xs) @ map(h,ys)
apply (induct-tac xs)
apply (simp-all (no-asm-simp))
done

lemma map-flat: ls: list(list(A)) =⇒ map(h, flat(ls)) = flat(map(map(h),ls))
apply (induct-tac ls)
apply (simp-all (no-asm-simp) add: map-app-distrib)
done

lemma list-rec-map:
l ∈ list(A) =⇒
list-rec(c, d, map(h,l)) =
list-rec(c, λx xs r . d(h(x), map(h,xs), r), l)

apply (induct-tac l)
apply (simp-all (no-asm-simp))
done

lemmas list-CollectD = Collect-subset [THEN list-mono, THEN subsetD]

lemma map-list-Collect: l ∈ list({x ∈ A. h(x)=j(x)}) =⇒ map(h,l) = map(j,l)
apply (induct-tac l)
apply (simp-all (no-asm-simp))
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done

lemma length-map [simp]: xs: list(A) =⇒ length(map(h,xs)) = length(xs)
by (induct-tac xs, simp-all)

lemma length-app [simp]:
[[xs: list(A); ys: list(A)]]
=⇒ length(xs@ys) = length(xs) #+ length(ys)

by (induct-tac xs, simp-all)

lemma length-rev [simp]: xs: list(A) =⇒ length(rev(xs)) = length(xs)
apply (induct-tac xs)
apply (simp-all (no-asm-simp) add: length-app)
done

lemma length-flat:
ls: list(list(A)) =⇒ length(flat(ls)) = list-add(map(length,ls))

apply (induct-tac ls)
apply (simp-all (no-asm-simp) add: length-app)
done

lemma drop-length-Cons [rule-format]:
xs: list(A) =⇒

∀ x. ∃ z zs. drop(length(xs), Cons(x,xs)) = Cons(z,zs)
by (erule list.induct, simp-all)

lemma drop-length [rule-format]:
l ∈ list(A) =⇒ ∀ i ∈ length(l). (∃ z zs. drop(i,l) = Cons(z,zs))

apply (erule list.induct, simp-all, safe)
apply (erule drop-length-Cons)
apply (rule natE)
apply (erule Ord-trans [OF asm-rl length-type Ord-nat], assumption, simp-all)
apply (blast intro: succ-in-naturalD length-type)
done

lemma app-right-Nil [simp]: xs: list(A) =⇒ xs@Nil=xs
by (erule list.induct, simp-all)

lemma app-assoc: xs: list(A) =⇒ (xs@ys)@zs = xs@(ys@zs)
by (induct-tac xs, simp-all)
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lemma flat-app-distrib: ls: list(list(A)) =⇒ flat(ls@ms) = flat(ls)@flat(ms)
apply (induct-tac ls)
apply (simp-all (no-asm-simp) add: app-assoc)
done

lemma rev-map-distrib: l ∈ list(A) =⇒ rev(map(h,l)) = map(h,rev(l))
apply (induct-tac l)
apply (simp-all (no-asm-simp) add: map-app-distrib)
done

lemma rev-app-distrib:
[[xs: list(A); ys: list(A)]] =⇒ rev(xs@ys) = rev(ys)@rev(xs)

apply (erule list.induct)
apply (simp-all add: app-assoc)
done

lemma rev-rev-ident [simp]: l ∈ list(A) =⇒ rev(rev(l))=l
apply (induct-tac l)
apply (simp-all (no-asm-simp) add: rev-app-distrib)
done

lemma rev-flat: ls: list(list(A)) =⇒ rev(flat(ls)) = flat(map(rev,rev(ls)))
apply (induct-tac ls)
apply (simp-all add: map-app-distrib flat-app-distrib rev-app-distrib)
done

lemma list-add-app:
[[xs: list(nat); ys: list(nat)]]
=⇒ list-add(xs@ys) = list-add(ys) #+ list-add(xs)

apply (induct-tac xs, simp-all)
done

lemma list-add-rev: l ∈ list(nat) =⇒ list-add(rev(l)) = list-add(l)
apply (induct-tac l)
apply (simp-all (no-asm-simp) add: list-add-app)
done

lemma list-add-flat:
ls: list(list(nat)) =⇒ list-add(flat(ls)) = list-add(map(list-add,ls))

apply (induct-tac ls)
apply (simp-all (no-asm-simp) add: list-add-app)
done
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lemma list-append-induct [case-names Nil snoc, consumes 1 ]:
[[l ∈ list(A);

P(Nil);∧
x y. [[x ∈ A; y ∈ list(A); P(y)]] =⇒ P(y @ [x])

]] =⇒ P(l)
apply (subgoal-tac P(rev(rev(l))), simp)
apply (erule rev-type [THEN list.induct], simp-all)
done

lemma list-complete-induct-lemma [rule-format]:
assumes ih:∧

l. [[l ∈ list(A);
∀ l ′ ∈ list(A). length(l ′) < length(l) −→ P(l ′)]]

=⇒ P(l)
shows n ∈ nat =⇒ ∀ l ∈ list(A). length(l) < n −→ P(l)

apply (induct-tac n, simp)
apply (blast intro: ih elim!: leE)
done

theorem list-complete-induct:
[[l ∈ list(A);∧

l. [[l ∈ list(A);
∀ l ′ ∈ list(A). length(l ′) < length(l) −→ P(l ′)]]

=⇒ P(l)
]] =⇒ P(l)
apply (rule list-complete-induct-lemma [of A])

prefer 4 apply (rule le-refl, simp)
apply blast

apply simp
apply assumption
done

lemma min-sym: [[i ∈ nat; j ∈ nat]] =⇒ min(i,j)=min(j,i)
unfolding min-def

apply (auto dest!: not-lt-imp-le dest: lt-not-sym intro: le-anti-sym)
done

lemma min-type [simp,TC ]: [[i ∈ nat; j ∈ nat]] =⇒ min(i,j):nat
by (unfold min-def , auto)

lemma min-0 [simp]: i ∈ nat =⇒ min(0 ,i) = 0
unfolding min-def
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apply (auto dest: not-lt-imp-le)
done

lemma min-02 [simp]: i ∈ nat =⇒ min(i, 0 ) = 0
unfolding min-def

apply (auto dest: not-lt-imp-le)
done

lemma lt-min-iff : [[i ∈ nat; j ∈ nat; k ∈ nat]] =⇒ i<min(j,k) ←→ i<j ∧ i<k
unfolding min-def

apply (auto dest!: not-lt-imp-le intro: lt-trans2 lt-trans)
done

lemma min-succ-succ [simp]:
[[i ∈ nat; j ∈ nat]] =⇒ min(succ(i), succ(j))= succ(min(i, j))

apply (unfold min-def , auto)
done

lemma filter-append [simp]:
xs:list(A) =⇒ filter(P, xs@ys) = filter(P, xs) @ filter(P, ys)

by (induct-tac xs, auto)

lemma filter-type [simp,TC ]: xs:list(A) =⇒ filter(P, xs):list(A)
by (induct-tac xs, auto)

lemma length-filter : xs:list(A) =⇒ length(filter(P, xs)) ≤ length(xs)
apply (induct-tac xs, auto)
apply (rule-tac j = length (l) in le-trans)
apply (auto simp add: le-iff )
done

lemma filter-is-subset: xs:list(A) =⇒ set-of-list(filter(P,xs)) ⊆ set-of-list(xs)
by (induct-tac xs, auto)

lemma filter-False [simp]: xs:list(A) =⇒ filter(λp. False, xs) = Nil
by (induct-tac xs, auto)

lemma filter-True [simp]: xs:list(A) =⇒ filter(λp. True, xs) = xs
by (induct-tac xs, auto)

lemma length-is-0-iff [simp]: xs:list(A) =⇒ length(xs)=0 ←→ xs=Nil
by (erule list.induct, auto)
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lemma length-is-0-iff2 [simp]: xs:list(A) =⇒ 0 = length(xs) ←→ xs=Nil
by (erule list.induct, auto)

lemma length-tl [simp]: xs:list(A) =⇒ length(tl(xs)) = length(xs) #− 1
by (erule list.induct, auto)

lemma length-greater-0-iff : xs:list(A) =⇒ 0<length(xs) ←→ xs 6= Nil
by (erule list.induct, auto)

lemma length-succ-iff : xs:list(A) =⇒ length(xs)=succ(n)←→ (∃ y ys. xs=Cons(y,
ys) ∧ length(ys)=n)
by (erule list.induct, auto)

lemma append-is-Nil-iff [simp]:
xs:list(A) =⇒ (xs@ys = Nil) ←→ (xs=Nil ∧ ys = Nil)

by (erule list.induct, auto)

lemma append-is-Nil-iff2 [simp]:
xs:list(A) =⇒ (Nil = xs@ys) ←→ (xs=Nil ∧ ys = Nil)

by (erule list.induct, auto)

lemma append-left-is-self-iff [simp]:
xs:list(A) =⇒ (xs@ys = xs) ←→ (ys = Nil)

by (erule list.induct, auto)

lemma append-left-is-self-iff2 [simp]:
xs:list(A) =⇒ (xs = xs@ys) ←→ (ys = Nil)

by (erule list.induct, auto)

lemma append-left-is-Nil-iff [rule-format]:
[[xs:list(A); ys:list(A); zs:list(A)]] =⇒

length(ys)=length(zs) −→ (xs@ys=zs ←→ (xs=Nil ∧ ys=zs))
apply (erule list.induct)
apply (auto simp add: length-app)
done

lemma append-left-is-Nil-iff2 [rule-format]:
[[xs:list(A); ys:list(A); zs:list(A)]] =⇒

length(ys)=length(zs) −→ (zs=ys@xs ←→ (xs=Nil ∧ ys=zs))
apply (erule list.induct)
apply (auto simp add: length-app)
done

lemma append-eq-append-iff [rule-format]:
xs:list(A) =⇒ ∀ ys ∈ list(A).
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length(xs)=length(ys) −→ (xs@us = ys@vs) ←→ (xs=ys ∧ us=vs)
apply (erule list.induct)
apply (simp (no-asm-simp))
apply clarify
apply (erule-tac a = ys in list.cases, auto)
done
declare append-eq-append-iff [simp]

lemma append-eq-append [rule-format]:
xs:list(A) =⇒
∀ ys ∈ list(A). ∀ us ∈ list(A). ∀ vs ∈ list(A).
length(us) = length(vs) −→ (xs@us = ys@vs) −→ (xs=ys ∧ us=vs)

apply (induct-tac xs)
apply (force simp add: length-app, clarify)
apply (erule-tac a = ys in list.cases, simp)
apply (subgoal-tac Cons (a, l) @ us =vs)
apply (drule rev-iffD1 [OF - append-left-is-Nil-iff ], simp-all, blast)

done

lemma append-eq-append-iff2 [simp]:
[[xs:list(A); ys:list(A); us:list(A); vs:list(A); length(us)=length(vs)]]
=⇒ xs@us = ys@vs ←→ (xs=ys ∧ us=vs)

apply (rule iffI )
apply (rule append-eq-append, auto)
done

lemma append-self-iff [simp]:
[[xs:list(A); ys:list(A); zs:list(A)]] =⇒ xs@ys=xs@zs ←→ ys=zs

by simp

lemma append-self-iff2 [simp]:
[[xs:list(A); ys:list(A); zs:list(A)]] =⇒ ys@xs=zs@xs ←→ ys=zs

by simp

lemma append1-eq-iff [rule-format]:
xs:list(A) =⇒ ∀ ys ∈ list(A). xs@[x] = ys@[y] ←→ (xs = ys ∧ x=y)

apply (erule list.induct)
apply clarify
apply (erule list.cases)
apply simp-all

Inductive step

apply clarify
apply (erule-tac a=ys in list.cases, simp-all)
done
declare append1-eq-iff [simp]

lemma append-right-is-self-iff [simp]:
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[[xs:list(A); ys:list(A)]] =⇒ (xs@ys = ys) ←→ (xs=Nil)
by (simp (no-asm-simp) add: append-left-is-Nil-iff )

lemma append-right-is-self-iff2 [simp]:
[[xs:list(A); ys:list(A)]] =⇒ (ys = xs@ys) ←→ (xs=Nil)

apply (rule iffI )
apply (drule sym, auto)
done

lemma hd-append [rule-format]:
xs:list(A) =⇒ xs 6= Nil −→ hd(xs @ ys) = hd(xs)

by (induct-tac xs, auto)
declare hd-append [simp]

lemma tl-append [rule-format]:
xs:list(A) =⇒ xs 6=Nil −→ tl(xs @ ys) = tl(xs)@ys

by (induct-tac xs, auto)
declare tl-append [simp]

lemma rev-is-Nil-iff [simp]: xs:list(A) =⇒ (rev(xs) = Nil ←→ xs = Nil)
by (erule list.induct, auto)

lemma Nil-is-rev-iff [simp]: xs:list(A) =⇒ (Nil = rev(xs) ←→ xs = Nil)
by (erule list.induct, auto)

lemma rev-is-rev-iff [rule-format]:
xs:list(A) =⇒ ∀ ys ∈ list(A). rev(xs)=rev(ys) ←→ xs=ys

apply (erule list.induct, force, clarify)
apply (erule-tac a = ys in list.cases, auto)
done
declare rev-is-rev-iff [simp]

lemma rev-list-elim [rule-format]:
xs:list(A) =⇒
(xs=Nil −→ P) −→ (∀ ys ∈ list(A). ∀ y ∈ A. xs =ys@[y] −→P)−→P

by (erule list-append-induct, auto)

lemma length-drop [rule-format]:
n ∈ nat =⇒ ∀ xs ∈ list(A). length(drop(n, xs)) = length(xs) #− n

apply (erule nat-induct)
apply (auto elim: list.cases)
done
declare length-drop [simp]

lemma drop-all [rule-format]:
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n ∈ nat =⇒ ∀ xs ∈ list(A). length(xs) ≤ n −→ drop(n, xs)=Nil
apply (erule nat-induct)
apply (auto elim: list.cases)
done
declare drop-all [simp]

lemma drop-append [rule-format]:
n ∈ nat =⇒
∀ xs ∈ list(A). drop(n, xs@ys) = drop(n,xs) @ drop(n #− length(xs), ys)

apply (induct-tac n)
apply (auto elim: list.cases)
done

lemma drop-drop:
m ∈ nat =⇒ ∀ xs ∈ list(A). ∀n ∈ nat. drop(n, drop(m, xs))=drop(n #+ m, xs)

apply (induct-tac m)
apply (auto elim: list.cases)
done

lemma take-0 [simp]: xs:list(A) =⇒ take(0 , xs) = Nil
unfolding take-def

apply (erule list.induct, auto)
done

lemma take-succ-Cons [simp]:
n ∈ nat =⇒ take(succ(n), Cons(a, xs)) = Cons(a, take(n, xs))

by (simp add: take-def )

lemma take-Nil [simp]: n ∈ nat =⇒ take(n, Nil) = Nil
by (unfold take-def , auto)

lemma take-all [rule-format]:
n ∈ nat =⇒ ∀ xs ∈ list(A). length(xs) ≤ n −→ take(n, xs) = xs

apply (erule nat-induct)
apply (auto elim: list.cases)
done
declare take-all [simp]

lemma take-type [rule-format]:
xs:list(A) =⇒ ∀n ∈ nat. take(n, xs):list(A)

apply (erule list.induct, simp, clarify)
apply (erule natE , auto)
done
declare take-type [simp,TC ]

lemma take-append [rule-format]:
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xs:list(A) =⇒
∀ ys ∈ list(A). ∀n ∈ nat. take(n, xs @ ys) =

take(n, xs) @ take(n #− length(xs), ys)
apply (erule list.induct, simp, clarify)
apply (erule natE , auto)
done
declare take-append [simp]

lemma take-take [rule-format]:
m ∈ nat =⇒
∀ xs ∈ list(A). ∀n ∈ nat. take(n, take(m,xs))= take(min(n, m), xs)

apply (induct-tac m, auto)
apply (erule-tac a = xs in list.cases)
apply (auto simp add: take-Nil)
apply (erule-tac n=n in natE)
apply (auto intro: take-0 take-type)
done

lemma nth-0 [simp]: nth(0 , Cons(a, l)) = a
by (simp add: nth-def )

lemma nth-Cons [simp]: n ∈ nat =⇒ nth(succ(n), Cons(a,l)) = nth(n,l)
by (simp add: nth-def )

lemma nth-empty [simp]: nth(n, Nil) = 0
by (simp add: nth-def )

lemma nth-type [rule-format]:
xs:list(A) =⇒ ∀n. n < length(xs) −→ nth(n,xs) ∈ A

apply (erule list.induct, simp, clarify)
apply (subgoal-tac n ∈ nat)
apply (erule natE , auto dest!: le-in-nat)

done
declare nth-type [simp,TC ]

lemma nth-eq-0 [rule-format]:
xs:list(A) =⇒ ∀n ∈ nat. length(xs) ≤ n −→ nth(n,xs) = 0

apply (erule list.induct, simp, clarify)
apply (erule natE , auto)
done

lemma nth-append [rule-format]:
xs:list(A) =⇒
∀n ∈ nat. nth(n, xs @ ys) = (if n < length(xs) then nth(n,xs)

else nth(n #− length(xs), ys))
apply (induct-tac xs, simp, clarify)
apply (erule natE , auto)
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done

lemma set-of-list-conv-nth:
xs:list(A)
=⇒ set-of-list(xs) = {x ∈ A. ∃ i∈nat. i<length(xs) ∧ x = nth(i,xs)}

apply (induct-tac xs, simp-all)
apply (rule equalityI , auto)
apply (rule-tac x = 0 in bexI , auto)
apply (erule natE , auto)
done

lemma nth-take-lemma [rule-format]:
k ∈ nat =⇒
∀ xs ∈ list(A). (∀ ys ∈ list(A). k ≤ length(xs) −→ k ≤ length(ys) −→

(∀ i ∈ nat. i<k −→ nth(i,xs) = nth(i,ys))−→ take(k,xs) = take(k,ys))
apply (induct-tac k)
apply (simp-all (no-asm-simp) add: lt-succ-eq-0-disj all-conj-distrib)
apply clarify

apply (erule-tac a=xs in list.cases, simp)
apply (erule-tac a=ys in list.cases, clarify)
apply (simp (no-asm-use) )
apply clarify
apply (simp (no-asm-simp))
apply (rule conjI , force)
apply (rename-tac y ys z zs)
apply (drule-tac x = zs and x1 = ys in bspec [THEN bspec], auto)
done

lemma nth-equalityI [rule-format]:
[[xs:list(A); ys:list(A); length(xs) = length(ys);
∀ i ∈ nat. i < length(xs) −→ nth(i,xs) = nth(i,ys)]]

=⇒ xs = ys
apply (subgoal-tac length (xs) ≤ length (ys) )
apply (cut-tac k=length(xs) and xs=xs and ys=ys in nth-take-lemma)
apply (simp-all add: take-all)
done

lemma take-equalityI [rule-format]:
[[xs:list(A); ys:list(A); (∀ i ∈ nat. take(i, xs) = take(i,ys))]]
=⇒ xs = ys

apply (case-tac length (xs) ≤ length (ys) )
apply (drule-tac x = length (ys) in bspec)
apply (drule-tac [3 ] not-lt-imp-le)
apply (subgoal-tac [5 ] length (ys) ≤ length (xs) )
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apply (rule-tac [6 ] j = succ (length (ys)) in le-trans)
apply (rule-tac [6 ] leI )
apply (drule-tac [5 ] x = length (xs) in bspec)
apply (simp-all add: take-all)
done

lemma nth-drop [rule-format]:
n ∈ nat =⇒ ∀ i ∈ nat. ∀ xs ∈ list(A). nth(i, drop(n, xs)) = nth(n #+ i, xs)

apply (induct-tac n, simp-all, clarify)
apply (erule list.cases, auto)
done

lemma take-succ [rule-format]:
xs∈list(A)
=⇒ ∀ i. i < length(xs) −→ take(succ(i), xs) = take(i,xs) @ [nth(i, xs)]

apply (induct-tac xs, auto)
apply (subgoal-tac i∈nat)
apply (erule natE)
apply (auto simp add: le-in-nat)
done

lemma take-add [rule-format]:
[[xs∈list(A); j∈nat]]
=⇒ ∀ i∈nat. take(i #+ j, xs) = take(i,xs) @ take(j, drop(i,xs))

apply (induct-tac xs, simp-all, clarify)
apply (erule-tac n = i in natE , simp-all)
done

lemma length-take:
l∈list(A) =⇒ ∀n∈nat. length(take(n,l)) = min(n, length(l))

apply (induct-tac l, safe, simp-all)
apply (erule natE , simp-all)
done

29.1 The function zip

Crafty definition to eliminate a type argument
consts

zip-aux :: [i,i]⇒i

primrec
zip-aux(B,[]) =

(λys ∈ list(B). list-case([], λy l. [], ys))

zip-aux(B,Cons(x,l)) =
(λys ∈ list(B).

list-case(Nil, λy zs. Cons(〈x,y〉, zip-aux(B,l)‘zs), ys))

definition
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zip :: [i, i]⇒i where
zip(xs, ys) ≡ zip-aux(set-of-list(ys),xs)‘ys

lemma list-on-set-of-list: xs ∈ list(A) =⇒ xs ∈ list(set-of-list(xs))
apply (induct-tac xs, simp-all)
apply (blast intro: list-mono [THEN subsetD])
done

lemma zip-Nil [simp]: ys:list(A) =⇒ zip(Nil, ys)=Nil
apply (simp add: zip-def list-on-set-of-list [of - A])
apply (erule list.cases, simp-all)
done

lemma zip-Nil2 [simp]: xs:list(A) =⇒ zip(xs, Nil)=Nil
apply (simp add: zip-def list-on-set-of-list [of - A])
apply (erule list.cases, simp-all)
done

lemma zip-aux-unique [rule-format]:
[[B<=C ; xs ∈ list(A)]]
=⇒ ∀ ys ∈ list(B). zip-aux(C ,xs) ‘ ys = zip-aux(B,xs) ‘ ys

apply (induct-tac xs)
apply simp-all
apply (blast intro: list-mono [THEN subsetD], clarify)

apply (erule-tac a=ys in list.cases, auto)
apply (blast intro: list-mono [THEN subsetD])
done

lemma zip-Cons-Cons [simp]:
[[xs:list(A); ys:list(B); x ∈ A; y ∈ B]] =⇒
zip(Cons(x,xs), Cons(y, ys)) = Cons(〈x,y〉, zip(xs, ys))

apply (simp add: zip-def , auto)
apply (rule zip-aux-unique, auto)
apply (simp add: list-on-set-of-list [of - B])
apply (blast intro: list-on-set-of-list list-mono [THEN subsetD])
done

lemma zip-type [rule-format]:
xs:list(A) =⇒ ∀ ys ∈ list(B). zip(xs, ys):list(A∗B)

apply (induct-tac xs)
apply (simp (no-asm))
apply clarify
apply (erule-tac a = ys in list.cases, auto)
done
declare zip-type [simp,TC ]
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lemma length-zip [rule-format]:
xs:list(A) =⇒ ∀ ys ∈ list(B). length(zip(xs,ys)) =

min(length(xs), length(ys))
unfolding min-def

apply (induct-tac xs, simp-all, clarify)
apply (erule-tac a = ys in list.cases, auto)
done
declare length-zip [simp]

lemma zip-append1 [rule-format]:
[[ys:list(A); zs:list(B)]] =⇒
∀ xs ∈ list(A). zip(xs @ ys, zs) =

zip(xs, take(length(xs), zs)) @ zip(ys, drop(length(xs),zs))
apply (induct-tac zs, force, clarify)
apply (erule-tac a = xs in list.cases, simp-all)
done

lemma zip-append2 [rule-format]:
[[xs:list(A); zs:list(B)]] =⇒ ∀ ys ∈ list(B). zip(xs, ys@zs) =

zip(take(length(ys), xs), ys) @ zip(drop(length(ys), xs), zs)
apply (induct-tac xs, force, clarify)
apply (erule-tac a = ys in list.cases, auto)
done

lemma zip-append [simp]:
[[length(xs) = length(us); length(ys) = length(vs);

xs:list(A); us:list(B); ys:list(A); vs:list(B)]]
=⇒ zip(xs@ys,us@vs) = zip(xs, us) @ zip(ys, vs)

by (simp (no-asm-simp) add: zip-append1 drop-append diff-self-eq-0 )

lemma zip-rev [rule-format]:
ys:list(B) =⇒ ∀ xs ∈ list(A).

length(xs) = length(ys) −→ zip(rev(xs), rev(ys)) = rev(zip(xs, ys))
apply (induct-tac ys, force, clarify)
apply (erule-tac a = xs in list.cases)
apply (auto simp add: length-rev)
done
declare zip-rev [simp]

lemma nth-zip [rule-format]:
ys:list(B) =⇒ ∀ i ∈ nat. ∀ xs ∈ list(A).

i < length(xs) −→ i < length(ys) −→
nth(i,zip(xs, ys)) = <nth(i,xs),nth(i, ys)>

apply (induct-tac ys, force, clarify)
apply (erule-tac a = xs in list.cases, simp)
apply (auto elim: natE)
done
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declare nth-zip [simp]

lemma set-of-list-zip [rule-format]:
[[xs:list(A); ys:list(B); i ∈ nat]]
=⇒ set-of-list(zip(xs, ys)) =
{〈x, y〉:A∗B. ∃ i∈nat. i < min(length(xs), length(ys))
∧ x = nth(i, xs) ∧ y = nth(i, ys)}

by (force intro!: Collect-cong simp add: lt-min-iff set-of-list-conv-nth)

lemma list-update-Nil [simp]: i ∈ nat =⇒list-update(Nil, i, v) = Nil
by (unfold list-update-def , auto)

lemma list-update-Cons-0 [simp]: list-update(Cons(x, xs), 0 , v)= Cons(v, xs)
by (unfold list-update-def , auto)

lemma list-update-Cons-succ [simp]:
n ∈ nat =⇒

list-update(Cons(x, xs), succ(n), v)= Cons(x, list-update(xs, n, v))
apply (unfold list-update-def , auto)
done

lemma list-update-type [rule-format]:
[[xs:list(A); v ∈ A]] =⇒ ∀n ∈ nat. list-update(xs, n, v):list(A)

apply (induct-tac xs)
apply (simp (no-asm))
apply clarify
apply (erule natE , auto)
done
declare list-update-type [simp,TC ]

lemma length-list-update [rule-format]:
xs:list(A) =⇒ ∀ i ∈ nat. length(list-update(xs, i, v))=length(xs)

apply (induct-tac xs)
apply (simp (no-asm))
apply clarify
apply (erule natE , auto)
done
declare length-list-update [simp]

lemma nth-list-update [rule-format]:
[[xs:list(A)]] =⇒ ∀ i ∈ nat. ∀ j ∈ nat. i < length(xs) −→

nth(j, list-update(xs, i, x)) = (if i=j then x else nth(j, xs))
apply (induct-tac xs)
apply simp-all

apply clarify
apply (rename-tac i j)
apply (erule-tac n=i in natE)
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apply (erule-tac [2 ] n=j in natE)
apply (erule-tac n=j in natE , simp-all, force)
done

lemma nth-list-update-eq [simp]:
[[i < length(xs); xs:list(A)]] =⇒ nth(i, list-update(xs, i,x)) = x

by (simp (no-asm-simp) add: lt-length-in-nat nth-list-update)

lemma nth-list-update-neq [rule-format]:
xs:list(A) =⇒
∀ i ∈ nat. ∀ j ∈ nat. i 6= j −→ nth(j, list-update(xs,i,x)) = nth(j,xs)

apply (induct-tac xs)
apply (simp (no-asm))

apply clarify
apply (erule natE)
apply (erule-tac [2 ] natE , simp-all)
apply (erule natE , simp-all)
done
declare nth-list-update-neq [simp]

lemma list-update-overwrite [rule-format]:
xs:list(A) =⇒ ∀ i ∈ nat. i < length(xs)
−→ list-update(list-update(xs, i, x), i, y) = list-update(xs, i,y)

apply (induct-tac xs)
apply (simp (no-asm))

apply clarify
apply (erule natE , auto)
done
declare list-update-overwrite [simp]

lemma list-update-same-conv [rule-format]:
xs:list(A) =⇒
∀ i ∈ nat. i < length(xs) −→

(list-update(xs, i, x) = xs) ←→ (nth(i, xs) = x)
apply (induct-tac xs)
apply (simp (no-asm))

apply clarify
apply (erule natE , auto)
done

lemma update-zip [rule-format]:
ys:list(B) =⇒
∀ i ∈ nat. ∀ xy ∈ A∗B. ∀ xs ∈ list(A).

length(xs) = length(ys) −→
list-update(zip(xs, ys), i, xy) = zip(list-update(xs, i, fst(xy)),

list-update(ys, i, snd(xy)))
apply (induct-tac ys)
apply auto
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apply (erule-tac a = xs in list.cases)
apply (auto elim: natE)
done

lemma set-update-subset-cons [rule-format]:
xs:list(A) =⇒
∀ i ∈ nat. set-of-list(list-update(xs, i, x)) ⊆ cons(x, set-of-list(xs))

apply (induct-tac xs)
apply simp

apply (rule ballI )
apply (erule natE , simp-all, auto)
done

lemma set-of-list-update-subsetI :
[[set-of-list(xs) ⊆ A; xs:list(A); x ∈ A; i ∈ nat]]

=⇒ set-of-list(list-update(xs, i,x)) ⊆ A
apply (rule subset-trans)
apply (rule set-update-subset-cons, auto)
done

lemma upt-rec:
j ∈ nat =⇒ upt(i,j) = (if i<j then Cons(i, upt(succ(i), j)) else Nil)

apply (induct-tac j, auto)
apply (drule not-lt-imp-le)
apply (auto simp: lt-Ord intro: le-anti-sym)
done

lemma upt-conv-Nil [simp]: [[j ≤ i; j ∈ nat]] =⇒ upt(i,j) = Nil
apply (subst upt-rec, auto)
apply (auto simp add: le-iff )
apply (drule lt-asym [THEN notE ], auto)
done

lemma upt-succ-append:
[[i ≤ j; j ∈ nat]] =⇒ upt(i,succ(j)) = upt(i, j)@[j]

by simp

lemma upt-conv-Cons:
[[i<j; j ∈ nat]] =⇒ upt(i,j) = Cons(i,upt(succ(i),j))

apply (rule trans)
apply (rule upt-rec, auto)
done

lemma upt-type [simp,TC ]: j ∈ nat =⇒ upt(i,j):list(nat)
by (induct-tac j, auto)
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lemma upt-add-eq-append:
[[i ≤ j; j ∈ nat; k ∈ nat]] =⇒ upt(i, j #+k) = upt(i,j)@upt(j,j#+k)

apply (induct-tac k)
apply (auto simp add: app-assoc app-type)
apply (rule-tac j = j in le-trans, auto)
done

lemma length-upt [simp]: [[i ∈ nat; j ∈ nat]] =⇒length(upt(i,j)) = j #− i
apply (induct-tac j)
apply (rule-tac [2 ] sym)
apply (auto dest!: not-lt-imp-le simp add: diff-succ diff-is-0-iff )
done

lemma nth-upt [simp]:
[[i ∈ nat; j ∈ nat; k ∈ nat; i #+ k < j]] =⇒ nth(k, upt(i,j)) = i #+ k

apply (rotate-tac −1 , erule rev-mp)
apply (induct-tac j, simp)
apply (auto dest!: not-lt-imp-le

simp add: nth-append le-iff less-diff-conv add-commute)
done

lemma take-upt [rule-format]:
[[m ∈ nat; n ∈ nat]] =⇒
∀ i ∈ nat. i #+ m ≤ n −→ take(m, upt(i,n)) = upt(i,i#+m)

apply (induct-tac m)
apply (simp (no-asm-simp) add: take-0 )
apply clarify
apply (subst upt-rec, simp)
apply (rule sym)
apply (subst upt-rec, simp)
apply (simp-all del: upt.simps)
apply (rule-tac j = succ (i #+ x) in lt-trans2 )
apply auto
done
declare take-upt [simp]

lemma map-succ-upt:
[[m ∈ nat; n ∈ nat]] =⇒ map(succ, upt(m,n))= upt(succ(m), succ(n))

apply (induct-tac n)
apply (auto simp add: map-app-distrib)
done

lemma nth-map [rule-format]:
xs:list(A) =⇒
∀n ∈ nat. n < length(xs) −→ nth(n, map(f , xs)) = f (nth(n, xs))

apply (induct-tac xs, simp)
apply (rule ballI )
apply (induct-tac n, auto)
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done
declare nth-map [simp]

lemma nth-map-upt [rule-format]:
[[m ∈ nat; n ∈ nat]] =⇒
∀ i ∈ nat. i < n #− m −→ nth(i, map(f , upt(m,n))) = f (m #+ i)

apply (rule-tac n = m and m = n in diff-induct, typecheck, simp, simp)
apply (subst map-succ-upt [symmetric], simp-all, clarify)
apply (subgoal-tac i < length (upt (0 , x)))
prefer 2
apply (simp add: less-diff-conv)
apply (rule-tac j = succ (i #+ y) in lt-trans2 )
apply simp

apply simp
apply (subgoal-tac i < length (upt (y, x)))
apply (simp-all add: add-commute less-diff-conv)

done

definition
sublist :: [i, i] ⇒ i where

sublist(xs, A)≡
map(fst, (filter(λp. snd(p): A, zip(xs, upt(0 ,length(xs))))))

lemma sublist-0 [simp]: xs:list(A) =⇒sublist(xs, 0 ) =Nil
by (unfold sublist-def , auto)

lemma sublist-Nil [simp]: sublist(Nil, A) = Nil
by (unfold sublist-def , auto)

lemma sublist-shift-lemma:
[[xs:list(B); i ∈ nat]] =⇒
map(fst, filter(λp. snd(p):A, zip(xs, upt(i,i #+ length(xs))))) =
map(fst, filter(λp. snd(p):nat ∧ snd(p) #+ i ∈ A, zip(xs,upt(0 ,length(xs)))))

apply (erule list-append-induct)
apply (simp (no-asm-simp))
apply (auto simp add: add-commute length-app filter-append map-app-distrib)
done

lemma sublist-type [simp,TC ]:
xs:list(B) =⇒ sublist(xs, A):list(B)

unfolding sublist-def
apply (induct-tac xs)
apply (auto simp add: filter-append map-app-distrib)
done

lemma upt-add-eq-append2 :
[[i ∈ nat; j ∈ nat]] =⇒ upt(0 , i #+ j) = upt(0 , i) @ upt(i, i #+ j)
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by (simp add: upt-add-eq-append [of 0 ] nat-0-le)

lemma sublist-append:
[[xs:list(B); ys:list(B)]] =⇒
sublist(xs@ys, A) = sublist(xs, A) @ sublist(ys, {j ∈ nat. j #+ length(xs): A})
unfolding sublist-def

apply (erule-tac l = ys in list-append-induct, simp)
apply (simp (no-asm-simp) add: upt-add-eq-append2 app-assoc [symmetric])
apply (auto simp add: sublist-shift-lemma length-type map-app-distrib app-assoc)
apply (simp-all add: add-commute)
done

lemma sublist-Cons:
[[xs:list(B); x ∈ B]] =⇒
sublist(Cons(x, xs), A) =
(if 0 ∈ A then [x] else []) @ sublist(xs, {j ∈ nat. succ(j) ∈ A})

apply (erule-tac l = xs in list-append-induct)
apply (simp (no-asm-simp) add: sublist-def )
apply (simp del: app-Cons add: app-Cons [symmetric] sublist-append, simp)
done

lemma sublist-singleton [simp]:
sublist([x], A) = (if 0 ∈ A then [x] else [])

by (simp add: sublist-Cons)

lemma sublist-upt-eq-take [rule-format]:
xs:list(A) =⇒ ∀n∈nat. sublist(xs,n) = take(n,xs)

apply (erule list.induct, simp)
apply (clarify )
apply (erule natE)
apply (simp-all add: nat-eq-Collect-lt Ord-mem-iff-lt sublist-Cons)
done
declare sublist-upt-eq-take [simp]

lemma sublist-Int-eq:
xs ∈ list(B) =⇒ sublist(xs, A ∩ nat) = sublist(xs, A)

apply (erule list.induct)
apply (simp-all add: sublist-Cons)
done

Repetition of a List Element
consts repeat :: [i,i]⇒i
primrec

repeat(a,0 ) = []

repeat(a,succ(n)) = Cons(a,repeat(a,n))

lemma length-repeat: n ∈ nat =⇒ length(repeat(a,n)) = n
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by (induct-tac n, auto)

lemma repeat-succ-app: n ∈ nat =⇒ repeat(a,succ(n)) = repeat(a,n) @ [a]
apply (induct-tac n)
apply (simp-all del: app-Cons add: app-Cons [symmetric])
done

lemma repeat-type [TC ]: [[a ∈ A; n ∈ nat]] =⇒ repeat(a,n) ∈ list(A)
by (induct-tac n, auto)

end

30 Equivalence Relations
theory EquivClass imports Trancl Perm begin

definition
quotient :: [i,i]⇒i (infixl ‹ ′/ ′/› 90 ) where

A//r ≡ {r‘‘{x} . x ∈ A}

definition
congruent :: [i,i⇒i]⇒o where

congruent(r ,b) ≡ ∀ y z. 〈y,z〉:r −→ b(y)=b(z)

definition
congruent2 :: [i,i,[i,i]⇒i]⇒o where

congruent2 (r1 ,r2 ,b) ≡ ∀ y1 z1 y2 z2 .
〈y1 ,z1 〉:r1 −→ 〈y2 ,z2 〉:r2 −→ b(y1 ,y2 ) = b(z1 ,z2 )

abbreviation
RESPECTS ::[i⇒i, i] ⇒ o (infixr ‹respects› 80 ) where
f respects r ≡ congruent(r ,f )

abbreviation
RESPECTS2 ::[i⇒i⇒i, i] ⇒ o (infixr ‹respects2 › 80 ) where
f respects2 r ≡ congruent2 (r ,r ,f )

— Abbreviation for the common case where the relations are identical

30.1 Suppes, Theorem 70: r is an equiv relation iff converse(r)
O r = r

lemma sym-trans-comp-subset:
[[sym(r); trans(r)]] =⇒ converse(r) O r ⊆ r

by (unfold trans-def sym-def , blast)

lemma refl-comp-subset:
[[refl(A,r); r ⊆ A∗A]] =⇒ r ⊆ converse(r) O r

by (unfold refl-def , blast)
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lemma equiv-comp-eq:
equiv(A,r) =⇒ converse(r) O r = r

unfolding equiv-def
apply (blast del: subsetI intro!: sym-trans-comp-subset refl-comp-subset)
done

lemma comp-equivI :
[[converse(r) O r = r ; domain(r) = A]] =⇒ equiv(A,r)

unfolding equiv-def refl-def sym-def trans-def
apply (erule equalityE)
apply (subgoal-tac ∀ x y. 〈x,y〉 ∈ r −→ 〈y,x〉 ∈ r , blast+)
done

lemma equiv-class-subset:
[[sym(r); trans(r); 〈a,b〉: r ]] =⇒ r‘‘{a} ⊆ r‘‘{b}

by (unfold trans-def sym-def , blast)

lemma equiv-class-eq:
[[equiv(A,r); 〈a,b〉: r ]] =⇒ r‘‘{a} = r‘‘{b}

unfolding equiv-def
apply (safe del: subsetI intro!: equalityI equiv-class-subset)
apply (unfold sym-def , blast)
done

lemma equiv-class-self :
[[equiv(A,r); a ∈ A]] =⇒ a ∈ r‘‘{a}

by (unfold equiv-def refl-def , blast)

lemma subset-equiv-class:
[[equiv(A,r); r‘‘{b} ⊆ r‘‘{a}; b ∈ A]] =⇒ 〈a,b〉: r

by (unfold equiv-def refl-def , blast)

lemma eq-equiv-class: [[r‘‘{a} = r‘‘{b}; equiv(A,r); b ∈ A]] =⇒ 〈a,b〉: r
by (assumption | rule equalityD2 subset-equiv-class)+

lemma equiv-class-nondisjoint:
[[equiv(A,r); x: (r‘‘{a} ∩ r‘‘{b})]] =⇒ 〈a,b〉: r

by (unfold equiv-def trans-def sym-def , blast)

lemma equiv-type: equiv(A,r) =⇒ r ⊆ A∗A
by (unfold equiv-def , blast)

lemma equiv-class-eq-iff :
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equiv(A,r) =⇒ 〈x,y〉: r ←→ r‘‘{x} = r‘‘{y} ∧ x ∈ A ∧ y ∈ A
by (blast intro: eq-equiv-class equiv-class-eq dest: equiv-type)

lemma eq-equiv-class-iff :
[[equiv(A,r); x ∈ A; y ∈ A]] =⇒ r‘‘{x} = r‘‘{y} ←→ 〈x,y〉: r

by (blast intro: eq-equiv-class equiv-class-eq dest: equiv-type)

lemma quotientI [TC ]: x ∈ A =⇒ r‘‘{x}: A//r
unfolding quotient-def

apply (erule RepFunI )
done

lemma quotientE :
[[X ∈ A//r ;

∧
x. [[X = r‘‘{x}; x ∈ A]] =⇒ P]] =⇒ P

by (unfold quotient-def , blast)

lemma Union-quotient:
equiv(A,r) =⇒

⋃
(A//r) = A

by (unfold equiv-def refl-def quotient-def , blast)

lemma quotient-disj:
[[equiv(A,r); X ∈ A//r ; Y ∈ A//r ]] =⇒ X=Y | (X ∩ Y ⊆ 0 )

unfolding quotient-def
apply (safe intro!: equiv-class-eq, assumption)
apply (unfold equiv-def trans-def sym-def , blast)
done

30.2 Defining Unary Operations upon Equivalence Classes
lemma UN-equiv-class:

[[equiv(A,r); b respects r ; a ∈ A]] =⇒ (
⋃

x∈r‘‘{a}. b(x)) = b(a)
apply (subgoal-tac ∀ x ∈ r‘‘{a}. b(x) = b(a))
apply simp
apply (blast intro: equiv-class-self )

apply (unfold equiv-def sym-def congruent-def , blast)
done

lemma UN-equiv-class-type:
[[equiv(A,r); b respects r ; X ∈ A//r ;

∧
x. x ∈ A =⇒ b(x) ∈ B]]

=⇒ (
⋃

x∈X . b(x)) ∈ B
apply (unfold quotient-def , safe)
apply (simp (no-asm-simp) add: UN-equiv-class)
done
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lemma UN-equiv-class-inject:
[[equiv(A,r); b respects r ;

(
⋃

x∈X . b(x))=(
⋃

y∈Y . b(y)); X ∈ A//r ; Y ∈ A//r ;∧
x y. [[x ∈ A; y ∈ A; b(x)=b(y)]] =⇒ 〈x,y〉:r ]]

=⇒ X=Y
apply (unfold quotient-def , safe)
apply (rule equiv-class-eq, assumption)
apply (simp add: UN-equiv-class [of A r b])
done

30.3 Defining Binary Operations upon Equivalence Classes
lemma congruent2-implies-congruent:

[[equiv(A,r1 ); congruent2 (r1 ,r2 ,b); a ∈ A]] =⇒ congruent(r2 ,b(a))
by (unfold congruent-def congruent2-def equiv-def refl-def , blast)

lemma congruent2-implies-congruent-UN :
[[equiv(A1 ,r1 ); equiv(A2 ,r2 ); congruent2 (r1 ,r2 ,b); a ∈ A2 ]] =⇒
congruent(r1 , λx1 .

⋃
x2 ∈ r2‘‘{a}. b(x1 ,x2 ))

apply (unfold congruent-def , safe)
apply (frule equiv-type [THEN subsetD], assumption)
apply clarify
apply (simp add: UN-equiv-class congruent2-implies-congruent)
apply (unfold congruent2-def equiv-def refl-def , blast)
done

lemma UN-equiv-class2 :
[[equiv(A1 ,r1 ); equiv(A2 ,r2 ); congruent2 (r1 ,r2 ,b); a1 : A1 ; a2 : A2 ]]
=⇒ (

⋃
x1 ∈ r1‘‘{a1}.

⋃
x2 ∈ r2‘‘{a2}. b(x1 ,x2 )) = b(a1 ,a2 )

by (simp add: UN-equiv-class congruent2-implies-congruent
congruent2-implies-congruent-UN )

lemma UN-equiv-class-type2 :
[[equiv(A,r); b respects2 r ;

X1 : A//r ; X2 : A//r ;∧
x1 x2 . [[x1 : A; x2 : A]] =⇒ b(x1 ,x2 ) ∈ B

]] =⇒ (
⋃

x1∈X1 .
⋃

x2∈X2 . b(x1 ,x2 )) ∈ B
apply (unfold quotient-def , safe)
apply (blast intro: UN-equiv-class-type congruent2-implies-congruent-UN

congruent2-implies-congruent quotientI )
done

lemma congruent2I :
[[equiv(A1 ,r1 ); equiv(A2 ,r2 );∧

y z w. [[w ∈ A2 ; 〈y,z〉 ∈ r1 ]] =⇒ b(y,w) = b(z,w);
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∧
y z w. [[w ∈ A1 ; 〈y,z〉 ∈ r2 ]] =⇒ b(w,y) = b(w,z)

]] =⇒ congruent2 (r1 ,r2 ,b)
apply (unfold congruent2-def equiv-def refl-def , safe)
apply (blast intro: trans)
done

lemma congruent2-commuteI :
assumes equivA: equiv(A,r)

and commute:
∧

y z. [[y ∈ A; z ∈ A]] =⇒ b(y,z) = b(z,y)
and congt:

∧
y z w. [[w ∈ A; 〈y,z〉: r ]] =⇒ b(w,y) = b(w,z)

shows b respects2 r
apply (insert equivA [THEN equiv-type, THEN subsetD])
apply (rule congruent2I [OF equivA equivA])
apply (rule commute [THEN trans])
apply (rule-tac [3 ] commute [THEN trans, symmetric])
apply (rule-tac [5 ] sym)
apply (blast intro: congt)+
done

lemma congruent-commuteI :
[[equiv(A,r); Z ∈ A//r ;∧

w. [[w ∈ A]] =⇒ congruent(r , λz. b(w,z));∧
x y. [[x ∈ A; y ∈ A]] =⇒ b(y,x) = b(x,y)

]] =⇒ congruent(r , λw.
⋃

z∈Z . b(w,z))
apply (simp (no-asm) add: congruent-def )
apply (safe elim!: quotientE)
apply (frule equiv-type [THEN subsetD], assumption)
apply (simp add: UN-equiv-class [of A r ])
apply (simp add: congruent-def )
done

end

31 The Integers as Equivalence Classes Over Pairs
of Natural Numbers

theory Int imports EquivClass ArithSimp begin

definition
intrel :: i where

intrel ≡ {p ∈ (nat∗nat)∗(nat∗nat).
∃ x1 y1 x2 y2 . p=<〈x1 ,y1 〉,〈x2 ,y2 〉> ∧ x1#+y2 = x2#+y1}

definition
int :: i where

int ≡ (nat∗nat)//intrel
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definition
int-of :: i⇒i — coercion from nat to int (‹(‹open-block notation=‹prefix $#››$#

-)› [80 ] 80 )
where $# m ≡ intrel ‘‘ {<natify(m), 0>}

definition
intify :: i⇒i — coercion from ANYTHING to int where

intify(m) ≡ if m ∈ int then m else $#0

definition
raw-zminus :: i⇒i where

raw-zminus(z) ≡
⋃
〈x,y〉∈z. intrel‘‘{〈y,x〉}

definition
zminus :: i⇒i (‹(‹open-block notation=‹prefix $−››$− -)› [80 ] 80 )
where $− z ≡ raw-zminus (intify(z))

definition
znegative :: i⇒o where

znegative(z) ≡ ∃ x y. x<y ∧ y∈nat ∧ 〈x,y〉∈z

definition
iszero :: i⇒o where

iszero(z) ≡ z = $# 0

definition
raw-nat-of :: i⇒i where
raw-nat-of (z) ≡ natify (

⋃
〈x,y〉∈z. x#−y)

definition
nat-of :: i⇒i where
nat-of (z) ≡ raw-nat-of (intify(z))

definition
zmagnitude :: i⇒i where
— could be replaced by an absolute value function from int to int?

zmagnitude(z) ≡
THE m. m∈nat ∧ ((¬ znegative(z) ∧ z = $# m) |

(znegative(z) ∧ $− z = $# m))

definition
raw-zmult :: [i,i]⇒i where

raw-zmult(z1 ,z2 ) ≡⋃
p1∈z1 .

⋃
p2∈z2 . split(λx1 y1 . split(λx2 y2 .

intrel‘‘{<x1#∗x2 #+ y1#∗y2 , x1#∗y2 #+ y1#∗x2>}, p2 ), p1 )

definition
zmult :: [i,i]⇒i (infixl ‹$∗› 70 ) where
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z1 $∗ z2 ≡ raw-zmult (intify(z1 ),intify(z2 ))

definition
raw-zadd :: [i,i]⇒i where

raw-zadd (z1 , z2 ) ≡⋃
z1∈z1 .

⋃
z2∈z2 . let 〈x1 ,y1 〉=z1 ; 〈x2 ,y2 〉=z2

in intrel‘‘{<x1#+x2 , y1#+y2>}

definition
zadd :: [i,i]⇒i (infixl ‹$+› 65 ) where

z1 $+ z2 ≡ raw-zadd (intify(z1 ),intify(z2 ))

definition
zdiff :: [i,i]⇒i (infixl ‹$−› 65 ) where

z1 $− z2 ≡ z1 $+ zminus(z2 )

definition
zless :: [i,i]⇒o (infixl ‹$<› 50 ) where

z1 $< z2 ≡ znegative(z1 $− z2 )

definition
zle :: [i,i]⇒o (infixl ‹$≤› 50 ) where

z1 $≤ z2 ≡ z1 $< z2 | intify(z1 )=intify(z2 )

declare quotientE [elim!]

31.1 Proving that intrel is an equivalence relation
lemma intrel-iff [simp]:

<〈x1 ,y1 〉,〈x2 ,y2 〉>: intrel ←→
x1∈nat ∧ y1∈nat ∧ x2∈nat ∧ y2∈nat ∧ x1#+y2 = x2#+y1

by (simp add: intrel-def )

lemma intrelI [intro!]:
[[x1#+y2 = x2#+y1 ; x1∈nat; y1∈nat; x2∈nat; y2∈nat]]
=⇒ <〈x1 ,y1 〉,〈x2 ,y2 〉>: intrel

by (simp add: intrel-def )

lemma intrelE [elim!]:
[[p ∈ intrel;∧

x1 y1 x2 y2 . [[p = <〈x1 ,y1 〉,〈x2 ,y2 〉>; x1#+y2 = x2#+y1 ;
x1∈nat; y1∈nat; x2∈nat; y2∈nat]] =⇒ Q]]

=⇒ Q
by (simp add: intrel-def , blast)

lemma int-trans-lemma:
[[x1 #+ y2 = x2 #+ y1 ; x2 #+ y3 = x3 #+ y2 ]] =⇒ x1 #+ y3 = x3 #+

y1
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apply (rule sym)
apply (erule add-left-cancel)+
apply (simp-all (no-asm-simp))
done

lemma equiv-intrel: equiv(nat∗nat, intrel)
apply (simp add: equiv-def refl-def sym-def trans-def )
apply (fast elim!: sym int-trans-lemma)
done

lemma image-intrel-int: [[m∈nat; n∈nat]] =⇒ intrel ‘‘ {〈m,n〉} ∈ int
by (simp add: int-def )

declare equiv-intrel [THEN eq-equiv-class-iff , simp]
declare conj-cong [cong]

lemmas eq-intrelD = eq-equiv-class [OF - equiv-intrel]

lemma int-of-type [simp,TC ]: $#m ∈ int
by (simp add: int-def quotient-def int-of-def , auto)

lemma int-of-eq [iff ]: ($# m = $# n) ←→ natify(m)=natify(n)
by (simp add: int-of-def )

lemma int-of-inject: [[$#m = $#n; m∈nat; n∈nat]] =⇒ m=n
by (drule int-of-eq [THEN iffD1 ], auto)

lemma intify-in-int [iff ,TC ]: intify(x) ∈ int
by (simp add: intify-def )

lemma intify-ident [simp]: n ∈ int =⇒ intify(n) = n
by (simp add: intify-def )

31.2 Collapsing rules: to remove intify from arithmetic ex-
pressions

lemma intify-idem [simp]: intify(intify(x)) = intify(x)
by simp

lemma int-of-natify [simp]: $# (natify(m)) = $# m
by (simp add: int-of-def )

lemma zminus-intify [simp]: $− (intify(m)) = $− m
by (simp add: zminus-def )
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lemma zadd-intify1 [simp]: intify(x) $+ y = x $+ y
by (simp add: zadd-def )

lemma zadd-intify2 [simp]: x $+ intify(y) = x $+ y
by (simp add: zadd-def )

lemma zdiff-intify1 [simp]:intify(x) $− y = x $− y
by (simp add: zdiff-def )

lemma zdiff-intify2 [simp]:x $− intify(y) = x $− y
by (simp add: zdiff-def )

lemma zmult-intify1 [simp]:intify(x) $∗ y = x $∗ y
by (simp add: zmult-def )

lemma zmult-intify2 [simp]:x $∗ intify(y) = x $∗ y
by (simp add: zmult-def )

lemma zless-intify1 [simp]:intify(x) $< y ←→ x $< y
by (simp add: zless-def )

lemma zless-intify2 [simp]:x $< intify(y) ←→ x $< y
by (simp add: zless-def )

lemma zle-intify1 [simp]:intify(x) $≤ y ←→ x $≤ y
by (simp add: zle-def )

lemma zle-intify2 [simp]:x $≤ intify(y) ←→ x $≤ y
by (simp add: zle-def )

31.3 zminus: unary negation on int
lemma zminus-congruent: (λ〈x,y〉. intrel‘‘{〈y,x〉}) respects intrel
by (auto simp add: congruent-def add-ac)

lemma raw-zminus-type: z ∈ int =⇒ raw-zminus(z) ∈ int
apply (simp add: int-def raw-zminus-def )
apply (typecheck add: UN-equiv-class-type [OF equiv-intrel zminus-congruent])
done
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lemma zminus-type [TC ,iff ]: $−z ∈ int
by (simp add: zminus-def raw-zminus-type)

lemma raw-zminus-inject:
[[raw-zminus(z) = raw-zminus(w); z ∈ int; w ∈ int]] =⇒ z=w

apply (simp add: int-def raw-zminus-def )
apply (erule UN-equiv-class-inject [OF equiv-intrel zminus-congruent], safe)
apply (auto dest: eq-intrelD simp add: add-ac)
done

lemma zminus-inject-intify [dest!]: $−z = $−w =⇒ intify(z) = intify(w)
apply (simp add: zminus-def )
apply (blast dest!: raw-zminus-inject)
done

lemma zminus-inject: [[$−z = $−w; z ∈ int; w ∈ int]] =⇒ z=w
by auto

lemma raw-zminus:
[[x∈nat; y∈nat]] =⇒ raw-zminus(intrel‘‘{〈x,y〉}) = intrel ‘‘ {〈y,x〉}

apply (simp add: raw-zminus-def UN-equiv-class [OF equiv-intrel zminus-congruent])
done

lemma zminus:
[[x∈nat; y∈nat]]
=⇒ $− (intrel‘‘{〈x,y〉}) = intrel ‘‘ {〈y,x〉}

by (simp add: zminus-def raw-zminus image-intrel-int)

lemma raw-zminus-zminus: z ∈ int =⇒ raw-zminus (raw-zminus(z)) = z
by (auto simp add: int-def raw-zminus)

lemma zminus-zminus-intify [simp]: $− ($− z) = intify(z)
by (simp add: zminus-def raw-zminus-type raw-zminus-zminus)

lemma zminus-int0 [simp]: $− ($#0 ) = $#0
by (simp add: int-of-def zminus)

lemma zminus-zminus: z ∈ int =⇒ $− ($− z) = z
by simp

31.4 znegative: the test for negative integers
lemma znegative: [[x∈nat; y∈nat]] =⇒ znegative(intrel‘‘{〈x,y〉}) ←→ x<y
apply (cases x<y)
apply (auto simp add: znegative-def not-lt-iff-le)
apply (subgoal-tac y #+ x2 < x #+ y2 , force)
apply (rule add-le-lt-mono, auto)
done
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lemma not-znegative-int-of [iff ]: ¬ znegative($# n)
by (simp add: znegative int-of-def )

lemma znegative-zminus-int-of [simp]: znegative($− $# succ(n))
by (simp add: znegative int-of-def zminus natify-succ)

lemma not-znegative-imp-zero: ¬ znegative($− $# n) =⇒ natify(n)=0
by (simp add: znegative int-of-def zminus Ord-0-lt-iff [THEN iff-sym])

31.5 nat-of : Coercion of an Integer to a Natural Number
lemma nat-of-intify [simp]: nat-of (intify(z)) = nat-of (z)
by (simp add: nat-of-def )

lemma nat-of-congruent: (λx. (λ〈x,y〉. x #− y)(x)) respects intrel
by (auto simp add: congruent-def split: nat-diff-split)

lemma raw-nat-of :
[[x∈nat; y∈nat]] =⇒ raw-nat-of (intrel‘‘{〈x,y〉}) = x#−y

by (simp add: raw-nat-of-def UN-equiv-class [OF equiv-intrel nat-of-congruent])

lemma raw-nat-of-int-of : raw-nat-of ($# n) = natify(n)
by (simp add: int-of-def raw-nat-of )

lemma nat-of-int-of [simp]: nat-of ($# n) = natify(n)
by (simp add: raw-nat-of-int-of nat-of-def )

lemma raw-nat-of-type: raw-nat-of (z) ∈ nat
by (simp add: raw-nat-of-def )

lemma nat-of-type [iff ,TC ]: nat-of (z) ∈ nat
by (simp add: nat-of-def raw-nat-of-type)

31.6 zmagnitude: magnitide of an integer, as a natural num-
ber

lemma zmagnitude-int-of [simp]: zmagnitude($# n) = natify(n)
by (auto simp add: zmagnitude-def int-of-eq)

lemma natify-int-of-eq: natify(x)=n =⇒ $#x = $# n
apply (drule sym)
apply (simp (no-asm-simp) add: int-of-eq)
done

lemma zmagnitude-zminus-int-of [simp]: zmagnitude($− $# n) = natify(n)
apply (simp add: zmagnitude-def )
apply (rule the-equality)
apply (auto dest!: not-znegative-imp-zero natify-int-of-eq
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iff del: int-of-eq, auto)
done

lemma zmagnitude-type [iff ,TC ]: zmagnitude(z)∈nat
apply (simp add: zmagnitude-def )
apply (rule theI2 , auto)
done

lemma not-zneg-int-of :
[[z ∈ int; ¬ znegative(z)]] =⇒ ∃n∈nat. z = $# n

apply (auto simp add: int-def znegative int-of-def not-lt-iff-le)
apply (rename-tac x y)
apply (rule-tac x=x#−y in bexI )
apply (auto simp add: add-diff-inverse2 )
done

lemma not-zneg-mag [simp]:
[[z ∈ int; ¬ znegative(z)]] =⇒ $# (zmagnitude(z)) = z

by (drule not-zneg-int-of , auto)

lemma zneg-int-of :
[[znegative(z); z ∈ int]] =⇒ ∃n∈nat. z = $− ($# succ(n))

by (auto simp add: int-def znegative zminus int-of-def dest!: less-imp-succ-add)

lemma zneg-mag [simp]:
[[znegative(z); z ∈ int]] =⇒ $# (zmagnitude(z)) = $− z

by (drule zneg-int-of , auto)

lemma int-cases: z ∈ int =⇒ ∃n∈nat. z = $# n | z = $− ($# succ(n))
apply (case-tac znegative (z) )
prefer 2 apply (blast dest: not-zneg-mag sym)
apply (blast dest: zneg-int-of )
done

lemma not-zneg-raw-nat-of :
[[¬ znegative(z); z ∈ int]] =⇒ $# (raw-nat-of (z)) = z

apply (drule not-zneg-int-of )
apply (auto simp add: raw-nat-of-type raw-nat-of-int-of )
done

lemma not-zneg-nat-of-intify:
¬ znegative(intify(z)) =⇒ $# (nat-of (z)) = intify(z)

by (simp (no-asm-simp) add: nat-of-def not-zneg-raw-nat-of )

lemma not-zneg-nat-of : [[¬ znegative(z); z ∈ int]] =⇒ $# (nat-of (z)) = z
apply (simp (no-asm-simp) add: not-zneg-nat-of-intify)
done

lemma zneg-nat-of [simp]: znegative(intify(z)) =⇒ nat-of (z) = 0
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apply (subgoal-tac intify(z) ∈ int)
apply (simp add: int-def )
apply (auto simp add: znegative nat-of-def raw-nat-of

split: nat-diff-split)
done

31.7 ($+): addition on int

Congruence Property for Addition
lemma zadd-congruent2 :

(λz1 z2 . let 〈x1 ,y1 〉=z1 ; 〈x2 ,y2 〉=z2
in intrel‘‘{<x1#+x2 , y1#+y2>})

respects2 intrel
apply (simp add: congruent2-def )

apply safe
apply (simp (no-asm-simp) add: add-assoc Let-def )

apply (rule-tac m1 = x1a in add-left-commute [THEN ssubst])
apply (rule-tac m1 = x2a in add-left-commute [THEN ssubst])
apply (simp (no-asm-simp) add: add-assoc [symmetric])
done

lemma raw-zadd-type: [[z ∈ int; w ∈ int]] =⇒ raw-zadd(z,w) ∈ int
apply (simp add: int-def raw-zadd-def )
apply (rule UN-equiv-class-type2 [OF equiv-intrel zadd-congruent2 ], assumption+)
apply (simp add: Let-def )
done

lemma zadd-type [iff ,TC ]: z $+ w ∈ int
by (simp add: zadd-def raw-zadd-type)

lemma raw-zadd:
[[x1∈nat; y1∈nat; x2∈nat; y2∈nat]]
=⇒ raw-zadd (intrel‘‘{〈x1 ,y1 〉}, intrel‘‘{〈x2 ,y2 〉}) =

intrel ‘‘ {<x1#+x2 , y1#+y2>}
apply (simp add: raw-zadd-def

UN-equiv-class2 [OF equiv-intrel equiv-intrel zadd-congruent2 ])
apply (simp add: Let-def )
done

lemma zadd:
[[x1∈nat; y1∈nat; x2∈nat; y2∈nat]]
=⇒ (intrel‘‘{〈x1 ,y1 〉}) $+ (intrel‘‘{〈x2 ,y2 〉}) =

intrel ‘‘ {<x1#+x2 , y1#+y2>}
by (simp add: zadd-def raw-zadd image-intrel-int)

lemma raw-zadd-int0 : z ∈ int =⇒ raw-zadd ($#0 ,z) = z
by (auto simp add: int-def int-of-def raw-zadd)

309



lemma zadd-int0-intify [simp]: $#0 $+ z = intify(z)
by (simp add: zadd-def raw-zadd-int0 )

lemma zadd-int0 : z ∈ int =⇒ $#0 $+ z = z
by simp

lemma raw-zminus-zadd-distrib:
[[z ∈ int; w ∈ int]] =⇒ $− raw-zadd(z,w) = raw-zadd($− z, $− w)

by (auto simp add: zminus raw-zadd int-def )

lemma zminus-zadd-distrib [simp]: $− (z $+ w) = $− z $+ $− w
by (simp add: zadd-def raw-zminus-zadd-distrib)

lemma raw-zadd-commute:
[[z ∈ int; w ∈ int]] =⇒ raw-zadd(z,w) = raw-zadd(w,z)

by (auto simp add: raw-zadd add-ac int-def )

lemma zadd-commute: z $+ w = w $+ z
by (simp add: zadd-def raw-zadd-commute)

lemma raw-zadd-assoc:
[[z1 : int; z2 : int; z3 : int]]
=⇒ raw-zadd (raw-zadd(z1 ,z2 ),z3 ) = raw-zadd(z1 ,raw-zadd(z2 ,z3 ))

by (auto simp add: int-def raw-zadd add-assoc)

lemma zadd-assoc: (z1 $+ z2 ) $+ z3 = z1 $+ (z2 $+ z3 )
by (simp add: zadd-def raw-zadd-type raw-zadd-assoc)

lemma zadd-left-commute: z1$+(z2$+z3 ) = z2$+(z1$+z3 )
apply (simp add: zadd-assoc [symmetric])
apply (simp add: zadd-commute)
done

lemmas zadd-ac = zadd-assoc zadd-commute zadd-left-commute

lemma int-of-add: $# (m #+ n) = ($#m) $+ ($#n)
by (simp add: int-of-def zadd)

lemma int-succ-int-1 : $# succ(m) = $# 1 $+ ($# m)
by (simp add: int-of-add [symmetric] natify-succ)

lemma int-of-diff :
[[m∈nat; n ≤ m]] =⇒ $# (m #− n) = ($#m) $− ($#n)

apply (simp add: int-of-def zdiff-def )
apply (frule lt-nat-in-nat)
apply (simp-all add: zadd zminus add-diff-inverse2 )
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done

lemma raw-zadd-zminus-inverse: z ∈ int =⇒ raw-zadd (z, $− z) = $#0
by (auto simp add: int-def int-of-def zminus raw-zadd add-commute)

lemma zadd-zminus-inverse [simp]: z $+ ($− z) = $#0
apply (simp add: zadd-def )
apply (subst zminus-intify [symmetric])
apply (rule intify-in-int [THEN raw-zadd-zminus-inverse])
done

lemma zadd-zminus-inverse2 [simp]: ($− z) $+ z = $#0
by (simp add: zadd-commute zadd-zminus-inverse)

lemma zadd-int0-right-intify [simp]: z $+ $#0 = intify(z)
by (rule trans [OF zadd-commute zadd-int0-intify])

lemma zadd-int0-right: z ∈ int =⇒ z $+ $#0 = z
by simp

31.8 ($∗): Integer Multiplication

Congruence property for multiplication
lemma zmult-congruent2 :

(λp1 p2 . split(λx1 y1 . split(λx2 y2 .
intrel‘‘{<x1#∗x2 #+ y1#∗y2 , x1#∗y2 #+ y1#∗x2>}, p2 ), p1 ))

respects2 intrel
apply (rule equiv-intrel [THEN congruent2-commuteI ], auto)

apply (rename-tac x y)
apply (frule-tac t = λu. x#∗u in sym [THEN subst-context])
apply (drule-tac t = λu. y#∗u in subst-context)
apply (erule add-left-cancel)+
apply (simp-all add: add-mult-distrib-left)
done

lemma raw-zmult-type: [[z ∈ int; w ∈ int]] =⇒ raw-zmult(z,w) ∈ int
apply (simp add: int-def raw-zmult-def )
apply (rule UN-equiv-class-type2 [OF equiv-intrel zmult-congruent2 ], assumption+)
apply (simp add: Let-def )
done

lemma zmult-type [iff ,TC ]: z $∗ w ∈ int
by (simp add: zmult-def raw-zmult-type)

lemma raw-zmult:
[[x1∈nat; y1∈nat; x2∈nat; y2∈nat]]
=⇒ raw-zmult(intrel‘‘{〈x1 ,y1 〉}, intrel‘‘{〈x2 ,y2 〉}) =
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intrel ‘‘ {<x1#∗x2 #+ y1#∗y2 , x1#∗y2 #+ y1#∗x2>}
by (simp add: raw-zmult-def

UN-equiv-class2 [OF equiv-intrel equiv-intrel zmult-congruent2 ])

lemma zmult:
[[x1∈nat; y1∈nat; x2∈nat; y2∈nat]]
=⇒ (intrel‘‘{〈x1 ,y1 〉}) $∗ (intrel‘‘{〈x2 ,y2 〉}) =

intrel ‘‘ {<x1#∗x2 #+ y1#∗y2 , x1#∗y2 #+ y1#∗x2>}
by (simp add: zmult-def raw-zmult image-intrel-int)

lemma raw-zmult-int0 : z ∈ int =⇒ raw-zmult ($#0 ,z) = $#0
by (auto simp add: int-def int-of-def raw-zmult)

lemma zmult-int0 [simp]: $#0 $∗ z = $#0
by (simp add: zmult-def raw-zmult-int0 )

lemma raw-zmult-int1 : z ∈ int =⇒ raw-zmult ($#1 ,z) = z
by (auto simp add: int-def int-of-def raw-zmult)

lemma zmult-int1-intify [simp]: $#1 $∗ z = intify(z)
by (simp add: zmult-def raw-zmult-int1 )

lemma zmult-int1 : z ∈ int =⇒ $#1 $∗ z = z
by simp

lemma raw-zmult-commute:
[[z ∈ int; w ∈ int]] =⇒ raw-zmult(z,w) = raw-zmult(w,z)

by (auto simp add: int-def raw-zmult add-ac mult-ac)

lemma zmult-commute: z $∗ w = w $∗ z
by (simp add: zmult-def raw-zmult-commute)

lemma raw-zmult-zminus:
[[z ∈ int; w ∈ int]] =⇒ raw-zmult($− z, w) = $− raw-zmult(z, w)

by (auto simp add: int-def zminus raw-zmult add-ac)

lemma zmult-zminus [simp]: ($− z) $∗ w = $− (z $∗ w)
apply (simp add: zmult-def raw-zmult-zminus)
apply (subst zminus-intify [symmetric], rule raw-zmult-zminus, auto)
done

lemma zmult-zminus-right [simp]: w $∗ ($− z) = $− (w $∗ z)
by (simp add: zmult-commute [of w])

lemma raw-zmult-assoc:
[[z1 : int; z2 : int; z3 : int]]
=⇒ raw-zmult (raw-zmult(z1 ,z2 ),z3 ) = raw-zmult(z1 ,raw-zmult(z2 ,z3 ))

by (auto simp add: int-def raw-zmult add-mult-distrib-left add-ac mult-ac)
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lemma zmult-assoc: (z1 $∗ z2 ) $∗ z3 = z1 $∗ (z2 $∗ z3 )
by (simp add: zmult-def raw-zmult-type raw-zmult-assoc)

lemma zmult-left-commute: z1$∗(z2$∗z3 ) = z2$∗(z1$∗z3 )
apply (simp add: zmult-assoc [symmetric])
apply (simp add: zmult-commute)
done

lemmas zmult-ac = zmult-assoc zmult-commute zmult-left-commute

lemma raw-zadd-zmult-distrib:
[[z1 : int; z2 : int; w ∈ int]]
=⇒ raw-zmult(raw-zadd(z1 ,z2 ), w) =

raw-zadd (raw-zmult(z1 ,w), raw-zmult(z2 ,w))
by (auto simp add: int-def raw-zadd raw-zmult add-mult-distrib-left add-ac mult-ac)

lemma zadd-zmult-distrib: (z1 $+ z2 ) $∗ w = (z1 $∗ w) $+ (z2 $∗ w)
by (simp add: zmult-def zadd-def raw-zadd-type raw-zmult-type

raw-zadd-zmult-distrib)

lemma zadd-zmult-distrib2 : w $∗ (z1 $+ z2 ) = (w $∗ z1 ) $+ (w $∗ z2 )
by (simp add: zmult-commute [of w] zadd-zmult-distrib)

lemmas int-typechecks =
int-of-type zminus-type zmagnitude-type zadd-type zmult-type

lemma zdiff-type [iff ,TC ]: z $− w ∈ int
by (simp add: zdiff-def )

lemma zminus-zdiff-eq [simp]: $− (z $− y) = y $− z
by (simp add: zdiff-def zadd-commute)

lemma zdiff-zmult-distrib: (z1 $− z2 ) $∗ w = (z1 $∗ w) $− (z2 $∗ w)
apply (simp add: zdiff-def )
apply (subst zadd-zmult-distrib)
apply (simp add: zmult-zminus)
done

lemma zdiff-zmult-distrib2 : w $∗ (z1 $− z2 ) = (w $∗ z1 ) $− (w $∗ z2 )
by (simp add: zmult-commute [of w] zdiff-zmult-distrib)

lemma zadd-zdiff-eq: x $+ (y $− z) = (x $+ y) $− z
by (simp add: zdiff-def zadd-ac)
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lemma zdiff-zadd-eq: (x $− y) $+ z = (x $+ z) $− y
by (simp add: zdiff-def zadd-ac)

31.9 The "Less Than" Relation
lemma zless-linear-lemma:

[[z ∈ int; w ∈ int]] =⇒ z$<w | z=w | w$<z
apply (simp add: int-def zless-def znegative-def zdiff-def , auto)
apply (simp add: zadd zminus image-iff Bex-def )
apply (rule-tac i = xb#+ya and j = xc #+ y in Ord-linear-lt)
apply (force dest!: spec simp add: add-ac)+
done

lemma zless-linear : z$<w | intify(z)=intify(w) | w$<z
apply (cut-tac z = intify (z) and w = intify (w) in zless-linear-lemma)
apply auto
done

lemma zless-not-refl [iff ]: ¬ (z$<z)
by (auto simp add: zless-def znegative-def int-of-def zdiff-def )

lemma neq-iff-zless: [[x ∈ int; y ∈ int]] =⇒ (x 6= y) ←→ (x $< y | y $< x)
by (cut-tac z = x and w = y in zless-linear , auto)

lemma zless-imp-intify-neq: w $< z =⇒ intify(w) 6= intify(z)
apply auto
apply (subgoal-tac ¬ (intify (w) $< intify (z)))
apply (erule-tac [2 ] ssubst)
apply (simp (no-asm-use))
apply auto
done

lemma zless-imp-succ-zadd-lemma:
[[w $< z; w ∈ int; z ∈ int]] =⇒ (∃n∈nat. z = w $+ $#(succ(n)))

apply (simp add: zless-def znegative-def zdiff-def int-def )
apply (auto dest!: less-imp-succ-add simp add: zadd zminus int-of-def )
apply (rule-tac x = k in bexI )
apply (erule-tac i=succ (v) for v in add-left-cancel, auto)
done

lemma zless-imp-succ-zadd:
w $< z =⇒ (∃n∈nat. w $+ $#(succ(n)) = intify(z))

apply (subgoal-tac intify (w) $< intify (z) )
apply (drule-tac w = intify (w) in zless-imp-succ-zadd-lemma)
apply auto
done

lemma zless-succ-zadd-lemma:
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w ∈ int =⇒ w $< w $+ $# succ(n)
apply (simp add: zless-def znegative-def zdiff-def int-def )
apply (auto simp add: zadd zminus int-of-def image-iff )
apply (rule-tac x = 0 in exI , auto)
done

lemma zless-succ-zadd: w $< w $+ $# succ(n)
by (cut-tac intify-in-int [THEN zless-succ-zadd-lemma], auto)

lemma zless-iff-succ-zadd:
w $< z ←→ (∃n∈nat. w $+ $#(succ(n)) = intify(z))

apply (rule iffI )
apply (erule zless-imp-succ-zadd, auto)
apply (rename-tac n)
apply (cut-tac w = w and n = n in zless-succ-zadd, auto)
done

lemma zless-int-of [simp]: [[m∈nat; n∈nat]] =⇒ ($#m $< $#n) ←→ (m<n)
apply (simp add: less-iff-succ-add zless-iff-succ-zadd int-of-add [symmetric])
apply (blast intro: sym)
done

lemma zless-trans-lemma:
[[x $< y; y $< z; x ∈ int; y ∈ int; z ∈ int]] =⇒ x $< z

apply (simp add: zless-def znegative-def zdiff-def int-def )
apply (auto simp add: zadd zminus image-iff )
apply (rename-tac x1 x2 y1 y2 )
apply (rule-tac x = x1#+x2 in exI )
apply (rule-tac x = y1#+y2 in exI )
apply (auto simp add: add-lt-mono)
apply (rule sym)
apply hypsubst-thin
apply (erule add-left-cancel)+
apply auto
done

lemma zless-trans [trans]: [[x $< y; y $< z]] =⇒ x $< z
apply (subgoal-tac intify (x) $< intify (z) )
apply (rule-tac [2 ] y = intify (y) in zless-trans-lemma)
apply auto
done

lemma zless-not-sym: z $< w =⇒ ¬ (w $< z)
by (blast dest: zless-trans)

lemmas zless-asym = zless-not-sym [THEN swap]

lemma zless-imp-zle: z $< w =⇒ z $≤ w

315



by (simp add: zle-def )

lemma zle-linear : z $≤ w | w $≤ z
apply (simp add: zle-def )
apply (cut-tac zless-linear , blast)
done

31.10 Less Than or Equals
lemma zle-refl: z $≤ z
by (simp add: zle-def )

lemma zle-eq-refl: x=y =⇒ x $≤ y
by (simp add: zle-refl)

lemma zle-anti-sym-intify: [[x $≤ y; y $≤ x]] =⇒ intify(x) = intify(y)
apply (simp add: zle-def , auto)
apply (blast dest: zless-trans)
done

lemma zle-anti-sym: [[x $≤ y; y $≤ x; x ∈ int; y ∈ int]] =⇒ x=y
by (drule zle-anti-sym-intify, auto)

lemma zle-trans-lemma:
[[x ∈ int; y ∈ int; z ∈ int; x $≤ y; y $≤ z]] =⇒ x $≤ z

apply (simp add: zle-def , auto)
apply (blast intro: zless-trans)
done

lemma zle-trans [trans]: [[x $≤ y; y $≤ z]] =⇒ x $≤ z
apply (subgoal-tac intify (x) $≤ intify (z) )
apply (rule-tac [2 ] y = intify (y) in zle-trans-lemma)
apply auto
done

lemma zle-zless-trans [trans]: [[i $≤ j; j $< k]] =⇒ i $< k
apply (auto simp add: zle-def )
apply (blast intro: zless-trans)
apply (simp add: zless-def zdiff-def zadd-def )
done

lemma zless-zle-trans [trans]: [[i $< j; j $≤ k]] =⇒ i $< k
apply (auto simp add: zle-def )
apply (blast intro: zless-trans)
apply (simp add: zless-def zdiff-def zminus-def )
done

lemma not-zless-iff-zle: ¬ (z $< w) ←→ (w $≤ z)
apply (cut-tac z = z and w = w in zless-linear)

316



apply (auto dest: zless-trans simp add: zle-def )
apply (auto dest!: zless-imp-intify-neq)
done

lemma not-zle-iff-zless: ¬ (z $≤ w) ←→ (w $< z)
by (simp add: not-zless-iff-zle [THEN iff-sym])

31.11 More subtraction laws (for zcompare-rls)
lemma zdiff-zdiff-eq: (x $− y) $− z = x $− (y $+ z)
by (simp add: zdiff-def zadd-ac)

lemma zdiff-zdiff-eq2 : x $− (y $− z) = (x $+ z) $− y
by (simp add: zdiff-def zadd-ac)

lemma zdiff-zless-iff : (x$−y $< z) ←→ (x $< z $+ y)
by (simp add: zless-def zdiff-def zadd-ac)

lemma zless-zdiff-iff : (x $< z$−y) ←→ (x $+ y $< z)
by (simp add: zless-def zdiff-def zadd-ac)

lemma zdiff-eq-iff : [[x ∈ int; z ∈ int]] =⇒ (x$−y = z) ←→ (x = z $+ y)
by (auto simp add: zdiff-def zadd-assoc)

lemma eq-zdiff-iff : [[x ∈ int; z ∈ int]] =⇒ (x = z$−y) ←→ (x $+ y = z)
by (auto simp add: zdiff-def zadd-assoc)

lemma zdiff-zle-iff-lemma:
[[x ∈ int; z ∈ int]] =⇒ (x$−y $≤ z) ←→ (x $≤ z $+ y)

by (auto simp add: zle-def zdiff-eq-iff zdiff-zless-iff )

lemma zdiff-zle-iff : (x$−y $≤ z) ←→ (x $≤ z $+ y)
by (cut-tac zdiff-zle-iff-lemma [OF intify-in-int intify-in-int], simp)

lemma zle-zdiff-iff-lemma:
[[x ∈ int; z ∈ int]] =⇒(x $≤ z$−y) ←→ (x $+ y $≤ z)

apply (auto simp add: zle-def zdiff-eq-iff zless-zdiff-iff )
apply (auto simp add: zdiff-def zadd-assoc)
done

lemma zle-zdiff-iff : (x $≤ z$−y) ←→ (x $+ y $≤ z)
by (cut-tac zle-zdiff-iff-lemma [ OF intify-in-int intify-in-int], simp)

This list of rewrites simplifies (in)equalities by bringing subtractions to the
top and then moving negative terms to the other side. Use with zadd-ac
lemmas zcompare-rls =

zdiff-def [symmetric]
zadd-zdiff-eq zdiff-zadd-eq zdiff-zdiff-eq zdiff-zdiff-eq2
zdiff-zless-iff zless-zdiff-iff zdiff-zle-iff zle-zdiff-iff
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zdiff-eq-iff eq-zdiff-iff

31.12 Monotonicity and Cancellation Results for Instantia-
tion of the CancelNumerals Simprocs

lemma zadd-left-cancel:
[[w ∈ int; w ′: int]] =⇒ (z $+ w ′ = z $+ w) ←→ (w ′ = w)

apply safe
apply (drule-tac t = λx. x $+ ($−z) in subst-context)
apply (simp add: zadd-ac)
done

lemma zadd-left-cancel-intify [simp]:
(z $+ w ′ = z $+ w) ←→ intify(w ′) = intify(w)

apply (rule iff-trans)
apply (rule-tac [2 ] zadd-left-cancel, auto)
done

lemma zadd-right-cancel:
[[w ∈ int; w ′: int]] =⇒ (w ′ $+ z = w $+ z) ←→ (w ′ = w)

apply safe
apply (drule-tac t = λx. x $+ ($−z) in subst-context)
apply (simp add: zadd-ac)
done

lemma zadd-right-cancel-intify [simp]:
(w ′ $+ z = w $+ z) ←→ intify(w ′) = intify(w)

apply (rule iff-trans)
apply (rule-tac [2 ] zadd-right-cancel, auto)
done

lemma zadd-right-cancel-zless [simp]: (w ′ $+ z $< w $+ z) ←→ (w ′ $< w)
by (simp add: zdiff-zless-iff [THEN iff-sym] zdiff-def zadd-assoc)

lemma zadd-left-cancel-zless [simp]: (z $+ w ′ $< z $+ w) ←→ (w ′ $< w)
by (simp add: zadd-commute [of z] zadd-right-cancel-zless)

lemma zadd-right-cancel-zle [simp]: (w ′ $+ z $≤ w $+ z) ←→ w ′ $≤ w
by (simp add: zle-def )

lemma zadd-left-cancel-zle [simp]: (z $+ w ′ $≤ z $+ w) ←→ w ′ $≤ w
by (simp add: zadd-commute [of z] zadd-right-cancel-zle)

lemmas zadd-zless-mono1 = zadd-right-cancel-zless [THEN iffD2 ]

lemmas zadd-zless-mono2 = zadd-left-cancel-zless [THEN iffD2 ]
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lemmas zadd-zle-mono1 = zadd-right-cancel-zle [THEN iffD2 ]

lemmas zadd-zle-mono2 = zadd-left-cancel-zle [THEN iffD2 ]

lemma zadd-zle-mono: [[w ′ $≤ w; z ′ $≤ z]] =⇒ w ′ $+ z ′ $≤ w $+ z
by (erule zadd-zle-mono1 [THEN zle-trans], simp)

lemma zadd-zless-mono: [[w ′ $< w; z ′ $≤ z]] =⇒ w ′ $+ z ′ $< w $+ z
by (erule zadd-zless-mono1 [THEN zless-zle-trans], simp)

31.13 Comparison laws
lemma zminus-zless-zminus [simp]: ($− x $< $− y) ←→ (y $< x)
by (simp add: zless-def zdiff-def zadd-ac)

lemma zminus-zle-zminus [simp]: ($− x $≤ $− y) ←→ (y $≤ x)
by (simp add: not-zless-iff-zle [THEN iff-sym])

31.13.1 More inequality lemmas
lemma equation-zminus: [[x ∈ int; y ∈ int]] =⇒ (x = $− y) ←→ (y = $− x)
by auto

lemma zminus-equation: [[x ∈ int; y ∈ int]] =⇒ ($− x = y) ←→ ($− y = x)
by auto

lemma equation-zminus-intify: (intify(x) = $− y) ←→ (intify(y) = $− x)
apply (cut-tac x = intify (x) and y = intify (y) in equation-zminus)
apply auto
done

lemma zminus-equation-intify: ($− x = intify(y)) ←→ ($− y = intify(x))
apply (cut-tac x = intify (x) and y = intify (y) in zminus-equation)
apply auto
done

31.13.2 The next several equations are permutative: watch out!
lemma zless-zminus: (x $< $− y) ←→ (y $< $− x)
by (simp add: zless-def zdiff-def zadd-ac)

lemma zminus-zless: ($− x $< y) ←→ ($− y $< x)
by (simp add: zless-def zdiff-def zadd-ac)

lemma zle-zminus: (x $≤ $− y) ←→ (y $≤ $− x)
by (simp add: not-zless-iff-zle [THEN iff-sym] zminus-zless)
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lemma zminus-zle: ($− x $≤ y) ←→ ($− y $≤ x)
by (simp add: not-zless-iff-zle [THEN iff-sym] zless-zminus)

end

32 Arithmetic on Binary Integers
theory Bin
imports Int Datatype
begin

consts bin :: i
datatype

bin = Pls
| Min
| Bit (w ∈ bin, b ∈ bool) (infixl ‹BIT › 90 )

consts
integ-of :: i⇒i
NCons :: [i,i]⇒i
bin-succ :: i⇒i
bin-pred :: i⇒i
bin-minus :: i⇒i
bin-adder :: i⇒i
bin-mult :: [i,i]⇒i

primrec
integ-of-Pls: integ-of (Pls) = $# 0
integ-of-Min: integ-of (Min) = $−($#1 )
integ-of-BIT : integ-of (w BIT b) = $#b $+ integ-of (w) $+ integ-of (w)

primrec
NCons-Pls: NCons (Pls,b) = cond(b,Pls BIT b,Pls)
NCons-Min: NCons (Min,b) = cond(b,Min,Min BIT b)
NCons-BIT : NCons (w BIT c,b) = w BIT c BIT b

primrec
bin-succ-Pls: bin-succ (Pls) = Pls BIT 1
bin-succ-Min: bin-succ (Min) = Pls
bin-succ-BIT : bin-succ (w BIT b) = cond(b, bin-succ(w) BIT 0 , NCons(w,1 ))

primrec
bin-pred-Pls: bin-pred (Pls) = Min
bin-pred-Min: bin-pred (Min) = Min BIT 0
bin-pred-BIT : bin-pred (w BIT b) = cond(b, NCons(w,0 ), bin-pred(w) BIT 1 )

primrec
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bin-minus-Pls:
bin-minus (Pls) = Pls

bin-minus-Min:
bin-minus (Min) = Pls BIT 1

bin-minus-BIT :
bin-minus (w BIT b) = cond(b, bin-pred(NCons(bin-minus(w),0 )),

bin-minus(w) BIT 0 )

primrec
bin-adder-Pls:

bin-adder (Pls) = (λw∈bin. w)
bin-adder-Min:

bin-adder (Min) = (λw∈bin. bin-pred(w))
bin-adder-BIT :

bin-adder (v BIT x) =
(λw∈bin.

bin-case (v BIT x, bin-pred(v BIT x),
λw y. NCons(bin-adder (v) ‘ cond(x and y, bin-succ(w), w),

x xor y),
w))

definition
bin-add :: [i,i]⇒i where

bin-add(v,w) ≡ bin-adder(v)‘w

primrec
bin-mult-Pls:

bin-mult (Pls,w) = Pls
bin-mult-Min:

bin-mult (Min,w) = bin-minus(w)
bin-mult-BIT :

bin-mult (v BIT b,w) = cond(b, bin-add(NCons(bin-mult(v,w),0 ),w),
NCons(bin-mult(v,w),0 ))

syntax
-Int0 :: i (‹#()0 ›)
-Int1 :: i (‹#()1 ›)
-Int2 :: i (‹#()2 ›)
-Neg-Int1 :: i (‹#−()1 ›)
-Neg-Int2 :: i (‹#−()2 ›)

translations
#0 
 CONST integ-of (CONST Pls)
#1 
 CONST integ-of (CONST Pls BIT 1 )
#2 
 CONST integ-of (CONST Pls BIT 1 BIT 0 )
#−1 
 CONST integ-of (CONST Min)
#−2 
 CONST integ-of (CONST Min BIT 0 )
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syntax
-Int :: num-token ⇒ i (‹(‹open-block notation=‹literal number››#-)› 1000 )
-Neg-Int :: num-token ⇒ i (‹(‹open-block notation=‹literal number››#−-)› 1000 )

syntax-consts
-Int0 -Int1 -Int2 -Int -Neg-Int1 -Neg-Int2 -Neg-Int 
 integ-of

ML-file ‹Tools/numeral-syntax.ML›

declare bin.intros [simp,TC ]

lemma NCons-Pls-0 : NCons(Pls,0 ) = Pls
by simp

lemma NCons-Pls-1 : NCons(Pls,1 ) = Pls BIT 1
by simp

lemma NCons-Min-0 : NCons(Min,0 ) = Min BIT 0
by simp

lemma NCons-Min-1 : NCons(Min,1 ) = Min
by simp

lemma NCons-BIT : NCons(w BIT x,b) = w BIT x BIT b
by (simp add: bin.case-eqns)

lemmas NCons-simps [simp] =
NCons-Pls-0 NCons-Pls-1 NCons-Min-0 NCons-Min-1 NCons-BIT

lemma integ-of-type [TC ]: w ∈ bin =⇒ integ-of (w) ∈ int
apply (induct-tac w)
apply (simp-all add: bool-into-nat)
done

lemma NCons-type [TC ]: [[w ∈ bin; b ∈ bool]] =⇒ NCons(w,b) ∈ bin
by (induct-tac w, auto)

lemma bin-succ-type [TC ]: w ∈ bin =⇒ bin-succ(w) ∈ bin
by (induct-tac w, auto)

lemma bin-pred-type [TC ]: w ∈ bin =⇒ bin-pred(w) ∈ bin
by (induct-tac w, auto)
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lemma bin-minus-type [TC ]: w ∈ bin =⇒ bin-minus(w) ∈ bin
by (induct-tac w, auto)

lemma bin-add-type [rule-format]:
v ∈ bin =⇒ ∀w∈bin. bin-add(v,w) ∈ bin

unfolding bin-add-def
apply (induct-tac v)
apply (rule-tac [3 ] ballI )
apply (rename-tac [3 ] w ′)
apply (induct-tac [3 ] w ′)
apply (simp-all add: NCons-type)
done

declare bin-add-type [TC ]

lemma bin-mult-type [TC ]: [[v ∈ bin; w ∈ bin]] =⇒ bin-mult(v,w) ∈ bin
by (induct-tac v, auto)

32.0.1 The Carry and Borrow Functions, bin-succ and bin-pred
lemma integ-of-NCons [simp]:

[[w ∈ bin; b ∈ bool]] =⇒ integ-of (NCons(w,b)) = integ-of (w BIT b)
apply (erule bin.cases)
apply (auto elim!: boolE)
done

lemma integ-of-succ [simp]:
w ∈ bin =⇒ integ-of (bin-succ(w)) = $#1 $+ integ-of (w)

apply (erule bin.induct)
apply (auto simp add: zadd-ac elim!: boolE)
done

lemma integ-of-pred [simp]:
w ∈ bin =⇒ integ-of (bin-pred(w)) = $− ($#1 ) $+ integ-of (w)

apply (erule bin.induct)
apply (auto simp add: zadd-ac elim!: boolE)
done

32.0.2 bin-minus: Unary Negation of Binary Integers
lemma integ-of-minus: w ∈ bin =⇒ integ-of (bin-minus(w)) = $− integ-of (w)
apply (erule bin.induct)
apply (auto simp add: zadd-ac zminus-zadd-distrib elim!: boolE)
done

32.0.3 bin-add: Binary Addition
lemma bin-add-Pls [simp]: w ∈ bin =⇒ bin-add(Pls,w) = w
by (unfold bin-add-def , simp)
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lemma bin-add-Pls-right: w ∈ bin =⇒ bin-add(w,Pls) = w
unfolding bin-add-def

apply (erule bin.induct, auto)
done

lemma bin-add-Min [simp]: w ∈ bin =⇒ bin-add(Min,w) = bin-pred(w)
by (unfold bin-add-def , simp)

lemma bin-add-Min-right: w ∈ bin =⇒ bin-add(w,Min) = bin-pred(w)
unfolding bin-add-def

apply (erule bin.induct, auto)
done

lemma bin-add-BIT-Pls [simp]: bin-add(v BIT x,Pls) = v BIT x
by (unfold bin-add-def , simp)

lemma bin-add-BIT-Min [simp]: bin-add(v BIT x,Min) = bin-pred(v BIT x)
by (unfold bin-add-def , simp)

lemma bin-add-BIT-BIT [simp]:
[[w ∈ bin; y ∈ bool]]
=⇒ bin-add(v BIT x, w BIT y) =

NCons(bin-add(v, cond(x and y, bin-succ(w), w)), x xor y)
by (unfold bin-add-def , simp)

lemma integ-of-add [rule-format]:
v ∈ bin =⇒
∀w∈bin. integ-of (bin-add(v,w)) = integ-of (v) $+ integ-of (w)

apply (erule bin.induct, simp, simp)
apply (rule ballI )
apply (induct-tac wa)
apply (auto simp add: zadd-ac elim!: boolE)
done

lemma diff-integ-of-eq:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $− integ-of (w) = integ-of (bin-add (v, bin-minus(w)))

unfolding zdiff-def
apply (simp add: integ-of-add integ-of-minus)
done

32.0.4 bin-mult: Binary Multiplication
lemma integ-of-mult:

[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (bin-mult(v,w)) = integ-of (v) $∗ integ-of (w)

apply (induct-tac v, simp)
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apply (simp add: integ-of-minus)
apply (auto simp add: zadd-ac integ-of-add zadd-zmult-distrib elim!: boolE)
done

32.1 Computations
lemma bin-succ-1 : bin-succ(w BIT 1 ) = bin-succ(w) BIT 0
by simp

lemma bin-succ-0 : bin-succ(w BIT 0 ) = NCons(w,1 )
by simp

lemma bin-pred-1 : bin-pred(w BIT 1 ) = NCons(w,0 )
by simp

lemma bin-pred-0 : bin-pred(w BIT 0 ) = bin-pred(w) BIT 1
by simp

lemma bin-minus-1 : bin-minus(w BIT 1 ) = bin-pred(NCons(bin-minus(w), 0 ))
by simp

lemma bin-minus-0 : bin-minus(w BIT 0 ) = bin-minus(w) BIT 0
by simp

lemma bin-add-BIT-11 : w ∈ bin =⇒ bin-add(v BIT 1 , w BIT 1 ) =
NCons(bin-add(v, bin-succ(w)), 0 )

by simp

lemma bin-add-BIT-10 : w ∈ bin =⇒ bin-add(v BIT 1 , w BIT 0 ) =
NCons(bin-add(v,w), 1 )

by simp

lemma bin-add-BIT-0 : [[w ∈ bin; y ∈ bool]]
=⇒ bin-add(v BIT 0 , w BIT y) = NCons(bin-add(v,w), y)

by simp

lemma bin-mult-1 : bin-mult(v BIT 1 , w) = bin-add(NCons(bin-mult(v,w),0 ), w)
by simp

lemma bin-mult-0 : bin-mult(v BIT 0 , w) = NCons(bin-mult(v,w),0 )
by simp
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lemma int-of-0 : $#0 = #0
by simp

lemma int-of-succ: $# succ(n) = #1 $+ $#n
by (simp add: int-of-add [symmetric] natify-succ)

lemma zminus-0 [simp]: $− #0 = #0
by simp

lemma zadd-0-intify [simp]: #0 $+ z = intify(z)
by simp

lemma zadd-0-right-intify [simp]: z $+ #0 = intify(z)
by simp

lemma zmult-1-intify [simp]: #1 $∗ z = intify(z)
by simp

lemma zmult-1-right-intify [simp]: z $∗ #1 = intify(z)
by (subst zmult-commute, simp)

lemma zmult-0 [simp]: #0 $∗ z = #0
by simp

lemma zmult-0-right [simp]: z $∗ #0 = #0
by (subst zmult-commute, simp)

lemma zmult-minus1 [simp]: #−1 $∗ z = $−z
by (simp add: zcompare-rls)

lemma zmult-minus1-right [simp]: z $∗ #−1 = $−z
apply (subst zmult-commute)
apply (rule zmult-minus1 )
done

32.2 Simplification Rules for Comparison of Binary Num-
bers

Thanks to Norbert Voelker
lemma eq-integ-of-eq:

[[v ∈ bin; w ∈ bin]]
=⇒ ((integ-of (v)) = integ-of (w)) ←→

iszero (integ-of (bin-add (v, bin-minus(w))))
unfolding iszero-def

apply (simp add: zcompare-rls integ-of-add integ-of-minus)
done
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lemma iszero-integ-of-Pls: iszero (integ-of (Pls))
by (unfold iszero-def , simp)

lemma nonzero-integ-of-Min: ¬ iszero (integ-of (Min))
unfolding iszero-def

apply (simp add: zminus-equation)
done

lemma iszero-integ-of-BIT :
[[w ∈ bin; x ∈ bool]]
=⇒ iszero (integ-of (w BIT x)) ←→ (x=0 ∧ iszero (integ-of (w)))

apply (unfold iszero-def , simp)
apply (subgoal-tac integ-of (w) ∈ int)
apply typecheck
apply (drule int-cases)
apply (safe elim!: boolE)
apply (simp-all (asm-lr) add: zcompare-rls zminus-zadd-distrib [symmetric]

int-of-add [symmetric])
done

lemma iszero-integ-of-0 :
w ∈ bin =⇒ iszero (integ-of (w BIT 0 )) ←→ iszero (integ-of (w))

by (simp only: iszero-integ-of-BIT , blast)

lemma iszero-integ-of-1 : w ∈ bin =⇒ ¬ iszero (integ-of (w BIT 1 ))
by (simp only: iszero-integ-of-BIT , blast)

lemma less-integ-of-eq-neg:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $< integ-of (w)
←→ znegative (integ-of (bin-add (v, bin-minus(w))))

unfolding zless-def zdiff-def
apply (simp add: integ-of-minus integ-of-add)
done

lemma not-neg-integ-of-Pls: ¬ znegative (integ-of (Pls))
by simp

lemma neg-integ-of-Min: znegative (integ-of (Min))
by simp

lemma neg-integ-of-BIT :
[[w ∈ bin; x ∈ bool]]
=⇒ znegative (integ-of (w BIT x)) ←→ znegative (integ-of (w))
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apply simp
apply (subgoal-tac integ-of (w) ∈ int)
apply typecheck
apply (drule int-cases)
apply (auto elim!: boolE simp add: int-of-add [symmetric] zcompare-rls)
apply (simp-all add: zminus-zadd-distrib [symmetric] zdiff-def

int-of-add [symmetric])
apply (subgoal-tac $#1 $− $# succ (succ (n #+ n)) = $− $# succ (n #+ n) )
apply (simp add: zdiff-def )

apply (simp add: equation-zminus int-of-diff [symmetric])
done

lemma le-integ-of-eq-not-less:
(integ-of (x) $≤ (integ-of (w))) ←→ ¬ (integ-of (w) $< (integ-of (x)))

by (simp add: not-zless-iff-zle [THEN iff-sym])

declare bin-succ-BIT [simp del]
bin-pred-BIT [simp del]
bin-minus-BIT [simp del]
NCons-Pls [simp del]
NCons-Min [simp del]
bin-adder-BIT [simp del]
bin-mult-BIT [simp del]

declare integ-of-Pls [simp del] integ-of-Min [simp del] integ-of-BIT [simp del]

lemmas bin-arith-extra-simps =
integ-of-add [symmetric]
integ-of-minus [symmetric]
integ-of-mult [symmetric]
bin-succ-1 bin-succ-0
bin-pred-1 bin-pred-0
bin-minus-1 bin-minus-0
bin-add-Pls-right bin-add-Min-right
bin-add-BIT-0 bin-add-BIT-10 bin-add-BIT-11
diff-integ-of-eq
bin-mult-1 bin-mult-0 NCons-simps

lemmas bin-arith-simps =
bin-pred-Pls bin-pred-Min
bin-succ-Pls bin-succ-Min
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bin-add-Pls bin-add-Min
bin-minus-Pls bin-minus-Min
bin-mult-Pls bin-mult-Min
bin-arith-extra-simps

lemmas bin-rel-simps =
eq-integ-of-eq iszero-integ-of-Pls nonzero-integ-of-Min
iszero-integ-of-0 iszero-integ-of-1
less-integ-of-eq-neg
not-neg-integ-of-Pls neg-integ-of-Min neg-integ-of-BIT
le-integ-of-eq-not-less

declare bin-arith-simps [simp]
declare bin-rel-simps [simp]

lemma add-integ-of-left [simp]:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $+ (integ-of (w) $+ z) = (integ-of (bin-add(v,w)) $+ z)

by (simp add: zadd-assoc [symmetric])

lemma mult-integ-of-left [simp]:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $∗ (integ-of (w) $∗ z) = (integ-of (bin-mult(v,w)) $∗ z)

by (simp add: zmult-assoc [symmetric])

lemma add-integ-of-diff1 [simp]:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $+ (integ-of (w) $− c) = integ-of (bin-add(v,w)) $− (c)

unfolding zdiff-def
apply (rule add-integ-of-left, auto)
done

lemma add-integ-of-diff2 [simp]:
[[v ∈ bin; w ∈ bin]]
=⇒ integ-of (v) $+ (c $− integ-of (w)) =

integ-of (bin-add (v, bin-minus(w))) $+ (c)
apply (subst diff-integ-of-eq [symmetric])
apply (simp-all add: zdiff-def zadd-ac)
done

declare int-of-0 [simp] int-of-succ [simp]
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lemma zdiff0 [simp]: #0 $− x = $−x
by (simp add: zdiff-def )

lemma zdiff0-right [simp]: x $− #0 = intify(x)
by (simp add: zdiff-def )

lemma zdiff-self [simp]: x $− x = #0
by (simp add: zdiff-def )

lemma znegative-iff-zless-0 : k ∈ int =⇒ znegative(k) ←→ k $< #0
by (simp add: zless-def )

lemma zero-zless-imp-znegative-zminus: [[#0 $< k; k ∈ int]] =⇒ znegative($−k)
by (simp add: zless-def )

lemma zero-zle-int-of [simp]: #0 $≤ $# n
by (simp add: not-zless-iff-zle [THEN iff-sym] znegative-iff-zless-0 [THEN iff-sym])

lemma nat-of-0 [simp]: nat-of (#0 ) = 0
by (simp only: natify-0 int-of-0 [symmetric] nat-of-int-of )

lemma nat-le-int0-lemma: [[z $≤ $#0 ; z ∈ int]] =⇒ nat-of (z) = 0
by (auto simp add: znegative-iff-zless-0 [THEN iff-sym] zle-def zneg-nat-of )

lemma nat-le-int0 : z $≤ $#0 =⇒ nat-of (z) = 0
apply (subgoal-tac nat-of (intify (z)) = 0 )
apply (rule-tac [2 ] nat-le-int0-lemma, auto)
done

lemma int-of-eq-0-imp-natify-eq-0 : $# n = #0 =⇒ natify(n) = 0
by (rule not-znegative-imp-zero, auto)

lemma nat-of-zminus-int-of : nat-of ($− $# n) = 0
by (simp add: nat-of-def int-of-def raw-nat-of zminus image-intrel-int)

lemma int-of-nat-of : #0 $≤ z =⇒ $# nat-of (z) = intify(z)
apply (rule not-zneg-nat-of-intify)
apply (simp add: znegative-iff-zless-0 not-zless-iff-zle)
done

declare int-of-nat-of [simp] nat-of-zminus-int-of [simp]

lemma int-of-nat-of-if : $# nat-of (z) = (if #0 $≤ z then intify(z) else #0 )
by (simp add: int-of-nat-of znegative-iff-zless-0 not-zle-iff-zless)

lemma zless-nat-iff-int-zless: [[m ∈ nat; z ∈ int]] =⇒ (m < nat-of (z)) ←→ ($#m
$< z)
apply (case-tac znegative (z) )
apply (erule-tac [2 ] not-zneg-nat-of [THEN subst])

330



apply (auto dest: zless-trans dest!: zero-zle-int-of [THEN zle-zless-trans]
simp add: znegative-iff-zless-0 )

done

lemma zless-nat-conj-lemma: $#0 $< z =⇒ (nat-of (w) < nat-of (z)) ←→ (w $<
z)
apply (rule iff-trans)
apply (rule zless-int-of [THEN iff-sym])
apply (auto simp add: int-of-nat-of-if simp del: zless-int-of )
apply (auto elim: zless-asym simp add: not-zle-iff-zless)
apply (blast intro: zless-zle-trans)
done

lemma zless-nat-conj: (nat-of (w) < nat-of (z)) ←→ ($#0 $< z ∧ w $< z)
apply (case-tac $#0 $< z)
apply (auto simp add: zless-nat-conj-lemma nat-le-int0 not-zless-iff-zle)
done

lemma integ-of-minus-reorient [simp]:
(integ-of (w) = $− x) ←→ ($− x = integ-of (w))

by auto

lemma integ-of-add-reorient [simp]:
(integ-of (w) = x $+ y) ←→ (x $+ y = integ-of (w))

by auto

lemma integ-of-diff-reorient [simp]:
(integ-of (w) = x $− y) ←→ (x $− y = integ-of (w))

by auto

lemma integ-of-mult-reorient [simp]:
(integ-of (w) = x $∗ y) ←→ (x $∗ y = integ-of (w))

by auto

lemmas [simp] =
zminus-equation [where y = integ-of (w)]
equation-zminus [where x = integ-of (w)]
for w

lemmas [iff ] =
zminus-zless [where y = integ-of (w)]
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zless-zminus [where x = integ-of (w)]
for w

lemmas [iff ] =
zminus-zle [where y = integ-of (w)]
zle-zminus [where x = integ-of (w)]
for w

lemmas [simp] =
Let-def [where s = integ-of (w)] for w

lemma zless-iff-zdiff-zless-0 : (x $< y) ←→ (x$−y $< #0 )
by (simp add: zcompare-rls)

lemma eq-iff-zdiff-eq-0 : [[x ∈ int; y ∈ int]] =⇒ (x = y) ←→ (x$−y = #0 )
by (simp add: zcompare-rls)

lemma zle-iff-zdiff-zle-0 : (x $≤ y) ←→ (x$−y $≤ #0 )
by (simp add: zcompare-rls)

lemma left-zadd-zmult-distrib: i$∗u $+ (j$∗u $+ k) = (i$+j)$∗u $+ k
by (simp add: zadd-zmult-distrib zadd-ac)

lemma eq-add-iff1 : (i$∗u $+ m = j$∗u $+ n) ←→ ((i$−j)$∗u $+ m = intify(n))
apply (simp add: zdiff-def zadd-zmult-distrib)
apply (simp add: zcompare-rls)
apply (simp add: zadd-ac)
done

lemma eq-add-iff2 : (i$∗u $+ m = j$∗u $+ n) ←→ (intify(m) = (j$−i)$∗u $+ n)
apply (simp add: zdiff-def zadd-zmult-distrib)
apply (simp add: zcompare-rls)
apply (simp add: zadd-ac)
done

context fixes n :: i
begin
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lemmas rel-iff-rel-0-rls =
zless-iff-zdiff-zless-0 [where y = u $+ v]
eq-iff-zdiff-eq-0 [where y = u $+ v]
zle-iff-zdiff-zle-0 [where y = u $+ v]
zless-iff-zdiff-zless-0 [where y = n]
eq-iff-zdiff-eq-0 [where y = n]
zle-iff-zdiff-zle-0 [where y = n]
for u v

lemma less-add-iff1 : (i$∗u $+ m $< j$∗u $+ n) ←→ ((i$−j)$∗u $+ m $< n)
apply (simp add: zdiff-def zadd-zmult-distrib zadd-ac rel-iff-rel-0-rls)
done

lemma less-add-iff2 : (i$∗u $+ m $< j$∗u $+ n) ←→ (m $< (j$−i)$∗u $+ n)
apply (simp add: zdiff-def zadd-zmult-distrib zadd-ac rel-iff-rel-0-rls)
done

end

lemma le-add-iff1 : (i$∗u $+ m $≤ j$∗u $+ n) ←→ ((i$−j)$∗u $+ m $≤ n)
apply (simp add: zdiff-def zadd-zmult-distrib)
apply (simp add: zcompare-rls)
apply (simp add: zadd-ac)
done

lemma le-add-iff2 : (i$∗u $+ m $≤ j$∗u $+ n) ←→ (m $≤ (j$−i)$∗u $+ n)
apply (simp add: zdiff-def zadd-zmult-distrib)
apply (simp add: zcompare-rls)
apply (simp add: zadd-ac)
done

ML-file ‹int-arith.ML›

simproc-setup inteq-cancel-numerals
(l $+ m = n | l = m $+ n | l $− m = n | l = m $− n | l $∗ m = n | l = m $∗

n) =
‹K Int-Numeral-Simprocs.inteq-cancel-numerals-proc›

simproc-setup intless-cancel-numerals
(l $+ m $< n | l $< m $+ n | l $− m $< n | l $< m $− n | l $∗ m $< n | l $<

m $∗ n) =
‹K Int-Numeral-Simprocs.intless-cancel-numerals-proc›

simproc-setup intle-cancel-numerals
(l $+ m $≤ n | l $≤ m $+ n | l $− m $≤ n | l $≤ m $− n | l $∗ m $≤ n | l $≤

m $∗ n) =
‹K Int-Numeral-Simprocs.intle-cancel-numerals-proc›

simproc-setup int-combine-numerals (i $+ j | i $− j) =
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‹K Int-Numeral-Simprocs.int-combine-numerals-proc›

simproc-setup int-combine-numerals-prod (i $∗ j) =
‹K Int-Numeral-Simprocs.int-combine-numerals-prod-proc›

32.2.1 Examples

combine-numerals-prod (products of separate literals)
lemma #5 $∗ x $∗ #3 = y apply simp oops

schematic-goal y2 $+ ?x42 = y $+ y2 apply simp oops

lemma oo : int =⇒ l $+ (l $+ #2 ) $+ oo = oo apply simp oops

lemma #9$∗x $+ y = x$∗#23 $+ z apply simp oops
lemma y $+ x = x $+ z apply simp oops

lemma x : int =⇒ x $+ y $+ z = x $+ z apply simp oops
lemma x : int =⇒ y $+ (z $+ x) = z $+ x apply simp oops
lemma z : int =⇒ x $+ y $+ z = (z $+ y) $+ (x $+ w) apply simp oops
lemma z : int =⇒ x$∗y $+ z = (z $+ y) $+ (y$∗x $+ w) apply simp oops

lemma #−3 $∗ x $+ y $≤ x $∗ #2 $+ z apply simp oops
lemma y $+ x $≤ x $+ z apply simp oops
lemma x $+ y $+ z $≤ x $+ z apply simp oops

lemma y $+ (z $+ x) $< z $+ x apply simp oops
lemma x $+ y $+ z $< (z $+ y) $+ (x $+ w) apply simp oops
lemma x$∗y $+ z $< (z $+ y) $+ (y$∗x $+ w) apply simp oops

lemma l $+ #2 $+ #2 $+ #2 $+ (l $+ #2 ) $+ (oo $+ #2 ) = uu apply simp
oops
lemma u : int =⇒ #2 $∗ u = u apply simp oops
lemma (i $+ j $+ #12 $+ k) $− #15 = y apply simp oops
lemma (i $+ j $+ #12 $+ k) $− #5 = y apply simp oops

lemma y $− b $< b apply simp oops
lemma y $− (#3 $∗ b $+ c) $< b $− #2 $∗ c apply simp oops

lemma (#2 $∗ x $− (u $∗ v) $+ y) $− v $∗ #3 $∗ u = w apply simp oops
lemma (#2 $∗ x $∗ u $∗ v $+ (u $∗ v) $∗ #4 $+ y) $− v $∗ u $∗ #4 = w
apply simp oops
lemma (#2 $∗ x $∗ u $∗ v $+ (u $∗ v) $∗ #4 $+ y) $− v $∗ u = w apply simp
oops
lemma u $∗ v $− (x $∗ u $∗ v $+ (u $∗ v) $∗ #4 $+ y) = w apply simp oops

lemma (i $+ j $+ #12 $+ k) = u $+ #15 $+ y apply simp oops
lemma (i $+ j $∗ #2 $+ #12 $+ k) = j $+ #5 $+ y apply simp oops
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lemma #2 $∗ y $+ #3 $∗ z $+ #6 $∗ w $+ #2 $∗ y $+ #3 $∗ z $+ #2 $∗
u = #2 $∗ y ′ $+ #3 $∗ z ′ $+ #6 $∗ w ′ $+ #2 $∗ y ′ $+ #3 $∗ z ′ $+ u $+ vv
apply simp oops

lemma a $+ $−(b$+c) $+ b = d apply simp oops
lemma a $+ $−(b$+c) $− b = d apply simp oops

negative numerals
lemma (i $+ j $+ #−2 $+ k) $− (u $+ #5 $+ y) = zz apply simp oops
lemma (i $+ j $+ #−3 $+ k) $< u $+ #5 $+ y apply simp oops
lemma (i $+ j $+ #3 $+ k) $< u $+ #−6 $+ y apply simp oops
lemma (i $+ j $+ #−12 $+ k) $− #15 = y apply simp oops
lemma (i $+ j $+ #12 $+ k) $− #−15 = y apply simp oops
lemma (i $+ j $+ #−12 $+ k) $− #−15 = y apply simp oops

Multiplying separated numerals
lemma #6 $∗ ($# x $∗ #2 ) = uu apply simp oops
lemma #4 $∗ ($# x $∗ $# x) $∗ (#2 $∗ $# x) = uu apply simp oops

end

33 The Division Operators Div and Mod
theory IntDiv
imports Bin OrderArith
begin

definition
quorem :: [i,i] ⇒ o where

quorem ≡ λ〈a,b〉 〈q,r〉.
a = b$∗q $+ r ∧
(#0$<b ∧ #0$≤r ∧ r$<b | ¬(#0$<b) ∧ b$<r ∧ r $≤ #0 )

definition
adjust :: [i,i] ⇒ i where

adjust(b) ≡ λ〈q,r〉. if #0 $≤ r$−b then <#2$∗q $+ #1 ,r$−b>
else <#2$∗q,r>

definition
posDivAlg :: i ⇒ i where

posDivAlg(ab) ≡
wfrec(measure(int∗int, λ〈a,b〉. nat-of (a $− b $+ #1 )),

ab,
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λ〈a,b〉 f . if (a$<b | b$≤#0 ) then <#0 ,a>
else adjust(b, f ‘ <a,#2$∗b>))

definition
negDivAlg :: i ⇒ i where

negDivAlg(ab) ≡
wfrec(measure(int∗int, λ〈a,b〉. nat-of ($− a $− b)),

ab,
λ〈a,b〉 f . if (#0 $≤ a$+b | b$≤#0 ) then <#−1 ,a$+b>

else adjust(b, f ‘ <a,#2$∗b>))

definition
negateSnd :: i ⇒ i where

negateSnd ≡ λ〈q,r〉. <q, $−r>

definition
divAlg :: i ⇒ i where

divAlg ≡
λ〈a,b〉. if #0 $≤ a then

if #0 $≤ b then posDivAlg (〈a,b〉)
else if a=#0 then <#0 ,#0>

else negateSnd (negDivAlg (<$−a,$−b>))
else

if #0$<b then negDivAlg (〈a,b〉)
else negateSnd (posDivAlg (<$−a,$−b>))

definition
zdiv :: [i,i]⇒i (infixl ‹zdiv› 70 ) where

a zdiv b ≡ fst (divAlg (<intify(a), intify(b)>))

definition
zmod :: [i,i]⇒i (infixl ‹zmod› 70 ) where

a zmod b ≡ snd (divAlg (<intify(a), intify(b)>))

lemma zspos-add-zspos-imp-zspos: [[#0 $< x; #0 $< y]] =⇒ #0 $< x $+ y
apply (rule-tac y = y in zless-trans)
apply (rule-tac [2 ] zdiff-zless-iff [THEN iffD1 ])
apply auto
done
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lemma zpos-add-zpos-imp-zpos: [[#0 $≤ x; #0 $≤ y]] =⇒ #0 $≤ x $+ y
apply (rule-tac y = y in zle-trans)
apply (rule-tac [2 ] zdiff-zle-iff [THEN iffD1 ])
apply auto
done

lemma zneg-add-zneg-imp-zneg: [[x $< #0 ; y $< #0 ]] =⇒ x $+ y $< #0
apply (rule-tac y = y in zless-trans)
apply (rule zless-zdiff-iff [THEN iffD1 ])
apply auto
done

lemma zneg-or-0-add-zneg-or-0-imp-zneg-or-0 :
[[x $≤ #0 ; y $≤ #0 ]] =⇒ x $+ y $≤ #0

apply (rule-tac y = y in zle-trans)
apply (rule zle-zdiff-iff [THEN iffD1 ])
apply auto
done

lemma zero-lt-zmagnitude: [[#0 $< k; k ∈ int]] =⇒ 0 < zmagnitude(k)
apply (drule zero-zless-imp-znegative-zminus)
apply (drule-tac [2 ] zneg-int-of )
apply (auto simp add: zminus-equation [of k])
apply (subgoal-tac 0 < zmagnitude ($# succ (n)))
apply simp

apply (simp only: zmagnitude-int-of )
apply simp
done

lemma zless-add-succ-iff :
(w $< z $+ $# succ(m)) ←→ (w $< z $+ $#m | intify(w) = z $+ $#m)

apply (auto simp add: zless-iff-succ-zadd zadd-assoc int-of-add [symmetric])
apply (rule-tac [3 ] x = 0 in bexI )
apply (cut-tac m = m in int-succ-int-1 )
apply (cut-tac m = n in int-succ-int-1 )
apply simp
apply (erule natE)
apply auto
apply (rule-tac x = succ (n) in bexI )
apply auto
done

lemma zadd-succ-lemma:
z ∈ int =⇒ (w $+ $# succ(m) $≤ z) ←→ (w $+ $#m $< z)

apply (simp only: not-zless-iff-zle [THEN iff-sym] zless-add-succ-iff )
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apply (auto intro: zle-anti-sym elim: zless-asym
simp add: zless-imp-zle not-zless-iff-zle)

done

lemma zadd-succ-zle-iff : (w $+ $# succ(m) $≤ z) ←→ (w $+ $#m $< z)
apply (cut-tac z = intify (z) in zadd-succ-lemma)
apply auto
done

lemma zless-add1-iff-zle: (w $< z $+ #1 ) ←→ (w$≤z)
apply (subgoal-tac #1 = $# 1 )
apply (simp only: zless-add-succ-iff zle-def )
apply auto
done

lemma add1-zle-iff : (w $+ #1 $≤ z) ←→ (w $< z)
apply (subgoal-tac #1 = $# 1 )
apply (simp only: zadd-succ-zle-iff )
apply auto
done

lemma add1-left-zle-iff : (#1 $+ w $≤ z) ←→ (w $< z)
apply (subst zadd-commute)
apply (rule add1-zle-iff )
done

lemma zmult-mono-lemma: k ∈ nat =⇒ i $≤ j =⇒ i $∗ $#k $≤ j $∗ $#k
apply (induct-tac k)
prefer 2 apply (subst int-succ-int-1 )

apply (simp-all (no-asm-simp) add: zadd-zmult-distrib2 zadd-zle-mono)
done

lemma zmult-zle-mono1 : [[i $≤ j; #0 $≤ k]] =⇒ i$∗k $≤ j$∗k
apply (subgoal-tac i $∗ intify (k) $≤ j $∗ intify (k) )
apply (simp (no-asm-use))
apply (rule-tac b = intify (k) in not-zneg-mag [THEN subst])
apply (rule-tac [3 ] zmult-mono-lemma)
apply auto
apply (simp add: znegative-iff-zless-0 not-zless-iff-zle [THEN iff-sym])
done

lemma zmult-zle-mono1-neg: [[i $≤ j; k $≤ #0 ]] =⇒ j$∗k $≤ i$∗k
apply (rule zminus-zle-zminus [THEN iffD1 ])
apply (simp del: zmult-zminus-right
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add: zmult-zminus-right [symmetric] zmult-zle-mono1 zle-zminus)
done

lemma zmult-zle-mono2 : [[i $≤ j; #0 $≤ k]] =⇒ k$∗i $≤ k$∗j
apply (drule zmult-zle-mono1 )
apply (simp-all add: zmult-commute)
done

lemma zmult-zle-mono2-neg: [[i $≤ j; k $≤ #0 ]] =⇒ k$∗j $≤ k$∗i
apply (drule zmult-zle-mono1-neg)
apply (simp-all add: zmult-commute)
done

lemma zmult-zle-mono:
[[i $≤ j; k $≤ l; #0 $≤ j; #0 $≤ k]] =⇒ i$∗k $≤ j$∗l

apply (erule zmult-zle-mono1 [THEN zle-trans])
apply assumption
apply (erule zmult-zle-mono2 )
apply assumption
done

lemma zmult-zless-mono2-lemma [rule-format]:
[[i$<j; k ∈ nat]] =⇒ 0<k −→ $#k $∗ i $< $#k $∗ j

apply (induct-tac k)
prefer 2
apply (subst int-succ-int-1 )
apply (erule natE)

apply (simp-all add: zadd-zmult-distrib zadd-zless-mono zle-def )
apply (frule nat-0-le)
apply (subgoal-tac i $+ (i $+ $# xa $∗ i) $< j $+ (j $+ $# xa $∗ j) )
apply (simp (no-asm-use))
apply (rule zadd-zless-mono)
apply (simp-all (no-asm-simp) add: zle-def )
done

lemma zmult-zless-mono2 : [[i$<j; #0 $< k]] =⇒ k$∗i $< k$∗j
apply (subgoal-tac intify (k) $∗ i $< intify (k) $∗ j)
apply (simp (no-asm-use))
apply (rule-tac b = intify (k) in not-zneg-mag [THEN subst])
apply (rule-tac [3 ] zmult-zless-mono2-lemma)
apply auto
apply (simp add: znegative-iff-zless-0 )
apply (drule zless-trans, assumption)
apply (auto simp add: zero-lt-zmagnitude)
done
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lemma zmult-zless-mono1 : [[i$<j; #0 $< k]] =⇒ i$∗k $< j$∗k
apply (drule zmult-zless-mono2 )
apply (simp-all add: zmult-commute)
done

lemma zmult-zless-mono:
[[i $< j; k $< l; #0 $< j; #0 $< k]] =⇒ i$∗k $< j$∗l

apply (erule zmult-zless-mono1 [THEN zless-trans])
apply assumption
apply (erule zmult-zless-mono2 )
apply assumption
done

lemma zmult-zless-mono1-neg: [[i $< j; k $< #0 ]] =⇒ j$∗k $< i$∗k
apply (rule zminus-zless-zminus [THEN iffD1 ])
apply (simp del: zmult-zminus-right

add: zmult-zminus-right [symmetric] zmult-zless-mono1 zless-zminus)
done

lemma zmult-zless-mono2-neg: [[i $< j; k $< #0 ]] =⇒ k$∗j $< k$∗i
apply (rule zminus-zless-zminus [THEN iffD1 ])
apply (simp del: zmult-zminus

add: zmult-zminus [symmetric] zmult-zless-mono2 zless-zminus)
done

lemma zmult-eq-lemma:
[[m ∈ int; n ∈ int]] =⇒ (m = #0 | n = #0 ) ←→ (m$∗n = #0 )

apply (case-tac m $< #0 )
apply (auto simp add: not-zless-iff-zle zle-def neq-iff-zless)
apply (force dest: zmult-zless-mono1-neg zmult-zless-mono1 )+
done

lemma zmult-eq-0-iff [iff ]: (m$∗n = #0 ) ←→ (intify(m) = #0 | intify(n) = #0 )
apply (simp add: zmult-eq-lemma)
done

lemma zmult-zless-lemma:
[[k ∈ int; m ∈ int; n ∈ int]]
=⇒ (m$∗k $< n$∗k) ←→ ((#0 $< k ∧ m$<n) | (k $< #0 ∧ n$<m))

apply (case-tac k = #0 )
apply (auto simp add: neq-iff-zless zmult-zless-mono1 zmult-zless-mono1-neg)
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apply (auto simp add: not-zless-iff-zle
not-zle-iff-zless [THEN iff-sym, of m$∗k]
not-zle-iff-zless [THEN iff-sym, of m])

apply (auto simp add: zless-imp-zle zmult-zle-mono1 zmult-zle-mono1-neg)
done

lemma zmult-zless-cancel2 :
(m$∗k $< n$∗k) ←→ ((#0 $< k ∧ m$<n) | (k $< #0 ∧ n$<m))

apply (cut-tac k = intify (k) and m = intify (m) and n = intify (n)
in zmult-zless-lemma)

apply auto
done

lemma zmult-zless-cancel1 :
(k$∗m $< k$∗n) ←→ ((#0 $< k ∧ m$<n) | (k $< #0 ∧ n$<m))

by (simp add: zmult-commute [of k] zmult-zless-cancel2 )

lemma zmult-zle-cancel2 :
(m$∗k $≤ n$∗k) ←→ ((#0 $< k −→ m$≤n) ∧ (k $< #0 −→ n$≤m))

by (auto simp add: not-zless-iff-zle [THEN iff-sym] zmult-zless-cancel2 )

lemma zmult-zle-cancel1 :
(k$∗m $≤ k$∗n) ←→ ((#0 $< k −→ m$≤n) ∧ (k $< #0 −→ n$≤m))

by (auto simp add: not-zless-iff-zle [THEN iff-sym] zmult-zless-cancel1 )

lemma int-eq-iff-zle: [[m ∈ int; n ∈ int]] =⇒ m=n ←→ (m $≤ n ∧ n $≤ m)
apply (blast intro: zle-refl zle-anti-sym)
done

lemma zmult-cancel2-lemma:
[[k ∈ int; m ∈ int; n ∈ int]] =⇒ (m$∗k = n$∗k) ←→ (k=#0 | m=n)

apply (simp add: int-eq-iff-zle [of m$∗k] int-eq-iff-zle [of m])
apply (auto simp add: zmult-zle-cancel2 neq-iff-zless)
done

lemma zmult-cancel2 [simp]:
(m$∗k = n$∗k) ←→ (intify(k) = #0 | intify(m) = intify(n))

apply (rule iff-trans)
apply (rule-tac [2 ] zmult-cancel2-lemma)
apply auto
done

lemma zmult-cancel1 [simp]:
(k$∗m = k$∗n) ←→ (intify(k) = #0 | intify(m) = intify(n))

by (simp add: zmult-commute [of k] zmult-cancel2 )
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33.1 Uniqueness and monotonicity of quotients and remain-
ders

lemma unique-quotient-lemma:
[[b$∗q ′ $+ r ′ $≤ b$∗q $+ r ; #0 $≤ r ′; #0 $< b; r $< b]]
=⇒ q ′ $≤ q

apply (subgoal-tac r ′ $+ b $∗ (q ′$−q) $≤ r)
prefer 2 apply (simp add: zdiff-zmult-distrib2 zadd-ac zcompare-rls)

apply (subgoal-tac #0 $< b $∗ (#1 $+ q $− q ′) )
prefer 2
apply (erule zle-zless-trans)
apply (simp add: zdiff-zmult-distrib2 zadd-zmult-distrib2 zadd-ac zcompare-rls)
apply (erule zle-zless-trans)
apply simp

apply (subgoal-tac b $∗ q ′ $< b $∗ (#1 $+ q))
prefer 2
apply (simp add: zdiff-zmult-distrib2 zadd-zmult-distrib2 zadd-ac zcompare-rls)

apply (auto elim: zless-asym
simp add: zmult-zless-cancel1 zless-add1-iff-zle zadd-ac zcompare-rls)

done

lemma unique-quotient-lemma-neg:
[[b$∗q ′ $+ r ′ $≤ b$∗q $+ r ; r $≤ #0 ; b $< #0 ; b $< r ′]]
=⇒ q $≤ q ′

apply (rule-tac b = $−b and r = $−r ′ and r ′ = $−r
in unique-quotient-lemma)

apply (auto simp del: zminus-zadd-distrib
simp add: zminus-zadd-distrib [symmetric] zle-zminus zless-zminus)

done

lemma unique-quotient:
[[quorem (〈a,b〉, 〈q,r〉); quorem (〈a,b〉, <q ′,r ′>); b ∈ int; b 6= #0 ;

q ∈ int; q ′ ∈ int]] =⇒ q = q ′

apply (simp add: split-ifs quorem-def neq-iff-zless)
apply safe
apply simp-all
apply (blast intro: zle-anti-sym

dest: zle-eq-refl [THEN unique-quotient-lemma]
zle-eq-refl [THEN unique-quotient-lemma-neg] sym)+

done

lemma unique-remainder :
[[quorem (〈a,b〉, 〈q,r〉); quorem (〈a,b〉, <q ′,r ′>); b ∈ int; b 6= #0 ;

q ∈ int; q ′ ∈ int;
r ∈ int; r ′ ∈ int]] =⇒ r = r ′

apply (subgoal-tac q = q ′)
prefer 2 apply (blast intro: unique-quotient)

apply (simp add: quorem-def )
done
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33.2 Correctness of posDivAlg, the Division Algorithm for
a≥0 and b>0

lemma adjust-eq [simp]:
adjust(b, 〈q,r〉) = (let diff = r$−b in

if #0 $≤ diff then <#2$∗q $+ #1 ,diff>
else <#2$∗q,r>)

by (simp add: Let-def adjust-def )

lemma posDivAlg-termination:
[[#0 $< b; ¬ a $< b]]
=⇒ nat-of (a $− #2 $∗ b $+ #1 ) < nat-of (a $− b $+ #1 )

apply (simp (no-asm) add: zless-nat-conj)
apply (simp add: not-zless-iff-zle zless-add1-iff-zle zcompare-rls)
done

lemmas posDivAlg-unfold = def-wfrec [OF posDivAlg-def wf-measure]

lemma posDivAlg-eqn:
[[#0 $< b; a ∈ int; b ∈ int]] =⇒
posDivAlg(〈a,b〉) =
(if a$<b then <#0 ,a> else adjust(b, posDivAlg (<a, #2$∗b>)))

apply (rule posDivAlg-unfold [THEN trans])
apply (simp add: vimage-iff not-zless-iff-zle [THEN iff-sym])
apply (blast intro: posDivAlg-termination)
done

lemma posDivAlg-induct-lemma [rule-format]:
assumes prem:∧

a b. [[a ∈ int; b ∈ int;
¬ (a $< b | b $≤ #0 ) −→ P(<a, #2 $∗ b>)]] =⇒ P(〈a,b〉)

shows 〈u,v〉 ∈ int∗int =⇒ P(〈u,v〉)
using wf-measure [where A = int∗int and f = λ〈a,b〉.nat-of (a $− b $+ #1 )]
proof (induct 〈u,v〉 arbitrary: u v rule: wf-induct)

case (step x)
hence uv: u ∈ int v ∈ int by auto
thus ?case

apply (rule prem)
apply (rule impI )
apply (rule step)
apply (auto simp add: step uv not-zle-iff-zless posDivAlg-termination)
done

qed

lemma posDivAlg-induct [consumes 2 ]:
assumes u-int: u ∈ int

and v-int: v ∈ int
and ih:

∧
a b. [[a ∈ int; b ∈ int;

343



¬ (a $< b | b $≤ #0 ) −→ P(a, #2 $∗ b)]] =⇒ P(a,b)
shows P(u,v)

apply (subgoal-tac (λ〈x,y〉. P (x,y)) (〈u,v〉))
apply simp
apply (rule posDivAlg-induct-lemma)
apply (simp (no-asm-use))
apply (rule ih)
apply (auto simp add: u-int v-int)
done

lemma intify-eq-0-iff-zle: intify(m) = #0 ←→ (m $≤ #0 ∧ #0 $≤ m)
by (simp add: int-eq-iff-zle)

33.3 Some convenient biconditionals for products of signs
lemma zmult-pos: [[#0 $< i; #0 $< j]] =⇒ #0 $< i $∗ j

by (drule zmult-zless-mono1 , auto)

lemma zmult-neg: [[i $< #0 ; j $< #0 ]] =⇒ #0 $< i $∗ j
by (drule zmult-zless-mono1-neg, auto)

lemma zmult-pos-neg: [[#0 $< i; j $< #0 ]] =⇒ i $∗ j $< #0
by (drule zmult-zless-mono1-neg, auto)

lemma int-0-less-lemma:
[[x ∈ int; y ∈ int]]
=⇒ (#0 $< x $∗ y) ←→ (#0 $< x ∧ #0 $< y | x $< #0 ∧ y $< #0 )

apply (auto simp add: zle-def not-zless-iff-zle zmult-pos zmult-neg)
apply (rule ccontr)
apply (rule-tac [2 ] ccontr)
apply (auto simp add: zle-def not-zless-iff-zle)
apply (erule-tac P = #0$< x$∗ y in rev-mp)
apply (erule-tac [2 ] P = #0$< x$∗ y in rev-mp)
apply (drule zmult-pos-neg, assumption)
prefer 2
apply (drule zmult-pos-neg, assumption)

apply (auto dest: zless-not-sym simp add: zmult-commute)
done

lemma int-0-less-mult-iff :
(#0 $< x $∗ y) ←→ (#0 $< x ∧ #0 $< y | x $< #0 ∧ y $< #0 )

apply (cut-tac x = intify (x) and y = intify (y) in int-0-less-lemma)
apply auto
done
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lemma int-0-le-lemma:
[[x ∈ int; y ∈ int]]
=⇒ (#0 $≤ x $∗ y) ←→ (#0 $≤ x ∧ #0 $≤ y | x $≤ #0 ∧ y $≤ #0 )

by (auto simp add: zle-def not-zless-iff-zle int-0-less-mult-iff )

lemma int-0-le-mult-iff :
(#0 $≤ x $∗ y) ←→ ((#0 $≤ x ∧ #0 $≤ y) | (x $≤ #0 ∧ y $≤ #0 ))

apply (cut-tac x = intify (x) and y = intify (y) in int-0-le-lemma)
apply auto
done

lemma zmult-less-0-iff :
(x $∗ y $< #0 ) ←→ (#0 $< x ∧ y $< #0 | x $< #0 ∧ #0 $< y)

apply (auto simp add: int-0-le-mult-iff not-zle-iff-zless [THEN iff-sym])
apply (auto dest: zless-not-sym simp add: not-zle-iff-zless)
done

lemma zmult-le-0-iff :
(x $∗ y $≤ #0 ) ←→ (#0 $≤ x ∧ y $≤ #0 | x $≤ #0 ∧ #0 $≤ y)

by (auto dest: zless-not-sym
simp add: int-0-less-mult-iff not-zless-iff-zle [THEN iff-sym])

lemma posDivAlg-type [rule-format]:
[[a ∈ int; b ∈ int]] =⇒ posDivAlg(〈a,b〉) ∈ int ∗ int

apply (rule-tac u = a and v = b in posDivAlg-induct)
apply assumption+
apply (case-tac #0 $< ba)
apply (simp add: posDivAlg-eqn adjust-def integ-of-type

split: split-if-asm)
apply clarify
apply (simp add: int-0-less-mult-iff not-zle-iff-zless)

apply (simp add: not-zless-iff-zle)
apply (subst posDivAlg-unfold)
apply simp
done

lemma posDivAlg-correct [rule-format]:
[[a ∈ int; b ∈ int]]
=⇒ #0 $≤ a −→ #0 $< b −→ quorem (〈a,b〉, posDivAlg(〈a,b〉))

apply (rule-tac u = a and v = b in posDivAlg-induct)
apply auto

apply (simp-all add: quorem-def )

base case: a<b

apply (simp add: posDivAlg-eqn)
apply (simp add: not-zless-iff-zle [THEN iff-sym])

345



apply (simp add: int-0-less-mult-iff )

main argument

apply (subst posDivAlg-eqn)
apply (simp-all (no-asm-simp))
apply (erule splitE)
apply (rule posDivAlg-type)
apply (simp-all add: int-0-less-mult-iff )
apply (auto simp add: zadd-zmult-distrib2 Let-def )

now just linear arithmetic

apply (simp add: not-zle-iff-zless zdiff-zless-iff )
done

33.4 Correctness of negDivAlg, the division algorithm for
a<0 and b>0

lemma negDivAlg-termination:
[[#0 $< b; a $+ b $< #0 ]]
=⇒ nat-of ($− a $− #2 $∗ b) < nat-of ($− a $− b)

apply (simp (no-asm) add: zless-nat-conj)
apply (simp add: zcompare-rls not-zle-iff-zless zless-zdiff-iff [THEN iff-sym]

zless-zminus)
done

lemmas negDivAlg-unfold = def-wfrec [OF negDivAlg-def wf-measure]

lemma negDivAlg-eqn:
[[#0 $< b; a ∈ int; b ∈ int]] =⇒
negDivAlg(〈a,b〉) =
(if #0 $≤ a$+b then <#−1 ,a$+b>

else adjust(b, negDivAlg (<a, #2$∗b>)))
apply (rule negDivAlg-unfold [THEN trans])
apply (simp (no-asm-simp) add: vimage-iff not-zless-iff-zle [THEN iff-sym])
apply (blast intro: negDivAlg-termination)
done

lemma negDivAlg-induct-lemma [rule-format]:
assumes prem:∧

a b. [[a ∈ int; b ∈ int;
¬ (#0 $≤ a $+ b | b $≤ #0 ) −→ P(<a, #2 $∗ b>)]]

=⇒ P(〈a,b〉)
shows 〈u,v〉 ∈ int∗int =⇒ P(〈u,v〉)

using wf-measure [where A = int∗int and f = λ〈a,b〉.nat-of ($− a $− b)]
proof (induct 〈u,v〉 arbitrary: u v rule: wf-induct)

case (step x)
hence uv: u ∈ int v ∈ int by auto
thus ?case

apply (rule prem)
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apply (rule impI )
apply (rule step)
apply (auto simp add: step uv not-zle-iff-zless negDivAlg-termination)
done

qed

lemma negDivAlg-induct [consumes 2 ]:
assumes u-int: u ∈ int

and v-int: v ∈ int
and ih:

∧
a b. [[a ∈ int; b ∈ int;

¬ (#0 $≤ a $+ b | b $≤ #0 ) −→ P(a, #2 $∗ b)]]
=⇒ P(a,b)

shows P(u,v)
apply (subgoal-tac (λ〈x,y〉. P (x,y)) (〈u,v〉))
apply simp
apply (rule negDivAlg-induct-lemma)
apply (simp (no-asm-use))
apply (rule ih)
apply (auto simp add: u-int v-int)
done

lemma negDivAlg-type:
[[a ∈ int; b ∈ int]] =⇒ negDivAlg(〈a,b〉) ∈ int ∗ int

apply (rule-tac u = a and v = b in negDivAlg-induct)
apply assumption+
apply (case-tac #0 $< ba)
apply (simp add: negDivAlg-eqn adjust-def integ-of-type

split: split-if-asm)
apply clarify
apply (simp add: int-0-less-mult-iff not-zle-iff-zless)

apply (simp add: not-zless-iff-zle)
apply (subst negDivAlg-unfold)
apply simp
done

lemma negDivAlg-correct [rule-format]:
[[a ∈ int; b ∈ int]]
=⇒ a $< #0 −→ #0 $< b −→ quorem (〈a,b〉, negDivAlg(〈a,b〉))

apply (rule-tac u = a and v = b in negDivAlg-induct)
apply auto
apply (simp-all add: quorem-def )

base case: 0 $≤ a $+ b

apply (simp add: negDivAlg-eqn)
apply (simp add: not-zless-iff-zle [THEN iff-sym])
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apply (simp add: int-0-less-mult-iff )

main argument

apply (subst negDivAlg-eqn)
apply (simp-all (no-asm-simp))
apply (erule splitE)
apply (rule negDivAlg-type)
apply (simp-all add: int-0-less-mult-iff )
apply (auto simp add: zadd-zmult-distrib2 Let-def )

now just linear arithmetic

apply (simp add: not-zle-iff-zless zdiff-zless-iff )
done

33.5 Existence shown by proving the division algorithm to
be correct

lemma quorem-0 : [[b 6= #0 ; b ∈ int]] =⇒ quorem (<#0 ,b>, <#0 ,#0>)
by (force simp add: quorem-def neq-iff-zless)

lemma posDivAlg-zero-divisor : posDivAlg(<a,#0>) = <#0 ,a>
apply (subst posDivAlg-unfold)
apply simp
done

lemma posDivAlg-0 [simp]: posDivAlg (<#0 ,b>) = <#0 ,#0>
apply (subst posDivAlg-unfold)
apply (simp add: not-zle-iff-zless)
done

lemma linear-arith-lemma: ¬ (#0 $≤ #−1 $+ b) =⇒ (b $≤ #0 )
apply (simp add: not-zle-iff-zless)
apply (drule zminus-zless-zminus [THEN iffD2 ])
apply (simp add: zadd-commute zless-add1-iff-zle zle-zminus)
done

lemma negDivAlg-minus1 [simp]: negDivAlg (<#−1 ,b>) = <#−1 , b$−#1>
apply (subst negDivAlg-unfold)
apply (simp add: linear-arith-lemma integ-of-type vimage-iff )
done

lemma negateSnd-eq [simp]: negateSnd (〈q,r〉) = <q, $−r>
unfolding negateSnd-def

apply auto
done

lemma negateSnd-type: qr ∈ int ∗ int =⇒ negateSnd (qr) ∈ int ∗ int
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unfolding negateSnd-def
apply auto
done

lemma quorem-neg:
[[quorem (<$−a,$−b>, qr); a ∈ int; b ∈ int; qr ∈ int ∗ int]]
=⇒ quorem (〈a,b〉, negateSnd(qr))

apply clarify
apply (auto elim: zless-asym simp add: quorem-def zless-zminus)

linear arithmetic from here on

apply (simp-all add: zminus-equation [of a] zminus-zless)
apply (cut-tac [2 ] z = b and w = #0 in zless-linear)
apply (cut-tac [1 ] z = b and w = #0 in zless-linear)
apply auto
apply (blast dest: zle-zless-trans)+
done

lemma divAlg-correct:
[[b 6= #0 ; a ∈ int; b ∈ int]] =⇒ quorem (〈a,b〉, divAlg(〈a,b〉))

apply (auto simp add: quorem-0 divAlg-def )
apply (safe intro!: quorem-neg posDivAlg-correct negDivAlg-correct

posDivAlg-type negDivAlg-type)
apply (auto simp add: quorem-def neq-iff-zless)

linear arithmetic from here on

apply (auto simp add: zle-def )
done

lemma divAlg-type: [[a ∈ int; b ∈ int]] =⇒ divAlg(〈a,b〉) ∈ int ∗ int
apply (auto simp add: divAlg-def )
apply (auto simp add: posDivAlg-type negDivAlg-type negateSnd-type)
done

lemma zdiv-intify1 [simp]: intify(x) zdiv y = x zdiv y
by (simp add: zdiv-def )

lemma zdiv-intify2 [simp]: x zdiv intify(y) = x zdiv y
by (simp add: zdiv-def )

lemma zdiv-type [iff ,TC ]: z zdiv w ∈ int
unfolding zdiv-def

apply (blast intro: fst-type divAlg-type)
done

lemma zmod-intify1 [simp]: intify(x) zmod y = x zmod y

349



by (simp add: zmod-def )

lemma zmod-intify2 [simp]: x zmod intify(y) = x zmod y
by (simp add: zmod-def )

lemma zmod-type [iff ,TC ]: z zmod w ∈ int
unfolding zmod-def

apply (rule snd-type)
apply (blast intro: divAlg-type)
done

lemma DIVISION-BY-ZERO-ZDIV : a zdiv #0 = #0
by (simp add: zdiv-def divAlg-def posDivAlg-zero-divisor)

lemma DIVISION-BY-ZERO-ZMOD: a zmod #0 = intify(a)
by (simp add: zmod-def divAlg-def posDivAlg-zero-divisor)

lemma raw-zmod-zdiv-equality:
[[a ∈ int; b ∈ int]] =⇒ a = b $∗ (a zdiv b) $+ (a zmod b)

apply (case-tac b = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (cut-tac a = a and b = b in divAlg-correct)
apply (auto simp add: quorem-def zdiv-def zmod-def split-def )
done

lemma zmod-zdiv-equality: intify(a) = b $∗ (a zdiv b) $+ (a zmod b)
apply (rule trans)
apply (rule-tac b = intify (b) in raw-zmod-zdiv-equality)
apply auto
done

lemma pos-mod: #0 $< b =⇒ #0 $≤ a zmod b ∧ a zmod b $< b
apply (cut-tac a = intify (a) and b = intify (b) in divAlg-correct)
apply (auto simp add: intify-eq-0-iff-zle quorem-def zmod-def split-def )
apply (blast dest: zle-zless-trans)+
done

lemmas pos-mod-sign = pos-mod [THEN conjunct1 ]
and pos-mod-bound = pos-mod [THEN conjunct2 ]

lemma neg-mod: b $< #0 =⇒ a zmod b $≤ #0 ∧ b $< a zmod b
apply (cut-tac a = intify (a) and b = intify (b) in divAlg-correct)
apply (auto simp add: intify-eq-0-iff-zle quorem-def zmod-def split-def )
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apply (blast dest: zle-zless-trans)
apply (blast dest: zless-trans)+
done

lemmas neg-mod-sign = neg-mod [THEN conjunct1 ]
and neg-mod-bound = neg-mod [THEN conjunct2 ]

lemma quorem-div-mod:
[[b 6= #0 ; a ∈ int; b ∈ int]]
=⇒ quorem (〈a,b〉, <a zdiv b, a zmod b>)

apply (cut-tac a = a and b = b in zmod-zdiv-equality)
apply (auto simp add: quorem-def neq-iff-zless pos-mod-sign pos-mod-bound

neg-mod-sign neg-mod-bound)
done

lemma quorem-div:
[[quorem(〈a,b〉,〈q,r〉); b 6= #0 ; a ∈ int; b ∈ int; q ∈ int]]
=⇒ a zdiv b = q

by (blast intro: quorem-div-mod [THEN unique-quotient])

lemma quorem-mod:
[[quorem(〈a,b〉,〈q,r〉); b 6= #0 ; a ∈ int; b ∈ int; q ∈ int; r ∈ int]]
=⇒ a zmod b = r

by (blast intro: quorem-div-mod [THEN unique-remainder ])

lemma zdiv-pos-pos-trivial-raw:
[[a ∈ int; b ∈ int; #0 $≤ a; a $< b]] =⇒ a zdiv b = #0

apply (rule quorem-div)
apply (auto simp add: quorem-def )

apply (blast dest: zle-zless-trans)+
done

lemma zdiv-pos-pos-trivial: [[#0 $≤ a; a $< b]] =⇒ a zdiv b = #0
apply (cut-tac a = intify (a) and b = intify (b)

in zdiv-pos-pos-trivial-raw)
apply auto
done

lemma zdiv-neg-neg-trivial-raw:
[[a ∈ int; b ∈ int; a $≤ #0 ; b $< a]] =⇒ a zdiv b = #0

apply (rule-tac r = a in quorem-div)
apply (auto simp add: quorem-def )

apply (blast dest: zle-zless-trans zless-trans)+
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done

lemma zdiv-neg-neg-trivial: [[a $≤ #0 ; b $< a]] =⇒ a zdiv b = #0
apply (cut-tac a = intify (a) and b = intify (b)

in zdiv-neg-neg-trivial-raw)
apply auto
done

lemma zadd-le-0-lemma: [[a$+b $≤ #0 ; #0 $< a; #0 $< b]] =⇒ False
apply (drule-tac z ′ = #0 and z = b in zadd-zless-mono)
apply (auto simp add: zle-def )
apply (blast dest: zless-trans)
done

lemma zdiv-pos-neg-trivial-raw:
[[a ∈ int; b ∈ int; #0 $< a; a$+b $≤ #0 ]] =⇒ a zdiv b = #−1

apply (rule-tac r = a $+ b in quorem-div)
apply (auto simp add: quorem-def )

apply (blast dest: zadd-le-0-lemma zle-zless-trans)+
done

lemma zdiv-pos-neg-trivial: [[#0 $< a; a$+b $≤ #0 ]] =⇒ a zdiv b = #−1
apply (cut-tac a = intify (a) and b = intify (b)

in zdiv-pos-neg-trivial-raw)
apply auto
done

lemma zmod-pos-pos-trivial-raw:
[[a ∈ int; b ∈ int; #0 $≤ a; a $< b]] =⇒ a zmod b = a

apply (rule-tac q = #0 in quorem-mod)
apply (auto simp add: quorem-def )

apply (blast dest: zle-zless-trans)+
done

lemma zmod-pos-pos-trivial: [[#0 $≤ a; a $< b]] =⇒ a zmod b = intify(a)
apply (cut-tac a = intify (a) and b = intify (b)

in zmod-pos-pos-trivial-raw)
apply auto
done

lemma zmod-neg-neg-trivial-raw:
[[a ∈ int; b ∈ int; a $≤ #0 ; b $< a]] =⇒ a zmod b = a

apply (rule-tac q = #0 in quorem-mod)
apply (auto simp add: quorem-def )
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apply (blast dest: zle-zless-trans zless-trans)+
done

lemma zmod-neg-neg-trivial: [[a $≤ #0 ; b $< a]] =⇒ a zmod b = intify(a)
apply (cut-tac a = intify (a) and b = intify (b)

in zmod-neg-neg-trivial-raw)
apply auto
done

lemma zmod-pos-neg-trivial-raw:
[[a ∈ int; b ∈ int; #0 $< a; a$+b $≤ #0 ]] =⇒ a zmod b = a$+b

apply (rule-tac q = #−1 in quorem-mod)
apply (auto simp add: quorem-def )

apply (blast dest: zadd-le-0-lemma zle-zless-trans)+
done

lemma zmod-pos-neg-trivial: [[#0 $< a; a$+b $≤ #0 ]] =⇒ a zmod b = a$+b
apply (cut-tac a = intify (a) and b = intify (b)

in zmod-pos-neg-trivial-raw)
apply auto
done

lemma zdiv-zminus-zminus-raw:
[[a ∈ int; b ∈ int]] =⇒ ($−a) zdiv ($−b) = a zdiv b

apply (case-tac b = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (subst quorem-div-mod [THEN quorem-neg, simplified, THEN quorem-div])
apply auto
done

lemma zdiv-zminus-zminus [simp]: ($−a) zdiv ($−b) = a zdiv b
apply (cut-tac a = intify (a) and b = intify (b) in zdiv-zminus-zminus-raw)
apply auto
done

lemma zmod-zminus-zminus-raw:
[[a ∈ int; b ∈ int]] =⇒ ($−a) zmod ($−b) = $− (a zmod b)

apply (case-tac b = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (subst quorem-div-mod [THEN quorem-neg, simplified, THEN quorem-mod])
apply auto
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done

lemma zmod-zminus-zminus [simp]: ($−a) zmod ($−b) = $− (a zmod b)
apply (cut-tac a = intify (a) and b = intify (b) in zmod-zminus-zminus-raw)
apply auto
done

33.6 division of a number by itself
lemma self-quotient-aux1 : [[#0 $< a; a = r $+ a$∗q; r $< a]] =⇒ #1 $≤ q
apply (subgoal-tac #0 $< a$∗q)
apply (cut-tac w = #0 and z = q in add1-zle-iff )
apply (simp add: int-0-less-mult-iff )
apply (blast dest: zless-trans)

apply (drule-tac t = λx. x $− r in subst-context)
apply (drule sym)
apply (simp add: zcompare-rls)
done

lemma self-quotient-aux2 : [[#0 $< a; a = r $+ a$∗q; #0 $≤ r ]] =⇒ q $≤ #1
apply (subgoal-tac #0 $≤ a$∗ (#1$−q))
apply (simp add: int-0-le-mult-iff zcompare-rls)
apply (blast dest: zle-zless-trans)

apply (simp add: zdiff-zmult-distrib2 )
apply (drule-tac t = λx. x $− a $∗ q in subst-context)
apply (simp add: zcompare-rls)
done

lemma self-quotient:
[[quorem(〈a,a〉,〈q,r〉); a ∈ int; q ∈ int; a 6= #0 ]] =⇒ q = #1

apply (simp add: split-ifs quorem-def neq-iff-zless)
apply (rule zle-anti-sym)
apply safe
apply auto
prefer 4 apply (blast dest: zless-trans)
apply (blast dest: zless-trans)
apply (rule-tac [3 ] a = $−a and r = $−r in self-quotient-aux1 )
apply (rule-tac a = $−a and r = $−r in self-quotient-aux2 )
apply (rule-tac [6 ] zminus-equation [THEN iffD1 ])
apply (rule-tac [2 ] zminus-equation [THEN iffD1 ])
apply (force intro: self-quotient-aux1 self-quotient-aux2

simp add: zadd-commute zmult-zminus)+
done

lemma self-remainder :
[[quorem(〈a,a〉,〈q,r〉); a ∈ int; q ∈ int; r ∈ int; a 6= #0 ]] =⇒ r = #0

apply (frule self-quotient)
apply (auto simp add: quorem-def )
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done

lemma zdiv-self-raw: [[a 6= #0 ; a ∈ int]] =⇒ a zdiv a = #1
apply (blast intro: quorem-div-mod [THEN self-quotient])
done

lemma zdiv-self [simp]: intify(a) 6= #0 =⇒ a zdiv a = #1
apply (drule zdiv-self-raw)
apply auto
done

lemma zmod-self-raw: a ∈ int =⇒ a zmod a = #0
apply (case-tac a = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (blast intro: quorem-div-mod [THEN self-remainder ])
done

lemma zmod-self [simp]: a zmod a = #0
apply (cut-tac a = intify (a) in zmod-self-raw)
apply auto
done

33.7 Computation of division and remainder
lemma zdiv-zero [simp]: #0 zdiv b = #0

by (simp add: zdiv-def divAlg-def )

lemma zdiv-eq-minus1 : #0 $< b =⇒ #−1 zdiv b = #−1
by (simp (no-asm-simp) add: zdiv-def divAlg-def )

lemma zmod-zero [simp]: #0 zmod b = #0
by (simp add: zmod-def divAlg-def )

lemma zdiv-minus1 : #0 $< b =⇒ #−1 zdiv b = #−1
by (simp add: zdiv-def divAlg-def )

lemma zmod-minus1 : #0 $< b =⇒ #−1 zmod b = b $− #1
by (simp add: zmod-def divAlg-def )

lemma zdiv-pos-pos: [[#0 $< a; #0 $≤ b]]
=⇒ a zdiv b = fst (posDivAlg(<intify(a), intify(b)>))

apply (simp (no-asm-simp) add: zdiv-def divAlg-def )
apply (auto simp add: zle-def )
done

lemma zmod-pos-pos:
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[[#0 $< a; #0 $≤ b]]
=⇒ a zmod b = snd (posDivAlg(<intify(a), intify(b)>))

apply (simp (no-asm-simp) add: zmod-def divAlg-def )
apply (auto simp add: zle-def )
done

lemma zdiv-neg-pos:
[[a $< #0 ; #0 $< b]]
=⇒ a zdiv b = fst (negDivAlg(<intify(a), intify(b)>))

apply (simp (no-asm-simp) add: zdiv-def divAlg-def )
apply (blast dest: zle-zless-trans)
done

lemma zmod-neg-pos:
[[a $< #0 ; #0 $< b]]
=⇒ a zmod b = snd (negDivAlg(<intify(a), intify(b)>))

apply (simp (no-asm-simp) add: zmod-def divAlg-def )
apply (blast dest: zle-zless-trans)
done

lemma zdiv-pos-neg:
[[#0 $< a; b $< #0 ]]
=⇒ a zdiv b = fst (negateSnd(negDivAlg (<$−a, $−b>)))

apply (simp (no-asm-simp) add: zdiv-def divAlg-def intify-eq-0-iff-zle)
apply auto
apply (blast dest: zle-zless-trans)+
apply (blast dest: zless-trans)
apply (blast intro: zless-imp-zle)
done

lemma zmod-pos-neg:
[[#0 $< a; b $< #0 ]]
=⇒ a zmod b = snd (negateSnd(negDivAlg (<$−a, $−b>)))

apply (simp (no-asm-simp) add: zmod-def divAlg-def intify-eq-0-iff-zle)
apply auto
apply (blast dest: zle-zless-trans)+
apply (blast dest: zless-trans)
apply (blast intro: zless-imp-zle)
done

lemma zdiv-neg-neg:
[[a $< #0 ; b $≤ #0 ]]
=⇒ a zdiv b = fst (negateSnd(posDivAlg(<$−a, $−b>)))
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apply (simp (no-asm-simp) add: zdiv-def divAlg-def )
apply auto
apply (blast dest!: zle-zless-trans)+
done

lemma zmod-neg-neg:
[[a $< #0 ; b $≤ #0 ]]
=⇒ a zmod b = snd (negateSnd(posDivAlg(<$−a, $−b>)))

apply (simp (no-asm-simp) add: zmod-def divAlg-def )
apply auto
apply (blast dest!: zle-zless-trans)+
done

declare zdiv-pos-pos [of integ-of (v) integ-of (w), simp] for v w
declare zdiv-neg-pos [of integ-of (v) integ-of (w), simp] for v w
declare zdiv-pos-neg [of integ-of (v) integ-of (w), simp] for v w
declare zdiv-neg-neg [of integ-of (v) integ-of (w), simp] for v w
declare zmod-pos-pos [of integ-of (v) integ-of (w), simp] for v w
declare zmod-neg-pos [of integ-of (v) integ-of (w), simp] for v w
declare zmod-pos-neg [of integ-of (v) integ-of (w), simp] for v w
declare zmod-neg-neg [of integ-of (v) integ-of (w), simp] for v w
declare posDivAlg-eqn [of concl: integ-of (v) integ-of (w), simp] for v w
declare negDivAlg-eqn [of concl: integ-of (v) integ-of (w), simp] for v w

lemma zmod-1 [simp]: a zmod #1 = #0
apply (cut-tac a = a and b = #1 in pos-mod-sign)
apply (cut-tac [2 ] a = a and b = #1 in pos-mod-bound)
apply auto

apply (drule add1-zle-iff [THEN iffD2 ])
apply (rule zle-anti-sym)
apply auto
done

lemma zdiv-1 [simp]: a zdiv #1 = intify(a)
apply (cut-tac a = a and b = #1 in zmod-zdiv-equality)
apply auto
done

lemma zmod-minus1-right [simp]: a zmod #−1 = #0
apply (cut-tac a = a and b = #−1 in neg-mod-sign)
apply (cut-tac [2 ] a = a and b = #−1 in neg-mod-bound)
apply auto

apply (drule add1-zle-iff [THEN iffD2 ])
apply (rule zle-anti-sym)

357



apply auto
done

lemma zdiv-minus1-right-raw: a ∈ int =⇒ a zdiv #−1 = $−a
apply (cut-tac a = a and b = #−1 in zmod-zdiv-equality)
apply auto
apply (rule equation-zminus [THEN iffD2 ])
apply auto
done

lemma zdiv-minus1-right: a zdiv #−1 = $−a
apply (cut-tac a = intify (a) in zdiv-minus1-right-raw)
apply auto
done
declare zdiv-minus1-right [simp]

33.8 Monotonicity in the first argument (divisor)
lemma zdiv-mono1 : [[a $≤ a ′; #0 $< b]] =⇒ a zdiv b $≤ a ′ zdiv b
apply (cut-tac a = a and b = b in zmod-zdiv-equality)
apply (cut-tac a = a ′ and b = b in zmod-zdiv-equality)
apply (rule unique-quotient-lemma)
apply (erule subst)
apply (erule subst)
apply (simp-all (no-asm-simp) add: pos-mod-sign pos-mod-bound)
done

lemma zdiv-mono1-neg: [[a $≤ a ′; b $< #0 ]] =⇒ a ′ zdiv b $≤ a zdiv b
apply (cut-tac a = a and b = b in zmod-zdiv-equality)
apply (cut-tac a = a ′ and b = b in zmod-zdiv-equality)
apply (rule unique-quotient-lemma-neg)
apply (erule subst)
apply (erule subst)
apply (simp-all (no-asm-simp) add: neg-mod-sign neg-mod-bound)
done

33.9 Monotonicity in the second argument (dividend)
lemma q-pos-lemma:

[[#0 $≤ b ′$∗q ′ $+ r ′; r ′ $< b ′; #0 $< b ′]] =⇒ #0 $≤ q ′

apply (subgoal-tac #0 $< b ′$∗ (q ′ $+ #1 ))
apply (simp add: int-0-less-mult-iff )
apply (blast dest: zless-trans intro: zless-add1-iff-zle [THEN iffD1 ])

apply (simp add: zadd-zmult-distrib2 )
apply (erule zle-zless-trans)
apply (erule zadd-zless-mono2 )
done

lemma zdiv-mono2-lemma:
[[b$∗q $+ r = b ′$∗q ′ $+ r ′; #0 $≤ b ′$∗q ′ $+ r ′;
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r ′ $< b ′; #0 $≤ r ; #0 $< b ′; b ′ $≤ b]]
=⇒ q $≤ q ′

apply (frule q-pos-lemma, assumption+)
apply (subgoal-tac b$∗q $< b$∗ (q ′ $+ #1 ))
apply (simp add: zmult-zless-cancel1 )
apply (force dest: zless-add1-iff-zle [THEN iffD1 ] zless-trans zless-zle-trans)

apply (subgoal-tac b$∗q = r ′ $− r $+ b ′$∗q ′)
prefer 2 apply (simp add: zcompare-rls)

apply (simp (no-asm-simp) add: zadd-zmult-distrib2 )
apply (subst zadd-commute [of b $∗ q ′], rule zadd-zless-mono)
prefer 2 apply (blast intro: zmult-zle-mono1 )

apply (subgoal-tac r ′ $+ #0 $< b $+ r)
apply (simp add: zcompare-rls)

apply (rule zadd-zless-mono)
apply auto

apply (blast dest: zless-zle-trans)
done

lemma zdiv-mono2-raw:
[[#0 $≤ a; #0 $< b ′; b ′ $≤ b; a ∈ int]]
=⇒ a zdiv b $≤ a zdiv b ′

apply (subgoal-tac #0 $< b)
prefer 2 apply (blast dest: zless-zle-trans)

apply (cut-tac a = a and b = b in zmod-zdiv-equality)
apply (cut-tac a = a and b = b ′ in zmod-zdiv-equality)
apply (rule zdiv-mono2-lemma)
apply (erule subst)
apply (erule subst)
apply (simp-all add: pos-mod-sign pos-mod-bound)
done

lemma zdiv-mono2 :
[[#0 $≤ a; #0 $< b ′; b ′ $≤ b]]
=⇒ a zdiv b $≤ a zdiv b ′

apply (cut-tac a = intify (a) in zdiv-mono2-raw)
apply auto
done

lemma q-neg-lemma:
[[b ′$∗q ′ $+ r ′ $< #0 ; #0 $≤ r ′; #0 $< b ′]] =⇒ q ′ $< #0

apply (subgoal-tac b ′$∗q ′ $< #0 )
prefer 2 apply (force intro: zle-zless-trans)

apply (simp add: zmult-less-0-iff )
apply (blast dest: zless-trans)
done
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lemma zdiv-mono2-neg-lemma:
[[b$∗q $+ r = b ′$∗q ′ $+ r ′; b ′$∗q ′ $+ r ′ $< #0 ;

r $< b; #0 $≤ r ′; #0 $< b ′; b ′ $≤ b]]
=⇒ q ′ $≤ q

apply (subgoal-tac #0 $< b)
prefer 2 apply (blast dest: zless-zle-trans)

apply (frule q-neg-lemma, assumption+)
apply (subgoal-tac b$∗q ′ $< b$∗ (q $+ #1 ))
apply (simp add: zmult-zless-cancel1 )
apply (blast dest: zless-trans zless-add1-iff-zle [THEN iffD1 ])

apply (simp (no-asm-simp) add: zadd-zmult-distrib2 )
apply (subgoal-tac b$∗q ′ $≤ b ′$∗q ′)
prefer 2
apply (simp add: zmult-zle-cancel2 )
apply (blast dest: zless-trans)

apply (subgoal-tac b ′$∗q ′ $+ r $< b $+ (b$∗q $+ r))
prefer 2
apply (erule ssubst)
apply simp
apply (drule-tac w ′ = r and z ′ = #0 in zadd-zless-mono)
apply (assumption)

apply simp
apply (simp (no-asm-use) add: zadd-commute)
apply (rule zle-zless-trans)
prefer 2 apply (assumption)

apply (simp (no-asm-simp) add: zmult-zle-cancel2 )
apply (blast dest: zless-trans)
done

lemma zdiv-mono2-neg-raw:
[[a $< #0 ; #0 $< b ′; b ′ $≤ b; a ∈ int]]
=⇒ a zdiv b ′ $≤ a zdiv b

apply (subgoal-tac #0 $< b)
prefer 2 apply (blast dest: zless-zle-trans)

apply (cut-tac a = a and b = b in zmod-zdiv-equality)
apply (cut-tac a = a and b = b ′ in zmod-zdiv-equality)
apply (rule zdiv-mono2-neg-lemma)
apply (erule subst)
apply (erule subst)
apply (simp-all add: pos-mod-sign pos-mod-bound)
done

lemma zdiv-mono2-neg: [[a $< #0 ; #0 $< b ′; b ′ $≤ b]]
=⇒ a zdiv b ′ $≤ a zdiv b

apply (cut-tac a = intify (a) in zdiv-mono2-neg-raw)
apply auto
done
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33.10 More algebraic laws for zdiv and zmod
lemma zmult1-lemma:

[[quorem(〈b,c〉, 〈q,r〉); c ∈ int; c 6= #0 ]]
=⇒ quorem (<a$∗b, c>, <a$∗q $+ (a$∗r) zdiv c, (a$∗r) zmod c>)

apply (auto simp add: split-ifs quorem-def neq-iff-zless zadd-zmult-distrib2
pos-mod-sign pos-mod-bound neg-mod-sign neg-mod-bound)

apply (auto intro: raw-zmod-zdiv-equality)
done

lemma zdiv-zmult1-eq-raw:
[[b ∈ int; c ∈ int]]
=⇒ (a$∗b) zdiv c = a$∗(b zdiv c) $+ a$∗(b zmod c) zdiv c

apply (case-tac c = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (rule quorem-div-mod [THEN zmult1-lemma, THEN quorem-div])
apply auto
done

lemma zdiv-zmult1-eq: (a$∗b) zdiv c = a$∗(b zdiv c) $+ a$∗(b zmod c) zdiv c
apply (cut-tac b = intify (b) and c = intify (c) in zdiv-zmult1-eq-raw)
apply auto
done

lemma zmod-zmult1-eq-raw:
[[b ∈ int; c ∈ int]] =⇒ (a$∗b) zmod c = a$∗(b zmod c) zmod c

apply (case-tac c = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (rule quorem-div-mod [THEN zmult1-lemma, THEN quorem-mod])
apply auto
done

lemma zmod-zmult1-eq: (a$∗b) zmod c = a$∗(b zmod c) zmod c
apply (cut-tac b = intify (b) and c = intify (c) in zmod-zmult1-eq-raw)
apply auto
done

lemma zmod-zmult1-eq ′: (a$∗b) zmod c = ((a zmod c) $∗ b) zmod c
apply (rule trans)
apply (rule-tac b = (b $∗ a) zmod c in trans)
apply (rule-tac [2 ] zmod-zmult1-eq)
apply (simp-all (no-asm) add: zmult-commute)
done

lemma zmod-zmult-distrib: (a$∗b) zmod c = ((a zmod c) $∗ (b zmod c)) zmod c
apply (rule zmod-zmult1-eq ′ [THEN trans])
apply (rule zmod-zmult1-eq)
done

lemma zdiv-zmult-self1 [simp]: intify(b) 6= #0 =⇒ (a$∗b) zdiv b = intify(a)
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by (simp add: zdiv-zmult1-eq)

lemma zdiv-zmult-self2 [simp]: intify(b) 6= #0 =⇒ (b$∗a) zdiv b = intify(a)
by (simp add: zmult-commute)

lemma zmod-zmult-self1 [simp]: (a$∗b) zmod b = #0
by (simp add: zmod-zmult1-eq)

lemma zmod-zmult-self2 [simp]: (b$∗a) zmod b = #0
by (simp add: zmult-commute zmod-zmult1-eq)

lemma zadd1-lemma:
[[quorem(〈a,c〉, 〈aq,ar〉); quorem(〈b,c〉, 〈bq,br〉);

c ∈ int; c 6= #0 ]]
=⇒ quorem (<a$+b, c>, <aq $+ bq $+ (ar$+br) zdiv c, (ar$+br) zmod c>)

apply (auto simp add: split-ifs quorem-def neq-iff-zless zadd-zmult-distrib2
pos-mod-sign pos-mod-bound neg-mod-sign neg-mod-bound)

apply (auto intro: raw-zmod-zdiv-equality)
done

lemma zdiv-zadd1-eq-raw:
[[a ∈ int; b ∈ int; c ∈ int]] =⇒
(a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)

apply (case-tac c = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (blast intro: zadd1-lemma [OF quorem-div-mod quorem-div-mod,
THEN quorem-div])

done

lemma zdiv-zadd1-eq:
(a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)

apply (cut-tac a = intify (a) and b = intify (b) and c = intify (c)
in zdiv-zadd1-eq-raw)

apply auto
done

lemma zmod-zadd1-eq-raw:
[[a ∈ int; b ∈ int; c ∈ int]]
=⇒ (a$+b) zmod c = (a zmod c $+ b zmod c) zmod c

apply (case-tac c = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (blast intro: zadd1-lemma [OF quorem-div-mod quorem-div-mod,
THEN quorem-mod])

done
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lemma zmod-zadd1-eq: (a$+b) zmod c = (a zmod c $+ b zmod c) zmod c
apply (cut-tac a = intify (a) and b = intify (b) and c = intify (c)

in zmod-zadd1-eq-raw)
apply auto
done

lemma zmod-div-trivial-raw:
[[a ∈ int; b ∈ int]] =⇒ (a zmod b) zdiv b = #0

apply (case-tac b = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (auto simp add: neq-iff-zless pos-mod-sign pos-mod-bound
zdiv-pos-pos-trivial neg-mod-sign neg-mod-bound zdiv-neg-neg-trivial)

done

lemma zmod-div-trivial [simp]: (a zmod b) zdiv b = #0
apply (cut-tac a = intify (a) and b = intify (b) in zmod-div-trivial-raw)
apply auto
done

lemma zmod-mod-trivial-raw:
[[a ∈ int; b ∈ int]] =⇒ (a zmod b) zmod b = a zmod b

apply (case-tac b = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (auto simp add: neq-iff-zless pos-mod-sign pos-mod-bound
zmod-pos-pos-trivial neg-mod-sign neg-mod-bound zmod-neg-neg-trivial)

done

lemma zmod-mod-trivial [simp]: (a zmod b) zmod b = a zmod b
apply (cut-tac a = intify (a) and b = intify (b) in zmod-mod-trivial-raw)
apply auto
done

lemma zmod-zadd-left-eq: (a$+b) zmod c = ((a zmod c) $+ b) zmod c
apply (rule trans [symmetric])
apply (rule zmod-zadd1-eq)
apply (simp (no-asm))
apply (rule zmod-zadd1-eq [symmetric])
done

lemma zmod-zadd-right-eq: (a$+b) zmod c = (a $+ (b zmod c)) zmod c
apply (rule trans [symmetric])
apply (rule zmod-zadd1-eq)
apply (simp (no-asm))
apply (rule zmod-zadd1-eq [symmetric])
done

lemma zdiv-zadd-self1 [simp]:
intify(a) 6= #0 =⇒ (a$+b) zdiv a = b zdiv a $+ #1

363



by (simp (no-asm-simp) add: zdiv-zadd1-eq)

lemma zdiv-zadd-self2 [simp]:
intify(a) 6= #0 =⇒ (b$+a) zdiv a = b zdiv a $+ #1

by (simp (no-asm-simp) add: zdiv-zadd1-eq)

lemma zmod-zadd-self1 [simp]: (a$+b) zmod a = b zmod a
apply (case-tac a = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (simp (no-asm-simp) add: zmod-zadd1-eq)
done

lemma zmod-zadd-self2 [simp]: (b$+a) zmod a = b zmod a
apply (case-tac a = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (simp (no-asm-simp) add: zmod-zadd1-eq)
done

33.11 proving a zdiv (b*c) = (a zdiv b) zdiv c
lemma zdiv-zmult2-aux1 :

[[#0 $< c; b $< r ; r $≤ #0 ]] =⇒ b$∗c $< b$∗(q zmod c) $+ r
apply (subgoal-tac b $∗ (c $− q zmod c) $< r $∗ #1 )
apply (simp add: zdiff-zmult-distrib2 zadd-commute zcompare-rls)
apply (rule zle-zless-trans)
apply (erule-tac [2 ] zmult-zless-mono1 )
apply (rule zmult-zle-mono2-neg)
apply (auto simp add: zcompare-rls zadd-commute add1-zle-iff pos-mod-bound)
apply (blast intro: zless-imp-zle dest: zless-zle-trans)
done

lemma zdiv-zmult2-aux2 :
[[#0 $< c; b $< r ; r $≤ #0 ]] =⇒ b $∗ (q zmod c) $+ r $≤ #0

apply (subgoal-tac b $∗ (q zmod c) $≤ #0 )
prefer 2
apply (simp add: zmult-le-0-iff pos-mod-sign)
apply (blast intro: zless-imp-zle dest: zless-zle-trans)

apply (drule zadd-zle-mono)
apply assumption
apply (simp add: zadd-commute)
done

lemma zdiv-zmult2-aux3 :
[[#0 $< c; #0 $≤ r ; r $< b]] =⇒ #0 $≤ b $∗ (q zmod c) $+ r

apply (subgoal-tac #0 $≤ b $∗ (q zmod c))
prefer 2
apply (simp add: int-0-le-mult-iff pos-mod-sign)
apply (blast intro: zless-imp-zle dest: zle-zless-trans)
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apply (drule zadd-zle-mono)
apply assumption
apply (simp add: zadd-commute)
done

lemma zdiv-zmult2-aux4 :
[[#0 $< c; #0 $≤ r ; r $< b]] =⇒ b $∗ (q zmod c) $+ r $< b $∗ c

apply (subgoal-tac r $∗ #1 $< b $∗ (c $− q zmod c))
apply (simp add: zdiff-zmult-distrib2 zadd-commute zcompare-rls)
apply (rule zless-zle-trans)
apply (erule zmult-zless-mono1 )
apply (rule-tac [2 ] zmult-zle-mono2 )
apply (auto simp add: zcompare-rls zadd-commute add1-zle-iff pos-mod-bound)
apply (blast intro: zless-imp-zle dest: zle-zless-trans)
done

lemma zdiv-zmult2-lemma:
[[quorem (〈a,b〉, 〈q,r〉); a ∈ int; b ∈ int; b 6= #0 ; #0 $< c]]
=⇒ quorem (<a,b$∗c>, <q zdiv c, b$∗(q zmod c) $+ r>)

apply (auto simp add: zmult-ac zmod-zdiv-equality [symmetric] quorem-def
neq-iff-zless int-0-less-mult-iff
zadd-zmult-distrib2 [symmetric] zdiv-zmult2-aux1 zdiv-zmult2-aux2
zdiv-zmult2-aux3 zdiv-zmult2-aux4 )

apply (blast dest: zless-trans)+
done

lemma zdiv-zmult2-eq-raw:
[[#0 $< c; a ∈ int; b ∈ int]] =⇒ a zdiv (b$∗c) = (a zdiv b) zdiv c

apply (case-tac b = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (rule quorem-div-mod [THEN zdiv-zmult2-lemma, THEN quorem-div])
apply (auto simp add: intify-eq-0-iff-zle)
apply (blast dest: zle-zless-trans)
done

lemma zdiv-zmult2-eq: #0 $< c =⇒ a zdiv (b$∗c) = (a zdiv b) zdiv c
apply (cut-tac a = intify (a) and b = intify (b) in zdiv-zmult2-eq-raw)
apply auto
done

lemma zmod-zmult2-eq-raw:
[[#0 $< c; a ∈ int; b ∈ int]]
=⇒ a zmod (b$∗c) = b$∗(a zdiv b zmod c) $+ a zmod b

apply (case-tac b = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (rule quorem-div-mod [THEN zdiv-zmult2-lemma, THEN quorem-mod])
apply (auto simp add: intify-eq-0-iff-zle)
apply (blast dest: zle-zless-trans)
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done

lemma zmod-zmult2-eq:
#0 $< c =⇒ a zmod (b$∗c) = b$∗(a zdiv b zmod c) $+ a zmod b

apply (cut-tac a = intify (a) and b = intify (b) in zmod-zmult2-eq-raw)
apply auto
done

33.12 Cancellation of common factors in "zdiv"
lemma zdiv-zmult-zmult1-aux1 :

[[#0 $< b; intify(c) 6= #0 ]] =⇒ (c$∗a) zdiv (c$∗b) = a zdiv b
apply (subst zdiv-zmult2-eq)
apply auto
done

lemma zdiv-zmult-zmult1-aux2 :
[[b $< #0 ; intify(c) 6= #0 ]] =⇒ (c$∗a) zdiv (c$∗b) = a zdiv b

apply (subgoal-tac (c $∗ ($−a)) zdiv (c $∗ ($−b)) = ($−a) zdiv ($−b))
apply (rule-tac [2 ] zdiv-zmult-zmult1-aux1 )
apply auto
done

lemma zdiv-zmult-zmult1-raw:
[[intify(c) 6= #0 ; b ∈ int]] =⇒ (c$∗a) zdiv (c$∗b) = a zdiv b

apply (case-tac b = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (auto simp add: neq-iff-zless [of b]
zdiv-zmult-zmult1-aux1 zdiv-zmult-zmult1-aux2 )

done

lemma zdiv-zmult-zmult1 : intify(c) 6= #0 =⇒ (c$∗a) zdiv (c$∗b) = a zdiv b
apply (cut-tac b = intify (b) in zdiv-zmult-zmult1-raw)
apply auto
done

lemma zdiv-zmult-zmult2 : intify(c) 6= #0 =⇒ (a$∗c) zdiv (b$∗c) = a zdiv b
apply (drule zdiv-zmult-zmult1 )
apply (auto simp add: zmult-commute)
done

33.13 Distribution of factors over "zmod"
lemma zmod-zmult-zmult1-aux1 :

[[#0 $< b; intify(c) 6= #0 ]]
=⇒ (c$∗a) zmod (c$∗b) = c $∗ (a zmod b)

apply (subst zmod-zmult2-eq)
apply auto
done
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lemma zmod-zmult-zmult1-aux2 :
[[b $< #0 ; intify(c) 6= #0 ]]
=⇒ (c$∗a) zmod (c$∗b) = c $∗ (a zmod b)

apply (subgoal-tac (c $∗ ($−a)) zmod (c $∗ ($−b)) = c $∗ (($−a) zmod ($−b)))
apply (rule-tac [2 ] zmod-zmult-zmult1-aux1 )
apply auto
done

lemma zmod-zmult-zmult1-raw:
[[b ∈ int; c ∈ int]] =⇒ (c$∗a) zmod (c$∗b) = c $∗ (a zmod b)

apply (case-tac b = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (case-tac c = #0 )
apply (simp add: DIVISION-BY-ZERO-ZDIV DIVISION-BY-ZERO-ZMOD)

apply (auto simp add: neq-iff-zless [of b]
zmod-zmult-zmult1-aux1 zmod-zmult-zmult1-aux2 )

done

lemma zmod-zmult-zmult1 : (c$∗a) zmod (c$∗b) = c $∗ (a zmod b)
apply (cut-tac b = intify (b) and c = intify (c) in zmod-zmult-zmult1-raw)
apply auto
done

lemma zmod-zmult-zmult2 : (a$∗c) zmod (b$∗c) = (a zmod b) $∗ c
apply (cut-tac c = c in zmod-zmult-zmult1 )
apply (auto simp add: zmult-commute)
done

lemma zdiv-neg-pos-less0 : [[a $< #0 ; #0 $< b]] =⇒ a zdiv b $< #0
apply (subgoal-tac a zdiv b $≤ #−1 )
apply (erule zle-zless-trans)
apply (simp (no-asm))
apply (rule zle-trans)
apply (rule-tac a ′ = #−1 in zdiv-mono1 )
apply (rule zless-add1-iff-zle [THEN iffD1 ])
apply (simp (no-asm))
apply (auto simp add: zdiv-minus1 )
done

lemma zdiv-nonneg-neg-le0 : [[#0 $≤ a; b $< #0 ]] =⇒ a zdiv b $≤ #0
apply (drule zdiv-mono1-neg)
apply auto
done

lemma pos-imp-zdiv-nonneg-iff : #0 $< b =⇒ (#0 $≤ a zdiv b) ←→ (#0 $≤ a)
apply auto
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apply (drule-tac [2 ] zdiv-mono1 )
apply (auto simp add: neq-iff-zless)
apply (simp (no-asm-use) add: not-zless-iff-zle [THEN iff-sym])
apply (blast intro: zdiv-neg-pos-less0 )
done

lemma neg-imp-zdiv-nonneg-iff : b $< #0 =⇒ (#0 $≤ a zdiv b) ←→ (a $≤ #0 )
apply (subst zdiv-zminus-zminus [symmetric])
apply (rule iff-trans)
apply (rule pos-imp-zdiv-nonneg-iff )
apply auto
done

lemma pos-imp-zdiv-neg-iff : #0 $< b =⇒ (a zdiv b $< #0 ) ←→ (a $< #0 )
apply (simp (no-asm-simp) add: not-zle-iff-zless [THEN iff-sym])
apply (erule pos-imp-zdiv-nonneg-iff )
done

lemma neg-imp-zdiv-neg-iff : b $< #0 =⇒ (a zdiv b $< #0 ) ←→ (#0 $< a)
apply (simp (no-asm-simp) add: not-zle-iff-zless [THEN iff-sym])
apply (erule neg-imp-zdiv-nonneg-iff )
done

end

34 Cardinal Arithmetic Without the Axiom of Choice
theory CardinalArith imports Cardinal OrderArith ArithSimp Finite begin

definition
InfCard :: i⇒o where

InfCard(i) ≡ Card(i) ∧ nat ≤ i

definition
cmult :: [i,i]⇒i (infixl ‹⊗› 70 ) where

i ⊗ j ≡ |i∗j|

definition
cadd :: [i,i]⇒i (infixl ‹⊕› 65 ) where

i ⊕ j ≡ |i+j|

definition
csquare-rel :: i⇒i where

csquare-rel(K ) ≡
rvimage(K∗K ,
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lam 〈x,y〉:K∗K . <x ∪ y, x, y>,
rmult(K ,Memrel(K ), K∗K , rmult(K ,Memrel(K ), K ,Memrel(K ))))

definition
jump-cardinal :: i⇒i where

— This definition is more complex than Kunen’s but it more easily proved to
be a cardinal

jump-cardinal(K ) ≡⋃
X∈Pow(K ). {z. r ∈ Pow(K∗K ), well-ord(X ,r) ∧ z = ordertype(X ,r)}

definition
csucc :: i⇒i where

— needed because jump-cardinal(K ) might not be the successor of K
csucc(K ) ≡ µ L. Card(L) ∧ K<L

lemma Card-Union [simp,intro,TC ]:
assumes A:

∧
x. x∈A =⇒ Card(x) shows Card(

⋃
(A))

proof (rule CardI )
show Ord(

⋃
A) using A

by (simp add: Card-is-Ord)
next

fix j
assume j: j <

⋃
A

hence ∃ c∈A. j < c ∧ Card(c) using A
by (auto simp add: lt-def intro: Card-is-Ord)

then obtain c where c: c∈A j < c Card(c)
by blast

hence jls: j ≺ c
by (simp add: lt-Card-imp-lesspoll)

{ assume eqp: j ≈
⋃

A
have c .

⋃
A using c

by (blast intro: subset-imp-lepoll)
also have ... ≈ j by (rule eqpoll-sym [OF eqp])
also have ... ≺ c by (rule jls)
finally have c ≺ c .
hence False

by auto
} thus ¬ j ≈

⋃
A by blast

qed

lemma Card-UN : (
∧

x. x ∈ A =⇒ Card(K (x))) =⇒ Card(
⋃

x∈A. K (x))
by blast

lemma Card-OUN [simp,intro,TC ]:
(
∧

x. x ∈ A =⇒ Card(K (x))) =⇒ Card(
⋃

x<A. K (x))
by (auto simp add: OUnion-def Card-0 )

lemma in-Card-imp-lesspoll: [[Card(K ); b ∈ K ]] =⇒ b ≺ K
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unfolding lesspoll-def
apply (simp add: Card-iff-initial)
apply (fast intro!: le-imp-lepoll ltI leI )
done

34.1 Cardinal addition

Note: Could omit proving the algebraic laws for cardinal addition and mul-
tiplication. On finite cardinals these operations coincide with addition and
multiplication of natural numbers; on infinite cardinals they coincide with
union (maximum). Either way we get most laws for free.

34.1.1 Cardinal addition is commutative
lemma sum-commute-eqpoll: A+B ≈ B+A
proof (unfold eqpoll-def , rule exI )

show (λz∈A+B. case(Inr ,Inl,z)) ∈ bij(A+B, B+A)
by (auto intro: lam-bijective [where d = case(Inr ,Inl)])

qed

lemma cadd-commute: i ⊕ j = j ⊕ i
unfolding cadd-def

apply (rule sum-commute-eqpoll [THEN cardinal-cong])
done

34.1.2 Cardinal addition is associative
lemma sum-assoc-eqpoll: (A+B)+C ≈ A+(B+C )

unfolding eqpoll-def
apply (rule exI )
apply (rule sum-assoc-bij)
done

Unconditional version requires AC
lemma well-ord-cadd-assoc:

assumes i: well-ord(i,ri) and j: well-ord(j,rj) and k: well-ord(k,rk)
shows (i ⊕ j) ⊕ k = i ⊕ (j ⊕ k)

proof (unfold cadd-def , rule cardinal-cong)
have |i + j| + k ≈ (i + j) + k

by (blast intro: sum-eqpoll-cong well-ord-cardinal-eqpoll eqpoll-refl well-ord-radd
i j)

also have ... ≈ i + (j + k)
by (rule sum-assoc-eqpoll)

also have ... ≈ i + |j + k|
by (blast intro: sum-eqpoll-cong well-ord-cardinal-eqpoll eqpoll-refl well-ord-radd

j k eqpoll-sym)
finally show |i + j| + k ≈ i + |j + k| .

qed
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34.1.3 0 is the identity for addition
lemma sum-0-eqpoll: 0+A ≈ A

unfolding eqpoll-def
apply (rule exI )
apply (rule bij-0-sum)
done

lemma cadd-0 [simp]: Card(K ) =⇒ 0 ⊕ K = K
unfolding cadd-def

apply (simp add: sum-0-eqpoll [THEN cardinal-cong] Card-cardinal-eq)
done

34.1.4 Addition by another cardinal
lemma sum-lepoll-self : A . A+B
proof (unfold lepoll-def , rule exI )

show (λx∈A. Inl (x)) ∈ inj(A, A + B)
by (simp add: inj-def )

qed

lemma cadd-le-self :
assumes K : Card(K ) and L: Ord(L) shows K ≤ (K ⊕ L)

proof (unfold cadd-def )
have K ≤ |K |

by (rule Card-cardinal-le [OF K ])
moreover have |K | ≤ |K + L| using K L

by (blast intro: well-ord-lepoll-imp-cardinal-le sum-lepoll-self
well-ord-radd well-ord-Memrel Card-is-Ord)

ultimately show K ≤ |K + L|
by (blast intro: le-trans)

qed

34.1.5 Monotonicity of addition
lemma sum-lepoll-mono:

[[A . C ; B . D]] =⇒ A + B . C + D
unfolding lepoll-def

apply (elim exE)
apply (rule-tac x = λz∈A+B. case (λw. Inl(f‘w), λy. Inr(fa‘y), z) in exI )
apply (rule-tac d = case (λw. Inl(converse(f ) ‘w), λy. Inr(converse(fa) ‘ y))

in lam-injective)
apply (typecheck add: inj-is-fun, auto)
done

lemma cadd-le-mono:
[[K ′ ≤ K ; L ′ ≤ L]] =⇒ (K ′ ⊕ L ′) ≤ (K ⊕ L)

unfolding cadd-def
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apply (safe dest!: le-subset-iff [THEN iffD1 ])
apply (rule well-ord-lepoll-imp-cardinal-le)
apply (blast intro: well-ord-radd well-ord-Memrel)
apply (blast intro: sum-lepoll-mono subset-imp-lepoll)
done

34.1.6 Addition of finite cardinals is "ordinary" addition
lemma sum-succ-eqpoll: succ(A)+B ≈ succ(A+B)

unfolding eqpoll-def
apply (rule exI )
apply (rule-tac c = λz. if z=Inl (A) then A+B else z

and d = λz. if z=A+B then Inl (A) else z in lam-bijective)
apply simp-all

apply (blast dest: sym [THEN eq-imp-not-mem] elim: mem-irrefl)+
done

lemma cadd-succ-lemma:
assumes Ord(m) Ord(n) shows succ(m) ⊕ n = |succ(m ⊕ n)|

proof (unfold cadd-def )
have [intro]: m + n ≈ |m + n| using assms
by (blast intro: eqpoll-sym well-ord-cardinal-eqpoll well-ord-radd well-ord-Memrel)

have |succ(m) + n| = |succ(m + n)|
by (rule sum-succ-eqpoll [THEN cardinal-cong])

also have ... = |succ(|m + n|)|
by (blast intro: succ-eqpoll-cong cardinal-cong)

finally show |succ(m) + n| = |succ(|m + n|)| .
qed

lemma nat-cadd-eq-add:
assumes m: m ∈ nat and [simp]: n ∈ nat showsm ⊕ n = m #+ n

using m
proof (induct m)

case 0 thus ?case by (simp add: nat-into-Card cadd-0 )
next
case (succ m) thus ?case by (simp add: cadd-succ-lemma nat-into-Card Card-cardinal-eq)

qed

34.2 Cardinal multiplication
34.2.1 Cardinal multiplication is commutative
lemma prod-commute-eqpoll: A∗B ≈ B∗A

unfolding eqpoll-def
apply (rule exI )
apply (rule-tac c = λ〈x,y〉.〈y,x〉 and d = λ〈x,y〉.〈y,x〉 in lam-bijective,

auto)
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done

lemma cmult-commute: i ⊗ j = j ⊗ i
unfolding cmult-def

apply (rule prod-commute-eqpoll [THEN cardinal-cong])
done

34.2.2 Cardinal multiplication is associative
lemma prod-assoc-eqpoll: (A∗B)∗C ≈ A∗(B∗C )

unfolding eqpoll-def
apply (rule exI )
apply (rule prod-assoc-bij)
done

Unconditional version requires AC
lemma well-ord-cmult-assoc:

assumes i: well-ord(i,ri) and j: well-ord(j,rj) and k: well-ord(k,rk)
shows (i ⊗ j) ⊗ k = i ⊗ (j ⊗ k)

proof (unfold cmult-def , rule cardinal-cong)
have |i ∗ j| ∗ k ≈ (i ∗ j) ∗ k
by (blast intro: prod-eqpoll-cong well-ord-cardinal-eqpoll eqpoll-refl well-ord-rmult

i j)
also have ... ≈ i ∗ (j ∗ k)

by (rule prod-assoc-eqpoll)
also have ... ≈ i ∗ |j ∗ k|
by (blast intro: prod-eqpoll-cong well-ord-cardinal-eqpoll eqpoll-refl well-ord-rmult

j k eqpoll-sym)
finally show |i ∗ j| ∗ k ≈ i ∗ |j ∗ k| .

qed

34.2.3 Cardinal multiplication distributes over addition
lemma sum-prod-distrib-eqpoll: (A+B)∗C ≈ (A∗C )+(B∗C )

unfolding eqpoll-def
apply (rule exI )
apply (rule sum-prod-distrib-bij)
done

lemma well-ord-cadd-cmult-distrib:
assumes i: well-ord(i,ri) and j: well-ord(j,rj) and k: well-ord(k,rk)
shows (i ⊕ j) ⊗ k = (i ⊗ k) ⊕ (j ⊗ k)

proof (unfold cadd-def cmult-def , rule cardinal-cong)
have |i + j| ∗ k ≈ (i + j) ∗ k
by (blast intro: prod-eqpoll-cong well-ord-cardinal-eqpoll eqpoll-refl well-ord-radd

i j)
also have ... ≈ i ∗ k + j ∗ k

by (rule sum-prod-distrib-eqpoll)
also have ... ≈ |i ∗ k| + |j ∗ k|
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by (blast intro: sum-eqpoll-cong well-ord-cardinal-eqpoll well-ord-rmult i j k
eqpoll-sym)

finally show |i + j| ∗ k ≈ |i ∗ k| + |j ∗ k| .
qed

34.2.4 Multiplication by 0 yields 0
lemma prod-0-eqpoll: 0∗A ≈ 0

unfolding eqpoll-def
apply (rule exI )
apply (rule lam-bijective, safe)
done

lemma cmult-0 [simp]: 0 ⊗ i = 0
by (simp add: cmult-def prod-0-eqpoll [THEN cardinal-cong])

34.2.5 1 is the identity for multiplication
lemma prod-singleton-eqpoll: {x}∗A ≈ A

unfolding eqpoll-def
apply (rule exI )
apply (rule singleton-prod-bij [THEN bij-converse-bij])
done

lemma cmult-1 [simp]: Card(K ) =⇒ 1 ⊗ K = K
unfolding cmult-def succ-def

apply (simp add: prod-singleton-eqpoll [THEN cardinal-cong] Card-cardinal-eq)
done

34.3 Some inequalities for multiplication
lemma prod-square-lepoll: A . A∗A

unfolding lepoll-def inj-def
apply (rule-tac x = λx∈A. 〈x,x〉 in exI , simp)
done

lemma cmult-square-le: Card(K ) =⇒ K ≤ K ⊗ K
unfolding cmult-def

apply (rule le-trans)
apply (rule-tac [2 ] well-ord-lepoll-imp-cardinal-le)
apply (rule-tac [3 ] prod-square-lepoll)
apply (simp add: le-refl Card-is-Ord Card-cardinal-eq)
apply (blast intro: well-ord-rmult well-ord-Memrel Card-is-Ord)
done

34.3.1 Multiplication by a non-zero cardinal
lemma prod-lepoll-self : b ∈ B =⇒ A . A∗B

unfolding lepoll-def inj-def
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apply (rule-tac x = λx∈A. 〈x,b〉 in exI , simp)
done

lemma cmult-le-self :
[[Card(K ); Ord(L); 0<L]] =⇒ K ≤ (K ⊗ L)

unfolding cmult-def
apply (rule le-trans [OF Card-cardinal-le well-ord-lepoll-imp-cardinal-le])

apply assumption
apply (blast intro: well-ord-rmult well-ord-Memrel Card-is-Ord)

apply (blast intro: prod-lepoll-self ltD)
done

34.3.2 Monotonicity of multiplication
lemma prod-lepoll-mono:

[[A . C ; B . D]] =⇒ A ∗ B . C ∗ D
unfolding lepoll-def

apply (elim exE)
apply (rule-tac x = lam 〈w,y〉:A∗B. <f‘w, fa‘y> in exI )
apply (rule-tac d = λ〈w,y〉. <converse (f ) ‘w, converse (fa) ‘y>

in lam-injective)
apply (typecheck add: inj-is-fun, auto)
done

lemma cmult-le-mono:
[[K ′ ≤ K ; L ′ ≤ L]] =⇒ (K ′ ⊗ L ′) ≤ (K ⊗ L)

unfolding cmult-def
apply (safe dest!: le-subset-iff [THEN iffD1 ])
apply (rule well-ord-lepoll-imp-cardinal-le)
apply (blast intro: well-ord-rmult well-ord-Memrel)

apply (blast intro: prod-lepoll-mono subset-imp-lepoll)
done

34.4 Multiplication of finite cardinals is "ordinary" multipli-
cation

lemma prod-succ-eqpoll: succ(A)∗B ≈ B + A∗B
unfolding eqpoll-def

apply (rule exI )
apply (rule-tac c = λ〈x,y〉. if x=A then Inl (y) else Inr (〈x,y〉)

and d = case (λy. 〈A,y〉, λz. z) in lam-bijective)
apply safe
apply (simp-all add: succI2 if-type mem-imp-not-eq)
done

lemma cmult-succ-lemma:
[[Ord(m); Ord(n)]] =⇒ succ(m) ⊗ n = n ⊕ (m ⊗ n)

unfolding cmult-def cadd-def
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apply (rule prod-succ-eqpoll [THEN cardinal-cong, THEN trans])
apply (rule cardinal-cong [symmetric])
apply (rule sum-eqpoll-cong [OF eqpoll-refl well-ord-cardinal-eqpoll])
apply (blast intro: well-ord-rmult well-ord-Memrel)
done

lemma nat-cmult-eq-mult: [[m ∈ nat; n ∈ nat]] =⇒ m ⊗ n = m#∗n
apply (induct-tac m)
apply (simp-all add: cmult-succ-lemma nat-cadd-eq-add)
done

lemma cmult-2 : Card(n) =⇒ 2 ⊗ n = n ⊕ n
by (simp add: cmult-succ-lemma Card-is-Ord cadd-commute [of - 0 ])

lemma sum-lepoll-prod:
assumes C : 2 . C shows B+B . C∗B

proof −
have B+B . 2∗B

by (simp add: sum-eq-2-times)
also have ... . C∗B

by (blast intro: prod-lepoll-mono lepoll-refl C )
finally show B+B . C∗B .

qed

lemma lepoll-imp-sum-lepoll-prod: [[A . B; 2 . A]] =⇒ A+B . A∗B
by (blast intro: sum-lepoll-mono sum-lepoll-prod lepoll-trans lepoll-refl)

34.5 Infinite Cardinals are Limit Ordinals
lemma nat-cons-lepoll: nat . A =⇒ cons(u,A) . A

unfolding lepoll-def
apply (erule exE)
apply (rule-tac x =

λz∈cons (u,A).
if z=u then f‘0
else if z ∈ range (f ) then f‘succ (converse (f ) ‘z) else z

in exI )
apply (rule-tac d =

λy. if y ∈ range(f ) then nat-case (u, λz. f‘z, converse(f ) ‘y)
else y

in lam-injective)
apply (fast intro!: if-type apply-type intro: inj-is-fun inj-converse-fun)
apply (simp add: inj-is-fun [THEN apply-rangeI ]

inj-converse-fun [THEN apply-rangeI ]
inj-converse-fun [THEN apply-funtype])

done

lemma nat-cons-eqpoll: nat . A =⇒ cons(u,A) ≈ A
apply (erule nat-cons-lepoll [THEN eqpollI ])
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apply (rule subset-consI [THEN subset-imp-lepoll])
done

lemma nat-succ-eqpoll: nat ⊆ A =⇒ succ(A) ≈ A
unfolding succ-def

apply (erule subset-imp-lepoll [THEN nat-cons-eqpoll])
done

lemma InfCard-nat: InfCard(nat)
unfolding InfCard-def

apply (blast intro: Card-nat le-refl Card-is-Ord)
done

lemma InfCard-is-Card: InfCard(K ) =⇒ Card(K )
unfolding InfCard-def

apply (erule conjunct1 )
done

lemma InfCard-Un:
[[InfCard(K ); Card(L)]] =⇒ InfCard(K ∪ L)

unfolding InfCard-def
apply (simp add: Card-Un Un-upper1-le [THEN [2 ] le-trans] Card-is-Ord)
done

lemma InfCard-is-Limit: InfCard(K ) =⇒ Limit(K )
unfolding InfCard-def

apply (erule conjE)
apply (frule Card-is-Ord)
apply (rule ltI [THEN non-succ-LimitI ])
apply (erule le-imp-subset [THEN subsetD])
apply (safe dest!: Limit-nat [THEN Limit-le-succD])

unfolding Card-def
apply (drule trans)
apply (erule le-imp-subset [THEN nat-succ-eqpoll, THEN cardinal-cong])
apply (erule Ord-cardinal-le [THEN lt-trans2 , THEN lt-irrefl])
apply (rule le-eqI , assumption)
apply (rule Ord-cardinal)
done

lemma ordermap-eqpoll-pred:
[[well-ord(A,r); x ∈ A]] =⇒ ordermap(A,r)‘x ≈ Order .pred(A,x,r)

unfolding eqpoll-def
apply (rule exI )
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apply (simp add: ordermap-eq-image well-ord-is-wf )
apply (erule ordermap-bij [THEN bij-is-inj, THEN restrict-bij,

THEN bij-converse-bij])
apply (rule pred-subset)
done

34.5.1 Establishing the well-ordering
lemma well-ord-csquare:

assumes K : Ord(K ) shows well-ord(K∗K , csquare-rel(K ))
proof (unfold csquare-rel-def , rule well-ord-rvimage)

show (λ〈x,y〉∈K × K . 〈x ∪ y, x, y〉) ∈ inj(K × K , K × K × K ) using K
by (force simp add: inj-def intro: lam-type Un-least-lt [THEN ltD] ltI )

next
show well-ord(K × K × K , rmult(K , Memrel(K ), K × K , rmult(K , Memrel(K ),

K , Memrel(K ))))
using K by (blast intro: well-ord-rmult well-ord-Memrel)

qed

34.5.2 Characterising initial segments of the well-ordering
lemma csquareD:
[[<〈x,y〉, 〈z,z〉> ∈ csquare-rel(K ); x<K ; y<K ; z<K ]] =⇒ x ≤ z ∧ y ≤ z
unfolding csquare-rel-def

apply (erule rev-mp)
apply (elim ltE)
apply (simp add: rvimage-iff Un-absorb Un-least-mem-iff ltD)
apply (safe elim!: mem-irrefl intro!: Un-upper1-le Un-upper2-le)
apply (simp-all add: lt-def succI2 )
done

lemma pred-csquare-subset:
z<K =⇒ Order .pred(K∗K , 〈z,z〉, csquare-rel(K )) ⊆ succ(z)∗succ(z)

unfolding Order .pred-def
apply (safe del: SigmaI dest!: csquareD)
apply (unfold lt-def , auto)
done

lemma csquare-ltI :
[[x<z; y<z; z<K ]] =⇒ <〈x,y〉, 〈z,z〉> ∈ csquare-rel(K )
unfolding csquare-rel-def

apply (subgoal-tac x<K ∧ y<K )
prefer 2 apply (blast intro: lt-trans)

apply (elim ltE)
apply (simp add: rvimage-iff Un-absorb Un-least-mem-iff ltD)
done

lemma csquare-or-eqI :
[[x ≤ z; y ≤ z; z<K ]] =⇒ <〈x,y〉, 〈z,z〉> ∈ csquare-rel(K ) | x=z ∧ y=z
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unfolding csquare-rel-def
apply (subgoal-tac x<K ∧ y<K )
prefer 2 apply (blast intro: lt-trans1 )

apply (elim ltE)
apply (simp add: rvimage-iff Un-absorb Un-least-mem-iff ltD)
apply (elim succE)
apply (simp-all add: subset-Un-iff [THEN iff-sym]

subset-Un-iff2 [THEN iff-sym] OrdmemD)
done

34.5.3 The cardinality of initial segments
lemma ordermap-z-lt:

[[Limit(K ); x<K ; y<K ; z=succ(x ∪ y)]] =⇒
ordermap(K∗K , csquare-rel(K )) ‘ 〈x,y〉 <
ordermap(K∗K , csquare-rel(K )) ‘ 〈z,z〉

apply (subgoal-tac z<K ∧ well-ord (K∗K , csquare-rel (K )))
prefer 2 apply (blast intro!: Un-least-lt Limit-has-succ

Limit-is-Ord [THEN well-ord-csquare], clarify)
apply (rule csquare-ltI [THEN ordermap-mono, THEN ltI ])
apply (erule-tac [4 ] well-ord-is-wf )
apply (blast intro!: Un-upper1-le Un-upper2-le Ord-ordermap elim!: ltE)+
done

Kunen: "each 〈x, y〉 ∈ K × K has no more than z × z predecessors..." (page
29)
lemma ordermap-csquare-le:

assumes K : Limit(K ) and x: x<K and y: y<K
defines z ≡ succ(x ∪ y)
shows |ordermap(K × K , csquare-rel(K )) ‘ 〈x,y〉| ≤ |succ(z)| ⊗ |succ(z)|

proof (unfold cmult-def , rule well-ord-lepoll-imp-cardinal-le)
show well-ord(|succ(z)| × |succ(z)|,

rmult(|succ(z)|, Memrel(|succ(z)|), |succ(z)|, Memrel(|succ(z)|)))
by (blast intro: Ord-cardinal well-ord-Memrel well-ord-rmult)

next
have zK : z<K using x y K z-def

by (blast intro: Un-least-lt Limit-has-succ)
hence oz: Ord(z) by (elim ltE)
have ordermap(K × K , csquare-rel(K )) ‘ 〈x,y〉 . ordermap(K × K , csquare-rel(K ))

‘ 〈z,z〉
using z-def
by (blast intro: ordermap-z-lt leI le-imp-lepoll K x y)

also have ... ≈ Order .pred(K × K , 〈z,z〉, csquare-rel(K ))
proof (rule ordermap-eqpoll-pred)

show well-ord(K × K , csquare-rel(K )) using K
by (rule Limit-is-Ord [THEN well-ord-csquare])

next
show 〈z, z〉 ∈ K × K using zK

by (blast intro: ltD)
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qed
also have ... . succ(z) × succ(z) using zK

by (rule pred-csquare-subset [THEN subset-imp-lepoll])
also have ... ≈ |succ(z)| × |succ(z)| using oz

by (blast intro: prod-eqpoll-cong Ord-succ Ord-cardinal-eqpoll eqpoll-sym)
finally show ordermap(K × K , csquare-rel(K )) ‘ 〈x,y〉 . |succ(z)| × |succ(z)| .

qed

Kunen: "... so the order type is ≤ K"
lemma ordertype-csquare-le:

assumes IK : InfCard(K ) and eq:
∧

y. y∈K =⇒ InfCard(y) =⇒ y ⊗ y = y
shows ordertype(K∗K , csquare-rel(K )) ≤ K

proof −
have CK : Card(K ) using IK by (rule InfCard-is-Card)
hence OK : Ord(K ) by (rule Card-is-Ord)
moreover have Ord(ordertype(K × K , csquare-rel(K ))) using OK

by (rule well-ord-csquare [THEN Ord-ordertype])
ultimately show ?thesis
proof (rule all-lt-imp-le)

fix i
assume i: i < ordertype(K × K , csquare-rel(K ))
hence Oi: Ord(i) by (elim ltE)
obtain x y where x: x ∈ K and y: y ∈ K

and ieq: i = ordermap(K × K , csquare-rel(K )) ‘ 〈x,y〉
using i by (auto simp add: ordertype-unfold elim: ltE)

hence xy: Ord(x) Ord(y) x < K y < K using OK
by (blast intro: Ord-in-Ord ltI )+

hence ou: Ord(x ∪ y)
by (simp add: Ord-Un)

show i < K
proof (rule Card-lt-imp-lt [OF - Oi CK ])

have |i| ≤ |succ(succ(x ∪ y))| ⊗ |succ(succ(x ∪ y))| using IK xy
by (auto simp add: ieq intro: InfCard-is-Limit [THEN ordermap-csquare-le])
moreover have |succ(succ(x ∪ y))| ⊗ |succ(succ(x ∪ y))| < K

proof (cases rule: Ord-linear2 [OF ou Ord-nat])
assume x ∪ y < nat
hence |succ(succ(x ∪ y))| ⊗ |succ(succ(x ∪ y))| ∈ nat

by (simp add: lt-def nat-cmult-eq-mult nat-succI mult-type
nat-into-Card [THEN Card-cardinal-eq] Ord-nat)

also have ... ⊆ K using IK
by (simp add: InfCard-def le-imp-subset)

finally show |succ(succ(x ∪ y))| ⊗ |succ(succ(x ∪ y))| < K
by (simp add: ltI OK )

next
assume natxy: nat ≤ x ∪ y
hence seq: |succ(succ(x ∪ y))| = |x ∪ y| using xy

by (simp add: le-imp-subset nat-succ-eqpoll [THEN cardinal-cong]
le-succ-iff )

also have ... < K using xy
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by (simp add: Un-least-lt Ord-cardinal-le [THEN lt-trans1 ])
finally have |succ(succ(x ∪ y))| < K .
moreover have InfCard(|succ(succ(x ∪ y))|) using xy natxy

by (simp add: seq InfCard-def Card-cardinal nat-le-cardinal)
ultimately show ?thesis by (simp add: eq ltD)

qed
ultimately show |i| < K by (blast intro: lt-trans1 )

qed
qed

qed

lemma InfCard-csquare-eq:
assumes IK : InfCard(K ) shows K ⊗ K = K

proof −
have OK : Ord(K ) using IK by (simp add: Card-is-Ord InfCard-is-Card)
show K ⊗ K = K using OK IK
proof (induct rule: trans-induct)

case (step i)
show i ⊗ i = i
proof (rule le-anti-sym)

have |i × i| = |ordertype(i × i, csquare-rel(i))|
by (rule cardinal-cong,

simp add: step.hyps well-ord-csquare [THEN ordermap-bij, THEN bij-imp-eqpoll])
hence i ⊗ i ≤ ordertype(i × i, csquare-rel(i))

by (simp add: step.hyps cmult-def Ord-cardinal-le well-ord-csquare [THEN
Ord-ordertype])

moreover
have ordertype(i × i, csquare-rel(i)) ≤ i using step

by (simp add: ordertype-csquare-le)
ultimately show i ⊗ i ≤ i by (rule le-trans)

next
show i ≤ i ⊗ i using step

by (blast intro: cmult-square-le InfCard-is-Card)
qed

qed
qed

lemma well-ord-InfCard-square-eq:
assumes r : well-ord(A,r) and I : InfCard(|A|) shows A × A ≈ A

proof −
have A × A ≈ |A| × |A|

by (blast intro: prod-eqpoll-cong well-ord-cardinal-eqpoll eqpoll-sym r)
also have ... ≈ A

proof (rule well-ord-cardinal-eqE [OF - r ])
show well-ord(|A| × |A|, rmult(|A|, Memrel(|A|), |A|, Memrel(|A|)))

by (blast intro: Ord-cardinal well-ord-rmult well-ord-Memrel r)
next
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show ||A| × |A|| = |A| using InfCard-csquare-eq I
by (simp add: cmult-def )

qed
finally show ?thesis .

qed

lemma InfCard-square-eqpoll: InfCard(K ) =⇒ K × K ≈ K
apply (rule well-ord-InfCard-square-eq)
apply (erule InfCard-is-Card [THEN Card-is-Ord, THEN well-ord-Memrel])

apply (simp add: InfCard-is-Card [THEN Card-cardinal-eq])
done

lemma Inf-Card-is-InfCard: [[Card(i); ¬ Finite(i)]] =⇒ InfCard(i)
by (simp add: InfCard-def Card-is-Ord [THEN nat-le-infinite-Ord])

34.5.4 Toward’s Kunen’s Corollary 10.13 (1)
lemma InfCard-le-cmult-eq: [[InfCard(K ); L ≤ K ; 0<L]] =⇒ K ⊗ L = K
apply (rule le-anti-sym)
prefer 2
apply (erule ltE , blast intro: cmult-le-self InfCard-is-Card)

apply (frule InfCard-is-Card [THEN Card-is-Ord, THEN le-refl])
apply (rule cmult-le-mono [THEN le-trans], assumption+)
apply (simp add: InfCard-csquare-eq)
done

lemma InfCard-cmult-eq: [[InfCard(K ); InfCard(L)]] =⇒ K ⊗ L = K ∪ L
apply (rule-tac i = K and j = L in Ord-linear-le)
apply (typecheck add: InfCard-is-Card Card-is-Ord)
apply (rule cmult-commute [THEN ssubst])
apply (rule Un-commute [THEN ssubst])
apply (simp-all add: InfCard-is-Limit [THEN Limit-has-0 ] InfCard-le-cmult-eq

subset-Un-iff2 [THEN iffD1 ] le-imp-subset)
done

lemma InfCard-cdouble-eq: InfCard(K ) =⇒ K ⊕ K = K
apply (simp add: cmult-2 [symmetric] InfCard-is-Card cmult-commute)
apply (simp add: InfCard-le-cmult-eq InfCard-is-Limit Limit-has-0 Limit-has-succ)
done

lemma InfCard-le-cadd-eq: [[InfCard(K ); L ≤ K ]] =⇒ K ⊕ L = K
apply (rule le-anti-sym)
prefer 2
apply (erule ltE , blast intro: cadd-le-self InfCard-is-Card)

apply (frule InfCard-is-Card [THEN Card-is-Ord, THEN le-refl])
apply (rule cadd-le-mono [THEN le-trans], assumption+)
apply (simp add: InfCard-cdouble-eq)
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done

lemma InfCard-cadd-eq: [[InfCard(K ); InfCard(L)]] =⇒ K ⊕ L = K ∪ L
apply (rule-tac i = K and j = L in Ord-linear-le)
apply (typecheck add: InfCard-is-Card Card-is-Ord)
apply (rule cadd-commute [THEN ssubst])
apply (rule Un-commute [THEN ssubst])
apply (simp-all add: InfCard-le-cadd-eq subset-Un-iff2 [THEN iffD1 ] le-imp-subset)
done

34.6 For Every Cardinal Number There Exists A Greater
One

This result is Kunen’s Theorem 10.16, which would be trivial using AC
lemma Ord-jump-cardinal: Ord(jump-cardinal(K ))

unfolding jump-cardinal-def
apply (rule Ord-is-Transset [THEN [2 ] OrdI ])
prefer 2 apply (blast intro!: Ord-ordertype)
unfolding Transset-def

apply (safe del: subsetI )
apply (simp add: ordertype-pred-unfold, safe)
apply (rule UN-I )
apply (rule-tac [2 ] ReplaceI )

prefer 4 apply (blast intro: well-ord-subset elim!: predE)+
done

lemma jump-cardinal-iff :
i ∈ jump-cardinal(K ) ←→
(∃ r X . r ⊆ K∗K ∧ X ⊆ K ∧ well-ord(X ,r) ∧ i = ordertype(X ,r))

unfolding jump-cardinal-def
apply (blast del: subsetI )
done

lemma K-lt-jump-cardinal: Ord(K ) =⇒ K < jump-cardinal(K )
apply (rule Ord-jump-cardinal [THEN [2 ] ltI ])
apply (rule jump-cardinal-iff [THEN iffD2 ])
apply (rule-tac x=Memrel(K ) in exI )
apply (rule-tac x=K in exI )
apply (simp add: ordertype-Memrel well-ord-Memrel)
apply (simp add: Memrel-def subset-iff )
done

lemma Card-jump-cardinal-lemma:
[[well-ord(X ,r); r ⊆ K ∗ K ; X ⊆ K ;

f ∈ bij(ordertype(X ,r), jump-cardinal(K ))]]
=⇒ jump-cardinal(K ) ∈ jump-cardinal(K )
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apply (subgoal-tac f O ordermap (X ,r) ∈ bij (X , jump-cardinal (K )))
prefer 2 apply (blast intro: comp-bij ordermap-bij)

apply (rule jump-cardinal-iff [THEN iffD2 ])
apply (intro exI conjI )
apply (rule subset-trans [OF rvimage-type Sigma-mono], assumption+)
apply (erule bij-is-inj [THEN well-ord-rvimage])
apply (rule Ord-jump-cardinal [THEN well-ord-Memrel])
apply (simp add: well-ord-Memrel [THEN [2 ] bij-ordertype-vimage]

ordertype-Memrel Ord-jump-cardinal)
done

lemma Card-jump-cardinal: Card(jump-cardinal(K ))
apply (rule Ord-jump-cardinal [THEN CardI ])

unfolding eqpoll-def
apply (safe dest!: ltD jump-cardinal-iff [THEN iffD1 ])
apply (blast intro: Card-jump-cardinal-lemma [THEN mem-irrefl])
done

34.7 Basic Properties of Successor Cardinals
lemma csucc-basic: Ord(K ) =⇒ Card(csucc(K )) ∧ K < csucc(K )

unfolding csucc-def
apply (rule LeastI )
apply (blast intro: Card-jump-cardinal K-lt-jump-cardinal Ord-jump-cardinal)+
done

lemmas Card-csucc = csucc-basic [THEN conjunct1 ]

lemmas lt-csucc = csucc-basic [THEN conjunct2 ]

lemma Ord-0-lt-csucc: Ord(K ) =⇒ 0 < csucc(K )
by (blast intro: Ord-0-le lt-csucc lt-trans1 )

lemma csucc-le: [[Card(L); K<L]] =⇒ csucc(K ) ≤ L
unfolding csucc-def

apply (rule Least-le)
apply (blast intro: Card-is-Ord)+
done

lemma lt-csucc-iff : [[Ord(i); Card(K )]] =⇒ i < csucc(K ) ←→ |i| ≤ K
apply (rule iffI )
apply (rule-tac [2 ] Card-lt-imp-lt)
apply (erule-tac [2 ] lt-trans1 )
apply (simp-all add: lt-csucc Card-csucc Card-is-Ord)
apply (rule notI [THEN not-lt-imp-le])
apply (rule Card-cardinal [THEN csucc-le, THEN lt-trans1 , THEN lt-irrefl], as-
sumption)
apply (rule Ord-cardinal-le [THEN lt-trans1 ])
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apply (simp-all add: Ord-cardinal Card-is-Ord)
done

lemma Card-lt-csucc-iff :
[[Card(K ′); Card(K )]] =⇒ K ′ < csucc(K ) ←→ K ′ ≤ K

by (simp add: lt-csucc-iff Card-cardinal-eq Card-is-Ord)

lemma InfCard-csucc: InfCard(K ) =⇒ InfCard(csucc(K ))
by (simp add: InfCard-def Card-csucc Card-is-Ord

lt-csucc [THEN leI , THEN [2 ] le-trans])

34.7.1 Removing elements from a finite set decreases its cardi-
nality

lemma Finite-imp-cardinal-cons [simp]:
assumes FA: Finite(A) and a: a /∈A shows |cons(a,A)| = succ(|A|)

proof −
{ fix X

have Finite(X) =⇒ a /∈ X =⇒ cons(a,X) . X =⇒ False
proof (induct X rule: Finite-induct)

case 0 thus False by (simp add: lepoll-0-iff )
next

case (cons x Y )
hence cons(x, cons(a, Y )) . cons(x, Y ) by (simp add: cons-commute)
hence cons(a, Y ) . Y using cons by (blast dest: cons-lepoll-consD)
thus False using cons by auto

qed
}
hence [simp]: ¬ cons(a,A) . A using a FA by auto
have [simp]: |A| ≈ A using Finite-imp-well-ord [OF FA]

by (blast intro: well-ord-cardinal-eqpoll)
have (µ i. i ≈ cons(a, A)) = succ(|A|)

proof (rule Least-equality [OF - - notI ])
show succ(|A|) ≈ cons(a, A)

by (simp add: succ-def cons-eqpoll-cong mem-not-refl a)
next

show Ord(succ(|A|)) by simp
next

fix i
assume i: i ≤ |A| i ≈ cons(a, A)
have cons(a, A) ≈ i by (rule eqpoll-sym) (rule i)
also have ... . |A| by (rule le-imp-lepoll) (rule i)
also have ... ≈ A by simp
finally have cons(a, A) . A .
thus False by simp

qed
thus ?thesis by (simp add: cardinal-def )

qed
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lemma Finite-imp-succ-cardinal-Diff :
[[Finite(A); a ∈ A]] =⇒ succ(|A−{a}|) = |A|

apply (rule-tac b = A in cons-Diff [THEN subst], assumption)
apply (simp add: Finite-imp-cardinal-cons Diff-subset [THEN subset-Finite])
apply (simp add: cons-Diff )
done

lemma Finite-imp-cardinal-Diff : [[Finite(A); a ∈ A]] =⇒ |A−{a}| < |A|
apply (rule succ-leE)
apply (simp add: Finite-imp-succ-cardinal-Diff )
done

lemma Finite-cardinal-in-nat [simp]: Finite(A) =⇒ |A| ∈ nat
proof (induct rule: Finite-induct)

case 0 thus ?case by (simp add: cardinal-0 )
next

case (cons x A) thus ?case by (simp add: Finite-imp-cardinal-cons)
qed

lemma card-Un-Int:
[[Finite(A); Finite(B)]] =⇒ |A| #+ |B| = |A ∪ B| #+ |A ∩ B|

apply (erule Finite-induct, simp)
apply (simp add: Finite-Int cons-absorb Un-cons Int-cons-left)
done

lemma card-Un-disjoint:
[[Finite(A); Finite(B); A ∩ B = 0 ]] =⇒ |A ∪ B| = |A| #+ |B|

by (simp add: Finite-Un card-Un-Int)

lemma card-partition:
assumes FC : Finite(C )
shows

Finite (
⋃

C ) =⇒
(∀ c∈C . |c| = k) =⇒
(∀ c1 ∈ C . ∀ c2 ∈ C . c1 6= c2 −→ c1 ∩ c2 = 0 ) =⇒
k #∗ |C | = |

⋃
C |

using FC
proof (induct rule: Finite-induct)

case 0 thus ?case by simp
next

case (cons x B)
hence x ∩

⋃
B = 0 by auto

thus ?case using cons
by (auto simp add: card-Un-disjoint)

qed

34.7.2 Theorems by Krzysztof Grabczewski, proofs by lcp
lemmas nat-implies-well-ord = nat-into-Ord [THEN well-ord-Memrel]
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lemma nat-sum-eqpoll-sum:
assumes m: m ∈ nat and n: n ∈ nat shows m + n ≈ m #+ n

proof −
have m + n ≈ |m+n| using m n
by (blast intro: nat-implies-well-ord well-ord-radd well-ord-cardinal-eqpoll eqpoll-sym)

also have ... = m #+ n using m n
by (simp add: nat-cadd-eq-add [symmetric] cadd-def )

finally show ?thesis .
qed

lemma Ord-subset-natD [rule-format]: Ord(i) =⇒ i ⊆ nat =⇒ i ∈ nat | i=nat
proof (induct i rule: trans-induct3 )

case 0 thus ?case by auto
next

case (succ i) thus ?case by auto
next

case (limit l) thus ?case
by (blast dest: nat-le-Limit le-imp-subset)

qed

lemma Ord-nat-subset-into-Card: [[Ord(i); i ⊆ nat]] =⇒ Card(i)
by (blast dest: Ord-subset-natD intro: Card-nat nat-into-Card)

end

35 Main ZF Theory: Everything Except AC
theory ZF imports List IntDiv CardinalArith begin

35.1 Iteration of the function F
consts iterates :: [i⇒i,i,i]⇒ i (‹(‹notation=‹mixfix iterates››-^- ′(- ′))› [60 ,1000 ,1000 ]
60 )

primrec
F^0 (x) = x
F^(succ(n)) (x) = F(F^n (x))

definition
iterates-omega :: [i⇒i,i] ⇒ i (‹(‹notation=‹mixfix iterates-omega››-^ω ′(- ′))›

[60 ,1000 ] 60 ) where
F^ω (x) ≡

⋃
n∈nat. F^n (x)

lemma iterates-triv:
[[n∈nat; F(x) = x]] =⇒ F^n (x) = x

by (induct n rule: nat-induct, simp-all)

lemma iterates-type [TC ]:
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[[n ∈ nat; a ∈ A;
∧

x. x ∈ A =⇒ F(x) ∈ A]]
=⇒ F^n (a) ∈ A

by (induct n rule: nat-induct, simp-all)

lemma iterates-omega-triv:
F(x) = x =⇒ F^ω (x) = x

by (simp add: iterates-omega-def iterates-triv)

lemma Ord-iterates [simp]:
[[n∈nat;

∧
i. Ord(i) =⇒ Ord(F(i)); Ord(x)]]

=⇒ Ord(F^n (x))
by (induct n rule: nat-induct, simp-all)

lemma iterates-commute: n ∈ nat =⇒ F(F^n (x)) = F^n (F(x))
by (induct-tac n, simp-all)

35.2 Transfinite Recursion

Transfinite recursion for definitions based on the three cases of ordinals
definition

transrec3 :: [i, i, [i,i]⇒i, [i,i]⇒i] ⇒i where
transrec3 (k, a, b, c) ≡

transrec(k, λx r .
if x=0 then a
else if Limit(x) then c(x, λy∈x. r‘y)
else b(Arith.pred(x), r ‘ Arith.pred(x)))

lemma transrec3-0 [simp]: transrec3 (0 ,a,b,c) = a
by (rule transrec3-def [THEN def-transrec, THEN trans], simp)

lemma transrec3-succ [simp]:
transrec3 (succ(i),a,b,c) = b(i, transrec3 (i,a,b,c))

by (rule transrec3-def [THEN def-transrec, THEN trans], simp)

lemma transrec3-Limit:
Limit(i) =⇒
transrec3 (i,a,b,c) = c(i, λj∈i. transrec3 (j,a,b,c))

by (rule transrec3-def [THEN def-transrec, THEN trans], force)

declaration ‹fn - =>
Simplifier .map-ss (Simplifier .set-mksimps (fn ctxt =>

map mk-eq o Ord-atomize o Variable.gen-all ctxt))
›

end
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36 The Axiom of Choice
theory AC imports ZF begin

This definition comes from Halmos (1960), page 59.
axiomatization where

AC : [[a ∈ A;
∧

x. x ∈ A =⇒ (∃ y. y ∈ B(x))]] =⇒ ∃ z. z ∈ Pi(A,B)

lemma AC-Pi: [[
∧

x. x ∈ A =⇒ (∃ y. y ∈ B(x))]] =⇒ ∃ z. z ∈ Pi(A,B)
apply (case-tac A=0 )
apply (simp add: Pi-empty1 )

apply (blast intro: AC )
done

lemma AC-ball-Pi: ∀ x ∈ A. ∃ y. y ∈ B(x) =⇒ ∃ y. y ∈ Pi(A,B)
apply (rule AC-Pi)
apply (erule bspec, assumption)
done

lemma AC-Pi-Pow: ∃ f . f ∈ (
∏

X ∈ Pow(C )−{0}. X)
apply (rule-tac B1 = λx. x in AC-Pi [THEN exE ])
apply (erule-tac [2 ] exI , blast)
done

lemma AC-func:
[[
∧

x. x ∈ A =⇒ (∃ y. y ∈ x)]] =⇒ ∃ f ∈ A−>
⋃
(A). ∀ x ∈ A. f‘x ∈ x

apply (rule-tac B1 = λx. x in AC-Pi [THEN exE ])
prefer 2 apply (blast dest: apply-type intro: Pi-type, blast)
done

lemma non-empty-family: [[0 /∈ A; x ∈ A]] =⇒ ∃ y. y ∈ x
by (subgoal-tac x 6= 0 , blast+)

lemma AC-func0 : 0 /∈ A =⇒ ∃ f ∈ A−>
⋃
(A). ∀ x ∈ A. f‘x ∈ x

apply (rule AC-func)
apply (simp-all add: non-empty-family)
done

lemma AC-func-Pow: ∃ f ∈ (Pow(C )−{0}) −> C . ∀ x ∈ Pow(C )−{0}. f‘x ∈ x
apply (rule AC-func0 [THEN bexE ])
apply (rule-tac [2 ] bexI )
prefer 2 apply assumption
apply (erule-tac [2 ] fun-weaken-type, blast+)
done

lemma AC-Pi0 : 0 /∈ A =⇒ ∃ f . f ∈ (
∏

x ∈ A. x)
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apply (rule AC-Pi)
apply (simp-all add: non-empty-family)
done

end

37 Zorn’s Lemma
theory Zorn imports OrderArith AC Inductive begin

Based upon the unpublished article “Towards the Mechanization of the
Proofs of Some Classical Theorems of Set Theory,” by Abrial and Laffitte.
definition

Subset-rel :: i⇒i where
Subset-rel(A) ≡ {z ∈ A∗A . ∃ x y. z=〈x,y〉 ∧ x<=y ∧ x 6=y}

definition
chain :: i⇒i where
chain(A) ≡ {F ∈ Pow(A). ∀X∈F . ∀Y∈F . X<=Y | Y<=X}

definition
super :: [i,i]⇒i where
super(A,c) ≡ {d ∈ chain(A). c<=d ∧ c 6=d}

definition
maxchain :: i⇒i where
maxchain(A) ≡ {c ∈ chain(A). super(A,c)=0}

definition
increasing :: i⇒i where

increasing(A) ≡ {f ∈ Pow(A)−>Pow(A). ∀ x. x<=A −→ x<=f‘x}

Lemma for the inductive definition below
lemma Union-in-Pow: Y ∈ Pow(Pow(A)) =⇒

⋃
(Y ) ∈ Pow(A)

by blast

We could make the inductive definition conditional on next ∈ increasing(S)
but instead we make this a side-condition of an introduction rule. Thus
the induction rule lets us assume that condition! Many inductive proofs are
therefore unconditional.
consts

TFin :: [i,i]⇒i

inductive
domains TFin(S ,next) ⊆ Pow(S)
intros

nextI : [[x ∈ TFin(S ,next); next ∈ increasing(S)]]
=⇒ next‘x ∈ TFin(S ,next)
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Pow-UnionI : Y ∈ Pow(TFin(S ,next)) =⇒
⋃
(Y ) ∈ TFin(S ,next)

monos Pow-mono
con-defs increasing-def
type-intros CollectD1 [THEN apply-funtype] Union-in-Pow

37.1 Mathematical Preamble
lemma Union-lemma0 : (∀ x∈C . x<=A | B<=x) =⇒

⋃
(C )<=A | B<=

⋃
(C )

by blast

lemma Inter-lemma0 :
[[c ∈ C ; ∀ x∈C . A<=x | x<=B]] =⇒ A ⊆

⋂
(C ) |

⋂
(C ) ⊆ B

by blast

37.2 The Transfinite Construction
lemma increasingD1 : f ∈ increasing(A) =⇒ f ∈ Pow(A)−>Pow(A)

unfolding increasing-def
apply (erule CollectD1 )
done

lemma increasingD2 : [[f ∈ increasing(A); x<=A]] =⇒ x ⊆ f‘x
by (unfold increasing-def , blast)

lemmas TFin-UnionI = PowI [THEN TFin.Pow-UnionI ]

lemmas TFin-is-subset = TFin.dom-subset [THEN subsetD, THEN PowD]

Structural induction on TFin(S , next)
lemma TFin-induct:
[[n ∈ TFin(S ,next);∧

x. [[x ∈ TFin(S ,next); P(x); next ∈ increasing(S)]] =⇒ P(next‘x);∧
Y . [[Y ⊆ TFin(S ,next); ∀ y∈Y . P(y)]] =⇒ P(

⋃
(Y ))

]] =⇒ P(n)
by (erule TFin.induct, blast+)

37.3 Some Properties of the Transfinite Construction
lemmas increasing-trans = subset-trans [OF - increasingD2 ,

OF - - TFin-is-subset]

Lemma 1 of section 3.1
lemma TFin-linear-lemma1 :

[[n ∈ TFin(S ,next); m ∈ TFin(S ,next);
∀ x ∈ TFin(S ,next) . x<=m −→ x=m | next‘x<=m]]

=⇒ n<=m | next‘m<=n
apply (erule TFin-induct)
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apply (erule-tac [2 ] Union-lemma0 )

apply (blast dest: increasing-trans)
done

Lemma 2 of section 3.2. Interesting in its own right! Requires next ∈ in-
creasing(S) in the second induction step.
lemma TFin-linear-lemma2 :

[[m ∈ TFin(S ,next); next ∈ increasing(S)]]
=⇒ ∀n ∈ TFin(S ,next). n<=m −→ n=m | next‘n ⊆ m

apply (erule TFin-induct)
apply (rule impI [THEN ballI ])

case split using TFin-linear-lemma1

apply (rule-tac n1 = n and m1 = x in TFin-linear-lemma1 [THEN disjE ],
assumption+)

apply (blast del: subsetI
intro: increasing-trans subsetI , blast)

second induction step

apply (rule impI [THEN ballI ])
apply (rule Union-lemma0 [THEN disjE ])
apply (erule-tac [3 ] disjI2 )
prefer 2 apply blast
apply (rule ballI )
apply (drule bspec, assumption)
apply (drule subsetD, assumption)
apply (rule-tac n1 = n and m1 = x in TFin-linear-lemma1 [THEN disjE ],

assumption+, blast)
apply (erule increasingD2 [THEN subset-trans, THEN disjI1 ])
apply (blast dest: TFin-is-subset)+
done

a more convenient form for Lemma 2
lemma TFin-subsetD:

[[n<=m; m ∈ TFin(S ,next); n ∈ TFin(S ,next); next ∈ increasing(S)]]
=⇒ n=m | next‘n ⊆ m

by (blast dest: TFin-linear-lemma2 [rule-format])

Consequences from section 3.3 – Property 3.2, the ordering is total
lemma TFin-subset-linear :

[[m ∈ TFin(S ,next); n ∈ TFin(S ,next); next ∈ increasing(S)]]
=⇒ n ⊆ m | m<=n

apply (rule disjE)
apply (rule TFin-linear-lemma1 [OF - -TFin-linear-lemma2 ])
apply (assumption+, erule disjI2 )
apply (blast del: subsetI

intro: subsetI increasingD2 [THEN subset-trans] TFin-is-subset)
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done

Lemma 3 of section 3.3
lemma equal-next-upper :

[[n ∈ TFin(S ,next); m ∈ TFin(S ,next); m = next‘m]] =⇒ n ⊆ m
apply (erule TFin-induct)
apply (drule TFin-subsetD)
apply (assumption+, force, blast)
done

Property 3.3 of section 3.3
lemma equal-next-Union:

[[m ∈ TFin(S ,next); next ∈ increasing(S)]]
=⇒ m = next‘m <−> m =

⋃
(TFin(S ,next))

apply (rule iffI )
apply (rule Union-upper [THEN equalityI ])
apply (rule-tac [2 ] equal-next-upper [THEN Union-least])
apply (assumption+)
apply (erule ssubst)
apply (rule increasingD2 [THEN equalityI ], assumption)
apply (blast del: subsetI

intro: subsetI TFin-UnionI TFin.nextI TFin-is-subset)+
done

37.4 Hausdorff’s Theorem: Every Set Contains a Maximal
Chain

NOTE: We assume the partial ordering is ⊆, the subset relation!

* Defining the "next" operation for Hausdorff’s Theorem *
lemma chain-subset-Pow: chain(A) ⊆ Pow(A)

unfolding chain-def
apply (rule Collect-subset)
done

lemma super-subset-chain: super(A,c) ⊆ chain(A)
unfolding super-def

apply (rule Collect-subset)
done

lemma maxchain-subset-chain: maxchain(A) ⊆ chain(A)
unfolding maxchain-def

apply (rule Collect-subset)
done

lemma choice-super :
[[ch ∈ (

∏
X ∈ Pow(chain(S)) − {0}. X); X ∈ chain(S); X /∈ maxchain(S)]]

=⇒ ch ‘ super(S ,X) ∈ super(S ,X)
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apply (erule apply-type)
apply (unfold super-def maxchain-def , blast)
done

lemma choice-not-equals:
[[ch ∈ (

∏
X ∈ Pow(chain(S)) − {0}. X); X ∈ chain(S); X /∈ maxchain(S)]]

=⇒ ch ‘ super(S ,X) 6= X
apply (rule notI )
apply (drule choice-super , assumption, assumption)
apply (simp add: super-def )
done

This justifies Definition 4.4
lemma Hausdorff-next-exists:

ch ∈ (
∏

X ∈ Pow(chain(S))−{0}. X) =⇒
∃next ∈ increasing(S). ∀X ∈ Pow(S).

next‘X = if (X ∈ chain(S)−maxchain(S), ch‘super(S ,X), X)
apply (rule-tac x=λX∈Pow(S).

if X ∈ chain(S) − maxchain(S) then ch ‘ super(S , X) else X
in bexI )

apply force
unfolding increasing-def

apply (rule CollectI )
apply (rule lam-type)
apply (simp (no-asm-simp))
apply (blast dest: super-subset-chain [THEN subsetD]

chain-subset-Pow [THEN subsetD] choice-super)

Now, verify that it increases

apply (simp (no-asm-simp) add: Pow-iff subset-refl)
apply safe
apply (drule choice-super)
apply (assumption+)
apply (simp add: super-def , blast)
done

Lemma 4
lemma TFin-chain-lemma4 :

[[c ∈ TFin(S ,next);
ch ∈ (

∏
X ∈ Pow(chain(S))−{0}. X);

next ∈ increasing(S);
∀X ∈ Pow(S). next‘X =

if (X ∈ chain(S)−maxchain(S), ch‘super(S ,X), X)]]
=⇒ c ∈ chain(S)

apply (erule TFin-induct)
apply (simp (no-asm-simp) add: chain-subset-Pow [THEN subsetD, THEN PowD]

choice-super [THEN super-subset-chain [THEN subsetD]])
unfolding chain-def

apply (rule CollectI , blast, safe)
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apply (rule-tac m1=B and n1=Ba in TFin-subset-linear [THEN disjE ], fast+)

Blast-tac ′s slow

done

theorem Hausdorff : ∃ c. c ∈ maxchain(S)
apply (rule AC-Pi-Pow [THEN exE ])
apply (rule Hausdorff-next-exists [THEN bexE ], assumption)
apply (rename-tac ch next)
apply (subgoal-tac

⋃
(TFin (S ,next)) ∈ chain (S) )

prefer 2
apply (blast intro!: TFin-chain-lemma4 subset-refl [THEN TFin-UnionI ])

apply (rule-tac x =
⋃
(TFin (S ,next)) in exI )

apply (rule classical)
apply (subgoal-tac next ‘ Union(TFin (S ,next)) =

⋃
(TFin (S ,next)))

apply (rule-tac [2 ] equal-next-Union [THEN iffD2 , symmetric])
apply (rule-tac [2 ] subset-refl [THEN TFin-UnionI ])
prefer 2 apply assumption
apply (rule-tac [2 ] refl)
apply (simp add: subset-refl [THEN TFin-UnionI ,

THEN TFin.dom-subset [THEN subsetD, THEN PowD]])
apply (erule choice-not-equals [THEN notE ])
apply (assumption+)
done

37.5 Zorn’s Lemma: If All Chains in S Have Upper Bounds
In S, then S contains a Maximal Element

Used in the proof of Zorn’s Lemma
lemma chain-extend:

[[c ∈ chain(A); z ∈ A; ∀ x ∈ c. x<=z]] =⇒ cons(z,c) ∈ chain(A)
by (unfold chain-def , blast)

lemma Zorn: ∀ c ∈ chain(S).
⋃
(c) ∈ S =⇒ ∃ y ∈ S . ∀ z ∈ S . y<=z −→ y=z

apply (rule Hausdorff [THEN exE ])
apply (simp add: maxchain-def )
apply (rename-tac c)
apply (rule-tac x =

⋃
(c) in bexI )

prefer 2 apply blast
apply safe
apply (rename-tac z)
apply (rule classical)
apply (subgoal-tac cons (z,c) ∈ super (S ,c) )
apply (blast elim: equalityE)
apply (unfold super-def , safe)
apply (fast elim: chain-extend)
apply (fast elim: equalityE)
done
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Alternative version of Zorn’s Lemma
theorem Zorn2 :
∀ c ∈ chain(S). ∃ y ∈ S . ∀ x ∈ c. x ⊆ y =⇒ ∃ y ∈ S . ∀ z ∈ S . y<=z −→ y=z

apply (cut-tac Hausdorff maxchain-subset-chain)
apply (erule exE)
apply (drule subsetD, assumption)
apply (drule bspec, assumption, erule bexE)
apply (rule-tac x = y in bexI )

prefer 2 apply assumption
apply clarify
apply rule apply assumption
apply rule
apply (rule ccontr)
apply (frule-tac z=z in chain-extend)

apply (assumption, blast)
unfolding maxchain-def super-def

apply (blast elim!: equalityCE)
done

37.6 Zermelo’s Theorem: Every Set can be Well-Ordered

Lemma 5
lemma TFin-well-lemma5 :

[[n ∈ TFin(S ,next); Z ⊆ TFin(S ,next); z:Z ; ¬
⋂
(Z ) ∈ Z ]]

=⇒ ∀m ∈ Z . n ⊆ m
apply (erule TFin-induct)
prefer 2 apply blast

second induction step is easy

apply (rule ballI )
apply (rule bspec [THEN TFin-subsetD, THEN disjE ], auto)
apply (subgoal-tac m =

⋂
(Z ) )

apply blast+
done

Well-ordering of TFin(S , next)
lemma well-ord-TFin-lemma: [[Z ⊆ TFin(S ,next); z ∈ Z ]] =⇒

⋂
(Z ) ∈ Z

apply (rule classical)
apply (subgoal-tac Z = {

⋃
(TFin (S ,next))})

apply (simp (no-asm-simp) add: Inter-singleton)
apply (erule equal-singleton)
apply (rule Union-upper [THEN equalityI ])
apply (rule-tac [2 ] subset-refl [THEN TFin-UnionI , THEN TFin-well-lemma5 ,
THEN bspec], blast+)
done

This theorem just packages the previous result
lemma well-ord-TFin:
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next ∈ increasing(S)
=⇒ well-ord(TFin(S ,next), Subset-rel(TFin(S ,next)))

apply (rule well-ordI )
unfolding Subset-rel-def linear-def

Prove the well-foundedness goal

apply (rule wf-onI )
apply (frule well-ord-TFin-lemma, assumption)
apply (drule-tac x =

⋂
(Z ) in bspec, assumption)

apply blast

Now prove the linearity goal

apply (intro ballI )
apply (case-tac x=y)
apply blast

The x 6= y case remains

apply (rule-tac n1=x and m1=y in TFin-subset-linear [THEN disjE ],
assumption+, blast+)

done

* Defining the "next" operation for Zermelo’s Theorem *
lemma choice-Diff :

[[ch ∈ (
∏

X ∈ Pow(S) − {0}. X); X ⊆ S ; X 6=S ]] =⇒ ch ‘ (S−X) ∈ S−X
apply (erule apply-type)
apply (blast elim!: equalityE)
done

This justifies Definition 6.1
lemma Zermelo-next-exists:

ch ∈ (
∏

X ∈ Pow(S)−{0}. X) =⇒
∃next ∈ increasing(S). ∀X ∈ Pow(S).

next‘X = (if X=S then S else cons(ch‘(S−X), X))
apply (rule-tac x=λX∈Pow(S). if X=S then S else cons(ch‘(S−X), X)

in bexI )
apply force

unfolding increasing-def
apply (rule CollectI )
apply (rule lam-type)

Type checking is surprisingly hard!

apply (simp (no-asm-simp) add: Pow-iff cons-subset-iff subset-refl)
apply (blast intro!: choice-Diff [THEN DiffD1 ])

Verify that it increases

apply (intro allI impI )
apply (simp add: Pow-iff subset-consI subset-refl)
done
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The construction of the injection
lemma choice-imp-injection:

[[ch ∈ (
∏

X ∈ Pow(S)−{0}. X);
next ∈ increasing(S);
∀X ∈ Pow(S). next‘X = if (X=S , S , cons(ch‘(S−X), X))]]

=⇒ (λ x ∈ S .
⋃
({y ∈ TFin(S ,next). x /∈ y}))

∈ inj(S , TFin(S ,next) − {S})
apply (rule-tac d = λy. ch‘ (S−y) in lam-injective)
apply (rule DiffI )
apply (rule Collect-subset [THEN TFin-UnionI ])
apply (blast intro!: Collect-subset [THEN TFin-UnionI ] elim: equalityE)
apply (subgoal-tac x /∈

⋃
({y ∈ TFin (S ,next) . x /∈ y}) )

prefer 2 apply (blast elim: equalityE)
apply (subgoal-tac

⋃
({y ∈ TFin (S ,next) . x /∈ y}) 6= S)

prefer 2 apply (blast elim: equalityE)

For proving x ∈ next‘
⋃
(...). Abrial and Laffitte’s justification appears to be faulty.

apply (subgoal-tac ¬ next ‘ Union({y ∈ TFin (S ,next) . x /∈ y})
⊆

⋃
({y ∈ TFin (S ,next) . x /∈ y}) )

prefer 2
apply (simp del: Union-iff

add: Collect-subset [THEN TFin-UnionI , THEN TFin-is-subset]
Pow-iff cons-subset-iff subset-refl choice-Diff [THEN DiffD2 ])

apply (subgoal-tac x ∈ next ‘ Union({y ∈ TFin (S ,next) . x /∈ y}) )
prefer 2
apply (blast intro!: Collect-subset [THEN TFin-UnionI ] TFin.nextI )

End of the lemmas!

apply (simp add: Collect-subset [THEN TFin-UnionI , THEN TFin-is-subset])
done

The wellordering theorem
theorem AC-well-ord: ∃ r . well-ord(S ,r)
apply (rule AC-Pi-Pow [THEN exE ])
apply (rule Zermelo-next-exists [THEN bexE ], assumption)
apply (rule exI )
apply (rule well-ord-rvimage)
apply (erule-tac [2 ] well-ord-TFin)
apply (rule choice-imp-injection [THEN inj-weaken-type], blast+)
done

37.7 Zorn’s Lemma for Partial Orders

Reimported from HOL by Clemens Ballarin.
definition Chain :: i ⇒ i where

Chain(r) = {A ∈ Pow(field(r)). ∀ a∈A. ∀ b∈A. 〈a, b〉 ∈ r | 〈b, a〉 ∈ r}

lemma mono-Chain:
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r ⊆ s =⇒ Chain(r) ⊆ Chain(s)
unfolding Chain-def
by blast

theorem Zorn-po:
assumes po: Partial-order(r)

and u: ∀C∈Chain(r). ∃ u∈field(r). ∀ a∈C . 〈a, u〉 ∈ r
shows ∃m∈field(r). ∀ a∈field(r). 〈m, a〉 ∈ r −→ a = m

proof −
have Preorder(r) using po by (simp add: partial-order-on-def )
— Mirror r in the set of subsets below (wrt r) elements of A (?).
let ?B = λx∈field(r). r −‘‘ {x} let ?S = ?B ‘‘ field(r)
have ∀C∈chain(?S). ∃U∈?S . ∀A∈C . A ⊆ U
proof (clarsimp simp: chain-def Subset-rel-def bex-image-simp)

fix C
assume 1 : C ⊆ ?S and 2 : ∀A∈C . ∀B∈C . A ⊆ B | B ⊆ A
let ?A = {x ∈ field(r). ∃M∈C . M = ?B‘x}
have C = ?B ‘‘ ?A using 1

apply (auto simp: image-def )
apply rule
apply rule
apply (drule subsetD) apply assumption
apply (erule CollectE)
apply rule apply assumption
apply (erule bexE)
apply rule prefer 2 apply assumption
apply rule
apply (erule lamE) apply simp
apply assumption

apply (thin-tac C ⊆ X for X)
apply (fast elim: lamE)
done

have ?A ∈ Chain(r)
proof (simp add: Chain-def subsetI , intro conjI ballI impI )

fix a b
assume a ∈ field(r) r −‘‘ {a} ∈ C b ∈ field(r) r −‘‘ {b} ∈ C
hence r −‘‘ {a} ⊆ r −‘‘ {b} | r −‘‘ {b} ⊆ r −‘‘ {a} using 2 by auto
then show 〈a, b〉 ∈ r | 〈b, a〉 ∈ r

using ‹Preorder(r)› ‹a ∈ field(r)› ‹b ∈ field(r)›
by (simp add: subset-vimage1-vimage1-iff )

qed
then obtain u where uA: u ∈ field(r) ∀ a∈?A. 〈a, u〉 ∈ r

using u
apply auto
apply (drule bspec) apply assumption
apply auto
done

have ∀A∈C . A ⊆ r −‘‘ {u}
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proof (auto intro!: vimageI )
fix a B
assume aB: B ∈ C a ∈ B
with 1 obtain x where x ∈ field(r) B = r −‘‘ {x}

apply −
apply (drule subsetD) apply assumption
apply (erule imageE)
apply (erule lamE)
apply simp
done

then show 〈a, u〉 ∈ r using uA aB ‹Preorder(r)›
by (auto simp: preorder-on-def refl-def ) (blast dest: trans-onD)+

qed
then show ∃U∈field(r). ∀A∈C . A ⊆ r −‘‘ {U}

using ‹u ∈ field(r)› ..
qed
from Zorn2 [OF this]
obtain m B where m ∈ field(r) B = r −‘‘ {m}
∀ x∈field(r). B ⊆ r −‘‘ {x} −→ B = r −‘‘ {x}
by (auto elim!: lamE simp: ball-image-simp)

then have ∀ a∈field(r). 〈m, a〉 ∈ r −→ a = m
using po ‹Preorder(r)› ‹m ∈ field(r)›

by (auto simp: subset-vimage1-vimage1-iff Partial-order-eq-vimage1-vimage1-iff )
then show ?thesis using ‹m ∈ field(r)› by blast

qed

end

38 Cardinal Arithmetic Using AC
theory Cardinal-AC imports CardinalArith Zorn begin

38.1 Strengthened Forms of Existing Theorems on Cardinals
lemma cardinal-eqpoll: |A| ≈ A
apply (rule AC-well-ord [THEN exE ])
apply (erule well-ord-cardinal-eqpoll)
done

The theorem ||A|| = |A|
lemmas cardinal-idem = cardinal-eqpoll [THEN cardinal-cong, simp]

lemma cardinal-eqE : |X | = |Y | =⇒ X ≈ Y
apply (rule AC-well-ord [THEN exE ])
apply (rule AC-well-ord [THEN exE ])
apply (rule well-ord-cardinal-eqE , assumption+)
done

lemma cardinal-eqpoll-iff : |X | = |Y | ←→ X ≈ Y
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by (blast intro: cardinal-cong cardinal-eqE)

lemma cardinal-disjoint-Un:
[[|A|=|B|; |C |=|D|; A ∩ C = 0 ; B ∩ D = 0 ]]
=⇒ |A ∪ C | = |B ∪ D|

by (simp add: cardinal-eqpoll-iff eqpoll-disjoint-Un)

lemma lepoll-imp-cardinal-le: A . B =⇒ |A| ≤ |B|
apply (rule AC-well-ord [THEN exE ])
apply (erule well-ord-lepoll-imp-cardinal-le, assumption)
done

lemma cadd-assoc: (i ⊕ j) ⊕ k = i ⊕ (j ⊕ k)
apply (rule AC-well-ord [THEN exE ])
apply (rule AC-well-ord [THEN exE ])
apply (rule AC-well-ord [THEN exE ])
apply (rule well-ord-cadd-assoc, assumption+)
done

lemma cmult-assoc: (i ⊗ j) ⊗ k = i ⊗ (j ⊗ k)
apply (rule AC-well-ord [THEN exE ])
apply (rule AC-well-ord [THEN exE ])
apply (rule AC-well-ord [THEN exE ])
apply (rule well-ord-cmult-assoc, assumption+)
done

lemma cadd-cmult-distrib: (i ⊕ j) ⊗ k = (i ⊗ k) ⊕ (j ⊗ k)
apply (rule AC-well-ord [THEN exE ])
apply (rule AC-well-ord [THEN exE ])
apply (rule AC-well-ord [THEN exE ])
apply (rule well-ord-cadd-cmult-distrib, assumption+)
done

lemma InfCard-square-eq: InfCard(|A|) =⇒ A∗A ≈ A
apply (rule AC-well-ord [THEN exE ])
apply (erule well-ord-InfCard-square-eq, assumption)
done

38.2 The relationship between cardinality and le-pollence
lemma Card-le-imp-lepoll:

assumes |A| ≤ |B| shows A . B
proof −

have A ≈ |A|
by (rule cardinal-eqpoll [THEN eqpoll-sym])

also have ... . |B|
by (rule le-imp-subset [THEN subset-imp-lepoll]) (rule assms)

also have ... ≈ B
by (rule cardinal-eqpoll)
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finally show ?thesis .
qed

lemma le-Card-iff : Card(K ) =⇒ |A| ≤ K ←→ A . K
apply (erule Card-cardinal-eq [THEN subst], rule iffI ,

erule Card-le-imp-lepoll)
apply (erule lepoll-imp-cardinal-le)
done

lemma cardinal-0-iff-0 [simp]: |A| = 0 ←→ A = 0
apply auto
apply (drule cardinal-0 [THEN ssubst])
apply (blast intro: eqpoll-0-iff [THEN iffD1 ] cardinal-eqpoll-iff [THEN iffD1 ])
done

lemma cardinal-lt-iff-lesspoll:
assumes i: Ord(i) shows i < |A| ←→ i ≺ A

proof
assume i < |A|
hence i ≺ |A|

by (blast intro: lt-Card-imp-lesspoll Card-cardinal)
also have ... ≈ A

by (rule cardinal-eqpoll)
finally show i ≺ A .

next
assume i ≺ A
also have ... ≈ |A|

by (blast intro: cardinal-eqpoll eqpoll-sym)
finally have i ≺ |A| .
thus i < |A| using i

by (force intro: cardinal-lt-imp-lt lesspoll-cardinal-lt)
qed

lemma cardinal-le-imp-lepoll: i ≤ |A| =⇒ i . A
by (blast intro: lt-Ord Card-le-imp-lepoll Ord-cardinal-le le-trans)

38.3 Other Applications of AC
lemma surj-implies-inj:

assumes f : f ∈ surj(X ,Y ) shows ∃ g. g ∈ inj(Y ,X)
proof −

from f AC-Pi [of Y λy. f−‘‘{y}]
obtain z where z: z ∈ (

∏
y∈Y . f −‘‘ {y})

by (auto simp add: surj-def ) (fast dest: apply-Pair)
show ?thesis

proof
show z ∈ inj(Y , X) using z surj-is-fun [OF f ]

by (blast dest: apply-type Pi-memberD
intro: apply-equality Pi-type f-imp-injective)
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qed
qed

Kunen’s Lemma 10.20
lemma surj-implies-cardinal-le:

assumes f : f ∈ surj(X ,Y ) shows |Y | ≤ |X |
proof (rule lepoll-imp-cardinal-le)

from f [THEN surj-implies-inj] obtain g where g ∈ inj(Y ,X) ..
thus Y . X

by (auto simp add: lepoll-def )
qed

Kunen’s Lemma 10.21
lemma cardinal-UN-le:

assumes K : InfCard(K )
shows (

∧
i. i∈K =⇒ |X(i)| ≤ K ) =⇒ |

⋃
i∈K . X(i)| ≤ K

proof (simp add: K InfCard-is-Card le-Card-iff )
have [intro]: Ord(K ) by (blast intro: InfCard-is-Card Card-is-Ord K )
assume

∧
i. i∈K =⇒ X(i) . K

hence
∧

i. i∈K =⇒ ∃ f . f ∈ inj(X(i), K ) by (simp add: lepoll-def )
with AC-Pi obtain f where f : f ∈ (

∏
i∈K . inj(X(i), K ))

by force
{ fix z

assume z: z ∈ (
⋃

i∈K . X(i))
then obtain i where i: i ∈ K Ord(i) z ∈ X(i)

by (blast intro: Ord-in-Ord [of K ])
hence (µ i. z ∈ X(i)) ≤ i by (fast intro: Least-le)
hence (µ i. z ∈ X(i)) < K by (best intro: lt-trans1 ltI i)
hence (µ i. z ∈ X(i)) ∈ K and z ∈ X(µ i. z ∈ X(i))

by (auto intro: LeastI ltD i)
} note mems = this
have (

⋃
i∈K . X(i)) . K × K

proof (unfold lepoll-def )
show ∃ f . f ∈ inj(

⋃
RepFun(K , X), K × K )

apply (rule exI )
apply (rule-tac c = λz. 〈µ i. z ∈ X(i), f ‘ (µ i. z ∈ X(i)) ‘ z〉

and d = λ〈i,j〉. converse (f‘i) ‘ j in lam-injective)
apply (force intro: f inj-is-fun mems apply-type Perm.left-inverse)+
done

qed
also have ... ≈ K

by (simp add: K InfCard-square-eq InfCard-is-Card Card-cardinal-eq)
finally show (

⋃
i∈K . X(i)) . K .

qed

The same again, using csucc
lemma cardinal-UN-lt-csucc:

[[InfCard(K );
∧

i. i∈K =⇒ |X(i)| < csucc(K )]]
=⇒ |

⋃
i∈K . X(i)| < csucc(K )
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by (simp add: Card-lt-csucc-iff cardinal-UN-le InfCard-is-Card Card-cardinal)

The same again, for a union of ordinals. In use, j(i) is a bit like rank(i), the
least ordinal j such that i:Vfrom(A,j).
lemma cardinal-UN-Ord-lt-csucc:

[[InfCard(K );
∧

i. i∈K =⇒ j(i) < csucc(K )]]
=⇒ (

⋃
i∈K . j(i)) < csucc(K )

apply (rule cardinal-UN-lt-csucc [THEN Card-lt-imp-lt], assumption)
apply (blast intro: Ord-cardinal-le [THEN lt-trans1 ] elim: ltE)
apply (blast intro!: Ord-UN elim: ltE)
apply (erule InfCard-is-Card [THEN Card-is-Ord, THEN Card-csucc])
done

38.4 The Main Result for Infinite-Branching Datatypes

As above, but the index set need not be a cardinal. Work backwards along
the injection from W into K, given that W 6= 0.
lemma inj-UN-subset:

assumes f : f ∈ inj(A,B) and a: a ∈ A
shows (

⋃
x∈A. C (x)) ⊆ (

⋃
y∈B. C (if y ∈ range(f ) then converse(f )‘y else a))

proof (rule UN-least)
fix x
assume x: x ∈ A
hence fx: f ‘ x ∈ B by (blast intro: f inj-is-fun [THEN apply-type])
have C (x) ⊆ C (if f ‘ x ∈ range(f ) then converse(f ) ‘ (f ‘ x) else a)

using f x by (simp add: inj-is-fun [THEN apply-rangeI ])
also have ... ⊆ (

⋃
y∈B. C (if y ∈ range(f ) then converse(f ) ‘ y else a))

by (rule UN-upper [OF fx])
finally show C (x) ⊆ (

⋃
y∈B. C (if y ∈ range(f ) then converse(f )‘y else a)) .

qed

theorem le-UN-Ord-lt-csucc:
assumes IK : InfCard(K ) and WK : |W | ≤ K and j:

∧
w. w∈W =⇒ j(w) <

csucc(K )
shows (

⋃
w∈W . j(w)) < csucc(K )

proof −
have CK : Card(K )

by (simp add: InfCard-is-Card IK )
then obtain f where f : f ∈ inj(W , K ) using WK

by(auto simp add: le-Card-iff lepoll-def )
have OU : Ord(

⋃
w∈W . j(w)) using j

by (blast elim: ltE)
note lt-subset-trans [OF - - OU , trans]
show ?thesis

proof (cases W=0 )
case True — solve the easy 0 case
thus ?thesis by (simp add: CK Card-is-Ord Card-csucc Ord-0-lt-csucc)

next
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case False
then obtain x where x: x ∈ W by blast
have (

⋃
x∈W . j(x)) ⊆ (

⋃
k∈K . j(if k ∈ range(f ) then converse(f ) ‘ k else

x))
by (rule inj-UN-subset [OF f x])

also have ... < csucc(K ) using IK
proof (rule cardinal-UN-Ord-lt-csucc)

fix k
assume k ∈ K

thus j(if k ∈ range(f ) then converse(f ) ‘ k else x) < csucc(K ) using f x j
by (simp add: inj-converse-fun [THEN apply-type])

qed
finally show ?thesis .

qed
qed

end

39 Infinite-Branching Datatype Definitions
theory InfDatatype imports Datatype Univ Finite Cardinal-AC begin

lemmas fun-Limit-VfromE =
Limit-VfromE [OF apply-funtype InfCard-csucc [THEN InfCard-is-Limit]]

lemma fun-Vcsucc-lemma:
assumes f : f ∈ D −> Vfrom(A,csucc(K )) and DK : |D| ≤ K and ICK : Inf-

Card(K )
shows ∃ j. f ∈ D −> Vfrom(A,j) ∧ j < csucc(K )

proof (rule exI , rule conjI )
show f ∈ D → Vfrom(A,

⋃
z∈D. µ i. f‘z ∈ Vfrom (A,i))

proof (rule Pi-type [OF f ])
fix d
assume d: d ∈ D
show f ‘ d ∈ Vfrom(A,

⋃
z∈D. µ i. f ‘ z ∈ Vfrom(A, i))

proof (rule fun-Limit-VfromE [OF f d ICK ])
fix x
assume x < csucc(K ) f ‘ d ∈ Vfrom(A, x)
hence f‘d ∈ Vfrom(A, µ i. f‘d ∈ Vfrom (A,i)) using d

by (fast elim: LeastI ltE)
also have ... ⊆ Vfrom(A,

⋃
z∈D. µ i. f ‘ z ∈ Vfrom(A, i))

by (rule Vfrom-mono) (auto intro: d)
finally show f‘d ∈ Vfrom(A,

⋃
z∈D. µ i. f ‘ z ∈ Vfrom(A, i)) .

qed
qed

next
show (

⋃
d∈D. µ i. f ‘ d ∈ Vfrom(A, i)) < csucc(K )

proof (rule le-UN-Ord-lt-csucc [OF ICK DK ])
fix d
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assume d: d ∈ D
show (µ i. f ‘ d ∈ Vfrom(A, i)) < csucc(K )

proof (rule fun-Limit-VfromE [OF f d ICK ])
fix x
assume x < csucc(K ) f ‘ d ∈ Vfrom(A, x)
thus (µ i. f ‘ d ∈ Vfrom(A, i)) < csucc(K )

by (blast intro: Least-le lt-trans1 lt-Ord)
qed

qed
qed

lemma subset-Vcsucc:
[[D ⊆ Vfrom(A,csucc(K )); |D| ≤ K ; InfCard(K )]]
=⇒ ∃ j. D ⊆ Vfrom(A,j) ∧ j < csucc(K )

by (simp add: subset-iff-id fun-Vcsucc-lemma)

lemma fun-Vcsucc:
[[|D| ≤ K ; InfCard(K ); D ⊆ Vfrom(A,csucc(K ))]] =⇒

D −> Vfrom(A,csucc(K )) ⊆ Vfrom(A,csucc(K ))
apply (safe dest!: fun-Vcsucc-lemma subset-Vcsucc)
apply (rule Vfrom [THEN ssubst])
apply (drule fun-is-rel)

apply (rule-tac a1 = succ (succ (j ∪ ja)) in UN-I [THEN UnI2 ])
apply (blast intro: ltD InfCard-csucc InfCard-is-Limit Limit-has-succ

Un-least-lt)
apply (erule subset-trans [THEN PowI ])
apply (fast intro: Pair-in-Vfrom Vfrom-UnI1 Vfrom-UnI2 )
done

lemma fun-in-Vcsucc:
[[f : D −> Vfrom(A, csucc(K )); |D| ≤ K ; InfCard(K );

D ⊆ Vfrom(A,csucc(K ))]]
=⇒ f : Vfrom(A,csucc(K ))

by (blast intro: fun-Vcsucc [THEN subsetD])

Remove ⊆ from the rule above
lemmas fun-in-Vcsucc ′ = fun-in-Vcsucc [OF - - - subsetI ]

lemma Card-fun-Vcsucc:
InfCard(K ) =⇒ K −> Vfrom(A,csucc(K )) ⊆ Vfrom(A,csucc(K ))

apply (frule InfCard-is-Card [THEN Card-is-Ord])
apply (blast del: subsetI

intro: fun-Vcsucc Ord-cardinal-le i-subset-Vfrom
lt-csucc [THEN leI , THEN le-imp-subset, THEN subset-trans])

done
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lemma Card-fun-in-Vcsucc:
[[f : K −> Vfrom(A, csucc(K )); InfCard(K )]] =⇒ f : Vfrom(A,csucc(K ))

by (blast intro: Card-fun-Vcsucc [THEN subsetD])

lemma Limit-csucc: InfCard(K ) =⇒ Limit(csucc(K ))
by (erule InfCard-csucc [THEN InfCard-is-Limit])

lemmas Pair-in-Vcsucc = Pair-in-VLimit [OF - - Limit-csucc]
lemmas Inl-in-Vcsucc = Inl-in-VLimit [OF - Limit-csucc]
lemmas Inr-in-Vcsucc = Inr-in-VLimit [OF - Limit-csucc]
lemmas zero-in-Vcsucc = Limit-csucc [THEN zero-in-VLimit]
lemmas nat-into-Vcsucc = nat-into-VLimit [OF - Limit-csucc]

lemmas InfCard-nat-Un-cardinal = InfCard-Un [OF InfCard-nat Card-cardinal]

lemmas le-nat-Un-cardinal =
Un-upper2-le [OF Ord-nat Card-cardinal [THEN Card-is-Ord]]

lemmas UN-upper-cardinal = UN-upper [THEN subset-imp-lepoll, THEN lep-
oll-imp-cardinal-le]

lemmas Data-Arg-intros =
SigmaI InlI InrI
Pair-in-univ Inl-in-univ Inr-in-univ
zero-in-univ A-into-univ nat-into-univ UnCI

lemmas inf-datatype-intros =
InfCard-nat InfCard-nat-Un-cardinal
Pair-in-Vcsucc Inl-in-Vcsucc Inr-in-Vcsucc
zero-in-Vcsucc A-into-Vfrom nat-into-Vcsucc
Card-fun-in-Vcsucc fun-in-Vcsucc ′ UN-I

end
theory ZFC imports ZF InfDatatype
begin

end
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