
Isabelle/FOL — First-Order Logic

Larry Paulson and Markus Wenzel

January 18, 2026

Contents
1 Intuitionistic first-order logic 1

1.1 Syntax and axiomatic basis 1
1.1.1 Equality . 1
1.1.2 Propositional logic . 1
1.1.3 Quantifiers . 2
1.1.4 Definitions . 2
1.1.5 Old-style ASCII syntax 3

1.2 Lemmas and proof tools . 3
1.2.1 Sequent-style elimination rules for ∧ −→ and ∀ 3
1.2.2 Negation rules, which translate between ¬ P and P

−→ False . 4
1.2.3 Modus Ponens Tactics 4

1.3 If-and-only-if . 4
1.3.1 Destruct rules for ←→ similar to Modus Ponens . . . 5

1.4 Unique existence . 5
1.4.1 ←→ congruence rules for simplification 5

1.5 Equality rules . 6
1.6 Simplifications of assumed implications 7
1.7 Intuitionistic Reasoning . 8
1.8 Polymorphic congruence rules 9

1.8.1 Congruence rules for predicate letters 10
1.9 Atomizing meta-level rules . 10
1.10 Atomizing elimination rules 10
1.11 Calculational rules . 11
1.12 “Let” declarations . 11
1.13 Intuitionistic simplification rules 12

1.13.1 Conversion into rewrite rules 13
1.13.2 More rewrite rules . 13

1

2 Classical first-order logic 14
2.1 The classical axiom . 14
2.2 Lemmas and proof tools . 14

2.2.1 Classical introduction rules for ∨ and ∃ 14
2.3 Special elimination rules . 15

2.3.1 Tactics for implication and contradiction 15

3 Classical Reasoner 16
3.1 Classical simplification rules 17

3.1.1 Miniscoping: pushing quantifiers in 17
3.1.2 Named rewrite rules proved for IFOL 18

3.2 Other simple lemmas . 18
3.2.1 Monotonicity of implications 19

3.3 Proof by cases and induction 19

1 Intuitionistic first-order logic
theory IFOL

imports Pure
abbrevs ?< = ∃≤1

begin

〈ML〉

1.1 Syntax and axiomatic basis
〈ML〉

class term
default-sort ‹term›

typedecl o

judgment
Trueprop :: ‹o ⇒ prop› (‹(‹notation=judgment›-)› 5)

1.1.1 Equality
axiomatization

eq :: ‹[′a, ′a] ⇒ o› (infixl ‹=› 50)
where

refl: ‹a = a› and
subst: ‹a = b =⇒ P(a) =⇒ P(b)›

1.1.2 Propositional logic
axiomatization

False :: ‹o› and

2

conj :: ‹[o, o] => o› (infixr ‹∧› 35) and
disj :: ‹[o, o] => o› (infixr ‹∨› 30) and
imp :: ‹[o, o] => o› (infixr ‹−→› 25)

where
conjI : ‹[[P; Q]] =⇒ P ∧ Q› and
conjunct1 : ‹P ∧ Q =⇒ P› and
conjunct2 : ‹P ∧ Q =⇒ Q› and

disjI1 : ‹P =⇒ P ∨ Q› and
disjI2 : ‹Q =⇒ P ∨ Q› and
disjE : ‹[[P ∨ Q; P =⇒ R; Q =⇒ R]] =⇒ R› and

impI : ‹(P =⇒ Q) =⇒ P −→ Q› and
mp: ‹[[P −→ Q; P]] =⇒ Q› and

FalseE : ‹False =⇒ P›

1.1.3 Quantifiers
axiomatization

All :: ‹(′a ⇒ o) ⇒ o› (binder ‹∀ › 10) and
Ex :: ‹(′a ⇒ o) ⇒ o› (binder ‹∃ › 10)

where
allI : ‹(

∧
x. P(x)) =⇒ (∀ x. P(x))› and

spec: ‹(∀ x. P(x)) =⇒ P(x)› and
exI : ‹P(x) =⇒ (∃ x. P(x))› and
exE : ‹[[∃ x. P(x);

∧
x. P(x) =⇒ R]] =⇒ R›

1.1.4 Definitions
definition ‹True ≡ False −→ False›

definition Not (‹(‹open-block notation=‹prefix ¬››¬ -)› [40] 40)
where not-def : ‹¬ P ≡ P −→ False›

definition iff (infixr ‹←→› 25)
where ‹P ←→ Q ≡ (P −→ Q) ∧ (Q −→ P)›

definition Uniq :: (′a ⇒ o) ⇒ o
where ‹Uniq(P) ≡ (∀ x y. P(x) −→ P(y) −→ y = x)›

definition Ex1 :: ‹(′a ⇒ o) ⇒ o› (binder ‹∃ !› 10)
where ex1-def : ‹∃ !x. P(x) ≡ ∃ x. P(x) ∧ (∀ y. P(y) −→ y = x)›

axiomatization where — Reflection, admissible
eq-reflection: ‹(x = y) =⇒ (x ≡ y)› and
iff-reflection: ‹(P ←→ Q) =⇒ (P ≡ Q)›

abbreviation not-equal :: ‹[′a, ′a] ⇒ o› (infixl ‹ 6=› 50)
where ‹x 6= y ≡ ¬ (x = y)›

3

syntax -Uniq :: pttrn ⇒ o ⇒ o (‹(‹indent=2 notation=‹binder ∃≤1››∃≤1 -./ -)›
[0 , 10] 10)
syntax-consts -Uniq ⇀↽ Uniq
translations ∃≤1x. P ⇀↽ CONST Uniq (λx. P)
〈ML〉

1.1.5 Old-style ASCII syntax
notation (ASCII)

not-equal (infixl ‹∼=› 50) and
Not (‹(‹open-block notation=‹prefix ∼››∼ -)› [40] 40) and
conj (infixr ‹&› 35) and
disj (infixr ‹|› 30) and
All (binder ‹ALL › 10) and
Ex (binder ‹EX › 10) and
Ex1 (binder ‹EX ! › 10) and
imp (infixr ‹−−>› 25) and
iff (infixr ‹<−>› 25)

1.2 Lemmas and proof tools
lemmas strip = impI allI

lemma TrueI : ‹True›
〈proof 〉

1.2.1 Sequent-style elimination rules for ∧ −→ and ∀
lemma conjE :

assumes major : ‹P ∧ Q›
and r : ‹[[P; Q]] =⇒ R›

shows ‹R›
〈proof 〉

lemma impE :
assumes major : ‹P −→ Q›

and ‹P›
and r : ‹Q =⇒ R›
shows ‹R›
〈proof 〉

lemma allE :
assumes major : ‹∀ x. P(x)›

and r : ‹P(x) =⇒ R›
shows ‹R›
〈proof 〉

Duplicates the quantifier; for use with eresolve_tac.
lemma all-dupE :

4

assumes major : ‹∀ x. P(x)›
and r : ‹[[P(x); ∀ x. P(x)]] =⇒ R›

shows ‹R›
〈proof 〉

1.2.2 Negation rules, which translate between ¬ P and P −→ False
lemma notI : ‹(P =⇒ False) =⇒ ¬ P›
〈proof 〉

lemma notE : ‹[[¬ P; P]] =⇒ R›
〈proof 〉

lemma rev-notE : ‹[[P; ¬ P]] =⇒ R›
〈proof 〉

This is useful with the special implication rules for each kind of P.
lemma not-to-imp:

assumes ‹¬ P›
and r : ‹P −→ False =⇒ Q›

shows ‹Q›
〈proof 〉

For substitution into an assumption P, reduce Q to P −→ Q, substitute into
this implication, then apply impI to move P back into the assumptions.
lemma rev-mp: ‹[[P; P −→ Q]] =⇒ Q›
〈proof 〉

Contrapositive of an inference rule.
lemma contrapos:

assumes major : ‹¬ Q›
and minor : ‹P =⇒ Q›

shows ‹¬ P›
〈proof 〉

1.2.3 Modus Ponens Tactics

Finds P −→ Q and P in the assumptions, replaces implication by Q.
〈ML〉

1.3 If-and-only-if
lemma iffI : ‹[[P =⇒ Q; Q =⇒ P]] =⇒ P ←→ Q›
〈proof 〉

lemma iffE :
assumes major : ‹P ←→ Q›

and r : ‹[[P −→ Q; Q −→ P]] =⇒ R›

5

shows ‹R›
〈proof 〉

1.3.1 Destruct rules for ←→ similar to Modus Ponens
lemma iffD1 : ‹[[P ←→ Q; P]] =⇒ Q›
〈proof 〉

lemma iffD2 : ‹[[P ←→ Q; Q]] =⇒ P›
〈proof 〉

lemma rev-iffD1 : ‹[[P; P ←→ Q]] =⇒ Q›
〈proof 〉

lemma rev-iffD2 : ‹[[Q; P ←→ Q]] =⇒ P›
〈proof 〉

lemma iff-refl: ‹P ←→ P›
〈proof 〉

lemma iff-sym: ‹Q ←→ P =⇒ P ←→ Q›
〈proof 〉

lemma iff-trans: ‹[[P ←→ Q; Q ←→ R]] =⇒ P ←→ R›
〈proof 〉

1.4 Unique existence

NOTE THAT the following 2 quantifications:

• ∃ !x such that [∃ !y such that P(x,y)] (sequential)

• ∃ !x,y such that P(x,y) (simultaneous)

do NOT mean the same thing. The parser treats ∃ !x y.P(x,y) as sequential.
lemma ex1I : ‹P(a) =⇒ (

∧
x. P(x) =⇒ x = a) =⇒ ∃ !x. P(x)›

〈proof 〉

Sometimes easier to use: the premises have no shared variables. Safe!
lemma ex-ex1I : ‹∃ x. P(x) =⇒ (

∧
x y. [[P(x); P(y)]] =⇒ x = y) =⇒ ∃ !x. P(x)›

〈proof 〉

lemma ex1E : ‹∃ ! x. P(x) =⇒ (
∧

x. [[P(x); ∀ y. P(y) −→ y = x]] =⇒ R) =⇒ R›
〈proof 〉

1.4.1 ←→ congruence rules for simplification

Use iffE on a premise. For conj-cong, imp-cong, all-cong, ex-cong.

6

〈ML〉

lemma conj-cong:
assumes ‹P ←→ P ′›

and ‹P ′ =⇒ Q ←→ Q ′›
shows ‹(P ∧ Q) ←→ (P ′ ∧ Q ′)›
〈proof 〉

Reversed congruence rule! Used in ZF/Order.
lemma conj-cong2 :

assumes ‹P ←→ P ′›
and ‹P ′ =⇒ Q ←→ Q ′›

shows ‹(Q ∧ P) ←→ (Q ′ ∧ P ′)›
〈proof 〉

lemma disj-cong:
assumes ‹P ←→ P ′› and ‹Q ←→ Q ′›
shows ‹(P ∨ Q) ←→ (P ′ ∨ Q ′)›
〈proof 〉

lemma imp-cong:
assumes ‹P ←→ P ′›

and ‹P ′ =⇒ Q ←→ Q ′›
shows ‹(P −→ Q) ←→ (P ′ −→ Q ′)›
〈proof 〉

lemma iff-cong: ‹[[P ←→ P ′; Q ←→ Q ′]] =⇒ (P ←→ Q) ←→ (P ′←→ Q ′)›
〈proof 〉

lemma not-cong: ‹P ←→ P ′ =⇒ ¬ P ←→ ¬ P ′›
〈proof 〉

lemma all-cong:
assumes ‹

∧
x. P(x) ←→ Q(x)›

shows ‹(∀ x. P(x)) ←→ (∀ x. Q(x))›
〈proof 〉

lemma ex-cong:
assumes ‹

∧
x. P(x) ←→ Q(x)›

shows ‹(∃ x. P(x)) ←→ (∃ x. Q(x))›
〈proof 〉

lemma ex1-cong:
assumes ‹

∧
x. P(x) ←→ Q(x)›

shows ‹(∃ !x. P(x)) ←→ (∃ !x. Q(x))›
〈proof 〉

7

1.5 Equality rules
lemma sym: ‹a = b =⇒ b = a›
〈proof 〉

lemma trans: ‹[[a = b; b = c]] =⇒ a = c›
〈proof 〉

lemma not-sym: ‹b 6= a =⇒ a 6= b›
〈proof 〉

Two theorems for rewriting only one instance of a definition: the first for
definitions of formulae and the second for terms.
lemma def-imp-iff : ‹(A ≡ B) =⇒ A ←→ B›
〈proof 〉

lemma meta-eq-to-obj-eq: ‹(A ≡ B) =⇒ A = B›
〈proof 〉

lemma meta-eq-to-iff : ‹x ≡ y =⇒ x ←→ y›
〈proof 〉

Substitution.
lemma ssubst: ‹[[b = a; P(a)]] =⇒ P(b)›
〈proof 〉

A special case of ex1E that would otherwise need quantifier expansion.
lemma ex1-equalsE : ‹[[∃ !x. P(x); P(a); P(b)]] =⇒ a = b›
〈proof 〉

1.6 Simplifications of assumed implications

Roy Dyckhoff has proved that conj-impE, disj-impE, and imp-impE used
with mp_tac (restricted to atomic formulae) is COMPLETE for intuitionistic
propositional logic.
See R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic (preprint,
University of St Andrews, 1991).
lemma conj-impE :

assumes major : ‹(P ∧ Q) −→ S›
and r : ‹P −→ (Q −→ S) =⇒ R›

shows ‹R›
〈proof 〉

lemma disj-impE :
assumes major : ‹(P ∨ Q) −→ S›

and r : ‹[[P −→ S ; Q −→ S]] =⇒ R›
shows ‹R›
〈proof 〉

8

Simplifies the implication. Classical version is stronger. Still UNSAFE since
Q must be provable – backtracking needed.
lemma imp-impE :

assumes major : ‹(P −→ Q) −→ S›
and r1 : ‹[[P; Q −→ S]] =⇒ Q›
and r2 : ‹S =⇒ R›

shows ‹R›
〈proof 〉

Simplifies the implication. Classical version is stronger. Still UNSAFE since
P must be provable – backtracking needed.
lemma not-impE : ‹¬ P −→ S =⇒ (P =⇒ False) =⇒ (S =⇒ R) =⇒ R›
〈proof 〉

Simplifies the implication. UNSAFE.
lemma iff-impE :

assumes major : ‹(P ←→ Q) −→ S›
and r1 : ‹[[P; Q −→ S]] =⇒ Q›
and r2 : ‹[[Q; P −→ S]] =⇒ P›
and r3 : ‹S =⇒ R›

shows ‹R›
〈proof 〉

What if (∀ x. ¬ ¬ P(x)) −→ ¬ ¬ (∀ x. P(x)) is an assumption? UNSAFE.
lemma all-impE :

assumes major : ‹(∀ x. P(x)) −→ S›
and r1 : ‹

∧
x. P(x)›

and r2 : ‹S =⇒ R›
shows ‹R›
〈proof 〉

Unsafe: ∃ x. P(x)) −→ S is equivalent to ∀ x. P(x) −→ S.
lemma ex-impE :

assumes major : ‹(∃ x. P(x)) −→ S›
and r : ‹P(x) −→ S =⇒ R›

shows ‹R›
〈proof 〉

Courtesy of Krzysztof Grabczewski.
lemma disj-imp-disj: ‹P ∨ Q =⇒ (P =⇒ R) =⇒ (Q =⇒ S) =⇒ R ∨ S›
〈proof 〉

〈ML〉

lemma thin-refl: ‹[[x = x; PROP W]] =⇒ PROP W › 〈proof 〉

〈ML〉

9

1.7 Intuitionistic Reasoning
〈ML〉

lemma impE ′:
assumes 1 : ‹P −→ Q›

and 2 : ‹Q =⇒ R›
and 3 : ‹P −→ Q =⇒ P›

shows ‹R›
〈proof 〉

lemma allE ′:
assumes 1 : ‹∀ x. P(x)›

and 2 : ‹P(x) =⇒ ∀ x. P(x) =⇒ Q›
shows ‹Q›
〈proof 〉

lemma notE ′:
assumes 1 : ‹¬ P›

and 2 : ‹¬ P =⇒ P›
shows ‹R›
〈proof 〉

lemmas [Pure.elim!] = disjE iffE FalseE conjE exE
and [Pure.intro!] = iffI conjI impI TrueI notI allI refl
and [Pure.elim 2] = allE notE ′ impE ′

and [Pure.intro] = exI disjI2 disjI1

〈ML〉

lemma iff-not-sym: ‹¬ (Q ←→ P) =⇒ ¬ (P ←→ Q)›
〈proof 〉

lemmas [sym] = sym iff-sym not-sym iff-not-sym
and [Pure.elim?] = iffD1 iffD2 impE

lemma eq-commute: ‹a = b ←→ b = a›
〈proof 〉

1.8 Polymorphic congruence rules
lemma subst-context: ‹a = b =⇒ t(a) = t(b)›
〈proof 〉

lemma subst-context2 : ‹[[a = b; c = d]] =⇒ t(a,c) = t(b,d)›
〈proof 〉

lemma subst-context3 : ‹[[a = b; c = d; e = f]] =⇒ t(a,c,e) = t(b,d,f)›

10

〈proof 〉

Useful with eresolve_tac for proving equalities from known equalities.
a = b | | c = d
lemma box-equals: ‹[[a = b; a = c; b = d]] =⇒ c = d›
〈proof 〉

Dual of box-equals: for proving equalities backwards.
lemma simp-equals: ‹[[a = c; b = d; c = d]] =⇒ a = b›
〈proof 〉

1.8.1 Congruence rules for predicate letters
lemma pred1-cong: ‹a = a ′ =⇒ P(a) ←→ P(a ′)›
〈proof 〉

lemma pred2-cong: ‹[[a = a ′; b = b ′]] =⇒ P(a,b) ←→ P(a ′,b ′)›
〈proof 〉

lemma pred3-cong: ‹[[a = a ′; b = b ′; c = c ′]] =⇒ P(a,b,c) ←→ P(a ′,b ′,c ′)›
〈proof 〉

Special case for the equality predicate!
lemma eq-cong: ‹[[a = a ′; b = b ′]] =⇒ a = b ←→ a ′ = b ′›
〈proof 〉

1.9 Atomizing meta-level rules
lemma atomize-all [atomize]: ‹(

∧
x. P(x)) ≡ Trueprop (∀ x. P(x))›

〈proof 〉

lemma atomize-imp [atomize]: ‹(A =⇒ B) ≡ Trueprop (A −→ B)›
〈proof 〉

lemma atomize-eq [atomize]: ‹(x ≡ y) ≡ Trueprop (x = y)›
〈proof 〉

lemma atomize-iff [atomize]: ‹(A ≡ B) ≡ Trueprop (A ←→ B)›
〈proof 〉

lemma atomize-conj [atomize]: ‹(A &&& B) ≡ Trueprop (A ∧ B)›
〈proof 〉

lemmas [symmetric, rulify] = atomize-all atomize-imp
and [symmetric, defn] = atomize-all atomize-imp atomize-eq atomize-iff

1.10 Atomizing elimination rules
lemma atomize-exL[atomize-elim]: ‹(

∧
x. P(x) =⇒ Q) ≡ ((∃ x. P(x)) =⇒ Q)›

11

〈proof 〉

lemma atomize-conjL[atomize-elim]: ‹(A =⇒ B =⇒ C) ≡ (A ∧ B =⇒ C)›
〈proof 〉

lemma atomize-disjL[atomize-elim]: ‹((A =⇒ C) =⇒ (B =⇒ C) =⇒ C) ≡ ((A
∨ B =⇒ C) =⇒ C)›
〈proof 〉

lemma atomize-elimL[atomize-elim]: ‹(
∧

B. (A =⇒ B) =⇒ B) ≡ Trueprop(A)›
〈proof 〉

1.11 Calculational rules
lemma forw-subst: ‹a = b =⇒ P(b) =⇒ P(a)›
〈proof 〉

lemma back-subst: ‹P(a) =⇒ a = b =⇒ P(b)›
〈proof 〉

Note that this list of rules is in reverse order of priorities.
lemmas basic-trans-rules [trans] =

forw-subst
back-subst
rev-mp
mp
trans

1.12 “Let” declarations
nonterminal letbinds and letbind

definition Let :: ‹[′a::{}, ′a => ′b] ⇒ (′b::{})›
where ‹Let(s, f) ≡ f (s)›

syntax
-bind :: ‹[pttrn, ′a] => letbind› (‹(‹indent=2 notation=‹infix let binding››-

=/ -)› 10)
:: ‹letbind => letbinds› (‹-›)

-binds :: ‹[letbind, letbinds] => letbinds› (‹-;/ -›)
-Let :: ‹[letbinds, ′a] => ′a› (‹(‹notation=‹mixfix let expression››let (-)/

in (-))› 10)
syntax-consts

-Let ⇀↽ Let
translations

-Let(-binds(b, bs), e) == -Let(b, -Let(bs, e))
let x = a in e == CONST Let(a, λx. e)

lemma LetI :

12

assumes ‹
∧

x. x = t =⇒ P(u(x))›
shows ‹P(let x = t in u(x))›
〈proof 〉

1.13 Intuitionistic simplification rules
lemma conj-simps:

‹P ∧ True ←→ P›
‹True ∧ P ←→ P›
‹P ∧ False ←→ False›
‹False ∧ P ←→ False›
‹P ∧ P ←→ P›
‹P ∧ P ∧ Q ←→ P ∧ Q›
‹P ∧ ¬ P ←→ False›
‹¬ P ∧ P ←→ False›
‹(P ∧ Q) ∧ R ←→ P ∧ (Q ∧ R)›
〈proof 〉

lemma disj-simps:
‹P ∨ True ←→ True›
‹True ∨ P ←→ True›
‹P ∨ False ←→ P›
‹False ∨ P ←→ P›
‹P ∨ P ←→ P›
‹P ∨ P ∨ Q ←→ P ∨ Q›
‹(P ∨ Q) ∨ R ←→ P ∨ (Q ∨ R)›
〈proof 〉

lemma not-simps:
‹¬ (P ∨ Q) ←→ ¬ P ∧ ¬ Q›
‹¬ False ←→ True›
‹¬ True ←→ False›
〈proof 〉

lemma imp-simps:
‹(P −→ False) ←→ ¬ P›
‹(P −→ True) ←→ True›
‹(False −→ P) ←→ True›
‹(True −→ P) ←→ P›
‹(P −→ P) ←→ True›
‹(P −→ ¬ P) ←→ ¬ P›
〈proof 〉

lemma iff-simps:
‹(True ←→ P) ←→ P›
‹(P ←→ True) ←→ P›
‹(P ←→ P) ←→ True›
‹(False ←→ P) ←→ ¬ P›
‹(P ←→ False) ←→ ¬ P›

13

〈proof 〉

The x = t versions are needed for the simplification procedures.
lemma quant-simps:

‹
∧

P. (∀ x. P) ←→ P›
‹(∀ x. x = t −→ P(x)) ←→ P(t)›
‹(∀ x. t = x −→ P(x)) ←→ P(t)›
‹
∧

P. (∃ x. P) ←→ P›
‹∃ x. x = t›
‹∃ x. t = x›
‹(∃ x. x = t ∧ P(x)) ←→ P(t)›
‹(∃ x. t = x ∧ P(x)) ←→ P(t)›
〈proof 〉

These are NOT supplied by default!
lemma distrib-simps:

‹P ∧ (Q ∨ R) ←→ P ∧ Q ∨ P ∧ R›
‹(Q ∨ R) ∧ P ←→ Q ∧ P ∨ R ∧ P›
‹(P ∨ Q −→ R) ←→ (P −→ R) ∧ (Q −→ R)›
〈proof 〉

lemma subst-all:
‹(
∧

x. x = a =⇒ PROP P(x)) ≡ PROP P(a)›
‹(
∧

x. a = x =⇒ PROP P(x)) ≡ PROP P(a)›
〈proof 〉

1.13.1 Conversion into rewrite rules
lemma P-iff-F : ‹¬ P =⇒ (P ←→ False)›
〈proof 〉

lemma iff-reflection-F : ‹¬ P =⇒ (P ≡ False)›
〈proof 〉

lemma P-iff-T : ‹P =⇒ (P ←→ True)›
〈proof 〉

lemma iff-reflection-T : ‹P =⇒ (P ≡ True)›
〈proof 〉

1.13.2 More rewrite rules
lemma conj-commute: ‹P ∧ Q ←→ Q ∧ P› 〈proof 〉
lemma conj-left-commute: ‹P ∧ (Q ∧ R) ←→ Q ∧ (P ∧ R)› 〈proof 〉
lemmas conj-comms = conj-commute conj-left-commute

lemma disj-commute: ‹P ∨ Q ←→ Q ∨ P› 〈proof 〉
lemma disj-left-commute: ‹P ∨ (Q ∨ R) ←→ Q ∨ (P ∨ R)› 〈proof 〉
lemmas disj-comms = disj-commute disj-left-commute

lemma conj-disj-distribL: ‹P ∧ (Q ∨ R) ←→ (P ∧ Q ∨ P ∧ R)› 〈proof 〉

14

lemma conj-disj-distribR: ‹(P ∨ Q) ∧ R ←→ (P ∧ R ∨ Q ∧ R)› 〈proof 〉

lemma disj-conj-distribL: ‹P ∨ (Q ∧ R) ←→ (P ∨ Q) ∧ (P ∨ R)› 〈proof 〉
lemma disj-conj-distribR: ‹(P ∧ Q) ∨ R ←→ (P ∨ R) ∧ (Q ∨ R)› 〈proof 〉

lemma imp-conj-distrib: ‹(P −→ (Q ∧ R)) ←→ (P −→ Q) ∧ (P −→ R)› 〈proof 〉
lemma imp-conj: ‹((P ∧ Q) −→ R) ←→ (P −→ (Q −→ R))› 〈proof 〉
lemma imp-disj: ‹(P ∨ Q −→ R) ←→ (P −→ R) ∧ (Q −→ R)› 〈proof 〉

lemma de-Morgan-disj: ‹(¬ (P ∨ Q)) ←→ (¬ P ∧ ¬ Q)› 〈proof 〉

lemma not-ex: ‹(¬ (∃ x. P(x))) ←→ (∀ x. ¬ P(x))› 〈proof 〉
lemma imp-ex: ‹((∃ x. P(x)) −→ Q) ←→ (∀ x. P(x) −→ Q)› 〈proof 〉

lemma ex-disj-distrib: ‹(∃ x. P(x) ∨ Q(x)) ←→ ((∃ x. P(x)) ∨ (∃ x. Q(x)))›
〈proof 〉

lemma all-conj-distrib: ‹(∀ x. P(x) ∧ Q(x)) ←→ ((∀ x. P(x)) ∧ (∀ x. Q(x)))›
〈proof 〉

end

2 Classical first-order logic
theory FOL

imports IFOL
keywords print-claset print-induct-rules :: diag

begin

〈ML〉

2.1 The classical axiom
axiomatization where

classical: ‹(¬ P =⇒ P) =⇒ P›

2.2 Lemmas and proof tools
lemma ccontr : ‹(¬ P =⇒ False) =⇒ P›
〈proof 〉

2.2.1 Classical introduction rules for ∨ and ∃
lemma disjCI : ‹(¬ Q =⇒ P) =⇒ P ∨ Q›
〈proof 〉

Introduction rule involving only ∃
lemma ex-classical:

assumes r : ‹¬ (∃ x. P(x)) =⇒ P(a)›

15

shows ‹∃ x. P(x)›
〈proof 〉

Version of above, simplifying ¬∃ to ∀¬.
lemma exCI :

assumes r : ‹∀ x. ¬ P(x) =⇒ P(a)›
shows ‹∃ x. P(x)›
〈proof 〉

lemma excluded-middle: ‹¬ P ∨ P›
〈proof 〉

lemma case-split [case-names True False]:
assumes r1 : ‹P =⇒ Q›

and r2 : ‹¬ P =⇒ Q›
shows ‹Q›
〈proof 〉

〈ML〉

2.3 Special elimination rules

Classical implies (−→) elimination.
lemma impCE :

assumes major : ‹P −→ Q›
and r1 : ‹¬ P =⇒ R›
and r2 : ‹Q =⇒ R›

shows ‹R›
〈proof 〉

This version of −→ elimination works on Q before P. It works best for those
cases in which P holds “almost everywhere”. Can’t install as default: would
break old proofs.
lemma impCE ′:

assumes major : ‹P −→ Q›
and r1 : ‹Q =⇒ R›
and r2 : ‹¬ P =⇒ R›

shows ‹R›
〈proof 〉

Double negation law.
lemma notnotD: ‹¬ ¬ P =⇒ P›
〈proof 〉

lemma contrapos2 : ‹[[Q; ¬ P =⇒ ¬ Q]] =⇒ P›
〈proof 〉

16

2.3.1 Tactics for implication and contradiction

Classical ←→ elimination. Proof substitutes P = Q in ¬ P =⇒ ¬ Q and P
=⇒ Q.
lemma iffCE :

assumes major : ‹P ←→ Q›
and r1 : ‹[[P; Q]] =⇒ R›
and r2 : ‹[[¬ P; ¬ Q]] =⇒ R›

shows ‹R›
〈proof 〉

lemma alt-ex1E :
assumes major : ‹∃ ! x. P(x)›

and r : ‹
∧

x. [[P(x); ∀ y y ′. P(y) ∧ P(y ′) −→ y = y ′]] =⇒ R›
shows ‹R›
〈proof 〉

lemma imp-elim: ‹P −→ Q =⇒ (¬ R =⇒ P) =⇒ (Q =⇒ R) =⇒ R›
〈proof 〉

lemma swap: ‹¬ P =⇒ (¬ R =⇒ P) =⇒ R›
〈proof 〉

3 Classical Reasoner
〈ML〉

lemmas [intro!] = refl TrueI conjI disjCI impI notI iffI
and [elim!] = conjE disjE impCE FalseE iffCE
〈ML〉

lemmas [intro!] = allI ex-ex1I
and [intro] = exI
and [elim!] = exE alt-ex1E
and [elim] = allE
〈ML〉

lemma ex1-functional: ‹[[∃ ! z. P(a,z); P(a,b); P(a,c)]] =⇒ b = c›
〈proof 〉

Elimination of True from assumptions:
lemma True-implies-equals: ‹(True =⇒ PROP P) ≡ PROP P›
〈proof 〉

17

lemma uncurry: ‹P −→ Q −→ R =⇒ P ∧ Q −→ R›
〈proof 〉

lemma iff-allI : ‹(
∧

x. P(x) ←→ Q(x)) =⇒ (∀ x. P(x)) ←→ (∀ x. Q(x))›
〈proof 〉

lemma iff-exI : ‹(
∧

x. P(x) ←→ Q(x)) =⇒ (∃ x. P(x)) ←→ (∃ x. Q(x))›
〈proof 〉

lemma all-comm: ‹(∀ x y. P(x,y)) ←→ (∀ y x. P(x,y))›
〈proof 〉

lemma ex-comm: ‹(∃ x y. P(x,y)) ←→ (∃ y x. P(x,y))›
〈proof 〉

3.1 Classical simplification rules

Avoids duplication of subgoals after expand-if, when the true and false cases
boil down to the same thing.
lemma cases-simp: ‹(P −→ Q) ∧ (¬ P −→ Q) ←→ Q›
〈proof 〉

3.1.1 Miniscoping: pushing quantifiers in

We do NOT distribute of ∀ over ∧, or dually that of ∃ over ∨.
Baaz and Leitsch, On Skolemization and Proof Complexity (1994) show that
this step can increase proof length!

Existential miniscoping.
lemma int-ex-simps:

‹
∧

P Q. (∃ x. P(x) ∧ Q) ←→ (∃ x. P(x)) ∧ Q›
‹
∧

P Q. (∃ x. P ∧ Q(x)) ←→ P ∧ (∃ x. Q(x))›
‹
∧

P Q. (∃ x. P(x) ∨ Q) ←→ (∃ x. P(x)) ∨ Q›
‹
∧

P Q. (∃ x. P ∨ Q(x)) ←→ P ∨ (∃ x. Q(x))›
〈proof 〉

Classical rules.
lemma cla-ex-simps:

‹
∧

P Q. (∃ x. P(x) −→ Q) ←→ (∀ x. P(x)) −→ Q›
‹
∧

P Q. (∃ x. P −→ Q(x)) ←→ P −→ (∃ x. Q(x))›
〈proof 〉

lemmas ex-simps = int-ex-simps cla-ex-simps

Universal miniscoping.
lemma int-all-simps:

18

‹
∧

P Q. (∀ x. P(x) ∧ Q) ←→ (∀ x. P(x)) ∧ Q›
‹
∧

P Q. (∀ x. P ∧ Q(x)) ←→ P ∧ (∀ x. Q(x))›
‹
∧

P Q. (∀ x. P(x) −→ Q) ←→ (∃ x. P(x)) −→ Q›
‹
∧

P Q. (∀ x. P −→ Q(x)) ←→ P −→ (∀ x. Q(x))›
〈proof 〉

Classical rules.
lemma cla-all-simps:

‹
∧

P Q. (∀ x. P(x) ∨ Q) ←→ (∀ x. P(x)) ∨ Q›
‹
∧

P Q. (∀ x. P ∨ Q(x)) ←→ P ∨ (∀ x. Q(x))›
〈proof 〉

lemmas all-simps = int-all-simps cla-all-simps

3.1.2 Named rewrite rules proved for IFOL
lemma imp-disj1 : ‹(P −→ Q) ∨ R ←→ (P −→ Q ∨ R)› 〈proof 〉
lemma imp-disj2 : ‹Q ∨ (P −→ R) ←→ (P −→ Q ∨ R)› 〈proof 〉

lemma de-Morgan-conj: ‹(¬ (P ∧ Q)) ←→ (¬ P ∨ ¬ Q)› 〈proof 〉

lemma not-imp: ‹¬ (P −→ Q) ←→ (P ∧ ¬ Q)› 〈proof 〉
lemma not-iff : ‹¬ (P ←→ Q) ←→ (P ←→ ¬ Q)› 〈proof 〉

lemma not-all: ‹(¬ (∀ x. P(x))) ←→ (∃ x. ¬ P(x))› 〈proof 〉
lemma imp-all: ‹((∀ x. P(x)) −→ Q) ←→ (∃ x. P(x) −→ Q)› 〈proof 〉

lemmas meta-simps =
triv-forall-equality — prunes params
True-implies-equals — prune asms True

lemmas IFOL-simps =
refl [THEN P-iff-T] conj-simps disj-simps not-simps
imp-simps iff-simps quant-simps

lemma notFalseI : ‹¬ False› 〈proof 〉

lemma cla-simps-misc:
‹¬ (P ∧ Q) ←→ ¬ P ∨ ¬ Q›
‹P ∨ ¬ P›
‹¬ P ∨ P›
‹¬ ¬ P ←→ P›
‹(¬ P −→ P) ←→ P›
‹(¬ P ←→ ¬ Q) ←→ (P ←→ Q)› 〈proof 〉

lemmas cla-simps =
de-Morgan-conj de-Morgan-disj imp-disj1 imp-disj2
not-imp not-all not-ex cases-simp cla-simps-misc

19

〈ML〉

3.2 Other simple lemmas
lemma [simp]: ‹((P −→ R) ←→ (Q −→ R)) ←→ ((P ←→ Q) ∨ R)›
〈proof 〉

lemma [simp]: ‹((P −→ Q) ←→ (P −→ R)) ←→ (P −→ (Q ←→ R))›
〈proof 〉

lemma not-disj-iff-imp: ‹¬ P ∨ Q ←→ (P −→ Q)›
〈proof 〉

3.2.1 Monotonicity of implications
lemma conj-mono: ‹[[P1 −→ Q1 ; P2 −→ Q2]] =⇒ (P1 ∧ P2) −→ (Q1 ∧ Q2)›
〈proof 〉

lemma disj-mono: ‹[[P1 −→ Q1 ; P2 −→ Q2]] =⇒ (P1 ∨ P2) −→ (Q1 ∨ Q2)›
〈proof 〉

lemma imp-mono: ‹[[Q1 −→ P1 ; P2 −→ Q2]] =⇒ (P1 −→ P2) −→ (Q1 −→
Q2)›
〈proof 〉

lemma imp-refl: ‹P −→ P›
〈proof 〉

The quantifier monotonicity rules are also intuitionistically valid.
lemma ex-mono: ‹(

∧
x. P(x) −→ Q(x)) =⇒ (∃ x. P(x)) −→ (∃ x. Q(x))›

〈proof 〉

lemma all-mono: ‹(
∧

x. P(x) −→ Q(x)) =⇒ (∀ x. P(x)) −→ (∀ x. Q(x))›
〈proof 〉

3.3 Proof by cases and induction

Proper handling of non-atomic rule statements.
context
begin

qualified definition ‹induct-forall(P) ≡ ∀ x. P(x)›
qualified definition ‹induct-implies(A, B) ≡ A −→ B›
qualified definition ‹induct-equal(x, y) ≡ x = y›
qualified definition ‹induct-conj(A, B) ≡ A ∧ B›

lemma induct-forall-eq: ‹(
∧

x. P(x)) ≡ Trueprop(induct-forall(λx. P(x)))›

20

〈proof 〉

lemma induct-implies-eq: ‹(A =⇒ B) ≡ Trueprop(induct-implies(A, B))›
〈proof 〉

lemma induct-equal-eq: ‹(x ≡ y) ≡ Trueprop(induct-equal(x, y))›
〈proof 〉

lemma induct-conj-eq: ‹(A &&& B) ≡ Trueprop(induct-conj(A, B))›
〈proof 〉

lemmas induct-atomize = induct-forall-eq induct-implies-eq induct-equal-eq induct-conj-eq
lemmas induct-rulify [symmetric] = induct-atomize
lemmas induct-rulify-fallback =

induct-forall-def induct-implies-def induct-equal-def induct-conj-def

Method setup.
〈ML〉

declare case-split [cases type: o]

end

〈ML〉

hide-const (open) eq

end

21

	Intuitionistic first-order logic
	Syntax and axiomatic basis
	Equality
	Propositional logic
	Quantifiers
	Definitions
	Old-style ASCII syntax

	Lemmas and proof tools
	Sequent-style elimination rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 --3mu and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Negation rules, which translate between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P --3mu False
	Modus Ponens Tactics

	If-and-only-if
	Destruct rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -3mu similar to Modus Ponens

	Unique existence
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -3mu congruence rules for simplification

	Equality rules
	Simplifications of assumed implications
	Intuitionistic Reasoning
	Polymorphic congruence rules
	Congruence rules for predicate letters

	Atomizing meta-level rules
	Atomizing elimination rules
	Calculational rules
	``Let'' declarations
	Intuitionistic simplification rules
	Conversion into rewrite rules
	More rewrite rules

	Classical first-order logic
	The classical axiom
	Lemmas and proof tools
	Classical introduction rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000

	Special elimination rules
	Tactics for implication and contradiction

	Classical Reasoner
	Classical simplification rules
	Miniscoping: pushing quantifiers in
	Named rewrite rules proved for IFOL

	Other simple lemmas
	Monotonicity of implications

	Proof by cases and induction

