[sabelle/FOL — First-Order Logic

Larry Paulson and Markus Wenzel

January 18, 2026

Contents

1 Intuitionistic first-order logic

1.1

1.2

1.3

1.4

1.5
1.6
1.7
1.8

1.9

1.10
1.11
1.12
1.13

Syntax and axiomatic basiso
1.1.1 Equality o
1.1.2 Propositional logic
1.1.3 Quantifiers oo o
1.1.4 Definitions,
1.1.5 Old-style ASCIT syntax
Lemmas and proof tools
1.2.1 Sequent-style elimination rules for A — and V
1.2.2 Negation rules, which translate between — P and P
— False
1.2.3 Modus Ponens Tactics
If-and-only-if
1.3.1 Destruct rules for «+— similar to Modus Ponens
Unique existence
1.4.1 < congruence rules for simplification.
Equality ruleso
Simplifications of assumed implications
Intuitionistic Reasoning 0.
Polymorphic congruence rules
1.8.1 Congruence rules for predicate letters
Atomizing meta-level rules L.
Atomizing elimination ruleso
Calculational rules L.
“Let” declarations
Intuitionistic simplification rules
1.13.1 Conversion into rewrite rules
1.13.2 More rewrite rules

2 Classical first-order logic 14

2.1 Theclassical axiom 14
2.2 Lemmas and proof tools 14
2.2.1 Classical introduction rules for Vand 3 14

2.3 Special elimination rules L oL 15
2.3.1 Tactics for implication and contradiction. 15

3 Classical Reasoner 16
3.1 Classical simplificationrules 17
3.1.1 Miniscoping: pushing quantifiersin 17
3.1.2 Named rewrite rules proved for IFOL 18

3.2 Other simple lemmas 18
3.2.1 Monotonicity of implications 19

3.3 Proof by cases and induction 19

1 Intuitionistic first-order logic

theory IFOL
imports Pure
abbrevs < = J<;

begin

(ML)

1.1 Syntax and axiomatic basis

(ML)

class term
default-sort <term)

typedecl o

judgment
Trueprop :: <o = propy (<(<notation=judgment>-)» 5)

1.1.1 Equality

axiomatization
eq :: «['a, 'a] = o> (infixl <=» 50)

where

refl: <a = a» and
subst: <a = b = P(a) = P(b)»

1.1.2 Propositional logic

axiomatization

Fualse ::

<0y and

conj :: <o, o] => o> (infixr «(\» 35) and

disj =2 <[o, o] => o» (infixr <V» 30) and

imp :: <o, o] => oy (infixr <—» 25)
where

congl: <[P; Q] = P A @ and

conjunctl: <P N Q@ = P»> and

conjunct2: <P N @ = ()» and

disjl1: <P — P VvV @» and
disjI2: «QQ = P V @)» and
disjE: <[PV Q; P = R; @ = R] = R> and

impl: «(P = Q) = P — () and
mp: <[P — @Q; P] = @ and

FalseE: <False = P»

1.1.3 Quantifiers

axiomatization
All :: «('a = 0) = o> (binder V> 10) and
Ez :: «('"a = 0) = o> (binder «3» 10)
where
alll: «(A\z. P(z)) = (Vz. P(z))» and
spec: «(Vz. P(z)) = P(z)» and
exl: <P() = (3. P(z))» and
exE: <[F3z. P(z); N\z. P(z) = R] = R»

1.1.4 Definitions

definition < True = False — Fualse»

definition Not («(<open-block notation=<prefiz == -)» [40] 40)
where not-def: <— P = P — Fulse)

definition iff (infixr +—» 25)
where <P +— Q= (P — Q) A (Q — P)

definition Unig :: (‘a = 0) = o
where <Unig(P) = (Vz y. P(z) — P(y) — y = z)»

definition Fz! :: <(a = 0) = o> (binder <31y 10)
where exi-def: (Ilz. P(z) = Jz. P(z) A Vy. P(y) — y = a)H

axiomatization where — Reflection, admissible
eg-reflection: «(z = y) = (z = y)» and
iff-reflection: «(P +— Q) = (P = Q)

abbreviation not-equal :: (['a, 'a] = o> (infixl %> 50)
where <z £ y = - (z = y)

syntax -Uniq :: pttrn = 0 = o («(«indent=2 notation=<binder I<1»3I <1 -./ -)»
[0, 10] 10)

syntax-consts -Uniq = Uniq

translations 3<iz. P = CONST Uniq (Az. P)

(ML)

1.1.5 Old-style ASCII syntax

notation (ASCII)
not-equal (infixl <~=) 50) and
Not («(copen-block notation=<prefix ~»"~ -)» [40] 40) and
conj (infixr «&> 35) and
disj (infixr <> 30) and
All (binder <ALL » 10) and
Ez (binder <EX » 10) and
Ez! (binder «EX!» 10) and
imp (infixr (——>» 25) and
iff (infixr (<—>» 25)

1.2 Lemmas and proof tools

lemmas strip = impl alll

lemma Truel: < True»
(proof)

1.2.1 Sequent-style elimination rules for A — and V

lemma conjE:
assumes major: <P A Q»
and r: «([P; Q] = R
shows (R)»

(proof)

lemma impkFE:
assumes major: <P — @
and P>
and 7 «Q = R»
shows (R»

(proof)

lemma allE:
assumes magjor: ¥ z. P(z)
and r: «P(z) = R»
shows (R»

(proof)

Duplicates the quantifier; for use with eresolve_tac.

lemma all-dupFE:

assumes magjor: <V z. P(z)
and 7: ([P(z); Va. P(z)] = R
shows (R»
(proof)

1.2.2 Negation rules, which translate between - P and P — Fulse

lemma notl: «(P = Fualse) = — P»

(proof)

lemma notE: [~ P; P] = R»
{proof)

lemma rev-notE: <[P; - P] = R»
(proof)

This is useful with the special implication rules for each kind of P.

lemma not-to-imp:
assumes <— P)
and r: <P — False = @)
shows «@»

(proof)

For substitution into an assumption P, reduce @ to P — (@, substitute into
this implication, then apply impl to move P back into the assumptions.
lemma rev-mp: <[P; P — Q] =

(proof)
Contrapositive of an inference rule.

lemma contrapos:
assumes major: (—
and minor: <P = @
shows <= P»

{proof)

1.2.3 Modus Ponens Tactics

Finds P — @ and P in the assumptions, replaces implication by Q.
(ML)

1.3 If-and-only-if

lemma iffl: <[P = Q; Q = P] = P +—
(proof)

lemma iffE:
assumes major: <P «— @
and 7: ([P — @; Q — P] = R»

shows <R»
(proof)

1.3.1 Destruct rules for «+— similar to Modus Ponens

lemma iffD1: ([P +— Q; P] =
(proof)

lemma iffD2: ([P +— Q; Q] = P»
(proof)

lemma rev-iff D1: <[P; P +— Q] =
(proof)

lemma rev-iff D2: <[Q; P +— Q] = P»
(proof)

lemma iff-refl: <P «— P»
(proof)

lemma iff-sym: «Q «— P = P <— @
(proof)

lemma iff-trans: <[P +— @Q; Q +— R] = P +— R»

(proof)

1.4 Unique existence

NOTE THAT the following 2 quantifications:

o Jlz such that [3!y such that P(x,y)] (sequential)

o Jlz,y such that P(x,y) (simultaneous)

do NOT mean the same thing. The parser treats 3!z y.P(z,y) as sequential.

lemma ex1l: <P(a) = (Az. P(z) = z = a) = 3lz. P(z)
{proof)

Sometimes easier to use: the premises have no shared variables. Safe!

1e<rnma>ex—e:L’JI: Jz. P(z) = (Az y. [P(x); P(y)] = =z =y) = Ilz. P(z)
proof

lemma ex1E: 3! z. P(z) = (Az. [P(2); Vy. Ply) — y=12] = R) = R
(proof)

1.4.1 <— congruence rules for simplification

Use iffE on a premise. For conj-cong, imp-cong, all-cong, ex-cong.

(ML)

lemma conj-cong:
assumes (P +— P/
and «(P' = Q «— Q"
shows «(P A Q) +— (P’ A Q')
(proof)

Reversed congruence rule! Used in ZF /Order.

lemma conj-cong?2:
assumes (P +— P/
and «(P' = Q «— Q"
shows <(Q A P) «— (Q' A P')»
(proof)

lemma disj-cong:
assumes (P +— P’y and <Q +— Q"
shows (P V Q) «— (P'V Q")
(proof)

lemma imp-cong:
assumes (P +— P/
and (P = Q «— Q"
shows (P — Q) «— (P' — Q')
(proof)

lemma iff-cong: <[P +— P Q +— Q] = (P +— Q) +— (P'+— Q')

(proof)

lemma not-cong: (P «+— P' = = P +— = P’
{proof)

lemma all-cong:
assumes (A\z. P(z) «+— Q(z)
shows «(Vz. P(z)) +— (Vz. Q(z))»
(proof)

lemma ex-cong:
assumes (A\z. P(z) «+— Q(x)
shows ¢(3z. P(z)) +— (Fz. Q(z))»
(proof)

lemma ex1-cong:
assumes (A\z. P(z) «— Q(x)
shows ¢(3lz. P(z)) +— (Flz. Q(z))
{proof)

1.5 Equality rules

lemma sym: <a = b = b = a»
(proof)

lemma trans: Ja=b;b=¢c] = a=0©
{proof)

lemma not-sym: <b # a = a # b
(proof)

Two theorems for rewriting only one instance of a definition: the first for
definitions of formulae and the second for terms.
lemma def-imp-iff: (A = B) = A «— B»

(proof)

lemma meta-eq-to-obj-eq: «(A = B) —= A =B
(proof)

lemma meta-eq-to-iff: <x = y = = +— ¥
{proof)

Substitution.

lemma ssubst: «[b = a; P(a)] = P(b)
{proof)

A special case of ex1FE that would otherwise need quantifier expansion.

lemma exl-equalsE: <[3!z. P(x); P(a); P(b)] = a = b
{proof)

1.6 Simplifications of assumed implications

Roy Dyckhoff has proved that conj-impE, disj-impFE, and imp-impE used
with mp_tac (restricted to atomic formulae) is COMPLETE for intuitionistic
propositional logic.

See R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic (preprint,
University of St Andrews, 1991).

lemma conj-impE:
assumes major: <(P A Q) — S
and 7 <P — (@ — S) = B
shows (R)»

{proof)

lemma disj-impFE:
assumes major: <(P V Q) — S
and ([P — S; Q@ — 5] = R»
shows (R)»
(proof)

Simplifies the implication. Classical version is stronger. Still UNSAFE since
Q must be provable — backtracking needed.
lemma imp-impkE:
assumes magjor: (P — Q) — S
and 71: «[P; Q — §] =]
and 72: «<S = R»
shows (R)»

(proof)

Simplifies the implication. Classical version is stronger. Still UNSAFE since
P must be provable — backtracking needed.

lemma not-impE: <= P — § = (P = Fualse) = (S = R) = R»

(proof)
Simplifies the implication. UNSAFE.

lemma iff-impE:
assumes major: (P +— Q) — S
and r1: ([P; Q — 5] = @
and r2: ([Q; P — 5] = P»
and r3: S = R»
shows «R»

(proof)
What if (Vz. = = P(z)) — = = (V2. P(z)) is an assumption? UNSAFE.

lemma all-impFE:
assumes magjor: (VY z. P(z)) — S»
and r1: «Az. P(z)
and r2: (S = R»
shows «R»

{proof)

Unsafe: 3z. P(z)) — S is equivalent to Vz. P(z) — S.

lemma ex-impkFE:
assumes magjor: <(3z. P(z)) — S»
and r: <P(z) — S = R»
shows <)

{proof)

Courtesy of Krzysztof Grabczewski.

lemma disj-imp-disj: <PV Q = (P = R) = (@ = S) = RV S
(proof)

(ML)
lemma thin-refl: <[x = z; PROP W] = PROP W) (proof)

(ML)

1.7 Intuitionistic Reasoning

(ML)

lemma impFE":
assumes 1: <P —
and 2: «Q = R»

and 3: <P — Q = P»

shows «R»

(proof)

lemma allE":
assumes I: «Vz. P(z)

and 2: <P(z) = Vuz. P(z) = @

shows «@»

(proof)

lemma notE":
assumes 1: < P
and 2: (- P — P»
shows (R»

(proof)

lemmas [Pure.elim!] = disjE iffE FalseE conjE exE
and [Pure.introl] = iffl conjl impI Truel notl alll refl
and [Pure.elim 2] = allE notE’ impE’
and [Pure.intro] = exl disjI2 disjl1

(ML)

lemma iff-not-sym: <— (Q +— P) = - (P +— Q)

{proof)

lemmas [sym] = sym iff-sym not-sym iff-not-sym
and [Pure.elim? = ifD1 iff D2 impE

lemma eg-commute: <a = b +— b = a>

{proof)

1.8 Polymorphic congruence rules

lemma subst-context: <a = b = t(a) = t(b)

(proof)

lemma subst-context?2: <Ja
{proof)

lemma subst-context3: [a

b; ¢ = d] = t(a,c) = t(b,d)

b; ¢ = d; e = f] = t(a,c,e) = t(b,d,f)»

10

(proof)
Useful with eresolve_tac for proving equalities from known equalities.
a=b||c=d

lemma boz-equals: <Ja =b;a=c;b=d] = ¢c=
(proof)

Dual of boz-equals: for proving equalities backwards.

lemma simp-equals: Ja=c;b=d; c=d] = a=b
(proof)

1.8.1 Congruence rules for predicate letters

lemma predi-cong: <a = a’ = P(a) +— P(a’)

{proof)

lemma pred2-cong: <[a = a’; b = b'] = P(a,b) +— P(a’,b')
(proof)

lemma pred3-cong: <Ja = a’; b = b’; ¢ = ¢']| = P(a,b,c) +— P(a’,b’,c')
{proof)

Special case for the equality predicate!

lemma eg-cong: (Ja=a50=0] = a=b+— a' =bH
{proof)

1.9 Atomizing meta-level rules

lemma atomize-all [atomize]: <«(\z. P(z)) = Trueprop (V. P(z))»
(proof)

lemma atomize-imp [atomize]: «(A = B) = Trueprop (A — B)»
(proof)

lemma atomize-eq [atomize]: «(x = y) = Trueprop (z = y)»

(proof)

lemma atomize-iff [atomize]: «(A = B) = Trueprop (A +— B)»

(proof)

lemma atomize-conj [atomize]: (A &&& B) = Trueprop (A A B)»
(proof)

lemmas [symmetric, rulify] = atomize-all atomize-imp
and [symmetric, defn] = atomize-all atomize-imp atomize-eq atomize-iff

1.10 Atomizing elimination rules

lemma atomize-exL[atomize-elim]: «(Az. P(z) = Q) = ((3z. P(z)) = Q)

11

{proof)

lemma atomize-conjL{atomize-elim|: «(A = B = C) = (A AN B = C)
{proof)

lemma atomize-disjL[atomize-elim|: «((A = C) = (B = C) = () = ((4

VB= C)= C)
{proof)

lemma atomize-elimL[atomize-elim]: <(AB. (A = B) = B) = Trueprop(A)»

(proof)

1.11 Calculational rules

lemma forw-subst: <a = b = P(b) = P(a)»
{proof)

lemma back-subst: <P(a) = a = b = P(b)»
{proof)

Note that this list of rules is in reverse order of priorities.

lemmas basic-trans-rules [trans] =
forw-subst
back-subst
Tev-mp
mp
trans

1.12 “Let” declarations
nonterminal letbinds and letbind

definition Let :: <['a::{}, 'a => 'b] = ('b::{})
where <Let(s,) = f(s)

syntax

-bind = «[pttrn, 'a] => letbindy («(<indent=2 notation=<infiz let binding»»-
=/) 10)

i «letbind => letbinds» (¢-»)

-binds i «[letbind, letbinds] => letbinds> (<-;/ -»)

-Let i «([letbinds, 'a] => 'ay («(<notation=<mizfix let expressionylet (-)/
in (-)) 10)
syntax-consts

-Let = Let
translations

-Let(-binds(b, bs), e) == -Let(b, -Let(bs, ¢))

letz=aine == CONST Let(a, \z. €)

lemma Letl:

12

assumes (A\z. z = t = P(u(z))
shows <P(let © = t in u(z))

{proof)

1.13 Intuitionistic simplification rules

lemma conj-simps:
<P N True +— P»
<True N\ P <— P»
<P A Fulse +— Fulse)
<False N P +— Fulse)
(PN P +— P
«(PANPANQ<+—PANQ
<P N = P <— False
<= P N P +<— Fualse)
(PANQ)ANR<+—PA(QAR)
(proof)

lemma disj-simps:
<PV True <— True)
<True V P +— Truey
<PV False +— P)
<False V P +— P»
<PV P +— P
(PV PV Q<+— PV
(PV Q) VR+—PV(QVR)
(proof)

lemma not-simps:
2 (PV Q)+—PA- Q@
<= False <— True»
<= True +— Fulse)

{proof)

lemma imp-simps:

(P — Fualse) «— — P»

(P — True) +— True
<(False — P) <— True»
(True — P) +— P
(P — P) +— True
(P— = P)+— - P
(proof)
lemma iff-simps:

(True +— P) «— P
(P +— True) +— P»
P +— P) +— Truey
False «— P) +— = P»
P «— Fualse) +— - P»

«
(
(
(

13

{proof)

The z = t versions are needed for the simplification procedures.

lemma quant-simps:
<AP. Vz. P) «— P»
«(Vz. 2 =t — P(z)) +— P(t)
«(Vz. t =2 — P(x)) +— P(t)
<AP. (3z. P) «— P
Jz.z =10
Jz. t =
«(Fz. z =t AN P(z)) «— P(t)
«(Fz. t = N P(z)) «— P(t)
(proof)

These are NOT supplied by default!

~

lemma distrib-simps:
(PAN(QV R)+—PANQVPANR
(QVR)YANP<+— QANPVRAP
«(PVQ—R)+— (P—R)AN(Q— R)p
(proof)

lemma subst-all:
«(A\z. z = a = PROP P(z)) = PROP P(a)
«(Az. a = z = PROP P(z)) = PROP P(a)
(proof)

1.13.1 Conversion into rewrite rules

lemma P-iff-F: (- P = (P <— Fulse)»

{proof)
lemma iff-reflection-F: <= P = (P = Fulse)»

{proof)

lemma P-iff-T: <P = (P <— True)»

(proof)

lemma iff-reflection-T: <P = (P = True)»
(proof)
1.13.2 More rewrite rules

lemma conj-commute: <P A Q <— Q A P> (proof)
lemma conj-left-commute: <P A (Q AN R) «— Q A (P A R)» (proof)
lemmas conj-comms = conj-commute conj-left-commute

lemma disj-commute: <PV Q +— Q V P> (proof)
lemma disj-left-commute: <P V (Q V R) +— Q V (P V R)» (proof)

lemmas disj-comms = disj-commute disj-left-commute

lemma conj-disj-distribL: <P A (Q V R) «— (P AN Q V P A R)» (proof)

14

lemma conj-disj-distribR: (P V Q) AN R «— (P AN RV Q A R)» (proof)

lemma disj-conj-distribL: <P V (Q AN R) «— (P V Q) A (P V R)» (proof)
lemma disj-conj-distribR: (P A Q) V R +— (P V R) A (Q V R)» (proof)

lemma imp-conj-distrib: <«(P — (Q A R)) «— (P — Q) A (P — R)» {(proof)
lemma imp-conj: <((P N Q) — R) «+— (P — (Q — R))» (proof)
lemma imp-disj: (P V Q@ — R) <— (P — R) A (Q — R)» (proof)

lemma de-Morgan-disj: <(— (P V Q)) +— (= P A = Q) (proof)

lemma not-ex: <«(= (3z. P(z))) «— (Vz. = P(z)) (proof)
lemma imp-ex: «((3z. P(z)) — Q) «— (Vz. P(z) — Q)» (proof)

lemma ex-disj-distrib: «(3z. P(z) V Q(z)) +— ((Fz. P(z)) vV (Fz. Q(x)))
(proof)

le<rnm:;1(>all—conj—dz'stm'b: «(Vz. P(z) A Q(z)) «— (V. P(x)) A V2. Q(z)))
Proo

end

2 Classical first-order logic

theory FOL

imports IFOL

keywords print-claset print-induct-rules :: diag
begin

(ML)

2.1 The classical axiom

axiomatization where
classical: «(- P = P) = P»

2.2 Lemmas and proof tools

lemma ccontr: «(-= P = Fualse) = P)
{proof)

2.2.1 Classical introduction rules for VvV and 3

lemma disjCI: «(- Q = P) = PV @
(proof)

Introduction rule involving only 3

lemma ez-classical:
assumes 7: <— (Jz. P(z)) = P(a)

15

shows «Jz. P(z)»
{proof)

Version of above, simplifying =3 to V —.

lemma exClI:
assumes r: <Vz. = P(z) = P(a)
shows «3z. P(z)

{proof)

lemma exzcluded-middle: <— PV P»
(proof)

lemma case-split [case-names True False]:
assumes r1: <P = @
and r2: (- P =
shows «@»
(proof)

(ML)

2.3 Special elimination rules

Classical implies (—) elimination.

lemma impCE:
assumes major: <P — @
and r1: <= P = R
and 72: «Q = R»
shows (R»

{proof)

This version of — elimination works on @ before P. It works best for those
cases in which P holds “almost everywhere”. Can’t install as default: would
break old proofs.
lemma impCE":
assumes major: <P —
and 71: «Q = R»
and 72: «<- P — R»
shows (R»

{proof)

Double negation law.

lemma notnotD: (= = P — P»
(proof)

lemma contrapos2: [@Q; - P = - Q] = P>
(proof)

16

2.3.1 Tactics for implication and contradiction

Classical «+— elimination. Proof substitutes P = @ in = P = = @ and P
= Q.
lemma iffCE:
assumes major: <P +— @
and r1: ([P; Q] = R
and 72: <[~ P; - Q] = R»
shows (R)»
(proof)

lemma alt-ex1E:
assumes major: 3! z. P(z)
and r: (\z. [P(z); Vyy' P(y) N P(y) —y=y]= B
shows «R»
(proof)

lemma imp-elim: <P — Q — (- R— P) = (@ = R) = R»
{proof)

lemma swap: (- P = (- R = P) = R
{proof)

3 Classical Reasoner

(ML)

lemmas [introl] = refl Truel congl disjCI impl notl iffI
and [elim!] = conjE disjE impCE FalseE iffCE
(ML)

lemmas [intro!] = alll ex-ex1]
and [intro] = exl
and [elim!] = exFE alt-exlE
and [elim] = allE

(ML)

lemma exI-functional: <[3! z. P(a,2); P(a,b); P(a,c)] = b= o
(proof)

Elimination of True from assumptions:

lemma True-implies-equals: «(True => PROP P) = PROP P»
(proof)

17

lemma uncurry: <P — QQ — R =— P AN Q — R»
(proof)

1e<rnma>iﬁ-all1: (Az. P(z) +— Q(z)) = (Vz. P(x)) +— (Vz. Q(z))
proof

le<mm€}>i[f—ex1: (Az. P(z) +— Q(z)) = (3z. P(z)) «— (3z. Qx))
Proo

lemma all-comm: «Vz y. P(z,y)) +— (Vy z. P(z,y))
(proof)

lemma ex-comm: «(3z y. P(z,y)) +— By x. P(z,y))

(proof)

3.1 Classical simplification rules
Avoids duplication of subgoals after expand-if, when the true and false cases
boil down to the same thing.

lemma cases-simp: (P — Q) A (= P — Q) «— @
{proof)

3.1.1 Miniscoping: pushing quantifiers in

We do NOT distribute of V over A, or dually that of 3 over V.

Baaz and Leitsch, On Skolemization and Proof Complexity (1994) show that
this step can increase proof length!

Existential miniscoping.

lemma int-ex-simps:
(AP Q. (3z. P(z) N Q) «— (Fz. P(z)) N O
AP Q. (3z. P A Q(z)) «— P A (Fz. Qz))
(AP Q. (3z. P(z) V Q) «— (3z. P(x)) vV
2/\P Q> (Fz. PV Q(z)) «— P Vv (Fz. Qz))
proof

Classical rules.

lemma cla-ex-simps:
(AP Q. (3z. P(z) — Q) +— (Vz. P(z)) — @
2/\P Ci (Fz. P — Q(z)) «— P — (Fz. Q(z))
proof

lemmas ex-simps = int-ex-simps cla-ex-simps

Universal miniscoping.

lemma int-all-simps:

18

(proof)

Classical rules.

lemma cla-all-simps:
AP Q. (Vz. P(z) V Q) «— (V. P(x)) vV
2/\P;2> Vz. PV Q(z)) «— P Vv (Vz. Q(z))
Proo

lemmas all-simps = int-all-simps cla-all-simps

3.1.2 Named rewrite rules proved for IFOL

lemma imp-disj1: «(P — Q) V R +— (P — Q V R)» {(proof)
lemma imp-disj2: <Q V (P — R) «— (P — Q V R)» {proof)

lemma de-Morgan-conj: <«(— (P A Q)) +— (= PV = Q) {proof)

lemma not-imp: (= (P — Q) «— (P A = Q)» (proof)
lemma not-iff: <= (P +— Q) +— (P +— = Q) (proof)

lemma not-all: «(= (Vz. P(z))) «— (2. = P(x))» (proof)
lemma imp-all: «(Vz. P(z)) — Q) <— (Fz. P(z) — Q) (proof)

lemmas meta-simps =
triv-forall-equality — prunes params
True-implies-equals — prune asms True

lemmas IFOL-simps =
refl [THEN P-iff-T] conj-simps disj-simps not-simps
imp-simps iff-simps quant-simps

lemma notFalsel: <— False> (proof)

lemma cla-simps-misc:
—(PAQ)+—-PV-Q
<PV =P
<= PV Py
(= = P +— P
(nP— P)+— P»
(P = = Q) «— (P Q) (proof)

lemmas cla-simps =

de-Morgan-conj de-Morgan-disj imp-disjl imp-disj2
not-imp not-all not-ex cases-simp cla-simps-misc

19

(ML)

3.2 Other simple lemmas
lemma [simp]: «((P — R) +— (@ — R)) +— ((P +— Q) V R)»
(proof)

le<mm:}>[simp]: (P—Q)¢— (P—R)«— (P — (Q<— R)»
Proo

lemma not-disj-iff-imp: <= PV Q +— (P — Q)
(proof)

3.2.1 Monotonicity of implications

lemma conj-mono: <[Pl — Q1; P2 — Q2] = (P1 AN P2) — (Q1 N Q2)»
(proof)

lemma disj-mono: (|[P1 — Q1; P2 — Q2] = (P1 vV P2) — (Q1 V Q2)»
(proof)

lemma imp-mono: <[Q1 — PI1; P2 — Q2] = (P1 — P2) — (Q1 —
Q2)
(proof)

lemma imp-refi: <P — P>
(proof)

The quantifier monotonicity rules are also intuitionistically valid.

lemma ex-mono: «(Az. P(z) — Q(z)) = (3z. P(z)) — (Fz. Q(x))
{proof)

1e<mma>all-m0n0: (Az. P(z) — Q(z)) = (Vz. P(z)) — (V. Q(z))
proof

3.3 Proof by cases and induction

Proper handling of non-atomic rule statements.

context
begin

qualified definition <induct-forall(P) = Vz. P(x)

qualified definition <induct-implies(4, B) = A — B»
qualified definition <induct-equal(z, y) = z = y
qualified definition <induct-conj(A, B) = A A B»

lemma induct-forall-eq: «(A\z. P(z)) = Trueprop(induct-forall(Az. P(x)))

20

{proof)

lemma induct-implies-eq: <(A = B) = Trueprop(induct-implies(A, B))»
{proof)

lemma induct-equal-eq: «(x = y) = Trueprop(induct-equal(z, y))»
(proof)

lemma induct-conj-eq: «(A &&& B) = Trueprop(induct-conj(A, B))»
(proof)
lemmas induct-atomize = induct-forall-eq induct-implies-eq induct-equal-eq induct-conj-eq
lemmas induct-rulify [symmetric] = induct-atomize
lemmas induct-rulify-fallback =

induct-forall-def induct-implies-def induct-equal-def induct-conj-def

Method setup.
(ML)

declare case-split [cases type: o]
end

(ML)

hide-const (open) eq

end

21

	Intuitionistic first-order logic
	Syntax and axiomatic basis
	Equality
	Propositional logic
	Quantifiers
	Definitions
	Old-style ASCII syntax

	Lemmas and proof tools
	Sequent-style elimination rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 --3mu and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Negation rules, which translate between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P --3mu False
	Modus Ponens Tactics

	If-and-only-if
	Destruct rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -3mu similar to Modus Ponens

	Unique existence
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -3mu congruence rules for simplification

	Equality rules
	Simplifications of assumed implications
	Intuitionistic Reasoning
	Polymorphic congruence rules
	Congruence rules for predicate letters

	Atomizing meta-level rules
	Atomizing elimination rules
	Calculational rules
	``Let'' declarations
	Intuitionistic simplification rules
	Conversion into rewrite rules
	More rewrite rules

	Classical first-order logic
	The classical axiom
	Lemmas and proof tools
	Classical introduction rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000

	Special elimination rules
	Tactics for implication and contradiction

	Classical Reasoner
	Classical simplification rules
	Miniscoping: pushing quantifiers in
	Named rewrite rules proved for IFOL

	Other simple lemmas
	Monotonicity of implications

	Proof by cases and induction

