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1 Intuitionistic first-order logic
theory IFOL

imports Pure
abbrevs ?< = ∃≤1

begin

〈ML〉

1.1 Syntax and axiomatic basis
〈ML〉

class term
default-sort ‹term›

typedecl o

judgment
Trueprop :: ‹o ⇒ prop› (‹(‹notation=judgment›-)› 5 )

1.1.1 Equality
axiomatization

eq :: ‹[ ′a, ′a] ⇒ o› (infixl ‹=› 50 )
where

refl: ‹a = a› and
subst: ‹a = b =⇒ P(a) =⇒ P(b)›

1.1.2 Propositional logic
axiomatization

False :: ‹o› and
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conj :: ‹[o, o] => o› (infixr ‹∧› 35 ) and
disj :: ‹[o, o] => o› (infixr ‹∨› 30 ) and
imp :: ‹[o, o] => o› (infixr ‹−→› 25 )

where
conjI : ‹[[P; Q]] =⇒ P ∧ Q› and
conjunct1 : ‹P ∧ Q =⇒ P› and
conjunct2 : ‹P ∧ Q =⇒ Q› and

disjI1 : ‹P =⇒ P ∨ Q› and
disjI2 : ‹Q =⇒ P ∨ Q› and
disjE : ‹[[P ∨ Q; P =⇒ R; Q =⇒ R]] =⇒ R› and

impI : ‹(P =⇒ Q) =⇒ P −→ Q› and
mp: ‹[[P −→ Q; P]] =⇒ Q› and

FalseE : ‹False =⇒ P›

1.1.3 Quantifiers
axiomatization

All :: ‹( ′a ⇒ o) ⇒ o› (binder ‹∀ › 10 ) and
Ex :: ‹( ′a ⇒ o) ⇒ o› (binder ‹∃ › 10 )

where
allI : ‹(

∧
x. P(x)) =⇒ (∀ x. P(x))› and

spec: ‹(∀ x. P(x)) =⇒ P(x)› and
exI : ‹P(x) =⇒ (∃ x. P(x))› and
exE : ‹[[∃ x. P(x);

∧
x. P(x) =⇒ R]] =⇒ R›

1.1.4 Definitions
definition ‹True ≡ False −→ False›

definition Not (‹(‹open-block notation=‹prefix ¬››¬ -)› [40 ] 40 )
where not-def : ‹¬ P ≡ P −→ False›

definition iff (infixr ‹←→› 25 )
where ‹P ←→ Q ≡ (P −→ Q) ∧ (Q −→ P)›

definition Uniq :: ( ′a ⇒ o) ⇒ o
where ‹Uniq(P) ≡ (∀ x y. P(x) −→ P(y) −→ y = x)›

definition Ex1 :: ‹( ′a ⇒ o) ⇒ o› (binder ‹∃ !› 10 )
where ex1-def : ‹∃ !x. P(x) ≡ ∃ x. P(x) ∧ (∀ y. P(y) −→ y = x)›

axiomatization where — Reflection, admissible
eq-reflection: ‹(x = y) =⇒ (x ≡ y)› and
iff-reflection: ‹(P ←→ Q) =⇒ (P ≡ Q)›

abbreviation not-equal :: ‹[ ′a, ′a] ⇒ o› (infixl ‹ 6=› 50 )
where ‹x 6= y ≡ ¬ (x = y)›
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syntax -Uniq :: pttrn ⇒ o ⇒ o (‹(‹indent=2 notation=‹binder ∃≤1››∃≤1 -./ -)›
[0 , 10 ] 10 )
syntax-consts -Uniq ⇀↽ Uniq
translations ∃≤1x. P ⇀↽ CONST Uniq (λx. P)
〈ML〉

1.1.5 Old-style ASCII syntax
notation (ASCII )

not-equal (infixl ‹∼=› 50 ) and
Not (‹(‹open-block notation=‹prefix ∼››∼ -)› [40 ] 40 ) and
conj (infixr ‹&› 35 ) and
disj (infixr ‹|› 30 ) and
All (binder ‹ALL › 10 ) and
Ex (binder ‹EX › 10 ) and
Ex1 (binder ‹EX ! › 10 ) and
imp (infixr ‹−−>› 25 ) and
iff (infixr ‹<−>› 25 )

1.2 Lemmas and proof tools
lemmas strip = impI allI

lemma TrueI : ‹True›
〈proof 〉

1.2.1 Sequent-style elimination rules for ∧ −→ and ∀
lemma conjE :

assumes major : ‹P ∧ Q›
and r : ‹[[P; Q]] =⇒ R›

shows ‹R›
〈proof 〉

lemma impE :
assumes major : ‹P −→ Q›

and ‹P›
and r : ‹Q =⇒ R›
shows ‹R›
〈proof 〉

lemma allE :
assumes major : ‹∀ x. P(x)›

and r : ‹P(x) =⇒ R›
shows ‹R›
〈proof 〉

Duplicates the quantifier; for use with eresolve_tac.
lemma all-dupE :
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assumes major : ‹∀ x. P(x)›
and r : ‹[[P(x); ∀ x. P(x)]] =⇒ R›

shows ‹R›
〈proof 〉

1.2.2 Negation rules, which translate between ¬ P and P −→ False
lemma notI : ‹(P =⇒ False) =⇒ ¬ P›
〈proof 〉

lemma notE : ‹[[¬ P; P]] =⇒ R›
〈proof 〉

lemma rev-notE : ‹[[P; ¬ P]] =⇒ R›
〈proof 〉

This is useful with the special implication rules for each kind of P.
lemma not-to-imp:

assumes ‹¬ P›
and r : ‹P −→ False =⇒ Q›

shows ‹Q›
〈proof 〉

For substitution into an assumption P, reduce Q to P −→ Q, substitute into
this implication, then apply impI to move P back into the assumptions.
lemma rev-mp: ‹[[P; P −→ Q]] =⇒ Q›
〈proof 〉

Contrapositive of an inference rule.
lemma contrapos:

assumes major : ‹¬ Q›
and minor : ‹P =⇒ Q›

shows ‹¬ P›
〈proof 〉

1.2.3 Modus Ponens Tactics

Finds P −→ Q and P in the assumptions, replaces implication by Q.
〈ML〉

1.3 If-and-only-if
lemma iffI : ‹[[P =⇒ Q; Q =⇒ P]] =⇒ P ←→ Q›
〈proof 〉

lemma iffE :
assumes major : ‹P ←→ Q›

and r : ‹[[P −→ Q; Q −→ P]] =⇒ R›
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shows ‹R›
〈proof 〉

1.3.1 Destruct rules for ←→ similar to Modus Ponens
lemma iffD1 : ‹[[P ←→ Q; P]] =⇒ Q›
〈proof 〉

lemma iffD2 : ‹[[P ←→ Q; Q]] =⇒ P›
〈proof 〉

lemma rev-iffD1 : ‹[[P; P ←→ Q]] =⇒ Q›
〈proof 〉

lemma rev-iffD2 : ‹[[Q; P ←→ Q]] =⇒ P›
〈proof 〉

lemma iff-refl: ‹P ←→ P›
〈proof 〉

lemma iff-sym: ‹Q ←→ P =⇒ P ←→ Q›
〈proof 〉

lemma iff-trans: ‹[[P ←→ Q; Q ←→ R]] =⇒ P ←→ R›
〈proof 〉

1.4 Unique existence

NOTE THAT the following 2 quantifications:

• ∃ !x such that [∃ !y such that P(x,y)] (sequential)

• ∃ !x,y such that P(x,y) (simultaneous)

do NOT mean the same thing. The parser treats ∃ !x y.P(x,y) as sequential.
lemma ex1I : ‹P(a) =⇒ (

∧
x. P(x) =⇒ x = a) =⇒ ∃ !x. P(x)›

〈proof 〉

Sometimes easier to use: the premises have no shared variables. Safe!
lemma ex-ex1I : ‹∃ x. P(x) =⇒ (

∧
x y. [[P(x); P(y)]] =⇒ x = y) =⇒ ∃ !x. P(x)›

〈proof 〉

lemma ex1E : ‹∃ ! x. P(x) =⇒ (
∧

x. [[P(x); ∀ y. P(y) −→ y = x]] =⇒ R) =⇒ R›
〈proof 〉

1.4.1 ←→ congruence rules for simplification

Use iffE on a premise. For conj-cong, imp-cong, all-cong, ex-cong.
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〈ML〉

lemma conj-cong:
assumes ‹P ←→ P ′›

and ‹P ′ =⇒ Q ←→ Q ′›
shows ‹(P ∧ Q) ←→ (P ′ ∧ Q ′)›
〈proof 〉

Reversed congruence rule! Used in ZF/Order.
lemma conj-cong2 :

assumes ‹P ←→ P ′›
and ‹P ′ =⇒ Q ←→ Q ′›

shows ‹(Q ∧ P) ←→ (Q ′ ∧ P ′)›
〈proof 〉

lemma disj-cong:
assumes ‹P ←→ P ′› and ‹Q ←→ Q ′›
shows ‹(P ∨ Q) ←→ (P ′ ∨ Q ′)›
〈proof 〉

lemma imp-cong:
assumes ‹P ←→ P ′›

and ‹P ′ =⇒ Q ←→ Q ′›
shows ‹(P −→ Q) ←→ (P ′ −→ Q ′)›
〈proof 〉

lemma iff-cong: ‹[[P ←→ P ′; Q ←→ Q ′]] =⇒ (P ←→ Q) ←→ (P ′←→ Q ′)›
〈proof 〉

lemma not-cong: ‹P ←→ P ′ =⇒ ¬ P ←→ ¬ P ′›
〈proof 〉

lemma all-cong:
assumes ‹

∧
x. P(x) ←→ Q(x)›

shows ‹(∀ x. P(x)) ←→ (∀ x. Q(x))›
〈proof 〉

lemma ex-cong:
assumes ‹

∧
x. P(x) ←→ Q(x)›

shows ‹(∃ x. P(x)) ←→ (∃ x. Q(x))›
〈proof 〉

lemma ex1-cong:
assumes ‹

∧
x. P(x) ←→ Q(x)›

shows ‹(∃ !x. P(x)) ←→ (∃ !x. Q(x))›
〈proof 〉
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1.5 Equality rules
lemma sym: ‹a = b =⇒ b = a›
〈proof 〉

lemma trans: ‹[[a = b; b = c]] =⇒ a = c›
〈proof 〉

lemma not-sym: ‹b 6= a =⇒ a 6= b›
〈proof 〉

Two theorems for rewriting only one instance of a definition: the first for
definitions of formulae and the second for terms.
lemma def-imp-iff : ‹(A ≡ B) =⇒ A ←→ B›
〈proof 〉

lemma meta-eq-to-obj-eq: ‹(A ≡ B) =⇒ A = B›
〈proof 〉

lemma meta-eq-to-iff : ‹x ≡ y =⇒ x ←→ y›
〈proof 〉

Substitution.
lemma ssubst: ‹[[b = a; P(a)]] =⇒ P(b)›
〈proof 〉

A special case of ex1E that would otherwise need quantifier expansion.
lemma ex1-equalsE : ‹[[∃ !x. P(x); P(a); P(b)]] =⇒ a = b›
〈proof 〉

1.6 Simplifications of assumed implications

Roy Dyckhoff has proved that conj-impE, disj-impE, and imp-impE used
with mp_tac (restricted to atomic formulae) is COMPLETE for intuitionistic
propositional logic.
See R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic (preprint,
University of St Andrews, 1991).
lemma conj-impE :

assumes major : ‹(P ∧ Q) −→ S›
and r : ‹P −→ (Q −→ S) =⇒ R›

shows ‹R›
〈proof 〉

lemma disj-impE :
assumes major : ‹(P ∨ Q) −→ S›

and r : ‹[[P −→ S ; Q −→ S ]] =⇒ R›
shows ‹R›
〈proof 〉
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Simplifies the implication. Classical version is stronger. Still UNSAFE since
Q must be provable – backtracking needed.
lemma imp-impE :

assumes major : ‹(P −→ Q) −→ S›
and r1 : ‹[[P; Q −→ S ]] =⇒ Q›
and r2 : ‹S =⇒ R›

shows ‹R›
〈proof 〉

Simplifies the implication. Classical version is stronger. Still UNSAFE since
P must be provable – backtracking needed.
lemma not-impE : ‹¬ P −→ S =⇒ (P =⇒ False) =⇒ (S =⇒ R) =⇒ R›
〈proof 〉

Simplifies the implication. UNSAFE.
lemma iff-impE :

assumes major : ‹(P ←→ Q) −→ S›
and r1 : ‹[[P; Q −→ S ]] =⇒ Q›
and r2 : ‹[[Q; P −→ S ]] =⇒ P›
and r3 : ‹S =⇒ R›

shows ‹R›
〈proof 〉

What if (∀ x. ¬ ¬ P(x)) −→ ¬ ¬ (∀ x. P(x)) is an assumption? UNSAFE.
lemma all-impE :

assumes major : ‹(∀ x. P(x)) −→ S›
and r1 : ‹

∧
x. P(x)›

and r2 : ‹S =⇒ R›
shows ‹R›
〈proof 〉

Unsafe: ∃ x. P(x)) −→ S is equivalent to ∀ x. P(x) −→ S.
lemma ex-impE :

assumes major : ‹(∃ x. P(x)) −→ S›
and r : ‹P(x) −→ S =⇒ R›

shows ‹R›
〈proof 〉

Courtesy of Krzysztof Grabczewski.
lemma disj-imp-disj: ‹P ∨ Q =⇒ (P =⇒ R) =⇒ (Q =⇒ S) =⇒ R ∨ S›
〈proof 〉

〈ML〉

lemma thin-refl: ‹[[x = x; PROP W ]] =⇒ PROP W › 〈proof 〉

〈ML〉
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1.7 Intuitionistic Reasoning
〈ML〉

lemma impE ′:
assumes 1 : ‹P −→ Q›

and 2 : ‹Q =⇒ R›
and 3 : ‹P −→ Q =⇒ P›

shows ‹R›
〈proof 〉

lemma allE ′:
assumes 1 : ‹∀ x. P(x)›

and 2 : ‹P(x) =⇒ ∀ x. P(x) =⇒ Q›
shows ‹Q›
〈proof 〉

lemma notE ′:
assumes 1 : ‹¬ P›

and 2 : ‹¬ P =⇒ P›
shows ‹R›
〈proof 〉

lemmas [Pure.elim!] = disjE iffE FalseE conjE exE
and [Pure.intro!] = iffI conjI impI TrueI notI allI refl
and [Pure.elim 2 ] = allE notE ′ impE ′

and [Pure.intro] = exI disjI2 disjI1

〈ML〉

lemma iff-not-sym: ‹¬ (Q ←→ P) =⇒ ¬ (P ←→ Q)›
〈proof 〉

lemmas [sym] = sym iff-sym not-sym iff-not-sym
and [Pure.elim?] = iffD1 iffD2 impE

lemma eq-commute: ‹a = b ←→ b = a›
〈proof 〉

1.8 Polymorphic congruence rules
lemma subst-context: ‹a = b =⇒ t(a) = t(b)›
〈proof 〉

lemma subst-context2 : ‹[[a = b; c = d]] =⇒ t(a,c) = t(b,d)›
〈proof 〉

lemma subst-context3 : ‹[[a = b; c = d; e = f ]] =⇒ t(a,c,e) = t(b,d,f )›
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〈proof 〉

Useful with eresolve_tac for proving equalities from known equalities.
a = b | | c = d
lemma box-equals: ‹[[a = b; a = c; b = d]] =⇒ c = d›
〈proof 〉

Dual of box-equals: for proving equalities backwards.
lemma simp-equals: ‹[[a = c; b = d; c = d]] =⇒ a = b›
〈proof 〉

1.8.1 Congruence rules for predicate letters
lemma pred1-cong: ‹a = a ′ =⇒ P(a) ←→ P(a ′)›
〈proof 〉

lemma pred2-cong: ‹[[a = a ′; b = b ′]] =⇒ P(a,b) ←→ P(a ′,b ′)›
〈proof 〉

lemma pred3-cong: ‹[[a = a ′; b = b ′; c = c ′]] =⇒ P(a,b,c) ←→ P(a ′,b ′,c ′)›
〈proof 〉

Special case for the equality predicate!
lemma eq-cong: ‹[[a = a ′; b = b ′]] =⇒ a = b ←→ a ′ = b ′›
〈proof 〉

1.9 Atomizing meta-level rules
lemma atomize-all [atomize]: ‹(

∧
x. P(x)) ≡ Trueprop (∀ x. P(x))›

〈proof 〉

lemma atomize-imp [atomize]: ‹(A =⇒ B) ≡ Trueprop (A −→ B)›
〈proof 〉

lemma atomize-eq [atomize]: ‹(x ≡ y) ≡ Trueprop (x = y)›
〈proof 〉

lemma atomize-iff [atomize]: ‹(A ≡ B) ≡ Trueprop (A ←→ B)›
〈proof 〉

lemma atomize-conj [atomize]: ‹(A &&& B) ≡ Trueprop (A ∧ B)›
〈proof 〉

lemmas [symmetric, rulify] = atomize-all atomize-imp
and [symmetric, defn] = atomize-all atomize-imp atomize-eq atomize-iff

1.10 Atomizing elimination rules
lemma atomize-exL[atomize-elim]: ‹(

∧
x. P(x) =⇒ Q) ≡ ((∃ x. P(x)) =⇒ Q)›

11



〈proof 〉

lemma atomize-conjL[atomize-elim]: ‹(A =⇒ B =⇒ C ) ≡ (A ∧ B =⇒ C )›
〈proof 〉

lemma atomize-disjL[atomize-elim]: ‹((A =⇒ C ) =⇒ (B =⇒ C ) =⇒ C ) ≡ ((A
∨ B =⇒ C ) =⇒ C )›
〈proof 〉

lemma atomize-elimL[atomize-elim]: ‹(
∧

B. (A =⇒ B) =⇒ B) ≡ Trueprop(A)›
〈proof 〉

1.11 Calculational rules
lemma forw-subst: ‹a = b =⇒ P(b) =⇒ P(a)›
〈proof 〉

lemma back-subst: ‹P(a) =⇒ a = b =⇒ P(b)›
〈proof 〉

Note that this list of rules is in reverse order of priorities.
lemmas basic-trans-rules [trans] =

forw-subst
back-subst
rev-mp
mp
trans

1.12 “Let” declarations
nonterminal letbinds and letbind

definition Let :: ‹[ ′a::{}, ′a => ′b] ⇒ ( ′b::{})›
where ‹Let(s, f ) ≡ f (s)›

syntax
-bind :: ‹[pttrn, ′a] => letbind› (‹(‹indent=2 notation=‹infix let binding››-

=/ -)› 10 )
:: ‹letbind => letbinds› (‹-›)

-binds :: ‹[letbind, letbinds] => letbinds› (‹-;/ -›)
-Let :: ‹[letbinds, ′a] => ′a› (‹(‹notation=‹mixfix let expression››let (-)/

in (-))› 10 )
syntax-consts

-Let ⇀↽ Let
translations

-Let(-binds(b, bs), e) == -Let(b, -Let(bs, e))
let x = a in e == CONST Let(a, λx. e)

lemma LetI :
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assumes ‹
∧

x. x = t =⇒ P(u(x))›
shows ‹P(let x = t in u(x))›
〈proof 〉

1.13 Intuitionistic simplification rules
lemma conj-simps:

‹P ∧ True ←→ P›
‹True ∧ P ←→ P›
‹P ∧ False ←→ False›
‹False ∧ P ←→ False›
‹P ∧ P ←→ P›
‹P ∧ P ∧ Q ←→ P ∧ Q›
‹P ∧ ¬ P ←→ False›
‹¬ P ∧ P ←→ False›
‹(P ∧ Q) ∧ R ←→ P ∧ (Q ∧ R)›
〈proof 〉

lemma disj-simps:
‹P ∨ True ←→ True›
‹True ∨ P ←→ True›
‹P ∨ False ←→ P›
‹False ∨ P ←→ P›
‹P ∨ P ←→ P›
‹P ∨ P ∨ Q ←→ P ∨ Q›
‹(P ∨ Q) ∨ R ←→ P ∨ (Q ∨ R)›
〈proof 〉

lemma not-simps:
‹¬ (P ∨ Q) ←→ ¬ P ∧ ¬ Q›
‹¬ False ←→ True›
‹¬ True ←→ False›
〈proof 〉

lemma imp-simps:
‹(P −→ False) ←→ ¬ P›
‹(P −→ True) ←→ True›
‹(False −→ P) ←→ True›
‹(True −→ P) ←→ P›
‹(P −→ P) ←→ True›
‹(P −→ ¬ P) ←→ ¬ P›
〈proof 〉

lemma iff-simps:
‹(True ←→ P) ←→ P›
‹(P ←→ True) ←→ P›
‹(P ←→ P) ←→ True›
‹(False ←→ P) ←→ ¬ P›
‹(P ←→ False) ←→ ¬ P›
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〈proof 〉

The x = t versions are needed for the simplification procedures.
lemma quant-simps:

‹
∧

P. (∀ x. P) ←→ P›
‹(∀ x. x = t −→ P(x)) ←→ P(t)›
‹(∀ x. t = x −→ P(x)) ←→ P(t)›
‹
∧

P. (∃ x. P) ←→ P›
‹∃ x. x = t›
‹∃ x. t = x›
‹(∃ x. x = t ∧ P(x)) ←→ P(t)›
‹(∃ x. t = x ∧ P(x)) ←→ P(t)›
〈proof 〉

These are NOT supplied by default!
lemma distrib-simps:

‹P ∧ (Q ∨ R) ←→ P ∧ Q ∨ P ∧ R›
‹(Q ∨ R) ∧ P ←→ Q ∧ P ∨ R ∧ P›
‹(P ∨ Q −→ R) ←→ (P −→ R) ∧ (Q −→ R)›
〈proof 〉

lemma subst-all:
‹(
∧

x. x = a =⇒ PROP P(x)) ≡ PROP P(a)›
‹(
∧

x. a = x =⇒ PROP P(x)) ≡ PROP P(a)›
〈proof 〉

1.13.1 Conversion into rewrite rules
lemma P-iff-F : ‹¬ P =⇒ (P ←→ False)›
〈proof 〉

lemma iff-reflection-F : ‹¬ P =⇒ (P ≡ False)›
〈proof 〉

lemma P-iff-T : ‹P =⇒ (P ←→ True)›
〈proof 〉

lemma iff-reflection-T : ‹P =⇒ (P ≡ True)›
〈proof 〉

1.13.2 More rewrite rules
lemma conj-commute: ‹P ∧ Q ←→ Q ∧ P› 〈proof 〉
lemma conj-left-commute: ‹P ∧ (Q ∧ R) ←→ Q ∧ (P ∧ R)› 〈proof 〉
lemmas conj-comms = conj-commute conj-left-commute

lemma disj-commute: ‹P ∨ Q ←→ Q ∨ P› 〈proof 〉
lemma disj-left-commute: ‹P ∨ (Q ∨ R) ←→ Q ∨ (P ∨ R)› 〈proof 〉
lemmas disj-comms = disj-commute disj-left-commute

lemma conj-disj-distribL: ‹P ∧ (Q ∨ R) ←→ (P ∧ Q ∨ P ∧ R)› 〈proof 〉
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lemma conj-disj-distribR: ‹(P ∨ Q) ∧ R ←→ (P ∧ R ∨ Q ∧ R)› 〈proof 〉

lemma disj-conj-distribL: ‹P ∨ (Q ∧ R) ←→ (P ∨ Q) ∧ (P ∨ R)› 〈proof 〉
lemma disj-conj-distribR: ‹(P ∧ Q) ∨ R ←→ (P ∨ R) ∧ (Q ∨ R)› 〈proof 〉

lemma imp-conj-distrib: ‹(P −→ (Q ∧ R)) ←→ (P −→ Q) ∧ (P −→ R)› 〈proof 〉
lemma imp-conj: ‹((P ∧ Q) −→ R) ←→ (P −→ (Q −→ R))› 〈proof 〉
lemma imp-disj: ‹(P ∨ Q −→ R) ←→ (P −→ R) ∧ (Q −→ R)› 〈proof 〉

lemma de-Morgan-disj: ‹(¬ (P ∨ Q)) ←→ (¬ P ∧ ¬ Q)› 〈proof 〉

lemma not-ex: ‹(¬ (∃ x. P(x))) ←→ (∀ x. ¬ P(x))› 〈proof 〉
lemma imp-ex: ‹((∃ x. P(x)) −→ Q) ←→ (∀ x. P(x) −→ Q)› 〈proof 〉

lemma ex-disj-distrib: ‹(∃ x. P(x) ∨ Q(x)) ←→ ((∃ x. P(x)) ∨ (∃ x. Q(x)))›
〈proof 〉

lemma all-conj-distrib: ‹(∀ x. P(x) ∧ Q(x)) ←→ ((∀ x. P(x)) ∧ (∀ x. Q(x)))›
〈proof 〉

end

2 Classical first-order logic
theory FOL

imports IFOL
keywords print-claset print-induct-rules :: diag

begin

〈ML〉

2.1 The classical axiom
axiomatization where

classical: ‹(¬ P =⇒ P) =⇒ P›

2.2 Lemmas and proof tools
lemma ccontr : ‹(¬ P =⇒ False) =⇒ P›
〈proof 〉

2.2.1 Classical introduction rules for ∨ and ∃
lemma disjCI : ‹(¬ Q =⇒ P) =⇒ P ∨ Q›
〈proof 〉

Introduction rule involving only ∃
lemma ex-classical:

assumes r : ‹¬ (∃ x. P(x)) =⇒ P(a)›

15



shows ‹∃ x. P(x)›
〈proof 〉

Version of above, simplifying ¬∃ to ∀¬.
lemma exCI :

assumes r : ‹∀ x. ¬ P(x) =⇒ P(a)›
shows ‹∃ x. P(x)›
〈proof 〉

lemma excluded-middle: ‹¬ P ∨ P›
〈proof 〉

lemma case-split [case-names True False]:
assumes r1 : ‹P =⇒ Q›

and r2 : ‹¬ P =⇒ Q›
shows ‹Q›
〈proof 〉

〈ML〉

2.3 Special elimination rules

Classical implies (−→) elimination.
lemma impCE :

assumes major : ‹P −→ Q›
and r1 : ‹¬ P =⇒ R›
and r2 : ‹Q =⇒ R›

shows ‹R›
〈proof 〉

This version of −→ elimination works on Q before P. It works best for those
cases in which P holds “almost everywhere”. Can’t install as default: would
break old proofs.
lemma impCE ′:

assumes major : ‹P −→ Q›
and r1 : ‹Q =⇒ R›
and r2 : ‹¬ P =⇒ R›

shows ‹R›
〈proof 〉

Double negation law.
lemma notnotD: ‹¬ ¬ P =⇒ P›
〈proof 〉

lemma contrapos2 : ‹[[Q; ¬ P =⇒ ¬ Q]] =⇒ P›
〈proof 〉
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2.3.1 Tactics for implication and contradiction

Classical ←→ elimination. Proof substitutes P = Q in ¬ P =⇒ ¬ Q and P
=⇒ Q.
lemma iffCE :

assumes major : ‹P ←→ Q›
and r1 : ‹[[P; Q]] =⇒ R›
and r2 : ‹[[¬ P; ¬ Q]] =⇒ R›

shows ‹R›
〈proof 〉

lemma alt-ex1E :
assumes major : ‹∃ ! x. P(x)›

and r : ‹
∧

x. [[P(x); ∀ y y ′. P(y) ∧ P(y ′) −→ y = y ′]] =⇒ R›
shows ‹R›
〈proof 〉

lemma imp-elim: ‹P −→ Q =⇒ (¬ R =⇒ P) =⇒ (Q =⇒ R) =⇒ R›
〈proof 〉

lemma swap: ‹¬ P =⇒ (¬ R =⇒ P) =⇒ R›
〈proof 〉

3 Classical Reasoner
〈ML〉

lemmas [intro!] = refl TrueI conjI disjCI impI notI iffI
and [elim!] = conjE disjE impCE FalseE iffCE
〈ML〉

lemmas [intro!] = allI ex-ex1I
and [intro] = exI
and [elim!] = exE alt-ex1E
and [elim] = allE
〈ML〉

lemma ex1-functional: ‹[[∃ ! z. P(a,z); P(a,b); P(a,c)]] =⇒ b = c›
〈proof 〉

Elimination of True from assumptions:
lemma True-implies-equals: ‹(True =⇒ PROP P) ≡ PROP P›
〈proof 〉
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lemma uncurry: ‹P −→ Q −→ R =⇒ P ∧ Q −→ R›
〈proof 〉

lemma iff-allI : ‹(
∧

x. P(x) ←→ Q(x)) =⇒ (∀ x. P(x)) ←→ (∀ x. Q(x))›
〈proof 〉

lemma iff-exI : ‹(
∧

x. P(x) ←→ Q(x)) =⇒ (∃ x. P(x)) ←→ (∃ x. Q(x))›
〈proof 〉

lemma all-comm: ‹(∀ x y. P(x,y)) ←→ (∀ y x. P(x,y))›
〈proof 〉

lemma ex-comm: ‹(∃ x y. P(x,y)) ←→ (∃ y x. P(x,y))›
〈proof 〉

3.1 Classical simplification rules

Avoids duplication of subgoals after expand-if, when the true and false cases
boil down to the same thing.
lemma cases-simp: ‹(P −→ Q) ∧ (¬ P −→ Q) ←→ Q›
〈proof 〉

3.1.1 Miniscoping: pushing quantifiers in

We do NOT distribute of ∀ over ∧, or dually that of ∃ over ∨.
Baaz and Leitsch, On Skolemization and Proof Complexity (1994) show that
this step can increase proof length!

Existential miniscoping.
lemma int-ex-simps:

‹
∧

P Q. (∃ x. P(x) ∧ Q) ←→ (∃ x. P(x)) ∧ Q›
‹
∧

P Q. (∃ x. P ∧ Q(x)) ←→ P ∧ (∃ x. Q(x))›
‹
∧

P Q. (∃ x. P(x) ∨ Q) ←→ (∃ x. P(x)) ∨ Q›
‹
∧

P Q. (∃ x. P ∨ Q(x)) ←→ P ∨ (∃ x. Q(x))›
〈proof 〉

Classical rules.
lemma cla-ex-simps:

‹
∧

P Q. (∃ x. P(x) −→ Q) ←→ (∀ x. P(x)) −→ Q›
‹
∧

P Q. (∃ x. P −→ Q(x)) ←→ P −→ (∃ x. Q(x))›
〈proof 〉

lemmas ex-simps = int-ex-simps cla-ex-simps

Universal miniscoping.
lemma int-all-simps:
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‹
∧

P Q. (∀ x. P(x) ∧ Q) ←→ (∀ x. P(x)) ∧ Q›
‹
∧

P Q. (∀ x. P ∧ Q(x)) ←→ P ∧ (∀ x. Q(x))›
‹
∧

P Q. (∀ x. P(x) −→ Q) ←→ (∃ x. P(x)) −→ Q›
‹
∧

P Q. (∀ x. P −→ Q(x)) ←→ P −→ (∀ x. Q(x))›
〈proof 〉

Classical rules.
lemma cla-all-simps:

‹
∧

P Q. (∀ x. P(x) ∨ Q) ←→ (∀ x. P(x)) ∨ Q›
‹
∧

P Q. (∀ x. P ∨ Q(x)) ←→ P ∨ (∀ x. Q(x))›
〈proof 〉

lemmas all-simps = int-all-simps cla-all-simps

3.1.2 Named rewrite rules proved for IFOL
lemma imp-disj1 : ‹(P −→ Q) ∨ R ←→ (P −→ Q ∨ R)› 〈proof 〉
lemma imp-disj2 : ‹Q ∨ (P −→ R) ←→ (P −→ Q ∨ R)› 〈proof 〉

lemma de-Morgan-conj: ‹(¬ (P ∧ Q)) ←→ (¬ P ∨ ¬ Q)› 〈proof 〉

lemma not-imp: ‹¬ (P −→ Q) ←→ (P ∧ ¬ Q)› 〈proof 〉
lemma not-iff : ‹¬ (P ←→ Q) ←→ (P ←→ ¬ Q)› 〈proof 〉

lemma not-all: ‹(¬ (∀ x. P(x))) ←→ (∃ x. ¬ P(x))› 〈proof 〉
lemma imp-all: ‹((∀ x. P(x)) −→ Q) ←→ (∃ x. P(x) −→ Q)› 〈proof 〉

lemmas meta-simps =
triv-forall-equality — prunes params
True-implies-equals — prune asms True

lemmas IFOL-simps =
refl [THEN P-iff-T ] conj-simps disj-simps not-simps
imp-simps iff-simps quant-simps

lemma notFalseI : ‹¬ False› 〈proof 〉

lemma cla-simps-misc:
‹¬ (P ∧ Q) ←→ ¬ P ∨ ¬ Q›
‹P ∨ ¬ P›
‹¬ P ∨ P›
‹¬ ¬ P ←→ P›
‹(¬ P −→ P) ←→ P›
‹(¬ P ←→ ¬ Q) ←→ (P ←→ Q)› 〈proof 〉

lemmas cla-simps =
de-Morgan-conj de-Morgan-disj imp-disj1 imp-disj2
not-imp not-all not-ex cases-simp cla-simps-misc
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〈ML〉

3.2 Other simple lemmas
lemma [simp]: ‹((P −→ R) ←→ (Q −→ R)) ←→ ((P ←→ Q) ∨ R)›
〈proof 〉

lemma [simp]: ‹((P −→ Q) ←→ (P −→ R)) ←→ (P −→ (Q ←→ R))›
〈proof 〉

lemma not-disj-iff-imp: ‹¬ P ∨ Q ←→ (P −→ Q)›
〈proof 〉

3.2.1 Monotonicity of implications
lemma conj-mono: ‹[[P1 −→ Q1 ; P2 −→ Q2 ]] =⇒ (P1 ∧ P2 ) −→ (Q1 ∧ Q2 )›
〈proof 〉

lemma disj-mono: ‹[[P1 −→ Q1 ; P2 −→ Q2 ]] =⇒ (P1 ∨ P2 ) −→ (Q1 ∨ Q2 )›
〈proof 〉

lemma imp-mono: ‹[[Q1 −→ P1 ; P2 −→ Q2 ]] =⇒ (P1 −→ P2 ) −→ (Q1 −→
Q2 )›
〈proof 〉

lemma imp-refl: ‹P −→ P›
〈proof 〉

The quantifier monotonicity rules are also intuitionistically valid.
lemma ex-mono: ‹(

∧
x. P(x) −→ Q(x)) =⇒ (∃ x. P(x)) −→ (∃ x. Q(x))›

〈proof 〉

lemma all-mono: ‹(
∧

x. P(x) −→ Q(x)) =⇒ (∀ x. P(x)) −→ (∀ x. Q(x))›
〈proof 〉

3.3 Proof by cases and induction

Proper handling of non-atomic rule statements.
context
begin

qualified definition ‹induct-forall(P) ≡ ∀ x. P(x)›
qualified definition ‹induct-implies(A, B) ≡ A −→ B›
qualified definition ‹induct-equal(x, y) ≡ x = y›
qualified definition ‹induct-conj(A, B) ≡ A ∧ B›

lemma induct-forall-eq: ‹(
∧

x. P(x)) ≡ Trueprop(induct-forall(λx. P(x)))›
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〈proof 〉

lemma induct-implies-eq: ‹(A =⇒ B) ≡ Trueprop(induct-implies(A, B))›
〈proof 〉

lemma induct-equal-eq: ‹(x ≡ y) ≡ Trueprop(induct-equal(x, y))›
〈proof 〉

lemma induct-conj-eq: ‹(A &&& B) ≡ Trueprop(induct-conj(A, B))›
〈proof 〉

lemmas induct-atomize = induct-forall-eq induct-implies-eq induct-equal-eq induct-conj-eq
lemmas induct-rulify [symmetric] = induct-atomize
lemmas induct-rulify-fallback =

induct-forall-def induct-implies-def induct-equal-def induct-conj-def

Method setup.
〈ML〉

declare case-split [cases type: o]

end

〈ML〉

hide-const (open) eq

end
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