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1 Intuitionistic first-order logic

theory IFOL
imports Pure
abbrevs < = J<;

begin

(ML)

1.1 Syntax and axiomatic basis

(ML)

class term
default-sort <term)

typedecl o

judgment
Trueprop :: <o = propy (<(<notation=judgment>-)» 5)

1.1.1 Equality

axiomatization
eq :: «['a, 'a] = o> (infixl <=» 50)

where

refl: <a = a» and
subst: <a = b = P(a) = P(b)»

1.1.2 Propositional logic

axiomatization

Fualse ::

<0y and



conj :: <o, o] => o> (infixr «(\» 35) and

disj =2 <[o, o] => o» (infixr <V» 30) and

imp :: <o, o] => oy (infixr <—» 25)
where

congl: <[P; Q] = P A @ and

conjunctl: <P N Q@ = P»> and

conjunct2: <P N @ = ()» and

disjl1: <P — P VvV @» and
disjI2: «QQ = P V @)» and
disjE: <[PV Q; P = R; @ = R] = R> and

impl: «(P = Q) = P — () and
mp: <[P — @Q; P] = @ and

FalseE: <False = P»

1.1.3 Quantifiers

axiomatization
All :: «('a = 0) = o> (binder V> 10) and
Ez :: «('"a = 0) = o> (binder «3» 10)
where
alll: «(A\z. P(z)) = (Vz. P(z))» and
spec: «(Vz. P(z)) = P(z)» and
exl: <P( ) = (3. P(z))» and
exE: <[F3z. P(z); N\z. P(z) = R] = R»

1.1.4 Definitions

definition < True = False — Fualse»

definition Not («(<open-block notation=<prefiz == -)» [40] 40)
where not-def: <— P = P — Fulse)

definition iff (infixr +—» 25)
where <P +— Q= (P — Q) A (Q — P)

definition Unig :: (‘a = 0) = o
where <Unig(P) = (Vz y. P(z) — P(y) — y = z)»

definition Fz! :: <(a = 0) = o> (binder <31y 10)
where exi-def: (Ilz. P(z) = Jz. P(z) A Vy. P(y) — y = a)H

axiomatization where — Reflection, admissible
eg-reflection: «(z = y) = (z = y)» and
iff-reflection: «(P +— Q) = (P = Q)

abbreviation not-equal :: (['a, 'a] = o> (infixl %> 50)
where <z £ y = - (z = y)



syntax -Uniq :: pttrn = 0 = o («(«indent=2 notation=<binder I<1»3I <1 -./ -)»
[0, 10] 10)

syntax-consts -Uniq = Uniq

translations 3<iz. P = CONST Uniq (Az. P)

(ML)

1.1.5 Old-style ASCII syntax

notation (ASCII)
not-equal (infixl <~=) 50) and
Not («(copen-block notation=<prefix ~»"~ -)» [40] 40) and
conj (infixr «&> 35) and
disj (infixr <> 30) and
All (binder <ALL » 10) and
Ez (binder <EX » 10) and
Ez! (binder «EX!» 10) and
imp (infixr (——>» 25) and
iff (infixr (<—>» 25)

1.2 Lemmas and proof tools

lemmas strip = impl alll

lemma Truel: < True»
(proof )

1.2.1 Sequent-style elimination rules for A — and V

lemma conjE:
assumes major: <P A Q»
and r: «([P; Q] = R
shows (R)»

(proof)

lemma impkFE:
assumes major: <P — @
and P>
and 7 «Q = R»
shows (R»

(proof)

lemma allE:
assumes magjor: ¥ z. P(z)
and r: «P(z) = R»
shows (R»

(proof)

Duplicates the quantifier; for use with eresolve_tac.

lemma all-dupFE:



assumes magjor: <V z. P(z)
and 7: ([P(z); Va. P(z)] = R
shows (R»
(proof)

1.2.2 Negation rules, which translate between - P and P — Fulse

lemma notl: «(P = Fualse) = — P»

(proof)

lemma notE: [~ P; P] = R»
{proof)

lemma rev-notE: <[P; - P] = R»
(proof)

This is useful with the special implication rules for each kind of P.

lemma not-to-imp:
assumes <— P)
and r: <P — False = @)
shows «@»

(proof)

For substitution into an assumption P, reduce @ to P — (@, substitute into
this implication, then apply impl to move P back into the assumptions.
lemma rev-mp: <[P; P — Q] =

(proof )
Contrapositive of an inference rule.

lemma contrapos:
assumes major: (—
and minor: <P = @
shows <= P»

{proof)

1.2.3 Modus Ponens Tactics

Finds P — @ and P in the assumptions, replaces implication by Q.
(ML)

1.3 If-and-only-if

lemma iffl: <[P = Q; Q = P] = P +—
(proof )

lemma iffE:
assumes major: <P «— @
and 7: ([P — @; Q — P] = R»



shows <R»
(proof )

1.3.1 Destruct rules for «+— similar to Modus Ponens

lemma iffD1: ([P +— Q; P] =
(proof )

lemma iffD2: ([P +— Q; Q] = P»
(proof)

lemma rev-iff D1: <[P; P +— Q] =
(proof )

lemma rev-iff D2: <[Q; P +— Q] = P»
(proof )

lemma iff-refl: <P «— P»
(proof )

lemma iff-sym: «Q «— P = P <— @
(proof )

lemma iff-trans: <[P +— @Q; Q +— R] = P +— R»

(proof)

1.4 Unique existence

NOTE THAT the following 2 quantifications:

o Jlz such that [3!y such that P(x,y)] (sequential)

o Jlz,y such that P(x,y) (simultaneous)

do NOT mean the same thing. The parser treats 3!z y.P(z,y) as sequential.

lemma ex1l: <P(a) = (Az. P(z) = z = a) = 3lz. P(z)
{proof)

Sometimes easier to use: the premises have no shared variables. Safe!

1e<rnma>ex—e:L’JI: Jz. P(z) = (Az y. [P(x); P(y)] = =z =y) = Ilz. P(z)
proof

lemma ex1E: 3! z. P(z) = (Az. [P(2); Vy. Ply) — y=12] = R) = R
(proof )

1.4.1 <— congruence rules for simplification

Use iffE on a premise. For conj-cong, imp-cong, all-cong, ex-cong.



(ML)

lemma conj-cong:
assumes (P +— P/
and «(P' = Q «— Q"
shows «(P A Q) +— (P’ A Q')
(proof)

Reversed congruence rule! Used in ZF /Order.

lemma conj-cong?2:
assumes (P +— P/
and «(P' = Q «— Q"
shows <(Q A P) «— (Q' A P')»
(proof)

lemma disj-cong:
assumes (P +— P’y and <Q +— Q"
shows (P V Q) «— (P'V Q")
(proof)

lemma imp-cong:
assumes (P +— P/
and (P = Q «— Q"
shows (P — Q) «— (P' — Q')
(proof)

lemma iff-cong: <[P +— P Q +— Q] = (P +— Q) +— (P'+— Q')

(proof)

lemma not-cong: (P «+— P' = = P +— = P’
{proof )

lemma all-cong:
assumes (A\z. P(z) «+— Q(z)
shows «(Vz. P(z)) +— (Vz. Q(z))»
(proof)

lemma ex-cong:
assumes (A\z. P(z) «+— Q(x)
shows ¢(3z. P(z)) +— (Fz. Q(z))»
(proof)

lemma ex1-cong:
assumes (A\z. P(z) «— Q(x)
shows ¢(3lz. P(z)) +— (Flz. Q(z))
{proof )



1.5 Equality rules

lemma sym: <a = b = b = a»
(proof )

lemma trans: Ja=b;b=¢c] = a=0©
{proof)

lemma not-sym: <b # a = a # b
(proof )

Two theorems for rewriting only one instance of a definition: the first for
definitions of formulae and the second for terms.
lemma def-imp-iff: (A = B) = A «— B»

(proof )

lemma meta-eq-to-obj-eq: «(A = B) —= A =B
(proof)

lemma meta-eq-to-iff: <x = y = = +— ¥
{proof)

Substitution.

lemma ssubst: «[b = a; P(a)] = P(b)
{proof)

A special case of ex1FE that would otherwise need quantifier expansion.

lemma exl-equalsE: <[3!z. P(x); P(a); P(b)] = a = b
{proof)

1.6 Simplifications of assumed implications

Roy Dyckhoff has proved that conj-impE, disj-impFE, and imp-impE used
with mp_tac (restricted to atomic formulae) is COMPLETE for intuitionistic
propositional logic.

See R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic (preprint,
University of St Andrews, 1991).

lemma conj-impE:
assumes major: <(P A Q) — S
and 7 <P — (@ — S) = B
shows (R)»

{proof)

lemma disj-impFE:
assumes major: <(P V Q) — S
and ([P — S; Q@ — 5] = R»
shows (R)»
(proof )



Simplifies the implication. Classical version is stronger. Still UNSAFE since
Q must be provable — backtracking needed.
lemma imp-impkE:
assumes magjor: (P — Q) — S
and 71: «[P; Q — §] = ]
and 72: «<S = R»
shows (R)»

(proof)

Simplifies the implication. Classical version is stronger. Still UNSAFE since
P must be provable — backtracking needed.

lemma not-impE: <= P — § = (P = Fualse) = (S = R) = R»

(proof)
Simplifies the implication. UNSAFE.

lemma iff-impE:
assumes major: (P +— Q) — S
and r1: ([P; Q — 5] = @
and r2: ([Q; P — 5] = P»
and r3: S = R»
shows «R»

(proof)
What if (Vz. = = P(z)) — = = (V2. P(z)) is an assumption? UNSAFE.

lemma all-impFE:
assumes magjor: (VY z. P(z)) — S»
and r1: «Az. P(z)
and r2: (S = R»
shows «R»

{proof)

Unsafe: 3z. P(z)) — S is equivalent to Vz. P(z) — S.

lemma ex-impkFE:
assumes magjor: <(3z. P(z)) — S»
and r: <P(z) — S = R»
shows <)

{proof)

Courtesy of Krzysztof Grabczewski.

lemma disj-imp-disj: <PV Q = (P = R) = (@ = S) = RV S
(proof)

(ML)
lemma thin-refl: <[x = z; PROP W] = PROP W) (proof)

(ML)



1.7 Intuitionistic Reasoning

(ML)

lemma impFE":
assumes 1: <P —
and 2: «Q = R»

and 3: <P — Q = P»

shows «R»

(proof)

lemma allE":
assumes I: «Vz. P(z)

and 2: <P(z) = Vuz. P(z) = @

shows «@»

(proof)

lemma notE":
assumes 1: < P
and 2: (- P — P»
shows (R»

(proof)

lemmas [Pure.elim!] = disjE iffE FalseE conjE exE
and [Pure.introl] = iffl conjl impI Truel notl alll refl
and [Pure.elim 2] = allE notE’ impE’
and [Pure.intro] = exl disjI2 disjl1

(ML)

lemma iff-not-sym: <— (Q +— P) = - (P +— Q)

{proof)

lemmas [sym] = sym iff-sym not-sym iff-not-sym
and [Pure.elim? = ifD1 iff D2 impE

lemma eg-commute: <a = b +— b = a>

{proof)

1.8 Polymorphic congruence rules

lemma subst-context: <a = b = t(a) = t(b)

(proof)

lemma subst-context?2: <Ja
{proof)

lemma subst-context3: [a

b; ¢ = d] = t(a,c) = t(b,d)

b; ¢ = d; e = f] = t(a,c,e) = t(b,d,f)»

10



(proof)
Useful with eresolve_tac for proving equalities from known equalities.
a=b||c=d

lemma boz-equals: <Ja =b;a=c;b=d] = ¢c=
(proof)

Dual of boz-equals: for proving equalities backwards.

lemma simp-equals: Ja=c;b=d; c=d] = a=b
(proof )

1.8.1 Congruence rules for predicate letters

lemma predi-cong: <a = a’ = P(a) +— P(a’)

{proof)

lemma pred2-cong: <[a = a’; b = b'] = P(a,b) +— P(a’,b')
(proof)

lemma pred3-cong: <Ja = a’; b = b’; ¢ = ¢']| = P(a,b,c) +— P(a’,b’,c')
{proof)

Special case for the equality predicate!

lemma eg-cong: (Ja=a50=0] = a=b+— a' =bH
{proof )

1.9 Atomizing meta-level rules

lemma atomize-all [atomize]: <«(\z. P(z)) = Trueprop (V. P(z))»
(proof)

lemma atomize-imp [atomize]: «(A = B) = Trueprop (A — B)»
(proof)

lemma atomize-eq [atomize]: «(x = y) = Trueprop (z = y)»

(proof)

lemma atomize-iff [atomize]: «(A = B) = Trueprop (A +— B)»

(proof)

lemma atomize-conj [atomize]: (A &&& B) = Trueprop (A A B)»
(proof)

lemmas [symmetric, rulify] = atomize-all atomize-imp
and [symmetric, defn] = atomize-all atomize-imp atomize-eq atomize-iff

1.10 Atomizing elimination rules

lemma atomize-exL[atomize-elim]: «(Az. P(z) = Q) = ((3z. P(z)) = Q)

11



{proof)

lemma atomize-conjL{atomize-elim|: «(A = B = C) = (A AN B = C)
{proof)

lemma atomize-disjL[atomize-elim|: «((A = C) = (B = C) = () = ((4

VB= C)= C)
{proof)

lemma atomize-elimL[atomize-elim]: <(AB. (A = B) = B) = Trueprop(A)»

(proof)

1.11 Calculational rules

lemma forw-subst: <a = b = P(b) = P(a)»
{proof)

lemma back-subst: <P(a) = a = b = P(b)»
{proof)

Note that this list of rules is in reverse order of priorities.

lemmas basic-trans-rules [trans] =
forw-subst
back-subst
Tev-mp
mp
trans

1.12 “Let” declarations
nonterminal letbinds and letbind

definition Let :: <['a::{}, 'a => 'b] = ('b::{})
where <Let(s, ) = f(s)

syntax

-bind = «[pttrn, 'a] => letbindy («(<indent=2 notation=<infiz let binding»»-
=/ ) 10)

i «letbind => letbinds» (¢-»)

-binds i «[letbind, letbinds] => letbinds> (<-;/ -»)

-Let i «([letbinds, 'a] => 'ay  («(<notation=<mizfix let expressionylet (-)/
in (-)) 10)
syntax-consts

-Let = Let
translations

-Let(-binds(b, bs), e) == -Let(b, -Let(bs, ¢))

letz=aine == CONST Let(a, \z. €)

lemma Letl:

12



assumes (A\z. z = t = P(u(z))
shows <P(let © = t in u(z))

{proof)

1.13 Intuitionistic simplification rules

lemma conj-simps:
<P N True +— P»
<True N\ P <— P»
<P A Fulse +— Fulse)
<False N P +— Fulse)
(PN P +— P
«(PANPANQ<+—PANQ
<P N = P <— False
<= P N P +<— Fualse)
(PANQ)ANR<+—PA(QAR)
(proof )

lemma disj-simps:
<PV True <— True)
<True V P +— Truey
<PV False +— P)
<False V P +— P»
<PV P +— P
(PV PV Q<+— PV
(PV Q) VR+—PV(QVR)
(proof)

lemma not-simps:
2 (PV Q)+—PA- Q@
<= False <— True»
<= True +— Fulse)

{proof)

lemma imp-simps:

(P — Fualse) «— — P»

(P — True) +— True
<(False — P) <— True»
(True — P) +— P
(P — P) +— True
(P— = P)+— - P
(proof)
lemma iff-simps:

(True +— P) «— P
(P +— True) +— P»
P +— P) +— Truey
False «— P) +— = P»
P «— Fualse) +— - P»

«
(
(
(

13



{proof)

The z = t versions are needed for the simplification procedures.

lemma quant-simps:
<AP. Vz. P) «— P»
«(Vz. 2 =t — P(z)) +— P(t)
«(Vz. t =2 — P(x)) +— P(t)
<AP. (3z. P) «— P
Jz.z =10
Jz. t =
«(Fz. z =t AN P(z)) «— P(t)
«(Fz. t = N P(z)) «— P(t)
(proof )

These are NOT supplied by default!

~

lemma distrib-simps:
(PAN(QV R)+—PANQVPANR
(QVR)YANP<+— QANPVRAP
«(PVQ—R)+— (P—R)AN(Q— R)p
(proof )

lemma subst-all:
«(A\z. z = a = PROP P(z)) = PROP P(a)
«(Az. a = z = PROP P(z)) = PROP P(a)
(proof)

1.13.1 Conversion into rewrite rules

lemma P-iff-F: (- P = (P <— Fulse)»

{proof)
lemma iff-reflection-F: <= P = (P = Fulse)»

{proof)

lemma P-iff-T: <P = (P <— True)»

(proof)

lemma iff-reflection-T: <P = (P = True)»
(proof )
1.13.2 More rewrite rules

lemma conj-commute: <P A Q <— Q A P> (proof)
lemma conj-left-commute: <P A (Q AN R) «— Q A (P A R)» (proof)
lemmas conj-comms = conj-commute conj-left-commute

lemma disj-commute: <PV Q +— Q V P> (proof)
lemma disj-left-commute: <P V (Q V R) +— Q V (P V R)» (proof)

lemmas disj-comms = disj-commute disj-left-commute

lemma conj-disj-distribL: <P A (Q V R) «— (P AN Q V P A R)» (proof)

14



lemma conj-disj-distribR: (P V Q) AN R «— (P AN RV Q A R)» (proof)

lemma disj-conj-distribL: <P V (Q AN R) «— (P V Q) A (P V R)» (proof)
lemma disj-conj-distribR: (P A Q) V R +— (P V R) A (Q V R)» (proof)

lemma imp-conj-distrib: <«(P — (Q A R)) «— (P — Q) A (P — R)» {(proof)
lemma imp-conj: <((P N Q) — R) «+— (P — (Q — R))» (proof)
lemma imp-disj: (P V Q@ — R) <— (P — R) A (Q — R)» (proof)

lemma de-Morgan-disj: <(— (P V Q)) +— (= P A = Q) (proof)

lemma not-ex: <«(= (3z. P(z))) «— (Vz. = P(z)) (proof)
lemma imp-ex: «((3z. P(z)) — Q) «— (Vz. P(z) — Q)» (proof)

lemma ex-disj-distrib: «(3z. P(z) V Q(z)) +— ((Fz. P(z)) vV (Fz. Q(x)))
(proof )

le<rnm:;1(>all—conj—dz'stm'b: «(Vz. P(z) A Q(z)) «— (V. P(x)) A V2. Q(z)))
Proo

end

2 Classical first-order logic

theory FOL

imports IFOL

keywords print-claset print-induct-rules :: diag
begin

(ML)

2.1 The classical axiom

axiomatization where
classical: «(- P = P) = P»

2.2 Lemmas and proof tools

lemma ccontr: «(-= P = Fualse) = P)
{proof)

2.2.1 Classical introduction rules for VvV and 3

lemma disjCI: «(- Q = P) = PV @
(proof )

Introduction rule involving only 3

lemma ez-classical:
assumes 7: <— (Jz. P(z)) = P(a)

15



shows «Jz. P(z)»
{proof)

Version of above, simplifying =3 to V —.

lemma exClI:
assumes r: <Vz. = P(z) = P(a)
shows «3z. P(z)

{proof)

lemma exzcluded-middle: <— PV P»
(proof)

lemma case-split [case-names True False]:
assumes r1: <P = @
and r2: (- P =
shows «@»
(proof)

(ML)

2.3 Special elimination rules

Classical implies (—) elimination.

lemma impCE:
assumes major: <P — @
and r1: <= P = R
and 72: «Q = R»
shows (R»

{proof)

This version of — elimination works on @ before P. It works best for those
cases in which P holds “almost everywhere”. Can’t install as default: would
break old proofs.
lemma impCE":
assumes major: <P —
and 71: «Q = R»
and 72: «<- P — R»
shows (R»

{proof)

Double negation law.

lemma notnotD: (= = P — P»
(proof )

lemma contrapos2: [@Q; - P = - Q] = P>
(proof)

16



2.3.1 Tactics for implication and contradiction

Classical «+— elimination. Proof substitutes P = @ in = P = = @ and P
= Q.
lemma iffCE:
assumes major: <P +— @
and r1: ([P; Q] = R
and 72: <[~ P; - Q] = R»
shows (R)»
(proof)

lemma alt-ex1E:
assumes major: 3! z. P(z)
and r: (\z. [P(z); Vyy' P(y) N P(y) —y=y]= B
shows «R»
(proof)

lemma imp-elim: <P — Q — (- R— P) = (@ = R) = R»
{proof)

lemma swap: (- P = (- R = P) = R
{proof)

3 Classical Reasoner

(ML)

lemmas [introl] = refl Truel congl disjCI impl notl iffI
and [elim!] = conjE disjE impCE FalseE iffCE
(ML)

lemmas [intro!] = alll ex-ex1]
and [intro] = exl
and [elim!] = exFE alt-exlE
and [elim] = allE

(ML)

lemma exI-functional: <[3! z. P(a,2); P(a,b); P(a,c)] = b= o
(proof)

Elimination of True from assumptions:

lemma True-implies-equals: «(True => PROP P) = PROP P»
(proof)
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lemma uncurry: <P — QQ — R =— P AN Q — R»
(proof)

1e<rnma>iﬁ-all1: (Az. P(z) +— Q(z)) = (Vz. P(x)) +— (Vz. Q(z))
proof

le<mm€}>i[f—ex1: (Az. P(z) +— Q(z)) = (3z. P(z)) «— (3z. Qx))
Proo

lemma all-comm: «Vz y. P(z,y)) +— (Vy z. P(z,y))
(proof)

lemma ex-comm: «(3z y. P(z,y)) +— By x. P(z,y))

(proof)

3.1 Classical simplification rules
Avoids duplication of subgoals after expand-if, when the true and false cases
boil down to the same thing.

lemma cases-simp: (P — Q) A (= P — Q) «— @
{proof)

3.1.1 Miniscoping: pushing quantifiers in

We do NOT distribute of V over A, or dually that of 3 over V.

Baaz and Leitsch, On Skolemization and Proof Complexity (1994) show that
this step can increase proof length!

Existential miniscoping.

lemma int-ex-simps:
(AP Q. (3z. P(z) N Q) «— (Fz. P(z)) N O
AP Q. (3z. P A Q(z)) «— P A (Fz. Qz))
(AP Q. (3z. P(z) V Q) «— (3z. P(x)) vV
2/\P Q> (Fz. PV Q(z)) «— P Vv (Fz. Qz))
proof

Classical rules.

lemma cla-ex-simps:
(AP Q. (3z. P(z) — Q) +— (Vz. P(z)) — @
2/\P Ci (Fz. P — Q(z)) «— P — (Fz. Q(z))
proof

lemmas ex-simps = int-ex-simps cla-ex-simps

Universal miniscoping.

lemma int-all-simps:
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(proof)

Classical rules.

lemma cla-all-simps:
AP Q. (Vz. P(z) V Q) «— (V. P(x)) vV
2/\P;2> Vz. PV Q(z)) «— P Vv (Vz. Q(z))
Proo

lemmas all-simps = int-all-simps cla-all-simps

3.1.2 Named rewrite rules proved for IFOL

lemma imp-disj1: «(P — Q) V R +— (P — Q V R)» {(proof)
lemma imp-disj2: <Q V (P — R) «— (P — Q V R)» {proof)

lemma de-Morgan-conj: <«(— (P A Q)) +— (= PV = Q) {proof)

lemma not-imp: (= (P — Q) «— (P A = Q)» (proof)
lemma not-iff: <= (P +— Q) +— (P +— = Q) (proof)

lemma not-all: «(= (Vz. P(z))) «— (2. = P(x))» (proof)
lemma imp-all: «(Vz. P(z)) — Q) <— (Fz. P(z) — Q) (proof)

lemmas meta-simps =
triv-forall-equality — prunes params
True-implies-equals — prune asms True

lemmas IFOL-simps =
refl [THEN P-iff-T] conj-simps disj-simps not-simps
imp-simps iff-simps quant-simps

lemma notFalsel: <— False> (proof)

lemma cla-simps-misc:
—(PAQ)+—-PV-Q
<PV =P
<= PV Py
(= = P +— P
(nP— P)+— P»
(P = = Q) «— (P Q) (proof)

lemmas cla-simps =

de-Morgan-conj de-Morgan-disj imp-disjl imp-disj2
not-imp not-all not-ex cases-simp cla-simps-misc
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(ML)

3.2 Other simple lemmas
lemma [simp]: «((P — R) +— (@ — R)) +— ((P +— Q) V R)»
(proof)

le<mm:}>[simp]: (P—Q)¢— (P—R)«— (P — (Q<— R)»
Proo

lemma not-disj-iff-imp: <= PV Q +— (P — Q)
(proof)

3.2.1 Monotonicity of implications

lemma conj-mono: <[Pl — Q1; P2 — Q2] = (P1 AN P2) — (Q1 N Q2)»
(proof)

lemma disj-mono: (|[P1 — Q1; P2 — Q2] = (P1 vV P2) — (Q1 V Q2)»
(proof)

lemma imp-mono: <[Q1 — PI1; P2 — Q2] = (P1 — P2) — (Q1 —
Q2)
(proof )

lemma imp-refi: <P — P>
(proof)

The quantifier monotonicity rules are also intuitionistically valid.

lemma ex-mono: «(Az. P(z) — Q(z)) = (3z. P(z)) — (Fz. Q(x))
{proof)

1e<mma>all-m0n0: (Az. P(z) — Q(z)) = (Vz. P(z)) — (V. Q(z))
proof

3.3 Proof by cases and induction

Proper handling of non-atomic rule statements.

context
begin

qualified definition <induct-forall(P) = Vz. P(x)

qualified definition <induct-implies(4, B) = A — B»
qualified definition <induct-equal(z, y) = z = y
qualified definition <induct-conj(A, B) = A A B»

lemma induct-forall-eq: «(A\z. P(z)) = Trueprop(induct-forall(Az. P(x)))
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{proof)

lemma induct-implies-eq: <(A = B) = Trueprop(induct-implies(A, B))»
{proof)

lemma induct-equal-eq: «(x = y) = Trueprop(induct-equal(z, y))»
(proof)

lemma induct-conj-eq: «(A &&& B) = Trueprop(induct-conj(A, B))»
(proof )
lemmas induct-atomize = induct-forall-eq induct-implies-eq induct-equal-eq induct-conj-eq
lemmas induct-rulify [symmetric] = induct-atomize
lemmas induct-rulify-fallback =

induct-forall-def induct-implies-def induct-equal-def induct-conj-def

Method setup.
(ML)

declare case-split [cases type: o]
end

(ML)

hide-const (open) eq

end
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