DEDUCT_ANTISYM_RULE : thm -> thm -> thm
A |- p B |- q
----------------------------------
(A - {q}) u (B - {p}) |- p <=> q
{q} |- p {p} |- q
--------------------------
|- p <=> q
# let th1 = SYM(ASSUME `x:num = y`)
and th2 = SYM(ASSUME `y:num = x`);;
val th1 : thm = x = y |- y = x
val th2 : thm = y = x |- x = y
# DEDUCT_ANTISYM_RULE th1 th2;;
val it : thm = |- y = x <=> x = y