
Nothing better than a Python to write a Serpent

Frank Stajano
Olivetti Oracle Research Laboratory

& University of Cambridge Computer Laboratory

Serpent is a 128-bit block cipher designed by Ross
Anderson, Eli Biham and Lars Knudsen as a candidate
for the Advanced Encryption Standard, a competition
sponsored by the National Institute of Standards and
Technology to define a successor to DES. Serpent is
designed to be faster than DES and more secure than
triple-DES. It is in the public domain and there are no
restrictions on its use: the full AES submission pack-
age, including the full specification of the cipher, a
reference implementation in C, several test suites, and
optimised versions in C and Java, is available from

http://www.cl.cam.ac.uk/~rja14/serpent.html

The authors of Serpent had a preliminary C imple-
mentation and wanted to cross-check it with an inde-
pendently developed one.

I started from the paper defining Serpent and imple-
mented the algorithm from scratch. My only concerns
were correctness and readability, with the view that
“premature optimisation is the root of all evil”. For
this reason I chose Python, and I represented bit strings
simply as little-endian strings of the characters “0”
and “1”. This gave me a “virtual processor” with
words of arbitrary length. I could now easily XOR,
rotate, extract bit 103 and so on, as well as assigning a
block or key to a variable and inspecting it (even in-
teractively) simply by printing it out.

It must be realised that implementing a cryptographic
primitive such as a block cipher from scratch is very
much an open-loop operation, in that there is no obvi-
ous feedback on whether the output is correct or not.
After all, the whole point of a block cipher is to trans-
form the plaintext into something that resembles ran-
dom garbage as closely as possible — so how is one
supposed to know whether the garbage that comes out
is “good” garbage or the outcome of some internal
bugs? Compare this with the much easier closed-loop
task of writing a new implementation after a known-

good reference implementation is available: bugs are
immediately identified by the fact that the output is
different from that of the reference, and by tracing
back the intermediate results one is quickly led to the
point of divergence and thus to the probable cause of
the bug.

Short of going all the way to formal verification meth-
ods, a good solution seems to be that of making the
code as clear and simple as possible, aiming for a one-
to-one correspondence between the code and the for-
mulae describing the algorithm in its specification. A
very high-level language such as Python, with its “ex-
ecutable pseudocode” flavour, was found to be great
for this task.

The Python version was instrumental in finding a cou-
ple of bugs in the C code that, while conceptually
trivial, were still of course affecting the workings of
the cipher. The absolutely unoptimised Python code,
while it ran at the appalling speed of about one block
per second (the C code was 4 to 5 orders of magnitude
faster), was the first implementation to produce the
correct results. I later had to rewrite an unoptimised
reference version in C, since that’s what the call for
algorithms required, but this task was made much
more pleasant (and closed-loop) by being able to rely
on the existing Python one.

If there is a moral to this story, it must be that the level
of abstraction of Python makes it a good language for
expressing ideas without getting too bogged down in
machine-level details, and that “ideas in executable
form” are a good complement to the formal specifica-
tion of an algorithm.

The Python reference implementation of Serpent is
freely available from

http://www.cl.cam.ac.uk/~fms27/serpent/

