
C H A P T E R

25
Managing the Development

of Secure Systems
My own experience is that developers with a clean, expressive set of specific security

requirements can build a very tight machine. They don’t have to be security gurus,
but they have to understand what they’re trying to build and how it should work.

— Rick Smith

One of the most important problems we face today, as techniques and systems
become more and more pervasive, is the risk of missing that fine, human point that

may well make the difference between success and failure, fair and unfair, right and
wrong . . . no IBM computer has an education in the humanities.

— Tom Watson

Management is that for which there is no algorithm. Where there is an algorithm,
it’s administration.

— Roger Needham

25.1 Introduction

So far we’ve discussed a great variety of security applications, techniques and
concerns. If you’re a working IT manager or consultant, paid to build a secure
system, you will by now be looking for a systematic way to select protection
aims and mechanisms. This brings us to the topics of system engineering, risk
analysis and, finally, the secret sauce: how you manage a team to write secure
code.

Business schools reckon that management training should be conducted
largely through case histories, stiffened with focussed courses on basic topics
such as law, economics and accounting. I have broadly followed their model
in this book. We went over the fundamentals, such as protocols, access control

815



816 Chapter 25 ■ Managing the Development of Secure Systems

and crypto, and then looked at a lot of different applications with a lot of case
histories.

Now we have to pull the threads together and discuss how to go about solv-
ing a general security engineering problem. Organizational issues matter here
as well as technical ones. It’s important to understand the capabilities of the
staff who’ll operate your control systems, such as guards and auditors, to take
account of the managerial and work-group pressures on them, and get feed-
back from them as the system evolves. You also have to instil suitable ways of
thinking and working into your development team. Success is about attitudes
and work practices as well as skills. There are tensions: how do you get people
to think like criminals, yet work enthusiastically for the good of the product?

25.2 Managing a Security Project

The hardest part of the project manager’s job is usually figuring out what to
protect and how. Threat modelling and requirements engineering are what
separate out the star teams from the also-rans.

The first killer problem is understanding the tradeoff between risk and
reward. Security people naturally focus too much on the former and neglect
the latter. If the client has a turnover of $10 m, profits of $1 m and theft losses
of $150,000, the security consultant may make a loss-reduction pitch about
‘how to increase your profits by 15%’; but it could well be in the shareholders’
interests to double the turnover to $20 m, even if this triples the losses to
$450,000. Assuming the margins stay the same, the profit is now $1.85 m,
up 85%.

So if you’re the owner of the company, don’t fall into the trap of believing
that the only possible response to a vulnerability is to fix it, and distrust the
sort of consultant who can only talk about ‘tightening security’. Often it’s
too tight already, and what you really need to do is just focus it slightly
differently. But the security team — whether internal developers or external
consultants — usually has an incentive to play up the threats, and as it has more
expertise on the subject it’s hard to gainsay. The same mechanisms that drive
national overreaction to terrorist incidents are at work in the corporation too.

25.2.1 A Tale of Three Supermarkets
My thumbnail case history to illustrate this point concerns three supermarkets.
Among the large operational costs of running a retail chain are the salaries of
the checkout and security staff, and the stock shrinkage due to theft. Checkout
queues aggravate your customers, so cutting staff isn’t always an option, and
working them harder might mean more shrinkage. So what might technology
do to help?



25.2 Managing a Security Project 817

One supermarket in South Africa decided to automate completely. All
produce would carry an RFID tag, so that an entire trolley-load could be
scanned automatically. If this had worked, it could have killed both birds
with one stone; the same RFID tags could have cut staff numbers and made
theft harder. There was a pilot, but the idea couldn’t compete with barcodes.
Customers had to use a special trolley, which was large and ugly — and the RF
tags also cost money. There has been a lot of investment in RFID, but there’s
still a problem: tags fixed to goods that conduct electricity, such as canned
drinks, are hard to read reliably.

Another supermarket in a European country believed that much of their
losses were due to a hard core of professional thieves, and wanted to use RFID
to cut this. When they eventually realized this wouldn’t work, they then talked
of building a face-recognition system to alert the guards whenever a known
villain came into a store. But current technology can’t do that with low enough
error rates. In the end, the chosen route was civil recovery. When a shoplifter
is caught, then even after the local magistrates have fined her a few bucks,
the supermarket sues her in the civil courts for wasted time, lost earnings,
attorneys’ fees and everything else they can think of; and then armed with a
judgement for a few thousand bucks they go round to her house and seize
all the furniture. So far so good. But their management spent their time and
energy getting vengeance on petty thieves rather than increasing sales. Soon
they started losing market share and saw their stock price slide. Diverting
effort from marketing to security was probably a symptom of their decline
rather than a cause, but may have contributed to it.

The supermarket that seemed to be doing best when I wrote the first edition
in 2001 was Waitrose in England, which had just introduced self-service
scanning. When you go into their store you swipe your store card in a machine
that dispenses a portable barcode scanner. You scan the goods as you pick
them off the shelves and drop them into your shopping bag. At the exit you
check in the scanner, get a printed list of everything you’ve bought, swipe your
credit card and head for the car park. This might seem rather risky — but then
so did the self-service supermarket back in the days when traditional grocers’
shops had all the goods behind the counter. In fact, there are several subtle
control mechanisms at work. Limiting the service to store card holders not
only lets you exclude known shoplifters, but also helps market the store card.
By having one you acquire a trusted status visible to any neighbors you meet
while shopping — so losing your card (whether by getting caught stealing,
or more likely falling behind on your payments) could be embarrassing. And
trusting people removes much of the motive for cheating as there’s no kudos
in beating the system. Of course, should the guard at the video screen see
someone lingering suspiciously near the racks of hundred-dollar wines, it can
always be arranged for the system to ‘break’ as the suspect gets to the checkout,
which gives the staff a non-confrontational way to recheck the bag’s contents.



818 Chapter 25 ■ Managing the Development of Secure Systems

Since then, the other supermarkets in the UK have adopted self-service,
but the quality of the implementation varies hugely. The most defensive
stores — where the security folks have had too much say in the design — force
you to scan at specially-designed self-service checkout lanes, and weigh each
item as you place it on the packing stand after scanning, in an attempt to detect
anyone packing an item without scanning it first. These systems are flaky
and frequently interrupt the shopper with complaints, which communicate
distrust. Waitrose seems to be going from strength to strength, while the most
defensive store (with the most offensive systems) is facing a takeover bid as
I write.

25.2.2 Risk Management
Security policies tend to come from a company’s risk management mecha-
nisms. Risk management is one of the world’s largest industries: it includes
not just security engineers but also fire and casualty services, insurers, the road
safety industry and much of the legal profession. Yet it is startling how little is
really known about the subject. Engineers, economists, actuaries and lawyers
all come at the problem from different directions, use different language and
arrive at quite incompatible conclusions. There are also strong cultural factors
at work. For example, if we distinguish risk as being where the odds are known
but the outcome isn’t, from uncertainty where even the odds are unknown,
then most people are more uncertainty-averse than risk-averse. Where the
odds are directly perceptible, a risk is often dealt with intuitively; but even
there, our reactions are colored by the various cognitive biases discussed in
Chapter 2. Where the science is unknown or inconclusive, people are free to
project all sorts of fears and prejudices. But risk management is not just a
matter of actuarial science colored by psychology. Organisations matter too,
whether governments or businesses.

The purpose of business is profit, and profit is the reward for risk. Security
mechanisms can often make a real difference to the risk/reward equation
but ultimately it’s the duty of a company’s board of directors to get the
balance right. In this risk management task, they may draw on all sorts of
advice — lawyers, actuaries, security engineers — as well as listening to their
marketing, operations and financial teams. A sound corporate risk manage-
ment strategy involves much more than attacks on information systems; there
are non-IT operational risks such as fires and floods as well as legal risks,
exchange rate risks, political risks, and many more. Company bosses need the
big picture view to take sensible decisions, and a difficult part of their task is to
ensure that advisers from different disciplines work together closely enough,
but without succumbing to groupthink.

In the culture that’s grown up since Enron and Sarbanes-Oxley, risk man-
agement is supposed to drive internal control. The theory and practice of



25.2 Managing a Security Project 819

this are somewhat divergent. In theory, internal controls are about mitigating
and managing the tensions between employees’ duty to maximise share-
holder utility, and their natural tendency to maximise their own personal
utility instead. At the criminal end of things this encompasses theft and fraud
from the company; I discussed in Chapter 10 how to control that. However,
internal controls are also about softer conflicts of interest. Managers build
empires; researchers tackle interesting problems rather than profitable ones;
programmers choose tools and platforms that will look good on their CVs,
rather than those best suited to the company’s tasks. A large body of orga-
nizational theory applies microeconomic analysis to behaviour in firms in
an attempt to get a handle on this. One of its effects is the growing use of
stock options and bonus schemes to try to align employees’ interests with
shareholders’.

The practice of risk management has been largely determined by the rules
evolved by the Big Four audit firms in response to Sarbanes-Oxley. A typi-
cal firm will show that it’s discharging its responsibilities by keeping a risk
register that identifies the main risks to its financial performance and ranks
them in some kind of order. Risks then get ‘owners’, senior managers who
are responsible for monitoring them and deciding on any specific counter-
measures. Thus the finance director might be allocated exchange-rate and
interest-rate risks, some of which he’ll hedge; operational risks like fires and
floods will be managed by insurance; and the IT director might end up with
the system risks. The actual controls tend to evolve over time, and I’ll discuss
the process in more detail in section 25.4.1.2 later.

25.2.3 Organizational Issues
It goes without saying that advisers should understand each others’ roles and
work together rather than trying to undermine each other. But, human nature
being what it is, the advisers may cosy up with each other and entrench a
consensus view that steadily drifts away from reality. So the CEO, or other
responsible manager, has to ask hard questions and stir the cauldron a bit.
It’s also important to have a variety of experts, and to constantly bring in
new people. One of the most important changes post-Enron is the expectation
that companies should change their auditors from time to time; and one of
the most valuable tasks the security engineer gets called on to perform is
when you’re brought in, as an independent outsider, to challenge groupthink.
On perhaps a third of the consulting assignments I’ve done, there’s at least
one person at the client company who knows exactly what the problem is
and how to fix it — they just need a credible mercenary to beat up on the
majority of their colleagues who’ve got stuck in a rut. (This is one reason why
famous consulting firms that exude an air of quality and certainty may have a
competitive advantage over specialists, but a generalist consultant may have



820 Chapter 25 ■ Managing the Development of Secure Systems

difficulty telling which of the ten different dissenting views from insiders is
the one that must be listened to.)

Although the goals and management structures in government may be
slightly different, exactly the same principles apply. Risk management is often
harder because people are more used to compliance with standards rather
than case-by-case requirements engineering. Empire-building is a particular
problem in the public sector. James Coyne and Normal Kluksdahl present
in [331] a classic case study of information security run amok at NASA. There,
the end of military involvement in Space Shuttle operations led to a security
team being set up at the Mission Control Center in Houston to fill the vacuum
left by the DoD’s departure. This team was given an ambitious charter; it
became independent of both development and operations; its impositions
became increasingly unrelated to budget and operational constraints; and its
relations with the rest of the organization became increasingly adversarial. In
the end, it had to be overthrown or nothing would have got done.

The main point is that it’s not enough, when doing a security requirements
analysis, to understand the education, training and capabilities of the guards
(and the auditors, and the checkout staff, and everyone else within the trust
perimeter). Motivation is critical, and many systems fail because their designers
make unrealistic assumptions about it. Organizational structures matter. There
are also risk dynamics that can introduce instability. For example, an initially
low rate of fraud can make people complacent and careless, until suddenly
things explode. Also, an externally induced change in the organization — such
as a merger, political uncertainty — can undermine morale and thus control.
(Part of my younger life as a security consultant was spent travelling to places
where local traumas were causing bank fraud to rocket, such as Hong Kong in
1989.)

So you have to make allowance in your designs for the ways in which human
frailties express themselves through the way people behave in organizations.

25.2.3.1 The Complacency Cycle and the Risk Thermostat

Phone fraud in the USA has a seven year cycle: in any one year, one of the
‘Baby Bells’ is usually getting badly hurt. They hire experts, clean things up
and get everything under control — at which point another of them becomes
the favored target. Over the next six years, things gradually slacken off, then
it’s back to square one. This is a classic example of organizational complacency.
How does it come about?

Some interesting and relevant work has been done on how people manage
their exposure to risk. John Adams studied mandatory seat belt laws, and
established that they don’t actually save lives: they just transfer casualties
from vehicle occupants to pedestrians and cyclists. Seat belts make drivers
feel safer, so they drive faster in order to bring their perceived risk back up to



25.2 Managing a Security Project 821

its previous level. He calls this a risk thermostat and the model is borne out in
other applications too [10, 11]. The complacency cycle can be thought of as the
risk thermostat’s corporate manifestation. Firms where managers move every
two years and the business gets reorganised every five just can’t maintain
a long corporate memory of anything that wasn’t widespread knowledge
among the whole management; and problems that have been ‘solved’ tend to
be forgotten. But risk management is an interactive business that involves all
sorts of feedback and compensating behavior. The resulting system may be
stable, as with road traffic fatalities; or it may oscillate, as with the Baby Bells.

Feedback mechanisms can also limit the performance of risk reduction
systems. The incidence of attacks, or accidents, or whatever the organization
is trying to prevent, will be reduced to the point at which there are not enough
of them — as with the alarm systems described in Chapter 10 or the intrusion
detection systems described in section 21.4.4. Then the sentries fall asleep, or
real alarms are swamped by false ones, or organizational budgets are eroded
to (and past) the point of danger. I mentioned in Chapter 12 how for 50 years
the U.S. Air Force never lost a nuclear weapon. Then the five people who
were supposed to check independently whether a cruise missile carried a live
warhead or a blank failed to do so — each relied on the others. Six warheads
were duly lost for 36 hours. Colonels will be court-martialled, and bombs will
be counted carefully for a while. But eventually the courts martial will be
forgotten. (How would you organize it differently?)

25.2.3.2 Interaction with Reliability

Poor internal control often results from systems where lots of transactions are
always going wrong and have to be corrected manually. Just as in electronic
warfare, noise degrades the receiver operating characteristic. A high tolerance
of chaos undermines control, as it creates a high false alarm rate for many of
the protection mechanisms at once. It also tempts staff: when they see that
errors aren’t spotted they conclude that theft won’t be either.

The correlation between quality and security is a recurring theme in the
literature. For example, it has been shown that investment in software quality
will reduce the incidence of computer security problems, regardless of whether
security was a target of the quality program or not; and that the most effective
quality measure from the security point of view is the code walk-through [470].
The knowledge that one’s output will be read and criticized has a salutary
effect on many programmers.

Reliability can be one of your biggest selling points when trying to get
a client’s board of directors to agree on protective measures. Mistakes cost
money; no-one really understands what software does; if mistakes are found
then the frauds should be much more obvious; and all this can be communi-
cated to top management without embarrassment on either side.



822 Chapter 25 ■ Managing the Development of Secure Systems

25.2.3.3 Solving the Wrong Problem

Faced with an intractable problem, it is common for people to furiously attack
a related but easier one; we saw the effects of this in the public policy context
earlier in section 24.3.10. Displacement activity is also common in the private
sector, where an example comes from the smartcard industry. As discussed
in section 16.7.4, the difficulty of protecting smartcards against probing and
power-analysis attacks led the industry to concentrate on securing the chip
mask instead. Technical manuals are available only under NDA; plant visitors
have to sign an NDA at reception; much technical material isn’t available at
all; and vendor facilities have almost nuclear-grade physical security. Physical
security overkill may impress naive customers — but almost all of the real
attacks on fielded smartcard systems used technical attacks that didn’t depend
on design information.

One organizational driver for this is an inability to deal with uncertainty.
Managers prefer approaches that they can implement by box-ticking their
way down a checklist. So if an organization needs to deal with an actual
risk, then some way needs to be found to keep it as a process, and stop it
turning into a due-diligence checklist item. But there is constant pressure to
replace processes with checklists, as they are less demanding of management
attention and effort. The quality bureaucracy gets in the way here; firms want-
ing quality-assurance certification are prodded to document their business
processes and make them repeatable. I noted in section 8.7 that bureaucratic
guidelines had a strong tendency to displace critical thought; instead of think-
ing through a system’s protection requirements, designers just reached for
their checklists.

Another organizational issue is that when exposures are politically sensitive,
some camouflage may be used. The classic example is the question of whether
attacks come from insiders or outsiders. We’ve seen in system after system
that the insiders are the main problem, whether because some of them are
malicious or because most of them are careless. But it’s often hard to enforce
controls too overtly against line managers and IT staff, as this will alienate
them, and it’s also hard to get them to manage such controls themselves. It’s
not easy to sell a typical company’s board of directors on the need for proper
defences against insider attack, as this impugns the integrity and reliability
of the staff who report to them. Most company boards are (quite rightly) full of
entrepreneurial, positive, people with confidence in their staff and big plans for
the future, rather than dyspeptic bean-counters who’d like to control everyone
even more closely. So the complaint of information security managers down
the years — that the board doesn’t care — may not actually be a bug, but a
feature.

Often a security manager will ask for, and get, money to defend against
nonexistent ‘evil hackers’ so that he can spend most of it on controls to manage



25.2 Managing a Security Project 823

the real threat, namely dishonest or careless staff. I would be cautious about
this strategy because protection mechanisms without clear justifications are
likely to be eroded under operational pressure — especially if they are seen
as bureaucratic impositions. Often it will take a certain amount of subtlety
and negotiating skill, and controls will have to be marketed as a way of
reducing errors and protecting staff. Bank managers love dual-control safe
locks because they understand that it reduces the risk of their families being
taken hostage; and requiring two signatures on transactions over a certain
limit means extra shoulders to take the burden when something goes wrong.
But such consensus on the need for protective measures is often lacking
elsewhere.

25.2.3.4 Incompetent and Inexperienced Security Managers

Things are bad enough when even a competent IT security manager has to use
guile to raise money for an activity that many of his management colleagues
regard as a pure cost. In real life, things are even worse. In many traditional
companies, promotions to top management jobs are a matter of seniority and
contacts; so if you want to get to be the CEO you’ll have to spend maybe
20 or 30 years in the company without offending too many people. Being a
security manager is absolutely the last thing you want to do, as it will mean
saying no to people all the time. It’s hardly surprising that the average tenure
of computer security managers at U.S. government agencies is only seven
months [605].

Matters are complicated by reorganizations in which central computer
security departments may be created and destroyed every few years, while
the IT audit function oscillates between the IT department, an internal audit
department and outside auditors or consultants. The security function is even
less likely than other business processes to receive sustained attention and
analytic thought, and more likely to succumb to a box-ticking due diligence
mentality. Also, the loss of institutional memory is often a serious problem.

25.2.3.5 Moral Hazard

Companies often design systems so that the risk gets dumped on third parties.
This can easily create a moral hazard by removing the incentives for people
to take care, and for the company to invest in risk management techniques.
I mentioned in Chapter 10 how banks in some countries claimed that their
ATMs could not possibly make mistakes, so that any disputes must be the
customer’s fault. This led to a rise in fraud as staff got lazy and even crooked.
So, quite in addition to the public policy aspects, risk denial can often make
the problem worse: a company can leave itself open to staff who defraud it
knowing that a prosecution would be too embarrassing.



824 Chapter 25 ■ Managing the Development of Secure Systems

Another kind of moral hazard is created when people who take system
design decisions are unlikely to be held accountable for their actions. This can
happen for many reasons. IT staff turnover could be high, with much reliance
placed on contract staff; a rising management star with whom nobody wishes
to argue can be involved as a user in the design team; imminent business
process re-engineering may turn loyal staff into surreptitious job-seekers. In
any case, when you are involved in designing a secure system, it’s a good idea
to look round your colleagues and ask yourself which of them will shoulder
the blame three years later when things go wrong.

Another common incentive failure occurs when one part of an organization
takes the credit for the profit generated by some activity, while another part
picks up the bills when things go wrong. Very often the marketing department
gets the praise for increased sales, while the finance department is left with the
bad debts. A rational firm would strike a balance between risk and reward,
but internal politics can make firms behave irrationally. The case of the three
supermarkets, mentioned above, is just one example. Companies may swing
wildly over a period of years from being risk takers to being excessively risk
averse, and (less often) back again. John Adams found that risk taking and risk
aversion are strongly associated with different personality types: the former
tend to be individualists, a company’s entrepreneurs, while the latter tend to
be hierarchists. As the latter usually come to dominate bureaucracies, it is not
surprising that stable, established organizations tend to be much more risk
averse than rational economics would dictate.

So what tools and concepts can help us cut through the fog of bureau-
cratic infighting and determine a system’s protection requirements from first
principles?

The rest of this chapter will be organized as follows. The next section
will look at basic methodological issues such as top-down versus iterative
development. After that, I’ll discuss how these apply to the specific problem
of security requirements engineering. Having set the scene, I’ll then return to
risk management and look at technical tools. Then I’ll come back and discuss
how you manage people. That’s really critical. How do you get people to care
about vulnerabilities and bugs? This is partly incentives and partly culture;
the two reinforce each other, and many companies get it wrong.

25.3 Methodology

Software projects usually take longer than planned, cost more than budgeted
for and have more bugs than expected. (This is sometimes known as ‘Cheops’
law’ after the builder of the Great Pyramid.) By the 1960s, this had become
known as the software crisis, although the word ‘crisis’ is hardly appropriate



25.3 Methodology 825

for a state of affairs that has now lasted (like computer insecurity) for two
generations. Anyway, the term software engineering was proposed by Brian
Randall in 1968 and defined to be:

Software engineering is the establishment and use of sound engineering principles
in order to obtain economically software that is reliable and works efficiently on
real machines.

This encompassed the hope that the problem could be solved in the same
way that one builds ships and aircraft, with a proven scientific foundation
and a set of design rules [954]. Since then much progress has been made.
However, the results of the progress have been unexpected. Back in the late
1960s, people hoped that we’d cut the number of large software projects failing
from the 30% or so that was observed at the time. Now, we still see about 30%
of large projects failing — but the failures are much bigger. The tools get us
farther up the complexity mountain before we fall off, but the rate of failure
appears to be exogenous, set by such factors as company managers’ appetite
for risk1.

Anyway, software engineering is about managing complexity, of which
there are two kinds. There is the incidental complexity involved in programming
using inappropriate tools, such as the assembly languages which were all that
some early machines supported; programming a modern application with
a graphical user interface in such a language would be impossibly tedious
and error-prone. There is also the intrinsic complexity of dealing with large
and complex problems. A bank’s administrative systems, for example, may
involve tens of millions of lines of code and be too complex for any one person
to understand.

Incidental complexity is largely dealt with using technical tools. The most
important of these are high-level languages that hide much of the drudgery of
dealing with machine-specific detail and enable the programmer to develop
code at an appropriate level of abstraction. There are also formal methods that
enable particularly error-prone design and programming tasks to be checked.
The obvious security engineering example is provided by the BAN logic for
verifying cryptographic protocols, described in section 3.8.

Intrinsic complexity usually requires methodological tools that help divide
up the problem into manageable subproblems and restrict the extent to which
these subproblems can interact. There are many tools on the market to help
you do this, and which you use may well be a matter of your client’s policy.
But there are basically two approaches — top-down and iterative.

1A related, and serious, problem is that while 30% of large projects fail in industry, perhaps only
30% of large projects in the public sector succeed; for a topical case history, see the National
Academies’ report on the collapse of the FBI’s attempt to modernise its case file system [860].



826 Chapter 25 ■ Managing the Development of Secure Systems

25.3.1 Top-Down Design

The classical model of system development is the waterfall model developed
by Win Royce in the 1960s for the U.S. Air Force [1090]. The idea is that you
start from a concise statement of the system’s requirements; elaborate this into
a specification; implement and test the system’s components; then integrate
them together and test them as a system; then roll out the system for live
operation (see Figure 25.1). Until recently, this was how all systems for the
U.S. Department of Defense had to be developed.

The idea is that the requirements are written in the user language, the
specification is written in technical language, the unit testing checks the units
against the specification and the system testing checks whether the require-
ments are met. At the first two steps in this chain there is feedback on
whether we’re building the right system (validation) and at the next two
on whether we’re building it right (verification). There may be more than
four steps: a common elaboration is to have a sequence of refinement steps as
the requirements are developed into ever more detailed specifications. But
that’s by the way.

The critical thing about the waterfall model is that development flows
inexorably downwards from the first statement of the requirements to the
deployment of the system in the field. Although there is feedback from each
stage to its predecessor, there is no system-level feedback from (say) system
testing to the requirements. Therein lie the waterfall model’s strengths, and
also its weaknesses.

The strengths of the waterfall model are that it compels early clarification
of system goals, architecture, and interfaces; it makes the project manager’s

Requirements

Validate
Specification

Validate
Implementation

& unit testing

Verify
Integration &
system testing

Verify

Refine

Code

Build

Field

Operations &
maintenance

Figure 25.1: The waterfall model



25.3 Methodology 827

task easier by providing definite milestones to aim at; it may increase cost
transparency by enabling separate charges to be made for each step, and
for any late specification changes; and it’s compatible with a wide range
of tools. Where it can be made to work, it’s often the best approach. The
critical question is whether the requirements are known in detail in advance
of any development or prototyping work. Sometimes this is the case, such as
when writing a compiler or (in the security world) designing a cryptographic
processor to implement a known transaction set and pass a certain level of
evaluation.

But very often the detailed requirements aren’t known in advance and then
an iterative approach is necessary. There are quite a few possible reasons
for this. Perhaps the requirements aren’t understood yet by the customer,
and a prototype is necessary to clarify them rather than more discussion;
the technology may be changing; the environment could be changing; or
a critical part of the project may involve the design of a human-computer
interface, which will probably involve several prototypes. In fact, very often
the designer’s most important task is to help the customer decide what he
wants, and although this can sometimes be done by discussion, there will
often be a need for some prototyping2.

The most common reason of all for using an iterative development is that
we’re starting from an existing product which we want to improve. Even in
the early days of computing, most programmer effort was always expended
on maintaining and enhancing existing programs rather than developing new
ones. Nowadays, as software becomes ever more packaged and the packages
become ever more complex, the reality in many software firms is that ‘the
maintenance is the product’. The only way to write something as complex as
Office is to start off from an existing version and enhance it. That does not
mean that the waterfall model is obsolete; on the contrary, it may be used to
manage a project to develop a major new feature. However, we also need
to think of the overall management of the product, and that’s likely to be based
on iteration.

25.3.2 Iterative Design
So many development projects need iteration, whether to firm up the specifi-
cation by prototyping, or to manage the complexity of enhancing an already
large system.

2The Waterfall Model had a precursor in a methodology developed by Gerhard Pahl and
Wolfgang Beitz in Germany just after World War 2 for the design and construction of mechanical
equipment such as machine tools [1001]; apparently one of Pahl’s students later recounted that it
was originally designed as a means of getting the engineering student started, rather than as an
accurate description of what experienced designers actually do. Win Royce also saw his model
as a means of starting to get order out of chaos, rather than as a totally prescriptive system it
developed into.



828 Chapter 25 ■ Managing the Development of Secure Systems

In the first case, a common approach is Barry Boehm’s spiral model in which
development proceeds through a pre-agreed number of iterations in which a
prototype is built and tested, with managers being able to evaluate the risk
at each stage so they can decide whether to proceed with the next iteration
or to cut their losses. It’s called the spiral model because the process is often
depicted as in Figure 25.2.

In the second case, the standard model is evolutionary development. An early
advocate for this approach was Harlan Mills, who taught that one should
build the smallest system that works, try it out on real users, and then add
functionality in small increments. This is how the packaged software industry
works: software products nowadays quickly become so complex that they
could not be economically developed (or redeveloped) from scratch. Indeed,
Microsoft has tried more than once to rewrite Word, but gave up each time.
Perhaps the best book on the evolutionary development model is by Maguire,
a Microsoft author [829]. In this view of the world, products aren’t the result
of a project but of a process that involves continually modifying previous
versions.

Progress

Prototype
#2

Prototype
#1

Development
plan

Risk
analysis

Product
design

Settle final design

Code

Test system

Ship

Commit Test

Figure 25.2: The spiral model



25.3 Methodology 829

Unfortunately, evolutionary development tends to be neglected in academic
courses and books on software engineering, and it can cause some particular
problems for the security engineer.

The critical thing about evolutionary development is that just as each
generation of a biological species has to be viable for the species to continue,
so each generation of an evolving software product must be viable. The
core technology is regression testing. At regular intervals — typically once a
day — all the teams working on different features of a product check in their
code, which gets compiled to a build that is then tested automatically against
a large set of inputs. The regression test checks whether things that used to
work still work, and that old bugs haven’t found their way back. Of course,
it’s always possible that a build just doesn’t work at all, and there may be
quite long disruptions as a major change is implemented. So we consider the
current ‘generation’ of the product to be the last build that worked. One way
or another, we always have viable code that we can ship out for beta testing or
whatever our next stage is.

The technology of testing is probably the biggest practical improvement
in software engineering during the 1990s. Before automated regression tests
were widely used, engineers used to reckon that 15% of bug fixes either
introduced new bugs or reintroduced old ones [9]. But automated testing
is less useful for the security engineer for a number of reasons. Security
properties are more diverse, and security engineers are fewer in number,
so we haven’t had as much investment in tools and the available tools are
much more fragmentary and primitive than those available to the general
software engineering community. Many of the flaws that we want to find and
fix — such as stack overflow attacks — tend to appear in new features rather
than to reappear in old ones. Specific types of attack are also often easier to
fix using specific remedies — such as the canary in the case of stack overflow.
And many security flaws cross a system’s levels of abstraction, such as when
specification errors interact with user interface features — the sort of problem
for which it’s difficult to devise automated tests. But regression testing is still
really important. It finds functionality that has been affected by a change but
not fully understood.

Much the same applies to safety critical systems, which are similar in many
respects to secure systems. Some useful lessons can be drawn from them.

25.3.3 Lessons from Safety-Critical Systems
Critical computer systems can be defined as those in which a certain class
of failure is to be avoided if at all possible. Depending on the class of
failure, they may be safety-critical, business-critical, security-critical, critical to
the environment or whatever. Obvious examples of the safety-critical variety
include flight controls and automatic braking systems. There is a large literature



830 Chapter 25 ■ Managing the Development of Secure Systems

on this subject, and a lot of methodologies have been developed to help manage
risk intelligently.

Overall, these methodologies tend to follow the waterfall view of the
universe. The usual procedure is to identify hazards and assess risks; decide
on a strategy to cope with them (avoidance, constraint, redundancy . . .); to trace
the hazards down to hardware and software components which are thereby
identified as critical; to identify the operator procedures which are also critical
and study the various applied psychology and operations research issues; and
finally to decide on a test plan and get on with the task of testing. The outcome
of the testing is not just a system you’re confident to run live, but a safety case
to justify running it.

The safety case will provide the evidence, if something does go wrong, that
you exercised due care; it will typically consist of the hazard analysis, the
documentation linking this to component reliability and human factor issues,
and the results of tests (both at component level and system level) which show
that the required failure rates have been achieved.

The ideal system design avoids hazards entirely. A good illustration comes
from the motor reversing circuits in Figure 25.3. In the first design on the left,
a double-pole double-throw switch reverses the current passing from the
battery through the motor. However, this has a potential problem: if only one
of the two poles of the switch moves, the battery will be short circuited and
a fire may result. The solution is to exchange the battery and the motor, as in
the modified circuit on the right. Here, a switch failure will only short out the
motor, not the battery.

Hazard elimination is useful in security engineering too. We saw an example
in the early design of SWIFT in section 10.3.1: there, the keys used to authen-
ticate transactions between one bank and another were exchanged between
the banks directly. In this way, SWIFT personnel and systems did not have
the means to forge a valid transaction and had to be trusted much less. In
general, minimizing the trusted computing base is to a large extent an exercise
in hazard elimination.

•
•
•
•

M

(a) (b)

M

Figure 25.3: Hazard elimination in motor reversing circuit



25.3 Methodology 831

Once as many hazards have been eliminated as possible, the next step is to
identify failures that could cause accidents. A common top-down way of iden-
tifying the things that can go wrong is fault tree analysis as a tree is constructed
whose root is the undesired behavior and whose successive nodes are its pos-
sible causes. This carries over in a fairly obvious way to security engineering,
and here’s an example of a fault tree (or threat tree, as it’s often called in security
engineering) for fraud from automatic teller machines (see Figure 25.4).

Successful card forgery

Shoulder
surfing

Cryptanalysis of DES

False
terminal

attack

Abuse of
security
module

Trojan Theft of
keys

Bank insider Maintenance
    contractor

Bug in
ATM

Encryption
replacement

Falsify
auth
response

Protocol failure

Figure 25.4: A threat tree

Threat trees are used in the U.S. Department of Defense. You start out
from each undesirable outcome, and work backwards by writing down each
possible immediate cause. You then work backwards by adding each precursor
condition, and recurse. Then by working round the tree’s leaves you should be
able to see each combination of technical attack, operational blunder, physical
penetration and so on which would break security. This can amount to an
attack manual for the system, and so it may be highly classified. Nonetheless, it
must exist, and if the system evaluators or accreditors can find any significant
extra attacks, then they may fail the product.

Returning to the safety-critical world, another way of doing the hazard
analysis is failure modes and effects analysis (FMEA), pioneered by NASA, which
is bottom-up rather than top-down. This involves tracing the consequences
of a failure of each of the system’s components all the way up to the effect
on the mission. This is often useful in security engineering; it’s a good idea
to understand the consequences of a failure of any one of your protection
mechanisms.



832 Chapter 25 ■ Managing the Development of Secure Systems

A really thorough analysis of failure modes may combine top-down and
bottom-up approaches. There are various ways to manage the resulting mass
of data. For example, one can construct a matrix of hazards against safety
mechanisms, and if the safety policy is that each serious hazard must be
constrained by at least two independent mechanisms, then we can check that
there are two entries in each of the relevant columns. In this way, we can
demonstrate graphically that in the presence of the hazard in question, at least
two failures will be required to cause an accident. This methodology goes
across unchanged to security engineering, as I’ll discuss below.

The safety-critical systems community has a number of techniques for deal-
ing with failure and error rates. Component failure rates can be measured
statistically; the number of bugs in software can be tracked by various tech-
niques which I’ll discuss in the next chapter; and there is a lot of experience
with the probability of operator error at different types of activity. The bible for
human-factors engineering in safety-critical systems is James Reason’s book
‘Human Error’; I would probably consider anyone who was building human
interfaces to security-critical systems and who hadn’t read this book to be
negligent of something went wrong.

The telegraphic summary is that the error rate depends on the familiarity
and complexity of the task, the amount of pressure and the number of cues to
success. Where a task is simple, performed often and there are strong cues
to success, the error rate might be 1 in 100,000 operations. However, when a
task is performed for the first time in a confusing environment where logical
thought is required and the operator is under pressure, then the odds can
be against successful completion of the task. Quite a lot is known about the
cognitive biases and other psychological factors that make particular types of
error more common, and a prudent engineer will understand and avoid these.
Nonetheless, designers of things like nuclear reactors are well aware (at least
since Three Mile Island) that no matter how many design walkthroughs you
do, it’s when the red lights go on for the first time that the worst mistakes
get made.

Similarly, in security systems, it tends to be important but rarely performed
tasks such as getting senior managers to set up master crypto keys where the
most egregious blunders can be expected. A classic example from [34] was
when a bank wished to create a set of three master keys to link their cash
machine network to VISA and needed a terminal to drive the security module.
A contractor obligingly lent them a laptop PC, together with software which
emulated the desired type of terminal. With this the senior managers duly
created the required keys and posted them off to VISA. None of them realized
that most PC terminal emulation software packages can be set to log all the
transactions passing through, and this is precisely what the contractor did. He
captured the clear zone key as it was created, and later used it to decrypt the



25.3 Methodology 833

bank’s master PIN key. The lesson to take from this is that security usability
isn’t just about presenting a nice intuitive interface to the end-user that accords
with common mental models of threat and protection in the application area,
as discussed in Chapter 2. It’s pervasive, and extends all the way through the
system’s operations, at the back end as well as the front.

So when doing security requirements engineering, special care has to be paid
to the skill level of the staff who will perform each critical task and estimates
made of the likelihood of error. Be cautious here: an airplane designer can rely
on a fairly predictable skill level from anyone with a commercial pilot’s licence,
and even a shipbuilder knows the strengths and weaknesses of a sailor in the
Navy. Usability testing can (and should) be integrated with staff training: when
pilots go for their six-monthly refresher courses in the simulator, instructors
throw all sorts of combinations of equipment failure, bad weather, cabin crisis
and air-traffic-control confusion at them. They observe what combinations of
stress result in fatal accidents, and how these differ across cockpit types. This
in turn provides valuable feedback to the cockpit designers.

The security engineer usually has no such luck. Many security failures
remind me of a remark made by a ranger at Yosemite about the devices
provided to keep bears from getting at campers’ food supplies: that it’s an
impossible engineering problem because the brighter bears are smarter than
the dumber campers.

As well as the problem of testing usability, there are also technical testability
issues. A common problem with redundant systems is fault masking: if the
output is determined by majority voting between three processors, and one of
them fails, then the system will continue to work fine — but its safety margin
will have been eroded. Several air crashes have resulted from flying an airliner
with one of the flight control systems dysfunctional; although pilots may be
intellectually aware that one of the cockpit displays is unreliable, their training
may lead them to rely on it under pressure rather than checking with other
instruments. So a further failure can be catastrophic. In such cases, it’s better to
arrange things so that displays give no reading at all rather than an inaccurate
one. A security example is the ATM problem mentioned in section 10.4.2 where
a bank issued all its customers with the same PIN. In such cases, the problem
often isn’t detected until much later. The fault gets masked by the handling
precautions applied to PINs, which ensure that even the bank’s security and
audit staff only get hold of the PIN mailer for their own personal account. So
some thought is needed about how faults can remain visible and testable even
when their immediate effects are masked.

Our final lesson from safety critical systems is that although there will be a
safety requirements specification and safety test criteria as part of the safety
case for the lawyers or regulators, it is good practice to integrate this with the
general requirements and test documentation. If the safety case is a separate



834 Chapter 25 ■ Managing the Development of Secure Systems

set of documents, then it’s easy to sideline it after approval is obtained and
thus fail to maintain it properly. If, on the other hand, it’s an integral part of
the product’s management, then not only will it likely get upgraded as the
product is, but it is also much more likely to be taken heed of by experts from
other domains who might be designing features with possible interactions.

As a general rule, safety must be built in as a system is developed, not
retrofitted; the same goes for security. The main difference is in the failure
model. Rather than the effects of random failure, we’re dealing with a hostile
opponent who can cause some of the components of our system to fail at the
least convenient time and in the most damaging way possible. In effect, our
task is to program a computer which gives answers which are subtly and
maliciously wrong at the most inconvenient moment possible. I’ve described
this as ‘programming Satan’s computer’ to distinguish it from the more
common problem of programming Murphy’s [74]. This provides an insight
into one of the reasons security engineering is hard: Satan’s computer is hard
to test [1126].

25.4 Security Requirements Engineering

In Chapter 8, I defined a security policy model to be a concise statement of
the protection properties that a system, or generic type of system, must have.
This was driven by the threat model, which sets out the attacks and failures
with which the system must be able to cope. The security policy model is
further refined into a security target, which is a more detailed description of
the protection mechanisms a specific implementation provides, and how they
relate to the control objectives. The security target forms the basis for testing
and evaluation of a product. The policy model and the target together may
be referred to loosely as the security policy, and the process of developing a
security policy and obtaining agreement on it from the system owner is the
process of requirements engineering.

Security requirements engineering is often the most critical task of managing
secure system development, and can also be the hardest. It’s where ‘the rubber
hits the road’. It’s at the intersection of the most difficult technical issues, the
most acute bureaucratic power struggles, and the most determined efforts at
blame avoidance.

The available methodologies have consistently lagged behind those available
to the rest of the system engineering world [123]. In my view, the critical insight
is that the process of generating a security policy and a security target is not
essentially different from the process of producing code. Depending on the
application, you can use a top-down, waterfall approach; a limited iterative
approach such as the spiral model; or a continuing iterative process such as
the evolutionary model. In each case, we need to build in the means to manage



25.4 Security Requirements Engineering 835

risk, and have the risk assessment drive the development or evolution of the
security policy.

Risk management must also continue once the system is deployed. It’s
rather hard to tell what a new invention will be useful for, and this applies to
the dark side too: novel attacks are just as difficult to predict as anything else
about the future. Phone companies spent the 1970s figuring out ways to stop
phone phreaks getting free calls, but once premium-rate numbers appeared
the real problem became stopping fraud. We worried about crooks hacking
bank smartcards, and put in lots of back-end protection for the early electronic
purses; the attacks came on pay-TV smartcards instead, while the bank fraud
folks concentrated on mag-stripe fallback and on phishing. People worried
about the security of credit card numbers used in transactions on the net, but it
turned out that the main threat to online businesses was refunds and disputes.
As they say, ‘The street finds its own uses for things.’ So you can’t expect to get
the protection requirements completely right at the first attempt. We’ve also
seen many cases where the policy and mechanisms were set when a system
was first built, and then undermined as the environment (and the product)
evolved, but the protection did not.

If you’re running a company, it’s futile to spend a lot of money on trying
to think up new attacks; that’s research, and best left to university folks like
me. What you do need is twofold: a mechanism for stopping your developers
building systems that are vulnerable to known bugs like stack overflows and
weak cryptography; and a mechanism for monitoring, and acting on, changing
protection requirements.

Unlike in the previous section, we’ll look at the case of evolving protection
requirements first, as it is more common.

25.4.1 Managing Requirements Evolution
Most of the time, security requirements have to be tweaked for one of four
reasons. First, we might need to fix a bug. Second, we may want to improve
the system; as we get more experience of the kind of attacks that happen, we
will want to tune some aspect of the controls. Third, we may want to deal with
an evolving environment. For example, if an online ordering system that was
previously limited to a handful of major suppliers is to be extended to all a
firm’s suppliers then the controls are likely to need review. Finally, there may
be a change in the organization. Firms are continually undergoing mergers,
management buyouts, business process re-engineering, you name it.

Of course, any of these could result in such a radical change that we would
consider it to be a redevelopment rather than an evolution. The dividing line
between the two is inevitably vague, but many evolutionary ideas carry over
into one-off projects, and many systems’ evolution contains occasional large
leaps that are engineered in specific projects.



836 Chapter 25 ■ Managing the Development of Secure Systems

25.4.1.1 Bug Fixing

Most security enhancements fall into the category of bug fixes or product
tuning. Fortunately, they are usually the easiest to cope with provided you
have the right mechanisms for getting information about bugs, testing fixes
and shipping upgrades.

If you sell software that’s at all security critical — and most anything that
can communicate with the outside world is potentially so — then the day will
come when you hear of a vulnerability or even an attack. In the old days,
vendors could take months to respond with a new version of the product, and
would often do nothing at all but issue a warning (or even a denial). That
doesn’t work any more: public expectations are higher now. With mass market
products you can expect press publicity; even with more specialized products
there is a risk of it. Expectations are backed by laws. By 2007, most U.S. states
had security breach notification laws, obliging firms to notify attacks to all
individuals whose privacy could have thereby been compromised, and the
European Union had such a law in the pipeline too. Now it’s not inevitable that
a vulnerability report will trigger such a law — if you’re lucky the alarm won’t
be raised because of an exploit, but from one of your customers’ technical
staff noticing a problem and reporting it to stop it becoming an exploit. But,
either way, you need a plan to deal with it. This will have four components:
monitoring, repair, distribution and reassurance.

First, you need to be sure that you learn of vulnerabilities as soon as you
can — and preferably no later than the press (or the bad guys) do. Listening
to customers is important: you need an efficient way for them to report bugs.
It may be an idea to provide some incentive, such as points towards their next
upgrade, lottery tickets or even cash. The idea of vulnerability markets was
first suggested by Jean Camp and Catherine Wolfram in 2000 [256]; two firms,
iDefense and Tipping Point, are now openly buying vulnerabilities, so the
market actually exists. Unfortunately, the prices are not published and they
only trade in bugs in the major platforms; but this shouldn’t stop you setting
up a reward scheme. Then, however you get the bug reports in, you then
need to make someone responsible for monitoring them, and also for reading
relevant mailing lists, such as bugtraq [239].

Second, you need to be able to respond appropriately. In organizations
such as banks with time-critical processing requirements, it’s normal for one
member of each product team to be ‘on call’ with a pager in case something
goes wrong at three in the morning and needs fixing at once. This might be
excessive for a small software company, but you should still know the home
phone numbers of everyone who might be needed urgently; see to it that there’s
more than one person with each critical skill; and have supporting procedures.
For example, emergency bug fixes must be run through the full testing process



25.4 Security Requirements Engineering 837

as soon as possible, and the documentation’s got to be upgraded too. This is
critical for evolutionary security improvement, but too often ignored: where
the bug fix changes the requirements, you need to fix their documentation
too (and perhaps your threat model, and even top level risk management
paperwork).

Third, you need to be able to distribute the patch to your customers rapidly.
So it needs to be planned in advance. The details will vary depending on
your product: if you only have a few dozen customers running your code
on servers at data centers that are staffed 24 x 7, then it may be very easy,
but if it involves patching millions of copies of consumer software then a lot
of care is needed. It may seem simple enough to get your customers to visit
your website once a day and check for upgrades, but this just doesn’t work.
There is a serious tension between the desire to patch quickly to forestall
attacks, and the desire to delay so as to test the patch properly [135]: pioneers
who apply patches quickly end up discovering problems that break their
systems, but laggards are more vulnerable to attack. There are also two quite
different tensions between the vendor and the customer. First, the vendor
would usually like to patch more quickly than the customer at the operational
level, and second, the customer would probably want the threat of eventual
breach disclosure, because without it the vendor would be less likely to issue
patches at all [89].

Considerations like these led Microsoft to ‘patch Tuesday’, the policy of
releasing a whole set of patches on the first Tuesday of every month. A monthly
cycle seems a reasonable compromise between security, dependability and
manageability. Individual customers usually patch automatically, while firms
know to schedule testing of their enterprise systems for then so they can
patch as quickly as possible thereafter. Most recent malware exploits have
targeted vulnerabilities that were already patched — the bad guys reverse-
engineer the patches to find the vulns and then get the machines that were
patched late or not at all. So once a patch cycle is set up, it can become a
treadmill. There are also quite a lot of details you have to get right to set
up such a scheme — coping with traffic volumes, giving customers adequate
legal notification of the effects of changes, and securing the mechanism against
abuse. But as time goes on, I expect that more and more firms will have to
introduce patch cycle management, as software gets more complex (and thus
buggy), and as it spreads into more and more devices.

Finally, you need a plan to deal with the press. The last thing you need is
for dozens of journalists to phone up and be stonewalled by your switchboard
operator as you struggle madly to fix the bug. Have a set of press releases for
incidents of varying severity ready to roll, so that you only have to pick the
right one and fill in the details. The release can then ship as soon as the first
(or perhaps the second) journalist calls.



838 Chapter 25 ■ Managing the Development of Secure Systems

25.4.1.2 Control Tuning and Corporate Governance

The main process by which organizations like banks develop their bookkeeping
systems and their other internal controls is by tuning them in the light of
experience. A bank with 25,000 staff might be sacking about one staff member
a day for petty theft or embezzlement, and it’s traditionally the internal audit
department that will review the loss reports and recommend system changes
to reduce the incidence of the most common scams. I gave some examples in
section 10.2.3.

It is important for the security engineer to have some knowledge of internal
controls. There is a shortage of books on this subject: audit is largely learned on
the job, but know-how is also transmitted by courses and through accounting
standards documents. There is a survey of internal audit standards by Janet
Colbert and Paul Bowen [312]; the most influential is the Risk Management
Framework from the Committee of Sponsoring Organizations (COSO), a group of
U.S. accounting and auditing bodies [318]. This is the yardstick by which your
system will be judged if it’s used in the U.S. public sector or by companies
quoted on U.S. equity markets. The standard reference on COSO is a book by
Steven Root [1082], who also tells the story of how U.S. accounting standards
evolved in the years prior to Enron.

The COSO model is targeted not just on internal control but on the reliability
of financial reporting and compliance with laws and regulations. Its basic
process is an evolutionary cycle: in a given environment, you assess the risks,
design controls, monitor their performance, and then go round the loop again.
COSO emphasizes soft aspects of corporate culture more than hard system
design issues so may be seen as a guide to managing and documenting
the process by which your system evolves. However, its core consists of
the internal control procedures whereby senior management check that their
control policies are being implemented and achieving their objectives, and
modify them if not.

It is also worthwhile for the security engineer to learn about the more
specialized information systems audit function. The IS auditor should not have
line responsibility for security but should monitor how it’s done, look into
things that are substandard or appear suspicious, and suggest improvements.
Much of the technical material is common with security engineering; if you
have read and understood this book so far, you should be able to get well
over 50% on the Certified Information Systems Auditor (CISA) exam (details
are at [639]). The Information Systems Audit and Control Association, which
administers CISA, has a refinement of COSO known as the Control Objectives for
Information and related Technology (CobiT) which is more attuned to IT needs,
more international and more accessible than COSO (it can be downloaded
from [638]). It covers much more than engineering requirements, as issues
such as personnel management, change control and project management are



25.4 Security Requirements Engineering 839

also the internal auditor’s staples. (The working security engineer needs some
familiarity with this material too.)

These general standards are necessarily rather vague. They provide the
engineer with a context and a top-level checklist, but rarely with any clear
guidance on specific measures. For example, CobiT 5.19 states: ‘Regarding
malicious software, such as computer viruses or trojan horses, management
should establish a framework of adequate preventative, detective and correc-
tive control measures’. More concrete standards are often developed to apply
such general principles to specific application areas. For example, when I was
working in banking security in the 1980’s, I relied on guidelines from the Bank
for International Settlements [113]. Where such standards exist, they are often
the ultimate fulcrum of security evolutionary activity.

Further important drivers will be your auditors’ interpretation of specific
accounting laws, such as Sarbanes-Oxley for U.S. publicly-listed companies,
Gramm-Leach-Bliley for U.S. financial-sector firms, and HIPAA for U.S. health-
care providers. Sarbanes-Oxley, for example, requires information security
measures to be documented, which fits well enough with CobiT. In Europe
some comparable pressure comes from privacy laws. Recently the spread of
security-breach disclosure laws has created much greater sensitivity about the
protection of personal information about customers (and in particular about
their credit card numbers, dates of birth or any other data that could be used in
financial fraud). There are now breach disclosure laws in most U.S. states, and
they’re in the pipeline for Europe. If you have to disclose that your systems
have been hacked and millions of customer credit card numbers compromised,
you can expect to be sued and to see your stock fall by several percent. If it
happens to you more than once, you can expect to lose customers: customer
churn might only be 2% after one notified breach, but 30% after two and near
100% after three [1356]. The silver lining in this cloud is that, for the first time
ever, information security has become a CEO issue; this means that you’ll
occasionally have access to the boss to make your case for investment.

It’s also a good idea to have good channels of communication to your
internal audit department. But it’s not a good idea to rely on them completely
for feedback. Usually the people who know most about how to break the
system are the ordinary staff who actually use it. Ask them.

25.4.1.3 Evolving Environments and the Tragedy of the Commons

I’ve discussed a lot of systems that broke after their environment changed and
appropriate changes to the protection mechanisms were skimped, avoided
or forgotten. Card-and-PIN technology that worked fine with ATMs became
vulnerable to false-terminal attacks when used with retail point-of-sale termi-
nals; smartcards that were perfectly good for managing credit card numbers
and PINs were inadequate to keep out the pay-TV pirates; and even very



840 Chapter 25 ■ Managing the Development of Secure Systems

basic mechanisms such as authentication protocols had to be redesigned once
they started to be used by systems where the main threat was internal rather
than external. Military environments evolve particularly rapidly in wartime,
as attack and defence coevolve; R. V. Jones attributes much of the UK’s relative
success in electronic warfare in World War 2 to the fact that the Germans used
a rigid top-down development methodology, which resulted in beautifully
engineered equipment that was always six months too late [670].

Changes in the application aren’t the only problem. An operating system
upgrade may introduce a whole new set of bugs into the underlying platform.
Changes of scale as businesses go online can alter the cost-benefit equation,
as can the fact that many system users may be in foreign jurisdictions with
ineffective computer crime laws (or none at all). Also, attacks that were known
by experts for many years to be possible, but which were ignored because they
didn’t happen in practice, can suddenly start to happen — good examples
being phishing and the distributed denial-of-service attack.

Where you own the system, things are merely difficult. You manage risk by
ensuring that someone in the organization has responsibility for maintaining its
security rating; this may involve an annual review driven by your internal audit
bureaucracy, or be an aspect of change control. Maintaining organizational
memory is hard, thanks to the high turnover of both IT and security staff which
we discussed in section 25.2.3.4 above. Keeping developer teams interested
and up-to-date in security can be a hard problem, and I’ll return to it towards
the end of this chapter.

That’s tough enough, but where many of the really intractable problems
arise is where no-one owns the system at all. The responsibility for established
standards, such as how ATMs check PINs, is diffuse. In that case, the company
which developed most of the standards (IBM) lost its leading industry role and
its successor, Microsoft, is not interested in the ATM market. Cryptographic
equipment is sold by many specialist firms; although VISA used to certify
equipment, they stopped in about 1990 and Mastercard never got into that
business. The EMV consortium got going later, but for a while there was no
one person or company in charge, and responsibility for standards outside the
world of EMV smartcards is not always clear. So each player — equipment
maker or bank — had a motive to push the boundaries just a little bit further,
in the hope that when eventually something did go wrong, it would happen
to somebody else.

This problem is familiar to economists, who call it the tragedy of the com-
mons [806]. If a hundred peasants are allowed to graze their sheep on the village
common, where the grass is finite, then whenever another sheep is added its
owner gets almost the full benefit, while the other ninety-nine suffer only a
very small disadvantage from the decline in the quality of the grazing. So they
aren’t motivated to object, but rather to add another sheep of their own and get



25.4 Security Requirements Engineering 841

as much of the declining resource as they can. The result is a dustbowl. In the
world of agriculture, this problem is tackled by community mechanisms, such
as getting the parish council set up a grazing control committee. One of the
challenges facing the world of computer security is to devise the appropriate
mix of technical and organizational mechanisms to achieve the same sort of
result that was already achieved by a tenth-century Saxon village, only on the
much larger and more diffuse scale of the Internet.

25.4.1.4 Organizational Change

Organizational issues are not just a contributory factor in security failure, as
with the loss of organizational memory and the lack of community mechanisms
for monitoring changing threat environments. They can often be a primary
cause.

The early 1990s saw a management fashion for business process re-engineering
which often meant using changes in business computer systems to compel
changes in the way people worked. There have been some well-documented
cases in which poorly designed systems interacted with resentful staff to cause
a disaster.

Perhaps the best known case is that of the London Ambulance Service. They
had a manual system in which incoming emergency calls were written on
forms and sent by conveyer belt to three controllers who allocated vehicles and
passed the form to a radio dispatcher. Industrial relations were poor, and there
was pressure to cut costs: managers got the idea of solving all these problems
by automating. Lots of things went wrong, and as the system was phased
in it became clear that it couldn’t cope with established working practices,
such as crew taking the ‘wrong’ ambulance (staff had favorite vehicles with
long-serving staff getting the better ones). Managers didn’t want to know and
forced the system into use on the 26th October 1992 by reorganizing the room
so that controllers and dispatchers had to use terminals rather than paper.

The result was meltdown. A number of positive feedback loops became
established which caused the system progressively to lose track of vehicles.
Exception messages built up, scrolled off screen and were lost; incidents
were held as allocators searched for vehicles; as the response time stretched,
callbacks from patients increased (the average ring time for emergency callers
went over ten minutes); as congestion increased, the ambulance crews got
frustrated, pressed the wrong buttons on their new data terminals, couldn’t
get a result, tried calling on the voice channel, and increased the congestion; as
more and more crews fell back on the methods they understood, they took the
wrong vehicles even more; many vehicles were sent to an emergency, or none;
and finally the whole service collapsed. It’s reckoned that perhaps twenty
people died as a direct result of not getting paramedic assistance in time. By



842 Chapter 25 ■ Managing the Development of Secure Systems

the afternoon it was the major news item, the government intervened, and on
the following day the system was switched back to semi-manual operation.

This is only one of many such disasters, but it’s particularly valuable to
the engineer as it was extremely well documented by the resulting public
enquiry [1205]. In my own professional experience I’ve seen cases where
similar attempts to force through changes in corporate culture by replacing
computer systems have so undermined morale that honesty became a worry.
(Much of my consulting work has had to do with environments placed under
stress by corporate reorganization or even national political crises.)

In extreme cases, a step change in the environment brought on by a
savage corporate restructuring will be more like a one-off project than an
evolutionary change. There will often be some useful base to fall back on, such
as an understanding of external threats; but the internal threat environment
may become radically different. This is particularly clear in banking. Fifteen
years ago, bank branches were run by avuncular managers and staffed by
respectable middle-aged ladies who expected to spend their entire working
lives there. Nowadays the managers have been replaced by product sales
specialists and the teller staff are youngsters on near-minimum wages who
turn over every year or so. It’s simply not the same business.

25.4.2 Managing Project Requirements
This brings us to the much harder problem of how to do security require-
ments engineering for a one-off project. A common example in the 1990s was
building an e-commerce application from scratch, whether for a start-up or for
an established business desperate to create new online distribution channels.
A common example in the next ten years might be an established applica-
tion going online as critical components acquire the ability to communicate:
examples I’ve discussed in Part II include postage meters, burglar alarms and
door locks. There will be many more.

Building things from scratch is an accident-prone business; many large
development projects have crashed and burned. The problems appear to be
very much the same whether the disaster is a matter of safety, of security or
of the software simply never working at all; so security people can learn a
lot from the general software engineering literature, and indeed the broader
engineering literature. For example, according to Herb Simon’s classic model
of engineering design, you start off from a goal, desiderata, a utility function
and budget constraints; then work through a design tree of decisions until you
find a design that’s ‘good enough’; then iterate the search until you find the
best design or run out of time [1153].

At least as important as guidance on ‘how to do it’ are warnings about
how not to. The classic study of large software project disasters was written
by Bill Curtis, Herb Krasner, and Neil Iscoe [339]: they found that failure to



25.4 Security Requirements Engineering 843

understand the requirements was mostly to blame: a thin spread of application
domain knowledge typically led to fluctuating and conflicting requirements
which in turn caused a breakdown in communication. They suggested that
the solution was to find an ‘exceptional designer’ with a deep understanding
of the problem who would assume overall responsibility.

The millennium bug gives another useful data point, which many writ-
ers on software engineering still have to digest. If one accepts that many
large commercial and government systems needed extensive repair work, and
the conventional wisdom that a significant proportion of large development
projects are late or never delivered at all, then the prediction of widespread
chaos at the end of 1999 was inescapable. It didn’t happen. Certainly, the risks
to the systems used by small and medium sized firms were overstated [50]; nev-
ertheless, the systems of some large firms whose operations are critical to the
economy, such as banks and utilities, did need substantial fixing. But despite
the conventional wisdom, there have been no reports of significant organi-
zations going belly-up. This appears to support Curtis, Krasner, and Iscoe’s
thesis. The requirement for Y2K bug fixes was known completely: ‘I want this
system to keep on working, just as it is now, through into 2000 and beyond’.

So the requirements engineer needs to acquire a deep knowledge of the
application as well as of the people who might attack it and the kind of
tools they might use. If domain experts are available, well and good. When
interviewing them try to distinguish things that are done for a purpose from
those which are just ‘how things are done around here’. Probe constantly for the
reasons why things are done, and be sensitive to after-the-fact rationalizations.
Focus particularly on the things that are going to change. For example,
if dealing with customer complaints depends on whether the customer is
presentable or not, and your job is to take this business online, then ask the
experts what alternative controls might work in a world where it’s much
harder to tell a customer’s age, sex and social class. (This should probably have
been done round about the time of the civil rights movement in the 1960’s, but
better late than never.)

When tackling a new application, dig into its history. I’ve tried to do that
throughout this book, and bring out the way in which problems repeat. To
find out what electronic banking will be like in the twenty-first century, it’s a
good idea to know what it was like in the nineteenth; human nature doesn’t
change much. Historical parallels will also make it much easier for you to sell
your proposal to your client’s board of directors.

An influential recent publication is a book on threat modelling by Frank
Swiderski and Window Snyder [1236]. This describes the methodology
adopted by Microsoft following its big security push. The basic idea is that
you list the assets you’re trying to protect (ability to do transactions, access to
classified data, whatever) and also the assets available to an attacker (perhaps
the ability to subscribe to your system, or to manipulate inputs to the smartcard



844 Chapter 25 ■ Managing the Development of Secure Systems

you supply him, or to get a job at your call center). You then trace through the
system, from one module to another. You try to figure out what the trust levels
are and where the attack paths might be; where the barriers are; and what
techniques, such as spoofing, tampering, repudiation, information disclosure,
service denial and elevation of privilege, might be used to overcome particular
barriers. The threat model can be used for various purposes at different points
in the security development lifecycle, from architecture reviews through tar-
geting code reviews and penetration tests. What you’re likely to find is that
in order to make the complexity manageable, you have to impose a security
policy — as an abstraction, or even just a rule of thumb that enables you to
focus on the exceptions. Hopefully the security policies discussed in Part II of
this book will give you some guidance and inspiration.

You will likely find that a security requirements specification for a new
project requires iteration, so it’s more likely to be spiral model than waterfall
model. In the first pass, you’ll describe the new application and how it differs
from any existing applications for which loss histories are available, set out
a model of the risks as you perceive them, and draft a security policy (I’ll
have more to say on risk analysis and management in the next section). In the
second pass, you might get comments from your client’s middle management
and internal auditors, while meantime you scour the literature for useful
checklist items and ideas you can recycle. The outcome of this will be a
revised, more quantitative threat model; a security policy; and a security
target which sketches how the policy will be implemented in real life. It will
also set out how a system can be evaluated against these criteria. In the third
pass, the documentation will circulate to a wider group of people including
your client’s senior management, external auditors, insurers and perhaps an
external evaluator. The Microsoft model does indeed support iteration, and its
authors advise that it be used even at the level of features when a product is
undergoing evolution.

25.4.3 Parallelizing the Process
Often there isn’t an expert to hand, as when something is being done for
the first time, or when we’re building a competitor to a proprietary system
whose owners won’t share their loss history with us. An interesting question
here is how to brainstorm a specification by just trying to think of all the
things that could go wrong. The common industry practice is to hire a single
consulting firm to draw up a security target; but the experience described
in 12.2.3 suggested that using several experts in parallel would be better.
People with backgrounds in crypto, access control, internal audit and so on
will see a problem from different angles. There is also an interesting analogy
with the world of software testing where it is more cost efficient to test in
parallel rather than series: each tester has a different focus in the testing space



25.4 Security Requirements Engineering 845

and will find some subset of flaws faster than the others. (I’ll look at a more
quantitative model of this in the next chapter.)

This all motivated me to carry out an experiment in 1999 to see if a high-
quality requirements specification could be assembled quickly by getting a
lot of different people to contribute drafts. The idea was that most of the
possible attacks would be considered in at least one of them. So in one of our
University exam questions, I asked what would be a suitable security policy
for a company planning to bid for the licence for a public lottery.

The results are described in [49]. The model answer was that attackers,
possibly in cahoots with insiders, would try to place bets once the result of
the draw is known, whether by altering bet records or forging tickets; or place
bets without paying for them; or operate bogus vending stations which would
pay small claims but disappear if a client won a big prize. The security policy
that follows logically from this is that bets should be registered online with a
server which is secured prior to the draw, both against tampering and against
the extraction of sufficient information to forge a winning ticket; that there
should be credit limits for genuine vendors; and that there should be ways of
identifying bogus vendors.

Valuable and original contributions from the students came at a number
of levels, including policy goal statements, discussions of particular attacks,
and arguments about the merits of particular protection mechanisms. At
the policy level, there were a number of shrewd observations on the need
to maintain public confidence and the threat from senior managers in the
operating company. At the level of technical detail, one student discussed
threats from refund mechanisms, while another looked at attacks on secure
time mechanisms and observed that the use of the radio time signal in lottery
terminals would be vulnerable to jamming (this turned out to be a real
vulnerability in one existing lottery).

The students also came up with quite a number of routine checklist items of
the kind that designers often overlook — such as ‘tickets must be associated
with a particular draw’. This might seem obvious, but a protocol design which
used a purchase date, ticket serial number and server-supplied random chal-
lenge as input to a MAC computation might appear plausible to a superficial
inspection. Experienced designers appreciate the value of such checklists3.

The lesson to be learned from this case study is that requirements engineer-
ing, like software testing, is susceptible to a useful degree of parallelization.
So if your target system is something novel, then instead of paying a single
consultant to think about it for twenty days, consider getting fifteen people

3They did miss one lottery fraud that actually happened — when a couple won about half a
million dollars, the employee to whom they presented the winning ticket claimed it himself and
absconded overseas with the cash. The lottery compounded the failure by contesting the claim in
court, and losing [765]. One might have thought their auditors and lawyers could have advised
them better.



846 Chapter 25 ■ Managing the Development of Secure Systems

with diverse backgrounds to think about it for a day each. Have brainstorming
sessions with a variety of staff, from your client company, its suppliers, and
industry bodies.

But beware — people will naturally think of the problems that might make
their own lives difficult, and will care less about things that inconvenience
others. We learned this the hard way at our university where a number of
administrative systems were overseen by project boards made up largely
of staff from administrative departments. This was simply because the pro-
fessors were too busy doing research and teaching to bother. We ended up
with systems that are convenient for a small number of administrators, and
inconvenient for a much larger number of professors. When choosing the
membership of your brainstorming sessions, focus groups and project boards,
it’s worth making some effort to match their membership to the costs and risks
to which the firm is exposed. If a university has five times as many professors
as clerks, you should have this proportion involved in design; and if you’re
designing a bank system that will be the target of attack, then don’t let the
marketing folks drive the design. Make sure you have plenty internal audit
folks, customer helpline managers and other people whose lives will be made
a misery if there’s suddenly a lot more fraud.

25.5 Risk Management

That brings us to our next topic. Whether our threat model and security policy
evolve or are developed in a one-off project, at their heart lie business decisions
about priorities: how much to spend on protection against what. This is risk
management, and it must be done within a broader framework of managing
non-IT risks.

Many firms sell methodologies for this. Some come in the form of do-it-
yourself PC software, while others are part of a package of consultancy services.
Which one you use may be determined by your client’s policies; for example,
if you’re selling anything to the UK government you’re likely to have to use
a system called CRAMM. The basic purpose of such systems is to prioritise
security expenditure, while at the same time providing a financial case for it
to senior management.

The most common technique is to calculate the annual loss expectancy (ALE)
for each possible loss scenario. This is the expected loss multiplied by the
number of incidents expected in an average year. A typical ALE analysis for a
bank’s computer systems might consist of several hundred entries, including
items such as we see in Figure 25.5.

Note that accurate figures are likely to be available for common losses (such
as ‘teller takes cash’), while for the uncommon, high-risk losses such as a large
funds transfer fraud, the incidence is largely guesswork.



25.5 Risk Management 847

Loss type Amount Incidence ALE
SWIFT fraud $50,000,000 .005 $250,000
ATM fraud (large) $250,000 .2 $100,000
ATM fraud (small) $20,000 .5 $10,000
Teller takes cash $3,240 200 $648,000

Figure 25.5: Computing annualized loss expectancy (ALE)

ALEs have long been standardized by NIST as the technique to use in
U.S. government procurements [1005], and the audit culture pos-Enron is
spreading them everywhere. But in real life, the process of producing such a
table is all too often just iterative guesswork. The consultant lists all the threats
he can think of, attaches notional probabilities, works out the ALEs, adds them
all up, and gets a ludicrous result: perhaps the bank’s ALE exceeds its income.
He then tweaks the total down to whatever will justify the largest security
budget he thinks the board of directors will stand (or which his client, the chief
internal auditor, has told him is politically possible). The loss probabilities are
then massaged to give the right answer. (Great invention, the spreadsheet.)
I’m sorry if this sounds a bit cynical; but it’s what seems to happen more often
than not. The point is, ALEs may be of some value, but they should not be
elevated into a religion.

Insurance can be of some help in managing large but unlikely risks. But
the insurance business is not completely scientific either. For years the annual
premium for bankers’ blanket bond insurance, which covered both computer
crime and employee disloyalty, was 0.5% of the sum insured. This represented
pure profit for Lloyds, which wrote the policies; then there was a large
claim, and the premium doubled to 1% per annum. Such policies may have a
deductible of between $50,000,000 and $10,000,000 per incident, and so they
only remove a small number of very large risks from the equation. As for
nonbanks, business insurance used to cover computer risks up until about
1998, when underwriters started excluding it because of the worries about
the millennium bug. When it became available again in 2001, the premiums
were much higher than before. They have since come down, but insurance
is historically a cyclical industry: companies compete with low premiums
whenever rising stock-market values boost the value of their investment
portfolios, and jack up prices when markets fall. Around 2000, the end of the
dotcom boom created a downswing that coincided with the millennium bug
scare. Even now that markets are returning to normal, some kinds of cover are
still limited because of correlated risks. Insurers are happy to cover events of
known probability and local effect, but where the risk are unknown and the
effect could be global (for example, a worm that took down the Internet for
several days) markets tend to fail [200].



848 Chapter 25 ■ Managing the Development of Secure Systems

Anyway, a very important reason for large companies to take out computer
crime cover — and do many other things — is due diligence. The risks that are
being tackled may seem on the surface to be operational risks but are actually
legal, regulatory and PR risks. Often they are managed by ‘following the
herd’ — being just another one of the millions of gnu on the African veld, to
reuse our metaphor for Internet security. This is one reason why information
security is such a fashion-driven business. During the mid 1980’s, hackers
were what everyone talked about (even if their numbers were tiny), and firms
selling dial-back modems did a roaring business. From the late 80’s, viruses
took over the corporate imagination, and antivirus software made some people
rich. In the mid-1990s, the firewall became the star product. The late 1990s
saw a frenzy over PKI. These are the products that CFOs see on TV and in the
financial press. Amidst all this hoopla, the security professional must retain a
healthy scepticism and strive to understand what the real threats are.

25.6 Managing the Team

It’s now time to pull all the threads together and discuss how you manage a
team of developers who’re trying to produce — or enhance — a product that
does useful work, while at the same time not introduce vulnerabilities that
turn out to be show-stoppers. For this, you need to build a team with the right
culture, the right mix of skills, and above all the right incentives.

One of the hardest issues to get right is the balance between having everyone
on the team responsible for securing their own code, and having a security
guru on whom everyone relies.

There is a growing consensus that, in order to get high-quality software, you
have to make programmers test their own code and fix their own bugs. An
important case history is how Microsoft beat IBM in the PC operating systems
market. During the late 1980s, Microsoft and IBM collaborated on OS/2, but
the partnership broke up in 1990 after which Microsoft developed Windows
into the dominant position it has today. An important reason was Microsoft’s
impatience at IBM’s development process, which was slow and produced
bloated code. IBM followed the waterfall model, being careful to specify
modules properly before they were written; it also divided up its developers
into analysts, programmers and testers. This created a moral hazard, especially
when teams were working under pressure: programmers would write a lot
of shoddy code and ‘throw it over the wall’ for the testers to fix up. As a
result, the code base was often so broken that it wouldn’t run, so it wasn’t
possible to use regression tests to start pulling the bugs out. Microsoft took
the view that they did not have programmers or testers, only developers: each
programmer was responsible for fixing his own software, and a lot of attention



25.6 Managing the Team 849

was paid to ensuring that the software would build every night for testing.
One of the consequences was that people who wrote buggy software ended
up spending most of their time hunting and fixing bugs in their code, so more
of the code base ended up being written by the more careful programmers.
Another consequence was Microsoft won the battle to rule the world of 32-bit
operating systems; their better development methodology let them take a $100
bn market from IBM. The story is told by Steve Maguire in [829].

When engineering systems to be secure — as opposed to merely on time
and on budget — you certainly need to educate all your developers to the
point that they understand the basics, such as the need to sanitise input to
prevent overflows, and the need to lock variables to prevent race conditions.
But there is a strong case for some extra specialised knowledge and input,
especially at the testing phase. You can lecture programmers about stack
overflows until you’re blue in the face, and they’ll dutifully stare at their
code until they’ve convinced themselves that it doesn’t have any. It’s only
when someone knowledgeable runs a fuzzing tool on it, and it breaks, that the
message really gets through. So how do you square the need for specialists,
in order to acquire and maintain know-how and tools, with the need for
developers to test their own code, in order to ensure that most of your code is
written by the most careful coders?

A second, and equally hard, problem is how you maintain the security
of a system in the face of incremental development. You might be lucky
to start off with a product that’s got a clean architecture tied to a well-
understood protection profile, in which case the problem may be maintaining
its coherence as repeated bug fixes and feature enhancements add complexity.
The case history of cryptographic processors which I described in the chapter
on API security shows how you can suddenly pass a point at which feature
interactions fatally undermine your security architecture. An even worse (and
more likely) case is where you start off with a product that’s already messy, and
you simultaneously have to fix security problems and provide new features.
The former require the product to be made simpler, while the latter are
simultaneously making it more complex.

A large part of the answer lies in how you recruit, train and manage your
team of developers, and create a culture in which they get progressively better
at writing secure code. Some useful insights come from the Capability Maturity
Model developed by the Software Engineering Institute at Carnegie-Mellon
University [873]. Although this is aimed at dependability and at delivering
code on time rather than specifically at security, their research shows that
capability is something that develops in groups; it’s not just a purely individual
thing. This is especially important if your job is to write (say) the software for
a new mobile phone and you’ve got 20 people only one of whom has any real
security background.



850 Chapter 25 ■ Managing the Development of Secure Systems

The trick lies in managing the amount of specialisation in the team, and
the way in which the specialists (such as the security architect and the testing
guru) interact with the other developers. Let’s think first of all the stuff you
need to keep track of to manage the development of secure code.

First, there are some things that everybody should know. Everyone must
understand that security software and software security aren’t the same
thing; and that just about any application can have vulnerabilities. Every
developer has to know about the bugs that most commonly lead to vulner-
abilities — stack overflows, integer overflows, race conditions and off-by-one
errors. They should even understand the more exotic stuff like double frees.
Personally I’d ask questions about these topics when recruiting, to filter out
the clueless. If you’re stuck with an existing team then you just have to train
them — get them to read Gary McGraw’s book ‘Software Security — Building
Security In’ [858], and Michael Howard and David LeBlanc’s ‘Writing Secure
Code’ [627]. (Getting them to read this book too is unlikely to do them any
harm, though I say it myself.) Everyone on your team should also know about
the specific problems relevant to your application. if you’re developing web
applications, they have to know about cross-site attacks; if you’re doing an
accounting system, they need to know about COSO and internal controls.

Second, you need to think hard about the tool support your team will
need. If you want to prevent most stack overflows being written, you’ll need
static analysis tools — and these had better be tools that you can maintain
and extend yourself. Bugs tend to be correlated: when you find one, you’d
better look for similar ones elsewhere in your code base. Indeed, one of the
big improvements Microsoft’s made in its development process since Bill’s
security blitz is that when a bug is found, they update their tools to find all
similar ones. You’d better be able to do this too. You also need fuzzers so you
can check code modules for vulnerability to overflows of various kinds; these
are often not obvious to visual inspection, and now that the bad guys have
automated means of finding them, you need the same.

Third, you need to think about the libraries you’ll use. Professional devel-
opment teams avoid a large number of the problems described in this book
by using libraries. You avoid crypto problems — timing attacks, weak keys,
zero keys — by using good libraries, which you’ll probably buy in. You avoid
many buffer overflows by using your own standard libraries for I/O and for
those functions that your chosen programming language does badly. Your
libraries should enforce a type system, so that normal code just can’t process
wicked input.

Fourth, your tools and libraries have to support your architecture. The really
critical thing here is that you need to be able to evolve APIs safely. A system’s
architecture is defined more than anything else by its interfaces, and it decays
by a thousand small cuts: by a programmer needing a file handling routine



25.6 Managing the Team 851

that uses two more parameters than the existing one, and who therefore
writes a new routine — which may be dangerous in itself, or may just add
to complexity and thus contribute indirectly to an eventual failure. You need to
use, and build on, whatever structures your programming language provides
so that you can spot API violations using types.

This is already more than most developers could cope with individually. So
how do you manage the inevitable specialisation? One approach is inspired by
Fred Brooks’ famous book, ‘The Mythical Man-Month’, in which he describes
the lessons learned from developing the world’s first large software product,
the operating system for the IBM S/360 mainframe [231]. He describes the
‘chief programmer team’, a concept evolved by his colleague Harlan Mills,
in which a chief programmer — a highly productive coder — is supported
by a number of other staff including a toolsmith, a tester and a language
lawyer. Modern development teams don’t quite fit this vision, as there will
be a number of developers, but a variant of it makes sense if you’re trying to
develop secure code.

Assume that there will be an architect — perhaps the lead developer, per-
haps a specialist — who will act, as Brooks puts it, as the agent, the approver
and the advocate for the user. Assume that you’ll also have a toolsmith, a tester
and a language lawyer. One of these should be your security guru. If the tough
issue is evolving a security policy, or even just tidying up a messy product and
giving it the logical coherence needed for customers to understand it and use
it safely, then the security guy should probably be the architect. If the tough
issue is pulling out lots of implementation errors that have crept into a legacy
product over years — as with Microsoft’s security jihad on buffer overflows in
Windows XP — then it should probably be the tester, at least in the beginning.
If the task then changes to one of evolving the static analysis tools so that these
vulnerabilities don’t creep back, the security mantle will naturally pass to the
toolsmith. And if the APIs are everything, and there is constant pressure to add
extra features that will break them — as in the crypto processor case history I
discussed in the chapter on API security — then the language lawyer will have
to pick up the burden of ensuring that the APIs retain whatever type-safety
and other properties are required to prevent attacks.

So far so good. However, it’s not enough to have the skills: you need to get
people to work together. There are many ways to do this. One possibility is
the ‘bug lunch’ where developers are encouraged to discuss the latest subtle
errors that they managed to find and remove. Whatever format you use, the
critical factor is to create a culture in which people are open about stuff that
broke and got fixed. It’s bad practice if people who find bugs (even bugs that
they coded themselves) just fix them quietly; as bugs are correlated, there are
likely to be more. An example of good practice is in air traffic control, where
it’s expected that controllers making an error should not only fix it but declare



852 Chapter 25 ■ Managing the Development of Secure Systems

it at once by open outcry: ‘I have Speedbird 123 at flight level eight zero in the
terminal control area by mistake, am instructing to descend to six zero’. That
way any other controller with potentially conflicting traffic can notice, shout
out, and coordinate. Software is less dramatic, but is no different: you need
to get your developers comfortable with sharing their experiences with each
other, including their errors.

Another very useful team-building exercise is the adoption of a standard
style. One of the chronic problems with poorly-managed teams is that the
codebase is in a chaotic mixture of styles, with everybody doing his own thing.
The result is that when a programmer checks out some code to work on it, he
may well spend half an hour formatting it and tweaking it into his own style.
For efficiency reasons alone, you want to stop this. However, if your goal is
to write secure code, there’s another reason. When you find a bug, you want
to know whether it was a design error or an implementation error. If you
have no idea what the programmer who wrote it was thinking about, this can
be hard. So it’s important to have comments in the code which tell what the
programmer thought he was doing. But teams can easily fight about the ‘right’
quantity and style of comments: in the OS/2 saga, IBM used a lot more than
Microsoft did, so the IBM folks saw the guys from Redmond as a bunch of
hackers, and they responded by disdaining the men from Armonk as a bunch
of bureaucrats. So for goodness’ sake sit everyone down and let them spend
an afternoon hammering out what your house style will be. Provided there’s
enough for understanding bugs, it doesn’t matter hugely what the style is:
but it does matter that there is a consistent style that people accept and that
is fit for purpose. Creating this style is a far better team-building activity than
spending the afternoon paintballing.

25.7 Summary

Managing a project to build, or enhance, a system that has to be secure is a
hard problem. This used to be thought of as ‘security software’ — producing
a product such as an antivirus monitor or encryption program using expert
help. The reality nowadays is often that you’re writing a system that has to do
real work — a web application, for example, or a gadget that listens to network
traffic — and you want to keep out any vulnerabilities that would make it a
target for attack. In other words, you want software security — and that isn’t
the same as security software.

Understanding the requirements is often the hardest part of the whole
process. Like developing the system itself, security requirements engineering
can involve a one-off project; it can be a limited iterative process; or it can
be a matter of continuous evolution. Evolution is becoming the commonest
as systems get larger and longer-lived, whether as packaged software, online



Research Problems 853

services or gadgets. Security requirements are complicated by changes of
scale, of business structures and — above all — of the environment, where the
changes might be in the platform you use, the legal environment you work
in, or the threats you face. Systems are fielded, get popular, and then get
attacked.

Writing secure code has to be seen in this context: the big problem is to
know what you’re trying to do. However, even given a tight specification, or
constant feedback from people hacking your product, you’re not home and
dry. There are a number of challenges in hiring the right people, keeping them
up to date with attacks, backing them up with expertise in the right places
which they’ll actually use, reinforcing this with the right tools and language
conventions, and above all creating an environment in which they work to
improve their security capability.

Research Problems

The issues discussed in this chapter are among the hardest and the most
important of any on our field. However, they tend to receive little attention
because they lie at the boundaries with software engineering, applied psy-
chology, economics and management. Each of these interfaces appears to be
a potentially productive area of research. Security economics in particular
has made great strides in the last few years, and people are starting to work
on psychology. There is a thriving research community in decision science,
where behavioural economists, psychologists and marketing folks look at why
people really take the decisions they do; this field is ripe for mining by security
researchers.

Yet we have all too little work on how these disciplines can be applied to
organisations. For a start, it would be useful if someone were to collect a library
of case histories of security failures caused by unsatisfactory incentives in
organisations, such as [587, 662]. What might follow given a decent empirical
foundation? For example, if organisational theory is where microeconomic
analysis is applied to organisations, with a little psychology thrown in, then
what would be the shape of an organisational theory applied to security? The
late Jack Hirshleifer took the view that we should try to design organizations
in which managers were forced to learn from their mistakes: how could we do
that? How might you set up institutional structures to monitor changes in the
threat environment and feed them through into not just systems development
but into supporting activities such as internal control? Even more basically,
how can you design an organization that is ‘incentive-compatible’ in the sense
that staff behave with an appropriate level of care? And what might the cultural
anthropology of organisations have to say? We saw in the last chapter how the
response of governments to the apparently novel threats posed by Al-Qaida



854 Chapter 25 ■ Managing the Development of Secure Systems

was maladaptive in many ways: how can you do corporate governance so that
the firm doesn’t fall prey to similar problems?

Further Reading

Managing the development of information systems has a large, diffuse and
multidisciplinary literature. There are classics which everyone should read,
such as Fred Brooks’ ‘Mythical Man Month’ [231] and Nancy Leveson’s
‘Safeware’ [786]. Standard textbooks on software engineering such as Roger
Pressman [1041] and Hans van Vliet [1281] cover the basics of project manage-
ment and requirements engineering. The economics of the software life cycle
are discussed by Brooks and by Barry Boehm [199]. The Microsoft approach to
managing software evolution is described by Steve McGuire [829], while their
doctrine on threat modelling is discussed in a book by Frank Swiderski and
Window Snyder [1236].

There are useful parallels with other engineering disciplines. An interesting
book by Henry Petroski discusses the history of bridge building, why bridges
fall down, and how civil engineers learned to learn from the collapses:
what tends to happen is that an established design paradigm is stretched
and stretched until it suddenly fails for some unforeseen reason [1021]. For a
survey of risk management methods and tools, see Richard Baskerville [123] or
Donn Parker [1005]. Computer system failures are another necessary subject of
study; a must-read fortnightly source is the comp.risks newsgroup of which
a selection has been collated and published in print by Peter Neumann [962].

Organizational aspects are discussed at length in the business school litera-
ture, but this can be bewildering to the outsider. If you’re only going to read one
book, make it Lewis Pinault’s ‘Consulting Demons’ — the confessions of a for-
mer insider about how the big consulting firms rip off their customers [1028].
John Micklethwait and Adrian Wooldridge provide a critical guide to the more
academic literature and draw out a number of highly relevant tensions, such
as the illogicality of management gurus who tell managers to make their orga-
nizations more flexible by sacking people, while at the same time preaching
the virtues of trust [882]. As for the theory of internal control, such as it is, the
best book is by Steven Root, who discusses its design and evolution [1082].
The best introductory book I know to the underlying microeconomics is by
Carl Shapiro and Hal Varian [1159]: the new institutional school has written
much more on the theory of the firm.

Finally, the business of managing secure software development is getting
more attention (at last). Microsoft’s security VP Mike Nash describes the back-
ground to the big security push and the adoption of the security development
lifecycle at [929]. The standard books I’d get everyone to read are Michael



Further Reading 855

Howard and David LeBlanc’s ‘Writing Secure Code’ [627], which sets out the
Microsoft approach to managing the security lifecycle, and Gary McGraw’s
book ‘Software Security — Building Security In’ [858], which is a first-class
resource on what goes wrong. As I wrote, Microsoft, Symantec, EMC, Juniper
Networks and SAP have just announced the establishment of an industry
body, SAFEcode. to develop best practices. And about time too!




