
Final version of CACM Research Highlights paper, May 17, 2010

x86-TSO: A Rigorous and Usable Programmer’s Model for
x86 Multiprocessors

Peter Sewell
University of Cambridge

Susmit Sarkar
University of Cambridge

Scott Owens
University of Cambridge

Francesco Zappa Nardelli
INRIA

Magnus O. Myreen
University of Cambridge

http://www.cl.cam.ac.uk/users/pes20/weakmemory

ABSTRACT
Exploiting the multiprocessors that have recently become
ubiquitous requires high-performance and reliable concur-
rent systems code, for concurrent data structures, operat-
ing system kernels, synchronisation libraries, compilers, and
so on. However, concurrent programming, which is always
challenging, is made much more so by two problems. First,
real multiprocessors typically do not provide the sequentially
consistent memory that is assumed by most work on seman-
tics and verification. Instead, they have relaxed memory
models, varying in subtle ways between processor families,
in which different hardware threads may have only loosely
consistent views of a shared memory. Second, the public
vendor architectures, supposedly specifying what program-
mers can rely on, are often in ambiguous informal prose (a
particularly poor medium for loose specifications), leading
to widespread confusion.

In this paper we focus on x86 processors. We review sev-
eral recent Intel and AMD specifications, showing that all
contain serious ambiguities, some are arguably too weak to
program above, and some are simply unsound with respect
to actual hardware. We present a new x86-TSO program-
mer’s model that, to the best of our knowledge, suffers from
none of these problems. It is mathematically precise (rig-
orously defined in HOL4) but can be presented as an intu-
itive abstract machine which should be widely accessible to
working programmers. We illustrate how this can be used to
reason about the correctness of a Linux spinlock implemen-
tation and describe a general theory of data-race-freedom for
x86-TSO. This should put x86 multiprocessor system build-
ing on a more solid foundation; it should also provide a basis
for future work on verification of such systems.

1. INTRODUCTION
Multiprocessor machines, with many processors acting on

a shared memory, have been developed since the 1960s; they
are now ubiquitous. Meanwhile, the difficulty of program-
ming concurrent systems has motivated extensive research
on programming language design, semantics, and verifica-
tion, from semaphores and monitors to program logics, soft-
ware model checking, and so forth. This work has almost al-
ways assumed that concurrent threads share a single sequen-
tially consistent memory [21], with their reads and writes
interleaved in some order. In fact, however, real multipro-
cessors use sophisticated techniques to achieve high perfor-
mance: store buffers, hierarchies of local cache, speculative

execution, etc. These optimisations are not observable by
sequential code, but in multithreaded programs different
threads may see subtly different views of memory; such ma-
chines exhibit relaxed, or weak, memory models [6, 17, 19,
7].

For a simple example, consider the following assembly lan-
guage program (SB) for modern Intel or AMD x86 multipro-
cessors: given two distinct memory locations x and y (ini-
tially holding 0), if two processors respectively write 1 to
x and y and then read from y and x (into register EAX on
processor 0 and EBX on processor 1), it is possible for both
to read 0 in the same execution. It is easy to check that this
result cannot arise from any interleaving of the reads and
writes of the two processors; modern x86 multiprocessors do
not have a sequentially consistent semantics.

SB

Proc 0 Proc 1
MOV [x]←1 MOV [y]←1
MOV EAX←[y] MOV EBX←[x]
Allowed Final State: Proc 0:EAX=0 ∧ Proc 1:EBX=0

Microarchitecturally, one can view this particular example
as a visible consequence of store buffering: if each proces-
sor effectively has a FIFO buffer of pending memory writes
(to avoid the need to block while a write completes), then
the reads from y and x could occur before the writes have
propagated from the buffers to main memory.

Other families of multiprocessors, dating back at least to
the IBM 370, and including ARM, Itanium, POWER, and
SPARC, also exhibit relaxed-memory behaviour. Moreover,
there are major and subtle differences between different pro-
cessor families (arising from their different internal design
choices): in the details of exactly what non-sequentially-
consistent executions they permit, and of what memory bar-
rier and synchronisation instructions they provide to let the
programmer regain control.

For any of these processors, relaxed-memory behaviour ex-
acerbates the difficulties of writing concurrent software, as
systems programmers cannot reason, at the level of abstrac-
tion of memory reads and writes, in terms of an intuitive
concept of global time.

Still worse, while some vendors’ architectural specifica-
tions clearly define what they guarantee, others do not,
despite the extensive previous research on relaxed memory
models. We focus in this paper on x86 processors. In Sec-
tion 2 we introduce the key examples and discuss several
vendor specifications, showing that they all leave key ques-
tions ambiguous, some give unusably weak guarantees, and

1



some are simply wrong, prohibiting behaviour that actual
processors do exhibit.

For there to be any hope of building reliable multipro-
cessor software, systems programmers need to understand
what relaxed-memory behaviour they can rely on, but at
present that understanding exists only in folklore, not in
clear public specifications. To remedy this, we aim to pro-
duce mathematically precise (but still appropriately loose)
programmer’s models for real-world multiprocessors, to in-
form the intuition of systems programmers, to provide a
sound foundation for rigorous reasoning about multiproces-
sor programs, and to give a clear correctness criterion for
hardware. In Section 3 we describe a simple x86 memory
model, x86-TSO [27]. In contrast to those vendor specifi-
cations it is unambiguous, defined in rigorous mathematics,
but it is also accessible, presented in an operational abstract-
machine style. To the best of our knowledge it is consistent
with the behaviour of actual processors. We consider the rel-
evant vendor litmus tests in Section 3.2 and describe some
empirical test results in Section 3.3.

Relaxed memory behaviour is particularly critical for low-
level systems code: synchronisation libraries, concurrent
data structure libraries, language runtime systems, compil-
ers for concurrent languages, and so on. To reason (even
informally) about such code, such as the implementation of
an OS mutual exclusion lock, one would necessarily depend
on the details of a specific model. Higher-level application
code, on the other hand, should normally be oblivious to the
underlying processor memory model. The usual expectation
is that such code is in some sense race free, with all access to
shared memory (except for accesses within the library code)
protected by locks or clearly identified as synchronisation ac-
cesses. Most memory models are designed with the intention
that such race-free code behaves as if it were executing on a
sequentially consistent machine. In Section 4 we describe an
implementation of spin locks for x86, from one version of the
Linux kernel, and discuss informally why it is correct with
respect to x86-TSO. In Section 5 we define a precise notion of
data race for x86 and discuss results showing that programs
that use spin locks but are otherwise race-free (except for
the races within the lock implementation) do indeed behave
as if executing on a sequentially consistent machine [26].

To support formal reasoning about programs, a memory
model must be integrated with a semantics for machine in-
structions (a problem which has usually been neglected in
the relaxed memory literature). In previous work [31, §3]
we describe a semantics for core x86 instructions, with sev-
eral innovations. We take care not to over-sequentialise the
memory accesses within each instruction, parameterising the
instruction semantics over parallel and sequential combina-
tors. A single definition, with all the intricacies of flag-
setting, addressing modes, etc., can then be used to generate
both an event-based semantics that can be integrated with
memory models, and a state-based semantics for sequen-
tial programs; the latter enables us to test the semantics
against implementations. We also build an instruction de-
coding function, directly from the vendor documentation, to
support reasoning about concrete machine code.

The intended scope of x86-TSO is typical user code and
most kernel code: we cover programs using coherent write-
back memory, without exceptions, misaligned or mixed-
size accesses, ‘non-temporal’ operations (e.g. MOVNTI), self-
modifying code, or page-table changes. Within this domain,

and together with our earlier instruction semantics, x86-
TSO thus defines a complete semantics of programs.

Relaxed memory models play an important role also in
the design of high-level concurrent languages such as Java
or C++0x, where programs are subject not just to the mem-
ory model of the underlying processor but also to reorder-
ings introduced by compiler optimisations. The Java Mem-
ory Model [24] attempts to ensure that data-race free pro-
grams are sequentially consistent; all programs satisfy mem-
ory safety/security properties; and common compiler opti-
misations are sound. Unfortunately, as shown by Ševč́ık and
Aspinall [33], the last goal is not met. In the future, we hope
that it will be possible to prove correctness of implementa-
tions of language-level memory models above the models
provided by real-world processors; ensuring that both are
precisely and clearly specified is a first step towards that
goal.

2. ARCHITECTURE SPECIFICATIONS
To describe what programmers can rely on, processor

vendors document architectures. These are loose specifica-
tions, claimed to cover a range of past and future processor
implementations, which should specify processor behaviour
tightly enough to enable effective programming, but with-
out unduly constraining future processor designs. For some
architectures the memory-model aspects of these specifica-
tions are expressed in reasonably precise mathematics, as
in the normative Appendix K of the SPARC v.8 specifica-
tion [2]. For x86, however, the vendor architecture speci-
fications are informal prose documents. Informal prose is
a poor medium for loose specification of subtle properties,
and, as we shall see, such documents are almost inevitably
ambiguous and sometimes wrong. Moreover, one cannot test
programs above such a vague specification (one can only run
programs on particular actual processors), and one cannot
use them as criteria for testing processor implementations.
In this section we review the informal-prose Intel and AMD
x86 specifications: the Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual (SDM) [5] and the AMD64 Archi-
tecture Programmer’s Manual (APM) [3]. There have been
several versions of these, some differing radically; we con-
trast them with each other, and with what we have discov-
ered of the behaviour of actual processors. In the process
we introduce the key discriminating examples.

2.1 pre-IWP (before Aug. 2007)
Early revisions of the Intel SDM (e.g. rev. 22, Nov. 2006)

gave an informal-prose model called ‘processor ordering’,
unsupported by any examples. It is hard to see precisely
what this prose means, especially without additional knowl-
edge or assumptions about the microarchitecture of particu-
lar implementations. The uncertainty about x86 behaviour
that at least some systems programmers had about earlier
IA-32 processors can be gauged from an extensive discus-
sion about the correctness of a proposed optimisation to a
Linux spinlock implementation [1]. The discussion is largely
in microarchitectural terms, not just in terms of the speci-
fied architecture, and seems to have been resolved only with
input from Intel staff. We return to this optimisation in Sec-
tion 4, where we can explain why it is sound with respect to
x86-TSO.

2.2 IWP/AMD3.14/x86-CC

2



In August 2007, an Intel White Paper [4] (IWP) gave a
somewhat more precise model, with 8 informal-prose prin-
ciples P1–P8 supported by 10 examples (known as litmus
tests). This was incorporated, essentially unchanged, into
later revisions of the Intel SDM (including rev. 26–28), and
AMD gave similar, though not identical, prose and tests in
rev. 3.14 of their manual [3, Vol. 2,§7.2] (AMD3.14). These
are essentially causal-consistency models [9], and they allow
different processors to see writes to independent locations
in different orders, as in the IRIW litmus test [11] below1.
AMD3.14 allows this explicitly, while IWP allows it implic-
itly, as IRIW is not ruled out by the stated principles. Mi-
croarchitecturally, IRIW can arise from store buffers that
are shared between some but not all processors.

IRIW

Proc 0 Proc 1 Proc 2 Proc 3
MOV [x]←1 MOV [y]←1 MOV EAX←[x] MOV ECX←[y]

MOV EBX←[y] MOV EDX←[x]
Forbidden Final State: Proc 2:EAX=1 ∧ Proc 2:EBX=0

∧ Proc 3:ECX=1 ∧ Proc 3:EDX=0

However, both require that, in some sense, causality is re-
spected, as in the IWP principle “P5. In a multiprocessor
system, memory ordering obeys causality (memory ordering
respects transitive visibility)”.

We used these informal specifications as the basis for a
formal model, x86-CC [31], for which a key issue was giv-
ing a reasonable interpretation to this “causality”, which is
not defined in IWP or AMD3.14. Apart from that, the in-
formal specifications were reasonably unambiguous — but
they turned out to have two serious flaws.

First, they are arguably rather weak for programmers. In
particular, they admit the IRIW behaviour above but, under
reasonable assumptions on the strongest x86 memory bar-
rier, MFENCE, adding MFENCEs would not suffice to recover
sequential consistency (instead, one would have to make lib-
eral use of x86 LOCK’d instructions) [31, §2.12]. Here the
specifications seem to be much looser than the behaviour of
implemented processors: to the best of our knowledge, and
following some testing, IRIW is not observable in practice,
even without MFENCEs. It appears that some JVM imple-
mentations depend on this fact, and would not be correct
if one assumed only the IWP/AMD3.14/x86-CC architec-
ture [15].

Second, more seriously, x86-CC and IWP are unsound
with respect to current processors. The following exam-
ple, n6, due to Paul Loewenstein [personal communication,
Nov. 2008] shows a behaviour that is observable (e.g., on
an Intel Core 2 duo) but that is disallowed by x86-CC and
by any interpretation we can make of IWP principles P1,2,4
and 6 [27, A.5].

n6

Proc 0 Proc 1
MOV [x]←1 MOV [y]←2
MOV EAX←[x] MOV [x]←2
MOV EBX←[y]
Allowed Final State: Proc 0:EAX=1 ∧ Proc 0:EBX=0

∧ [x]=1

1We use Intel assembly syntax throughout except that we
use an arrow ← to indicate the direction of data flow, so
MOV [x]←1 is a write of 1 to address x and MOV EAX←[x]
is a read from address x into register EAX. Initial states are
all 0 unless otherwise specified.

To see why this could be allowed by multiprocessors with
FIFO store buffers, suppose that first the Proc 1 write of
[y]=2 is buffered, then Proc 0 buffers its write of [x]=1, reads
[x]=1 from its own store buffer, and reads [y]=0 from main
memory, then Proc 1 buffers its [x]=2 write and flushes its
buffered [y]=2 and [x]=2 writes to memory, then finally Proc
0 flushes its [x]=1 write to memory.

The AMD3.14 manual is not expressed in terms of a
clearly identified set of principles, and the main text (Vol. 2,
§7.2) leaves the ordering of stores to a single location un-
constrained, though elsewhere the manual describes a mi-
croarchitecture with store buffers and cache protocols that
strongly implies that memory is coherent. In the absence
of an analogue of the IWP P6, the reasoning prohibiting n6
does not carry over.

2.3 Intel SDM rev. 29–34 (Nov. 2008–
Mar. 2010)

The most recent substantial change to the Intel memory-
model specification, at the time of writing, was in revision
29 of the Intel SDM (revisions 29–34 are essentially iden-
tical except for the LFENCE text). This is in a similar
informal-prose style to previous versions, again supported
by litmus tests, but is significantly different to IWP/x86-
CC/AMD3.14. First, the IRIW final state above is forbid-
den [5, Example 8-7, vol. 3A], and the previous coherence
condition: “P6. In a multiprocessor system, stores to the
same location have a total order”has been replaced by: “Any
two stores are seen in a consistent order by processors other
than those performing the stores” (we label this P9).

Second, the memory barrier instructions are now in-
cluded. It is stated that reads and writes cannot pass
MFENCE instructions, together with more refined proper-
ties for SFENCE and LFENCE.

Third, same-processor writes are now explicitly ordered:
“Writes by a single processor are observed in the same order
by all processors” (P10) (we regarded this as implicit in the
IWP “P2. Stores are not reordered with other stores”).

This revision appears to deal with the unsoundness, ad-
mitting the n6 behaviour above, but, unfortunately, it is
still problematic. The first issue is, again, how to inter-
pret “causality” as used in P5. The second issue is one of
weakness: the new P9 says nothing about observations of
two stores by those two processors themselves (or by one
of those processors and one other). The following examples
(which we call n5 and n4b) illustrate potentially surpris-
ing behaviour that arguably violates coherence. Their final
states are not allowed in x86-CC, are not allowed in a pure
store-buffer implementation or in x86-TSO, and we have not
observed them on actual processors. However, the principles
stated in revisions 29–34 of the Intel SDM appear, presum-
ably unintentionally, to allow them. The AMD3.14 Vol. 2,
§7.2 text taken alone would allow them, but the implied
coherence from elsewhere in the AMD manual would for-
bid them. These points illustrate once again the difficulty
of writing unambiguous and correct loose specifications in
informal prose.

n5

Proc 0 Proc 1
MOV [x]←1 MOV [x]←2
MOV EAX←[x] MOV EBX←[x]
Forbidden Final State: Proc 0:EAX=2 ∧ Proc 1:EBX=1

3



n4b

Proc 0 Proc 1
MOV EAX←[x] MOV ECX←[x]
MOV [x]←1 MOV [x]←2
Forbidden Final State: Proc 0:EAX=2 ∧ Proc 1:ECX=1

2.4 AMD3.15 (Nov. 2009)
In November 2009, AMD produced a new revision, 3.15,

of their manuals. The main difference in the memory model
specification is that IRIW is now explicitly forbidden.

Summarising the key litmus-test differences, we have the
following, where

√
and × entries are explicit in the specifi-

cation text and starred entries indicate possible deductions,
some of which may not have been intended.

IWP / 3.14 29–34 3.15 actual
x86-CC processors

IRIW
√

∗/
√ √

× × not observed
n6 ×∗/×

√
∗

√
∗

√
∗ observed

n5/n4b ×∗/× ×∗
√

∗ ×∗ not observed

There are also many non-differences: tests for which the
behaviours coincide in all three cases. We return to these,
and go through the other tests from the Intel and AMD
documentation, in Section 3.2.

3. OUR X86-TSO PROGRAMMER’S
MODEL

Given these problems with the informal specifications, we
cannot produce a useful rigorous model by formalising the
“principles”they contain, as we attempted with x86-CC [31].
Instead, we have to build a reasonable model that is consis-
tent with the given litmus tests, with observed processor
behaviour, and with what we know of the needs of program-
mers, the vendors’ intentions, and the folklore in the area.

We emphasise that our aim is a programmer’s model, of
the allowable behaviours of x86 processors as observed by
assembly programs, not of the internal structure of pro-
cessor implementations, or of what could be observed on
hardware interfaces. We present the model in an abstract-
machine style to make it accessible, but are concerned only
with its external behaviour; its buffers and locks are highly
abstracted from the microarchitecture of processor imple-
mentations.

The fact that store buffering is observable, as in the SB
and n6 examples, but IRIW is not (and IRIW is explicitly
forbidden in the SDM revs. 29–34 and AMD3.15), together
with additional tests that prohibit many other reorderings,
strongly suggests that, apart from store buffering, all pro-
cessors share the same view of memory. Moreover, different
processors or hardware threads do not observably share store
buffers. This is in sharp contrast to x86-CC, where each
processor has a separate view order of its memory accesses
and other processors’ writes. To the best of our knowledge,
for the usual write-back memory, no other aspects of the
microarchitecture (the out-of-order execution, cache hierar-
chies and protocols, interconnect topology, and so on) are
observable to the programmer, except in so far as they af-
fect performance.

This is broadly similar to the SPARC Total Store Order-
ing (TSO) memory model [32, 2], which is essentially an ax-
iomatic description of the behaviour of store-buffer multipro-
cessors. Accordingly, we have designed a TSO-like model for

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

H/W thread H/W thread

Figure 1: x86-TSO block diagram

x86, called x86-TSO [27]. It is defined mathematically in two
styles: an abstract machine with explicit store buffers, and
an axiomatic model that defines valid executions in terms
of memory orders; they are formalised in HOL4 [20] and
are proved equivalent. The abstract machine conveys the
programmer-level operational intuition behind x86-TSO; we
describe it informally in the next subsection. The axiomatic
model supports constraint-based reasoning about example
programs (e.g. by our memevents tool in Section 3.3); it is
similar to that of SPARCv8 [2, App. K], but we also deal
with x86 CISC instructions with multiple memory accesses
and with x86 barriers and atomic (or LOCK’d) instructions.
The x86 supports a range of atomic instructions: one can
add a LOCK prefix to many read-modify-write instructions
(ADD, INC, etc.), and the XCHG instruction is implicitly
LOCK’d. There are three main memory barriers: MFENCE,
SFENCE and LFENCE.

3.1 The Abstract Machine
Our programmer’s model of a multiprocessor x86 system

is illustrated in Figure 1. At the top of the figure are a
number of hardware threads, each corresponding to a single
in-order stream of instruction execution. (In this program-
mer’s model there is no need to consider physical processors
explicitly; it is hardware threads that correspond to the Proc
N columns in the tests we give.) They interact with a storage
subsystem, drawn as the dotted box.

The state of the storage subsystem comprises a shared
memory that maps addresses to values, a global lock to indi-
cate when a particular hardware thread has exclusive access
to memory, and one store buffer per hardware thread.

The behaviour of the storage subsystem is described in
more detail below, but the main points are:

• The store buffers are FIFO and a reading thread must
read its most recent buffered write, if there is one, to
that address; otherwise reads are satisfied from shared
memory.

• An MFENCE instruction flushes the store buffer of that
thread.

• To execute a LOCK’d instruction, a thread must first
obtain the global lock. At the end of the instruction, it
flushes its store buffer and relinquishes the lock. While
the lock is held by one thread, no other thread can
read.

4



• A buffered write from a thread can propagate to the
shared memory at any time except when some other
thread holds the lock.

More precisely, the possible interactions between the
threads and the storage subsystem are described by the fol-
lowing events:

• Wp[a]=v, for a write of value v to address a by thread
p

• Rp[a]=v, for a read of v from a by thread p

• Fp, for an MFENCE memory barrier by thread p

• Lp, at the start of a LOCK’d instruction by thread p

• Up, at the end of a LOCK’d instruction by thread p

• τp, for an internal action of the storage subsystem,
propagating a write from p’s store buffer to the shared
memory

For example, suppose a particular hardware thread p has
come to the instruction INC [56] (which adds 1 to the value
at address 56), and p’s store buffer contains a single write to
56, of value 0. In one execution we might see read and write
events, Rp[56]=0 and Wp[56]=1, followed by two τp events
as the two writes propagate to shared memory. Another
execution might start with the write of 0 propagating to
shared memory, where it could be overwritten by another
thread. Executions of LOCK;INC [56] would be similar but
bracketed by Lp and Up events.

The behaviour of the storage subsystem is specified by
the following rules, where we define a hardware thread to
be blocked if the storage subsystem lock is taken by another
hardware thread, i.e., while another hardware thread is ex-
ecuting a LOCK’d instruction.

1. Rp[a]=v: p can read v from memory at address a if
p is not blocked, there are no writes to a in p’s store
buffer, and the memory does contain v at a;

2. Rp[a]=v: p can read v from its store buffer for address
a if p is not blocked and has v as the newest write to
a in its buffer;

3. Wp[a]=v: p can write v to its store buffer for address
a at any time;

4. τp: if p is not blocked, it can silently dequeue the oldest
write from its store buffer and place the value in mem-
ory at the given address, without coordinating with
any hardware thread;

5. Fp: if p’s store buffer is empty, it can execute an
MFENCE (note that if a hardware thread encounters
an MFENCE instruction when its store buffer is not
empty, it can take one or more τp steps to empty the
buffer and proceed, and similarly in 7 below);

6. Lp: if the lock is not held, it can begin a LOCK’d
instruction; and

7. Up: if p holds the lock, and its store buffer is empty, it
can end a LOCK’d instruction.

Technically, the formal versions of these rules [27] define
a labelled transition system (with the events as labels) for
the storage subsystem, and we define the behaviour of the
whole system as a parallel composition of that and transition
systems for each thread, synchronising on the non-τ labels
as in CCS [25].

Additionally, we tentatively impose a progress condition,
that each memory write is eventually propagated from the
relevant store buffer to the shared memory. This is not
stated in the documentation and is hard to test. We are
assured that it holds at least for AMD processors.

For write-back cacheable memory, and the fragment of
the instruction set that we consider, we treat LFENCE and
SFENCE semantically as no-ops. This follows the Intel and
AMD documentation, both of which imply that these fences
do not order store/load pairs which are the only reorderings
allowed in x86-TSO. Note, though, that elsewhere it is stated
that the Intel SFENCE flushes the store buffer [5, Vol.3A,
§11.10].

3.2 Litmus Tests
For our introductory SB example from Section 1, x86-TSO

permits the given behaviour for the same reasons as set forth
there. For each of the examples in Section 2 (IRIW, n6, and
n5/n4b), x86-TSO permits the given final state if and only
if it is observable in our testing of actual processors, i.e. for
IRIW it is forbidden (in contrast to IWP and AMD3.14),
for n6 it is allowed (in contrast to IWP), and for n5/n4b it
is forbidden (in contrast to the Intel SDM rev.29–34). For
all the other relevant tests from the current Intel and AMD
manuals the stated behaviour agrees with x86-TSO. We now
go through Examples 8-1 to 8-10 from rev. 34 of the Intel
SDM, and the three other tests from AMD3.15, and explain
the x86-TSO behaviour in each case.

For completeness we repeat the Intel SDM short descrip-
tions of these tests, e.g. “stores are not reordered with other
stores”, but note that “not reordered with” is not defined
there and is open to misinterpretation [27, §3.2].

Example 8-1. Stores Are Not Reordered with

Other Stores.

Proc 0 Proc 1
MOV [x]←1 MOV EAX←[y]
MOV [y]←1 MOV EBX←[x]
Forbidden Final State: Proc 1:EAX=1 ∧ Proc 1:EBX=0

This test implies that the writes by Proc 0 are seen in order
by Proc 1’s reads, which also execute in order. x86-TSO
forbids the final state because Proc 0’s store buffer is FIFO,
and Proc 0 communicates with Proc 1 only through shared
memory.

Example 8-2. Stores Are Not Reordered with Older

Loads.

Proc 0 Proc 1
MOV EAX←[x] MOV EBX←[y]
MOV [y]←1 MOV [x]←1
Forbidden Final State: Proc 0:EAX=1 ∧ Proc 1:EBX=1

x86-TSO forbids the final state because reads are never de-
layed.

Example 8-3. Loads May be Reordered with Older

Stores. This test is just the SB example from Section 1,
which x86-TSO permits. The third AMD test (amd3) is

5



similar but with additional writes inserted in the middle of
each thread, of 2 to x and y respectively.

Example 8-4. Loads Are not Reordered with Older

Stores to the Same Location.

Proc 0
MOV [x]←1
MOV EAX←[x]
Required Final State: Proc 0:EAX=1

x86-TSO requires the specified result because reads must
check the local store buffer.

Example 8-5. Intra-Processor Forwarding is Al-

lowed. This test is similar to Example 8-3.

Example 8-6. Stores Are Transitively Visible.

Proc 0 Proc 1 Proc 2
MOV [x]←1 MOV EAX←[x] MOV EBX←[y]

MOV [y]←1 MOV ECX←[x]
Forbidden Final State: Proc 1:EAX=1 ∧ Proc 2:EBX=1

∧ Proc 2:ECX=0

x86-TSO forbids the given final state because otherwise the
Proc 2 constraints imply that y was written to shared mem-
ory before x. Hence the write to x must be in Proc 0’s store
buffer (or the instruction has not executed), when the write
to y is initiated. Note that this test contains the only men-
tion of “transitive visibility” in the Intel SDM, leaving its
meaning unclear.

Example 8-7. Stores Are Seen in a Consistent Or-

der by Other Processors. This test rules out the IRIW
behaviour as described in Section 2.2. x86-TSO forbids the
given final state because the Proc 2 constraints imply that
x was written to shared memory before y whereas the Proc
3 constraints imply that y was written to shared memory
before x.

Example 8-8. Locked Instructions Have a Total Or-

der. This is the same as the IRIW Example 8-7 but with
LOCK’d instructions for the writes; x86-TSO forbids the
final state for the same reason as above.

Example 8-9. Loads Are not Reordered with Locks.

Proc 0 Proc 1
XCHG [x]←EAX XCHG [y]←ECX
MOV EBX←[y] MOV EDX←[x]
Initial state: Proc 0:EAX=1 ∧ Proc 1:ECX=1 (elsewhere 0)
Forbidden Final State: Proc 0:EBX=0 ∧ Proc 1:EDX=0

This test indicates that locking both writes in Example 8-3
would forbid the non-sequentially consistent result. x86-
TSO forbids the final state because LOCK’d instructions
flush the local store buffer. If only one write were LOCK’d
(say the write to x), the Example 8-3 final state would be
allowed as follows: on Proc 1, buffer the write to y and
execute the read x, then on Proc 0 write to x in shared
memory then read from y.

Example 8-10. Stores Are not Reordered with

Locks.

Proc 0 Proc 1
XCHG [x]←EAX MOV EBX←[y]
MOV [y]←1 MOV ECX←[x]
Initial state: Proc 0:EAX=1 (elsewhere 0)
Forbidden Final State: Proc 1:EBX=1 ∧ Proc 1:ECX=0

This is implied by Example 8-1, as we treat the memory
writes of LOCK’d instructions as stores.

Test amd5.

Proc 0 Proc 1
MOV [x]←1 MOV [y]←1
MFENCE MFENCE
MOV EAX←[y] MOV EBX←[x]
Forbidden Final State: Proc 0:EAX=0 ∧ Proc 1:EBX=0

For x86-TSO, this test has the same force as Example 8-8,
but using MFENCE instructions to flush the buffers instead
of LOCK’d instructions. The tenth AMD test is similar.
None of the Intel litmus tests include fence instructions.

In x86-TSO adding MFENCE between every instruction
would clearly suffice to regain sequential consistency (though
obviously in practice one would insert fewer barriers), in
contrast to IWP/x86-CC/AMD3.14.

3.3 Empirical Testing
To build confidence that we have a sound model of the

behaviour of actual x86 processors we have tested the cor-
respondence between them in various ways.

Firstly, for the memory model, we have a litmus tool that
takes a litmus test (essentially as given in this paper) and
builds a C program with embedded assembly to run the test
repeatedly to try to produce all possible results, taking care
to synchronise the different threads and with some randomi-
sation of memory usage. We have run these on the Intel and
AMD processors that we have access to. The results can be
compared with the output of a memevents tool, that takes
such tests and computes the set of all possible executions
allowed by the x86-TSO model. We use a verified witness
checker, extracted from the HOL4 definition of the model,
to verify that any executions found are indeed allowed.

The results correspond exactly for all the tests given here
and others we have tried, including amd3, n1 [31], n7 [27],
the single-XCHG variant of Example 8-9, and an unfenced
variant of RWC [11]. In general, though, there may be tests
where x86-TSO allows some final state that cannot be ob-
served in practice, perhaps because litmus does not drive
the processor into the correct internal state (of store buffers,
cache lines, etc.) to exhibit it, or perhaps because the par-
ticular implementations we tested cannot exhibit it. For
example, we have only seen amd3 on a four-processor (×2
hyperthread) machine and only very rarely, 4 out of 3.2e9
times. Testing, especially this black-box testing of a com-
plex and time-dependent system, is obviously subject to the
usual limitations; it cannot conclusively prove that some
outcome is not possible.

Secondly, for the behaviour of individual instructions, we
have an x86sem tool that generates random instances of in-
structions, runs them on an actual machine, and generates
a HOL4 conjecture relating the memory and register state
before and after. These conjectures are then automatically
verified, by a HOL4 script, for the 4600 instances that we
tried.

4. A LINUX X86 SPINLOCK IMPLEMEN-
TATION

In Section 2.1 we mentioned the uncertainty that arose
in a discussion on a particular optimisation for Linux spin-
locks [1]. In this section, we present a spinlock from the

6



Linux kernel (version 2.6.24.7) that incorporates the pro-
posed optimisation, as an example of a small but non-trivial
concurrent programming idiom. We show how one can rea-
son about this code using the x86-TSO programmer’s model,
explaining in terms of the model why it works and why the
optimisation is sound — thus making clear what (we pre-
sume) the developer’s informal reasoning depended on. For
accessibility we do this in prose, but the argument could
easily be formalised as a proof.

The implementation comprises code to acquire and release
a spinlock. It is assumed that these are properly bracketed
around critical sections and that spinlocks are not mutated
by any other code.

On entry the address of spinlock is in register EAX
and the spinlock is unlocked iff its value is 1
acquire: LOCK;DEC [EAX] ; LOCK’d decrement of [EAX]

JNS enter ; branch if [EAX] was ≥ 1
spin: CMP [EAX],0 ; test [EAX]

JLE spin ; branch if [EAX] was ≤ 0
JMP acquire ; try again

enter: ; the critical section starts here
release: MOV [EAX]←1

A spinlock is represented by a signed integer which is 1 if
the lock is free and 0 or less if the lock is held. To acquire a
lock, a thread atomically decrements the integer (which will
not wrap around assuming there are fewer than 231 hard-
ware threads). If the lock was free, it is now held and the
thread can proceed to the critical section. If the lock was
held, the thread loops, waiting for it to become free. Be-
cause there might be multiple threads waiting for the lock,
once it is freed, each waiting thread must again attempt to
enter through the LOCK’d decrement. To release the lock,
a thread simply sets its value to 1.

The optimisation in question made the releasing MOV in-
struction not LOCK’d (removing a LOCK prefix and hence
letting the releasing thread proceed without flushing its
buffer).

For example, consider a spinlock at address x and let y
be another shared memory address. Suppose that several
threads want to access y, and that they use spinlocks to en-
sure mutual exclusion. Initially, no one has the lock and [x]
= 1. The first thread t to try to acquire the lock atomically
decrements x by 1 (using a LOCK prefix); it then jumps into
the critical section. Because a store buffer flush is part of
LOCK’d instructions, [x] will be 0 in shared memory after
the decrement.

Now if another thread attempts to acquire the lock, it
will not jump into the critical section after performing the
atomic decrement, since x was not 1. It will thus enter the
spin loop. In this loop, the waiting thread continually reads
the value of x until it gets a positive result.

Returning to the original thread t, it can read and write
y inside of its critical section while the others are spinning.
These writes are initially placed in t’s store buffer, and some
may be propagated to shared memory. However, it does
not matter how many (if any) are written to main memory,
because (by assumption) no other thread is attempting to
read (or write) y. When t is ready to exit the critical section,
it releases the lock by writing the value 1 to x; this write is
put in t’s store buffer. It can now continue after the critical
section (in the text below, we assume it does not try to
re-acquire the lock).

If the releasing MOV had the LOCK prefix then all of the

buffered writes to y would be sent to main memory, as would
the write of 1 to x. Another thread could then acquire the
spinlock.

However, since it does not, the other threads continue
to spin until the write setting x to 1 is removed from t’s
write buffer and sent to shared memory at some point in the
future. At that point, the spinning threads will read 1 and
restart the acquisition with atomic decrements, and another
thread could enter its critical section. However, because
t’s write buffer is emptied in FIFO order, any writes to y
from within t’s critical section must have been propagated
to shared memory (in order) before the write to x. Thus,
the next thread to enter a critical section will not be able to
see y in an inconsistent state.

5. DATA-RACE FREEDOM
To make a relaxed-memory architecture usable for large-

scale programming, it is highly desirable (perhaps essential)
to identify programming idioms which ensure that one can
reason in terms of a traditional interleaving model of concur-
rency, showing that any relaxed-memory execution is equiv-
alent to one that is possible above a sequentially consistent
memory model. One common idiom with this property is
data-race freedom. Informally, a program has a data race
if multiple threads can access the same location (where at
least one is writing to the location) without a synchroni-
sation operation separating the accesses. Programs where
every shared access is in a critical section are one common
example of data race free programs.

A variety of relaxed models, both for processors and
for programming languages, have been proved to support
sequentially consistent semantics for data-race free pro-
grams [8, 9, 10, 12, 16, 23]. Saraswat et al. [30] call sup-
porting sequentially consistent semantics for data-race free
programs the “fundamental property” of a relaxed memory
model, and indeed memory models have sometimes been de-
fined in these terms [6]. However, for a processor architec-
ture, we prefer to define a memory model that is applicable
to arbitrary programs, to support reasoning about low-level
code, and have results about well-behaved programs as the-
orems above it.

The details of what constitutes a data race, or a synchro-
nisation operation, vary from model to model. For x86-TSO,
we define two events on different threads to be competing if
they access the same address, one is a write, and the other
is a read (for aligned x86 accesses, it is not necessary to
consider write/write pairs as competing). We say that a
program is data race free if it is impossible for a competing
read/write pair to execute back-to-back. Critically, we re-
quire this property only of sequentially consistent executions
(equivalently, the x86-TSO executions where store buffers
are always flushed immediately after each write).

We have proved that x86-TSO supports interleaving se-
mantics for data race free programs. However, this theorem
alone is not often useful, because most programs do contain
data races at this level of abstraction. For example, the read
in the spin loop of Section 4’s spinlock races with the write
in the release. We have, therefore, identified an extended no-
tion of data race freedom that the spinlock code does satisfy,
and we have used it to prove that for well synchronised pro-
grams using the spinlock exhibit, every x86-TSO execution
has an equivalent sequentially consistent execution [26].

Thus, the relaxed nature of x86-TSO is provably not a

7



concern for low-level systems code that uses spinlocks to
synchronise. Extending this result to other synchronisation
primitives, and to code compiled from high-level languages,
is a major topic for future work.

6. RELATED WORK
There is an extensive literature on relaxed memory mod-

els, but most of it does not address x86. We touch here on
some of the most closely related work.

There are several surveys of weak memory models, includ-
ing those by Adve and Gharachorloo [6], by Luchango [23],
and by Higham et al. [19]. The latter, in particular, for-
malises a range of models, including a TSO model, in both
operational and axiomatic styles, and proves equivalence re-
sults. Their axiomatic TSO model is rather closer to the
operational style than ours is, and is idealised rather than
x86-specific. Park and Dill [28] verify programs by model
checking them directly above TSO. Burckhardt and Musu-
vathi [13, App. A] also give operational and axiomatic def-
initions of a TSO model and prove equivalence, but only
for finite executions. Their models treat memory reads and
writes and barrier events, but lack instruction semantics
and LOCK’d instructions with multiple events that happen
atomically. Hangel et al. [18] describe the Sun TSOtool,
checking the observed behaviour of pseudo-randomly gener-
ated programs against a TSO model. Roy et al. [29] describe
an efficient algorithm for checking whether an execution lies
within an approximation to a TSO model, used in Intel’s
Random Instruction Test (RIT) generator. Loewenstein et
al. [22] describe a “golden memory model” for SPARC TSO,
somewhat closer to a particular implementation microar-
chitecture than the abstract machine we give in Section 3,
that they use for testing implementations. They argue that
the additional intensional detail increases the effectiveness of
simulation-based verification. Boudol and Petri [12] give an
operational model with hierarchical write buffers (thereby
permitting IRIW behaviours), and prove sequential consis-
tency for data-race-free (DRF) programs. Burckhardt et
al. [14] define an x86 memory model based on IWP [4]. The
mathematical form of their definitions is rather different to
our axiomatic and abstract-machine models, using rewrite
rules to re-order or eliminate memory accesses in sets of
traces. Their model validates the 10 IWP tests and also
some instances of IRIW (depending on how parallel compo-
sitions are associated), so it will not coincide with x86-TSO
or x86-CC. Saraswat et al. [30] also define memory models
in terms of local reordering, and prove a DRF theorem, but
focus on high-level languages.

7. CONCLUSION
We have described x86-TSO, a memory model for x86

processors that does not suffer from the ambiguities, weak-
nesses, or unsoundnesses of earlier models. Its abstract-
machine definition should be intuitive for programmers, and
its equivalent axiomatic definition supports the memevents

exhaustive search and permits an easy comparison with re-
lated models; the similarity with SPARCv8 suggests x86-
TSO is strong enough to program above. This work high-
lights the clarity of mathematically rigorous definitions, in
contrast to informal prose, for subtle loose specifications.

We do not speak for any x86 vendor, and it is, of course,
entirely possible that x86-TSO is not a good description of

some existing or future x86 implementation (we would be
very interested to hear of any such example). Nonetheless,
we hope that this will clarify the semantics of x86 archi-
tectures as they exist, for systems programmers, hardware
developers, and those working on the verification of concur-
rent software.

Acknowledgements We thank Luc Maranget for his work
on memevents and litmus, Tom Ridge, Thomas Braibant
and Jade Alglave for their other work on the project, and
Hans Boehm, David Christie, Dave Dice, Doug Lea, Paul
Loewenstein, and Gil Neiger for helpful remarks. We ac-
knowledge funding from EPSRC grants EP/F036345 and
EP/H005633 and ANR grant ANR-06-SETI-010-02.

8. REFERENCES
[1] Linux Kernel mailing list, thread “spin unlock

optimization(i386)”, 119 messages, Nov. 20–Dec. 7th,
1999, http://www.gossamer-threads.com/lists/
engine?post=105365;list=linux. Accessed
2009/11/18.

[2] The SPARC Architecture Manual, V. 8. SPARC
International, Inc., 1992. Revision SAV080SI9308.
http://www.sparc.org/standards/V8.pdf.

[3] AMD64 Architecture Programmer’s Manual (3 vols).
Advanced Micro Devices, Sept. 2007. rev. 3.14.

[4] Intel 64 architecture memory ordering white paper,
2007. Intel Corporation. SKU 318147-001.

[5] Intel 64 and IA-32 Architectures Software Developer’s
Manual (5 vols). Intel Corporation, Mar. 2010. rev. 34.

[6] S. Adve and K. Gharachorloo. Shared memory
consistency models: A tutorial. IEEE Computer,
29(12):66–76, Dec 1996.

[7] S. V. Adve and H.-J. Boehm. Memory models: A case
for rethinking parallel languages and hardware.
C. ACM. To appear.

[8] S. V. Adve and M. D. Hill. A unified formalization of
four shared-memory models. IEEE Trans. Parallel
Distrib. Syst., 4(6):613–624, 1993.

[9] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and
P. Hutto. Causal memory: Definitions,
implementation, and programming. Distributed
Computing, 9(1):37–49, 1995.

[10] D. Aspinall and J. Ševč́ık. Formalising Java’s data
race free guarantee. In Proc. TPHOLs, LNCS 4732,
pages 22–37, 2007.

[11] H.-J. Boehm and S. Adve. Foundations of the C++
concurrency memory model. In Proc. PLDI, 2008.

[12] G. Boudol and G. Petri. Relaxed memory models: an
operational approach. In Proc. POPL, 2009.

[13] S. Burckhardt and M. Musuvathi. Effective program
verification for relaxed memory models. Technical
Report MSR-TR-2008-12, Microsoft Research, 2008.
Conference version in Proc. CAV 2008, LNCS 5123.

[14] S. Burckhardt, M. Musuvathi, and V. Singh. Verifying
compiler transformations for concurrent programs,
Jan. 2009. Technical report MSR-TR-2008-171.

[15] D. Dice. Java memory model concerns on Intel and
AMD systems. http://blogs.sun.com/dave/entry/
java_memory_model_concerns_on, Jan. 2008.

[16] R. Friedman. Consistency conditions for distributed
shared memories. Israel Institute Of Technologie, 1994.

8



[17] K. Gharachorloo. Memory consistency models for
shared-memory multiprocessors. WRL Research
Report, 95(9), 1995.

[18] S. Hangal, D. Vahia, C. Manovit, J.-Y. J. Lu, and
S. Narayanan. TSOtool: A program for verifying
memory systems using the memory consistency model.
In Proc. ISCA, pages 114–123, 2004.

[19] L. Higham, J. Kawash, and N. Verwaal. Weak memory
consistency models part I: Definitions and
comparisons. Technical Report98/612/03, Department
of Computer Science, The University of Calgary,
January, 1998. Full version of a paper in PDCS 1997.

[20] The HOL 4 system. http://hol.sourceforge.net/.

[21] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Trans. Comput., C-28(9):690–691, 1979.

[22] P. N. Loewenstein, S. Chaudhry, R. Cypher, and
C. Manovit. Multiprocessor memory model
verification. In Proc. AFM (Automated Formal
Methods), Aug. 2006. FLoC workshop.
http://fm.csl.sri.com/AFM06/.

[23] V. M. Luchangco. Memory consistency models for
high-performance distributed computing. PhD thesis,
MIT, 2001.

[24] J. Manson, W. Pugh, and S. Adve. The Java memory
model. In Proc. POPL, 2005.

[25] R. Milner. Communication and Concurrency. Prentice
Hall International, 1989.

[26] S. Owens. Reasoning about the implementation of
concurrency abstractions on x86-TSO. In
Proc. ECOOP, 2010. To appear.

[27] S. Owens, S. Sarkar, and P. Sewell. A better x86
memory model: x86-TSO. In Proc. TPHOLs, LNCS
5674, pages 391–407, 2009. Full version as Technical
Report UCAM-CL-TR-745, Univ. of Cambridge.

[28] S. Park and D. L. Dill. An executable specification
and verifier for relaxed memory order. IEEE Trans.
Computers, 48(2):227–235, 1999.

[29] A. Roy, S. Zeisset, C. J. Fleckenstein, and J. C.
Huang. Fast and generalized polynomial time memory
consistency verification. In CAV, pages 503–516, 2006.

[30] V. Saraswat, R. Jagadeesan, M. Michael, and C. von
Praun. A theory of memory models. In Proc. PPoPP,
2007.

[31] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens,
T. Ridge, T. Braibant, M. Myreen, and J. Alglave.
The semantics of x86-CC multiprocessor machine
code. In Proc. POPL 2009, Jan. 2009.

[32] P. S. Sindhu, J.-M. Frailong, and M. Cekleov. Formal
specification of memory models. In Scalable Shared
Memory Multiprocessors, pages 25–42. Kluwer, 1991.

[33] J. Ševč́ık and D. Aspinall. On validity of program
transformations in the Java memory model. In
ECOOP, pages 27–51, 2008.

9


