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Abstract
Beneath the surface, software usually depends on com-
plex linker behaviour to work as intended. Even linking
hello_world.c is surprisingly involved, and systems soft-
ware such as libc and operating system kernels rely on a
host of linker features. But linking is poorly understood by
working programmers and has largely been neglected by
language researchers.

In this paper we survey the many use-cases that linkers
support and the poorly specified linker speak by which they
are controlled: metadata in object files, command-line op-
tions, and linker-script language. We provide the first vali-
dated formalisation of a realistic executable and linkable for-
mat (ELF), and capture aspects of the Application Binary In-
terfaces for four mainstream platforms (AArch64, AMD64,
Power64, and IA32). Using these, we develop an executable
specification of static linking, covering (among other things)
enough to link small C programs (we use the example of
bzip2) into a correctly running executable. We provide our
specification in Lem and Isabelle/HOL forms. This is the
first formal specification of mainstream linking. We have
used the Isabelle/HOL version to prove a sample correctness
property for one case of AMD64 ABI relocation, demon-
strating that the specification supports formal proof, and as
a first step towards the much more ambitious goal of veri-
fied linking. Our work should enable several novel strands
of research, including linker-aware verified compilation and
program analysis, and better languages for controlling link-
ing.

Categories and Subject Descriptors D.2.4 [Software/Pro-
gram Verification]: Formal methods; D.3.1 [Formal Defini-
tions and Theory]: Semantics; D.3.4 [Processors]: Compil-
ers

void∗ _int_malloc(mstate av, size_t bytes)
{ ... }

void∗ __libc_malloc(size_t bytes)
{ ...

void ∗mem = _int_malloc(av, sz);
...

}
void∗ __libc_calloc(size_t bytes)

{ ...
void ∗mem = _int_malloc(av, sz);
...

}
strong_alias (__libc_malloc, __malloc) /∗ These expand to ∗/
strong_alias (__libc_malloc, malloc) /∗ asm directives ∗/
strong_alias (__libc_calloc, __calloc) /∗ and/or compiler ∗/
weak_alias (__libc_calloc, calloc ) /∗ attributes ∗/

Figure 1. Outline of the GNU C library’s malloc and calloc

Keywords Linking, formal specification, Executable and
Linkable Format (ELF), theorem-proving

1. Introduction
Programming language research focuses largely on the
source-language semantics of programs and their compi-
lation to machine code, as do the vast majority of program-
mers. But, beneath the surface, much real code crucially de-
pends on complex linker behaviour to work as intended: as
we shall see, even statically linking a small C program with
a C library turns out to be an involved process and remark-
ably subtle. Unlike compilation, the linking process remains
largely invisible and poorly studied, for programmers and
researchers alike.

Consider, for example, the familiar C malloc() and cal-
loc() functions in Fig. 1, abstracted from their GNU C li-
brary implementation. What does this code do? Looking
just at the function definitions from a C-language point
of view, it ‘obviously’ implements __libc_malloc and
__libc_calloc using a third internal helper function called
_int_malloc(). But this is not actually true: those two func-
tions are not guaranteed to always call the helper as defined
in this file. What happens if the user supplies their own mal-
loc, as many programs do? C has no notion of aliases or weak
definitions, but the code uses these to control behaviour
in such cases: by defining malloc and calloc as alternative
‘weak’ names, user code may optionally supply its own mal-



loc and calloc (overriding the local ‘weak’ alias) without
affecting accesses made via the __malloc and __calloc
(‘strong’) aliases. These strong_alias and weak_alias di-
rectives step outside the bounds of the C language: they are
macro-expanded to assembler directives controlling the ob-
ject file sent to the linker.

Conventional source-language semantics do not attempt
to address the questions posed in the previous paragraph, but
in practice linker features are used to control name binding
and symbol visibility, among many other things, and many
tools and libraries rely on the ability to replace or interpose
on bindings. This is not a fringe issue: a significant fraction
of real codebases rely on linker features to realise their in-
tended semantics. For codebases lower in the stack, this is
obvious: a typical Unix system kernel (e.g. Linux) and core
libraries (e.g. glibc) make considerable use of such features.
Surprisingly many user-level codebases also use a ‘long tail’
of linker features: it is common for mature libraries to use
symbol versioning; many codebases selectively replace li-
brary functions like malloc; applications often ship wrapper
scripts which play tricks with dynamic linking before exe-
cuting their main binary; and so on. To say anything about
the correctness of these binaries requires understanding link-
ing in detail.

In other words, much software is not written merely in a
programming language like C, but also in ‘linker speak’—
our term for the collection of languages by which the
linker is invoked and controlled. These include the linker
command-line, metadata contained within object files, as-
sembler and compiler directives that generate that, and in
fact an entire script language used exclusively by the linker.
Linker-speak is currently specified haphazardly or not at
all, and as a result is often used in unportable or fragile
ways. Linkers are seldom well-tested, and for many pur-
poses, the implementation is its own oracle: unlucky de-
velopers grappling with corner-case behaviour must simply
work with (or around) the linker’s observed behaviour. Both
users and implementers lack any recourse to a reference,
standard or specification. The few existing texts, most re-
cently by Levine [24], explain the core mechanisms in detail
but say relatively little about the programmer-facing features
of modern linkers.

The challenge of verified toolchains makes these prob-
lems even more acute: existing approaches to verified com-
pilation typically do not address linking at all, or address
only the aspects of linking that can be understood in terms of
a conventional source-language semantics. Previous seman-
tic work on linking has studied it only in a highly idealised
form. But truly accounting for linking must rest on accurate
modelling of a large, usable subset of its features.

In this paper, we describe the first detailed, accurate for-
mal semantics for the static linking of a realistic and widely-
used executable and linkable format. Unlike previous at-
tempts at providing a semantics for aspects of linker be-

haviour, our semantics is presented as an executable model
testable against the observed behaviours of ‘real’ linkers, and
not as an idealised calculus in the style of Cardelli’s [5]. In
particular, our executable semantics covers a large fraction
of contemporary Unix linker features, and tightly models the
behaviour of widely-used existing linkers on realistic link
jobs—we aim to model Unix linking as it is, not as it (per-
haps) ought to be. Our research contributions are as follows:

• We review and clarify the roles played by linking and
loading in mainstream systems, emphasising how linkers
are not merely concerned with separate compilation, but
rather that ‘linker-speak’ has real semantic effects. Link-
ers complement and supplement programming languages,
offering features such as memory layout control, version-
ing and interposition that are not exposed by programming
languages.
• As a foundation for the semantics of linking on modern
Unix platforms, we describe a complete, validated model
of the Executable and Linkable (ELF) binary file format as
it is really used—derived from the System V ABI specifi-
cation [39], as extended by four platform ABIs for popular
commodity microprocessor families (AARCH64, AMD64,
IA32 and Power64), and additionally incorporating vari-
ous extensions, notably the widely-used GNU extensions.
We validate this by testing on 7 054 binaries found ‘in
the wild’. To our knowledge this is the first formal model
of a realistic and widely-used linking and executable for-
mat, and the first formal elucidation of components of the
platform ABI. It can be (and already has been) used as
a front-end for other tools that need to read in ELF files,
e.g. [10, 15].
• Using this model, we describe an executable specifica-
tion of static linking of ELF binaries. This includes the
link-time semantics for a large fraction of ELF features,
together with the linker command line and the embedded
script language that controls linker operation. It is suffi-
ciently complete to statically link small C programs against
a real (large) C library, covering a broad range of features.
• We demonstrate that our definitions are suitable for use
in formal proof by using an Isabelle/HOL extraction of our
model to prove a simple but nontrivial correctness property
of AMD64 relocation: for a single instruction program we
prove that the relocation machinery for a single AMD64 re-
location type is correct. This correctness statement is small:
it mentions only one machine instruction and one reloca-
tion type for one platform ABI. However, the proof re-
quires reasoning about substantial chunks of the internal
machinery of our linker, and has necessitated the devel-
opment of a library of lemmas and definitions that can be
reused in any further formal proof about our linker. Fur-
ther, as a necessary stepping stone to the relocation proof,
we provide termination proofs (around 1 500 lines of Is-
abelle/HOL source) for all functions used internally by the
linker and the ELF model, obtaining a guarantee that our



linker terminates on all inputs—a result we believe is of in-
dependent technical interest. We believe that these proofs
are the first formal proofs of a property related to any as-
pect of ‘realistic’ linking.

Our models of ELF files and of static linking are expressed
as pure functional specifications in Lem [29], which we use
to generate both executable OCaml code and theorem-prover
definitions for reasoning. A working linker/link-checker can
be obtained from our extracted OCaml definitions by using
a thin wrapper of bespoke OCaml code to handle file I/O.
The termination and relocation proofs mentioned above use
a complete Isabelle/HOL version of our definitions, com-
prising 33 150 lines of commented Isabelle source, and these
proofs demonstrate the suitability of our definitions for use
in formal proof. Larger developments may (as usual) require
reformulating some of the definitions for ease of proof.

Our ultimate aim is for a specification that can be used in
many modes: as an actual linker producing working output;
as a concise and highly readable reference implementation
capturing the semantics of linking and ELF; as an input to
proof-assistant mechanised reasoning about linking, and as a
basis for empirical testing of linkers. More needs to be done
in all these directions, but this work may already be of use
to four quite disparate communities:
• developers of new or existing linkers, who may use our
model as an external test oracle, both for link correctness
and some aspects of ABI compliance.
• authors of certified compilers (e.g. [1, 22, 23, 40]) inter-
ested in producing ABI-compliant linkable ELF binaries,
extending their source languages with elements of linker-
speak, or creating a trustworthy link checker. Current ef-
forts at checking the host linker’s output, such as Com-
pCert’s cchecklink, lack a detailed model of the linker’s
actions, so cannot check that the linker has not inserted ma-
licious extra content—which might even take the form of
metadata rather than instructions [35].
• designers of source-level verification tools built atop
the formal guarantees programming language standards
and certified compilers provide. As our opening example
showed, linking is able not only to refine but to override
source-level semantics, so source-level reasoning alone
is not sound unless augmented with knowledge of linker
features—that our semantics can provide.
• researchers seeking to improve languages and toolchains,
particularly for systems code: such work must somehow
accommodate the various roles of linker-speak, whether by
embracing it as it currently exists, or by replacing it.

Whilst much software relies crucially on linking and
loading patterns more complex than static linking alone—for
example dynamic linking against shared libraries, or the run-
time loading of plugins—for the purposes of this paper we
have restricted ourselves to specifying the semantics of static
linking. Already, this is a formidable task (as evidenced by
the tens of thousands of lines comprising our Lem and Is-

abelle/HOL specifications) yet is sufficiently self-contained
to reasonably describe in a single paper. Ultimately, as we
will discuss in §8, we hope to fully formalise all aspects
of linker behaviour that real programs rely on to execute
correctly.

Our Lem definitions and Isabelle/HOL theories are freely
available from a public repository.1

2. Background
We focus on linking in System V-derived Unix environ-
ments. These include modern GNU/Linux and BSD vari-
ants. The de facto standard executable and linkable format in
this environment is ELF, the Executable and Linkable For-
mat. Microsoft Windows and Apple Mac OS (Darwin) ex-
hibit broadly similar feature sets, each with analogous for-
mats and mechanisms, but System V is generally a superset
of both. We follow Gingell et al. [12] in referring to the Unix
linker command ld as the batch linker.

A batch linker takes multiple modules of relocatable ob-
ject code as input. These may be in the form of .o files, or
groups of .o files bundled as ‘archives’ in a .a file. As output,
a batch linker produces a single ‘linked’ binary. These bina-
ries are usually executables and embody the input modules.
The main work of the linker is to select and combine the nec-
essary inputs, to organise them into a single logical memory
image, and to concretise the symbolic references between
them (encoded as metadata in the input files) into bit-patterns
in the output binary (typically instruction address fields or
stored pointer values).

Object files consist principally of sections, symbols, and
relocations. Sections are chunks of bytes (code or data),
treated as indivisible units by the linker: they may be moved
or combined, but not broken apart. Symbols give names
to particular positions within a section usually reflecting
the source-level definition they represent. In an input file,
a symbol may be recorded as undefined, meaning that the
object file references it, but it does not exist in that file.

Individual references are represented by relocation
records, sometimes called ‘fixups’. These record that a range
of bytes within some section must be ‘fixed up’ to point to
the intended referent, denoted by a symbol. Before linking,
these bytes hold a placeholder value generated by the com-
piler. After linking, they hold the encoded address of the
referent. Relocations are tied closely to the encoding of in-
structions, and each relocation record selects an architecture-
specific ‘type’ of relocation—a calculation for fixing up
the bytes. This calculation varies according to the architec-
ture’s addressing modes, address field widths, and particular
choice of pointer encodings.

A completely self-contained output binary is said to be
‘statically linked’. Modern batch linkers allow some bind-
ings to be deferred until a later dynamic linking step. These
references are represented as relocation records and symbol

1 https://bitbucket.org/Peter_Sewell/linksem/
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metadata in the output binary, much like in the input files.
The main purpose of dynamic linking is to support shared
libraries which enable code to be shared between multiple
processes at run time, thus saving memory. Shared library
binaries themselves are also produced by the batch linker,
and internally are not much different from executables.

Having composed a memory image out of its inputs, and
applied relocations, the linker finally outputs a serialised
form of this memory image into the output binary, such that
it can be re-created by the loader. Concretely, any given ELF
file provides one of two views: the linkable view, where the
file is partitioned into sections as described above, and the
loadable view, where the file is partitioned into segments. It
is these segments that are copied or mapped into memory by
the loader to create an executable process image. A modern
Unix installation typically contains at least three loaders: the
bootloader for loading the operating system, a loader in the
operating system’s kernel used for statically linked binaries,
and a loader in user-space used for dynamic linking (ld.so).

The relationship between linker features and program-
ming language features is complex. Many languages are said
to have a ‘module system’, having certain features corre-
sponding to certain linker mechanisms. Although we mostly
save discussion of this for later (see §8) it is worth noting that
while a typical module system provides mechanisms deal-
ing in both abstract and concrete modules, linking is entirely
concrete. Linkers have no notion of module instantiation or
parameterisation; they focus only on the interconnection of
concrete modules. As we will see (§3), this still encompasses
a surprising variety of features, many of which have no ana-
logue in language module systems.

The disparate and patchy specification of linking and its
associated formats has posed a particular challenge for us
in this work. Focusing first on the ELF format, a skeleton
definition of the ELF file format is provided in the System
V ABI [39], and using this specification enough structure is
defined to properly parse and serialise ELF files to and from
disk. However, to interpret the contents of a file more detail
is needed, and architecture-specific supplements to the core
specification are provided for each microprocessor family.
These supplementary documents may refine, override, or fill
in detail entirely missing from the core ELF specification.

Operating systems may also augment the format with
their own extensions, specifying new file components that
they may interpret or expect. For example, many Linux ELF
binaries contain GNU extensions. These augment the stan-
dard ELF file format, detailing new structural elements that
the operating system can interpret or will expect. Some of
these extensions are collated in a document called the Linux
Standard Base (‘LSB’) [25], though some are either doc-
umented informally in mailing list messages or not docu-
mented at all.

To capture enough of the structure of ELF files ex-
ecuted ‘in the wild’, the core specification along with

microprocessor- and operating system-specific supplemen-
tary material must all be taken into account. We note here,
however, that in practice there is no clean separation of the
latter two sets of supplementary material. For example, the
AMD64 ABI explicitly makes reference to GNU-specific
extensions (see §4.2 of [27]).

Besides the ELF format, the process of linking itself is
also poorly specified. In fact Unix linking has become less
well specified over time: System V Unix’s documentation
included a detailed description of the linker, but this was
removed when the ELF format was introduced (in revision
four), leaving only a manual page. The POSIX Standard [16]
even omits this, instead stating that its C and Fortran com-
pilers ‘conceptually consist of a compiler and link editor’.
Although successive linkers, notably the GNU linker, offer
fairly detailed manuals, these are hardly normative, and omit
various details.

3. Understanding Linking
Linking is used to implement separate compilation of lan-
guages including C, C++, Fortran, Ada, Objective-C, and
many others. If linking were only about separate compila-
tion, it would have a natural specification in terms of these
languages’ source program semantics. Previous formal mod-
els of linking [5, 9, 13, 26, 42] have worked along these lines,
seeking to provide a formal basis for separate compilation
with verified safety properties. Previous research on linking
in the context of verified compilation [19, 37] has done like-
wise.

However, linking is not simply a matter of separate com-
pilation. Systems code and application code alike use linker
features to achieve effects that are unrelated to separate com-
pilation, which mostly cannot be expressed in the relevant
source language(s), and which, in some cases, actively break
the naïve semantics of the source language. In this section
we survey these features.

3.1 Linker-Speak Overview
Linker-speak consists of a collection of notations, which
collectively can be thought of as a separate programming
or configuration language in which part of every compiled
system is expressed. We survey various examples shortly; in
brief, the notations break down as follows.

Arguments —these are command-line options supplied
when invoking the linker. In the case of dynamic linking,
environment variables serve the analogous purpose.

Scripts —most batch linkers embed a script language, used
pervasively to control how sections in input files are
mapped in the output file, the precise memory layout of
the output file, and so on. Although programmers rarely
see it, every link job is controlled by a unique ‘control’
script. The following is an excerpt of a simple such script.



SECTIONS
{

. = 0x00001000;

.data : { foo.o (.data); goo.o (.data); }

. text : { foo.o (. text ); goo.o (. text ); }
}

Here, the contents of the SECTIONS block informs the
linker how to map sections in input files to sections in
the linker’s output file. In particular, the linker script
above instructs the linker to map the .data and .text

sections in the foo.o and goo.o input files into the
.data and .text sections, respectively, of the output.
The dot (‘.’) symbol represents the current location (ad-
dress) in the output file, such that the initial assignment
. = 0x00001000 sets the starting address of the .data

section in the output file to address 0x00001000. The
.text section in the output is placed adjacent to the
.data section, with the address of the .text section set
to the size of the output’s .data section + 0x00001000.
More sophisticated rules for mapping input sections to
output can be employed; for example

.data : { ∗(.data .data.∗) }

states that the output .data section should consist of the
concatenation of all input files’ sections with name .data
or matching wildcard .data.*. Aside from controlling
the mapping of input sections to output sections, the
linker script language also provides means for controlling
the program entry point, describing regions of memory
and their flags, alignment, and so on, with the language
including arithmetic and some forms of conditional, but
no recursion or unbounded looping.2

The user may supply their own script, overriding the
built-in default. Link jobs may also include extra ‘im-
plicit’ scripts, supplied on the command line as if they
were object files. These are written in a subset of the same
command language, and are typically defining symbols
and/or sections in a textual rather than binary notation,
effectively as ‘proxy’ object files.

Metadata —object files contain symbols, sections, reloca-
tion records and other metadata, on which link seman-
tics crucially depend. Many of these object file features
have corresponding forms in assemblers (‘directives’ or
pseudo-operations) and compilers (attributes), allowing
the programmer to control the metadata in the assembled
or compiled object file.

Our work provides a formal specification of large subsets
of all of these notations. Specifically, we focus on the linker-
speak of the AT&T System V linker and its descendents. In
the following, any linker options or script syntax refer to that
accepted by the GNU BFD linker (still the default on both

2 We point the curious reader to the GNU BFD linker’s user manual [14],
specifically Chapter 3, for a more comprehensive description of that linker’s
archetypal control script language.

GNU/Linux and BSD environments, and modelled on the
AT&T System V linker).

3.2 Linker-Speak Use-Cases
Memory Placement Systems code often needs to reside at
particular places in memory. For example, typical Unix ker-
nels occupy the higher portion of the address space. This is
specified by a combination of linker scripts and section name
attributes. A compiler or assembler exposes a mechanism for
definitions to be placed in named sections, while the linker
script allows sections to be assigned to addresses, and/or to
be ordered relative to one another. For example, on the PA-
RISC architecture, Linux uses the following linker script to
enforce a particular relative ordering of page table data. C
structure layout cannot be used, because the definitions must
be addressable symbolically from assembly as well as from
C. In C they are declared with section attributes:
pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((

__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));

and the sections are then placed appropriately by the linker
script.
/∗ Put page table entries (swapper_pg_dir) as the first thing
∗ in .bss . This will ensure that it has .bss alignment (PAGE_SIZE).
∗/

. = ALIGN(bss_align);

.bss : AT(ADDR(.bss) − LOAD_OFFSET) {
∗(.data .. vm0.pmd)
∗(.data .. vm0.pgd)
∗(.data .. vm0.pte)
∗(.bss .. page_aligned)
∗(.dynbss)
∗(.bss)
∗(COMMON)

}

Memory placement is not expressible in source lan-
guages, but code often depends on it—for example, on some
architectures, kernels recognise their own addresses by test-
ing whether they encode a negative signed value. Control
of memory placement may also be used for optimisation, to
improve spatial locality [31].

Encapsulation Hiding implementation details is often
achieved using linker features. Source-language encapsu-
lation features, such as C’s static modifier, may map di-
rectly to linker features, such as ELF’s local symbols. How-
ever, linkers expose at least three other encapsulation fa-
cilities that are not supported in this way: (1) ELF sym-
bol visibility attributes, allowing names to be scoped at the
coarser granularity of dynamically-linked binaries (instead
of single object files); (2) archives, where inclusion in an
archive restricts an object’s visibility to other modules in
the link; (3) dynamic export control (--export-dynamic),
which determines which definitions are available for bind-
ing or interposition by the dynamic linker. In addition to
the linker command line, compiler options (such as gcc’s
-fvisibility=hidden) can hide more definitions by de-
fault, lessening a library’s dynamic linking overheads (Drep-
per [8] advises using it as a matter of course). Unfortunately



-fvisibility=hidden breaks the source semantics of C++

code if it throws exceptions out of the library.3 In general,
linker features operate neither wholly above nor wholly be-
low the language level; their use may affect both user code
and language implementation internals. At present, using
them correctly requires developers to understand both.

Build-Time Substitution Link-time mechanisms may be
used to substitute one definition for another. ELF linking is
designed expressly to allow this. For example, the semantics
of archives are such that a C program may supply its own
malloc.o while still linking with the remainder of the C li-
brary archive (libc.a). Indeed, it is a common performance
optimisation to supply a malloc() implementation tailored
to the program’s allocation behaviour. Multiple definitions
in .o files are generally not allowed. A linker option (such
as -z muldefs) can relax this rule, causing earlier defini-
tions (leftmost in command-line order) to take precedence
over later ones. Multiple definitions are also allowed if all are
marked ‘weak’; an ordinary (strong) definition takes prece-
dence, but otherwise the first weak definition is chosen. (We
will see uses of weak symbols shortly, under ‘optionality’
and ‘topology alternatives’.)

Load-Time Substitution (‘overriding’) Dynamic linkers
offer another substitution feature: LD_PRELOAD. This en-
vironment variable can supply a named library, whose defi-
nitions take precedence over those in all other libraries (but
not those in the executable). For example, it can be used
to supply a new malloc at load time, which will be used
ahead of the malloc in libc.so, but not ahead of any malloc in
the executable. Using LD_PRELOAD requires assumptions
about how the rest of the program is linked (e.g. here that
it dynamically links against malloc()). These assumptions
are invariably brittle, because in general, the split between
what is statically linked and what is dynamically linked is an
implementation detail of any given library. Even if the pro-
gram appears to be linked dynamically against a library, say
libc.so, that library’s developer retains the option to link cer-
tain content statically. The GNU C library’s libc.so exploits
this to link its stat() implementation statically (essentially to
work around possible changes to the stat structure layout).
This is achieved by having libc.so be the following linker
script, which acts as a proxy pulling in both the real shared
object and an archive defining stat. (It also pulls in the dy-
namic linker, which supplies some definitions logically be-
longing to the C library.)
OUTPUT_FORMAT(elf64−x86−64)
GROUP ( /lib/x86_64−linux−gnu/libc.so.6
/usr/ lib /x86_64−linux−gnu/libc_nonshared.a
AS_NEEDED ( /lib/x86_64−linux−gnu/ld−linux−x86−64.so.2 ) )

A side-effect is that LD_PRELOAD substitution of stat()
is not possible. A similar side-effect occurs when us-
ing linker options to force early binding within li-

3 This is documented at https://gcc.gnu.org/wiki/Visibility as re-
trieved on 2015/11/19.

braries (-Bsymbolic)—usually motivated by the perfor-
mance gained by avoiding indirection.

Interposition Interposition can be thought of as substitu-
tion where the prior definition is re-used by the substituted
one—typically for instrumentation. LD_PRELOAD can be
used for this too: the preloaded instrumentation can dele-
gate to the original implementation by looking it up using
dlsym(). An allocation profiler for programs dynamically
linking against malloc might use this technique.4 However,
a program batch-linking its own malloc.o would require a
different mechanism: the linker’s --wrap option. Linking
with --wrap malloc redirects malloc to __wrap_malloc,
which may call __real_malloc to reach the original defini-
tion. The semantics of --wrap are subtle: it affects only ref-
erences to undefined symbols. This means references within
the defining file (say, a call from calloc() to malloc()) are
not redirected. (Strictly this depends on the compiler, which
is free to separate the definition from the reference, if it
chooses.) In general, the user-facing semantics of features
like --wrap depend on how the compiler or assembler has
mapped source-level definitions and references onto linker-
level sections, symbols and relocation records—itself per-
haps a function of compiler/assembler options, source-level
attributes, internal implementation decisions, and so on.

Optionality Weak symbols allow codebases to reference
optional features. Unresolved weak symbols are specified to
take the value 0, so the absence of a definition can be identi-
fied by a null pointer test. In practice, code like the following
(from the GNU C library’s freopen()) is commonplace.

if (&_IO_stdin_used == NULL)
{
/∗ do something ... ∗/

}
else /∗ ... ∗/

According to the C11 standard [17], the address-of opera-
tor always returns a pointer to an object or function (§6.5.3.2
pt 3), which is necessarily distinct from the null pointer
(§6.3.2.3 pt 3). However, in order to exploit weak symbols,
real implementations cannot assume this.

Uniqueness and Deduplication Some programs depend
on global uniqueness properties. For example, in C++, two
pointers to the same function must always compare equal.
When header files include inlineable functions that are
address-taken, implementing this becomes difficult because
the out-of-line code is repeated in multiple compiler out-
puts. This is solved by using linker features to deduplicate
these multiple copies, ensuring a unique definition. Modern
ELF versions support this using section groups5; sections
are grouped by a tag string, and all but one of the group

4 Using this for malloc() is particularly tricky because a typical dlsym()
implementation itself calls malloc(), setting up infinite regress.
5 . . . although it is sometimes called ‘link once’, after an earlier GNU
extension, or ‘COMDAT’ after the equivalent Windows linker feature.

https://gcc.gnu.org/wiki/Visibility


is discarded during the link. Link-time uniqueness is a use-
ful mechanism, allowing the optimisation of replacing value
equality (of immutable objects) with pointer equality, and
is exploited by some user-level libraries [20] as well as by
compilers.

Aliases In most programming languages, a definition has
exactly one name. At link time, however, the same range
of bytes may have multiple symbol names, each denoting
the same address but with different metadata. Compilers
typically expose this functionality using attributes. In our
opening example, the same function has names malloc and
__libc_malloc, thanks to the strong_alias macros expand-
ing to alias("malloc"). (We will elaborate on this use of
aliases shortly, in ‘topology alternatives’.) Attributes often
encode details crucial to a program’s intended meaning, but
without a rigorous specification of linker features, are prone
to miscompilation. We encountered a bug in the CIL [30] C
translator, which implements the alias attribute incorrectly
by duplicating the function body in a separate definition, vi-
olating the intended property that all aliases have the same
address. CIL cannot compile a working glibc for this reason
(among others).

Topology Alternatives Aliases are often combined with
substitution, visibility and optionality (weak) features to
yield output objects which form different link graphs in
different link contexts. The GNU C library’s fprintf() im-
plementation exhibits this (shown after preprocessing and
lightly edited).
/∗ Write formatted output to STREAM from the format string FORMAT.
∗/
/∗ VARARGS2 ∗/
int
__fprintf (FILE ∗stream, const char ∗format, ...)
{
/∗ snip ∗/

}
extern __typeof(__fprintf) fprintf __attribute__((alias("__fprintf")));
/∗ We define the function with the real name here. But deep down in

libio the original function _IO_fprintf is also needed. So make
an alias . ∗/

extern __typeof (__fprintf) _IO_fprintf __attribute__ ((weak,
alias ("__fprintf")));

The effect of the two aliases is that local code which
wants to be sure of calling the local definition (perhaps be-
cause it consumes private state, or just to avoid the over-
head of calling to an object further away) can use the name
__fprintf. The standard name fprintf is also provided; if a
substitute is provided by the user (much like the malloc sub-
stitution we considered earlier), this will not affect local calls
to __fprintf. Similarly, the alias _IO_fprintf is defined for
use by the libio subsystem: depending on the build, this may
or may not supply its own definition, so this alias is made
weak.

Introspection Linker features are used to allow programs
to introspect on their own structure. The end, etext and edata
symbols allow programs to test whether a pointer falls within
the executable’s data or text segments. This is used variously

in profiling code, garbage collectors, other dynamic anal-
yses, diagnostic pretty-printing (e.g. printing a pointer-to-
data differently from a pointer-to-text) and so on. Dynamic
linkers offer a richer interface in terms of dlsym() (name-
to-address) and dladdr() (address-to-name) functions. Some
systems code relies on the ability to introspect its own struc-
ture, often during initialisation. The GNU C library’s static-
linking initialisers use specially placed symbols to initialise
a table at start-up. For similar reasons, the Linux kernel
makes use of a GNU linker extension in which certain sec-
tions are automatically given marker symbols.

Versioning Shared libraries must allow old clients to be
executed against a newer library binary. To prevent inter-
face changes from breaking old clients, modern dynamic
linkers support symbol versioning—allowing multiple ver-
sions of an interface to be exposed by a single backward-
compatible binary. The linker script language and assem-
bler pseudo-operations have extensions to support version-
ing, while versioning interacts with introspection: symbol
names are no longer enough to identify a unique definition,
so to avoid ambiguity, symbol versions must be supplied (us-
ing the dlvsym() call).

3.3 Higher-Layer Conventions
Compilers and libraries use features of the linker to achieve
common ends by adopting common conventions. Specific
languages often define per-platform ABI conventions to al-
low different implementations to interoperate. We call this
federated compilation, as a strictly stronger requirement
than separate compilation. The linker neither knows nor en-
forces these conventions, so a specification of linking per se
needn’t concern itself with them. However, the same argu-
ments motivate a formal specification for them much as for
linker-speak. Some specific aspects are as follows.

Code and Data Conventions ABIs specify calling conven-
tions and some aspects of data representation typically in
terms of the C language. This includes representations for
integers and pointers. A C++ ABI specifies how this must be
extended for C++.

Name Mangling ELF symbol names are arbitrary se-
quences of non-zero bytes, so can include any source-
language identifier. However, most language implementa-
tions restrict symbols to the narrower set of names accepted
by the assembler. C identifiers fall within this set by design,
but C++ names include punctuation such as ‘::’, which is not
assembler-friendly, explaining why C++ ABIs define a name-
mangling scheme.

Code Models Code models are conventions about how
near or far a given definition might lie from a reference
to it. Compilers allow a code model to be selected on the
command line, and uses it to choose among the allowable
addressing modes during instruction selection. Mismatched



code models cause link errors, caused by overflow in a relo-
cated field (a referencing instruction unable to reach its ref-
erent). Code models also define mechanisms to achieve po-
sition independence of shared libraries—meaning the code
can run at any address without fixup, entailing it may be
shared across multiple processes at different mapping ad-
dresses.6 Although the linker is oblivious to the details of
these models, it is responsible for generating certain support
structures they require, based on the relocations present in
the input. We will see more detail in §5.2.

3.4 Perspectives
Faced with the task of placing these complex features on a
semantically firmer footing, several reactions are possible.
Here we state some perspectives on this.

A Long Tail of Features Linker features can be viewed
as a ‘long tail’: there are many, realising many disparate
use cases, none is substantially more important than any
other, but amounting to a considerable total. This contrasts
with the usual idealised view of linking as merely a mecha-
nism for separate compilation, where one would expect that
all requirements could be met with a simple, compositional
model made up of relatively few concepts. The many dis-
parate linker features we have seen are united by (only) two
properties: they make sense only when multiple modules are
brought together, and putting them within one language im-
plementation or another would be suboptimal for reasons of
both duplication (if every language implementation provided
its own mechanism) and fragmentation (since each would
doubtless realise these features differently). It is therefore
not appropriate to regard linker complexity as mere ‘feature
creep’ to be swept away by some elegant new design; some-
how, in a practical toolchain, the long tail of disparate re-
quirements must be catered for.

Sticking with Current Designs Even accepting this long-
tail property, designing new linker mechanisms and lan-
guages remains appealing, especially with the usual lan-
guage researcher’s aims of being more expressive, more
compositional, and so on. However, the value of any new
design is predicated on achieving uptake, which is a tall or-
der given the value practitioners place on compatibility and
familiarity. The alternative is to take current behaviour as a
given, and formalise it as-is. Although deliberately limiting,
this has the greatest potential to yield high-assurance linkers
that can actually be used in practice, so is the approach we
adopt. Fortunately, as we will see, the effort involved is not
intractably huge.

4. The Model: ELF
Our ELF model provides types describing the concrete struc-
ture of an ELF file on disk along with more abstract types

6 It says nothing about whether the code’s semantics depend on its load
address; position-independent code is perfectly able to introspect its own
load address, to branch on pointers, etc..

for ease of manipulation of a file’s contents. Functions for
parsing and blitting files to lists of bytes and for interpreting
the structural elements of a file are provided. For example,
functions are provided for the decoding of the section header
string table, or producing a containment mapping of sections
in segments. Platform-specific logic is kept separate from
the main body of the formalisation via the use of higher-
order functions, with ABI- or GNU-specific logic handled by
function arguments. In total the ELF formalisation consists
of approximately 15 300 lines of commented Lem code for
core ELF, with approximately 1 800 lines for the GNU ex-
tensions and 5 300 lines for the AARCH64, AMD64, IA32
and Power64 platform ABIs.

The ELF model is currently used by ppcmem2 [10, 15],
a tool for exploring relaxed-memory behaviour on IBM
POWER and ARMv8, and is used to extract an executable
process image and the initial values of global variables from
binaries, generating an initial machine state for the emulator.

4.1 Validation
We validated our model against a wide-range of ELF exe-
cutable and linkable binaries on multiple machine architec-
tures. Validation was conducted using two widely-deployed
and mature GNU tools—hexdump, a tool for printing the
contents of files in hexadecimal format, and readelf, a
tool for parsing and inspecting the decoded contents of an
ELF file—as trusted oracles against a set of validation bina-
ries. On AARCH64, AMD64, IA32 and Power64 we tested
against 576, 1 650, 3 222, and 1 606 binaries, respectively—
7 054 in total, obtained from /usr/bin and /usr/lib on
typical Linux distributions for the latter three platforms, and
the contents of /system/bin and /system/lib of an An-
droid 5.1.1 smartphone for ARM.

Using our model we wrote a tool that emulated a subset
of readelf’s functionality. Using an automated diff tool,
the output of the real readelf was compared with the out-
put of our tool on the validation binaries, testing the parsing
and decoding of the file-header, section header table, pro-
gram header table, dynamic section, relocation sections, and
symbol and string tables.

Using hexdump, a ‘roundtripping’ property of the parsing
and blitting functions was also validated, ensuring that pars-
ing and then immediately blitting a binary preserved byte-
for-byte compatibility with the original file. This requires the
tracking of ‘dead’ data in between the structural elements of
a file to ensure that the byte-for-byte condition holds.

Validating the model against binaries found ‘in the wild’
on real machines revealed many sources of incompleteness
in the various source specification documents. For example,
constructions relating to the ELF prelinker, such as the dy-
namic section type DT_GNU_PRELINKED are found in a large
number of deployed ELF binaries, yet are not mentioned in
any specification document, being mentioned only in pass-
ing in mailing list messages (e.g. ‘prelinking’ features [18]),
and prior to validation were unknown to us.



One of our aims with this work is to create a comprehen-
sive, validated set of definitions suitable for software verifi-
cation purposes, serving as a foundation for further work in
the area. Toward this end we have extracted Isabelle/HOL
theory files from our Lem source model and provided hand-
written termination proofs for recursive functions in the ELF
model and in the linker that sits atop this model, gaining a
guarantee that our linker terminates on all inputs (the linker
is described in the next section, §5). This Isabelle/HOL code
has been used in an experiment with formal proof, described
in §6.

Whilst we prefer to use Isabelle/HOL, we are aware that
the formal methods community has not come to a consen-
sus on a single theorem proving environment to work with,
and other researchers may wish to use Coq, or HOL4, or an-
other system, when working with our definitions. HOL4 and
Coq theories, extracted from our Lem model, will be made
available in due course.

We started experimenting with Isabelle/HOL extractions
of our Lem model quite early in the development process,
and our use of formal proof was a key component in the
validation process of the ELF model. In particular, many
low-level bugs in the ELF formalisation were discovered
not by the testing-based validation process described above,
but by failed proof attempts. For example, an incorrect byte-
ordering in the parsing functions for eight-byte types used by
the ELF format was discovered due to a failed proof attempt
when using an early version of our Isabelle/HOL extraction.

5. The Model: Linking
Building on this formalisation of ELF, we can now formalise
the operation of a linker and relevant linker-speak features.
We focus on static linking of executables in this paper.

5.1 Overview
Our formalisation takes the form of an executable specifi-
cation that can operate as both a linker and a link checker.
It is designed around the abstraction of memory images and
associated annotation metadata. Linking is expressed as a
transformation of memory images. Each input ELF file is
represented abstractly as a partial memory image, consist-
ing of a collection of elements, mostly mirroring ELF sec-
tions. Byte ranges within elements are labelled with meta-
data tags, mostly mirroring ELF metadata such as symbols,
relocations, and section properties. At the end of the link-
ing process, a single memory image is assembled, which is
transformed back into an ELF file.

The specification is invoked the same way as the GNU
BFD linker, supporting the same command-line options. To
use it as a link checker, it is run with a pre-existing output file
(named with -o, as usual), whose memory image is checked
against the one produced by the specification. Incidental
details of the input ELF file, such as the ordering of ELF
symbols or section headers, are not significant; only the

memory images, in terms of their contents and addresses,
are compared.

Checking is complicated by the surprising amount of non-
deterministic choice, or ‘looseness’, available to the linker.
The very simplest link jobs are entirely deterministic, but
many linker features introduce opportunities for per-linker
or per-run variation. At present, the variation must be cap-
tured explicitly in the specification as ‘personality func-
tions’: the core specification is factored so that each kind of
non-determinism is resolved by a separate function, allowing
emulation of different linkers. Linker personalities are com-
plex. At present, our specification includes a single person-
ality, based on the GNU BFD and gold linkers, but we have
uncovered certain bugs and complications which prevent
it from precisely emulating either one. For example, even
with optimisations and relaxations disabled, the GNU linker
sometimes rewrites instructions in the input binaries—a di-
vergence our memory-image check (correctly) flags up. For
this reason, realistically-sized link jobs (e.g. those including
a C library) currently do not pass the checker. Modelling the
GNU linker’s optimisations in greater detail, including al-
lowing personality functions to rewrite instructions, would
address this. We discuss further ‘loose’ aspects of linker be-
haviour in §5.3.

The notion of memory images generalises to symbolic
memory images, in which each memory image element’s ad-
dress and content may be expressed in terms of symbolic
variables and unordered concatenations of fragments, rather
than precise addresses and bytes. This approach potentially
allows a family of possible links to proceed at once, accom-
modating the looseness inherent in checking for ‘any valid
link’ without the need for a precise specification of person-
ality. Designing such a symbolic representation, and finding
efficient ways to test its satisfiability, is a complex problem
which our ongoing work is addressing.

5.2 Linking bzip2

In the C programming language, a simple program such as
‘hello, world!’ exercises very few features of the language,
and can be compiled even by a toy compiler. However, for
a linker, even the smallest C program amounts to a com-
plex job, since it links with the C library—one of the most
complex libraries on the system, in terms of the linker fea-
tures it exercises. Our model can cope with the large link
jobs that arise from linking small but real C programs, not
limited to hello-world. In this section we outline what hap-
pens when such a C program, bzip2, compiled with gcc for
x86-64, is linked against uClibc7, a fully-featured C library
slightly simpler than the standard GNU C library. The reason
for using uClibc is to avoid certain GNU extensions, namely
IRELATIVE relocations and IFUNC symbols, for which sup-
port remains in the bug-fix stage at the time of writing. Our
formalisation captures (executably) the following steps.

7 http://uclibc.org/

http://uclibc.org/


let command_line_table = [
(["−o"; "−−output"], (["FILE"], []), fun args −> set_or_replace_opt (OutputFilename(head (fst args))), "Set output file name");
(["−Bsymbolic−functions"], ([], []), fun args −> set_or_replace_opt (BindFunctionsEarly), "Bind global function references locally ");
(["−Ttext−segment"], (["ADDR"], []), fun args −> set_or_replace_opt (TextStart(parse_addr (head (fst args)))), "Text segment address");
(["−("; "−−start−group"], ([], []), fun _ −> (fun state −> start_group state), "Start a group");
(["−)"; "−−end−group"], ([], []), fun _ −> (fun state −> end_group state), "End a group");
(∗ ... ∗) ]

Figure 2. Excerpt from the specification of GNU linker command-line options

Parse Command Line This stage is responsible for iden-
tifying input files and link options. Our link command,
slightly simplified to omit directory names and library path
lookups, is as follows.

ld -m elf_x86_64 -static -o bzip2 crt1.o crti.o crtbeginT.o \
blocksort.o bzip2.o bzlib.o compress.o crctable.o \
decompress.o huffman.o randtable.o \
libm.a -( libgcc.a libgcc_eh.a libc.a -) crtend.o crtn.o

Only the .o files on the middle two lines came from com-
piling the program; those above and below are supplied by
the compiler (libgcc.a, crt{1,i,n}.o) and C library (libc.a,
crt{beginT,end}.o). Other options are modifiers; some ap-
ply to the whole link (like -m elf_x86_64, selecting x86-
64 output) while the rest affect only the input files that fol-
low them, or until negated: here -( is negated by -).8 These
bracket options set up ‘groups’ of archives, affecting symbol
resolution semantics: groups permit cyclic references among
archives, while normally archives can only be referenced by
objects appearing to their right. Some options may be mean-
ingfully repeated (such as --defsym name=expr, which de-
fines a new symbol). The command line is formalised as an
interpreter, whose state is the collection of input files and
currently active modifiers. A list of option definitions de-
fines the next-state function: this list (see Fig. 2) resembles
the linker’s --help text, but supplies each option’s seman-
tics as a function from state to state. Complex options such
as --push-state exist, requiring that a state include both a
current value and a stack of previously saved values.

Resolve Symbols to Objects Although ‘only’ 17 files ap-
pear in the command, the four archives contain a total of
1 095 objects, in addition to the 13 objects named directly.
To discard those that are unneeded, the linker next resolves
symbol references between all 1 108 objects. The semantics
of symbol resolution are complex, as we noted regarding the
treatment of archives and groups. Our semantics is factored
into an ‘eligibility predicate’ answering whether a given ref-
erence can bind to a given definition, and an ordering on el-
igible definitions such that the first eligible definition is the
intended referent. The predicate is shown (slightly abbrevi-
ated) in Fig. 3. The ordering is based on command-line or-
der, but also accounts for the semantics of substitution: def-
initions in relocatable files take precedence over archives,

8 Confusingly, -static is also of this kind: if any -lX options preceded it,
the libraries they denote might be linked dynamically, meaning the output
would not be a (fully) statically linked binary.

let def_is_eligible = (fun (∗ ... ∗) −>
let (∗ snip more supporting definitions ... ∗)
in
let ref_and_def_are_in_same_archive
= match (def_coords, ref_coords) with
(InArchive(x1, _) :: _, InArchive(x2, _) :: _) −> x1 = x2
| _ −> false

end in
(∗ main eligibility predicate ∗)
if ref_is_defined_or_common_symbol then def_sym_is_ref_sym
else
if ref_is_unnamed then false (∗ never match empty names ∗)
else
if def_in_archive <> Nothing then
(∗ Weak references ∗can∗ be resolved to archive members...
∗ if the reference itself is also in the archive . ∗)
((not ref_is_weak) || ref_and_def_are_in_same_archive)
&& (

ref_is_leftmore
|| ref_and_def_are_in_same_archive
|| ref_is_in_group_with_def

)
else true

in let eligible_defs = List . filter def_is_eligible
defs_and_linkables_with_matching_name

in (∗ ... ∗)

Figure 3. Excerpt from the eligibility predicate used to form
symbol bindings

hence providing the semantics necessary for the malloc.o
substitution example (§3.2). Once all symbol references are
resolved, any unreferenced objects can be excluded. In our
case, this leaves 141 objects in the link.

Generate Support Structures The linker must generate
support structures used by certain code models and reloca-
tion schemes. In most ABIs, these include the GOT (global
offset table; a table of pointers) and PLT (procedure link-
age table; a table of trampolines). These are used for indi-
rect addressing, when code compiled with narrow addressing
modes must reach definitions located far away. The linker
generates a GOT consisting roughly of one entry for each
distinct symbol definition used in a GOT-based relocation.
Support structures are particularly critical for dynamic link-
ing, to allow libraries to be loaded across the entire address
space and to support lazy binding, but static link jobs may
also require generation of a GOT (frequently) and a PLT (oc-
casionally). Although support structures are a function of the
overall link contents, they must be generated early, before
the linker script runs, to give the linker script control over
their placement, hence before any output memory image ex-
ists. This requires ad-hoc modelling; for example, the GNU
linker pretends that these structures reside in the first input
object. To link bzip2, the GOT is necessary mainly to sup-



port relocation schemes for thread-local storage (required for
the thread-local errno); no PLT is necessary (unless linking
with glibc, whose IFUNC symbols do necessitate a PLT). We
must also support TLS relocations (below).

Optimise Relocations and Instructions Immediately be-
fore generating these support structures, many linkers apply
optimisations to the relocations and, in some cases, to the
instructions that use them. For example, in our bzip2 link,
to avoid use of the GOT when static-linking, the GNU linker
will turn the following mov, which loads an address from the
GOT
48 8b 05 00 00 00 00 mov 0x0(%rip),%rax

----------- to be relocated:
R_X86_64_GOTPCREL __libc_stack_end-0x4

into the following lea which calculates it directly.

48 8d 05 3d 1e 20 00 lea 0x201e3d(%rip),%rax
----------- applied relocation:

R_X86_64_PC32 __libc_stack_end-0x4

Some ABI documents list ‘standard’ optimisations that
may be applied. A linker is free to use them or not.9 Our
model currently lacks knowledge of the instruction set ar-
chitecture, so does not capture these optimisations. Since the
GNU linker does not currently provide any way to disable
these optimisations (even when supplying command-line op-
tions intended to disable optimisations), we diverge from it
here: our GOT will contain more slots, subsequent address
assignments will be skewed, and more instructions will indi-
rect via the GOT.

Compose Output Sections The main pass over the linker
control script assigns input sections to output sections. The
default GNU linker script is 226 lines long. Our formalisa-
tion defines the linker script language’s abstract syntax in
Lem, using Lem for arithmetic and pattern-matching logic.
We then manually translated the default script into an AST
value in Lem. For example, a fragment of the original linker
script
. preinit_array :
{

PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP ( ∗(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);

}

is represented as the following.
OutputSection(AlwaysOutput, Nothing, ". preinit_array ", [

DefineSymbol(IfUsed, "__preinit_array_start", hidden_sym_spec)
; InputQuery(KeepEvenWhenGC, DefaultSort, filter_and_concat (

fun s −> name_matches ".preinit_array" s))
; DefineSymbol(IfUsed, "__preinit_array_end", hidden_sym_spec)

])

Section composition is mostly concatenation, but ELF
section flags can mark sections as mergeable. Most com-
monly these are sections containing strings, signified by an
additional section flag. Again, it is up to the linker whether
or not sections are merged. Symbol definitions made in the

9 . . . the newer gold linker does not currently apply them.

script can substitute (§3.2) for definitions in the input files.
This means that the reachability calculation used to discard
unwanted inputs was not definitive: it may have included
some objects that are no longer needed, since the relevant
bindings were altered during script execution.

Garbage Collection To provide a finer-grained removal of
unwanted input, and to compensate for the problem that, as
we noted, the initial reachability calculation is subject to
invalidation, the command line may request an additional
garbage collection pass (--gc-sections). This also entails
delaying address assignment, to avoid allocating addresses
for sections that will be collected. Normally --gc-sections

is not used, and we currently do not model it.

Assign Addresses to Symbols Another pass over the linker
script now assigns addresses to output sections. Addresses
can be computed explicitly in the script using arithmetic, and
can depend on the size and address of any section placed
earlier in the script. By default, addresses are computed
using a location counter that is automatically incremented,
rounded up to account for section alignments specified in
input files.

Apply Relocations Once addresses have been assigned,
relocations can be applied. This is actually where linking
happens. Our bzip2 example requires 1 941 relocations of six
different kinds: 32, 32S, GOTPCREL, PC32, PLT32, GOTTPOFF.
The last of these is a thread-local relocation, supplying the
relocated instruction not with an address but with an offset
in the thread-local array.

Generate Output Finally, we have a relocated memory im-
age. We can compare this against the input bzip2 object; this
comparison fails because the GNU linker has altered some
instructions (and generated a smaller-than-expected GOT).
Our image nevertheless otherwise corresponds very closely
to the GNU linker output; it can be serialised straightfor-
wardly into an output ELF file and executed with identical
behaviour (including passing test cases).

5.3 Looseness
Linking is deterministic in simple cases. For example, a link
job controlled by a known linker script and whose input con-
sists only of simple freestanding object files will produce
a deterministic memory image—unless it contains common
symbols, orphan sections, section groups, mergeable sec-
tions, or if the linker must insert padding or generate non-
trivial support structures. Nearly all real link jobs have some
of these properties. Here we summarise these sources of
looseness.

Output Ordering When concatenating a collection of .text
sections, say, the sections must generally be ordered by the
order of the originating objects on the command line. How-
ever, archive members are ordered in (to quote the GNU ld
manual) ‘the order in which they are seen during the link’, a



let amd64_reloc r =
match (string_of_amd64_relocation_type r) with (∗ byte width ∗) (∗ truncate / sign−ext ∗) (∗ calculation ∗)
| "R_X86_64_64" −> fun (img, p, rr ) −> (8, fun (s, a) −> i2n ( (n2i s) + a ))
| "R_X86_64_PC32" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n_signed 32 ( (n2i s) + a − p ))
| "R_X86_64_PLT32" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n_signed 32 ( (n2i (amd64_plt_slot_addr img rr s)) + a − (n2i p) ))
| "R_X86_64_GOTPCREL" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n_signed 32 ( (n2i (amd64_got_slot_addr img rr s)) + a − (n2i p) ))
| "R_X86_64_32" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n ( (n2i s) + a ))
| "R_X86_64_32S" −> fun (img, p, rr ) −> (4, fun (s, a) −> i2n_signed 32 ( (n2i s) + a ))
| "R_X86_64_GOTTPOFF" −> fun (img, p, rr) −> (4, fun (s, a) −> i2n_signed 32 ( (n2i (amd64_got_slot_addr img rr s)) + a − (n2i p) ))

(∗ ... ∗)

Figure 4. Excerpt (slightly simplified) from the specification of x86-64 relocations, used in linking our bzip2 example. The
parameters p, s and a denote respectively (as in the ABI specification) the relocation site address, symbol address and addend.

detail of the linker’s dependency graph traversal algorithm.
As a result, archive members may appear in different or-
ders. The same ordering non-determinism applies to com-
mon symbols.

Padding Lengths and Values When padding sections to
satisfy alignment constraints, both the amount and the con-
tents are not fully determined. Superfluous padding is never
desirable, so arguably a bug; we filed a bug on the gold
linker10 inserting too much padding and of the wrong byte
values. In practice, linkers use zeroes to pad data sections,
and nop-sequences to pad code. The latter are essential to
allow control to flow between abutting sections even in the
presence of padding. This is sometimes done (e.g. the GNU
C library splits some code between crti.o and crtn.o, such
that control flows across the join). For an n-byte nop, many
choices of instruction may be available, depending on the
architecture.

Relocation, Optimisation, Merging, Section Groups As
covered in §5.2, linkers are free to optimise certain reloca-
tions, sometimes replacing instructions. They are also free to
merge mergeable sections, or not. Sections that are members
of section groups (§3.2) compose differently from ordinary
sections: all but one section in the group is discarded, but the
choice of which to discard is left to the linker.

Segment Padding At boundaries between segments (a.k.a.
memory mappings), the linker’s address assignment algo-
rithm faces trade-offs about disk space (zeroes in the out-
put file) and memory (wasted space in mapped pages). The
GNU linker script language’s ALIGN_DATA_SEGMENT
feature inserts an amount of padding calculated to optimise
this trade-off. Our specification revealed an inconsistency
between the GNU linker’s manual and behaviour.11

Orphan Section Placement Sections not matched by any
clause in the linker script are still included in the output.
They can be placed in any output section having suitable
flags; the choice is left to the linker.

10 GNU binutils bug #18979, at https://sourceware.org/bugzilla/
show_bug.cgi?id=18979 as retrieved on 2016/8/24.
11 GNU binutils bug #19203 (at https://sourceware.org/bugzilla/
show_bug.cgi?id=19203 as retrieved on 2016/8/24)—now fixed

Linker-Generated Structures The GOT, PLT and other
run-time structures (§5.2) are effectively lists, whose order
is arbitrary. In practice, the order adopted often reflects the
linker-internal hash table implementation.

Relaxation A family of linker optimisations known as ‘re-
laxations’ can rewrite content at relocation site (choosing a
shorter calling sequence, say) and section boundaries (over-
lapping leading and trailing padding in exception handling
information, say). These are mostly specific to the instruc-
tion set; as before, although conceptually a linker need not
understand instruction encodings, most do.

Phase Anomalies A linker necessarily makes multiple
passes over its inputs. Passes include enumerating inputs,
calculating output section layout, calculating addresses, ap-
plying relocations, and so on. Some linker features interact
in ways which induce circular dependencies between these
passes, which the linker resolves in arbitrary and undocu-
mented ways. One example is input enumeration: the linker
‘pulls in’ archive members to provide symbols required by
other input objects. However, the linker script might subse-
quently provide its own definition for some symbol, obviat-
ing the need for a definition pulled in. Whether such obvi-
ated inputs are removed from the link is a phase-order de-
tail; in our experience they are not. Contents of GOTs and
other support structures also tend to reveal these phase de-
tails (since the GOT must be sized before linker scripts are
fully evaluated, hence before symbol bindings are finalised).

5.4 Status
The above discussion has highlighted several ways in which
the current model diverges from existing linkers; we briefly
summarise these here.

Partial Specifications Many aspects of the specification
are only ‘filled in’ sufficiently for our small use cases (hello-
world, bzip2, etc.). For example, many command-line op-
tions are not specified, nor are some of the more obscure re-
location kinds. Adding these is an incremental effort, since
the necessary support structures are already in place (ab-
stract notions of elaborated command-line, relocation sup-
port structures, and so on). Certain ELF and linker script
features are also not currently implemented for similar rea-
sons; these include section groups (a feature used heavily by

https://sourceware.org/bugzilla/show_bug.cgi?id=18979
https://sourceware.org/bugzilla/show_bug.cgi?id=18979
https://sourceware.org/bugzilla/show_bug.cgi?id=19203
https://sourceware.org/bugzilla/show_bug.cgi?id=19203


C++ link jobs), various sorting and discarding behaviours se-
lectable within linker scripts, and so on. Again, adding each
of these is expected to be a localised task.

Linker Script Parser For link jobs that require a linker
script other than the default linker script supplied by our
linker, such as most operating system kernels, adding a
linker script parser is necessary. This is not technically de-
manding, since there is a close correspondence between our
Lem datatype and the actual linker script syntax.

Loose Comparison For very simple link jobs that do not
exercise sources of looseness, it is already possible to test
our specification against real linkers and expect to find an
exact match in their output memory images. However, given
the many sources of looseness identified in the previous sec-
tion, testing on realistically sized link jobs requires adding a
loose ‘symbolic’ comparison function. The notion of mem-
ory images is already a reasonable basis for this, but, as
noted earlier, requires some further work to deliver a tool
that can accurately handle looseness in large link jobs (§5.1).

Instruction Optimisation A large obstacle to using the de-
fault GNU BFD linker is the support for instruction-level op-
timisations illustrated earlier. Since these are prescribed by
the ABI specification, creating a series of pattern-matching
bytewise translations is a feasible approach, and does not re-
quire a full-scale integration of instruction set semantics.

Dynamic Linking Dynamic linking is ubiquitous on com-
modity systems, and our specification is designed to support
it. Note however that dynamic linking involves two steps:
generating individual dynamic objects as output (by ld), and
actually doing the load-time link of many such objects (by
ld.so). The first is a minor extension to our specification, and
as noted, existing specifications of GOT and PLT genera-
tion are a useful foundation. The second requires consid-
erable additional front-end logic (locating participating bi-
naries, building a link map, assigning load addresses, etc.),
effectively amounting to a separate specification for load-
ing. For static linking, loading is very straightforward, since
the file embodies the entire memory image; our ELF speci-
fication already includes this. For dynamic linking, the ld.so
loading process needs its own additional specification.

Performance, Housekeeping etc. The current specifica-
tion codebase has various defects as would be expected
for an undertaking of this scale. The code contains various
workarounds for bugs in Lem, for which proper fixes are
anticipated. The generated OCaml code suffers performance
problems owing to the data structures fixed by Lem libraries;
large link jobs take a long time to complete. This does not
affect the functional correctness of our linker specification,
nor does it require changes to the specification per se, but
affects its usability at present. The code is also marked in
various places with notes of uncertainty about what the ‘cor-
rect’ specification is, in need of clarification by correlating

both experimental observations and documentation; resolv-
ing these is an ongoing task. Like any large software arte-
fact, there are a sprinkling of code quality issues and known
minor bugs. Finally, there are missing bindings for certain
definitions used when extracting to backends other than Is-
abelle/HOL and OCaml.

6. Formal Proof
As an initial step in using our definitions for formal proof
we have proved a simple but nontrivial correctness property
of the relocation process, a central mechanism involved in
linking. We use an Isabelle/HOL extraction of Fox’s x86-64
model [11], relying on Fox’s specification of x86-64 instruc-
tion encoding, in conjunction with our own Isabelle/HOL
definitions extracted from the Lem model in the proof.

We fix two single-instruction programs, both consisting
of an x86-64 unconditional MOV instruction that loads the
immediate constant 5 to an absolute address in memory,
say to a C global variable. This address is not fixed, as we
quantify over the absolute target of the move instruction. The
first of the two programs will have the target address of the
move supplied by our linker’s relocation mechanism, and we
therefore initially set the target address to zero. The second
of the two programs will remain untouched by relocation and
has the quantified address as the target address of the move.

We construct a relocation entry describing a relocation
that will be applied by the linker to the first of our two pro-
grams described above, and define two sections: a .text sec-
tion that will contain our encoded program, and a .data sec-
tion which we will use as scratch space for writing to with
our MOV instruction. Both sections have fixed start addresses
and fixed sizes. We create a symbol, arbitrarily called test,
whose reference is within the bounds of the .text section
and whose definition is within the bounds of the .data sec-
tion. A symbol reference denotes a location where relocation
will take place; here it coincides with the memory address of
the address field within the encoded instruction in the .text

section. A symbol’s definition denotes where the relocated
address field will point to after relocation; here this is an ad-
dress within the bounds of the .data section.

Call an address valid when it lies within the bounds of
the .data section, and call a finite map from 64-bit words
to 8-bit bytes a flat memory. We prove that for any valid ad-
dress a, a ‘correct’ flat memory can be obtained from the
memory image produced by the linker’s relocation machin-
ery after relocating test. Here, a flat memory is ‘correct’
when (1) it is pointwise equal to the flat memory obtained
from encoding our fixed instruction with address field set to
a, and (2) the base address at which the encoded bytes re-
side equals the start address of the .text section. Note that
the theorem statement is parametric in the address at which
the symbol’s definition resides. This means that simply exe-
cuting the linker’s relocation machinery is not sufficient for



establishing that the statement holds; the use of proof if nec-
essary.

This theorem is about relocation, and not about linking as
a whole. Nevertheless, the theorem is nontrivial: it involves
reasoning about the linker’s relocation and symbol resolu-
tion machinery, about aspects of the AMD64 ABI, and about
internal data structures used within the linker. Further, we
believe that this theorem is interesting for two reasons. First,
though the correct execution of much real-world software
depends crucially on relocation being applied correctly, re-
location itself is hard to validate adequately by testing due
to each ABI supplying a unique set of relocation types, ne-
cessitating a large number of test cases to guarantee full cov-
erage. This problem becomes more profound as the number
of relocation types supplied by an ABI grows. Though the
AMD64 ABI specifies around 20 different relocation types,
the ARM64 and Power64 ABIs supply around 120 and 80
custom relocation types, respectively, causing a combinato-
rial explosion in the size of test suite needed to ensure ad-
equate coverage. Formal proof therefore can be profitably
used to achieve a level of certainty that relocation is be-
ing correctly applied that is hard to achieve by any other
means. Second, we believe that this theorem is the first for-
mal proof of any property related to relocation, and the first
formal proof of any property related to linking for realistic
executable and linkable formats.

The proof of the statement discussed above does not come
close to demonstrating the total correctness of our linker,
nor even the linker’s relocation machinery. However, the
theorem serves to demonstrate that our definitions can be
used for formal proof, given how sensitive to the particular
form of definitions that activity often is, and we see this
theorem merely as a stepping stone to a wider application of
formal proof in this area. In particular, we see no impediment
to extending our theorem detailed above to all relocation
types supplied by the AMD64 ABI, all instructions supplied
by the x86-64 instruction set, and to an arbitrarily large
sequence of instructions, which we believe would establish
the total correctness of our linker’s relocation machinery for
the AMD64 ABI. Further properties that could be proved
about our linker are discussed in §8.

A significant portion of the total effort spent trying to
prove our theorem was spent proving generic lemmas about
the internal data structures, ordering functions, and so on,
used within the linker. These can be reused. In total, the
proof of the theorem consisted of around 4 500 lines of
tactic-driven Isabelle/HOL proof script. Of this total, around
1 500 lines of proof script were dedicated to manual proofs
of termination for all recursive functions, and around 2 500
lines of proof script were dedicated to generic lemmas about
the internal data structures of the linker. All of these lemmas
can be reused in any further verification project, with around
500 lines of proof script being specific to the proof at hand.

7. Related Work
We believe we are the first to provide a comprehensive, val-
idated formalisation of a realistic linking and executable file
format, the first to formalise large parts of the Application
Binary Interface of common commodity platforms, the first
to build an executable specification of ‘realistic’ linking, and
the first to formally prove any property related to any aspect
of ‘realistic’ linking. Whilst Kennedy et al. [21] are able
to generate Microsoft Portable Executable (PE) files from
a Coq formalisation of X86, they formalise only enough of
the PE format to obtain a working executable from machine
code.

Previous theoretical work has addressed some limited
aspects of linking. Cardelli’s work on program fragments
and modularisation [5] primarily viewed linking as a way
of facilitating the separate compilation of modular programs
(see Cardelli’s Theorem 7.3, for example), and formalised
linking via the use of linksets. This approach, focusing on
separate compilation, was followed by considerable further
theoretical work [9, 13, 26, 42]. However, as we stress in
this paper, the linker has many roles over and above that of
separate compilation, that these works do not address.

Closely related to the theoretical work above is work on
module systems. As we noted earlier in §2, linking con-
trasts with the module systems of many programming lan-
guages by being almost entirely concrete, having no notion
of module parameterisation, nor of module instantiation. The
linker is responsible only for creating the concrete ‘wiring’,
or binding topology, of the output binary, but not for instan-
tiating abstract modules, with the programmer having little
direct control of which module gets wired to which other.
Rather, bindings are formed entirely according to symbol
names, without regard to the name of the module (file) sup-
plying or requiring them. This makes a linker’s role in ‘pro-
gramming in the large’ comparable to a (somewhat inexpres-
sive) module interconnection language [7]. Subsequent work
in this area has extended Unix-style batch linking with ex-
plicit hierarchy [33] and dynamic linking with greater run-
time interposability [34]. Linkers’ substitution and interpo-
sition features (see §3.2) correspond to features in certain
‘mixin’-style module systems [3, 4]; in particular, dynamic
linking has been shown to relate closely to mixin layer com-
position [36].

Verified compilation projects have also touched on as-
pects of linking. The CompCert compiler generates as-
sembly code which is assembled and linked via the host
toolchain. Rather than formalise linking directly, a post-hoc
tool [38, Section 7] checks that the output binary reproduces
the expected reference graph. The check is necessarily very
partial: the host toolchain requires extra code to be linked
in for its operation (e.g. C library startup code), which the
checker must trust. This approach is also limited to sepa-
rate compilation of a single language, and does not apply to



realistic existing codebases using languages besides C, in-
cluding linker-speak.

Compositional CompCert [37] extends the compiler and
proofs to handle the separate compilation of modules, ob-
taining the first verified separate compiler for C, but re-
quired significant changes to the compiler’s proof of correct-
ness. The scale of these modifications motivated the more
lightweight approach taken by Kang et al. [19]. This work
limited the code being linked to that produced by CompCert,
and therefore required far fewer changes to the CompCert
proofs. Like the theoretical work mentioned earlier, these ex-
tensions still view linking primarily as a means of achieving
separate compilation, and ignore the many other roles of the
linker.

Wang et al. [41] verified a compiler for the Cito program-
ming language in Coq. One novelty of this compiler was
the ability to link compiled Cito programs against assem-
bly code produced by other compilers, and reason about the
linked code with a Hoare-style program logic. Again, this
work only considers linking as a vehicle to enabling sepa-
rate compilation, albeit in a mixed-language setting.

Other verified compilers have tended to ignore linking,
with the exception of the Piton project [28] which included
a simple link-assembler for a low-level assembly-like lan-
guage. The CerCo compiler [1] is limited to single-module
programs, as are the C0 compiler [32], Chlipala’s com-
piler [6], and the CakeML compiler [22] to name some no-
table recent projects; the latter uses the host toolchain to link
in a small amount of native code to implement string input-
output routines.

8. Future Work
By bringing linking into the realm of mechanised semantics,
we hope to provide a concrete foundation for several strands
of new research.

Specification of Higher-Level ABI Conventions Feder-
ated compilation relies on ABI conventions above the linker
level, include calling conventions and data layout (§3.3).
Formal specification of these, although separable from link-
ing, is essential to any full specification of a toolchain.

Relating Source Languages to Linker Abstractions Lan-
guage implementers need ways to state their assumptions
and guarantees about the link-time environment and its map-
pings to and from the source language. This could then en-
able accurate source-level reasoning about linker-supplied
definitions (like the introspective end and etext symbols,
§3.2), or linker-invoked features such as visibility attributes,
aliases, and so on.

Program Analyses Accounting for Linker-Speak Pro-
gram analysis of real codebases involving linker-speak must
account for its semantics. Several approaches are possible:
link-time reasoning near the machine level, perhaps follow-
ing Balakrishnan and Reps [2] in seeking visibility of er-

rors introduced during compilation, or perhaps performing
intermediate-language reasoning in a linking-aware context,
analogous to current approaches to link-time optimisation in
LLVM and gcc.

User-Facing Improvements Much of the user-facing com-
plexity of linking can be argued as unnecessary. Linker-
speak is not a well-designed language: its incantations of-
ten implement simple properties using low-level mecha-
nisms. Linker behaviour (particularly errors) have a habit
of mystifying programmers, even experienced language im-
plementers. (Two anecdotes in this space include GHC bug
8935, in which GHC developers initially mistook the com-
pletely standard semantics of dlsym() for a bug, or OCaml
Mantis issue 6462 which incorrectly blames a program cor-
ruption bug on a claimed lack of support in the linker.)
Weighty documents of intricate user advice, like Drepper’s
[8], suggest a need instead for higher-level policy-like ab-
stractions, from which a smart toolchain can figure out how
to perform the link. We would also like ways to factor linker-
speak so as to avoid the potential for link-time interfer-
ence between user-supplied and toolchain-required link be-
haviour (as with our -fvisibility example, §3.2).

Further Work on Formalising Separate Compilation
Several recent strands of work in the field of verified com-
pilation have touched upon verified separate compilation
(see §7). Though we have been careful to point out that
‘real’ linkers provide many services to programmers, sep-
arate compilation remains a major use-case for linkers, and
we aim to use our linker to study the source-level seman-
tics of programming languages with mechanisms for sepa-
rate compilation, and their verified compilation.

Extending and Enhancing Existing Verified Compilers
Our models are a potential means of enhancing the ‘trust
story’ of existing verified compilers by eliminating the de-
pendency on the untrusted host toolchain, and any post hoc
link validation tools, when producing binaries. We aim to
extend the CakeML compiler to produce ABI-compliant bi-
naries directly, which currently produces executable binaries
by wrapping generated machine code in a thin layer of hand-
written C, and relying on the host platform toolchain to gen-
erate the final binary.

Further Verification We plan to extend the work detailed
in §6, where our proof of concept proved only the commuta-
tion of a single relocation type with a single, fixed machine
instruction, for a single platform ABI. This theorem is not
sufficient to establish the total correctness of our linker’s re-
location machinery. However, extending this to all relocation
types supplied by a given ABI against arbitrary numbers of
machine instructions supplied by an instruction set would,
we believe, establish the total correctness of relocation for a
given ABI.

Our Isabelle/HOL termination proofs have established
that our linker terminates on all inputs. It would be interest-



ing to try to identify some predicate on ELF files such that
if a set of files all satisfy the predicate then our linker will
terminate in a non-failing state when linking them.

In the longer term we aim to establish the total correctness
of our linker. This is an ambitious goal. What total correct-
ness for a ‘realistic’ linker—which as we have argued in this
paper provides many services to users over and above the
facilitation of separate compilation—means is not a priori
clear and arguably a research contribution in its own right.
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