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Conventional computer engineering relies on test-and-debug development processes, with the
behaviour of common interfaces described (at best) with prose specification documents. But prose
specifications cannot be used in test-and-debug development in any automated way, and prose is a
poor medium for expressing complex (and loose) specifications.

The TCP/IP protocols and Sockets API are a good example of this: they play a vital role in
modern communication and computation, and interoperability between implementations is essential.
But what exactly they are is surprisingly obscure: their original development focussed on “rough
consensus and running code”, augmented by prose RFC specifications that do not precisely define
what it means for an implementation to be correct. Ultimately, the actual standard is the de facto
one of the common implementations, including, for example, the 15 000–20 000 lines of the BSD
implementation — optimised and multithreaded C code, time-dependent, with asynchronous event
handlers, intertwined with the operating system, and security-critical.

This paper reports on work done in the Netsem project to develop lightweight mathematically
rigorous techniques that can be applied to such systems: to specify their behaviour precisely
(but loosely enough to permit the required implementation variation) and to test whether these
specifications and the implementations correspond, with specifications that are executable as test
oracles. We developed post-hoc specifications of TCP, UDP, and the Sockets API, both of the
service that they provide to applications (in terms of TCP bidirectional stream connections), and of
the internal operation of the protocol (in terms of TCP segments and UDP datagrams), together
with a testable abstraction function relating the two. These specifications are rigorous, detailed,
readable, with broad coverage, and are rather accurate. Working within a general-purpose proof
assistant (HOL4), we developed language idioms (within higher-order logic) in which to write the
specifications: operational semantics with nondeterminism, time, system calls, monadic relational
programming, etc. We followed an experimental semantics approach, validating the specifications
against several thousand traces captured from three implementations (FreeBSD, Linux, and WinXP).
Many differences between these were identified, and a number of bugs. Validation was done using a
special-purpose symbolic model checker programmed above HOL4.

Having demonstrated that our logic-based engineering techniques suffice for handling real-world
protocols, we argue that similar techniques could be applied to future critical software infrastructure
at design time, leading to cleaner designs and (via specification-based testing) more robust and
predictable implementations. In cases where specification looseness can be controlled, this should
be possible with lightweight techniques, without the need for a general-purpose proof assistant, at
relatively little cost.

CCS Concepts: • Software and its engineering; • Networks → Protocol correctness; Network protocol
design; Transport protocols; • Theory of computation → Logic and verification; Automated reasoning;
Higher order logic; Semantics and reasoning ;
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1 INTRODUCTION

We begin by recalling normal industry development practice, to explain the fundamental
problem that we address. We highlight some of its difficulties and we focus on the concept
of specifications that are executable as test oracles (§1.2) and on the concept of the de facto
standards (§1.3), using the TCP/IP network protocols and Sockets API as an example (§1.4).
We then introduce our work in the NetSem project to develop specifications for TCP, UDP,
and the Sockets API (§1.5) and explain two of the main technical challenges involved (§1.6,
§1.7). We conclude the introduction by summarising some non-goals and limitations (§1.8),
the project history (§1.9), and the structure of the remainder of the paper (§1.10).

1.1 Standard Industry Practice

At present the overwhelming majority of our computing infrastructure is built with a
testing-based development process. The only way that we normally have to assess whether
implementation code will behave satisfactorily is to execute it on a collection of concrete test
cases and examine the outcomes. This leads to the standard test-and-debug development
cycle, in which code is written, it is executed on tests, the outcomes are assessed, and the
code is rewritten accordingly. For each test, the allowed outcomes are typically defined
manually, either as a check within the test itself, or as data on the side.
Computer engineering relies also on the division of labour that is enabled by common

interfaces, allowing systems to be composed of parts built by different teams and different
organisations. These interfaces include major pan-industry abstractions, such as the processor
architectures, programming languages, established libraries, network protocols, filesystem
APIs, etc., together with many internal interfaces specific to particular systems. They are
typically described with specification documents that combine a reasonably precise definition
of the interface syntax (variously the processor opcodes, programming language syntax,
protocol wire format, API types, etc.) with some informal-prose description of the intended
interface behaviour.

Ideally this triumvirate, of code, tests, and specification document, would all be in sync: the
defined allowed test outcomes would be correct with respect to the specification-document
intent, the tests would have good coverage, both of the code and of the specification
document, and the code would pass all the tests. That would provide some confidence
(though obviously not certainty) that the code and specification document are consistent,
exploiting the redundancy between the three different descriptions to detect errors. One also
would hope that a specification document is sufficiently clear and complete to serve as a good
description, for both implementers and clients of an interface, of what an implementation
must do and what a client can rely on.

However, the normal specification-document reliance on prose to describe behaviour makes
both of these ideals hard to attain. Prose has one obvious advantage: specification docu-
ments are used to communicate between human beings, and prose makes them superficially
accessible. But a prose document cannot be used in that test-and-debug development cycle
in any direct, automated way. Instead, one has to manually curate the intended outcomes for
each test, defining them and reasoning informally to check that they capture the intent of
the prose specification. One also has to manually reason about specification coverage. Prose
fails also in that it is intrinsically a poor medium for expressing the subtle and complex
behaviour of real systems: with no automated checking or testing of specification documents,
their prose descriptions are almost inevitably ambiguous and incomplete, and often in some
way inconsistent or simply incomprehensible. It is all too easy to add a paragraph to a
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prose specification without considering all of its implications. Contrasting prose specification
documents with tests, the former cover rich behavioural properties, intended to be readable,
subject to ambiguity, and not directly testable, while the latter are effectively single-point
specifications, not intended to be readable, tolerably precise, but directly testable.

Industry has learned how to get by in this fashion well enough to thrive economically, but
the aggregate cost of dealing with the resulting bugs, behavioural oddities, version differences,
and security flaws is high. Meanwhile, after 50+ years of research on formal specification
and verification, we have reached the point where a few pieces of nontrivial software that
have been designed with verification in mind can be proved correct, but proving functional
correctness of substantial bodies of existing “real-world” software is still well out of reach. In
fact, even stating such correctness properties has been out of reach: for that we would need
mathematically rigorous specifications in place of the conventional prose.

1.2 Specifications that are Executable as Test Oracles

Our work develops a middle way between current industry practice and the academic
dream of widespread full correctness proofs: we show that it is feasible and useful to build
rigorous specifications of a key piece of systems software in such a way that one can test the
correspondence between implementation and specification, and one can state and test some
important correctness properties, all this despite the many challenges such code embodies.
We do this by focussing on the simple concept of specifications that are executable as a

test oracle: artifacts that can be used, given a behaviour that might be exhibited by the
system, to compute whether or not that behaviour is allowed. They need not be decidable in
general, so long as they terminate with a yes-or-no answer for the behaviours of sufficient
tests. Having an executable-as-test-oracle specification radically simplifies the construction
of test suites: given such a specification, one can make tests by some automatic process,
e.g. systematically or randomly enumerating test stimuli, without needing a manually written
check or manually curated set of allowed results for each test. Instead, one can simply use
the test oracle to assess whether the observed behaviour obtained by running each test is
allowed.

The concept of a specification that is executable as a test oracle is surely not new, but we
believe it to be under-appreciated and under-emphasised, both in industry and in the research
literature. It should not be confused with the notion of a specification that is executable
in a more conventional sense: one that can itself serve as a (perhaps slow) implementation,
and which can (perhaps pseudorandomly) exhibit any allowed behaviour — in other words,
a specification that is executable as a semantically complete implementation. For a tight
specification of a deterministic system, the two notions are very similar, but many scenarios
involve loose specifications and/or implementation nondeterminism, where they can be very
different.

A specification that is executable as a test oracle could take many forms. At one extreme,
it might be a program in a conventional programming language, that takes a representation
of a system behaviour (perhaps a trace) as input, and whose execution checks whether it
has some desired properties. At the other, it might be a mathematically rigorous formal
specification, equipped with whatever execution mechanism is needed to let one compute
whether representations of system behaviour are admitted or not. Much previous work on
formal specification has had the primary aim of supporting correctness proofs; for that,
mathematical rigour is essential. Supporting testing via executability as a test oracle is a
quite different goal; mathematical rigour is desirable for such specifications, to eliminate
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ambiguity and imprecision within the specification, but it is not in general essential. In some
cases one has both goals, of course.

Irrespective of whether it is expressed mathematically or in a conventional programming
language, a specification written to be executable as a test oracle should also serve as a
readable document, to serve the original purpose of specification documents, of enabling
communication and discussion between humans about the intended behaviour. It should
be structured to be as clear as possible, which may be in tension with the demands of
executability and of rigour, and it should be annotated with explanatory prose and presented
in a human form.

1.3 De Facto Standards

Another kind of specification, particularly important for systems in which individual com-
ponents evolve over time, is that of the de facto standards. There are broadly two kinds:
the de facto standard implicitly defined by the existing component implementations, as the
envelope of all their behaviours, and the de facto standard implicitly defined by the deployed
systems that have to interoperate with them, as the conjunction of the assumptions made
on their behaviour by all the existing clients. When writing new software above a particular
interface, what really matters (in the short term) is the former: the envelope of all behaviour
exhibited by the existing implementations that it has to interoperate with. Dually, when
writing a new implementation of a particular established interface, what matters is the latter:
the assumptions about the interface behaviour that the deployed clients implicitly rely on; if
the new implementation violates one of those assumptions, the deployed clients will fail.
Both of these are hard to investigate with conventional methods, which offer no way

to describe an envelope of allowed behaviour except either (a) the outcomes of all tests
from some test suite, or (b) a prose specification document. But a specification that is
executable as a test oracle gives a way to experimentally investigate the behaviour of existing
implementations, by iteratively generating tests, checking whether the observed behaviour is
allowed by the specification, and refining the specification to provide a better approximation.
In this way one can develop post hoc specifications for existing systems that capture good
approximations to the behaviour of the existing component implementations.

A specification that is executable as a semantically complete implementation would permit
the conventional testing of higher-level components above the specification with respect to
the full range of allowed behaviour, rather than with respect to the reduced range typical
of particular implementations; it would thereby let one investigate the second kind of de
facto standard: the aggregate of all assumptions about the interface made by clients of the
interface.

1.4 The TCP/IP Network Protocols and Sockets API

The TCP/IP network protocols provide a good example of all this, and are the technical focus
of our work in this paper. TCP provides a reliable byte-stream communication abstraction
between pairs of endpoints that underlies the world-wide web, email, and many other
services; the companion UDP protocol provides an unreliable datagram service, often used
for streaming media; and both are implemented above IP, the Internet Protocol. This is
among the most widely-used software infrastructure on the planet: there are TCP/IP protocol
endpoint implementations running on almost all machines, implemented by many different
vendors. They should interoperate with each other, but there is no prospect of exhaustively
testing all combinations, or of synchronising any updates. By and large the deployed Internet,
which is an assembly of all these endpoints and the interconnecting routers, works remarkably
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well. However, when one looks closely at what the TCP/IP protocols are —how they are
defined, what the behaviour of those endpoint implementations is (or should be), and in
what sense they interoperate correctly— the situation is very unclear.

There are specification documents: RFCs that focus on the on-the-wire protocols, and the
POSIX standard for the Sockets API used by applications to interact with the protocols. An
RFC is a Request for Comments in a series now published by the Internet Engineering Task
Force (IETF); some RFCs are adopted as IETF Internet Standards. RFCs and POSIX are
prose documents: they typically describe the formats of wire messages and the C-language
types of API calls precisely, but they are, almost inevitably, ambiguous and incomplete
descriptions of the protocol and API behaviour. Specifications in this area have to be loose,
to accommodate implementation variation (e.g. in timing or choice of sequence numbers,
window sizes, or, within some bounds, retransmission policy), but, as we shall see, that does
not mean that they have to be vague or imprecise.
Then there is the code. For each of the many implementations of TCP/IP and the

Sockets API, the code implicitly does define some precise behaviour (modulo the status
of the underlying programming language), but there are many differences between them,
some intentional and some not. In practice, the common implementations together form a
de facto standard: any implementation must interoperate reasonably well with all of them,
though historically the BSD implementations have a special status: various protocol features
were first developed there, and they are sometimes used as a reference [110]. Moreover,
each implementation is in itself a complex body of code. They are typically written in C,
intertwined with an operating system. For example, the BSD implementation is around
20 000 lines of C. They are multithreaded, dealing with asynchronous events on the network
interface, concurrent Sockets API calls, and the expiry of various timers. At present, there
does not exist a formal semantics for the fragment of C that is used, despite much work over
the years [10, 34, 57, 70, 77, 81]), let alone proof techniques that have been shown to scale to
this kind of problem. There is a rough layer structure (Sockets/TCP/IP/network-interface)
but much coupling between the layers, with ‘fast path’ optimisations for the common cases,
indirection via function pointers, and many historical artifacts. Moreover, the deployed
base makes it almost impossible to change many aspects of the observable implementation
behaviour, on the wire or Sockets API interface (there is still active experimentation with
new congestion control algorithms, however).
Developers, both of protocol stacks and of applications above them, thus have to deal

with a very complex world. TCP has long been recognised as hard to implement correctly
[85], [RFC2525], and in fact there has been no precise sense in which an implementation can
be considered ‘correct’ or not. Application writers using the Sockets API have to be aware of
a host of behavioural subtleties and implementation differences, in addition to the intrinsic
difficulties of concurrency, partial failure, and malicious attack. It it clearly possible to write
pragmatically satisfactory protocol stacks, and distributed libraries and applications above
them, but the cost and level of expertise needed are high.

1.5 Our Specifications

In the light of the above, we set out to investigate whether and how one can do better,
taking a mathematically rigorous approach to the behaviour of such real-world systems.
We address the specific problem of the unclear de facto standard for TCP/IP, developing
specifications of TCP/IP behaviour that are executable as test oracles. This is important
in itself, but by doing so — tackling a particularly gnarly real-world abstraction, with all
of its difficulties — we can also draw lessons from the experience for the general problem:
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Fig. 1. Our Single-Endpoint Protocol-level Specification

how one can improve on conventional development processes based on prose specification
documents, both to clarify similar legacy abstractions, and in the development of future
clean-slate abstractions.

1.5.1 A Protocol-level Specification of the De Facto Standard. We first develop a speci-
fication for a TCP or UDP endpoint, as observed in terms of individual TCP and UDP
messages on the wire, at its Sockets API interface, and at an existing debug interface. This is
illustrated in Fig. 1 (p. 8). We structured this specification and built checking tools to make
the specification be executable as a test oracle. This let us develop it with an experimental
semantics approach, to capture a good approximation of the de facto standard:

• We produced an initial draft specification based on the existing prose documents, the
BSD and Linux source code, and ad-hoc tests.
• In parallel, we instrumented a test network containing machines running multiple
implementations, and wrote tests to drive those, generating several thousand real-world
traces chosen to cover a wide range of their behaviour. We used three implementations
that were current when the project began: FreeBSD 4.6, Linux 2.4.20-8, and Windows
XP SP1. As we discuss later, validation of TCP dynamics focussed on the first of those,
while for UDP and the Sockets API we used all three.
• We ensured that the specification admitted those traces by running a special-purpose
symbolic model checker. When we found that some particular real-world behaviour
was not admitted by the specification, we either amended the latter or classified it
as an implementation bug. Those bugs, and the many differences between the three
implementations that we found, show that this is a very discriminating testing process.
• We iterated this process, improving our tools, understanding, and specification, until
the specification captured a good approximation to the observed behaviour.
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The resulting specification is fully mathematically rigorous: it is expressed in higher-order
logic, in a mechanised proof assistant, HOL4 [45, 49], that type-checks the specification. We
thereby avoid the ambiguity of prose specifications.
One might be concerned that this rigour comes at the cost of accessibility. Our HOL4

definitions are essentially standard typed discrete mathematics, using numbers, lists, sets,
finite maps, logical connectives, quantifiers, and user-defined record types, functions, and
relations. This language should be familiar to anyone with previous discrete-mathematics
experience. For others (perhaps the majority of developers), and to explain the meaning of
the specification more directly, we also documented it extensively, with side-by-side English
prose and mathematical definitions. Automated typesetting tools let us present the two in a
readable form, which also helped us keep them in sync. At a larger scale, we structured the
specification to be as clear as possible, picking out logically distinct parts of the behaviour
into distinct definitions.

HOL4 supports higher-order logic as its definition language. In general, the more sophis-
ticated the language, the more challenging automated reasoning becomes, so one should
ask whether this expressiveness was required or whether simpler tools would have sufficed.
Higher-order types are used in our specification: there are some third-order types1. The
highest order at which we quantify is order 1, e.g. at the host type.

The resulting document remains large and complex by the standards of most formal models
(386pp typeset, 25 800 lines of HOL source, of which two-thirds are comments), but that
seems to be inescapable. Most work on formal models either makes significant idealisations,
e.g. when defining a “core calculus” for some programming language, or concerns a clean-slate
design. In contrast, here we aim to capture TCP as it actually is, without idealisation, in the
observable behaviour of some of the deployed implementations. We are not trying to distill
some simple ‘Platonic essence’ of TCP. Indeed, it is not clear that it has one in any useful
sense. The protocol has many aspects: connection setup and teardown, sliding-window flow
control, congestion control, protection against wrapped sequence numbers (PAWS), round-
trip-time estimation, protection against certain denial-of-service attacks, and so forth. These
are intertwined in subtle ways, with little modular structure. Programmers writing TCP/IP
stacks and systems on top of TCP need to understand it at an intuitive level, but crucially
also need to understand the warts and wrinkles of its actual implementations. Not all aspects
are important in all circumstances, but all are important in some. Our specification is thus
detailed, with almost all important aspects of the real-world communications at the level of
individual TCP segments and UDP datagrams, with timing, and with congestion control (it
abstracts from routing and other IP internals). And it has broad scope or coverage, dealing
with the behaviour of a host for arbitrary incoming messages and Sockets API call sequences,
not just some well-behaved usage — one of our goals was to characterise the failure semantics
under network loss, duplication and reordering, API errors, and malicious attack. It also
covers the failure semantics due to resource limits, though this was not well-validated.

Note that this is a post hoc specification. Traditionally one thinks of testing an implemen-
tation against a pre-existing specification. Here, faced with the entrenched de facto standard
of the deployed implementations, the best that can be done is identify what the envelope
of their behaviour is — hence our post-hoc experimental semantics approach, developing a
specification in part by checking it against implementations. However, the checker technology

1We define the order of a HOL type by order(tycon) = 0, order(t → t′) = order(t 7→ t′) = max(order(t)+1, order(t′)),
and order((t, t′, ..)tyop) = max(order(t), order(t′), ..).
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Fig. 2. Our End-to-end Service-level Specification

that we develop is symmetric: it could equally well be used to test future implementations
against our now-existing protocol-level specification.
Our work also differs from most research on formal models in that our specification is

intended principally to support testing and human communication, rather than mechanised
proof (except proofs involved in our model checking). In principle the specification should be
usable for more general proof, but the scale makes that a challenging prospect, and it was
not one of our goals. We have not attempted to prove that any implementation meets the
specification, or that the protocol of the specification is correct. We did prove some sanity
properties of an early version of the specification.

1.5.2 A Service-level Specification and Validated Abstraction Function. We continue by
developing a more abstract service-level specification, illustrated in Fig. 2 (p. 10). This
abstracts from the details of the individual messages sent on the wire, instead characterising
the reliable-stream service that two TCP endpoints combine to provide for applications
running above their respective Sockets APIs. This is similarly rigorous, detailed, and with
broad coverage. It has much simpler wire behaviour than the protocol-level specification, as
one would hope, but still has to expose some aspects of TCP connection setup and teardown,
and the complexities of the Sockets API remain largely unchanged.
In principle this gives a meaningful criterion for correctness of the TCP protocol: one

would like a proof that two instances of the protocol-level endpoint specification, composed
with a model of the network, do implement the service-level specification. But, as mentioned
above, the scale of the specifications make that proof a challenging prospect. Instead, we
develop a pragmatic testing-based alternative that lets one establish some confidence with
much less effort, experimentally testing an abstraction function. We defined, in HOL4, an
abstraction function that takes a pair of states of the protocol-level model (one for each end
of a TCP connection), together with an abstract model of the state of the intervening IP
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network (the TCP segments in flight) and constructs a state of the end-to-end service-level
model. This function is what one would use as the invariant of a protocol correctness proof.
We then built a checker that, given an experimental protocol-level trace for the two endpoints,
checks whether there is a corresponding trace of the service-level specification, with the
abstraction function mapping protocol-level states onto service-level states at each step.

We now introduce two of the main technical challenges that arise in developing these two
specifications: handling specification looseness and relating specification and implementation.

1.6 Technical Challenge: Specification Looseness

A key issue in this work is the need for the specification to be loose, while remaining
executable as a test oracle and precise enough to be unambiguous. In a deterministic setting,
with a tight specification and no implementation runtime determinism, one can build a
specification that is executable as a test oracle by simply writing a reference implementation
(perhaps in a conventional programming language, or as a pure functional program), using
it as an oracle by checking that the observed behaviour from running tests on a production
implementation is identical to the behaviour obtained from running them on the reference
implementation. The two notions, of specifications that are executable as a test oracle, and
specifications that are executable as a semantically complete implementation, here collapse
into one.
In most contexts, however, specification looseness is essential, to accommodate allowed

variations in behaviour between different implementations, and to accommodate per-
implementation runtime nondeterminism. For TCP, some inter-implementation variation is
intended to be allowed by the prose specification documents and some has arisen over time.
Then there is a great deal of intra-implementation runtime nondeterminism, arising from
OS scheduling, timers, explicitly randomised choices, and so on. Repeatedly running a test
case on a single implementation can produce many significantly different traces of observed
Sockets API and wire behaviour.

This means that checking conformance cannot be done by simply running the specification
and an implementation in lock-step and comparing the results; our specification must be
quite different from a “reference implementation” for TCP in a more-or-less conventional
programming language, which would exhibit just some behaviours of the many possible
(several of these exist, including the BSD C code and those by Biagioni in Standard ML
[17], by Castelluccia et al. in Esterel [29], and by Kohler et al. in Prolac [56]).
Instead, to define an envelope of behaviour that includes such variation, we express our

protocol-level specification in a relational style, as a labelled transition system (LTS). This
host LTS is essentially a nondeterministic automaton, a ternary relation

h
l
−→ h′

Here h and h′ are values of a HOL4 type modelling a single endpoint state, abstracting
from the relevant parts of the OS and network hardware of a machine, and l is a label
modelling one of the observable events (shown in Fig. 1 (p. 8)) that the specification deals
with: Sockets API calls and returns, network messages sent and received, certain debug trace
events, time passage, and internal transitions. The host LTS is defined as an operational-
semantics definition in higher-order logic, using various idioms adapted from programming
language and concurrency theory semantics, including a relational monad structure and
nondeterministic timed labelled transition systems, to structure it as clearly as we can.
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Then we have to make this executable as a test oracle. By choosing higher-order logic as
the language in which to write the specification, to let us express it as clearly as possible,
we already depart from definitions that are immediately executable. But the key difficulty
is that much of the nondeterminism, in TCP implementations and in the specification,
is internal, not immediately exposed in observable events. For example, there may be an
internal nondeterministic choice, e.g. of some TCP sequence number or window size, which
only affects the observable behaviour many steps later.
We therefore built a model checker that takes a captured trace and checks whether it

is included in the set of all traces of the specification. Rather different from conventional
model-checking (symbolic or otherwise), the states here are arbitrary higher-order logic
formulae, expressing constraints on the underlying state of a protocol endpoint. As the
checker works along a trace (possibly backtracking) it uses various HOL tactics, e.g. for
simplification, to symbolically evaluate the specification. Lazy control of the search through
the tree of possibilities is essential. The checker either succeeds, in which case it has essentially
proved a machine-checked theorem that that trace is included, or fails, for a trace that is
not included, or terminates if one of several heuristic conditions is satisfied. HOL is a proof
assistant in the LCF style [44], and so its soundness, and the soundness of our checker above
it, depends only on the correctness of a small trusted kernel.

One of the main lessons we learn, that we return to later, is that minimising the amount of
internal nondeterminism is highly desirable, at protocol design time and at implementation
design time. We aimed originally to support black-box testing of existing unmodified
implementations: we did not attempt to add extra instrumentation of their internals, both to
avoid perturbing the systems we were investigating, and because we planned to test systems
for which we did not have source access, e.g. Windows XP. For UDP this was viable, but
TCP has much more complex internal behaviour, with internal nondeterminism that is not
directly exposed via the Sockets API. The BSD implementation supported a TCP DEBUG

kernel option to expose the protocol state (TCP control block records) at some program
points. Including TCP DEBUG records in our experimentally captured traces let us concretise
the symbolic state of the model relatively frequently, resolving constraints and reducing
the amount of backtracking. Modern implementations often support more sophisticated
tracing frameworks, e.g. DTrace [27, 69], which would simplify this. But ideally, the protocol
and API would be designed from the outset to expose all semantically significant internal
nondeterministic choices, either with trace events for the specific choices, or with trace events
containing the computed corresponding specification state for any implementation state.
Given that, the executable-as-test-oracle specification of each transition could be a simple
total function, either operating on a fully concrete state and computing a finite description
of the possible next transitions (abstracted on input values), or on a triple of a current and
next concrete states and transition label, computing whether that transition is allowed. The
specification could then be written in any language of total functions, without needing the
sophisticated technology of a proof assistant, a symbolic state, or a backtracking search. In
short, with careful thought at protocol design-time, much simpler methods than we use here
could be used to make a suitable specification that is executable as a test oracle.

Excessive nondeterminism can also be bad from a protocol-design point of view, leading to
security vulnerabilities. For example, the LAND attack [66] involved sending a spoofed TCP
SYN segment containing the IP address of the target as its source and destination, which
led to lockups in various stacks, and blind in-window attacks [88] involved spoofing TCP
RST or SYN segments that are randomly often enough within the active window to tear
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Fig. 3. Wire-interface endpoint and network-internal specifications

down the target’s connection. Precise specification of looseness would not in itself prevent
these, but might help direct the protocol designers’ attention to the possibilities.

On a separate note, there is a common misconception that a rigorous and detailed specifi-
cation is necessarily also a tight specification, overconstraining potential implementations.
On the contrary, we have been to great lengths to ensure that our completely-rigorous
specifications allow a wide range of reasonable behaviours. We argue that precisely specifying
exactly the properties of other protocol endpoints that one depends upon, combined with
proof or testing that those properties suffice to ensure good end-to-end system behaviour,
would be preferable to an exclusive reliance on the “rough consensus and running code”
emphasised in the early development of the internet protocols.

1.7 Technical Challenge: Relating Model and System

The second key issue in making a testable specification of a real system component is that
of choosing exactly what part of the real systems the specification is intended to model, and
how the two are intended to be related. For many conventional formal specifications, aimed
principally at supporting proof about idealised systems, this is not an issue, as they have
only a weak relationship to implementations. Some others, such as compiler specifications,
have a relatively simple interface, e.g. as partial functions from source to target languages,
and hence a relatively straightforward notion of what is observable. In contrast, here we are
specifying part of a large and complex system: the TCP/IP stacks that we consider exist
within complete operating systems; they are not cleanly isolated components that can be
exercised independently (they are also not subject to simple unit testing, for this reason).
We therefore have to carefully choose how to restrict the scope to a manageable domain,
and what system behaviour is taken as observable. These choices have to be reflected in the
top-level form of the judgements of the specification, which ultimately is a predicate on such
behaviours, and in the testing infrastructure, as instrumentation that logs the observable
behaviour in executions of the running system. For testing-based validation, the two must
have some exact correspondence, and this provides an important constraint: we can abstract
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but cannot idealise. As we are building mathematically rigorous specifications, and the
implementations are (as is typical) not mathematical artifacts, this is also the necessarily
non-mathematical boundary where we relate the formal and informal worlds.

For TCP/IP there are five main options for where to cut the system to pick out observable
events. The protocol-level specification of Fig. 1 (p. 8) deals with events at the network
interface and Sockets API of a single machine, but abstracts from the implementation
details within the network stack. For TCP the obvious wire interface events are at the
level of individual TCP segments sent or received, and this level covers the dynamics of
how messages are exchanged, so we refer to this as an endpoint specification (or sometimes
as a segment-level specification). The service-level specification of Fig. 2 (p. 10) describes
the end-to-end behaviour of the network as observed by users of the Sockets API on two
different machines, abstracting from what occurs on the wire. For TCP such a specification
can model connections roughly as a pair of streams of data, together with additional data
capturing the failure behaviours, connection shutdown, etc. We refer to this as a service-level
specification (or sometimes as a stream-level specification), characterising the bidirectional
data stream service that the TCP protocol, together with the network and Sockets API,
provides to applications. A wire-interface-only endpoint specification, shown on the left of
Fig. 3 (p. 13), would specify the legal TCP segments sent by a single host irrespective of
whatever occurs at the API. A network interior specification, shown on the right of Fig. 3
(p. 13), would characterise the possible traffic at a point inside the IP network, of interest
for network monitoring. Finally a pure transport-protocol specification (not shown) would
define the behaviour of just the TCP part of a TCP/IP stack, with events at the Sockets
API and at the OS-internal interface to IP.

All would be useful, for different purposes. We chose to begin by developing a protocol-level
endpoint specification for three main reasons. Firstly, we considered it essential to capture
the behaviour at the Sockets API, despite the fact that the usual TCP/IP RFC specifications
do not cover the API (it is addressed to some extent in POSIX). Focussing exclusively on
the wire protocol would be reasonable if there truly were many APIs in common use, but in
practice the Sockets API is also a de facto standard, with its behaviour of key interest to a
large body of developers. Ambiguities, errors, and implementation differences here are often
just as important as for the wire protocol. Secondly, the protocol-level specification has a
straightforward model of network failure, essentially with individual segments either being
delivered correctly or not; the observable effects of network failure in an end-to-end model
are far more easily characterised as a corollary of this rather than directly. Thirdly, it seemed
likely that automated validation would be most straightforward for an endpoint model: by
observing interactions as close to a host as possible (on the Sockets and wire interfaces)
we minimise the amount of nondeterminism in the system and maximise the amount of
information our instrumentation can capture. With our protocol-level specification in hand,
we were then in a good position to develop a service-level specification, as described in §4.

Then there are more detailed questions about the instrumentation that is feasible and the
exact relationship between specification and running system. We return to these later, but
to give a few examples:

• A pure transport-protocol specification would require us to instrument the OS-internal
interface between TCP and IP, or that between the TCP/IP stack and the network
cards. Neither of those are easily accessible. Instead, the protocol-level specification
has the advantage that it requires us only to instrument the wire interface, which for
ethernet wire interfaces can be done cleanly with another network-interface observer.
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• The Sockets API interface is conceptually simple to deal with at first sight, but it is a
C language interface, involving exchange of shared memory between application and
OS. To avoid having to deal with those intricacies of C semantics in our specification,
we abstract the API calls and returns into a pure value-passing model; that abstraction
is computed by our instrumentation.
• We have to consider how precisely events in different parts of the system can be times-
tamped, both to relate to the numerical values of timers in the TCP implementations,
and also simply to let them be totally ordered consistently with real time, to avoid
unnecessary search in our trace-checking process.

1.8 Non-goals, Non-approaches, and Limitations

The problem we address, and our approach, are rather different to most previous work on
formal semantics, program verification, and model-checking. Several non-goals and non-
approaches of our work have already been mentioned, but for clarity we collect them here.
We are not trying to:

(1) Prove correctness of the TCP protocol. Our protocol-level and service-level specifications
let such a result be precisely stated (for the first time), and we conjecture that such
a proof would be possible, but it would be a separate multi-person-year project in
mechanised reasoning. Before embarking on it, one would also want to validate the
specifications against additional implementations, to ensure they are not overly specific
to those we tested against.

(2) Prove correctness of any particular implementation with respect to our protocol-
level specification. The scale and complexity of the specification and the existing C
implementations make this an intimidating prospect, though it might be viable for
clean-slate implementations in semantically simpler languages.

(3) Prove correctness of application code above the specification. In principle the specifica-
tion should support this, but again it would be a major piece of work in itself. Two
preliminary experiments have been done: Compton [32] verified a simple distributed
algorithm, Stenning’s protocol, above our early UDP model, and Ridge [90] conducted
a verification of a core piece of distributed infrastructure above a simplified TCP model,
based on those we describe here.

(4) Find bugs in TCP implementations. We are treating the existing implementations
principally as part of the de facto standard, and from that point of view whatever they
do is “correct”. But along the way we did find several clearly unintended behaviours,
as we discuss later.

(5) Redesign TCP. Again, we are taking the existing implementations as our principal
reference, not trying to change the protocol they exhibit. We are redesigning TCP in a
different sense, of course: the specified protocol and the way it is specified.

(6) Implement TCP. Our specification is executable as a test oracle, but it is not executable
in the conventional sense, to interoperate with existing TCP implementations. It would
be interesting and useful to make it executable as a (likely very slow) implementation,
by abstracting out the places where it makes nondeterministic choices so that they
can be instantiated with particular strategies, and to explore how one can narrow the
gap between that and a production-quality implementation.

(7) Generate tests for TCP from the specifications. Our test cases are generated by a
special-purpose handwritten test bench. We did some coverage analysis with respect to
the protocol-level specification, but the tests are not generated from the specification.
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(8) Model-check TCP (either specification or implementation). Other model-checking
techniques have been applied to substantial bodies of real code, notably BDD, SAT,
and SMT-based methods (in the more usual sense of ‘symbolic model-checking’) and
predicate abstraction methods. They are generally focussed on detecting runtime
errors, such as dereferencing null pointers and assertion violations. In contrast, we
check conformance with a complete specification of the system behaviour, a much more
elaborate functional correctness property which would be hard to state with assertions
or simple temporal logics. On the other hand, those methods analyse the source code
fairly directly, whereas we consider only its behaviour as manifested in the generated
traces.
A TCP endpoint has a very large and complex state space, both in the implementations
and in our protocol-level specification. In the latter, the control block for each end of a
TCP connection contains 14 32-bit sequence numbers, several natural numbers, and
10 timers, represented with real numbers. An implementation would likely use 32-bit
numbers instead of the specification’s unbounded natural numbers, and types at least
this wide for the timers. A rough estimate thus suggests that each connection would
take 1200 bits to model if a finite translation were attempted. Further, the specification
allows for an arbitrary number of connections to be made, and for arbitrary number of
messages to be in various of the host’s queues. Ignoring the data being transmitted in
the packets and their IP addresses, each TCP segment contributes another 190 bits to
the size of the state. Any finite analysis of the specification would have to dramatically
constrain its possible behaviours, and would also require a sound translation from the
high-level specification to the finite model. Both of these requirements are unpalatable.

(9) Distill some essence of TCP, in the form of an idealised model. In our early work
in this area we attempted this, defining a “UDP calculus” in the style of existing
process calculi, but it quickly became clear that the real challenge is understanding
how to cope rigorously with the scale and complexity of the real protocols, APIs, and
implementations.

We return to the limitations of our work in the Discussion section (§12) but highlight the
main two up-front:

(1) Further validation would have been desirable, where we were limited by the available
staff resources. For UDP and the the Sockets API we believe we achieved reasonable
coverage for the three implementations we considered, while for the protocol-level TCP
specification we seriously addressed only the BSD implementation, and our tests were
typically relatively short, not exercising some regimes of the protocol well (different
congestion-control regimes, in particular). We reached a good correspondence between
specification and the observed behaviour of implementations — not a perfect one, but
good enough to suggest that only modest additional effort would have been needed to
fix the remaining issues. For the service-level specification, we were able only to do
proof-of-concept validation.

(2) We did not build a turn-key protocol stack testing tool that could be used in industry,
or attempt to engage with the IETF to improve their TCP specifications. Again, this
was mainly due to a lack of available resources.

1.9 Project History

This paper gives a retrospective synoptic view of an extended research project, NetSem,
with conference papers in TACS 2001, SIGOPS EW 2002, ESOP 2002, SIGCOMM 2005,
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POPL 2006, and FM 2008: we started around October 2000 with a simple model for UDP
and Sockets [97, 98], initially developed by Serjantov (at the start of his PhD) and Sewell.
With Wansbrough and Norrish we extended that with modelling of time and multi-threaded
Sockets API clients, and mechanised it in HOL [79, 107]. We then developed the much
more substantial protocol-level specification for TCP [21, 24], by Bishop, Fairbairn, Norrish,
Sewell, Smith, and Wansbrough, and finally the service-level specification and abstraction
function between the two models [91], by Ridge, Norrish, and Sewell. For more details we
refer the reader to a technical report [22] and to the annotated service-level and protocol-level
specifications [22, 23, 92]. The whole project was approximately 11 person-years of effort.

The HOL code for both specifications is available on-line, as a snapshot of the original [104]
and, updated to a more recent version of HOL4, in a GitHub repository under the simplified
BSD license [76]. At the time of writing (2017–18), work is underway (§10) to update the
specification w.r.t. changes in the FreeBSD stack over the intervening time, using new
DTrace-based instrumentation [27, 69] rather than the ad hoc instrumentation we describe
in §6.1 (making test generation more portable and exposing more nondeterminism to ease
checking), using traces generated both by our earlier §6.2 tthee tool and the packetdrill
tool [28], and using current hardware, HOL4, and SML implementations to run trace-checking
(providing significantly better performance).

Other work made use of our UDP and TCP specifications, providing evidence that they can
be put to use. Working with our group, Compton [32] verified a simple distributed algorithm,
Stenning’s protocol, above our early UDP model, and Ridge [90] verified a core piece of
distributed infrastructure, involving a simplified model of TCP networking based on those
we describe, a filesystem, and concurrent OCaml code. Elsewhere, Li and Zdancewic [62–64]
built a purely functional Haskell TCP server implementation closely based on our TCP
specification, roughly 3x–8x slower than the Linux kernel TCP stack. This was further
developed and used by Galois as the Haskell Network Stack (HaNS) [43], within the halvm
Haskell-on-Xen project, though the code seems now to have been rewritten.
We also applied our techniques to a new protocol as part of its design process, in

collaboration with the designers: a Media Access Control (MAC) protocol for the SWIFT
experimental optically switched network, by Dales and others [20]. We do not detail that
here, but do incorporate some of the lessons learned into our discussion.

1.10 Paper Structure

We begin with background about TCP/IP and its existing specifications (§2). The main
body of the paper is in two parts, first describing our specifications and then our checking
technology and results. In the first part, we describe our (low-level) protocol-level specification
(§3), (high-level) service-level specification (§4), and the abstraction function between them
(§5). For each, we describe the issues we had to deal with and the specification idioms we
developed to do so. We also include selected excerpts of the specifications themselves: some
of the types modelling protocol endpoint states, and a few of the transition rules. We do
this principally to illustrate the style of mathematics and the scale involved in such work,
and to show those familiar with TCP how aspects that they may be familiar with appear in
this form, but it is not necessary for the reader to follow every detail of the excerpts.
In the second part, our experimental testing infrastructure is described in §6, and the

symbolic model checking technology we developed is in §7. The results of our checking are
given in §8, including quantitative results and some selected implementation anomalies, from
among the many we found.
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We also illustrate one use of the specification, abstracting its transitions to give a more
accurate analogue of the usual TCP state diagram §9. §10 describes ongoing work to update
the specification w.r.t. the changes to the FreeBSD stack over time, using new tracing and
proof tools and new tests. We conclude with related work and discussion in §11 and §12.

2 BACKGROUND: TCP/IP, THE SOCKETS API, AND THE EXISTING
SPECIFICATIONS

To make this paper as self-contained as possible, we start with a brief overview of the
TCP/IP protocols, the Sockets API, and the relevant standards.

2.1 The TCP/IP Protocols

IP (the Internet Protocol) allows one machine to send a message (an IP datagram) to another.
Each machine has one or more IP addresses, 32-bit values such as 64.170.98.30 for the
IPv4 version of the protocol, or 128-bit values for IPv6. The distributed domain name system
(DNS) maps textual names, e.g. www.ietf.org, to such addresses. IP datagrams have their
destination specified as an IP address. They carry a payload of a sequence of bytes and
contain also a source address and various additional data. They have a maximum size of
65535 bytes, though many are smaller, constructed to fit in a 1500 byte Ethernet frame body.
IP message delivery is asynchronous and unreliable: IP does not provide acknowledgements
that datagrams are received, or retransmit lost datagrams. Message delivery is implemented
by a combination of local networks, e.g. ethernets, and of packet forwarding between routers;
these may silently drop packets if they become congested. A variety of routing protocols
are used to establish state in these routers, determining, for any incoming packet, to which
neighbouring router or endpoint machine it should be forwarded.

UDP (the User Datagram Protocol) is a thin layer above IP that provides multiplexing. It
introduces a set {1, .., 65535} of ports at each endpoint; a UDP datagram is an IP datagram
with a payload consisting of a source port, a destination port, and a sequence of bytes. Just
as for IP, delivery is asynchronous and unreliable.
TCP (the Transmission Control Protocol) is a thicker layer above IP that provides

bidirectional byte-stream communication. It too uses a set {1, .., 65535} of ports. A TCP
connection is typically between an IP address and port of one machine and an IP address and
port of another, allowing data (unstructured streams of bytes) to be sent in both directions.
The two endpoints exchange TCP segments embedded in IP datagrams. The protocol deals
with retransmission of lost data, reordering of data that arrives out of sequence, flow control
to prevent the end systems being swamped with data faster than they can handle, and
congestion control to limit the use of network bandwidth. These all involve much detailed
mechanism, which is exposed on the wire interface, that we cannot summarise here — this
is the heart of what our protocol-level specification has to deal with.

In addition, ICMP (the Internet Control Message Protocol) is another thin layer above IP,
primarily used for signalling error conditions to be acted on by IP, UDP, or TCP.
Many other protocols are used for specific purposes, but TCP and UDP above IP are

dominant. TCP underlies web (HTTP), file transfer (FTP) and mail protocols, UDP is often
used for media streaming, and TCP and UDP together underlie the domain name system
(DNS). The first widely-available release of these protocols was in 4.2BSD, released in 1983.
They are now ubiquitous, with implementations in all the standard operating systems and
in many embedded devices.
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2.2 The Sockets API

Application code can interact with the TCP/IP protocol implementations via the sockets
interface, a C language API originating in 4.2BSD with calls socket(), bind(), connect(),
listen(), etc. The sockets interface is usually used for interaction with UDP and TCP, not
for direct interaction with IP. A socket itself is a TCP/IP protocol stack data structure,
referred to locally by a file descriptor.

To give a sense of how the Sockets API is used, and how it interacts with the wire protocol,
here is a sequence of events that might be involved for a server and a client program to set
up a TCP connection between their two machines, and to communicate a string over it. To
sidestep the C language intricacies of the API, the calls are given in the notation of our
specification, not in C.

(1) First the server makes three Sockets API calls to establish a listening socket:
(a) socket (SOCK STREAM): to create a TCP socket, returning its file descriptor (say

FD 8);
(b) bind (FD 8,↑ (IP 192 168 0 12),↑ (Port 3333)): to set the local IP address and port

of that socket, to one of the IP addresses of the server and a concrete value that is
known to the client code; and

(c) listen (FD 8, 3): to put the socket into LISTEN state, ready for incoming connections
on that IP address and port, with backlog (queue of pending connections) of size 3.

(2) Then the client makes the following API calls to create a socket and initiate a connection
to the server:

(a) socket (SOCK STREAM): to create a TCP socket, returning its file descriptor
(this might also be FD 8, though referring to a client socket data structure rather
than the server socket data structure);

(b) bind (FD 8, ∗,↑ (Port 4444)): to set the client socket port, leaving its IP address
wildcarded; and

(c) connect (FD 8, IP 192 168 0 12,↑ (Port 3333)): specifying the server’s IP address
and port, to initiate a TCP connection between the two machines.

(3) The protocol stacks on the two machines then exchange TCP datagrams in a three-
message handshake:

(a) client sends (and server receives) a TCP SYN datagram;

(b) server sends (and client receives) a TCP SYN ACK datagram; and

(c) client sends (and server receives) a TCP ACK datagram;
and the client connect() call returns.

(4) After creating its socket, the server (typically in a loop) calls accept (FD 8) to get
the next available connection. This is in the form of a freshly created server-side
connected socket for this endpoint of the connection; the accept() call returns its file
descriptor (say FD 9) and the remote IP address and port of the other endpoint, here
(IP 192 168 0 14,Port 4444). The server’s listening socket remains available for other
incoming connections.

(5) The server calls recv (FD 9, 6, [ ]) to read 6 bytes from its input buffer for the new
connection. Initially this will block, as the requested data is not available.

(6) To send data, the client calls send (FD 8, ∗,“Hello!”, [ ]), to send the string “Hello!” on
the connection. This returns as soon as the string is locally queued.

(7) The client protocol stack sends a TCP datagram containing that string, which is
received by the server and added to the input queue of its connected socket.
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(8) The server recv (FD 9, 6, [ ]) call will return with the string.

(9) ...subsequent actions to close the connection

2.3 Standard Practice: Protocol and API Descriptions

The development process used for the internet protocols was driven by implementation,
experiment, and interoperability testing, with informal specifications (in the form of RFCs)
aiming to capture enough of this to support further interoperable implementations. This
process, summarised in Clark’s “rough consensus and running code” [31], was in contrast
to a more specification-driven approach advocated elsewhere, e.g. by the ISO/ITU-T OSI
effort. It is not our intention to revisit that historical argument, or to take a view on what
should or could have been done at the time. But the very success of those protocols makes it
important to understand the disadvantages and advantages of the standards that we have
ended up with. We summarise those here, to set the context for the rest of the paper.
The basic IP, UDP, TCP and ICMP protocols are described in Request For Comment

(RFC) standards from 1980–81:

User Datagram Protocol RFC 768 1980 3pp STD 6
Internet Protocol RFC 791 1981 iii+45pp STD 5
Internet Control Message Protocol RFC 792 1981 21pp STD 5
Transmission Control Protocol RFC 793 1981 iii+85pp STD 7

The sockets interface appears as part of the POSIX standard [50]. Additional information
is contained in the documentation for various implementations, in particular the Unix man

pages, and well-known texts such as those of Stevens [102, 103, 110].
From the titles of these documents the reader might gain the impression that TCP is a

single well-defined protocol. Unfortunately that is not the case, for several different reasons.

• As the protocol has been used ever more widely, in network environments that are
radically different from that of the initial design, various clarifications and proposals
for changes to the protocol have been made. A small sample of later RFCs in common
use include:

Requirements for Internet Hosts — Communication Layers RFC 1122 1989
TCP Extensions for High Performance RFC 1323 1992
TCP Selective Acknowledgment Options RFC 2018 1996
TCP Congestion Control with Appropriate Byte Counting (ABC) RFC 3465 2003
The NewReno Modification to TCP’s Fast Recovery Algorithm RFC 3782 2004
TCP SYN Flooding Attacks and Common Mitigations RFC 4987 2007
TCP Fast Open RFC 7413 2014
A Roadmap for TCP Specification Documents RFC 7414 2015
Data Center TCP: TCP Congestion Control for Data Centers RFC 8257 2017
RACK: a time-based fast loss detection algorithm for TCP draft 2017

Deployment of these changes is inevitably piecemeal, depending both on the TCP/IP
stack implementers and on the deployment of new operating system versions, which
—on the scale of the Internet— cannot be synchronised.
• Implementations also diverge from the standards due to misunderstandings, disagree-
ments and bugs. For example, RFC 2525 collects a number of known TCP implemen-
tation problems. The BSD implementations have often served as another reference,
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distinct from the RFCs, for example with the text [110] based on the 4.4 BSD-Lite
code.
• In 2004 a TCP Maintenance and Minor Extensions (tcpm) IETF working group
was started, which since June 2015 has been working on a draft RFC [33] to “bring
together all of the IETF Standards Track changes that have been made to the basic
TCP functional specification and unify them into an update of the RFC 793 protocol
specification”.
• The existence of multiple implementations with differing behaviour gives rise to
another ‘standard’, the de facto standards we introduced in §1.3: in addition (or as
an alternative) to checking that an implementation conforms to the RFCs one can
check that it interoperates satisfactorily with the other common implementations. The
early RFC791 enshrined the doctrine that implementations should, as far as possible,
interoperate even with non-RFC-conformant implementations:

The implementation of a protocol must be robust. Each implementation
must expect to interoperate with others created by different individuals.
While the goal of this specification is to be explicit about the protocol
there is the possibility of differing interpretations. In general, an
implementation must be conservative in its sending behavior, and
liberal in its receiving behavior. That is, it must be careful to send well-
formed datagrams, but must accept any datagram that it can interpret
(e.g., not object to technical errors where the meaning is still clear).

This focus on interoperability in the short term opens the door to “standard drift”,
with correctness implicitly defined by what other implementations accept rather than
any single concrete definition, and perhaps works against interoperability in the long
term, as it becomes unclear what one can depend on from other implementations.
There has recently been an extensive and nuanced discussion of the merits of the above
doctrine on an IETF mailing list [35, 105].
• Similarly, existing applications implicitly encode facts about the behaviour of the
Sockets API and protocols, and are used as documentation (most programmers will
look for examples to illuminate the man pages or to use as a basis for their own
code) and as a test suite (a change is unlikely to be allowed into the OS if it breaks
a significant number of applications, or a few significant ones). Yet another source is
the expert community, including comp.protocols.tcp-ip, Stack Overflow, and the
Linux kernel mailing list. In practice it can be these that clarify or even identify bugs
in the usual sources and in implementations.
• Neither the RFCs nor POSIX attempt to specify the behaviour of the sockets interface
in any detail. The RFCs focus on the wire protocols (RFC793 also describes a model
API for TCP, but one that bears little resemblance to the sockets interface as it
developed); POSIX describes the C types and some superficial behaviour of the API
but does not go into details as to how the interface behaviour relates to protocol events.
• Finally, the RFCs and POSIX are informal natural-language documents. Their authors
were clearly at pains to be as clear and precise as they could, but almost inevitably
the level of rigour is less than that of a mathematical specification, and there are many
ambiguities and missing details.

It might be argued that this vagueness is an important positive aspect of the specifications,
permitting the specifications to be loose enough to accommodate implementation variation
and new protocol innovation. In an early experimental phase there may be some truth to
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this, but ultimately it is a very unfortunate confusion: protocol specifications surely do need
to be loose, for both of those reasons, but that does not imply that they should be vague or
imprecise, as we shall see.

3 PROTOCOL-LEVEL SPECIFICATION

We now describe our protocol-level specification. It is written as a mechanized higher-order
logic definition in HOL4 [45, 49], a language that is rich and expressive yet supports both
internal consistency checking (type checking is essential with a definition of this scale) and
our automated testing techniques. The specification is large by the standards of formal
artifacts: around 9000 non-comment lines of HOL4 source, interspersed with 17000 lines
of comment and whitespace; it is typeset automatically into a 386-page document [23]. Of
this, around 125 pages is preamble defining the main types used in the model, e.g. of the
representations of host states, TCP segments, etc., and various auxiliary functions. The
remainder consists primarily of the host transition rules, each defining the behaviour of the
host in a particular situation, divided roughly into the Sockets API rules (160 pages) and the
protocol rules (75 pages). This includes extensive comments, e.g. with summaries for each
Sockets call, and differences between the model API and the three implementation APIs.
It is obviously impossible to describe all this in detail here. We first give a reasonably

complete description of the external interface of the specification (§3.1), to explain the
scope of the specification and relationship to actual implementations, continuing the §1.7
discussion. We then describe its internal structure (§3.2) with just a few excerpts: some
of the key types of a host state h and three sample transition rules, to give a feel for the
specification style and to set the scene for discussion of the specification idioms we had to
use (§3.3). We conclude this section with an example TCP trace (§3.4).

Readers familiar with the Sockets API and TCP/IP should find some of the details familiar,
and be able to contrast the style of our specification with their experience of RFCs and
implementations. Others, perhaps with more experience in logic and semantics, may find
some of that networking detail obscure, but should be able to get a sense of what kind and
scale of specification is needed here. In contrast with typical papers about the semantics
of small calculi, we cannot include or explain all the definitions used in our excerpts. Both
groups of readers may therefore want to skim some of the details in §3.1 and §3.2, depending
on their preference and background.

By working in a general-purpose proof assistant we have been able to choose specification
idioms almost entirely for clarity, not for their algorithmic properties; we return in Sections
6 and 7 to the experimental, algorithmic and proof aspects of checking traces against this
specification. We tried hard to establish idioms with as little syntactic noise as possible, e.g.
with few explicit ‘frame conditions’ concerning irrelevant quantities.

The HOL4 definition language used in the specification is essentially just typed higher-
order mathematics. It allows us to build our model quite naturally, using standard data types
(pairs, records, sets, lists, lookup tables, numbers, etc.) and defining behaviour declaratively
using functions and relations. HOL types can be constructed from type constructors, built-in
or user-defined, of natural-number arities. We make extensive use of pair types (t#t), functions
(t → t), finite maps (t 7→ t), labelled records (⟨[fld1 : t1,fld2 : t2, ...]⟩), options, lists, 32-bit
integers, natural numbers, real numbers, and user-defined datatypes. HOL also supports
ML-style polymorphism. The specification is only intentionally polymorphic in a few places,
but type inference and checking is essential. The HOL datatype and inductive definition
packages automatically prove various theorems for later use; during the course of the project
we have had to improve these to handle the large types required.
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The main HOL expression syntax used is as follows. The notion for logic and sets is
standard: ∧, ∨, ⇒, ∀, ∃, etc. Records are written within angled brackets ⟨[...]⟩. Record fields
can be accessed by dot notation h.ifds or by pattern-matching. Since all variables are logical,
there is no assignment or record update per se, but we may construct a new record by
copying an existing one and providing new values for specific fields: cb′ = cb ⟨[irs := seq]⟩ states
that the record cb′ is the same as the record cb, except that field cb′.irs has the value seq.
For optional data items, ∗ denotes absence (or a zero IP or port) and ↑ x denotes presence of
value x. Concrete lists are written [1, 2, 3] and appending two lists is written using an infix
++. The expression f ⊕ [(x, y)] or f ⊕ (x 7→ y) denotes the finite map f updated to map x to
y. Finite map lookup is written f [x].

3.1 The External Form and Scope of the Specification

3.1.1 The Top-level Operational Semantics Judgement. The main part of the specification
(modelling the pink shaded region below) is the host labelled transition system, or host LTS.
This describes the possible interactions (shown with red arrows) of a single host OS: between
program threads and host via calls and returns of the Sockets API, and between host and
network via message sends and receives.

TCP TCP
ICMP ICMP

UDP UDP

IPIP

Sockets API

Wire interface

Distributed

applications

Host LTS spec

libraries and

IP network

tid ·v

msg
msg

. . .

tid ·bind (fd, is1, ps1 )

tr

Mathematically, the host LTS is simply a transition relation h
l
−→ h′, where h and h′ are host

states, modelling the relevant parts of the OS and network hardware of a machine, and l is
a label of one of the following forms.

• msg for the host receiving a datagram msg from the network;

• msg for the host sending a datagram msg to the network;

• tid·f(arg1, .., argn ) for a Sockets API call f made by thread tid, e.g. tid·bind (fd, is1, ps1)
for a bind() call with arguments (fd, is1, ps1) for the file descriptor, IP address, and port;

• tid·v for value v being returned to thread tid by the Sockets API;

• τ for an internal transition by the host, e.g. for a datagram being taken from the host’s
input queue and processed, possibly enqueuing other datagrams for output;

• tr for a BSD TCP DEBUG trace record; and

• d for time d ∈ R>0 passing.

In addition there are labels for loopback messages and changes of network interface status.
The host state type is not technically an abstract type, but here we think of it as such:

the labelled transitions are intended to describe all the observable behaviour of the system,
to correspond with experimentally observed implementation behaviour as exposed by our
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instrumentation; comparison of observed behaviours does not need to look inside host states.
We return to the host state type in more detail in §3.2.

There are many careful choices embodied in the form of this definition, of exactly what
aspects of the real system to model, which events to observe, and what (rather mild)
abstraction is done to map them to events in the model. We discuss some of these in the
remainder of this subsection, detailing the protocol features we cover and the Sockets API,
wire, and debug interfaces of the specification.

3.1.2 Protocol Issues. We restrict our attention to IPv4, though there should be little
difference for IPv6. For TCP we cover roughly the protocol developments in FreeBSD
4.6-RELEASE. We include MSS options; the RFC1323 timestamp and window scaling
options; PAWS; the RFC2581 and RFC2582 New Reno congestion control algorithms; and
the observable behaviour of syncaches. We do not include the RFC1644 T/TCP (though it
is in this codebase), SACK, or ECN. For UDP, for historical reasons (to simplify matters
near the start of the project) we deal only with unicast communication.

3.1.3 Network Interface Issues. The network interface events msg and msg are the trans-
mission and reception of UDP datagrams, ICMP datagrams, and TCP segments. We abstract
from IP, omitting the IP header data except for source and destination addresses, protocol,
and payload length. We also abstract from IP fragmentation, leaving our test instrumentation
to perform IP reassembly.
Given these abstractions, the model covers unrestricted wire interface behaviour. It

describes the effect on a host of arbitrary incoming UDP and ICMP datagrams and TCP
segments, not just of the incoming data that could be sent by a ‘well-behaved’ protocol
stack. This is important, both because ‘well-behaved’ is not well-defined, and because a good
specification should describe host behaviour in response to malicious attack as well as to
loss.
Cutting at the wire interface means that our specification models the behaviour of the

entire protocol stack together with the network interface hardware. Our abstraction from
IP, however, means that only very limited aspects of the lower levels need be dealt with
explicitly. For example, a model host has single queues of input and output messages; each
queue models the combination of buffering in the protocol stack and in the network interface.
Fig. 4 (p. 25) contrasts the RFC descriptions of IP and TCP headers (from Fig. 4 of

RFC 791 and Fig. 3 of RFC 793 respectively) with our specification’s TCP segment type.
Fields in gray are not represented in the specification (most are specific to IP), while fields
with a gray background are represented in some implicit or partial fashion. Ours is a fairly
precise model of a TCP segment: we include all TCP flags and the commonly-used options,
but abstract from option order, IP flags, and fragmentation. Address and port values are
modelled with HOL option types to allow the zero values to be distinguished by pattern
matching; we use the NONE value, typeset ∗, to denote the zero value, and SOME x, typeset
↑ x, for all others.

With hindsight, if doing this again, we would arrange for there to be an exact bijection
between values of the model type and the byte sequences comprising real TCP segments,
for hygiene. That is not quite true for the type above, but for uninteresting reasons —
for example, the type does not record the values of padding, or the order in which TCP
options appear. We would moreover express that bijection within the logic, not just in the
instrumentation. It might be preferable to support pattern matching against constant values
in the prover, to avoid the meaningless ↑ 0 values introduced by the lifting to option types.
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0 1 2 3
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IP +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| IHL |Type of Service| Total Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Identification |Flags| Fragment Offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time to Live | Protocol | Header Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TCP +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port | Destination Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Acknowledgment Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Data | |U|A|P|R|S|F| |

| Offset| Reserved |R|C|S|S|Y|I| Window |

| | |G|K|H|T|N|N| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Checksum | Urgent Pointer |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| data |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

tcpSegment =⟨[ is1 : ip option; (* source IP address *)
is2 : ip option; (* destination IP address *)
ps1 : port option; (* source port *)
ps2 : port option; (* destination port *)
seq : tcp seq local; (* sequence number *)
ack : tcp seq foreign; (* acknowledgment number *)
URG : bool; ACK : bool; PSH : bool; (* flags *)
RST : bool; SYN : bool; FIN : bool;
win : word16; (* window size *)
ws : byte option; (* window scaling option, typically 0..14 *)
urp : word16; (* urgent pointer *)
mss : word16 option; (* max segment size option *)
ts : (ts seq#ts seq) option; (* RFC1323 option *)
data : byte list ]⟩ (* data *)

Fig. 4. RFC IP and TCP Header Formats vs our TCP specification segment type.
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3.1.4 Sockets Interface Issues. The Sockets API is used for a variety of protocols. Our
model covers only the TCP and UDP usage, for SOCK STREAM and SOCK DGRAM sockets
respectively. It covers almost anything an application might do with such sockets, including
the relevant ioctl() and fcntl() calls and support for TCP urgent data. Just as for the
wire interface, we do not impose any restrictions on sequences of socket calls, though in
reality most applications probably use the API only in limited idioms.

The Sockets API is not independent of the rest of the operating system: it is intertwined
with the use of file descriptors, IO, threads, processes, and signals. Modelling the full
behaviour of all of these would have been prohibitive, so we have had to select a manageable
part that nonetheless has broad enough coverage for the model to be useful. The model deals
only with a single process, but with multiple threads, so concurrent Sockets API calls are
included. We have to split calls and returns into separate transitions to allow interleavings
thereof. It deals with file descriptors, file flags, etc., with both blocking and non-blocking
calls, and with pselect(). The poll() call is omitted. Signals are not modelled, except
that blocking calls may nondeterministically return EINTR.

The Sockets API is a C language interface, with much use of pointer passing, of moderately
complex C structures, of byte-order conversions, and of casts. While it is important to
understand these details for programming above the C interface, they are orthogonal to the
network behaviour. Moreover, a model that is low-level enough to express them would have to
explicitly model at least pointers and the application address space, adding much complexity.
Accordingly, we abstract from these details altogether, defining a pure value-passing interface.
For example, in FreeBSD the accept() call has C type:

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

In the model, on the other hand, accept() has a pure-function type

fd→ (fd ∗ (ip ∗ port))error

taking an argument of type fd (a model file descriptor) and either returning a triple of type
fd ∗ (ip ∗ port) or raising one of several possible errors. As part of our instrumentation, the
abstraction from the system API to the model API is embodied in an nssock C library,
which has almost exactly the same behaviour as the standard calls but also calculates the
abstract HOL views of each call and return, dumping them to a log.

The model is language-neutral, but we also have an OCaml [61] library implemented above
nssock, with types almost identical to those of the model, that allows direct programming
(the differences are minor, e.g. in using OCaml 31-bit ints rather than HOL natural-number
nums as the listen-queue-length argument to listen()). This is implemented as a wrapper
above nssock, and so can also log events. Our library is similar but not identical to that
included as part of the Unix module with the OCaml distribution.
Fig. 5 (p. 28) gives the complete API that we support (omitting only some mappings to

and from the abstract types). Those familiar with the usual Sockets API will be able to
see that it is rather complete. We give the OCaml version mentioned above, as it is more
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concise and easier to read than the HOL version, in which argument and return types of the
calls are separated. It uses the subgrammar of OCaml types:

t ::= tc defined type constructor name
unit type of the unit value ()
bool booleans
int integers
string strings
t1 * t2 pairs (v1,v2) of values of types t1 and t2

t1 -> t2 functions from t1 to t2

t option either None or Some v for a value v of type t
t list lists of values of type t

The type of error codes consists roughly of all the possible Unix errors. Not all those are
used in the body of the specification; those that are are described in the ‘Errors’ section
of each socket call. The type of signals includes all the signals known to POSIX, Linux,
and BSD. The specification does not model signal behaviour in detail (it treats them very
nondeterministically), but they occur as an argument to pselect() so must be defined here.
File descriptors, IP addresses, ports, etc. are abstract types in the OCaml interface, preventing
accidental misuse. There are various coercions (which we do not give here) to construct
values of these types. For interface identifiers (ifid) the specification supposes the existence
of a loopback identifier and numbered ethernet identifiers. Any particular host may or may
not have an interface with each identifier, of course. The sockets interface involves various
flags, for files, sockets, and messages. Both the HOL and OCaml interfaces define them as
new types, preventing misuse (though of course this also makes the specification insensitive
to such misuse). The OCaml interface indicates error returns to socket calls by an exception,
while the HOL4 interface returns error values explicitly. Finally, we emphasise that the figure
gives just the types of the socket calls; defining their programmer-visible behaviour, in the
context of a network and other endpoints, is the point of our whole specification.

3.1.5 The TCP Control Block and TCP DEBUG Interface Issues. A key part of the BSD
TCP implementation, probably similar in most other implementations, is the TCP Control
Block (TCBCP): a structure containing many of the quantities associated with an endpoint
of a TCP connection, including its timers, sequence numbers, reassembly segment queue, etc.
Many of these are quantities used in the RFCs to describe the intended dynamic behaviour
of the protocol. The BSD implementation we used supported a TCP DEBUG kernel option to
record snapshots of this data to a ring buffer and let it be read out.

In our specification, connections have a similar structure, though with pure values rather
than C data structures: a 44-field HOL record type (not shown). We exploit the TCP DEBUG

option to add trace records giving the values of these fields whenever possible. During trace
checking, this lets us ground the symbolic state of the model earlier than would otherwise be
possible, which is good for efficiency and for early and discriminating detection of mismatches
between model and experimental trace.

This is complicated by the fact that TCP DEBUG adds trace records at somewhat arbitrary
program points in the code: there are not enough to fully ground the state, and at some
points some of the fields of the record are not meaningful. As mentioned in §1.6, with due
design-time care and modest implementation effort, one could have the protocol designed-in
instrumentation calculate the whole abstract host state at each interesting point.
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type fd (* abstract type of file descriptors. In HOL: FD of num *)

type ip (* abstract type of IP addresses. In HOL: IP of num *)

type port (* abstract type of inet ports. In HOL: Port of num *)

type netmask (* abstract type of netmasks. In HOL: NETMASK of num *)

type ifid (* abstract type of interface IDs. In HOL: LO | ETH of num *)

(* error codes *) (* signals *)

type error = type signal =

| E2BIG | SIGABRT

| EACCES | SIGALRM

| ... | ...

(* boolean file flags *) (* boolean socket flags *) (* numeric socket flags *)

type filebflag = type sockbflag = type socknflag =

| O_NONBLOCK | SO_BSDCOMPAT | SO_SNDBUF

| O_ASYNC | SO_REUSEADDR | SO_RCVBUF

| SO_KEEPALIVE | SO_SNDLOWAT

| SO_OOBINLINE | SO_RCVLOWAT

| SO_DONTROUTE

(* time socket flags *) (* boolean message flags *) (* UDP & TCP socket types *)

type socktflag = type msgbflag = type sock_type =

| SO_LINGER | MSG_PEEK | SOCK_DGRAM

| SO_SNDTIMEO | MSG_OOB | SOCK_STREAM

| SO_RCVTIMEO | MSG_WAITALL

| MSG_DONTWAIT

(* Sockets API calls *)

exception Unix_error of error * string * string (* HOL: return OK v / FAIL err *)

accept: fd -> fd * (ip * port)

bind: fd -> ip option -> port option -> unit

close: fd -> unit

connect: fd -> ip -> port option -> unit

disconnect: fd -> unit

dup: fd -> fd dupfd: fd -> int -> fd

getfileflags: fd->filebflag list setfileflags: fd->filebflag list->unit

getsockname: fd->ip option * port option getpeername: fd->ip * port

getsockbopt: fd->sockbflag->bool getsocknopt: fd->socknflag->int

getsocktopt: fd->socktflag->(int*int)option getsockerr: fd->unit

getifaddrs: unit -> (ifid*ip*ip list*netmask) list

getsocklistening: fd -> bool

listen: fd -> int -> unit

pselect: fd list->fd list->fd list -> (int*int) option -> signal list option

-> fd list * (fd list * fd list)

recv: fd->int->msgbflag list -> (string*((ip option*port option)*bool) option)

send: fd -> (ip * port) option -> string -> msgbflag list -> string

setsockbopt: fd->sockbflag->bool->unit setsocknopt: fd->socknflag->int->unit

setsocktopt: fd -> socktflag -> (int * int) option -> unit

shutdown: fd -> bool -> bool -> unit

sockatmark: fd -> bool

socket: sock_type -> fd

Fig. 5. The Sockets API of the specification (OCaml version)
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3.2 The Internal Structure of the Specification

3.2.1 Internal Structure: Statics (Host States and Types). Host states h are simply values
of a certain carefully-designed HOL record type:

host =⟨[ arch : arch; (* OS version *)

privs : bool; (* whether process has privilege *)

ifds : ifid 7→ ifd; (* network interfaces *)

rttab : routing table; (* routing table *)

ts : tid 7→ hostThreadState timed; (* host view of each thread state *)

files : fid 7→ file; (* open file descriptions *)

socks : sid 7→ socket; (* sockets *)

listen : sid list; (* list of listening sockets *)

bound : sid list; (* bound sockets in order *)

iq : msg list timed; (* input queue *)

oq : msg list timed; (* output queue *)

bndlm : bandlim state; (* bandlimiting *)

ticks : ticker; (* kernel timer *)

fds : fd 7→ fid (* process file descriptors *)

]⟩
These fields abstract to differing extents from the C representations of actual implementations.
Some are quite abstract, with just enough information for the rest of the semantics. For
example:

• ifds is a finite map from a type ifid of network interface identifiers to a type ifd of
interface descriptors, which just contain the IP addresses, netmask, and up/down
status of the interface.
• privs, files, and fds are a minimal representation of the host process’s privileges and
file descriptor state.

This information was added during specification development as needed, when it became
clear that some aspect of the protocol or Sockets API behaviour depended on it.

The ts field ties the host semantics to that of the threads making Sockets API calls on the
host. It holds a lookup table from thread IDs tid to the OS view of thread states (running,
blocked in a system call, or ready to be returned a value).
The low-level network interface is modelled with input iq and output queues oq that are

just lists of IP messages (either either a tcpSegment, as in Fig. 4 (p. 25), an icmpDatagram,
or a udpDatagram). These lists abstract from all the messages queued in the OS or network
interface hardware. These, and various other components, are annotated with time informa-
tion: for any type t , t timed is a type of t values together with elapsed duration and min
and max time values. For example, the iq timer is used to model the delay between receipt
of the receipt of IP datagrams and their processing, and the thread state timers are used to
model scheduling delays. There is also state (bandlim state) for per-host bandwidth limiting,
which applies across all its connections.

The information about sockets (the endpoints and potential endpoints of TCP connections
and of UDP communications) has to be represented in more detail, as this is intimately
involved in the protocol behaviour. The socks, listen, and bound fields use the type socket,
shown below; this and the types of its components are closer to (a pure value representation
of) the C types found in a typical OS implementation.
The socks field of a host h contains a finite map from socket identifiers to sockets. Each

socket has internal structure as below, some of which is protocol-dependent: e.g., flags, local
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and remote IP addresses and ports, pending error, TCP state, send and receive queues, and
TCP control block (cb) variables.
socket =⟨[ fid : fid option; (* associated open file description if any *)

sf : sockflags;(* socket flags *)

is1 : ip option;(* local IP address if any *)

ps1 : port option;(* local port if any *)

is2 : ip option;(* remote IP address if any *)

ps2 : port option;(* remote port if any *)

es : error option;(* pending error if any *)

cantsndmore : bool;(* output stream ends at end of send queue *)

cantrcvmore : bool;(* input stream ends at end of receive queue *)

pr : protocol info(* protocol-specific information *)

]⟩
For a TCP sockets, the protocol-specific information is as below.

tcp socket =⟨[ st : tcpstate; (* LISTEN,ESTABLISHED,TIME WAIT, etc. *)

cb : tcpcb;(* the TCP control block *)

lis : socket listen option;(* data for listening socket *)

sndq : byte list;(* send queue *)

sndurp : num option;(* send urgent pointer *)

rcvq : byte list;(* receive queue *)

rcvurp : num option;(* receive urgent pointer *)

iobc : iobc(* out-of-band data and status *)

]⟩
Here the TCP control block, cb (not shown), is the record of sequence numbers, timers,
etc. mentioned in §3.1.5. Much of the dynamics of the TCP protocol is specified using these,
and many have a close relationship to quantities in the RFC specifications.

3.2.2 Internal Structure: Dynamics (Host Transition Rules). The host LTS is defined in

an operational semantics style as the least relation h
l
−→ h′ satisfying certain rules. These

rules form the bulk of the specification: some 148 rules for the socket calls (5–10 for each
interesting call), and some 46 rules for message send/receive and for internal behaviour.
The definition is almost entirely flat, in two senses. First, most rules have no transition

premises, the only exceptions being rules for time passage (the definition is factored into two
relations, one without time passage and one with). Second, there is no information hiding,
parallel composition structure, or synchronisation within a host; each rule can refer to any
part of the host state as needed. Each transition rule is abstractly of the form

⊢ P ⇒ h
l
→h′

where P is a condition (on the free variables of h, l , and h′) under which host state h can
make a transition labelled l to host state h′. The condition is usually written below the
transition. Each rule has a name, e.g. bind 5, deliver in 1 etc., the protocol for which they
are relevant (TCP, UDP, or both), and various categories (e.g. FAST or BLOCK).
We now give three sample rules, from the 194 that express the dynamic behaviour of

the specification. bind 5 is one of the simplest Sockets API rules, to let the reader get
started, and to illustrate a failure case; send 3 is a more typical non-failure Sockets API rule
that shows how we deal with blocking calls and with data manipulation; and deliver in 1
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is a wire-interface rule, of intermediate complexity, showing how an incoming segment is
processed. In the next subsection (§3.3) we discuss some of the specification idioms used in
these and other rules.

3.2.3 Sample Protocol-level Transition Rule: bind 5. The bind 5 rule, one of the simplest,
is shown in Fig. 6 (p. 32). This is one of 7 rules for the Sockets API call bind(). It deals with
the case where a thread tid calls bind (fd, is1, ps1) to set the IP address and port of a socket
referenced by the file descriptor fd that already has its local port bound; the error EINVAL
will be returned to the thread.

The Description and Variations are documentation annotation, rather than part of the
rule definition; the former gives an overview of the rule, detailed enough for informal use
and checked (manually) against the mathematics, while the latter highlights any differences
between implementations that the rule captures.

The rule itself consists of a transition, from one host state via a transition with a bind label
to another, subject to the sidecondition below. In the host state before the transition, on the
first line, the thread state map ts maps thread id tid to (Run)d , indicating that the thread
is running (in particular, it is not currently engaged in a socket call). In the host state after
the transition, on the third line, that thread is mapped to (Ret (FAIL EINVAL))sched timer,
indicating that within time sched timer the failure EINVAL should be returned to the

thread (all returns are handled by a single rule return 1, which generates labels tid·v).
The sidecondition is a conjunction of 5 clauses. The first three ensure (line 1) that the file

descriptor fd is in the host’s file descriptor map h.fds, (line 2) that fid is the file identifier
for this file descriptor, and (line 3) that this fid is mapped by the host’s files map h.files to
File (FT Socket (sid),ff ), i.e. to a socket identifier sid and file flags ff . The fourth (line
4) simply picks out the socket structure sock associated with the socket id sid. The fifth
(lines 5–8) says that the local port of the socket with that sid is not equal to the wildcard
∗, i.e. that this socket has already got its local port bound, or that some BSD-specific
corner-case condition holds.

3.2.4 Sample Protocol-level Transition Rule: send 3. A slightly more complex rule is send 3,
in Fig. 7 (p. 33). This rule describes a host with a blocked thread attempting to send data to
a socket. The thread becomes unblocked and transfers the data to the socket’s send queue.
The send call then returns to the user.

As before, the transition appears at the top:

h ⟨[...]⟩
τ
−→ h ⟨[...]⟩

where the thread pointed to by tid and the socket pointed to by sid are unpacked from
the original and final hosts, along with the send queue sndq for the socket. Host fields that
are modified in the transition are highlighted . The initial host has thread tid in state
Send2, blocking while attempting to send str to sndq. After the transition, tid is in state
Ret (OK...), about to return to the user with str ′′, the data that has not been sent, here
constrained to be the empty string. In contrast to bind 5, this rule is a purely internal
transition of the model, with a τ label; it does not involve any Sockets API or wire events.
The bulk of the rule is the condition (a predicate) guarding the transition, specifying

when the rule applies and what relationship holds between the input and output states.
The condition is simply a conjunction of clauses, with no temporal ordering. The rule only
applies if (line 1) the state of the socket, st, is either ESTABLISHED or CLOSE WAIT.
Then, (lines 2–5) provided send queue space is large enough, (line 6 and the final host state)
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bind 5 all: fast fail Fail with EINVAL: the socket is already bound to an address and does not

support rebinding; or socket has been shutdown for writing on FreeBSD

h ⟨[ts := ts ⊕ (tid 7→ (Run)d )]⟩

tid·bind(fd, is1, ps1)
−−−−−−−−−−−−−−−−−−−→

h ⟨[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer)]⟩

1. fd ∈ dom(h.fds) ∧
2. fid = h.fds[fd] ∧
3. h.files[fid] = File(FT Socket(sid),ff ) ∧
4. h.socks[sid] = sock ∧
5. (sock.ps1 , ∗ ∨
6. (bsd arch h.arch ∧ sock.pr = TCP PROTO(tcp sock) ∧
7. (sock.cantsndmore ∨
8. tcp sock.cb.bsd cantconnect)))

Description From thread tid, which is in the Run state, a bind(fd, is1, ps1) call is made
where fd refers to a socket sock. The socket already has a local port binding: sock.ps1 , ∗,
and rebinding is not supported.
A tid·bind(fd, is1, ps1) transition is made, leaving the thread state Ret(FAIL EINVAL).

Variations

FreeBSD This rule also applies if fd refers to a TCP socket which is either shut
down for writing or has its bsd cantconnect flag set.

Fig. 6. Sample protocol-level specification transition rule: bind 5
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send 3 tcp: slow nonurgent succeed Successfully return from blocked state having sent data

h ⟨[ts := ts ⊕ (tid 7→ (Send2(sid, ∗, str, opts))d );
socks := socks ⊕ [(sid,Sock(↑ fid, sf ,↑ i1,↑ p1,↑ i2,↑p2, ∗,F, cantrcvmore,

TCP Sock(st, cb, ∗, sndq , sndurp , rcvq, rcvurp, iobc)))]]⟩
τ
−→

h ⟨[ts := ts ⊕ (tid 7→ (Ret(OK(implode str ′′)))sched timer );
socks := socks ⊕ [(sid,Sock(↑ fid, sf ,↑ i1,↑ p1,↑ i2,↑ p2, ∗,F, cantrcvmore,

TCP Sock(st, cb, ∗, sndq ++ str ′ , sndurp′ , rcvq, rcvurp, iobc)))]]⟩

1. st ∈ {ESTABLISHED;CLOSE WAIT} ∧
2. space ∈ send queue space(sf .n(SO SNDBUF))
3. (length sndq) (MSG OOB ∈ opts)
4. h.arch cb.t maxseg i2 ∧
5. space ≥ length str ∧
6. str ′ = str ∧ str ′′ = [ ] ∧
7. sndurp′ = if MSG OOB ∈ opts then ↑(length(sndq ++ str ′) − 1) else sndurp

Description Thread tid is blocked in state Send2(sid, ∗, str, opts) where the TCP socket
sid has binding quad (↑ i1,↑ p1,↑ i2,↑ p2), has no pending error, is not shutdown for writing,
and is in state ESTABLISHED or CLOSE WAIT.
The space in the socket’s send queue, space (calculated using send queue space), is greater
than or equal to the length of the data to be sent, str. The data is appended to the socket’s
send queue and the call successfully returns the empty string. A τ transition is made, leaving
the thread state Ret(OK“”). If the data was marked as out-of-band, MSG OOB ∈ opts,
then the socket’s urgent pointer will be updated to point to the end of the socket’s send
queue.

Model details The data to be sent is of type string in the send() call but is a byte list
when the datagram is constructed. Here the data, str is of type byte list and in the transition
implode str is used to convert it into a string.

Fig. 7. Sample protocol-level specification transition rule: send 3
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str is appended to the sndq in the final host. Lastly, (line 7) the urgent pointer sndurp′ is set
appropriately.

3.2.5 Sample Protocol-level Transition Rule: deliver in 1. A more interesting rule,
deliver in 1, for connection establishment, is shown in Fig. 8 (p. 35) (eliding a few de-
tails of the TCP protocol TIME WAIT handling for space). This rule models the behaviour
of the system on processing an incoming TCP SYN datagram addressed to a listening
socket. It is of intermediate complexity: many rules are rather simpler than this, a few more
substantial.

The transition h ⟨[...]⟩
τ
−→ h ⟨[...]⟩ appears at the top: the input and output queues are

unpacked from the original and final hosts, along with the listening socket pointed to by sid
and the newly-created socket pointed to by sid ′.
As before, the bulk of the rule, below the line, is the condition (a predicate) guarding

the transition, specifying when the rule applies and what relationship holds between the
input and output states. The condition is simply a conjunction of clauses, with no temporal
ordering.
Notice first that the rule applies only when dequeueing of the topmost message on the

input queue iq (as defined by predicate dequeue iq) results in a TCP segment TCP seg,
leaving remaining input queue iq′. The rule then (block 1) unpacks and constrains the fields
of seg by pattern matching: seg.is1 must be nonzero (hence ↑) and is bound to variable i2;
similarly for i1, p2, p1; fields seg.seq and seg.ack are bound to seq and ack (cast to the type of
foreign and local sequence number respectively); field seg.URG is ignored (along with FIN
and PSH), and so we existentially bind it; of the other TCP flags, ACK is false, RST is false,
SYN is true; and so on.

After (blocks 2–4) some validity checks, and determining the matching socket, the predicate
computes values required to generate the response segment and to update the host state. For
instance, (block 9) the host nondeterministically may or may not wish to do timestamping
(here the nondeterminism models the unknown setting of a configuration parameter). Times-
tamping will be performed if the incoming segment also contains a timestamping request.
Several other local values are specified nondeterministically: (block 8) the advertised MSS
may be anywhere between 1 and 65495, (block 11) the initial sequence number is chosen
arbitrarily, (block 12) the initial window is anywhere between 0 and the maximum allowed
bounded by the size of the receive buffer, and so on. Buffer sizes are computed (block 10)
based on the (nondeterministic) local and (received) remote MSS, the existing buffer sizes,
whether the connection is within the local subnet or not, and the TCP options in use. The
algorithm used differs between implementations, and is specified in the auxiliary function
calculate buf sizes (definition not shown).

Finally, (block 16) the internal TCP control block cb′ for the new socket is created, based
on the listening socket’s cb. Timers are restarted, sequence numbers are stored, TCP’s
sliding window and congestion window are initialised, negotiated connection parameters are
saved, and timestamping information is logged. An auxiliary function make syn ack segment
constructs (block 17–18) an appropriate response segment using parameters stored in cb′; if
the resulting segment cannot be queued (due to an interface buffer being full or for some
other reason) then certain of the updates to cb′ are rolled back.

Some non-common-case behaviour is visible in this rule: (1) in the BSD implementation it
is possible for a listening socket to have a peer address specified, and we permit this (block
4) when checking the socket is correctly formed; and (2) (block 1 pattern) URG or FIN may
be set on an initial SYN, though this is ignored by all implementations we consider.
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deliver in 1 tcp: network nonurgent
Passive open: receive SYN, send SYN,ACK

h ⟨[socks := socks ⊕ [(sid, sock)];(* listening socket *)

iq := iq;(* input queue *)

oq := oq]⟩(* output queue *)

τ
−→

h ⟨[socks := socks ⊕
(* listening socket *)

[(sid,Sock(↑ fid, sf , is1,↑ p1, is2, ps2, es, csm, crm,
TCP Sock(LISTEN, cb,↑ lis′, [ ], ∗, [ ], ∗,NO OOB)));

(* new connecting socket *)

(sid ′,Sock(∗, sf ′,↑ i1,↑ p1,↑ i2,↑ p2, ∗, csm, crm,
TCP Sock(SYN RCVD, cb′′, ∗, [ ], ∗, [ ], ∗,NO OOB)))];

iq := iq′;
oq := oq′]⟩

(*1. check first segment matches desired pattern; unpack fields *)

dequeue iq(iq, iq′,↑(TCP seg)) ∧
(∃win ws mss PSH URG FIN urp data ack.
seg =
⟨[ is1 :=↑ i2; is2 :=↑ i1; ps1 :=↑ p2; ps2 :=↑ p1;
seq := tcp seq flip sense(seq : tcp seq foreign);
ack := tcp seq flip sense(ack : tcp seq local);
URG :=URG;ACK :=F; PSH := PSH ;
RST :=F; SYN :=T; FIN := FIN ;
win :=win ;ws :=ws ; urp := urp;mss :=mss ; ts := ts;
data := data

]⟩ ∧
w2n win = win∧(*type-cast from word to integer *)

option map ord ws = ws ∧
option map w2n mss = mss) ∧

(*2. IP addresses are valid for one of our interfaces *)

i1 ∈ local ips h.ifds ∧
¬(is broadormulticast h.ifds i1) ∧ ¬(is broadormulticast h.ifds i2) ∧

(*3. sockets distinct; segment matches this socket; unpack fields of
socket *)
sid < (dom(socks)) ∧ sid ′ < (dom(socks)) ∧ sid , sid ′ ∧
tcp socket best match socks(sid, sock)seg h.arch ∧
sock = Sock(↑ fid, sf , is1,↑ p1, is2, ps2, es, csm, crm,

TCP Sock(LISTEN, cb,↑ lis, [ ], ∗, [ ], ∗,NO OOB)) ∧

(*4. socket is correctly specified (note BSD listen bug) *)

((is2 = ∗ ∧ ps2 = ∗) ∨
(bsd arch h.arch ∧ is2 = ↑ i2 ∧ ps2 = ↑ p2)) ∧
(case is1 of ↑ i1′ → i1′ = i1 ∥ ∗ → T) ∧
¬(i1 = i2 ∧ p1 = p2) ∧

(*5. (elided: special handling for TIME WAIT state, 10 lines) *)

(*6. place new socket on listen queue *)

accept incoming q0 lis T ∧
(*7. (elided: if drop from q0, drop a random socket yielding q0’) *)

lis′ = lis ⟨[ q0 := sid ′ :: q′0]⟩ ∧

(*8. choose MSS and whether to advertise it or not *)

advmss ∈ {n | n ≥ 1 ∧ n ≤ (65535 − 40)} ∧
advmss′ ∈ {∗;↑ advmss} ∧

(*9. choose whether this host wants timestamping; resolve with peer *)

tf rcvd tstmp′ = is some ts ∧
(choose want tstmp :: {F;T}.
tf doing tstmp′ = (tf rcvd tstmp′ ∧ want tstmp)) ∧

(*10. calculate buffer size and related parameters *)

(rcvbufsize′, sndbufsize′, t maxseg′, snd cwnd ′) =
calculate buf sizes advmss mss ∗ (is localnet h.ifds i2)
(sf .n(SO RCVBUF)) (sf .n(SO SNDBUF))
tf doing tstmp′ h.arch ∧

sf ′ = sf ⟨[ n := funupd list sf .n[(SO RCVBUF, rcvbufsize′);
(SO SNDBUF, sndbufsize′)]]⟩ ∧

(*11. choose whether this host wants window scaling; resolve with peer *)

req ws ∈ {F;T} ∧
tf doing ws′ = (req ws ∧ is some ws) ∧
(if tf doing ws′ then
rcv scale′ ∈ {n | n ≥ 0 ∧ n ≤ TCP MAXWINSCALE} ∧
snd scale′ = option case 0 I ws

else
rcv scale′ = 0 ∧ snd scale′ = 0) ∧

(*12. choose initial window *)

rcv window ∈ {n | n ≥ 0 ∧
n ≤ TCP MAXWIN∧
n ≤ sf .n(SO RCVBUF)} ∧

(*13. record that this segment is being timed *)

(let t rttseg′ = ↑(ticks of h.ticks, cb.snd nxt) in

(*14. choose initial sequence number *)

iss ∈ {n | T} ∧

(*15. acknowledge the incoming SYN *)

let ack′ = seq + 1 in

(*16. update TCP control block parameters *)

cb′ =
cb ⟨[ tt keep :=↑((())slow timer TCPTV KEEP IDLE);

tt rexmt := start tt rexmt h.arch 0 F cb.t rttinf ;
iss := iss; irs := seq;
rcv wnd := rcv window; tf rxwin0sent :=(rcv window=0);
rcv adv := ack′ + rcv window; rcv nxt := ack′;
snd una := iss; snd max := iss + 1; snd nxt := iss + 1;
snd cwnd := snd cwnd ′; rcv up := seq + 1;
t maxseg := t maxseg′; tadvmss := advmss′;
rcv scale := rcv scale′; snd scale := snd scale′;
tf doing ws := tf doing ws′;
ts recent := case ts of

∗ → cb.ts recent ∥
↑(ts val, ts ecr ) → (ts val)TimeWindow

kern timer dtsinval ;
last ack sent := ack′;
t rttseg := t rttseg′;
tf req tstmp := tf doing tstmp′;
tf doing tstmp := tf doing tstmp′

]⟩) ∧

(*17. generate outgoing segment *)

choose seg′ :: make syn ack segment cb′

(i1, i2, p1, p2) (ticks of h.ticks).

(*18. attempt to enqueue segment; roll back specified fields on failure *)

enqueue or fail T h.arch h.rttab h.ifds[TCP seg′]oq
(cb
⟨[ snd nxt := iss;
snd max := iss;
t maxseg := t maxseg′;
last ack sent := tcp seq foreign 0w ;
rcv adv := tcp seq foreign 0w

]⟩)cb′(cb′′, oq′)

Fig. 8. Sample protocol-level specification transition rule: deliver in 1
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3.3 Specification Idioms

Having seen those examples, we now discuss more generally the specification idioms that we
used, to capture the range of behaviour required while maintaining a readable specification.

3.3.1 Nondeterminacy and Relational Specification. For the specification to actually include
all the behaviour even of a single implementation it must be highly nondeterministic, e.g. to
admit the pseudo-random choice of initial sequence numbers etc. that we saw in blocks 8,
11, and 12 of Fig. 8 (p. 35), the variations due to varying OS scheduling of multiple threads
and interrupts, and variations in the rates of timers.

This nondeterminism leads us to use relational idioms (expressed in the higher-order logic
of HOL) throughout much of the specification. In places we can use auxiliary functions,
but often we need auxiliary relations, or functions that return relations. Nondeterminism is
sometimes implicit (e.g. where several different error rules are applicable) and sometimes
explicit (e.g. where an unconstrained or partially-constrained variable is introduced).
As discussed in §1.6, if runtime nondeterministic choices were promptly announced in

some form, we could instead have phrased the specification as a pure function that takes
an observed (non-τ ) transition and determines whether or not it is allowed. That might be
easier to work with as an executable test oracle, but it would be oriented specifically towards
checking — and in any case, the current implementations and RFC/POSIX specifications
do not announce those choices.

Nondeterminism is also used to model some differences between implementations (e.g. un-
constraining the protocol options chosen at connection-establishment time). Other im-
plementation differences are modelled by explicitly parameterising the behaviour by an
implementation version (e.g. as in the last conjunct of bind 5 in Fig. 6 (p. 32), which is
BSD-specific). This explicitness lets us identify and test differences more sharply.
Often it is useful to think of a part of a rule predicate P as being a ‘guard’, which is a

sufficient condition for the rule to be applicable, and the remainder as a constraint, which
should always be satisfiable, on the final state h. This distinction is not formalised, however.

3.3.2 Imperative Updates and the Relational Monad. In the C code of the implementations
the early parts of segment processing can have side-effects on the host data structures,
especially on the TCP control block, before the outcome of processing is determined.
Disentangling this imperative behaviour into a clear declarative specification is non-trivial.
Our most complicated rule, deliver in 3, calculates the host’s response to an incoming
segment after a connection has been established. This rule makes use of a relational monad
structure to expose certain intermediate states (as few as possible). Relations in this monad
have (curried) types of the form

t → t#t ′#bool→ bool

where t is the state being manipulated (e.g. a pair of a socket and a host’s bandlimiter
state), t ′ is the result type (e.g. a list of segments to be sent in reply to a segment being
processed), and the boolean in the second tuple argument is a flag indicating whether or not
execution should continue. There is a binding combinator andThen, a unit cont (which does
nothing and continues), and a zero stop (which does nothing and stops), and various other
operations to manipulate the state. It should be a theorem that andThen is associative, and
so forth, though we have not checked this within HOL.
For deliver in 3 we expose four intermediate states: after initial processing (PAWS etc.),

after processing the segment’s acknowledgement number and congestion control, after
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extraction of reassembled data, and after possibly changing the socket’s TCP connection
state. The full rule, describing the state changes between each of these points, is around 17
heavily commented pages.

3.3.3 Time and Urgency. It is essential to model time passage explicitly: much TCP
behaviour is driven by timers and timeouts, and distributed applications generally depend
on timeouts in order to cope with asynchronous communication and failure. Our model
bounds the time behaviour of certain operations: for example, a failing bind call in bind 5
will return after a scheduling delay of at most dschedmax (the sched timer of the tid thread
state in the final host state is defined to be upper timer dschedmax), while a call to pselect
with no file descriptors specified and a timeout of 30sec will return at some point in the
interval [30, 30 + dschedmax] seconds. Some operations have both a lower and upper bound;
some must happen immediately; and some have an upper bound but may occur arbitrarily
quickly. For some of these requirements time is essential, and for others time conditions are
simpler and more tractable than the corresponding fairness conditions [65, §2.2.2].

Time passage is modelled by transitions labelled d ∈ R>0 interleaved with other transitions,
which are regarded as instantaneous. This models global time which passes uniformly for all
parts of the system (although it cannot be accurately observed internally by any of them).
States are defined as urgent if there is a discrete action which we want to occur immediately.
This is modelled by prohibiting time passage steps d from (or through) an urgent state.
We have carefully arranged the model to avoid pathological timestops by ensuring a local
receptiveness property holds: the model can always perform input transitions for any label
one might reasonably expect it to.

The model is constructed to satisfy the two time axioms of [65, §2.1]. Time is additive: if

h1
d
→ h2 and h2

d′
→ h3 then h1

d+d′
→ h3; and time passage has a trajectory : roughly, if h1

d
→ h2 then

there exists a function w on [0, d] such that w (0) = h1, w (d) = h2, and for all intermediate

points t, h1
t
→w (t) and w (t)

d−t
→ h2. These axioms ensure that time passage behaves as one

might expect.
The timing properties of the host are specified using a small collection of timers, each

with a particular behaviour. A single transition rule epsilon 1 (shown below) models time
passage, say of duration dur, by evolving each timer in the model state forward by dur. If
any timer cannot progress this far, or the initial model state is marked as urgent for another
reason, then the rule guard is false and the time passage transition is disallowed. Note that,
by construction, the model state may only become urgent at the expiry of a timer or after a
non-time-passage transition. This guarantees correctness of the rule. The timers ensure that
the specification models the behaviour of real systems with (boundedly) inaccurate clocks:
the rate of a host’s ‘ticker’ is constrained only to be within certain bounds of unity.

epsilon 1 all: misc nonurgent Time passes

h
dur
→ h′

let hs′ = Time Pass host dur h in
is some hs′ ∧
h′ ∈ (the hs′) ∧

¬(∃rn rp rc lbl h′.rn/ ∗ rp, rc ∗ /h
lbl
→ h′ ∧ is urgent rc)
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Description Allow time to pass for dur seconds, updating the internal timers of host h by
duration dur to become host state h′. This is only enabled if the host state h is not urgent,
i.e. if no τ transition of an urgent rule can fire (such transitions represent actions that are
held to happen instantaneously, and which must “fire” before any time elapses, e.g. the
expiry of a pselect() timeout, plus a scheduling delay). Notice that, apart from when a timer
becomes zero, a host state never becomes urgent due merely to time passage. This means
we need only test for urgency at the beginning of the time interval, not throughout it.

Many timed process algebras enforce a maximal progress property [112], requiring that
any action (such as a CCS synchronisation) must be performed immediately it becomes
enabled. We found this too inflexible for our purposes; we wish to specify the behaviour of,
e.g., the OS scheduler only very loosely, and so it must be possible to nondeterministically
delay an enabled action, but we did not want to introduce many nondeterministic choices of
delays. Our calculus therefore does not have maximal progress; instead we ensure timeliness
properties by means of timers and urgency. Our reasoning using the model so far involves
only finite trace properties, so we do not need to impose Zeno conditions.

3.3.4 Partitioning the Behaviour. The partition of the system behaviour into particular
rules is an important aspect of the specification. We have tried to make it as clear as possible:
each rule deals with a conceptually different behaviour, separating (for example) the error
cases from the non-error cases. This means there is some repetition of clauses between
rules. For example, many rules have a predicate clause that checks that a file descriptor is
legitimate. For substantial aspects of behaviour, on the other hand, we try to ensure they
are localised to one place in the specification. For example, calls such as accept() might have
a successful return either immediately or from a blocked state. The final outcome is similar
in both, and so we have a single rule (accept 1) that deals with both cases. Another rule
(accept 2) deals with entering the blocked states, and several others with the various error
cases. The various accept rules are summarised below for illustration.

accept 1 tcp: succeed Return new connection; either immediately or from a
blocked state.

accept 2 tcp: block Block waiting for connection.
accept 3 tcp: fail Fail with EAGAIN: no pending connections and non-

blocking semantics set.
accept 4 tcp: fail Fail with ECONNABORTED: the listening socket

has cantsndmore set or has become CLOSED. Returns
either immediately or from a blocked state.

accept 5 tcp: fail Fail with EINVAL: socket not in LISTEN state.
accept 6 tcp: fail Fail with EMFILE: out of file descriptors.
accept 7 udp: fail Fail with EOPNOTSUPP or EINVAL: accept()

called on a UDP socket.

3.3.5 Relationship Between Code and Specification Structure. In writing the specification
we have examined the implementation source code closely, but the two have very different
structure. The code is in C, typically with a rough layer structure (but tight coupling between
some layers). It has accreted changes over the years, giving a tangled control flow in some
parts, and is optimised for fast-path performance. For the specification, however, clarity



Engineering with Logic 39

is the prime concern. Individual rules correspond very roughly to execution paths through
implementation code.

Each rule is as far as possible declarative, defining a relation between outputs and inputs.
In some cases we have been forced to introduce extra structure to mirror oddities in the
implementations, e.g. intermediate state variables to record side effects that subsidiary
functions have before a segment is dropped, and clauses to model the fact that the BSD fast-
path optimisation is not precisely equivalent to the slow path. In developing the specification,
we did careful manual unfolding of some of the C control flow to identify such issues; sound
refactoring or partial evaluation tools for C would have been very useful at that point.

3.3.6 Framing. The host state is complex, but most rules need refer only to a small
part of it, and permit an even smaller part to differ between the initial and final state of
a transition. In designing the host state type and the rules it is important to ensure that
explicit frame conditions are usually not needed, to avoid overwhelming visual noise. To
do so we use a combination of pattern matching (in the h and h′) and of projection and
update operations for records and finite maps; the latter are pure functional operations, not
imperative updates.
The overall host state structure roughly follows that of the system state: as we saw in

§3.2.1, hosts have collections of socket data structures, message input and output queues,
etc.; sockets have local and remote IP addresses and ports, etc.; TCP sockets have a TCP
control block, and so on. The details vary significantly, however, with our structures arranged
for clarity rather than performance — as we are specifying only the externally-observable
behaviour, we can choose the internal state structure freely. For example, TCP send and
receive queues are modelled by byte lists rather than the complex BSD mbuf structures, and
we can subdivide the state so that commonly-accessed components are together and near
the root.

3.3.7 Concurrency, Blocking Calls, and Atomicity. In the implementations the host state
may be modified by multiple threads making concurrent Sockets API calls (possibly for the
same socket), and by OS interrupt handler code prompted by timers or incoming messages.
Sockets API calls can be fast or slow, the latter potentially blocking for arbitrarily long.
The imperative C code modifies state as it executes. Fortunately most of the network
protocol code in the implementations we examined is guarded by a coarse-grained lock, so
the specification need not consider all possible interleavings. Fast calls are typically modelled
by two atomic transitions, one for the call, in which all state change happens (as in bind 5),
and one for the return of the result. Slow calls typically involve three transitions, one for
the call (leaving the host thread record in a special blocked state), one in which the call is
unblocked (e.g. a τ transition when new data is processed), and one for the return of the
result. Applying a degree of fuzziness to times and deadlines suffices to let this correspond
to the real executions.
More recent FreeBSD implementations have replaced the coarse-grained lock by fine-

grained locking. Whether the abstraction of the specification is still sound with respect to
that has not been investigated.

3.3.8 Presentation and Automated Typesetting. We aimed to make the specification as
readable as possible, to make it usable as a reference document. The mathematical structure
discussed above is important for that, but document presentation also makes a big difference,
at many scales:

• local typesetting of expressions;
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Rules Observed labels in trace (omitting time passage data and thread ids)

connect 1 connect(FD 8, IP 192 168 0 14, SOME(Port 3333))s
epsilon 1

sdeliver out 99

epsilon 1

−−−−−−−−
TCP 2634140288:0 (0:0) UAPRSF192.168.0.12:3333→192.168.0.14:3333 win=57344
ws=0 urp=0 mss=1460 ts=572641697,0 len=0

−−−−−−−−−−−−−−−−−−→sdeliver in 99

epsilon 1 ; deliver in 2

−−

TCP 260964823:26
34140289 (0:1) UAPRSF

192.168.0.14:3
333→192.168.0.12:3

333 win=5792

ws=0 urp=0 mss=1460 ts=78216088,572
641697

len=0

−−−−−−−−−−−−−−−−−−−−−−→

sdeliver out 99

connect 2 ; epsilon 1

−−−−−−−−
TCP 2634140289:260964824 (1:1) UAPRSF192.168.0.12:3333→192.168.0.14:3333 win=57920
ws=* urp=0 mss=* ts=572641697,78216088 len=0

−−−−−−−−−−−−−−−−−−→

return 1 OK()

epsilon 1

s
send 1 send(FD 8, NONE, ”Hello!”, [])s

epsilon 1 ; deliver out 1

sdeliver out 99

epsilon 1

−−−−−−−−
TCP 2634140289:260964824 (1:1) UAPRSF192.168.0.12:3333→192.168.0.14:3333 win=57920
ws=* urp=0 mss=* ts=572641747,78216088 len=6

−−−−−−−−−−−−−−−−−−→

return 1 OK(””)

epsilon 1

s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 9. Extract from sample checked TCP trace, with rule firings.

• structured presentation of transition rules, as seen in Figs. 6 and 7;
• structured presentation of the family of rules for each Sockets API call, such as those
for accept above, and each aspect of the wire protocol, with an introductory preamble
(not shown here) for each; and
• large-scale organisation of the document.

We paid attention to all of these, building an automated typesetting system, HOLDoc, that
takes the HOL source, including annotations for structure and exposition, and outputs
LaTeX. This gives a production-quality result without the errors and workflow cost that
manual transcription would introduce. The parts of the specification quoted in this document
are taken directly or lightly hand-edited from this. The automatically produced polished
document was also invaluable during development of the specification, to help keep track of
all the details. The HOL source is used to determine the various different kinds of identifiers
(types, constructors, auxiliary definitions, and quantified or lambda-bound variables), which
are set in appropriate fonts. The tool does not do a full HOL parse, however, so identifiers
used at more than one kind are occasionally set wrongly. Importantly, it preserves source-file
indentation and (one flavour of) comment, to give easy control of the resulting layout. It has
custom support for the top-level structure of the specification, but most of its functionality
is general; it has been used for other HOL work and for typesetting unrelated and non-HOL
papers. Committing enough effort to do such engineering work to a sufficiently robust
standard was essential to make the project as a whole successful.
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3.4 Example Trace

Fig. 9 (p. 40) shows an extract from a captured trace with the observed labels for Sockets
API calls and returns and TCP segment sends and receives. It is annotated on the left
with the sequence of rules connect 1, epsilon 1,. . . used to match this trace when it was
checked. Note the time passage transitions (rule epsilon 1) and the various internal (τ ) steps:
deliver in 2 dequeuing a SYN,ACK segment and generating an ACK (to be later output by
deliver out 99), connect 2 setting up the return from the blocked connect(), and deliver out 1
enqueuing the “Hello!” segment for output. The diagram shows only the rule names and
labels, omitting the symbolic internal state of the host which is calculated at each point. It
is automatically generated from the result of checking the trace.

This trace shows a common case, and should be unsurprising for those familiar with TCP.
However, the specification covers TCP in full detail : fast retransmit and recovery, RTT
measurement, PAWS, and so on, and for all possible inputs, not just common cases: error
behaviour, pathological corners, concurrent socket calls, and so on. Such completeness of
specification is an important part of our rigorous approach.

4 SERVICE-LEVEL SPECIFICATION

The previous section described our protocol-level specification, which characterises the on-
the-wire behaviour of the TCP protocol in terms of the individual TCP segments exchanged
between TCP endpoints, together with the Sockets API and UDP/ICMP behaviour. We now
turn to our service-level specification, as introduced in §1.5.2 and shown in Fig. 2 (p. 10). In
the rest of this section, we describe the service-level specification, and the main differences
between it and the protocol-level specification. Our presentation is necessarily at a high
level, omitting many details, but the interested reader can find the complete specification
online [92, 104].

4.1 Motivation for two specifications

TCP is designed to provide (roughly) a bidirectional reliable byte-stream service between
pairs of endpoints, and programmers using TCP above the Sockets API often want to think
of it in those terms. At the protocol level, this view of TCP is almost wholly absent: one has
to think in terms of individual TCP segments, subject to retransmission, reassembly, etc. In
contrast, the service-level specification makes the nature of the bidirectional streams explicit.
Another way to motivate the need for a service-level specification is to think about the

task of verifying applications built above TCP. Applications that use TCP depend heavily
on the reliable bytestream abstraction it provides; in reasoning about them, one would not
want to be concerned with protocol-level details.

4.2 Relationship to the Protocol-level Specification

Our service-level specification provides a formal model of TCP that makes explicit the reliable
bytestream service that TCP provides. The specification abstracts from the protocol-level
details to describe the behaviour of pairs of hosts communicating over TCP, but observed
only at their Sockets API interfaces. It does not deal with TCP segments on the wire. It
does include UDP (for which the service-level specification simply provides the same view as
the protocol-level specification) and ICMP messages, because they interact with aspects of
TCP (e.g. via network queue timers).

The service-level specification was constructed in a similar manner to the protocol-level.
As with the previous specification, it was written in higher-order logic supported by the
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HOL4 theorem prover. Indeed, substantial parts of the specification closely resemble their
protocol-level counterparts. The strong connection between protocol level and service level is
made evident by the abstraction relation described in §5: not only do the two specifications
describe similar behaviour (i.e., the same set of traces when viewed only at the Sockets
API), but the specifications precisely mirror each other stepwise, and at each step the
protocol-level states correspond directly to the service-level states. This close correspondence
also considerably simplifies the task of validation, as described in §7.7.

In principle one could derive a service-level specification directly from the protocol model,
taking the set of traces it defines and erasing the TCP wire segment transitions. However,
that would not give a usable specification: one in which key properties of TCP, that users
depend on, are clearly visible. Instead, we built the service-level specification by hand,
defining a more abstract notion of host state, an abstract notion of stream object, and a new
network transition relation, but aiming to give the same Sockets-API-observable behaviour.

Although the service level is conceptually significantly simpler than the protocol level (see,
for example, the reduction of the TCP control block fields from 44 to 2, described later), the
size of the specification is only marginally reduced. The reason for this is that much of the
specification concerns the considerable details of the Sockets API, and much of this detail is
also present at the service level.

4.3 The Top-level Operational Semantics Judgement

In Fig. 2 (p. 10) we depicted the scope of the service-level specification: it describes the host
Sockets API at a single endpoint. Whilst the protocol level described the behaviour of the
kernel implementation of the Sockets API, including details of packets sent on the wire, at
the service level all this detail is omitted and replaced with an abstract notion of a reliable
bytestream. This abstraction is depicted in Fig. 11 (p. 46). The top-level judgement is now
of the following form:

h, S,M
lbl
→ h′, S′,M ′

This is a ternary relation between two tuples, (h, S,M ) and (h′, S ′,M ′), and the transition
label lbl. The h component represents, as before, the host. Compared to the protocol level,
the host type is similar but simpler, since many low-level aspects that are not visible at the
stream level can be omitted. The transition label lbl is also similar to that at the protocol
level. The main difference lies in the S and M components.
The S component represents the reliable bytestreams between hosts. In some sense it is

an abstraction of host network state and messages on the wire. However, as we will see later,
it is defined in a way that makes the reliable bytestream nature evident.

The M component represents the set of messages that are on the wire. The protocol level
describes the behaviour at the Sockets API, and at the network interface. Implicitly the
protocol level also determines the set of messages that may be on the wire (those that
are sent via the network interface). At the service level we need to talk explicitly about
multiple hosts connected via bytestreams, and so we include a set of messages. In fact, most
of the messages on the wire are involved in data transfer and are already modelled via the S
component. The M component includes, for example, UDP and ICMP messages that may
affect TCP behaviour but do not play a role in the bytestream abstraction.
Note that this relation describes the behaviour of sets of streams, sets of messages, and

a single host. In a final step, we lift this relation from a single host h to a set of hosts H ,
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to give a relation of the form H , S,M
lbl
→ H ′, S′,M ′. This gives the final network transition

system between network states (H , S,M ) in terms of individual host transitions.

4.4 The Internal Structure of the Specification

4.4.1 Host States. The abstract host states are substantially simpler than those of the
protocol-level model. For example, the protocol-level TCP control block contains 44 fields,
including retransmit and keep-alive timers; window sizes, sequence position and scaling
information; timestamping and round trip times. Almost none of these are relevant to the
service-level observable behaviour, and so are not needed in the service-level TCP control
block. Consequently the service-level control block contains only 2 fields, which is a dramatic
simplification. On the other hand, the top-level host type is almost identical to that at the
protocol level, since most of the information (file descriptors, sockets, routing table etc.) is
still relevant.

4.4.2 Streams. The heart of the service-level specification is a model of a bidirectional
TCP connection as a pair of unidirectional byte streams between Socket endpoints:

– unidirectional stream :
tcpStream =⟨[ i : ip;(* source IP *)

p : port;(* source port *)

flgs : streamFlags;
data : byte list;
destroyed : bool]⟩

The data in the stream is just a byte list, directly capturing the intuition for the service
intended to be provided by TCP. This contrasts with the protocol-level specification combina-
tion of byte lists buffered in the sending socket, TCP segments in the sending host’s outqueue
oq, on the wire, and in the receiving host’s inqueue iq, and bytes buffered in the receiving
socket (as in the types we saw in §3.2.1). Further fields record the source IP address and port
of the stream, control information in the form of flags, and a boolean indicating whether the
stream has been destroyed at the source (say, by deleting the associated socket). Some of
these fields are shared with the low-level specification, but others are purely abstract entities.
Note that although a stream may be destroyed at the source, previously sent messages may
still be on the wire, and might later be accepted by the receiver, so we cannot simply remove
the stream when it is destroyed. Similarly, if the source receives a message for a deleted
socket, a RST will typically be generated, which must be recorded in the stream flags of the
destroyed stream. The following flags record whether the stream is opening (SYN ,SYNACK),
closing normally (FIN ) or abnormally (RST).
– stream control information :
streamFlags =⟨[ SYN : bool;(* SYN , no ACK *)

SYNACK : bool;(* SYN with ACK *)

FIN : bool;
RST : bool]⟩

This control information is carefully manually abstracted from the protocol level, to
capture just enough structure to express the user-visible behaviour. Note that the SYN and
SYNACK flags may be set simultaneously, indicating the presence of both kinds of message
on the wire. The receiver typically lowers the stream SYN flag on receipt of a SYN : even
though messages with a SYN may still be on the wire, subsequent SYN s will be detected by
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the receiver as invalid duplicates of the original. A bidirectional stream is then just a pair of
unidirectional streams.
The basic operations on a byte stream are to read and write data, though some care is

needed for the control information. For example, the following defines a write from Sockets
endpoint (i1, p1) to endpoint (i2, p2).

– write flags and data to a stream :
write(i1, p1, i2, p2) (flgs, data)s s′ = (
∃in out in′ out ′.
sync streams(i1, p1, i2, p2)s(in , out) ∧
sync streams(i1, p1, i2, p2)s′(in′, out ′) ∧
in′ = in ∧
out ′.flgs =
⟨[ SYN :=(out.flgs.SYN ∨ flgs.SYN );
SYNACK :=(out.flgs.SYNACK ∨ flgs.SYNACK );
FIN :=(out.flgs.FIN ∨ flgs.FIN );
RST :=(out.flgs.RST ∨ flgs.RST )]⟩ ∧

out ′.data = (out.data + +data))

Stream s′ is the result of writing flgs and data to stream s. Stream s consists of a
unidirectional input stream in and output stream out, extracted from the bidirectional
stream using the auxiliary sync streams function. Similarly s′, the state of the stream after
the write, consists of in′ and out ′. Since we are writing to the output stream, the input
stream remains unchanged, in′ = in . The flags on the output stream are modified to reflect
flgs. For example, SYN is set in out ′.flgs iff flgs contains a SYN or out.flgs already has SYN
set. Finally, out ′.data is updated by appending data to out.data.

4.5 Sample Service-level Transition Rule: send 3
Fig. 10 (p. 45) gives the service-level analogue of the send 3 protocol-level rule of Fig. 7
(p. 33). The transition occurs between triples (h ⟨[...]⟩, S0 ⊕ [...],M ), each consisting of a host,
a finite map from stream identifiers to streams, and a set of UDP and ICMP messages. The
latter do not play an active part in this rule, and can be safely ignored. The host state is
unpacked from the host as before. Note that protocol-level constructs such as rcvurp and
iobc are absent from the service-level host state. As well as the host transition, there is a
transition of the related stream s to s′. The stream is unpacked from the finite map via its
unique identifier streamid of quad(i1, p1, i2, p2), derived from its quad.
As before, the conditions for this rule require that the state of the socket st must be

ESTABLISHED or CLOSE WAIT. Stream s′ is the result of writing string str ′ and flags
flgs to s. Since flgs are all false, the write does not cause any control flags to be set in s′,
although they may already be set in s of course.

This rule, and the preceding definitions, demonstrate the conceptual simplicity and stream-
like nature of the service level. Other interesting properties of TCP are clearly captured by
the service-level specification. For example, individual writes do not insert record boundaries
in the byte stream, and in general a read returns only part of the data, uncorrelated with
any particular write. The model also makes clear that the unidirectional streams are to a
large extent independent. For example, closing one direction does not automatically cause
the other to close.
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send 3 tcp: slow nonurgent succeed Successfully return from blocked state having sent data

(h ⟨[ts := ts ⊕ (tid 7→ (Send2(sid, ∗, str, opts))d );
socks := socks ⊕ [(sid,Sock(↑ fid, sf ,↑ i1,↑ p1,↑ i2,↑ p2, ∗,F, cantrcvmore,

TCP Sock(st, cb, ∗)))]]⟩,
S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s )],M )

τ
→ (h ⟨[ts := ts ⊕ (tid 7→ (Ret(OK(implode str ′′)))sched timer );

socks := socks ⊕ [(sid,Sock(↑ fid, sf ,↑ i1,↑ p1,↑ i2,↑ p2, ∗,F, cantrcvmore,
TCP Sock(st, cb, ∗)))]]⟩,

S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s′ )],M )

st ∈ {ESTABLISHED;CLOSE WAIT} ∧
space ∈ UNIV ∧
space ≥ length str ∧
str ′ = str ∧ str ′′ = [ ] ∧
flgs = flgs ⟨[ SYN :=F; SYNACK :=F; FIN :=F; RST :=F]⟩ ∧
write(i1, p1, i2, p2) (flgs, str ′)s s′

Description Thread tid is blocked in state Send2(sid, ∗, str, opts) where the TCP socket
sid has binding quad (↑ i1,↑ p1,↑ i2,↑ p2), has no pending error, is not shutdown for writing,
and is in state ESTABLISHED or CLOSE WAIT.
The data is appended to the socket’s stream (identified via streamid of quad) and the call
successfully returns the empty string (str ′′ is constrained to be empty). A τ transition is
made, leaving the thread state Ret(OK“”).

Model details The data to be sent is of type string in the send () call but is a byte list
when the datagram is constructed. Here the data, str is of type byte list and in the transition
implode str is used to convert it into a string.

Fig. 10. Sample service-level specification transition rule: send 3
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h1.send(xyz)
h2h1

sndq
cd..q

rcvq

rcvq sndq
... ...

ACK

fgh

stu
h2h1

sndq
cd..q

rcvq

rcvq sndq
... ...

ACK

fgh

stufg..zfg..w

h1.send(xyz)

...

cdefg..pqrstuvwxyz

...

cdefg..pqrstuvw

h2h1h2h1

The bottom half of the diagram shows a protocol-level transition of host h1 performing a

send(“xyz”) call in the context of a network with three datagrams in transit and a host h2 on the

other end of the connection. The top half of the diagram shows how those states, and the transition,

are mapped into the service-level model by the abstraction function.

Fig. 11. Abstraction function, illustrated (data part only)

5 ABSTRACTION FUNCTION FROM PROTOCOL-LEVEL TO SERVICE-LEVEL
STATES

While the service specification details what service an implementation of TCP provides to
the Sockets interface, our abstraction function details how the protocol-level description
of the protocol provides that service. The abstraction function maps protocol-level states
and transitions to service-level states and transitions. A protocol-level network consists of
a set of hosts, each with their own TCP stacks, and TCP segments (and UDP and ICMP
datagrams) on the wire. The abstraction function takes this data and calculates abstract
byte streams between Sockets API endpoints, together with the abstract connection status
information.

The latter is the more intricate part, but we give only a simple example here: the service-
level destroyed flag is set iff either there is no socket on the protocol-level host matching the
quad for the TCP connection or the state of the TCP socket is CLOSED.
The former is illustrated in Fig. 11 (p. 46). For example, consider the simple case where

communication has already been established, and the source is sending a message to the
destination that includes the string “abc...xyz”, of which bytes up to “w” have been moved
to the source sndq. Moreover, the destination has acknowledged all bytes up to “f”, so that
the sndq contains “fgh...uvw”, and snd una points to “f”. The destination rcvq contains
“cde...opq”, waiting for the user to read from the socket, and rcv nxt points just after “q”.

↓ snd una ↓ rcv nxt
message ...abcdefghijklmnopqrstuvwxyz...

source sndq fghijklmnopqrstuvw

destination rcvq cdefghijklmnopq

DROP (rcv nxt − snd una)sndq rstuvw

stream cdefghijklmnopqrstuvw
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– unidirectional abstraction function :
abs hosts one sided(i1, p1, i2, p2) (h,msgs, i) = (
(* messages that we are interested in, including oq and iq *)

let (hoq, iiq) =
case (h.oq, i.iq) of ((msgs) 1 , (msgs′) 2 ) → (msgs,msgs′) in

let msgs = list to set hoq ∪ msgs ∪ (list to set iiq) in
(* only consider TCP messages . . . *)

let msgs = {msg | TCP msg ∈ msgs} in
(* . . . that match the quad *)

let msgs = msgs ∩
{msg | msg = msg ⟨[ is1 :=↑ i1; ps1 :=↑ p1; is2 :=↑ i2; ps2 :=↑ p2]⟩} in

(* pick out the send and receive sockets *)

let smatch i1 p1 i2 p2 s =
((s.is1, s.ps1, s.is2, s.ps2) = (↑ i1,↑ p1,↑ i2,↑ p2)) in

let snd sock = Punique range(smatch i1 p1 i2 p2)h.socks in
let rcv sock = Punique range(smatch i2 p2 i1 p1)i.socks in
let tcpsock of sock = case sock.pr of

TCP1 hostTypes $TCP PROTO tcpsock → tcpsock
∥ 3 → ERROR“abs hosts one sided:tcpsock of”

in
(* the core of the abstraction function is to compute data *)

let (data : byte list) = case (snd sock, rcv sock) of
(↑( 8, hsock),↑( 9, isock)) → (

let htcpsock = tcpsock of hsock in
let itcpsock = tcpsock of isock in
let (snd una, sndq) = (htcpsock.cb.snd una, htcpsock.sndq) in
let (rcv nxt, rcvq) = (itcpsock.cb.rcv nxt, itcpsock.rcvq) in
let rcv nxt = tcp seq flip sense rcv nxt in
let sndq′ = DROP ((num(rcv nxt − snd una)))sndq in
rcvq + +sndq′)

∥ (↑( 8, hsock), ∗) → (
let htcpsock = tcpsock of hsock in
htcpsock.sndq)

∥ (∗,↑( 9, isock)) → (
let itcpsock = tcpsock of isock in
let (rcv nxt : tcpLocal seq32, rcvq : byte list) =

(tcp seq flip sense(itcpsock.cb.rcv nxt), itcpsock.rcvq) in
rcvq + +(stream reass rcv nxt msgs))

∥ (∗, ∗) → ERROR“abs hosts one sided:data”
in
⟨[ i := i1;
p := p1;
flgs :=
⟨[ SYN :=(∃msg.msg ∈ msgs ∧msg = msg ⟨[ SYN :=T;ACK :=F]⟩);
SYNACK :=(∃msg.msg ∈ msgs ∧msg = msg ⟨[ SYN :=T;ACK :=T]⟩);
FIN :=(∃msg.msg ∈ msgs ∧msg = msg ⟨[ FIN :=T]⟩);
RST :=(∃msg.msg ∈ msgs ∧msg = msg ⟨[ RST :=T]⟩)

]⟩;
data := data;
destroyed :=(case snd sock of
↑(sid, hsock) → ((tcpsock of hsock).st = CLOSED)
∥ ∗ → T)

]⟩)

Fig. 12. Abstraction function, excerpt
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The data that remains in the stream waiting for the destination endpoint to read, is
the byte stream “cdefghijklmnopqrstuvw”. This is simply the destination rcvq with part
of the source sndq appended: to avoid duplicating the shared part of the byte sequence,
(rcv nxt − snd una) bytes are dropped from sndq before appending it to rcvq.
An excerpt from the HOL definition appears in Fig. 12 (p. 47). It takes a quad (i1, p1, i2, p2)

identifying the TCP connection, a source host h, a set of messages msgs on the wire, and
a destination host i, and produces a unidirectional stream. It follows exactly the previous
analysis: (rcv nxt − snd una) bytes are dropped from sndq to give sndq′, which is then
appended to rcvq to give the data in the stream.

Note that, in keeping with the fact that TCP is designed so that hosts can retransmit any
data that is lost on the wire, this abstraction does not depend on the data in transit — at
least for normal connections in which neither endpoint has crashed.

For a given TCP connection, the full abstraction function uses the unidirectional function
twice to form a bidirectional stream constituting the service-level state. As well as mapping
the states, the abstraction function maps the transition labels. Labels corresponding to
visible actions at the Sockets interface, such as a connect call, map to themselves. Labels
corresponding to internal protocol actions, such as the host network interface sending and
receiving datagrams from the wire, are invisible at the service level, and so are mapped to τ ,
indicating no observable transition. Thus, for each protocol-level transition, the abstraction
function gives a service-level transition with the same behaviour at the Sockets interface.
Mapping the abstraction function over a protocol-level trace gives a service-level trace
with identical Sockets behaviour. Every valid protocol-level trace should map to a valid
service-level trace.

6 EXPERIMENTAL VALIDATION: TESTING INFRASTRUCTURE

We now turn to the problem of testing and assessing the consistency between TCP implemen-
tations (written in C), our protocol-level model (in HOL), and our service-level specification
(also in HOL).

As introduced in §1.5, we did this with an experimental semantics process. For the
relationship between implementations and our protocol-level specification:

• we wrote a large number of tests (using automation to combinatorially test a wide
range of cases);
• we instrumented production implementations to record traces of the events correspond-
ing to those of our protocol-level specification interfaces (as described in §3.1);
• we built a special-purpose checker within HOL4 that checks whether an experimental
trace is admitted by the specification; and
• we built infrastructure to support this testing and checking at scale.

For the relationship between the protocol-level and service-level specification, we recorded
(a smaller number of) double-ended traces, and built a system that let us check that the
abstraction function of §5 relates protocol-level and service-level states at each step along
the trace.
Recall that for TCP the implementations are the de facto standard. In producing spec-

ifications after the fact, we aim to validate the specifications against the implementation
behaviour, but this machinery could equally well be used in the other direction, to check
implementations against our specifications.
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A sample configuration of our instrumentation and test generation tools, for a single host under

test, and one of our test networks.

Fig. 13. Testing infrastructure.

We begin in this section with the systems work needed for this: instrumentation, test
generation, distributed trace checking, and data visualisation. The theorem-prover work of
our trace checkers is described in §7, and the experimental results are in §8.

6.1 Experimental Setup and Instrumentation for Trace Generation

To generate traces of the real-world implementations in a controlled environment we set up
an isolated test network, with machines running each of our three OS versions, and wrote
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instrumentation and test generation tools. A sample test configuration is illustrated in Fig. 13
(p. 49). We instrument the wire interface with a slurp tool above the standard libpcap,
instrument the Sockets API with an nssock wrapper, and on BSD additionally capture TCP
control block records generated by the TCP DEBUG kernel option. All three produce HOL
format records which are merged into a single trace; this requires accurate timestamping,
with careful management of NTP offsets between machines and propagation delays between
them. Our abstractions from actual system behaviour to specification-interface observables,
as discussed in §1.7 and §3.1, are implemented in these tools. For example, slurp performs
reassembly of IP fragments into the TCP datagrams we saw in Fig. 4 (p. 25), pulls out the
TCP datagram options represented there, and so on, to produce values of that tcpSegment
HOL4 type.

A test executive tthee drives the system by making Sockets API calls (via a libd daemon)
and directly injecting messages with an injector tool. These tools are written in OCaml [61]
with additional C libraries. The resulting traces are HOL-parsable text files containing an
initial host state (its interfaces, routing table, etc.), an initial time, and a list of timestamped
labels (as in Fig. 9 (p. 40)).
For the service-level validation, we began with a similar instrumented test network, but

collected double-ended traces, capturing the behaviour of two interacting hosts, rather than
just one endpoint.

6.2 Tests

Tests are scripted above tthee. They are of two kinds. The most straightforward use two
machines, one instrumented and an auxiliary used as a communication partner, with socket
calls invoked remotely. The others use a virtual auxiliary host, directly injecting messages
into the network; this permits tests that are not easily produced via the Sockets layer, e.g.
with re-ordering, loss, or illegal or nonsense segments.

We wrote tests to, as far as we could, exercise all the interesting behaviour of the protocols
and API, with manually written combinatorial generation. Almost all tests were run on
all three OSs; many are automatically iterated over a selection of TCP socket states, port
values, etc. In total around 6000 traces are generated.

For example, trace 1484, of intermediate complexity, is informally described as follows:
“send() – for a non-blocking socket in state ESTABLISHED (NO DATA), with a reduced
send buffer that is almost full, attempt to send more data than there is space available.”
Assessing coverage of the traces is non-trivial, as the system is essentially infinite-state,

but we can check that almost all the host LTS rules are covered. The traces are relatively
short, so they probably do not exercise all of TCP’s congestion-control regimes.

6.3 Distributed Checking Infrastructure

For good coverage we want to check many traces, and this had to be repeated often during
development of the specification. Such checking, using the theorem-prover infrastructure
described in §7, is computationally intensive but naturally parallel: each trace (apart from
initialisation of the evaluator) is independent. We therefore distributed checking over as
many processors as possible.
Checking is compute-bound, not space- or IO-limited. A typical trace check run might

require 100MB of memory (a few need more); most trace input files are only of the order of
10KB, and the raw checker output for a trace is 100KB – 3MB. We used approximately 100
processors, running background jobs on personal workstations and lab machines (the fastest
being dual 3.06GHz Xeons) and using a processor bank of 25 dual Opteron 250s. We relied
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Bars indicate the checker execution time for each step, on the left scale. Diamonds indicate how
far through the trace each step is, on the right scale. This trace, atypically, required significant
backtracking; most need no backtracking of depth greater than one.

Fig. 14. Checker monitoring: timed step graph.

This indicates how an entire check run progressed, showing the number of traces processed, succeeded,
and non-succeeded for various reasons. The INCOMPLETE line (dropping around 33 hours) indicates
roughly how many worker machines were active. The shape of the graph is largely determined by
the order of traces in the run, shortest first.

Fig. 15. Checker monitoring: progress of a TCP run.
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This indicates how a TCP check runs progressed, showing the traces processed, succeeded, and
non-succeeded for various reasons, indexed by the trace number and trace length.

Fig. 16. Checker monitoring: progress of a UDP and a TCP run.

on a common NFS-mounted file system. Note that these machines were typical workstation
and server machines of around 2004; current hardware would provide significantly greater
performance, and there have also been substantial improvements in HOL4 performance.

Achieving satisfactory performance of the symbolic evaluator was critical for this work to
be feasible, and needed considerable work: algorithmic improvements to HOL itself (e.g. in
the treatment of multi-field records), to the evaluator (e.g. in better heuristics for search,
and the lazy computation and urgency approximations mentioned in §7), and to the checking
infrastructure, distributing over more machines and using them more efficiently. These
reduced the total TCP check time from 500 hours, which was at the upper limit of what was
practical. By the end of the project, checking around 2600 UDP traces took approximately 5
hours, which is perfectly usable. For TCP the checker has a much more complex task. TCP
host states are typically more symbolic, with more fields that are only loosely constrained
and with larger sets of constraints. Also, longer traces are required to reach the various
possible states of the system. Checking a complete run (around 1100 traces) of the BSD
traces took around 50 hours, which is manageable if not ideal.
Fig. 14 (p. 51) suggests the checker run-time per step rises piecewise exponentially with

the trace length, though with a small exponent. This is due to the gradual accumulation of
constraints, especially time passage rate constraints. In principle there is no reason why in
long traces they could not be agglomerated.

6.4 Visualisation Tools and Data Management

The resulting datasets are large and good visualisation tools are necessary for working with
them. Our main tool was an HTML display of the results of each check run, with, for each
trace, a link to the checker output, the trace in HTML and graphical form (as in Fig. 9
(p. 40)), the short description, and a graph showing the backtracking and progress of the
checker (as in Fig. 14 (p. 51)). To help us manage the outstanding issues during development
of the specification, we maintained a file of trace annotations, identifying subsets of the traces



Engineering with Logic 53

that have not succeeded for some particular reason and indicating whether that problem
should have been resolved. The display shows the expected and actual number of successes
for these. The progress of a whole run can be visualised as in Fig. 15 (p. 51), useful to
determine when best to abort an existing run in order to restart with an improved checker
or specification. Figure 16 shows the progress of a check run indexed by the trace number
and trace length, useful for seeing patterns of non-successes.

Our experience was that devoting sufficient engineering effort to building and refining all
these tools, as well as those for automating testing and checking, was essential.
We also built an explicit regression tester, comparing the results of multiple check runs

(which might be on overlapping but non-identical trace sets), but did not used it heavily —
the annotation display was more useful, especially as we reached closer to 100% success.

7 EXPERIMENTAL VALIDATION: CHECKING TECHNOLOGY

Our computational task for checking an observed endpoint trace against our protocol-level

specification is this: given the nondeterministic labelled transition system
l
→ of the host LTS,

an initial host h0, and a sequence of experimentally observed labels l1 . . . ln , determine whether
h0 can exhibit this behaviour in the model. The transition system includes unobservable τ
labels, so we actually have to determine whether there is a sequence

h0
<[Lhtau]>
→ ∗ l1

→
<[Lhtau]>
→ ∗ l2

→ . . .
<[Lhtau]>
→ ∗ ln

→h

for some h. If the system were deterministic, the problem would be easily solved. The initial
conditions are completely specified and the problem would be one of mechanical calculation
with values that were always ground. Because the system is nondeterministic, the problem
becomes one of exploring the tree of all possible traces that are consistent with the given
label sequence. Nondeterminism arises in two different ways:

• two or more rules may apply to the same host-label pair (or the host may be able to
undergo a τ transition); and
• a single rule’s sideconditions may not constrain the resulting host to take on just one
possible value.

These two sorts of nondeterminism do not correspond to any deep semantic difference, but
do affect the way in which the problem is solved. Because labels come in a small number of
different categories, the number of rules that might apply to any given host-label pair is
relatively small. It is clearly reasonable to explicitly model this nondeterminism by explicit
branching within a tree-structured search-space. The search through this space is done
depth-first. Possible τ transitions are checked last: if considering host h and a sequence
of future labels, and no normal rule allows for a successful trace, posit a τ transition at
this point, followed by the same sequence of labels. As long as hosts can not make infinite
sequences of τ transitions, the search-space remains finite.
An example of the second sort of nondeterminism comes when a resulting host is to

include some numeric quantity, but where the model only constrains this number to fall
within certain bounds. It is clearly foolish to explicitly model all these possibilities with
branching (indeed, for many types there are an infinite number of possibilities). Instead, the
system maintains sets of constraints (which are just arbitrary HOL predicates), attached to
each transition. These constraints are simplified (including the action of arithmetic decision
procedures) and checked for satisfiability as checking proceeds. Later labels often fully
determine variables that were introduced earlier, e.g. for file descriptors, TCP options, etc.
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For example, a connect 1 transition in one particular TCP trace, modelling the connect()
invocation, introduced new variables:

(advmss :num), (advmss' :num option),

(cb'_2_rcv_wnd :num), (n :num), (rcv_wnd0 :num),

(request_r_scale :num option), (ws :char option)

and new constraints:

∀n2. advmss' = SOME n2 ==> n2 <= 65535

∀n2. request_r_scale = SOME n2 ==> ORD (THE ws) = n2

pending (cb'_2_rcv_wnd=rcv_wnd0* 2**case 0 I request_r_scale)

pending (ws = OPTION_MAP CHR request_r_scale)

advmss <= 65495

cb'_2_rcv_wnd <= 57344

n <= 5000

rcv_wnd0 <= 65535

1 <= advmss

1 <= rcv_wnd0

1024 <= n

advmss' = NONE ∨ advmss' = SOME advmss

request_r_scale=NONE ∨ ∃n1.request_r_scale=SOME n1 ∧ n1<=14

nrange n 1024 3976

nrange rcv_wnd0 1 65534

case ws of NONE -> T || SOME v1 -> ORD v1 <= TCP_MAXWINSCALE

Many of these constraints are numeric (over various different numeric types), but some are
more complex. For example, the above includes option-type and record operations, with
some nested quantifiers. In other cases there is potential nondeterminism arising from the
multiple ways in which the data from multiple TCP segments, with overlapping sequence
numbers, can be assembled into a single stream.

Hence, instead of finding a sequence of theorems of the form

⊢ h0
l1
→h1

⊢ h1
l2
→h2

· · ·

⊢ hn−1
ln
→hn

(eliding the τ s now) we must find a sequence of theorems of the form

Γ0 ⊢ h0
l1
→h1

Γ0 ∪ Γ1 ⊢ h1
l2
→h2

· · ·⋃n−1
i=0 Γi ⊢ hn−1

ln
→hn

where each Γi is the set of constraints generated by the i-th transition. If the fresh constraints
were only generated because new components of output hosts were under-constrained, there
would be no difficulty with this. Unfortunately, the sideconditions associated with each rule
will typically refer to input host component values that are no longer ground, but which are
instead constrained by a constraint generated by the action of an earlier rule. For example,
imagine that the first transition of a trace has made the v component of the host have a



Engineering with Logic 55

value between 1 and 100. Now faced with an l-transition, the system must eliminate those
rules which allow for that transition if v is greater than 150.

The symbolic evaluator accumulates constraint sets as a trace proceeds, and checks them
for satisfiability. The satisfiability check takes the form of simplifying each assumption in
turn, while assuming all of the other assumptions as context. HOL simplification includes
the action of arithmetic decision procedures, so unsatisfiable arithmetic constraints are
discovered as well as more obviously unsatisfiable constraint sets. For example, using the
theorems proved by HOL’s data type technology, the simplifier “knows” that the constructors
for algebraic types are disjoint. Thus, (s = [ ]) ∧ (s = h :: t ) is impossible because the nil and
cons constructors for lists are disjoint.

Constraint instantiation As a checking run proceeds, later labels may determine variables
that had initially been under-determined. For example, Windows XP picks file descriptors
for sockets nondeterministically, so on this architecture the specification for the socket call
only requires that the new descriptor be fresh. As a trace proceeds, however, the actual
descriptor value chosen will be revealed (a label or two later, the value will appear in the
return-label that is passed back to the caller). In this situation, and others like it, the set of
constraints attached to the relevant theorem will get smaller when the equality is everywhere
eliminated. Though the checker does not explicitly do this step, the effect is as if the earlier
theorems in the run had also been instantiated with the value chosen. If the value is clearly
inconsistent with the initial constraints, then this will be detected because those constraints
will have been inherited from the stage when they were generated.

Case splitting Sometimes a new constraint will be of a form where it is clear that it is
equivalent to a disjunction of two possibilities. Then it often makes sense to case-split and
consider each arm of the disjunction separately

Γ,p ∨ q ⊢ hi−1
li
→hi

((vv

Γ,p ⊢ hi−1
li
→hi Γ,q ⊢ hi−1

li
→hi

At the moment, such splitting is done on large disjunctions (as above), and large conditional
expressions that appear in the output host. For example, if the current theorem is

Γ ⊢ h0
l
→(. . . if p then e1 else e2 . . . )

then two new theorems are created: Γ,p ⊢ h0
l
→(. . . e1 . . . ) and Γ,¬p ⊢ h0

l
→(. . . e2 . . . ), and

both branches are explored (again, in a depth-first order).

7.1 The Core Algorithm: Evaluating One Transition

Given a host h0 (expressed as a set of bindings for the fields that make up a host, and thus
of the form ⟨[fld1 := v1;fld2 := v2; ...]⟩), a set of constraints Γ0 over the free variables in h0, and
a ground label l0 (whether from the experimentally observed trace, or a τ label), the core
processing step of the trace-checking algorithm is to generate a list of all possible successor
hosts, along with their accompanying constraints.
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We precompute theorems of the form

⟨[fld1 := v1;fld2 := v2; ...]⟩
l
→ h ≡ (D1 ∨ · · ·Dn−1 ∨ Dn ) (1)

where l is a label form (such as (tid·socket (arg)) or τ or msg) that will match l0, and where
each Di corresponds to a rule in the definition of the transition system. Such a theorem can
be matched against the input host and label. Each Di will constrain both the input fields and
the output host h. More, each Di includes an equation of the form h = ⟨[fld1 := v ′1;fld2 := v

′
2; ...]⟩,

where the new, primed variables are existentially quantified in Di , and further constrained
there.

It is then straightforward to generate a sequence of theorems (one per possible rule), each
of the form

⊢ Di ⇒ ⟨[fld1 := v1; ...]⟩
l0
→⟨[fld1 := v

′
1; ...]⟩

where any variables existentially quantified in Di are now implicitly universally quantified in
the theorem, and may appear in the consequent of the implication. Similarly, the process of
matching the input values against the precomputed theorem (1) will have affected the form
of Di .

Now the initial context Γ0 can be brought into play, and assumed while the Di is simplified
in that context. For example, we earlier discussed the scenario where a variable in the input
host might become constrained in Γ0 to be no larger than 100. If some Dk insists that the
same value be greater than 150, the process of simplification will discover the contradiction,
and rewrite this Dk to false. In such a scenario, the theorem containing Dk will become the
vacuous Γ0 ⊢ ⊤, and can be discarded.

Those theorems that survive this stage of simplification can then be taken to the form

Γ0,D
′
i ⊢ ⟨[fld1 := v1; ...]⟩

l0
→⟨[fld1 := v

′
1; ...]⟩

The next phase of evaluation is “context simplification”. Though some checking and
simplification of the constraints in D ′i has been performed, the constraints there have
not yet caused any adjustment to Γ0. In this phase, the implementation iterates through
the hypotheses in Γ0 ∪ D ′i , simplifying each hypothesis in turn while assuming the others.
Furthermore, if this process does induce a change in the hypotheses, the process is restarted
so that the new form of the hypothesis is given a chance to simplify all of the other members
of the set.

After the first phase of context simplification, the checker heuristically decides on possible
case-splits. If a case-split occurs, more context simplification is required because the new
hypothesis in each branch will likely induce more simplification.
This phase of evaluation is potentially extremely expensive. We have made various

improvements to the checker during development that have made dramatic differences,
but they do not reflect any deep theoretical advances. Rather, we are engaged in “logic
engineering” on top of the HOL kernel. The LCF philosophy of the latter means that the
ad-hoc nature of parts of our implementation cannot affect soundness. At worst we will
harm the completeness of a method already known to be essentially incomplete because of
the undecidability of the basic logic. In fact, incompleteness is pragmatically less important
than being able to quickly reduce formula sizes, and to draw inferences that will help in
subsequent steps.
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7.2 Laziness in Symbolic Evaluation

Because hosts quickly lose their groundedness as a checking run proceeds, many of the values
being computed with are actually constrained variables. Such variables may even come to
be equated with other expressions, where those expressions in turn include non-ground
components. It is important in this setting to retain variable bindings rather than simply
substituting them out. Substituting non-ground expressions through large terms may result
in many instances of the same, expensive computation when those expressions do eventually
become ground.

This is analogous to the way in which a lazy language keeps pending computations hidden
in a “thunk” and does not evaluate them prematurely. The difference is that lazy languages
“force”thunks when evaluation determines that their values are required. In the trace-checking
setting, expressions yield values as the logical context becomes richer, not on the basis of
whether or not those values are required elsewhere.

Moreover, as soon as an expression yields up a little information about its structure it
is important to let this information flow into the rest of the formula. For example, if the
current theorem is

x = E ⊢ . . . (if x = [ ] then f (x ) else д(x )) . . .

then it is important not to substitute E for x and end up working with two copies of
(presumably complicated) expression E. On the other hand, future work may reveal that E
is actually of the form h :: t for some (themselves complicated) expressions h and t .
In this case, the theorem must become

v1 = h,v2 = t ⊢ . . . (д(v1 :: v2)) . . .

In this situation, the application of д to a list known to a be a cons-cell may lead to future
useful simplification.

To implement this, the checker can isolate equalities to prevent them from being instanti-
ated, and detects when expressions become value-forms, or partial value-forms.

7.3 Evaluating Time Transitions

Time transitions require special treatment. An experimentally-observed trace will typically
have a time passage transition, labelled with a duration, between each other observable
transition. The relevant rule is epsilon 1, shown in §3.3.3, which allows time to pass if the host
state is not urgent. The trace-checker does not check for non-urgency by actually trying all
of the urgent rules in turn. Instead, it uses a theorem (proved once and for all as the system
builds) that provides an approximate characterisation of non-urgency. If this is satisfied,
the above rule’s sideconditions can be discharged, and progress made. If the approximation
can not be proved true, then a τ step is attempted so that the host can move through its
pending urgent transition.

7.4 Model Translation

An important aim of the formalisation has been to support the use of a natural, mathematical
idiom in the writing of the specification. This does not always produce logical formulas
well-suited to automatic analyses. Even making sure that the conjuncts of a sidecondition
are “evaluated” (simplified) in a suitable order can make a big difference to the efficiency of
the tool. Rather than force the specification authors and readership to deal explicitly with
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algorithmic issues (and the specification to be a Prolog-like program), we have developed a
variety of tools to automatically translate a variety of idioms into equivalent forms.

At their best, these translations are produced by ML code written to handle an infinite
family of possibilities. Written within HOL, this ML code produces translations by proving
logical equivalences. In this way, we can be sure that the translation is correct, i.e. that
the semantics of the specification is preserved. In other cases, we prove specific theorems
that state a particular rule or auxiliary function is equivalent to an alternative form. This
theorem then justifies the use of the more efficient expression of the same semantics.

Translating Non-injective Pattern-Matching One important example of translation comes
in the handling of the pattern-matching idiom. Making use of the HOL syntax for record
values updated at specific fields, specifiers can write

h ⟨[fld1 := v0]⟩
l
→ h ⟨[fld1 := v]⟩

to adjust the host h. The problem with field updates is that they are not injective functions:
there are multiple instantiations for h given any particular host meant to match this rule.
The transformation in this case is simple: h is expanded into a complete listing of all its
possible fields, the actions of the update functions are applied, and the translated rule
becomes

⟨[fld1 := v0;fld2 := v2;fld3 := v3; ...]⟩
l
→

⟨[fld1 := v;fld2 := v2;fld3 := v3; ...]⟩

The specifier does not have to list the frame conditions, but the implementation of the
evaluator is simplified by explicitly listing all of the fields (unchanging or not) in the
transformed form.
Another example of non-injective pattern-matching comes with the use of finite maps.

These values are manipulated throughout the labelled transition system. For example, rules
describing the host’s response to a system call typically check that the calling thread is in
the Run state, and also specify the new state that the thread moves to if the transition is
successful. Such a rule has the general form

⟨[ts := tidmap ⊕ (t,Run); ...]⟩
l
→

⟨[ts := tidmap ⊕ (t, newstate); ...]⟩

sideconditions

where the ts field of the host is a finite map from thread-identifiers to thread state information.
A näıve approach to the symbolic evaluation of such a rule would attempt to find a binding
for the variable tidmap. Unfortunately, in the absence of further constraints on that variable
in the rule’s sideconditions, there are multiple such bindings: tidmap may or may not include
another binding for the key t, and if it does include such a binding, may map t to any
possible value. Because the only occurrences of tidmap are in situations where an overriding
value for t is provided, these possibilities are irrelevant, and the evaluator should not distract
itself by looking for such values.
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We have written ML code to check rules are of suitable form and to then translate the
above into

⟨[ts := tidmap; ...]⟩
l
→

⟨[ts := tidmap ⊕ (t, newstate)]⟩

fmscan tidmap t Run ∧ sideconditions

where the fmscan relation checks to see if its first argument (a finite map) maps its second
argument to its third. It is characterised by the following theorem

fmscan ∅ k2 v2 = ⊥

fmscan (fm ⊕ (k1, v1)) k2 v2 = (k1 = k2 ∧v1 = v2) ∨
fmscan (fm\\k1) k2 v2

where fm\\k denotes the finite map that is equal to fm, except that any binding for k has
been removed.

In other circumstances, the underlying finite map may not always appear with a suitable
rebinding of the relevant key. For example, this happens in rules that remove key-value pairs
from maps. Such a rule is close 7 , which models the successful closing of the last file-descriptor
associated with a socket in the CLOSED, SYN SENT or SYN RECEIVED states. The
rule’s transition removes the socket-id/socket binding from the host’s socks map. The relevant
parts of the rule look like

⟨[socks := sockmap ⊕ (sid, sock); ...]⟩
tid ·close (fd)
→

⟨[socks := sockmap; ...]⟩

sideconditions (linking sid to fd, among other things)

Here the translation to the non-pattern version of the code can only succeed if the sidecon-
ditions include the fact that sid does not occur in the domain of the map socks. Without
such a sidecondition, the meaning of the rule would be to allow the finite map to take on
any possible binding for sid in the resulting state. Not including such a sidecondition is
such an easy mistake for the specification-writer to make that the code implementing this
transformation issues a warning if it can not find it.

If this constraint is found in the sideconditions, then the rule becomes

⟨[socks := sockmap; ...]⟩
tid ·close (fd)
→

⟨[socks := sockmap\\sid; ...]⟩

fmscan sockmap sid sock ∧
sideconditions[sockmap := sockmap\\sid]

where the sideconditions to the rule have acquired a new fmscan constraint, and have been
altered so that any old references to sockmap are replaced by sockmap\\sid.
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Other Translation Examples A number of the specification’s auxiliary functions are defined
in ways that, while suitable for human consumption, are not so easy to evaluate. One simple
example is the definition of a host’s local IP addresses. Given a finite map from interface
identifiers to interface data values, the function local ips is defined:

local ips(ifmap) =
⋃

(k,i )∈ifmap

i .ipset

Pulling (k, i ) pairs from a finite map in an unspecified order is awkward to evaluate directly,
so we recast the definition to an equivalent form that recurses over the syntax of the finite
map in question:

local ips(∅) = ∅
local ips (ifmap ⊕ (k, i)) = i .ipset ∪ local ips(ifmap\\k )

Other translations rewrite definitions of relations to take on a prenex-form:

R x y = ∃v⃗ . let u1 = e1 in
let u2 = e2 in

· · ·

c1 ∧ c2 ∧ c3 ∧ . . . cn

The simplification strategy chosen by the checker could effect this transformation at run-time
but there is no reason not to precompute it, and use the translated form of the definition
instead of the original.

One of the specification’s most complicated auxiliary definitions is that for reassembly of
TCP data that has arrived out of order, characterised by the function tcp reass. Involving
two gruesome set-comprehensions, tcp reass’s definition calculates the set of all possible valid
reassemblies of a set of received segments. The theorem giving the alternative characterisation
instead uses analogues of fold and map, making evaluation over concrete data much easier.
(The data is concrete because it is from observed labels corresponding to the arrival of
packets.)

7.5 Adding Constraints

It is always sound to add fresh assumptions to a theorem. The following is a rule of inference
in HOL:

Γ ⊢ t

Γ,p ⊢ t

We do sometimes add constraints that are consequences of existing assumptions, which
preserves satisfiability. For example, traces often produce rather complicated expressions
about which arithmetic decision procedures can not reason directly. We help the procedures
draw conclusions by separately inferring upper and lower bounds information about such
expressions, and adding these new (but redundant) assumptions to the theorem.

7.6 Simplification

The core logical operation of the trace-checker is simplification. This can be characterised
as term-rewriting with equational theorems, augmented with the use of various decision
procedures.
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The equational theorems used in rewriting may include sideconditions. The simplifier
will try to discharge such by simplifying them to truth. If this succeeds, the rewrite can
be applied. For example, integer division and modulus have no specified value when the
divisor is zero, meaning that theorems about these constants are typically accompanied by
sideconditions requiring the divisor to be non-zero.

This basic term-rewriting functionality is then augmented with decision procedures, such
as those for Presburger arithmetic over R and N, whose action is intermingled with rewriting.
(Decision procedures typically rewrite sub-terms to ⊤ or ⊥.) This use of (augmented) rewriting
is well-established in the interactive theorem-proving community. Systems such as ACL2 have
long provided such facilities, and demonstrated the potency of the combination. Equational
rewriting provides an easy way to express core identities in theories that may or may not be
decidable. Well-chosen identities can rapidly extend a system to cover significant parts of
new theories.
In our non-interactive setting, it is additionally important to be able to add bespoke

reasoning procedures to the action of the simplifier. Our system extends the basic HOL
simplifier not just with new rewrites, but also with new code, which handles cases not easily
treatable with rewrites. Such programmatic extensions can not compromise the system’s
soundness because the programming is over the HOL kernel, which remains unchanged.

In addition to extensions already discussed, such as the lazy treatment of variable bindings,
another example of such an extension is the treatment of TCP’s 32-bit sequence numbers. For
the most part, these are operated on as are normal fixed-width integers (with wrap-around
arithmetic). For example, subtraction is such that 1 − 2 = −1, but −(231) − 3 = 231 − 3. The
orderings on sequence numbers are defined to be

s1 ◁ s2 ≡ s1 − s2 ◁ 0

where ◁ is any of {<, ≤, >, ≥}, and where the subtraction on the right results in an integer,
which is compared with 0 in the normal way for Z. These orderings exhibit some odd
behaviours. For example, s1 < s2 . s2 > s1 (consider s1 and s2 exactly 231 apart).
Our system includes custom code for reasoning about inequalities on sequence numbers.

This code is not a complete decision procedure, but has proved adequate in the checking
runs performed to date.

Phasing In the early stages of the core algorithm, the priority for simplification is to
eliminate possible transition rules that clearly can not apply. Checking rules’ preliminary
guards, and quickly eliminating those that are false is vital for efficiency. At this stage,
therefore, it is wise not to expand the definitions of the more complicated auxiliaries. Such
expansions would dramatically increase term-sizes, but might end up being discarded when
a rule’s guards were found not to be satisfied.
To implement this, we phase our use of the simplifier, so that it only simplifies with the

simplest definitions early on. In this way, we hope to only expand complicated auxiliaries
when they have a reasonable chance of being needed.

7.7 Service-level Validation

For the service-level validation, we started with double-ended traces, describing the behaviour
of two interacting hosts rather than just one endpoint. We then used our previous symbolic
evaluation tool to discover symbolic traces of the protocol-level model that corresponded to
the real-world traces. That is a complex and computationally intensive process, involving
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the backtracking depth-first search and constraint simplification described above, essentially
to discover internal host state and internal transitions that are not explicit in the trace.

We then ground these symbolic traces, finding instantiations of their variables that satisfy
any remaining constraints, to produce a ground protocol-level trace in which all information
is explicit. Given such a ground trace, we can map the abstraction function over it to produce
a candidate ground service-level trace.
It is then necessary to check validity of this trace, which is done with a service-level

test oracle. As at the protocol level, we wrote a new special-purpose service-level checker
in HOL which performs symbolic evaluation of the specification with respect to ground
service-level traces. Crucially, this checking process is much simpler than that at the protocol
level because all host values, and all transitions, are already known. All that remains is to
check each ground service-level transition against the specification.
The most significant difference between the old and new checkers is that the former had

to perform a depth-first search to even determine which rule of the protocol model was
appropriate. Because that work has already been done, and because the two specifications
have been constructed so that their individual rules correspond, the service-level checker
does not need to do this search. Instead, it can simply check the service-level version of
the rule that was checked at the protocol level, dealing with each transition in isolation. In
particular, this means that the service-level checker need not attempt to infer the existence
of unobservable τ -transitions.
Another significant difference between the two checkers is that the service-level checker

can aggressively search for instantiations of existentially quantified variables that arise when
a rule’s hypothesis has to be discharged. At the protocol level, such variables may appear
quite unconstrained at first appearance, but then become progressively more constrained as
further steps of the trace are processed.

For example, a simplified rule for the socket call might appear as

fd < usedfds(h0)

h0⟨[socks := socks]⟩
tid ·socket()
−−−−−−−−−→ h0⟨[socks := socks ⊕ (sid, fd)]⟩

stating that when a socket call is made, the host h0’s socks map is updated to associate
the new socket (identified by sid) with file-descriptor fd, subject only to the constraint that
the new descriptor not already be in use. (This under-specification is correct on Windows;
on Unix, the file-descriptor is typically the next available natural number.)
In the protocol-level checker, the fd variable must be left uninstantiated until its value

can be deduced from subsequent steps in the trace. In the service-level checker, both the
initial host and the final host are available because they are the product of the abstraction
function applied to the previously generated, and ground, protocol trace. In a situation such
as this, the variable from the hypothesis is present in the conclusion, and can be immediately
instantiated.
In other rules of the service-level specification, there can be a great many variables

that occur only in the hypothesis. These are existentially quantified, and the checker
must determine if there is an instantiation for them that makes the hypothesis true. The
most effective way of performing this check is to simplify, apply decision procedures for
arithmetic, and to then repeatedly case-split on boolean variables, and the guards of if-then-
else expressions to search for possible instantiations.
The above process is clearly somewhat involved, and itself would ordinarily be prone

to error. To protect against this, as for the protocol-level work, we built all the checking
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infrastructure within HOL. So, when checking a trace, we are actually building machine-
checked proofs that its transitions are admitted by the inductive definition of the transition
relation in the specification.

8 EXPERIMENTAL VALIDATION: RESULTS

8.1 Protocol-Level Checking Results

The experimental validation process shows that the specification admits almost all the test
traces we generated. For UDP, over all three implementations (BSD, Linux, and WinXP),
2526 (97.04%) of 2603 traces succeed. For TCP we focussed on the BSD traces, and here
1004 (91.7%) of 1095 traces succeed.

While we have not reached 100% validation, we believe these figures indicate that the
model is for most purposes very accurate — certainly good enough for it to be a useful
reference. Further, we believe that closing the gap would only be a matter of additional
labour, fixing sundry very local issues rather than needing any fundamental change to the
specification or the tools.
Of the UDP non-successes: 36 are due to a problem in test generation (difficulties with

accurate timestamping on WinXP); 27 are tests which involve long data strings for which we
hit a space limitation of the HOL string library (which uses a particularly non-space-efficient
representation at present); 11 are because of known problems with test generation; and 3
are due to an ICMP delivery problem on FreeBSD.

Of the TCP non-successes: 42 are due to checker problems (mainly memory limits); 6 are
due to problems in test generation; and the remaining 43 traces due to a collection of 20
issues in the specification which we roughly diagnosed but did not fix, simply for lack of
staff resource at the time.

Much of the TCP development was also carried out for all three implementations, and the
specification does identify various differences between them. In the later stages we focussed
on BSD, for two reasons: the BSD debug trace records make automated validation easier in
principle, and as a small research team we had only rather limited staff resources available.
We believe that extending the TCP work to fully cover the other implementations would
require little in the way of new techniques.
The success rates above are only meaningful if the generated traces do give reasonable

coverage. Care was taken in the design of the test suite to cover interesting and corner cases,
and we can show that almost all rules of the model are exercised in successful trace checking.
Of the 194 host LTS rules 142 are covered in at least one successful trace check run; 32
should not be covered by the tests (e.g. rules dealing with file-descriptor resource limits, or
non-BSD TCP behaviour); and 20 either have not had tests written or not yet succeeded
in validation. Moreover, test generation was largely independent of the validation process
(some additional tests were constructed during validation, and some particularly long traces
were excluded). For TCP, however, it would be good to check more medium-length traces,
to be sure that the various congestion-control regimes are fully explored; our trace set is
weighted more towards connection setup/teardown and Sockets API issues. It would also be
desirable to check implementation code coverage of our tests, for the FreeBSD and Linux
implementations; we did not attempt that.

8.2 Implementation Anomalies

The goal of this project was not to find bugs in the implementations. Indeed, from a post-hoc
specification point of view, the implementation behaviour, however strange, is the de facto



64 S. Bishop et al.

standard which users of the protocols and API should be aware of. Moreover, to make
validation of the specification against the implementation behaviour possible, it must include
whatever that behaviour is.

Nonetheless, in the course of the work we have found many behavioural anomalies, some of
which are certainly bugs in the conventional sense. There are explicit OS version dependencies
on around 260 lines of the specification, and the report [22] details around 30 anomalies. All
are relatively local issues — the implementations are extremely widely used, so it would
be very surprising to find serious problems in the common-case paths. We list a few briefly
below, mostly for BSD TCP.

• The receive window is updated on receipt of a bad segment.
• Simultaneous open can respond with an ACK rather than a SYN,ACK.
• The code has an erroneous definition of the TCPS HAVERCVDFIN macro, making it possible,
for example, to generate a SIGURG signal from a socket after its connection has been closed.
• listen() can be (erroneously) called from any state, which can lead to pathological
segments being transmitted (with no flags or only a FIN).
• After repeated retransmission timeouts the RTT estimates are incorrectly updated.
• After 232 segments there is a 16 segment window during which, if the TCP connection is
closed, the RTT values will not be cached in the routing table.
• The received urgent pointer is not updated in the fast-path code, so if 2GB of data is
received in the fast path, subsequent urgent data will not be correctly signalled.
• On Linux, options can be sent in a SYN,ACK that were not in the received SYN.

Many of these oddities, and many of the 260 OS differences, were discovered by our testing
process; by describing them we hope primarily to give some sense of what kind of fine-grain
detail can be captured by our automated testing process, in which window values, time
values, etc. are checked against their allowable ranges as soon as possible. The remainder
were found directly in the source code while writing the specification. The main point we
observe in the implementations is that their behaviour is extremely complex and irregular,
but that is not subject to any easy fix.

8.3 Service-level Results

Our protocol-level validation involved several thousand traces designed to exercise the
behaviour of single endpoints, covering both the Sockets API and the wire behaviour. To
produce a reasonably accurate specification, we iterated the checking and specification-fixing
process many times.
For the service-level specification, we have not attempted the same level of validation,

simply due to resource constraints. Instead, we have focused on developing the method,
doing enough validation to demonstrate its feasibility. Producing a specification in which one
should have high confidence might require another man-year or so of testing and specification
improvement — perfectly feasible, and a tiny amount of effort in terms of industrial protocol
stack development, but unlikely to lead to new research insights. That said, most of the
Sockets API behaviour does not relate to the protocol dynamics and is common between
the two specifications, so is already moderately well tested. In all, 30 end-to-end tests
were generated, covering a variety of connection setup and tear-down cases and end-to-end
communication, but not including packet loss, reordering, duplication, or severe delay. After
correcting some specification errors, all these traces were found to validate successfully.
To illustrate again how discriminating our testing process is, we mention two errors we

discovered during service-level validation. At the protocol-level, a TCP message moving
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from a host output queue to the wire corresponds to an unobservable τ event at the service
level. Naively we assumed the host state would be unchanged, since the output queue at the
service-level carries only ICMP and UDP messages. However, this is not correct, since the
transmission of a TCP message alters the timer associated with the output queue, increasing
its value. The update to the timer permits the host to delay sending the ICMP and UDP
messages. Without this side-effect, the service-level specification effectively required ICMP
and UDP messages to be sent earlier than they would otherwise have been. To correct this
error, the service specification had to allow the timer to be updated if at the protocol-level
there was potentially a TCP message on the queue that might be transferred to the wire.
Another error arose in the definition of the abstraction function. The analysis of the merging
of the send and receive queues on source and destination hosts, described in Section 5, was
initially incorrect, leading to streams with duplicated, or missing, runs of data. Fortunately
this error was easy to detect by examining the ground service-level trace, where the duplicated
data was immediately apparent.

8.4 Validating the Other Direction

Our validation processes check that certain traces are included in the protocol-level or
service-level specification. As we have seen, this can be a very discriminating test, but
it does not address the question of whether the specifications admit too many traces.
That cannot be determined by reference to the de facto standard implementations, as a
reasonable specification here must be looser than any one implementation. Instead, one must
consider whether the specifications are strong enough to be useful, for proving properties of
applications that use the Sockets API, or as a basis for new implementations. We mention
work of both kinds in §1.9, but more could be done here.

In particular, one could modularly refine the specification, resolving the points at which it
is nondeterministic, so that it does describe an implementation. This would entail specifying
aspects of the host scheduling (resolving nondeterminism between multiple rules that can
fire simultaneously), giving algorithms for choosing initial sequence numbers, options, etc.,
and constraining TCP output so that it does have the ACK-clock behaviour. It should then
be possible to integrate the specification, our symbolic evaluation engine, and the packet
injector and slurp tools, to form a working TCP implementation — for example, on receiving
a segment from the slurp tool, it would run the symbolic evaluator to calculate a new
host state, which might produce new segments to output via the injector. One could gain
additional confidence in the validity of the specification by checking this interoperates with
existing TCP/IP stacks, though they would have to be artificially slowed down to match the
speed of the evaluator. This would demonstrate that executable prototype implementations
of future protocols could be directly based on similar specifications.

9 REVISITING THE TCP STATE DIAGRAM

TCP is often presented using a state diagram to describe how the tcpstate component of
a TCP socket state (CLOSED, LISTEN, ESTABLISHED, etc.) changes with API calls
and segments sent and received. The original RFC793 contained one such diagram, and
another version (redrawn from Stevens [102, 103, 110]) is shown at the top of Fig. 17 (p. 66).
This can be useful, explaining in broad terms how the SYN, ACK, and FIN flags in TCP
segments are used in connection establishment and teardown, though one has to understand
that the tcpstate component is only a tiny part of the complete socket state that the protocol
endpoint behaviour depends on (see the model types socket, tcp socket, and tcpcb in §3.2.1,



66 S. Bishop et al.

LISTEN

SYN_SENT

appl:send data
send:SYN

SYN_RECEIVED

recv:SYN
send:SYN,ACK

recv:SYN
send:SYN,ACK

simultaneous open

ESTABLISHED

recv:SYN,ACK
send:ACK

CLOSED

recv:ACK
send:<nothing>

FIN_WAIT_1

appl:close
send:FIN

timeout
send:RST

appl:close
send:FIN

CLOSE_WAIT

recv:FIN
send:ACK

CLOSING
recv:FIN

send:ACK

FIN_WAIT_2

recv:ACK
send

<nothing>

TIME_WAIT

recv:FIN,ACK
send:ACK

recv:ACK
send:<nothing>

recv:FIN
send:ACKLAST_ACK

appl:close
send:FIN

recv:ACK
send:<nothing>

appl:passive open
send:<nothing>

appl:active open
send:SYN

NONEXIST

SYN_RECEIVED

deliver_in_1
arS/ArSf

CLOSED

socket_1
/

LISTEN close_8
/

deliver_in_7b
R/

deliver_in_1b
r/Rs

shutdown_1
/

SYN_SENT

close_7
/

timer_tt_keep_1
/Arsf

timer_tt_rexmtsyn_1
/arSf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_7c
R/

deliver_in_2a
r/Rs

connect_4
/

deliver_in_2
arS/ArSf

ESTABLISHED

deliver_in_2
ArS/Ars

FIN_WAIT_1

deliver_in_2
ArS/Ars

FIN_WAIT_2

deliver_in_2
ArS/Ars

CLOSE_WAIT

deliver_in_2
arS/ArSf

deliver_in_2
ArS/Ars

LAST_ACK

deliver_in_2
ArS/Ars

timer_tt_conn_est_1
/

timer_tt_rexmtsyn_1
/

deliver_in_7d
AR/

connect_4
/

close_8
/

close_7
/

timer_tt_keep_1
/Arsf

timer_tt_persist_1
/Arsf

timer_tt_rexmt_1
/ArSf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3c
A/Rs

deliver_in_3
rf/di3out

deliver_in_3
rf/di3out

deliver_in_3
rf/di3out

deliver_in_3
rF/di3out

timer_tt_rexmt_1
/ARs

deliver_in_7a
R/

close_8
/ARs

timer_tt_keep_1
/Arsf

timer_tt_persist_1
/Arsf

timer_tt_rexmt_1
/Arsf

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rf/di3out

timer_tt_persist_1
/ArsF

timer_tt_rexmt_1
/ArsF

deliver_out_1
/rsF

deliver_in_3
rF/di3out

timer_tt_rexmt_1
/ARs

deliver_in_7
R/

close_3
/ARs

timer_tt_keep_1
/Arsf

timer_tt_rexmt_1
/Arsf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rf/di3out

CLOSINGdeliver_in_3
rF/di3out

deliver_in_3
rf/di3out

TIME_WAIT

deliver_in_3
rF/di3out

timer_tt_rexmt_1
/ARs

deliver_in_7
R/

deliver_in_3b
rs/Rs
close_3
/ARs

timer_tt_keep_1
/Arsf

timer_tt_rexmt_1
/Arsf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

timer_tt_rexmt_1
/ARs

deliver_in_7
R/

deliver_in_3b
rs/Rs
close_3
/ARs

timer_tt_keep_1
/Arsf

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rf/di3out

deliver_in_3
rF/di3out

timer_tt_fin_wait_2_1
/

deliver_in_7
R/

deliver_in_3b
rs/Rs
close_3
/ARs

connect_1
/arSf

deliver_out_1
/rsf

deliver_in_9
rS/Rs

deliver_in_7c
R/

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

timer_tt_2msl_1
/

deliver_in_3b
rs/Rs

deliver_in_1
arS/ArSf
connect_1

/
close_3
/ARs

timer_tt_keep_1
/Arsf

timer_tt_persist_1
/Arsf

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

timer_tt_persist_1
/ArsF

deliver_out_1
/rsF

deliver_in_7
R/

close_3
/ARs

timer_tt_keep_1
/Arsf

timer_tt_rexmt_1
/Arsf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rf/di3out

timer_tt_rexmt_1
/ARs

deliver_in_7
R/

deliver_in_3b
rs/Rs

deliver_in_3
rF/di3out
close_3
/ARs

close_7
/

listen_1
/

connect_1
/arSf

deliver_in_6
unconstrained/
connect_1

/

This shows the traditional TCP state diagram, redrawn from Stevens, and a more complete diagram
abstracted from our specification, covering all model transitions which either affect the ‘TCP state’
of a socket, or involve processing TCP segments from the host’s input queue, or adding them to its
output queue. Transitions involving ICMPs are omitted, as are those modelling the pathological
BSD behaviour in which arbitrary sockets can be moved to LISTEN. The traditional diagram has
transitions for two different sockets, while ours refers to the state of a single socket. The (tiny)
transition labels give the rule names and ACK/RST/SYN/FIN flags of any TCP segments involved.

Fig. 17. The TCP state diagram, following Stevens and abstracted from the specification
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which define the entire socket state, and how much of the deliver in 1 rule of Fig. 8 (p. 35)
relates to non-tcpstate behaviour).

However, with our rigorous protocol-level specification in hand, we can see that, even for
the tcpstate behaviour, the classic RFC793 and Stevens diagrams give only some of the more
common transitions. To show this, we constructed a manual abstract interpretation of our
specification, projecting it onto the tcpstate component; it is shown at the bottom of Fig. 17
(p. 66)

Comparing the two, one can see that there are many more possible transitions in the
model. This suggests that such abstractions could be a useful part of protocol design.

It is also clear from working with the specification that several other components of a TCP
socket state are as important as the ‘TCP state’ in determining its behaviour: especially the re-
transmit mode (None, RexmtSyn, Rexmt, or Persist), but also cantrcvmore, cantsndmore,
tf needfin, sndq , [ ], etc. Obviously simply taking the product of these would yield an un-
drawable diagram, but reclustering (slicing) in a different way might be useful. For example,
most of the TCP code is independent of which state in {ESTABLISHED, CLOSE WAIT,
LAST ACK, FIN WAIT 1, CLOSING, FIN WAIT 2, TIME WAIT} is current; in-
stead, the retransmit mode is of much more interest. It is possible that coalescing this class,
and then taking the product with the retransmit state, would yield a manageable set of nodes.
One could also think of high-performance runtime validation that a TCP implementation is
within such a transition system.

10 UPDATING THE MODEL AND TOOLS

In this section we describe ongoing efforts to reuse the protocol-level specification, from 2015–
18. We discuss three aspects: model update and performance improvements, a new instrumen-
tation mechanism using DTrace [27, 69], and validating the model with packetdrill [28].
The results of this ongoing work are already promising: the model now mostly works

with a current FreeBSD TCP/IP stack, the trace checker is around 15 times faster, and
the newly developed DTrace instrumentation mechanism was easily applied to an existing
test suite based on packetdrill. After minor adjustments of our model, this test suite also
validates. This is still not a turn-key industrial-strength tool, but it provides evidence that
the specification can be adapted, and that the costs of working with it can be substantially
reduced from the original version.

10.1 Model Update and Performance Improvements

Our model and trace checker are written in HOL4, which is continuously extended and
improved. We adapted our model to a recent HOL4 release (Kananaskis-11, released in
March 2017), and re-validated 1000 traces recorded in 2006. Our adapted trace checker
validates more of these traces than in 2006, where some failed due to huge resource usage
(CPU time and memory). Our adapted trace checker uses 15× less time on average. This
improvement is due to the hardware performance improvements over the last decade, and to
improvements in HOL4, notably the usage of Poly/ML instead of Moscow ML; it makes
working with the model much more manageable.

We used our test suite to discover modifications in FreeBSD’s TCP stack from FreeBSD-4.6
(released in 2002) to FreeBSD-12 (to be released in November 2018). The initial window size
was increased (RFC 3390), and the window adjustments now use accurate byte counting (RFC
3465); we adjusted our model to this behaviour. FreeBSD uses now selective acknowledgement
(SACK), but at the time of writing we have to switch SACK off via a sysctl, because our
model lacks support for SACK.
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10.2 Instrumentation using DTrace

The instrumentation described in §6.1 uses three different custom mechanisms to produce
traces, which need to be merged based on NTP and timestamps. We revised this design and
replaced those mechanisms with DTrace [27, 69]. DTrace is a modern dynamic tracing instru-
mentation framework: testers write tracing scripts in a C-inspired programming language
named D, which provides functions and variables specific to tracing. A D script consists of
global variable declarations, and a list of probes. Each probe has a name, a condition, and
an action. The action (e.g. printf("hello %d\n", pid);) is executed when the condition
(e.g. probefunc = "setsockopt") is met and the probe name (e.g. syscall:::return)
fired by a provider. Several core providers are part of the operating system.
We use the syscall provider and 230 lines of D to print traces of the Sockets API,

previously done by our nssock wrapper. To output a trace of the network packets we use
FreeBSD’s fbt (function boundary tracing) provider, which fires on every function entry
and exit. We developed 50 lines of D which use the tcp input and ip output probes. This
replaces our slurp program. We replaced the shared ring buffer and the TCP DEBUG option
with FreeBSD’s tcp provider and another 70 lines of D script. The resulting D script is run
while the test is executed. The test framework signals the begin and end of a test by write

to standard output, which is instrumented by the D script. When a TCP flow should be
traced as well, this is signalled by the test framework using the same mechanism: writing
the source and destination IP and port on standard output.

The advantages of a single DTrace script compared to the earlier three custom mechanisms
are that the testing setup is simplified, there is no need for merging multiple traces into a
single based on timestamps, it is easier to maintain, and it is straightforwardly portable
to tracing other off-the-shelf test suites. The next section describes how we extended the
testing framework packetdrill with this DTrace instrumentation.

While developing the D script for Netsem, we found some issues and missing functionality
for DTrace in FreeBSD, which we reported, and also submitted patches which got merged
upstream. A single patch is still under review that adds a function to DTrace to copy out an
mbuf, the data structure used for packets in the kernel.

There are two limitations with the DTrace instrumentation: DTrace does not work across
multiple computers, but in our protocol-level tests we do not need to capture information
on remote hosts, only to synthesise packets from them. Another limitation is that DTrace
by design does not guarantee to fire a probe, especially under load. The practical impact for
us is non-existent: we ran our test suites multiple times, and always received all probes. If
we would test on resource (memory and CPU) boundaries, we would need to be careful with
that, or switch to a reliable instrumentation mechanism.

10.3 Validation using packetdrill

The packetdrill tool [28] allows network engineers to write test cases. These are list of
events, with relative timestamps, each of which is either a Socket API call, an assertion in
which TCP state a socket is in, or a packet template. packetdrill executes a test either
with a remote helper that injects incoming packets, or locally using a tun interface and
injecting the packets itself. It executes the list of events in sequence, using the relative
timestamp as wait-for actions, and as timeouts for expected events. A Sockets API call is
executed, and its return value validated. An assertion about the TCP state of a socket is
validated. An outgoing packet template is validated against what is observed on the tun

interface or ethernet interface.



Engineering with Logic 69

The FreeBSD project is developing a TCP testsuite [41], which at the moment consists of
392 test cases, which mainly validate the classic TCP state-machine abstraction. Each test
case is present for IPv4 and IPv6, we only use the IPv4 tests. We also ignore the test cases
which use TCP features not implemented by our model. We modified the resulting 115 tests
to not rely on SACK. We added support to packetdrill for our DTrace instrumentation.
After minor changes in our model, all 115 tests pass and the traces are validated by our
trace checker.

This is the first external validation of the model, since the original test suite was developed
together with the model by the same authors. We adapted our model, changing timers to
follow changes to the FreeBSD stack, and multiple deliver in rules which lacked in-window
checks (RFC 5961). The testsuite also showed us that our model lacked exhaustive support
if window scaling is disabled and the window size gets bigger than 216 − 1 (the size of the
data field in each TCP segment). Several anomalies we discovered in FreeBSD-4.6 with our
model have been fixed in FreeBSD-12, and we adapted our model to this behaviour, for
example when the congestion window is initialised during a simultaneous open.

11 RELATED WORK

There is a vast literature devoted to verification techniques for protocols, with both proof-
based and model-checking approaches, e.g. in conferences such as CAV, CONCUR, FORTE,
ICNP, SPIN, and TACAS. To the best of our knowledge, however, no previous work
approaches a specification dealing with the full scale and complexity of a real-world TCP. In
retrospect this is unsurprising: we have depended on automated reasoning tools and on raw
compute resources that were simply unavailable in the 1980s or early 1990s.
The most detailed rigorous specification of a TCP-like protocol we are aware of is that

of Smith [101], an I/O automata specification and implementation, with a proof that one
satisfies the other, used as a basis for work on T/TCP. The protocol is still substantially
idealised, however: congestion control is not covered, nor are options, and the work supposes
a fixed client/server directionality. Later work by Smith and Ramakrishnan uses a similar
model to verify properties of a model of SACK [100].
Musuvathi and Engler have applied their CMC model-checker to a Linux TCP/IP stack

[75]. Interestingly, they began by trying to work with just the TCP-specific part of the
codebase (c.f. the pure transport-protocol specification mentioned in §1.7), but moved to
working with the entire codebase on finding the TCP – IP interface too complex. The
properties checked were of two kinds: resource leaks and invalid memory accesses, and
protocol-specific properties. The latter were specified by a hand translation of the RFC793
state diagram into C code. While this is a useful model of the protocol, it is an extremely
abstract view, with flow control, congestion control etc. not included. Four bugs in the Linux
implementation were found.

In a rare application of rigorous techniques to actual standards, Bhargavan, Obradovic, and
Gunter use a combination of the HOL proof assistant and the SPIN model checker to study
properties of distance-vector routing protocols [16], proving correctness theorems. In contrast
to our experience for TCP, they found that for RIP the existing RFC standards were precise
enough to support “without significant supplementation, a detailed proof of correctness in
terms of invariants referenced in the specification”. The protocols are significantly simpler:
their model of RIP is (by a naive line count) around 50 times smaller than the specification
we present here.

Bhargavan et al develop an automata-theoretic approach for monitoring of network protocol
implementations, with classes of properties that can be efficiently checked on-line in the
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presence of network effects [13]. They show that certain properties of TCP implementations
can be expressed. Lee et al conduct passive testing of an OSPF implementation against an
extended finite state machine model [60].
There are I/O automata specifications and proof-based verification for aspects of the

Ensemble group communication system by Hickey, Lynch, and van Renesse [47], and NuPRL
proofs of fast-path optimizations for local Ensemble code by Kreitz [58].
Alur and Wang address the PPP and DHCP protocols, for each checking refinements

between models that are manually extracted from the RFC specification and from an
implementation [4].

Kohler et al [55] designed DCCP, a datagram congestion control protocol without reliability.
Within this process, two partial formalisations were done, one using finite state machines,
and one using coloured Petri nets by Vanit-Anunchai et al [106]. The Petri net model revealed
areas of the draft specification which were incomplete, and extended before the DCCP RFC
was published.

For radically idealised variants of TCP, one has for example the PVS verification of an
improved Sliding Window protocol by Chkliaev et al [30], and Fersman and Jonsson’s appli-
cation of the SPIN model checker to a simplified version of the TCP establishment/teardown
handshakes [36]. Schieferdecker verifies a property (expressed in the modal µ calculus) of a
LOTOS specification of TCP, showing that data is not received before it is sent [96]. The
specification is again roughly at the level of the TCP state diagram. Billington and Han have
produced a coloured Petri net model of the service provided by TCP (in our terminology,
roughly an end-to-end specification), but for a highly idealised ISO-style interface, and a
highly idealised model of transmission for a bounded-size medium [18, 19]. Murphy and
Shankar verify some safety properties of a 3-way handshake protocol analogous to that in
TCP [73] and of a transport protocol based on this [74]. Finally, Postel’s PhD thesis gave
protocol models for TCP precursors in a modified Petri net style [86].

Implementations of TCP in high-level languages have been written by Biagioni in Standard
ML [17], by Castelluccia et al in Esterel [29], and by Kohler et al in Prolac [56]. Each of
these develops compilation techniques for performance. They are presumably more readable
than low-level C code, but each is a particular implementation rather than a specification of
a range of allowable behaviours: as for any implementation, nondeterminism means they
could not be used as oracles for system testing. Hofmann and Lemmen report on testing of
a protocol stack generated from an SDL specification of TCP/IP [48]. Few details of the
specification are given, though it is said to be based on RFCs 793 and 1122. The focus is on
performance improvement of the resulting code.
Paris et al developed a TCP/IP implementation in Erlang [83]. They also developed a

TCP/IP model [82] in QuickCheck, which is a framework for random testing. Their model
was validated using the Linux TCP/IP implementation, and found at least one issue in their
Erlang TCP/IP.

A number of tools exist for testing or fingerprinting of TCP implementations with hand-
crafted ad-hoc tests, not based on a rigorous specification. They include the tcpanaly of
Paxson [85], the TBIT of Padhye and Floyd [80], and Fyodor’s nmap [42]. RFC2398 [84]
lists several other tools. There are also commercial products such as Ixia’s Automated
Network Validation Library (ANVL) [51], with 160 test cases for core TCP, 48 for Slow
Start, Congestion Control, etc., and 48 for High Performance and SACK extensions.
Cardwell et al. [28] developed packetdrill, which defines a test language - supporting

both socket API calls, and TCP frames, also timeouts and a remote helper - for testing
TCP/IP implementations. They developed 657 tests and found 10 bugs in the Linux TCP/IP
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implementation. These tests are specially crafted for the Linux behaviour, and are unlikely
to be portable to other operating systems. It is up to the author of a test to evaluate whether
the test is within the TCP/IP spec. Packetdrill is being adapted by TCP/IP implementors,
for ad-hoc and regression testing.

The nqsb-tls [53] stack is both a specification and an implementation of TLS in a purely
functional style, achieving reasonable performance (around 75–85% of that of OpenSSL).
Their specification is an on-the-wire specification, rather than the endpoint behaviour. In
contrast to TCP/IP, TLS has much less internal nondeterminism, which is revealed in later
frames on the wire (protocol version, ciphersuite selection), and no timers. The lack of
nondeterminism enabled them to use their purely functional implementation as specification,
and they provide a tool which checks recorded TLS traces for validity.
The miTLS project [15] has developed a verified reference implementation of the TLS

protocol, using F#, F7, and F*. This interoperates with other major implementations,
albeit with relatively slow performance, but has machine proofs of security theorems. Their
work has also uncovered a number of issues with the protocol design, including client
impersonation [14]. They also analysed the state machine implementations within widely
used TLS libraries [12].

12 DISCUSSION

12.1 Contributions

At the start of this project, around October 2000, our aim was twofold:

(1) to bring mathematical rigour to bear on real-world network protocols, to make it
possible to reason formally about them and about distributed systems above them;
and

(2) to bring added realism to the modelling of concurrency, communication, and fail-
ure, which were often studied in highly idealised forms in the process calculus and
concurrency theory communities.

As we gained more experience, and with the benefit of hindsight, our focus has shifted, from
the desire to support formal correctness reasoning, to the general problem we described in §1:
the limitations of standard industry engineering practice, with its testing-based development
using (at best) prose specifications, which cannot directly used in testing. The work has
produced contributions of many kinds:

• A clear articulation of the notion of specifications that are executable as test oracles,
and the benefits thereof.
• The demonstration that it is feasible to develop a rigorous specification, in mechanised
mathematics, that is executable as a test oracle for an existing real-world key abstrac-
tion: the TCP and UDP protocols and their Sockets API, despite the many challenges
involved (dealing with their complexities, both essential and contingent, and with the
behaviour of many thousands of lines of multi-threaded and time-dependent C code
that were not written with verification in mind, and for which formal proof about their
behaviour is not yet feasible).
• The ideas and tools that made it possible to do that,
– our experimental semantics development process;
– a clear understanding of the importance of nondeterminism, in the forms of loose
specification and implementation runtime nondeterminism, and especially internal
nondeterminism, in test-oracle specifications and in their validation;



72 S. Bishop et al.

– a clear understanding of how the relationship between real system and specification
has to be reified in the model and in the testing infrastructure;

– the specification idioms we needed;
– the trace-checking technology we developed; and
– the test generation and instrumentation we developed.
• Our specifications themselves: the protocol-level and service-level specifications and
the abstraction function between them.
• The idea of experimentally validating such an abstraction function.
• Our demonstration of the discriminating power of our validation process, which found
many obscure anomalies and implementation differences.

The total effort required for the project has been around 11 person-years, of which much
was devoted to idiom and tool development. This is substantial, and might not be well-
motivated for software that is not in critical use, but it is small compared with the effort
devoted over the last 35 years (and perhaps the next) to implementing and understanding
these protocols and their API. Network protocols are an area in which behavioural standards
are essential, as many implementations must interoperate.
In the remainder of this final section we reflect on our experience, discussing how the

specification might be used and built on, and on the lessons we can draw from this work for
design and specification in general.

12.2 Future Work: Using the Specifications

Our specifications may be of use in several different ways, by several different communities.

12.2.1 As an Informal Reference. Most directly, the annotated and typeset versions of
our specifications [22, 23, 92] can be used informally as a reference, as documentation for
users and implementors of TCP and the sockets API (designers of distributed systems and
implementors of protocol stacks respectively).
A possible objection to this is the unfamiliarity of most engineers with the higher-order-

logic language that our specifications are expressed in. There is indeed some initial overhead
in adapting to the notation, for those who typically work only with C or C++ code, but we
do not believe that this is a major problem for anyone motivated to look at the specifications,
and it is ameliorated by our textual annotation and typesetting. We have seen practising
software engineers, without detailed knowledge of TCP or previous exposure to HOL, use
the specification to resolve subtle questions about TCP behaviour.

12.2.2 For Bug-finding. Finding bugs was not one of our goals, but our work identified 33
issues with the implementations we tested, detailed in a technical report [22, §9], and 260+
places in our specifications where those three implementations differ. Most of the former
appear to us to be errors, many of which would be very hard to find with normal testing,
which may be worth considering by the current maintainers of these implementations. The
nature of those issues shows how discriminating testing against our specifications can be.

12.2.3 For Testing New Implementations. We developed our specifications in large part
by reverse-engineering from three specific implementations (together with careful reading
of the existing RFCs and texts), building validation tools to test the specifications against
existing implementations. But the same tools could be used to test future implementations
against the specifications, for high-quality automated conformance testing. Doing so would
be mainly a matter of engineering, to package up our testing tools to make them usable
in a more push-button fashion. We would have liked to do this, but lacked the resource
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required (perhaps a person-year of effort). Some initial experiments in this direction are
now underway (in 2017). Having done so, one could test a wide variety of implementations
and track implementations through version changes, evolving the specification as required
(whereas here we froze the three implementations we considered at the start of our work on
TCP).

Interpreting the output of our trace-checking tools is a moderately skilled task that involves
diagnosing any discrepancy between implementation behaviour and what the specifications
allow, tracking it down to either a bug in the implementation, an error in the specifications,
or a limitation of our symbolic evaluation tools. Updating the specification as appropriate
requires some familiarity with the HOL language but does not need real theorem-proving
expertise (one member of the project, then an undergraduate intern, went from zero knowledge
of HOL to contributing useful specification in a matter of weeks).

The performance of our symbolic evaluation tools was a substantial issue: they were fast
enough to be usable, but still a major bottleneck. Preliminary experiments in 2017 suggest
that this is now much less of a concern.
Most substantially, changing the symbolic evaluator (which might be required by any

significant change in the specification) is a highly skilled task, needing deep familiarity
with HOL4. This highlights the desirability of making specifications that can be made
executable as test oracles in simpler ways, without needing a special-purpose evaluator and
theorem-prover expertise.

12.2.4 As a Reference for Proposed Changes. TCP continues to evolve, albeit slowly, and
our specifications could provide a basis for precise discussion of future changes. It would be
desirable to isolate the aspects of the specification that are subject to more frequent change,
e.g. restructuring to factor the congestion control aspects out into replaceable modules.

12.2.5 As a New Internet Standard. In principle, our specifications could form the basis for
new IETF Internet Standards for TCP, UDP and Sockets, much more rigorous and detailed
than the existing RFCs. This is more a political question than a technical one, requiring
engagement with the IETF community that we did not embark on (though one would want
to do further testing, as outlined above, to ensure that the specifications are not over-fitted
to the three implementations we tested).

12.2.6 As a Basis for Formal Reasoning. Given our protocol-level and service-level specifi-
cations, one could think of formal mechanised proof:

(1) correctness of the executable code of a TCP implementation with respect to the
protocol-level specification (either one of the existing mainstream C implementations
or of a clean reimplementation written with verification in mind); or

(2) correctness of our protocol-level specification with respect to our service-level specifica-
tion.

Together these would “prove TCP correct”, establishing much greater confidence in the
relationships that we established only by testing here. However, the scale and complexity of
the specifications, and of any TCP implementation, make either an intimidating prospect
with current proof technology.

One could also attempt to prove correctness of higher-level communication abstractions
implemented above our service-level specification, as Compton [32] and Ridge [90] did above
our UDP specification and a simplified TCP specification. This would be verification of
executable implementations rather than the more usual distributed-algorithm proofs about
non-executable pseudocode or automata-theoretic descriptions.
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12.3 General Lessons for New System Development

This work can be seen within a line of research developing and applying rigorous semantics
for particular aspects of real systems. We were particularly inspired by the work on x86
Typed Assembly Language of Morrisett et al. [72], and by Norrish’s earlier work on C
semantics [78]. In turn, our experience here influenced our later work on semantics for other
aspects of real-world systems, including multiprocessor concurrency [38, 95, 99], C/C++11
concurrency [11], the C language [70], ELF linking [54], POSIX filesystems [93], and the TLS
protocol [53]; it also influenced that of Maffeis et al. on JavaScript semantics [67, Personal
Communication].
All of these involve specifications that are in some way executable as test oracles, and

many involved investigation of de facto standards that hitherto have only been expressed
as prose specification documents. At first sight one might think that for each of these the
problem is one of formalising an existing basically well-defined prose specification, after
which one might work on verification and proof. In fact, it is more typical to find that
the existing abstractions are poorly defined, and one actually has to create a well-defined
abstraction, in consultation with the relevant practitioners.
Our work on TCP demonstrated that pre-existing real-world protocols can be specified

rigorously, but at the cost of significant effort and using relatively sophisticated tools.
Reflecting on why the latter was necessary for TCP/IP/Sockets, we now argue that applying
rigorous methods at design-time could be done much more straightforwardly, and have even
greater benefits.

Our first conclusion is that:

Specifications should be expressed in some executable-as-test-oracle form.

More specifically, this applies to any specification that is seriously intended as a definition of
the allowed behaviour for some abstraction, where one cares about the conformance between
the specification and one or more implementations, and where the implementations are
developed using the usual test-and-debug methods. Network protocols are prime examples
of this, as there one expects there to be multiple implementations that have to interoperate,
but there are many other cases too.
In other cases, of course, a prose specification serves only as a starting point for some

software development, and the code quickly becomes primary. There one may have less
incentive to test against the specification, and the specification may not be maintained over
time.

Our second lesson is that, to make this feasible,

Managing specification looseness is key.

There are two issues: that of writing the specification to precisely capture any intended
looseness, and that of doing so in a way that makes the specification still usable for testing
implementations against.

In the simplest case, one has a tight specification that is completely deterministic, allowing
no freedom for variation in the observable behaviour (except performance) of conforming
implementations. Such a specification can trivially be used as a test oracle, simply by running
it and an implementation on the same inputs and comparing the results, and it can also
serve directly as an executable prototype implementation. In this case one can write the
specification in a conventional programming language — perhaps best in the pure fragment
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of a functional language (such as OCaml, Haskell, or F♯) or in a specification language that
supports code extraction (such as Coq, Isabelle/HOL, HOL4, or Lem), for maximum clarity
and to prevent accidental introduction of behavioural complexity from imperative code, but
it could be in any programming language —even C— so long as one is clear that one is
writing a specification, aiming for clarity, rather than a conventional implementation, aiming
for performance.
The situation we have dealt with in this paper is at the opposite extreme: our

TCP/IP/Sockets specifications had to be highly nondeterministic (c.f. §1.6 and §3.3.1)
to admit the variation in implementation behaviour, with much internal nondeterminism,
and that meant that we had to use a rich mathematical language to express them (in our
case, the higher-order logic of HOL4), and we had to build sophisticated tools (as described
in §7) to construct test oracles from the specifications.
Looking in more detail at the kinds of loose specification that were required suggests

several points to bear in mind for design-time specification:

12.3.1 Implementation-internal Nondeterminism. Some nondeterminism is required to ac-
commodate the run-to-run variation in behaviour of a single implementation, e.g. the
variations due to OS thread scheduling, pseudo-random choices, and timer rate variations.
We modelled these with internal nondeterminism, and our test oracle dealt with them search
over the transition graph and by constraint solving. In retrospect, it would have been better
to handle these by instrumenting the implementations to emit visible labels at these points,
letting the test oracle resolve these choices immediately (we were overly concerned not to
perturb the systems that we were analysing, and we also did not want to rule out testing of
the Windows implementations, for which we did not have source access); this would make
checking much simpler and faster. A clean-slate protocol design would be able to build
visibility of internal choices into the design from the start.

Given this, one might express an executable-as-test-oracle specification in a much more
straightforward way, e.g. as an explicit pure-functional predicate computing whether an
arbitrary trace is allowed, or operationally as an abstract machine / labelled transition
system with a pure function that enumerates the allowed transitions at each state (parametric
on the observed internal choices). Then no analogue of our HOL4 symbolic evaluation or
backtracking search would be required.
There are also now widely-used tracing frameworks, e.g. DTrace [27, 69] (http://elinux.

org/Kernel Trace Systems) that would simplify the instrumentation required.

12.3.2 Superficial Inter-implementation Variation. In some cases we dealt with inter-
implementation variation by parameterising the specification, as for the BSD-specific be-
haviour in the bind 5 of Fig. 6 (p. 32). This is not a problem for testing, as one knows when
using the test oracle which implementation is being used, but such variations are undesirable
(as they might well lead to hard-to-detect portability issues) and should rarely be needed if
doing design-time specification, rather than capturing existing implementations that have
already diverged.

12.3.3 Debatable Looseness. In other cases it is debatable how loose a specification should
be. For example, when a TCP endpoint receives overlapping TCP segments, we chose in our
specification to permit them to be reassembled into a stream in any reasonable way, as we
expect there might well be inter-implementation variation here. This required extra work to
make a test oracle, as described in §7.4. It is also arguably poor protocol design, as it raises
the possibility that a firewall will reassemble the segments in one way, analyse the result,

http://elinux.org/Kernel_Trace_Systems
http://elinux.org/Kernel_Trace_Systems
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and pass it through, while the endpoint will reassemble them in another way into a different
stream. For a new protocol design, one might want to minimise this kind of looseness, both
for checking and for robustness.

12.3.4 Scope/coverage Completeness. Another place where some specifications are vague
in ways that would be better replaced by precise (but possibly loose) specifications is the
response of a protocol or other system to unexpected inputs: a good specification should
define the (envelope of allowed) behaviour in response to any stimulus, to reduce the potential
for security holes.

12.3.5 Major Variations. Finally, one has major variations, where the protocol specifi-
cation should be intentionally loose to allow real implementation variation and protocol
improvements over time. For TCP the obvious example is the congestion control subsystem
of the protocol. Here we would have liked to factor that out into a pluggable part of the
specification, restricting the main specification to just enough to ensure functional correctness
of the protocol. If done at protocol design-time, we believe that that would have brought a
useful focus on the minimal correctness properties that the protocol was intended to achieve.

12.3.6 Experience with other executable-as-test-oracle specifications. Many of the same
ideas underlie our later work on multiprocessor and C/C++ concurrency, C, ELF linking,
POSIX filesystems, and the TLS protocol. The relationships to industry practice and the
technical approach to making specifications executable as test oracles differ in interesting
ways in each case.

For multiprocessor concurrency (x86, IBM POWER, ARM, RISC-V) [3, 38, 39, 46, 87,
95, 99] there are a variety of existing (or, for RISC-V, in-progress) implementations, and
experimental investigation has been a crucial part of our work, but there is also an ultimate
authority in each case to discuss design questions with: the vendor architects or (for RISC-V)
design committee. We have established large suites of small ‘litmus’ test cases with potential
non-sequentially-consistent executions, both hand-written and generated using the diy tool of
Alglave and Maranget [1]. There is a great deal of specification looseness and implementation
nondeterminism, which at the start of our work was exceedingly poorly characterised by
the prose specification documents, but which now has largely been made mathematically
precise for each of those architectures. Two specification styles have been used: operational
models, with labelled transition systems (LTSs) with a computable function calculating the
set of enabled transitions from each state, and axiomatic models, expressed as computable
predicates over candidate executions. Both can be made executable as test oracles for small
concurrency tests, computing the set of all model-allowed behaviour by exhaustive search of
the LTS or exhaustive enumeration or constraint solving respectively. These are embodied
in the rmem (previously ppcmem) [37, 87] and herd [2, 3] tools.
For the sequential aspects of processor instruction-set architecture (ISA) semantics, we

have built models for fragments of a variety of architectures, including IBM POWER, ARM,
MIPS, CHERI [109], x86, and RISC-V, in our Sail domain-specific language [6] and in Fox’s
L3 domain-specific language [40]. While there is some loose specification/nondeterminism
here, with unspecified values and more general unpredictable behaviour (sometimes bounded),
for many aspects one can test against implementation behaviour simply by executing the
model. The L3 formal model has been a central tool in the CHERI design process. For all of
these, accessibility of the models has been a principal concern, leading to the development of
the L3 and Sail domain-specific languages, reminiscent of vendor pseudocode languages but
more clearly defined, and with carefully limited expressiveness. There is also closely related
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work in ARM by Reid [89], and Campbell and Stark [26] have used more sophisticated
theorem-prover and SMT-based methods to generate interesting test cases.
Our work on the C++ and C concurrency models [11] was principally during the design

of the C++11 ISO standard (later folded into C11), in collaboration with the C++ WG21
Concurrency group. Here there were no existing compiler implementations to compare against.
It is also harder than in the hardware case to cause implementations to exhibit a wide range
of their possible behaviour, as it requires triggering compiler optimisations, though the
model was used later for compiler testing by Morisset et al. [71]. Making the specification
rigorous and executable helped uncover a number of issues in the design. The model was
phrased as computable predicate over candidate executions, which could be exhaustively
enumerated for small litmus tests. We developed a modest family of hand-written litmus
tests, and built the cppmem tool [9] allowing users to explore the exhaustively enumerated
executions. Later work on C/C++ concurrency [7, 8, 59, 68, 94] has improved the model, it
has also rephrased the model in explicitly relational styles, using herd [2], Alloy [108], or
Rosette [25], to allow the use of solvers to answer questions about variant tests and models.
For the Cerberus sequential semantics of C [70], some aspects of the language are essen-

tially well-specified by the prose ISO standard, while others —especially those relating to
memory objects, pointers, and so on— are either unclear or differ significantly between
the ISO standard and the de facto standard. We investigated the latter with surveys of
expert programmers, rather than empirically. For this we build an executable-as-test-oracle
specification via an elaboration from C into a core language, equipped with an operational
semantics that can be combined with a memory object model that accumulates constraints.
The elaboration captures the uncontroversial aspects of the ISO standard, and can be closely
related to its prose. For small examples, this allows executions to be exhaustively enumerated.
We have hand-written written a library of small test cases for the memory object semantics,
and also use established test suites and Csmith-generated tests [111].

The SibylFS semantics for POSIX filesystems [93] has a broadly similar character to the
TCP stream specification we describe here, defining the allowable traces of API calls and
returns, and was similar also in that the existing implementations together form the real
standard, despite the existence of the POSIX prose specification document. Learning from
the experience with TCP, great care was taken to make SibylFS efficiently executable as a
test oracle, particularly when managing nondeterminism. One key difference is that whereas
Netsem used a transition relation, SibylFS used a transition function returning a finite list
of successor states, and encoded possibly-infinite branching using simple ad-hoc symbolic
constraints within the host state itself, rather than in the HOL metalogic. This meant that
many thousands of tests could be executed on real filesystems and checked against the model
in just a few minutes. Tests were generated by a semi-automatic enumeration of interesting
cases, as for TCP. In addition, there was an attempt to exhaustively test API calls for which
this was feasible (essentially, those that did not involve read and write), and code coverage
was used to ensure that all the lines of the model were exercised at least once during testing.

The TLS protocol is similar to TCP in that its notional specification spans over a series of
RFCs. TLS does not include timers, and does not specify an API. The nqsb-TLS stack [53]
developed the protocol logic in a pure style. It is used both as an executable implementation,
by utilising an effectful layer which sends and receives packets, and as a test oracle by
checking a recorded trace. In subsequent work [52] the nondeterministic choice points were
made explicit, and a nondeterminism monad was used to generate exhaustive test cases.
The nqsb-tls work complements the TCP work in this paper: at the core a pure functional
implementation is used instead of a logic system, which leads to a reusable stack, both as
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executable and test oracle. The ability to generate test cases could be adapted to TCP in a
similar way if the TCP model were made executable as an implementation.

Our last main point is that:

Rigorous specification can help manage complexity.

As Anderson et al. write in their Design guidelines for robust Internet protocols (“Guideline
#1: Value conceptual simplicity”, [5]), the value of simplicity is widely accepted but hard to
realise. Writing a behavioural specification makes complexity apparent, drawing attention to
unnecessary irregularities and asymmetries in a way that informal prose and working code
do not. One is naturally led to consider each case, e.g. of an arbitrary TCP segment arriving
at a host in an arbitrary state, whereas when working with a prose specification it is all
too easy to add a paragraph without thinking of all the consequences, and when working
with code it is all too easy to not consider some code-flow path. Doing this at design-time
would help keep the design as simple and robust as possible. It also opens the possibility of
machine-checking completeness: that the specification does indeed handle every case (for an
earlier version of our specification, we proved a receptiveness property along those lines).

Specification is a form of communication, both within a design group and later to imple-
mentors and users. The added clarity of rigorous specification aids precise communication
and reduces ambiguity.

Drawing these together, if we were to design a new network protocol, we would:

(1) Clearly identify the part of the overall system that the specification is intended to
cover , defining the observable events that it should be in terms of, and how they would
relate to actual implementation events. Probably this should include both wire and
software API interfaces.

(2) Specify both the service that the protocol is intended to achieve (as for our service-
level stream specification of TCP) and the protocol internals (as our protocol-level
segment/endpoint specification), and the relationship between the two.

(3) Be explicit and precise about any looseness in the specification, and (especially) that
any significant internal nondeterminism can be made observable. Aided by that, express
the specification, in one way or another, so that an efficient test oracle can be built
directly from the specification.

(a) In some cases, one could arrange for the specification to be completely deterministic
between observable events, and there one could write those parts of the specification
in an executable pure functional language, and then use that directly for testing and
as an executable prototype.

(b) In other cases, where one really does want to leave implementation freedom
(e.g. bounding TCP congestion control within some limits) that should be fac-
tored out, and one either needs a more expressive specification language (as here)
and a constraint-solving checker, or one should write a test oracle directly.

(4) Either test (or ideally prove) that the protocol-level specification does provide the
intended service.

(5) Set up random test generation infrastructure, tied to the test oracle, to use for
implementations.

Our experience in doing this has been very positive. We specified, in collaboration with
the designers, a new Media Access Control (MAC) protocol for the SWIFT experimental
optically switched network, by Dales and others [20]; extracting a verified checker from a
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HOL4 specification and using that to check traces from ns2 and hardware simulations. With
relatively low effort we quickly established a high degree of confidence in the protocol design
and in its implementation, clarifying several aspects of the design in the process.
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