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1 INTRODUCTION
Automatic differentiation (AD) transforms a program into a new one that computes exact analytical

derivatives of the original. Automatic differentiation has a rich literature, but it is hard to find an

approach to AD that has all of the following properties:

(1) Does reverse-mode AD. Reverse-mode AD is of particular importance in machine learning, and

other optimisation applications, but it is notoriously trickier than forward mode. Forward

and reverse mode are defined in Section 3.2.

(2) Higher order. It is capable of differentiating a fully higher-order language with first-class

anonymous functions, and with sum types as well as products and arrays.

(3) Asymptotically efficient. Reverse-mode AD runs with only a constant-factor slow-down

relative to the original (or “primal”) program.

(4) Provably correct. It comes with a proof that it does actually differentiate the program, despite

complexities such as higher order functions and data structures.

Figure 17 compares a number of recent works on these four axes, as we discuss in Section 10, but

none of them enjoys all four properties. Typically the systems that come with a proof of correctness

do not offer a guarantee of asymptotic efficiency, while today’s most sophisticated and efficient AD
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systems are often large, complex software artefacts whose internals are only truly understood by a

few, and without detailed formal documentation of the AD machinery itself.

Our contribution is to describe an AD system that enjoys all of these properties simultaneously:

• We describe a small but expressive fully-higher-order purely-functional language, including

sums, products, let, and first-class lambdas (Section 2). It is easy to add more similar features

later (Section 8).

• We give a standard forward-mode AD translation for this language, using so-called dual
numbers (Section 4). The transformation is extremely simple, and is fully compositional: let
turns into let, lambda into lambda, application into application, and function definition into

function definition. Moreover, it has no difficulty with higher-order functions, sum types, etc.

The only action is in the primitive operations on floating-point numbers. None of this is new,

but it establishes a firm baseline for our subsequent steps.

• Then we show how to use a variant of the exact same dual-number approach, including its

extreme simplicity, to achieve reverse-mode AD (Section 5.1).

• The algorithm of Section 5.1 may be simple, but it is also utterly impractical because it

embodies two gigantic (indeed asymptotic) inefficiencies. In Sections 5.2 and 5.3 we show

how to overcome these inefficiencies, one at a time. The final, monadic translation and its

supporting functions still fit in a couple of Figures (9 and 11). Our use of a monadic translation

appears to be new; other work uses side effects to achieve efficiency (e.g. Kmett/Pearlmutter’s

ad library for Haskell [Kmett et al. 2021], or Wang et al. [2019]).

• We show that our final algorithm is asymptotically efficient (Section 5.3.4) and supports

separate compilation (Section 8.1).

• We give a proof of correctness of our final algorithm in Section 7, based on logical relations.

• For most of the paper we concentrate on a “main expression” to be differentiated, of type

e : Ra → R. But everything we do has a natural generalisation to main expressions with

arbitrary first-order types e : S → T , where S and T can include integers, strings, and

sum (tagged-union) types, as well as arbitrarily nested tuples. We give this generalisation in

Section 9.

We sketch some other useful generalisations in Section 8 and discuss related work in Section 10.

No single aspect of our paper is new, but their combination is. Our account is remarkably

straightforward, using only elementary concepts. Our final algorithm has the same features as

many deployed systems, recording and replaying a kind of execution trace. However, our principled,

step-by-step development makes it easier to understand, easier to prove correct, and (we believe)

easier to use as a basis for exploring design variations, as indeed we do through the narrative of

this paper.

It is also important to emphasize that when we talk about “reverse-mode AD”, our only goal is

to efficiently compute the reverse derivative as defined in Figure 2; not to follow the precise set of

transformations that have become associated with current reverse-mode strategies.

2 THE LANGUAGE OF STUDY
We describe our approach as a source-to-source translation, going from the user’s written source

code of a function to the source code of its derivative. We thus begin our technical content by

describing the programming language we work within.

The syntax of our source language is shown in Figure 1. It is an ordinary typed λ-calculus,
augmented with let expressions and simple data structures.
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x, y, f , δx ,δy ::= . . . Variables

n, a, b ::= 0, 1, . . . Natural numbers

r ::= . . . , 0.0, . . . Reals

e, s, t, δs,δt ::= x | λx . e | e1 e2 | let x = e1 in e2 λ-calculus forms

| fst e | snd e | (e1, e2) Products (i.e. pairs)

| inl e | inr e | case e of inl x1 → e1, inr x1 → e2 Sums (i.e. unions)

| k | r | op | polyopA Constants

| pure e | do { stmts } Monadic operations

k ::= ⟨integer lits⟩ | ⟨string lits⟩ | . . . Discrete literals

op ::= ×R | +R | . . . | +Z | . . . Primitive functions

polyop ::= (see table below) Polytypic operations

stmts ::= e | x ← e; stmts Lists of statements

A,B, S, T ::= R | K | A × B | A + B | A→ B | M A Types

K ::= Z | String | . . . Discrete types

Γ ::= • | Γ, x:A Type environments

Notation conventions:

• Expression (e1, e2, . . . , en) is shorthand for nested pairs.

• Symbolic operations, like ×R or ⊕A are written infix.

• We sometimes omit the type on + and × when the type is apparent.

• We use λ(x1, x2). e and let (x1, x2) = e1 in e2 as a shorthand for usages of fst and snd.
• Type An

where n ⩾ 2 is an n-product of As.
• Type A ⊸ B is a synonym for A→ B, where the former uses its argument exactly once.

• Type N is a synonym for Z, used informally as documentation.

• Type δA is a synonym for A (Section 3.2 and Section 5.1).

• We use braces { } to denote a transformation on syntax trees, as in

−→
D{e}.

The following table provides notations and types for polytypic operations. Types are given when

the operator is subscripted with type A.
Primitive op. Type at A Notes

⊗ (R × δA) → δA Section 2 Scale each R component of δA
⊕ (δA × δA) → δA Section 5.1 Add corresponding R components of δA
⊙ (δA × δA) → R Section 9.2 Dot product of R components of δA

primal

−→
D{A} → A Section 4.1 Select primal component of all dual numbers

Fig. 1. Our language. Shaded constructs appear only in the output of AD and are explained in later sections.

Types. The language is statically typed. Types include real numbers
1 R, so-called discrete types

K , binary products and sums, and the function type. Discrete types are types that never contain

real numbers, such as integers, strings, and possibly others. These types occur only at the leaves of

structures. The typing judgement Γ ⊢ e : A is absolutely standard, and is given in the appendix.

Expressions. Expressions include the full lambda calculus (variables, applications, lambda), plus

let. The latter could be encoded with lambda and application, but it is tiresome to do so.

1
A typical implementation would use floating-point numbers to approximate reals. Our correctness results hold for true

real numbers; our space and time complexity results apply to floating-point numbers.
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Product or pair types. The language includes product types A × B, introduced with (e1, e2), and
eliminated with fst e/snd e. We informally permit ourselves to use pattern-matching on pairs

in lambda and let, thus λ(x1, x2). e and let (x1, y2) = e1 in e2, but merely as syntactic sugar for

projections. We also allow ourselves to use n-ary products (e1, e2, e3, e4) rather than nested pairs,

and types An
meaning A × · · · × A.

Sum or tagged-union types. The language also includes sum typesA+B, introduced with inl e/inr e
and eliminated with case. These sum types generalise booleans and if 2.

Literals and primitive functions. Constants include literals r : R, as well as discrete literals (literals
whose types do not mention any real numbers), and a range of built-in primitive functions op. The
primitive functions include functions over reals (+R, ×R, etc) and other functions (+Z, etc). Discrete

literals are distinguished from real-valued literals, because the former are entirely unaffected by

differentiation, as we will see throughout the paper.

The language can easily be extended with other data types and their operations (notably including

arrays) as we discuss in Section 8.

Polytypic primitives. Our language lacks polymorphism, but it is convenient to have some

functions that are polytypic; that is, whose definition depends on the type at which they are used.

They are listed in the table in Figure 1. Each should be understood as an infinite family of ordinary,

lambda-definable functions, indexed by type. For example, ⊗A multiples all the real-valued fields of

its δA-typed argument by the given scaling factor. We can specify how to generate all the (first

order) mono-typed instances like this:

⊗R = λ(s, x). s ×R x
⊗K = λ(s, x). x
⊗A×B = λ(s, (x1, x2)). (s ⊗A x1, s ⊗B x2)
⊗A+B = λ(s, x). case x of inl x1 → inl (s ⊗A x1), inr x2 → inr (s ⊗B x2)

We will introduce the other polytypic functions as we need them.

3 THE MAIN EXPRESSION AND DIFFERENTIATION
3.1 The Main Expression
Our task is to differentiate a top-level, closed (that is, lacking free variables) expression e of type
S → T ; we call this the main expression.

We will use S and T exclusively to denote the input and output types, respectively, of the main

expression e : S → T . (Mnemonic: “Source” and “Target” types.) For the bulk of the paper we

will focus on the special case of S = Ra and T = R, so e : Ra → R, leaving the generalisation to

arbitrary (first-order) S and T to Section 9. However, we often use S rather than Ra when we want

to stress that we are talking about “the argument type of the main expression”; and similarly T
when talking about the result type.

Although we initially restrict ourselves to a main expression of type Ra → R, from the outset we
make no restrictions on the types of its sub-expressions. It can contain sub-expressions of any type A
(see Figure 1), including functions, pairs, sum types, reals, integers, and so on. In particular, e will
often start with a nested collection of let-bound auxiliary functions, thus:

let f1 = λx . e1 in let f2 = λy. e2 in e3

Our translations are quite compatible with an alternative presentation in terms of multiple top-

level bindings, but it is convenient to work with the single syntactic category of expressions. The

approach is also compatible with separate compilation: no whole-program analysis is needed.

2
Booleans would be most naturally encoded as Unit + Unit . In fact, however, we reduce clutter in our Figures by omitting

Unit; booleans can still be encoded, if necessary, as Z + Z.
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Given a closed expression e : Ra → Rb, the forward derivative of e, written F {e}, is a closed
expression such that

• F {e} : (Ra × δRa) → δRb

• ∀s : Ra,δs : δRa, JF {e}K(s,δs) = JJeK(s) • δs

The reverse derivative of e, written R{e}, is a closed expression such that

• R{e} : (Ra × δRb) → δRa

• ∀s : Ra,δt : δRb, JR{e}K(s,δt) = δt⊤ • JJeK(s)

Notation:

• For any function f : Ra → Rb, its Jacobian J f : Ra → Rb×a returns f ’s matrix of

partial derivatives (Section 3.2).

• Given a closed e : Ra → Rb, its denotational semantics, or just denotation, JeK, describes
e as a mathematical function in Ra → Rb.
• The operation “•” is ordinary matrix multiplication.

• The type δR is just a synonym for R, but gives a hint to the reader that it denotes a

small displacement.

• A vector δs : δRa is a column vector, or a × 1 matrix; its transpose δs⊤ is a row vector,

or 1 × a matrix.

Fig. 2. Correctness criteria for forward and reverse-mode derivatives

3.2 Forward and Reverse Derivatives, and the Jacobian
What exactly does automatic differentiation mean, and what does it mean for AD to be correct? To

answer that we need some definitions. Given a function f : Ra → Rb, the Jacobian J f : Ra → Rb×a

is a function that, for each argument of type Ra, gives a b × a matrix of partial derivatives
3
:

• For every type A, δA denotes the type of small changes to a value of type A. Because a change
to a real number is described by a real number, δR = R, but we will still suggestively write

δR and δRn where we wish to think about differences.

• Given a function f : Ra → Rb, let J f : Ra → δRb×a be a function that produces f ’s Jacobian
matrix, a b × a matrix of partial derivatives.

• J f (®x) has a column for each of the a components of the input Ra.
• J f (®x) has a row for each of the b components of the output Rb.

• The (i, j) element of J f (®x) is ∂fi
∂xj
(®x), the partial derivative at ®x of f ’s i’th output with respect

to its j’th input.

Now suppose e : Ra → Rb, where e is (the syntax tree of) a closed expression. Then F {e} and
R{e} are (the syntax trees of) the forward and reverse derivatives of e, with the correctness criteria

given in Figure 2. This Figure says what it means for the source-to-source translations F {e} and
R{e} to be correct, but it does not define them – doing that is the business of the rest of the paper.

The following lemma is a trivial consequence of the correctness criteria:

Lemma 1 (Relationship between forward and reverse mode). For any closed e : Ra → Rb,
s : Ra, δs : δRa, δt : δRb, we have δt⊤ • JF {e}K(s,δs) = JR{e}K(s,δt) • δs

Proof. Simply substitute for JF {e}K and JR{e}K using the correctness criteria in Figure 2. □

3
A b × a matrix has b rows and a columns. The (i, j) element is in row i and column j .
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Forward and reverse mode can both compute exactly the same derivatives, but they may differ

radically in their efficiency, depending on the application. To see this, notice that for any ®x : Ra

we can reconstruct the Jacobian matrix J f (®x) in either of these ways:

• Forward Plan: make a calls to F {e} (®x, onehotRa j), for j ∈ 1..a, each yielding a value in Rb ,
namely the j’th column of the Jacobian matrix.

• Reverse Plan: make b calls to R{e} (®x, onehotRb i), for i ∈ 1..b, each yielding a value in Ra ,
namely the i’th row of the Jacobian matrix.

Here (onehotRa j) is the value (0, . . . , 0, 1, 0, . . . , 0) ∈ Ra , where the 1 is in the j’th position.

In the special case of machine learning, and other optimisation scenarios, the main expression

is usually a “loss function”, with a type like Ra → R, where a is large, say 10
6
. The a inputs are

the model parameters, whose values we wish to learn. The output is the loss, the objective that

we are trying to minimise. Learning proceeds by adjusting each of a inputs in proportion to their

contribution to the loss, so we need a partial derivative of the function with respect to each of

those a inputs.
If a = 10

6
and b = 1, the Reverse Plan computes all the required partial derivatives in one call,

rather than 10
6
calls for Forward Plan. Since each call repeats all of the work of the original, or

primal, program, the Reverse Plan is vastly more efficient — provided of course that R{e} is itself
efficient.

However in other applications
4
(e.g. in which b ≫ a) forward mode might be more suitable.

Moreover, as we shall see, reverse mode trades space for time, accumulating a data structure that

records the execution of the program, and then somehow running that record “backwards”. So

reverse mode can take a lot more space than forward, leading to work on checkpointing (which we

do not discuss here).

4 FORWARD-MODE AUTOMATIC DIFFERENTIATION
To establish our notation, we start from a familiar forward-mode AD based on dual numbers, as

presented in, for example, [Huot et al. 2020]. We begin by giving a fully compositional translation

−→
D

for terms and types (Section 4.1), after which we describe a wrapper that uses
−→
D to build F {e}, the

function we really want (Section 4.2).

Nothing in this section is truly new, although the construction of the wrapper is seldom made as

explicit as we do here. It will play an important part in our subsequent development.

4.1 The Forward-Mode AD Translation
Figure 3 gives the translation in three parts, overloading

−→
D (where the arrow denotes “forward”,

not “vector”) for all three purposes:

• A translation on types

−→
D{A}

• A translation on typing contexts

−→
D{Γ}

• A translation on terms

−→
D{e}. The key translation invariant is that translated terms have

translated types, as shown in Figure 3.

Looking at the type translation in Figure 3, you can see that almost all types are translated

homomorphically: products translate to products, functions translate to functions, and all discrete

types K (including integers and strings) translate to themselves. The only exception is at the

real-valued leaves: real numbers R translate to a pair of reals R × δR.

4
Corliss et al. [2002] is a good survey of applications of AD.
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−→
D{A} Forward mode on types

−→
D{A × B} =

−→
D{A} ×

−→
D{B}

−→
D{A + B} =

−→
D{A} +

−→
D{B}

−→
D{A→ B} =

−→
D{A} →

−→
D{B}

−→
D{K} = K
−→
D{R} = R × δR

−→
D{Γ} Forward mode on contexts

−→
D{•} = •
−→
D{Γ, x:A} =

−→
D{Γ}, x:

−→
D{A}

−→
D{e} Forward mode on expressions

Invariant: If Γ ⊢ e : A, then
−→
D{Γ} ⊢

−→
D{e} :

−→
D{A}

−→
D{x} = x
−→
D{let x = e1 in e2} = let x =

−→
D{e1} in

−→
D{e2}

−→
D{λx . e} = λx .

−→
D{e}

−→
D{e1 e2} =

−→
D{e1}

−→
D{e2}

−→
D{inl e} = inl

−→
D{e}

−→
D{inr e} = inr

−→
D{e}

−→
D{case e0 of inl x1 → e1, inr x2 → e2} = case

−→
D{e0} of inl x1 →

−→
D{e1}, inr x2 →

−→
D{e2}

−→
D{(e1, e2)} = (

−→
D(e1),

−→
D(e2))

−→
D{fst e} = fst

−→
D{e}

−→
D{snd e} = snd

−→
D{e}

−→
D{k} = k
−→
D{+Z} = +Z
−→
D{r} = (r, 0)
−→
D{+R} = λ((x,δx), (y,δy)). (x + y,δx + δy)
−→
D{×R} = λ((x,δx), (y,δy)). (x × y, y × δx + x × δy)

Fig. 3. Forward-mode translation. Note that everything is homomorphic except a few highlighted cases. Note

also that the type of every binder x:A changes (in let, case, and lambda), to x :

−→
D{A}.

The bottom line is this: all that happens in the type translation is that each real is replaced with a
pair of reals—hence the term “dual number”. Notice that only real numbers are dualised; integers
(and booleans, strings, etc if we had them) are unaffected.

The translation on terms is, for this reason, laughably simple: pairs translate to pairs, let expres-
sions to let expressions, and (crucially for the higher-order case) lambdas translate to lambdas and

applications translate to applications. The only interesting part is the translation for literals and

primitive functions over the reals. As you can see in Figure 3, real-number literals translate to a

pair of that literal and zero; while each primitive function over reals has its own translation, one

that expresses the mathematical knowledge of what the derivative of that function is. Discrete

literals and their functions are entirely unaffected.
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Given e : Ra → R

and

−→
D{e} : (R × δR)a → (R × δR)

we produce F {e} : (Ra × δRa) → δR
F {e} = λ((. . . , si, . . .), (. . . ,δsi, . . .)).

snd (
−→
D{e} (. . . , (si,δsi), . . .))

Fig. 4. The wrapper for forward differentiation

Although it looks simple, the transformation conceals one subtlety: the type of each binder

changes, according to the type translation in Figure 3. For example:

−→
D{λ(x:R). e} = λ(x:R × δR).

−→
D{e} (1)

Notice the way the type of x changes between the original and transformed program.

The first component of each dual number is exactly what appeared in the original program, the

so-called primal value. To be more precise, for any e : S → T and s :

−→
D{S}:

JprimalT (
−→
D{e} s)K = Je (primalS s)K

where primalA :

−→
D{A} → A is an operation that removes the second (delta) component of

each dual number returning just the primal value, recurring homomorphically over products and

sums. Keeping the original values alongside the tangent-space ones makes the transformation

compositional; for example, the forward derivative of an application,

−→
D{e1 e2}, is obtained by taking

the derivatives of e1 and e2 separately, and combining them:

−→
D{e1}

−→
D{e2} (see Figure 3).

Primal values are often used to compute delta values, for example in the translation for ×R:

−→
D{×R} = λ((x,δx), (y,δy)). (x × y, y × δx + x × δy)

To compute the second component of the pair, we need the primal values of x and y.

4.2 The Wrapper

Figure 4 connects this recursively-defined

−→
D{e} with the forward derivative F {e} that we estab-

lished as our goal in Section 3. We call F {e} a wrapper around
−→
D{e}. As you can see, the bulk of

the work is some tiresome shuffling, from a pair of a-tuples (passed into F {e}) into an a-tuple of
dual-number pairs (which is what

−→
D{e} needs). Finally

−→
D{e} returns a dual number, from which

we extract the second component, discarding the primal result. To reduce clutter, we describe F {e}
only for the special case of S = Ra, T = R. We generalise to arbitrary S and T in Section 9.

4.3 Correctness
Proposition 2 (Correctness of the forward-mode transformation).

If e : Ra → R, ®x : Ra, and δs : δRa, then JF {e}K(®x,δs) = JJeK(®x) • δs .

Proof. We refer to [Huot et al. 2020] for the proof of this statement. Because of the presence of

function types, it is proved by means of a logical relations argument, which defines the correctness

of the dual number representation at the real type, and at function types relates functions which

(hereditarily) preserve correctness. □

The correctness argument for our reverse-mode algorithm, in Section 7, is directly inspired by

their argument.
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←−
D1

S{A}
Reverse mode on types

←−
D1

S{R} = R × δS

←−
D1

S{e} Reverse mode on expressions

Invariant: If Γ ⊢ e : A, then
←−
D1

S{Γ} ⊢
←−
D1

S{e} :
←−
D1

S{A}

←−
D1

S{r} = (r, zeroS)
←−
D1

S{+R} = λ((x,δx), (y,δy)). (x + y,δx ⊕S δy)
←−
D1

S{×R} = λ((x,δx), (y,δy)). (x × y, (y ⊗S δx) ⊕S (x ⊗S δy))

Fig. 5. Reverse-mode AD #1 (terribly inefficient, as every real carries a value of type δS), where omitted rules

are as in Figure 3, with
←−
D1

S in place of
−→
D.

5 FINDING THE REVERSE DERIVATIVE
Having seen how to use dual numbers to get the forward derivative, we now replay the same

script to get the reverse derivative. It is provably correct (always a good starting point), but it is

tremendously inefficient. We will remedy that problem in subsequent sections.

5.1 One Pass instead of Many
Forward-mode AD is efficient if one only wants one partial derivative. However, to do gradient

descent on a function f : Ra → R, we need all of the partial derivatives. A naive approach for

doing so is to simply run the forward-mode AD algorithm a times, the Forward Plan of Section 3.2.

But instead of running a forward passes, each with a different one-hot vector in its input, an

obvious idea is to run one pass, computing a vector of all a results at once. More specifically, in

our dual-number approach, instead of pairing each real with another real, thus R × δR, we can
pair it with vector of a reals, thus R × δRa. Now, we can compute all of the partial derivatives in a

single run of the program. Although this is still a dual-number approach, it is extremely closely

connected with the so-called back-propagators of Wang et al. [2019], as we explain in Section 10.

However, there is no need to understand the mysteries of back-propagator functions to follow the

rather simple idea of returning n results all at once, rather than calling a function n times.

Tomake this idea concrete, the new translation

←−
D1

is given in Figure 5. The “1” superscript is there

because this is our first version; subsequent versions improve upon this one. It follows precisely

the same pattern as the dual-number forward-mode AD translation, comprising a translation on

types, contexts, and terms. The translation on types is identical to that in Figure 3, except for the

treatment of reals; on every other type, it acts homomorphically as before. Similarly, the translation

on terms is identical to that in Figure 3 except for the translation on real numbers and their primitive

functions. Indeed, in order to focus attention on the differences, Figure 5 does not even give the

translations for constructs when these translations are identical to those for

−→
D.

In the type translation, we see

←−
D1

S{R} = R × δS, so we still have a dual-number approach, but

now each real number is paired with a value of type δS, where S is, as always, the argument type

of the main expression (see Section 3.1). Here δS is a synonym for S, but suggestive that its values
range over small displacements (c.f. δR in Section 3.2).

In the translation for addition on reals, +R, we use δs1 ⊕S δs2 (Figure 1) to combine two values of

type δS; this operation (as others) assumes that the two values δs1 and δs2 have the same shape,

and straightforwardly adds corresponding reals. Similarly, in the translation for multiplication, we

use ⊗ to scale a δS value with a scalar real; r ⊗S δs multiplies each real in δs by r .
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Given e : Ra → R

and

←−
D1

Ra
{e} : (R × δRa)a → (R × δRa) (as defined in Figure 5)

we produce R1{e} : (Ra × δR) → δRa

R1{e} = λ((. . . , si, . . .),δt). snd (
←−
D1

Ra
{e} (. . . , (si,δt ⊗Ra onehotRa i), . . .))

using primitive onehotA : N→ δA

Fig. 6. Reverse-mode wrapper around
←−
D1

5.1.1 The Wrapper.

Next we build the wrapper R1{e} (Figure 6) that connects
←−
D1

S{e} to the API defined in Section 3.2.

As before, the wrapper is for the special case of S = Ra, T = R; see Section 9 for the general case.

The wrapper applies

←−
D1

Ra
{e} to an n-vector of dual numbers, each of which is a pair of si with

δt ⊗Ra onehotRa i. Recall that the primitive onehotRa i : Ra returns an a-vector that is zero
everywhere except at position i .

We note in passing that the argument type to

←−
D1

Ra
{e}, namely (R × δRa)a has size quadratic in a,

a serious concern that we return to in Section 5.2.

5.1.2 Summary.

It is perhaps remarkable that such a simple translation supports compositional reverse-mode AD

for a language with unrestricted higher order functions. It is far from efficient, as we will see, but it

is simple. We defer a correctness proof until Section 7, when we have the final version in hand.

5.2 Towards Efficiency: Intensional Updates
The reverse-mode AD of Section 5.1 does only a constant-factor more operations than the original

program. This must be so: just look at the transformation in Figure 5. The transformed program

will take precisely the same execution path as the original, while the primitive operations are each

modified to do a couple of extra operations alongside their original job. For example, we have

←−
D1

S{×R} = λ((x,δs1), (y,δs2)). (x × y, (y ⊗S δs1) ⊕S (x ⊗S δs2))

The “extra operations” are the calls to ⊕S and ⊗S . Alas, each of these extra operations is extremely

expensive. In the case where S = Ra, and supposing a = 10
6
, that means that each of those ⊕S

or ⊗S operations consume and produce a million-element vector. What was a single floating point

instruction in the original program has blown up to a million instructions, to say nothing of the

memory requirements. This will never work.

Another complication is concealed in the transformation

←−
D1

S{r} = (r, zeroS)

Here we are required to produce, out of thin air, a zero value of type δS. When S = Ra, doing so
might be expensive but is not difficult. But if S = S1 + S2 it is much trickier. Should we produce a

zero of shape (inl s1) or (inr s2)? Well, it should be the same as in the argument originally given to
the main program. So now this zero value depends not only on the type S but the value given to the

original program.
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data Delta = Zero

| OneHot N

| Scale R Delta

| Add Delta Delta

←−
D2{A} Reverse mode on types

←−
D2{R} = R × Delta

←−
D2{e} Reverse mode on expressions

Invariant: If Γ ⊢ e : A, then
←−
D2{Γ} ⊢

←−
D2{e} :

←−
D2{A}

←−
D2{r} = (r,Zero)
←−
D2{+R} = λ((x,u1), (y,u2)). (x + y,Add u1 u2)
←−
D2{×R} = λ((x,u1), (y,u2)).(x × y,Add (Scale yu1)

(Scale x u2))

Fig. 7. Reverse-mode AD #2 (still inefficient, because of lost sharing), where omitted rules are as in Figure 3,

with
←−
D2 in place of

−→
D

5.2.1 From Delta Values to Deltas of Values.

One way to finesse both of these problems is to change the type translation, like this:

←−
D2{R} = R × Delta

where we can think of Delta as specifying the difference, or “delta”, between two values of type S.
We might imagine choosing Delta to be a function of type S → S, that transforms one S value

into another nearby one. However, we only need a limited vocabulary of such functions, so it is

much nicer to represent deltas by a simple algebraic data type
5
, given in Figure 7. It turns out that

four constructors suffice to describe all the deltas we need. This formulation allows, for example,

inspection of a Delta and affords the chance for optimisation. This particular definition works only

for S = Ra (the OneHot constructor does not work for more elaborate choices of S), but we will
generalise our final version in Section 9.

Another way to regard Delta is as a sparse, or symbolic, representation for the values of type δS
whose size troubled us in Figure 5.

We can interpret this data structure as a function, via the functions eval2 and addAt , defined in

Figure 8. Note that both of these functions produce linear transformations Ra ⊸ Ra. Here, “linear”
refers to the property maintained by linear type systems, where the input is guaranteed to be used

exactly once. The implementation of addAt can thus be extremely efficient: it can work by in-place
mutation; linearity assures us that the input to addAt will not be used again. So we totally eliminate

the construction of big vectors of zeros and one-hot vectors. Instead, we have a single, mutable

value of type Ra which we update in place, guided by the Delta.

5.2.2 The Wrapper.

The wrapper R2{e} (for the special case of S = Ra, T = R) is described in Figure 8. We apply

←−
D2{e} to s0, an initial value obtained by pairing each real number in the input with a Delta for

that slot in the input. Then we run the eval2 function on a zero starting vector z and the Delta u

returned by

←−
D2{e} s0.

In retrospect, we can see that the Delta data structure plays a similar role to that of the “trace”,

or “tape”, or “Wengert list” of other well-established approaches to reverse-mode AD [Griewank

and Walther 2008]. Looked at from a sufficient distance, we have arrived a solution similar to these

other approaches, but by a very different and perhaps more principled route.

5
You can see this simply as representing the delta-function intensionally, rather than extensionally, using defunctionalisation

[Reynolds 1998].
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Given e : Ra → R

and

←−
D2{e} : (R × Delta)a → (R × Delta) (as defined in Figure 7)

we produce R2{e} : (Ra × δR) → δRa

R2{e} = λ((. . . , si, . . .),δt).
let s0 = (. . . , (si,OneHot i), . . .) in
let z = (. . . , 0, . . .) in
let (t,u) =

←−
D2{e} s0 in

eval2 δt u z

eval2 : R→ Delta→ Ra ⊸ Ra

eval2 x Zero ®x = ®x
eval2 x (OneHot i) ®x = addAt i x ®x
eval2 x (Scale y u) ®x = eval2 (x × y) u ®x
eval2 x (Add u1 u2) ®x = eval2 x u2 (eval2 x u1 ®x)

addAt : N→ R→ Ra ⊸ Ra

addAt i x ®y = . . .
-- Return ®y with its i’th component

-- increased by x

Fig. 8. Reverse-mode wrapper around
←−
D2

5.3 Finally Efficient: A Monadic Translation
The translation of Section 5.2 eliminates one form of asymptotic inefficiency (blowing up values by

a factor of a) but sadly introduces another that is just as bad. Consider f and its translation

←−
D2{f }:

f : R→ R
f = λx . let y:R = e in y + y

←−
D2{f } : (R × Delta) → (R × Delta)
←−
D2{f } = λx . let (y:R, ®y:Delta) =

←−
D2{e} in (y + y,Add ®y ®y)

Here the ®y : Delta is a perhaps-large data structure, arising from executing

←−
D2{e}; and

←−
D2{f }

returns a dual number whose second Delta component is Add ®y ®y. This latter structure is the

problem, because the eval2 function has no way to know that the two ®y are the same, and so will

simply evaluate ®y twice. In effect, we totally lose sharing of the let.
This loss of sharing is unacceptable. Consider a program with nested bindings:

let x1 = x + x in let x2 = x1 + x1 in let x3 = x2 + x2 in let . . . in xn + xn

The primal program and transformed programs both execute in time linear in n, but the eval2

function unravels the deeply-shared Delta structure into a tree of exponential size. This will not do.

5.3.1 A Monadic Translation.

The trick is, of course, to build a Delta structure with explicit rather than implicit sharing, and that

is achieved by the translation
6
in Figure 9 (defining

←−
D, our final answer, with no version number),

and its supporting functions in Figure 11. The translation itself is totally unsurprising: it is Moggi’s

call-by-value monadic translation [Moggi 1991].

6
We adopt several conveniences inspired by Haskell:

• do-notation allows sequencing of monadic operations by using statements.
• In the statement x ← e, when e : M A, then x : A.
• The expression pure e has type M A when e : A.
• The type of the do-expression is the same as the type of the expression in the last statement.
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First, theDelta structure is extendedwith two new constructors:Var DeltaId and Let DeltaId Delta Delta

which, as their names suggest, describe explicit sharing in a Delta structure. The type DeltaId is

the name, or index, of a Delta. In fact, as Figure 11 shows, a DeltaId is just a natural number N.
Perhaps surprisingly, in exchange, we can get rid of the OneHot constructor. Recall that it was

only used in the wrapper, when constructing the initial argument value s0 (Section 5.2.2). We will

see in Section 5.3.2 that we can use Var instead.

Second, the reverse-mode translation

←−
D{e} in Figure 9 transforms e with a standard monadic

translation that makes evaluation order explicit. This monad M is a state monad whose state,

DeltaState, comprises: (a) a unique supply to allocate fresh DeltaIds, and (b) an ordered list of Delta

bindings:

type M a = DeltaState→ (a,DeltaState)

type DeltaState = (DeltaId,DeltaBinds)

type DeltaBinds = [(DeltaId,Delta)]

It is an invariant of the translation that the Delta paired with any dual number is of the form Zero

or Var id , and hence can be freely copied without loss of sharing. This invariant comes under threat

in the translations for +R and ×R, when we construct new Delta values such as Add u1 u2. This is
the whole point of the monad: it supports an operation deltaLet : Delta→ M DeltaId which, given

a Delta structure u, allocates a fresh DeltaId , say uid; extends the bindings with the pair (uid, u);
and returns the uid. This function is used in

←−
D{+R} and

←−
D{×R} to ensure that each new Delta

value gets its own binding in the DeltaBinds, so we can return a Var , satisfying the invariant.

5.3.2 The Wrapper.

The new monadic translation needs a new wrapper, which as usual we give for the special case of

S = Ra, T = R, in Figure 10. This wrapper repays careful attention:

(1) First we construct an initial value s0, by pairing each real number in the input with a DeltaId

that identifies that particular slot of the input.

(2) Then we apply

←−
D{e} to s0, to get a value of type M (R × Delta)

(3) We use the function runDelta to execute the monadic computation, starting off the DeltaId

supply at a+1, the first free DeltaId . This function, defined in Figure 11, runs the computation

and then wraps the returned Delta in a nested series of Let bindings, This is the only place

that Let is used.

(4) Now the eval function computes finalMap : DeltaMap. In general eval δt u m extends the

map m : DeltaMap with the extra contributions described by u to the free DeltaIds of u,
scaled by δt .

(5) So finalMap will have a binding for each DeltaId in 1..n (unless it is unused). These are the

final partial derivatives, which we extract with lookupOrZero.

Figure 11 gives the rather simple definition of eval.

5.3.3 Using an Array.

The monad M is a state monad, and can therefore be implemented using mutable state: we simply

need a mutable structure to which we can add new DeltaBindings as execution proceeds. For

example, a dynamically-growable mutable array would work well.

The eval function takes and returns aDeltaMap, and uses it entirely linearly, as we have suggested

by the linear arrow in its type. So we can readily use a mutable array, indexed by DeltaId (a natural

number), rather than a Map data structure, thus

type DeltaMap = Array R -- Mutable
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←−
D{A} Reverse mode on types

←−
D{A × B} =

←−
D{A} ×

←−
D{B}

←−
D{A + B} =

←−
D{A} +

←−
D{B}

←−
D{A→ B} =

←−
D{A} → M

←−
D{B}

←−
D{K} = K
←−
D{R} = R × Delta

←−
D{e} Reverse mode on expressions

Invariant: If Γ ⊢ e : A, then
←−
D{Γ} ⊢

←−
D{e} : M

←−
D{A}

←−
D{x} = pure x
←−
D{λx . e} = pure λx .

←−
D{e}

←−
D{let x = e1 in e2} = do {x ←

←−
D{e1};

←−
D{e2}}

←−
D{e1 e2} = do {f ←

←−
D{e1}; x ←

←−
D{e2}; f x}

←−
D{inl e} = do {x ←

←−
D{e}; pure (inl x)}

←−
D{inr e} = do {x ←

←−
D{e}; pure (inr x)}

←−
D{case e0 of inl x1 → e1,

inr x2→ e2}
= do {x ←

←−
D{e0}; case x of inl x1 →

←−
D{e1},

inr x2→
←−
D{e2}}

←−
D{(e1, e2)} = do {x ←

←−
D{e1}; y ←

←−
D{e2}; pure (x, y)}

←−
D{fst e} = do {x ←

←−
D{e}; pure (fst x)}

←−
D{snd e} = do {x ←

←−
D{e}; pure (snd x)}

←−
D{k} = pure k
←−
D{+Z} = pure λ(x, y). pure (x +Z y)
←−
D{r} = pure (r,Zero)
←−
D{+R} = pure λ((x,u1), (y,u2)).

do {u3 ← deltaLet (Add u1 u2);
pure (x + y,Var u3)}

←−
D{×R} = pure λ((x,u1), (y,u2)).

do {u3 ← deltaLet (Add (Scale yu1) (Scale x u2));
pure (x × y,Var u3)}

Fig. 9. Monadic translation

Given e : Ra → R

and

←−
D{e} : (R × Delta)a → M (R × Delta) (as defined in Figure 9)

we produce R{e} : (Ra × δR) → δRa

R{e} = λ((. . . , si, . . .),δt).
let s0 = (. . . , (si,Var i), . . .) in
let (_,u) = runDelta (a + 1) (

←−
D{e} s0) in

letfinalMap = eval δt u emptyMap in
(. . . , lookupOrZero i finalMap, . . .)

Fig. 10. Reverse-mode wrapper around
←−
D

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 48. Publication date: January 2022.



Provably Correct, Asymptotically Efficient, Higher-Order Reverse-Mode Automatic Differentiation 48:15

Then addDelta is implemented by an in-place add to the specified slot in the array, while lookup

indexes it. The initial array, initialised to zeros, is constructed by emptyMap, and its size can be

obtained from runDelta as the final DeltaId allocated. (We omit the code for this little point.)

At this point we have essentially reconstructed Kmett/Pearlmutter/Siskind’s automatic differen-

tiation Haskell library ad [Kmett et al. 2021]. It is a very clever library, and now for the first time,

we understand how it works and can prove it correct.

5.3.4 Asymptotic Efficiency.

Our monadic translation is asymptotically efficient. Our translation introduces a constant-factor

overhead to the runtime, and space usage of a translated program has an overhead bounded by the

runtime of the original program.

Lemma 3 (Translation Efficiency).

Suppose we have a program e, and its reverse-mode translation
←−
D{e}, and further suppose that

both of these programs are run using a call-by-value evaluation strategy. Then:

(1) The runtime of
←−
D{e} is bounded by a constant-factor relative to the runtime of e.

(2) The memory usage of
←−
D{e} is bounded by the memory usage of e, plus the runtime of e.

Proof. The proof of each case is follows:

(1) To show the correctness of the runtime bound, observe that our translation takes a purely

functional program and translates it into monadic form, and replaces all of the floating-point

operations with new, instrumented versions. The monadic translation adds at most a constant

factor overhead, since each reduction of the original program becomes a few steps of the

instrumented program – since we use a state monad, each bind step involves an additional

function call to pass the state.

The additional work in each of the primitive operations (like plus and times) involves doing

a little more arithmetic, and passing some state to the Delta constructors. So assuming

that memory allocation and arithmetic are all constant-time operations, then the translated

primitives remain constant time. Therefore the cost of the arithmetic in the translation

is a constant factor worse than the original program, and since the number of arithmetic

operations is bounded by the runtime of the original program, this adds at most another

constant-factor overhead to

←−
D{e}.

Since the sum of two constant factors is still constant, the runtime of the translated program

is linear in the run time of the original program.

(2) The asymptotic memory usage of a monadic translation is the same as the original program.

In practice, allocating and deallocating closures for monadic state-passing is expensive, but

since the lifetime of all these intermediate values is short, the asymptotic allocation does not

change.

However, each translated primitive allocates a constant additional amount of memory and

adds it to the state. So the size of the state DeltaBinds being passed around will grow as the

program executes, proportional to the number of primitive operations the original program

performed. Since the number of primitive operations is bounded by the run time of the

original program, this means that the additional memory allocated can be bounded by the

run time of the original program.

Hence the additional asymptotic memory usage is at most linear in the runtime of the original

program.

□
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This is not quite enough to establish our time and space bounds, though. The R{e} function runs a

translated program to produce a Delta representing the derivative, which needs to be evaluated in

order to produce the actual derivative of interest. To do this, we will first show that eval, given in

Figure 11, also runs in linear time.

Lemma 4. Consider the expression eval x u um.

(1) The runtime of eval x u um is linear in the size of u.
(2) Evaluating eval x u um requires memory allocation at most linear in the size of u.

Proof. The proof of each case is a straightforward induction on u.

(1) Since the eval function evaluates each sub-term exactly once, and does a constant amount of

work in each case aside from the recursive calls, the run time of the eval function is linear in

the size of u.
(2) The eval function can allocate memory in the variable case (when addDelta is invoked) if the

variable is not already in the map um. Since the number of variables is bounded by the size

of u, this means the total memory allocation is also at most linear in the size of u.

□

We can put these two lemmas together to prove the efficiency of the overall algorithm:

Theorem 5 (Translation Efficiency). Suppose we have a program e, and its reverse-mode
translation R{e}. Then:

(1) The runtime of R{e} is bounded by a constant-factor relative to the runtime of e.
(2) The memory usage of R{e} is bounded by the memory usage of e, plus the runtime of e.

Proof. The R{e} function calls

←−
D{e}, and then builds a Delta named u from the DeltaBinds that

←−
D{e} returns using the runDelta function, and then calls eval on that.

(1) We know that the size of the DeltaBinds returned from

←−
D{e} is linear in the runtime of e, and

since runDelta is just a fold that also returns a u linear in the size of the DeltaBinds. Calling

eval on that u is also linear in the runtime of e, which means the overall runtime is linear in

the runtime of e.
(2) Again, we know the size of the DeltaBinds returned from

←−
D{e} is linear in the runtime of e.

Constructing a u also takes memory at most linear in the runtime of e, and running eval on u
takes memory at most linear in the runtime of e. Therefore the total memory overhead is at

most linear in the runtime of e.

□

6 IMPLEMENTATION
One well-known advantage of the dual-number approach, which we use for both forward and

reverse mode, is that in a language like OCaml or Haskell (and others) we do not need to do any

source-to-source transformation at all. In Haskell, all arithmetic is overloaded, so rather than the

top-level function having type e : Ra → R, it has type

e : ∀t . Real t ⇒ ta → t

We can instantiate t with type Float to do the primal computation, or with type Dual to do the

dual-number computation, where

data Dual = Dual Float Delta
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data Delta = Zero | Scale R Delta | Add Delta Delta | Var DeltaId | Let DeltaId Delta Delta

type DeltaBinds = [(DeltaId,Delta)] -- In reverse dependency order

type DeltaState = (DeltaId,DeltaBinds)

type DeltaId = N

type DeltaMap = Map DeltaId δR

eval : R→ Delta→ DeltaMap ⊸ DeltaMap

eval x Zero um = um
eval x (Scale y u) um = eval (x × y) u um
eval x (Add u1 u2) um = eval x u2 (eval x u1 um)
eval x (Var uid) um = addDelta uid x um
eval x (Let uid u1 u2) um = let um2 = eval x u2 um in

case lookup uid um2 of
Nothing → um2

Just x → eval x u1 (delete uid um2)

-- API for the Map type

emptyMap : DeltaMap

lookup : DeltaId → DeltaMap→ Maybe R

lookupOrZero : DeltaId → DeltaMap→ R

delete : DeltaId → DeltaMap ⊸ DeltaMap

addDelta : DeltaId → R→ DeltaMap ⊸ DeltaMap

-- Adds to an existing entry, or create an entry if one does not exist

-- The monad M

type M a = DeltaState→ (a,DeltaState)

runDelta : DeltaId → M (R,Delta) → (R,Delta)

-- Runs the computation, and wraps the result in

-- the bindings produced by running the computation

runDelta delta_id m = (res, foldl wrap delta binds)

where
((res, delta), ( , binds)) = m (delta_id, [ ])
wrap body (id, rhs) = Let id rhs body

instance Monad M where
return x = λs→ (x, s)
m >>= n = λs→ case m s of (r, s’) → n r s’

deltaLet : Delta→ M DeltaId

deltaLet delta = λ(delta_id, bs) → (delta_id, (delta_id + 1, (delta_id, delta) : bs))

Fig. 11. Supporting functions (rendered in Haskell-like syntax) for the monadic translation

The instance for Real Dual and Num Dual give the implementations for literals and the floating-

point operations. This approach is well described by Karczmarczuk [1998], who generalises it
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to a “lazy tower” of all the higher order derivatives as well, and taken up by Elliott [2009] and

Kmett/Pearlmutter/Siskind’s automatic differentiation Haskell library ad 7
[Kmett et al. 2021].

We can do much the same thing in OCaml by just parameterising over the implementation of

reals. Then, programs can be written as terms that take a structure implementing the reals, and

applying it to an implementation of the reals as dual numbers carrying a Delta.

7
Since Haskell is a pure language one would expect that a Haskell implementation of reverse mode using dual numbers

would require explicit source-to-source translation into monadic style. The ad library avoids the need for explicit translation
by (safely) using internal compiler primitives (which are not type safe in general) to maintain observable sharing.

module Program (R : Real) = struct
open R -- access real from the module R

-- along with arithmetic operations

type vec3 = {x : real; y : real; z : real }

type quaternion =

{x : real; y : real; z : real;w : real }

let q_to_vec (q : quaternion) : vec3 =
{x = q.x; y = q.y; z = q.z }

let dot (p : vec3) (q : vec3) : real =
p.x × q.x + p.y × q.y + p.z × q.z

-- Vector addition

let (++) (p : vec3) (q : vec3) : vec3 =
{x = p.x + q.x; y = p.y + q.y; z = p.z + q.z }

let scale k (v : vec3) : vec3 =
{x = k × v .x; y = k × v .y; z = k × v .z }

let cross (a : vec3) (b : vec3) : vec3 =
{x = a.y × b.z − a.z × b.y;
y = a.z × b.x − a.x × b.z;
z = a.x × b.y − a.y × b.x }

let norm (x : vec3) : real = sqrt (dot x x)

let rotate_vec_by_quat (v : vec3)
(q : quaternion) : vec3 =

let u = q_to_vec q in
let s = q.w in
scale (from_float 2.0 × dot u v) u
++

scale (s × s − dot u u) v
++

scale (from_float 2.0 × s) (cross u v)

end

-- Result of runDelta 8 (
←−
D{e} s0), where

-- e = λq v . (rotate_vec_by_quat v q).x

-- s0 = (q0 ; v0)

-- q0 = {(1.1; Var qx); (2.2; Var qy); (3.3; Var qz); (4.4; Var qw) }

-- v0 = {(5.5; Var vx); (6.6; Var vy); (7.7; Var vz) }

-- We informally use a Let/in notation for the constructor Let , and

-- use variable names instead of numbers, so xN stands for variable N+8

Let x1 = Add (Scale 5.5 (Var qy)) (Scale 2.2 (Var vx)) in
Let x2 = Add (Scale 6.6 (Var qx)) (Scale 1.1 (Var vy)) in
Let x3 = Add (Var x2) (Scale (−1.0) (Var x1)) in
Let x4 = Add (Scale 7.7 (Var qx)) (Scale 1.1 (Var vz)) in
Let x5 = Add (Scale 5.5 (Var qz)) (Scale 3.3 (Var vx)) in
Let x6 = Add (Var x5) (Scale (−1.0) (Var x4)) in
Let x7 = Add (Scale 6.6 (Var qz)) (Scale 3.3 (Var vy)) in
Let x8 = Add (Scale 7.7 (Var qy)) (Scale 2.2 (Var vz)) in
Let x9 = Add (Var x8) (Scale (−1.0) (Var x7)) in
Let x10 = Zero in
Let x11 = Add (Scale 4.4 (Var x10)) (Scale 2 (Var qw)) in
Let x12 = Add (Scale (−4.84) (Var x11)) (Scale 8.8 (Var x3)) in
Let x13 = Add (Scale 9.68 (Var x11)) (Scale 8.8 (Var x6)) in
Let x14 = Add (Scale (−4.84) (Var x11)) (Scale 8.8 (Var x9)) in
Let x15 = Add (Scale 3.3 (Var qz)) (Scale 3.3 (Var qz)) in
Let x16 = Add (Scale 2.2 (Var qy)) (Scale 2.2 (Var qy)) in
Let x17 = Add (Scale 1.1 (Var qx)) (Scale 1.1 (Var qx)) in
Let x18 = Add (Var x17) (Var x16) in
Let x19 = Add (Var x18) (Var x15) in
Let x20 = Add (Scale 4.4 (Var qw)) (Scale 4.4 (Var qw)) in
Let x21 = Add (Var x20) (Scale (−1.0) (Var x19)) in
Let x22 = Add (Scale 7.7 (Var x21)) (Scale 2.42 (Var vz)) in
Let x23 = Add (Scale 6.6 (Var x21)) (Scale 2.42 (Var vy)) in
Let x24 = Add (Scale 5.5 (Var x21)) (Scale 2.42 (Var vx)) in
Let x25 = Add (Scale 7.7 (Var qz)) (Scale 3.3 (Var vz)) in
Let x26 = Add (Scale 6.6 (Var qy)) (Scale 2.2 (Var vy)) in
Let x27 = Add (Scale 5.5 (Var qx)) (Scale 1.1 (Var vx)) in
Let x28 = Add (Var x27) (Var x26) in
Let x29 = Add (Var x28) (Var x25) in
Let x30 = Zero in
Let x31 = Add (Scale 45.98 (Var x30)) (Scale 2 (Var x29)) in
Let x32 = Add (Scale 3.3 (Var x31)) (Scale 91.96 (Var qz)) in
Let x33 = Add (Scale 2.2 (Var x31)) (Scale 91.96 (Var qy)) in
Let x34 = Add (Scale 1.1 (Var x31)) (Scale 91.96 (Var qx)) in
Let x35 = Add (Var x32) (Var x22) in
Let x36 = Add (Var x33) (Var x23) in
Let x37 = Add (Var x34) (Var x24) in
Let x38 = Add (Var x35) (Var x12) in
Let x39 = Add (Var x36) (Var x13) in
Let x40 = Add (Var x37) (Var x14) in
Var x40

Fig. 12. Rotating a vector by a quaternion. The function rotate_vec_by_quat defined on the left is applied at
a given q and v , producing the Delta on the right, which is evaluated to compute the seven derivative entries.
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Figure 12 shows a run from such an implementation, on a real-world example from computer

vision. The key observation is that the delta structure which is evaluated in the “backward” pass is

linear in runtime (operation count), and constructed entirely from the small set ofDelta constructors.

7 CORRECTNESS
The property we would like to establish about our reverse-mode translation is given in Figure 2.

Specializing it to the case of Ra → R, we get the following statement:

Theorem 6 (Correctness of R{e}).
If e is a closed term of typeRa → R then for all s : Ra , and δt : δR, JR{e}K (s,δt) = δt⊤•JJeK(s).

To prove this, we have to peek inside the R{e} wrapper function in Figure 10. When we do

so, we discover that it does two things. Given e, it first executes
←−
D{e} to build a Delta. Then, the

wrapper calls eval on the Delta to compute the actual result. We thus have two tasks. First, we have

to prove that the translation of the source program yields a correct Delta. Second, we have to prove

that our implementation of eval interprets our Deltas correctly.

Both of these tasks depend upon knowing what Deltas mean. We introduced Deltas in Figure 7

as a space-saving device, using them to represent the dual vectors in the original reverse-mode

translation in Figure 5. We then augmented Delta with variables and Let-bindings to represent

sharing. As a result, the language of Deltas looks very much like a simple language for symbolic

vector expressions augmented with Let-bindings. Indeed, we can interpret these terms precisely so,

working within a context mapping the bound DeltaIds to vectors Ra. Our interpretation function

JKD (where the D stands for the Deltas this function interprets) is as follows:

J_KD_ : Delta→ (DeltaId → Ra) → Ra

JZeroKDγ = ®0

JAdd u1 u2KDγ = Ju1KDγ + Ju2KDγ
JVar uidKDγ = γ (uid)
JLet uid e1 e2KDγ = Je2KD(γ , Je1KDγ/uid)
JScale r e1KDγ = r · (Je1KDγ )

This is a perfectly conventional semantics for an expression language, and is the semantics we

will use when defining the correctness of the reverse-mode translation. It is safe for us to do so,

since the reverse-mode translation is the phase which builds the delta, which is then followed by a

phase in which eval consumes the delta to produce the result.

7.1 Correctness of the Translation
Our goal is to prove that a certain class of programs – those of type Ra → R – are transformed into

their reverse-mode derivatives by our translation

←−
D. There are two features which make proving

the correctness of the translation difficult. One, our language includes first-class functions, and

two, our translation is an imperative and monadic, with each arithmetic operation appending to a

global tape. So we turn to the standard tool for dealing with higher-order stateful programs: we

use a binary Kripke logical relation [Jung and Tiuryn 1993].

Kripke logical relations. A logical relation is a family of relations, one for every type in our

programming language. Since we are relating each program to its translation, this relation must be

binary. Since our translation produces monadic stateful programs, we have to index the relations

by the possible (monotonically growing) states the program can execute in, which are the Kripke

worlds, denoted with C. As is usual for a logical-relations approach, all the action is at the base
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case – in our proof, for real numbers. The rest of the relation serves solely to show the behaviour

on real numbers is preserved by the other type formers.

The Fundamental Property (Theorem 8) shows that every well-typed term is related to its

translation. We can then use this property to show (Theorem 9) that, at the type Ra → R, the

translation of a program by

←−
D computes the entries of its Jacobian matrix.

We define our logical relation in Figure 13. While the overall structure of the relation is standard,

many of the individual pieces are unusual.

Before we get to the semantic novelties, though, there are a few modest simplifications in the

formal proof relative to the implementation. In particular, we work with variables rather than

de Bruijn indices, and we assume that we can freely invent fresh names rather than passing

around a name supply. This means that the definition of the monad in Figure 13 is given as

T a = DeltaBinds → (a,DeltaBinds) rather than M a = DeltaState → (a,DeltaState) (as in
Figure 11).

The relation at R. Our relationVa
A (C) relates the original type A to the translated type

←−
D{A},

where C ∈ Ra → DeltaBinds is our Kripke world. However, our relation is not between individual

programs – instead, it is a relation between Ra → JAK and Ra → J
←−
D(A)K. The elements of the

relation are (denotations) indexed by a vector in Ra (as is our Kripke world C).

The reason for working with families of values rather than values themselves is to make it

possible to talk about derivatives. Consider the base case of the relationVa
R (C), stated near the

top of Figure 13. Instead of relating values of the real number type to dual numbers, we relate

families of values of real numbers to families of dual numbers. Suppose f : Ra → R is related to

д : Ra → (R × Delta). Our relation requires f to be differentiable everywhere: note the appearance

of J f . Our relation further requires the first component of д(®x) to equal f (®x) (for all ®x) and the

second component ofд(®x) to be aDeltawhose interpretation is the appropriate entry in the Jacobian
of f . Since Jacobians need to be evaluated at a specific point ®x , we introduce the indexed-family

structure to abstract over all the possible ®xs.

Our translation

←−
D produces a Delta intended to be consumed by eval, but our logical relation

Va
R (C) interprets these Deltas using JKD . The eval function assumes its input Delta has a free

variables – let us call them z1 . . . za – corresponding to the a partial derivatives we seek. Accordingly,
our interpretation JKD requires each zi to be mapped to a unit vector onehotRa i; the ϕa environment

is exactly this mapping: ϕa = {zi 7→ onehotRa i |i ∈ 1..a}.
Most of the other clauses – for integers, functions, sums and products – are the standard for

logical relations, with small adjustments being made to deal with the fact that we are relating

families of values.

Monads and Kripke worlds. We must now formally relate our Kripke world C to the evolution of

theDeltaBinds state in our monad T . Intuitively, the Kripke world represents the currentDeltaBinds

state of the monadic computation. As programs in our translation evaluate, they incrementally add

bindings to this state. This context extension is the basis of our Kripke ordering: one state is later

in the Kripke ordering if it is a (non-shadowing) extension of the other one.

But even though the actual program has a monotonically-growingDeltaBinds, our logical relation

relates values indexed by Ra . Therefore, our Kripke worlds need to be DeltaBinds which are also
indexed by Ra . So the actual Kripke ordering, given in Figure 13, says thatC ′ ⊒ C whenC ′(®x) is an
extension of C(®x), pointwise for every ®x ∈ Ra .
Since a monadic computation begins in a particular world, and ends in a bigger one, we also

need to ensure that values introduced at one world C will continue to be valid at all later worlds.

This is the “the Kripke property” of the logical relation.
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Va
A ∈ (R

a → DeltaBinds) → P((Ra → JAK) × (Ra → J
←−
D(A)K))

Va
R (C) = {(f , λ®x . (f ®x ,Var y)) | f :R

a → R ∧ ∀C′ ⊒ C, ®x ∈ Ra . Jget (C′ ®x) (Var y)KDϕa = (J f )(®x)}

∪ {(f , λ®x . (f ®x ,Zero)) | f :Ra → R is constant}

Va
Z (C) = {(f , f ) | f :R

a → Z is constant}

Va
A×B (C) = {(⟨f ,д⟩, ⟨f

′,д′⟩) | (f , f ′) ∈ Va
A (C) ∧ (д,д

′) ∈ Va
B (C)}

Va
A+B (C) = {(f ; inl,д; inl) | (f ,д) ∈ V

a
A (C)} ∪ {(f ; inr ,д; inr ) | (f ,д) ∈ V

a
B (C)}

Va
A→B (C) = {(f , f

′) | ∀C′ ⊒ C, (v,v ′) ∈ Va
A (C

′). ((λ®x . f ®x (v ®x)), (λ®x . f ′ ®x (v ′ ®x))) ∈ EaB (C
′)}

Vn
Γ ∈ (R

a → DeltaBinds) → P((Ra → JΓK) × (Ra → J
←−
D(Γ)K))

Va
• (C) = {(h,h) | h : Ra → 1 = λ®x . ()}

Va
Γ,x :A(C) = {(⟨γ , f ⟩, ⟨γ

′, f ′⟩) | (γ ,γ ′) ∈ Va
Γ (C) ∧ (f , f

′) ∈ Va
A (C)}

type T a = DeltaBinds→ (a,DeltaBinds)

EnA ∈ (R
a → DeltaBinds) → P((Ra → JAK) × (Ra → T (J

←−
D(A)K)))

EaA(C) = {(f , f
′) | ∀C′ ⊒ C. ∃C′′ ⊒ C ′,д′. (λ®x . f ′ ®x (C′ ®x)) = ⟨д′,C′′⟩ ∧ (f ,д′) ∈ Va

A (C
′′)}

get : DeltaBinds→ Delta→ Delta

get [ ] x = x
get ((y, delta) : C) x = get C (Let y delta x)

C′ ⊒ C iff ∀®x ∈ Ra ,C′(®x) ⪰ C(®x), where
C ′ ⪰ C iff C ′ = C,C ′′ where dom(C) ∩ dom(C ′′) = ∅

⟨f ,д⟩ x = (f x ,д x)

f ;д is reverse function composition (“f is followed by д”), i.e. λx .д(f (x))

ϕa = {zi 7→ onehotRa i |i ∈ 1..a}

Fig. 13. Kripke logical relation

Lemma 7 (Kripke Monotonicity). If C ′ ⊒ C , then we have

(1) Va
A (a)(C

′) ⊇ Va
A (a)C

(2) EaA(a)(C
′) ⊇ EaA(a)C

The statement of Kripke monotonicity talks about the value relation Va
A (a)C, but also talks

about the expression relation EaA(a)C. Since our translation goes into a monadic language, our

logical relation also needs to have a clause relating purely functional computations to monadic

computations. The definition in Figure 13 says the expected thing: a pure computation is related to

a monadic one which computes a related value, but which possibly adds some additional elements

to the DeltaBinds being threaded through the computation. That is, a monadic computation can

begin in one world, and end in a later one.

The fundamental lemma is then proved as usual. We first lift the definition of the logical relation

to contextsVa
Γ (a)C , yielding a relation between (families of) substitutions γ and γ ′, and then show

that every well-typed term and its translation lies in the relation.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 48. Publication date: January 2022.



48:22 F. Krawiec, S. Peyton-Jones, N. Krishnaswami, T. Ellis, R. A. Eisenberg, A. Fitzgibbon

Theorem 8 (Fundamental Property).

For any Γ, e,A,C,γ ,γ ′, if Γ ⊢ e : A and (γ̂ , γ̂ ′) ∈ Va
Γ (C), then (γ̂ ; JeK, γ̂

′
; J
←−
D{e}K) ∈ EaA(C).

Proof. By rule induction, see appendix. □

As a consequence of the fundamental property, we can show that the reverse-mode translation

is adequate – i.e., it computes the correct result for any term of type Ra → R.

Theorem 9 (Adeqacy of

←−
D{e}). For all C ∈DeltaBinds, ®x ∈ Ra , if e is a closed term of typeRa →

R and ®x =
−−−−−−−−→
(®xi ,Var zi )i ∈1...a then there exists a C′ and z such that J

←−
D{e}K () ®x C = (C′, (JeK () ®x , z)),

and Jget C ′ zKDϕa = J(JeK ()) ®x .

Proof. The key observation to make is that (πi , λ®x .(πi (®x),Var zi )) is in the relation atVa
R (C).

To see this, note that πi : R
a → R simply picks out the i-th element of the vector of inputs. As

a result, its Jacobian Jπi will be the unit vector whose i-th element is one and which has zeros

in all other positions – the partial derivative
∂πi
∂x j

is 1 if i = j and 0 otherwise. Next, note that the

interpretation of zi in the basis vector environment ϕa , is just the unit vector which is 1 at i . As a
result, the interpretation of Var zi is precisely the Jacobian Jπi .

Write I for λ®x .(π0(®x)Var z0, . . . ,πa(®x)Var za). We can see that ⟨πi , . . . ,πa⟩ is related to I inV
a
Ra (a)

for any Kripke world. Since ⟨πi , . . . ,πa⟩ = idRa , we can simplify a bit further and see that idRa is

related to I . Then, the fundamental lemma tells us that idRa ; JeK is related to I ; J
←−
D{e}KD at EaR for

any Kripke world.

Finally, some algebraic simplification using the definitions of the logical relation and the monad

gives the claimed property. Intuitively, we are choosing to pass each parameter of the Ra parame-

terisation directly as the corresponding argument to JeK and J
←−
D{e}K, which is why the coefficient

of Var zi is the i-th partial derivative.

□

7.2 Correctness of eval
While the logical relation tells us that the reverse-mode translation gives us a Delta u which has

the correct meaning (i.e., JuKD is the right value), it is not enough to prove the correctness of R{e}.
For efficiency’s sake,R{e} uses the eval function to interpret the returnedDelta. This is important

because eval is guaranteed to examine each subterm of the expression exactly once, and never

builds intermediate arrays – it can thus update a single mutable data structure.

We now prove the correctness of eval.

Lemma 10 (Correctness of eval). If u is a Delta expression, γ is an environment mapping the
free variables of u to vector values,m is a DeltaMap with bindings for every free variable of u, and s is
a real number, then

s · JuKγ =
∑

a∈FV(u)

[(lookupOrZero (eval s u m) a) − (lookupOrZerom a)] · γ (a)

Proof. The proof is a mostly routine induction over the structure of u, with only a little slightly

involved algebra in the Let case. □

More important is to understand what the lemma is telling us. It tells us that:

(1) the argument s is a scaling factor of the value of u;
(2) the result is encoded in the difference between the input and output maps; and

(3) most importantly, the value of u is a linear combination of the values of its free variables.
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Suppose we have primitive function f : Rn → Rm, an implementation of mathematical function f ,
along with functions dfij that compute

∂fi
∂xj

.

We can add f for the forward- and reverse-mode translations (Figures 3 and 9) as follows:

−→
D{f} = λ((x1,δx1), . . . , (xn,δxn)).
let ®x = (x1, . . . , xn) in
let (y1, . . . , ym) = f ®x in
((y1,

∑n
i=1 df1i ®x × δxi), . . . ,

(ym,
∑n

i=1 dfmi ®x × δxi))

←−
D{f} = λ((x1,δx1), . . . , (xn,δxn)).
let ®x = (x1, . . . , xn) in let (y1, . . . , ym) = f ®x in
do { δy1 ← deltaLet (Addni=1 (Scale (df1i ®x)δxi));

. . . ;
δym ← deltaLet (Addni=1 (Scale (dfmi ®x)δxi));
pure ((y1,Var δy1), . . . , (ym,Var δym)) }

Fig. 14. Translation of arbitrary differentiable function

This last fact holds because our language of deltas has no nonlinear operators – we can only add

two vectors or scale a vector by a constant. It also turns out to be essential for proving Theorem 6.

Since the final expression has exactly the a free variables zi , and the intended interpretation of each

zi is a unit vector orthogonal to all of the others, the scaling for each basis vector gives the size of

the derivative in that coordinate. Consequently, our implementation can read off the coefficients

from the update map, without ever needing to explicitly materialise the unit vectors in ϕa .

8 GENERALISATIONS AND EXTENSIONS
8.1 Separate Compilation
Although we have framed our formalism in terms of a “main expression” that includes let-bindings
for all auxiliary functions, our approach is fully compatible with separate compilation of (the

derivatives of) library functions. We transform each library function definition f = e to its reverse

derivative fr ev =
←−
D{e}, and subsequently transform

←−
D{f } to fr ev .

Note carefully that the type of fr ev does not mention S, the argument type of the main expression;

it mentions only Delta, which itself is also entirely independent of S. In contrast, in our earlier

translation in Section 5.1, the type

←−
D1

S{A} does mention S, so that earlier translation does not

support separate compilation (assuming C-style linkage without runtime polymorphism).

8.2 Adding More Primitive Operations
In our translations above the only primitive operations we gave translations for were +R and ×R.

However, it is easy to add a translation rule for any differentiable primitive operation over reals. For

each one we must specify its (ordinary, forward) derivative in the translation. For example, to add

sin and cos we simply add their translations to Figure 9 (negateR is shorthand for λx . (−1.0) ×R x):
←−
D{sin} = pure (λ(x,u1). do {u2 ← deltaLet (Scale (cos x)u1); pure (sin x,Var u2)})
←−
D{cos} = pure (λ(x,u1). do {u2 ← deltaLet (Scale (negateR (sin x))u1); pure (cos x,Var u2)})

Because the difference between forward and reverse derivatives is not easily discerned for R→ R
functions, let us also look at the definition for a function fromR2 → R, using atan2 for concreteness:

←−
D{atan2} = pure λ((y,u2), (x,u1)).

do { let t = 1 / (x × x + y × y);
u3 ← deltaLet (Add (Scale (negateR y × t)u1) (Scale (x × t)u2));
pure (atan2 (y, x),Var u3) }

The general rules are given in Figure 14.
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These examples also illustrate another interesting point. Most approaches to reverse-mode

AD record some kind of trace of the forward execution, and then interpret that trace in reverse,

executing the derivative operations in the process. But our Delta is a bit different to such a trace: it

contains only five data constructors Add , Scale, Zero, Var , and Let , and real numbers. No record

whatsoever is kept of what operations were done in the forward execution. In the code for

←−
D{sin}

we allocate a data constructor (Scale (cos x)u1), but that (cos x) is computed in the forward pass,

with the resulting real number captured in the Scale data constructor. Similarly in atan2, the local

binding to t represents computation in the forward pass. This seems desirable — the work has to

be done some time — but it is striking how simple and canonical the Delta type is. You can see a

worked example in Figure 12, where only constructors and real numbers appear in the right hand

column, despite the program on the left making calls to the sqrt function.

8.3 Arrays
Any serious AD system must support arrays and tensors well. Happily, it is easy to do so. For

example, suppose we add a type Vector , with operations build and index to construct arrays and

take them apart
8
:

indexA : (Vector A × N) → A buildA : (N × (N→ A)) → Vector A

Then we can extend the translation of Figure 9 as follows:

Type translation Term translation

←−
D{Vector A} =Vector

←−
D{A}

←−
D{indexA} =pure (λx . pure (index←−

D{A}
x))

←−
D{buildA} =pure (λx . sequence←−

D{A}
(build

M

←−
D{A}

x))

Here sequenceA : Vector (M A) → M (Vector A) is a standard function in the monadic program-

mer’s arsenal.

These translations may be asymptotically efficient, but they might not have a good constant

factor; for example a Vector R translates to Vector (R × Delta), a vector of pairs. It might be more

efficient to use a pair of vectors, using a translation like

Type translation
←−
D{Vector R} = Vector R × Vector Delta
←−
D{Vector A} = Vector

←−
D{A} when A , R

That would be entirely possible; but of course the translation of the primitives would also need the

same special cases. Indeed, many source languages have vectorised operations such as element-wise

addition two tensors, or matrix multiplication, so another alternative might be to treat Vector R
(and perhaps multi-dimensional versions) as new, primitive, differentiable data types alongside R.

8.4 Floating Point Arithmetic
As mentioned above, our correctness results apply for true real numbers. This is valuable, and an

important improvement over existing works as argued above. An additional extension, to perform

a sensitivity analysis for floating point, would certainly be of interest, but is firmly future work.

8
Our language lacks polymorphism, but we can allow these operations to be polymorphic by giving them their own typing

rules, just as we do for (e1, e2) and inl e.
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Given e : Ra → R

and

←−
D{e} : (R × Delta)a → M (R × Delta) (as defined in Figure 9)

we produce

←−
D ′(e) : (R × Delta)a → M (R × Delta)
←−
D ′(e) = λ((x1,δx1), . . . , (xn,δxn)).

let x = ((x1,Var 1), . . . , (xn,Var n)) in
let (y,u) = runDelta (a + 1) (

←−
D{e} x) in

letfinalMap = eval 1 u emptyMap in
do { δy ← deltaLet (Addni=1 (Scale (lookupOrZero i finalMap)δxi));

pure (y,Var δy) }

Fig. 15. Fused reverse mode

8.5 Recursion and Recursive Types
Given that (a) we use a set-theoretic semantics for the language, and (b) the transformation is the

identity everywhere except the real number type, it seems likely that adding inductive datatypes

and folds over them will be unproblematic.

Adding full general recursion (and beyond that, mixed-variance recursive types) requires more

involved changes to our correctness proof: we will need to extend our model to a domain-theoretic

semantics or step-indexed logical relation, and we need a treatment (e.g., as offered in [Mazza and

Pagani 2021]) of how to handle the nondifferentiable points arising from divergence.

8.6 Computing Higher-Order Derivatives
This paper is concerned with computing the first-order derivative of a function. What about higher-

order derivatives? That is, we might want to know not only how a function f changes, but also how

its derivative changes – f ’s second derivative. As we see in Figure 1, many forms of our language

appear only in the output of differentiation and cannot be used in the input. Accordingly, simply

running our transformation twice, by trying to compute R{R{e}} is not straightforward.
A more promising approach is described by Karczmarczuk [1998], who generalises from the dual

numbers to triple numbers, to compute first and second derivatives simultaneously, alongside the

primal. That is, we currently transform a program over reals R to a program over pairs of reals

R× δR. To get second derivatives, we can produce a program over triples of reals R× δR× δδR. To
get higher derivatives we can use quadruples, etc, and indeed Karczmarczuk successfully generalises

to a lazily-evaluated infinite tower of derivatives.

We have not worked out the details, but this seems to be a more promising approach than trying

to compute R{R{e}}.

8.7 Selective Fusion of Delta Traces
Suppose our program has a (let-bound) function definition like this:

f : R→ R
f = λx . x ×R sin x

Our translation will yield a definition of f :(R × Delta) → M (R × Delta), and every call to f will

build a bit of Delta data structure; and the bigger f is the more structure would be built. And yet, if

we were to think of f as a primitive function, we could use the approach of Section 8.2 to define a

function that built a constant amount of Delta structure.
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The transformation is given in Figure 15, in the special case of expressions of type Ra → R. We

start from the existing transformation

←−
D{e}, and produce a modified transformation

←−
D ′(e) with

the same type signature, so we can simply use

←−
D{e} instead of

←−
D ′(e) wherever we please. The new

transformation runs the wrapper code of Figure 10, and then wraps that in the impedance-matching

code of Figure 14, using the partial derivatives returned by runDelta.

But why is this better? It is better because the Delta constructors produced by

←−
D{e} can fuse

(statically, at compile time) with the consumption of those constructors in eval. In our little example

we would ultimately produce this code, which allocates one Scale constructor rather than many:

f : (R × Delta) → M (R × Delta)
f = λ(x,u).do { y ← deltaLet (Scale (sin x +R (x ×R cos x))u);

pure (x +R sin x,Var y) }

We can apply the same trick to expressions of more general type, S → T , using the techniques of

Section 9. A harder question is this: exactly when should we use

←−
D ′(e) instead of

←−
D{e}? We do not

yet have an answer to that question, and leave it for future work.

9 GENERALISING TO ARBITRARY S AND T

Our compositional, recursive transformations

−→
D and

←−
D work for expressions of any type, but we

have thus far restricted the main expression to have type Ra → R. Happily, everything we have

done can be generalised to work for main expressions of type S → T , for arbitrary first-order

S and T , and we describe how to do so in this section. Generalising to arbitrary S and T is very

useful in practice; for example, the main expression might take an integer parameter and two

differently-shaped vectors, thus e : Ra1 × Z × Ra2 → R.
We only deal with first-order types S and T ; we do not attempt to differentiate main expressions

whose argument or result types include functions
9
.

To accomodate arbitrary first-order S and T , we need no changes to the translations in Figure 3

and 9; nor to the Delta data type; nor to the functions in Figure 11. The only changes needed are to

the forward and reverse wrappers, and are shown in Figure 16.

9.1 Generalised Forward Mode
The forward-mode wrapper in Figure 16 is a straightforward generalisation of that in Figure 4 —

indeed, it even looks a little simpler! It employs two new polytypic functions, whose types are

given in Figure 16. First, zipS does the re-assocation from a pair (S × δS) to a dualised S-structure
with a dual number at each real-valued leaf. In the special case of Figure 4 this re-association took

the form of transposing a pair of tuples into a tuple of pairs.

Finally deltaT takes the dual-number T structure returned by the function, and extracts the

second component of each dual number; it is the companion to primal.

9.2 Generalised Reverse Mode
The reverse-mode wrapper in Figure 16 embodies the following changes, compared with Figure 10:

• The initial value s0:
←−
D{S} is obtained by replacing every real number si in s with a dual

number (si,Var uid), where uid is a distinct DeltaId . This is done by the polytypic function

initVarsS , which enumerates the real-valued slots of s left-to-right, giving each a distinct

DeltaId . It returns the last used DeltaId as well as the dualised s.

9
Perhaps we could, simply by treating such functions as constants, but it does not seem an important use-case to pursue.
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Wrapper for forward derivative (generalised from Figure 4):

Given e : S → T
and

−→
D{e} :

−→
D{S} →

−→
D{T } (as defined in Figure 3)

we produce F {e} : (S × δS) → δT
F {e} = λx . deltaT (

−→
D{e} (zipS x))

Wrapper for reverse derivative (generalised from Figure 10):

Given e : S → T
and

←−
D{e} :

←−
D{S} → M

←−
D{T } (as defined in Figure 9)

we produce R{e} : (S × δT ) → δS
R{e} = λ(s,δt).

let (s0,δv) = initVarsS (s, 0) in
letδt0 = initZerosT δt in
let (_,u) = runDelta (δv + 1) (

←−
D{λ(s,δt). e s ⊙T δt} (s0,δt0)) in

letfinalMap = eval 1 u emptyMap in
lookupS (finalMap, s0)

New polytypic primitives:

deltaA :
−→
D{A} → δA Select delta component of all dual numbers

zipA : (A × δA) →
−→
D{A} Zip two A-structures together

initVarsA : (A × DeltaId) → (
←−
D{A} × DeltaId) Dualise each R with Var uid

initZerosA : A→
←−
D{A} Dualise each R with Zero

lookupA : (DeltaMap ×
←−
D{A}) → δA Look up each dual in the map

Fig. 16. Reverse-mode wrapper for general S and T

• We also define δt0:
←−
D{δT }, by dualising δt in a similar way, but pairing each real value with

Zero rather than Var uid. This is done by the polytypic function initZeros.

• We apply the

←−
D transform not to e, but to the expression λ(s,δt). e s ⊙T δt , which has type

S × δT → R. That is, we take the (polytypic) dot-product (see Figure 1) of the result of the
call e s with δt , to get a R.

• The transformed expression has type

←−
D{S} ×

←−
D{δT } → M (R × Delta), so we can apply it

to (s0,δt0) to get a value of type M (R × Delta) which is what runDelta needs.

• Then, in the last line of the definition of R{e}, we walk over s0 with the polytypic function

lookupS , replacing each dual-number leaf (si,Var uid) with the result of looking up uid in

finalMap, or zero if it is not in the map.

Notice that all this works smoothly for sums as well as products. If the input argument uses inl e at
some point, so will the corresponding initial value s0, and so will the returned value of type δS. The
number of DeltaIds needed to build s0 may be different for different input values s, even if they

all have the same type S, but that is absolutely fine. The zipS and ⊙T operations used in Figure 16

require their two arguments to have the same “shape” – but that is already the case for vectors,

where the sizes must match.
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(1) (2) (3) (4)

Reverse Higher Asymptotically Correctness

mode order efficient proof

[Pearlmutter and Siskind 2008] ✓ ✓ ✓ ✗
[Elliott 2018] ✓ ✗ ✗ ✓
[Wang et al. 2019] ✓ ✓ ✓ ✗
[Plotkin and Abadi 2020] ✓ ✗ ✓ ✓
[Sherman et al. 2021] ✓ ✓ ✓ ✗
[Huot et al. 2020] ✓ ✓ ✗ ✗
[Mazza and Pagani 2021] ✓ ✓ ✗ ✓
Ours ✓ ✓ ✓ ✓

Fig. 17. Properties of various works on AD

10 RELATEDWORK
There is a rich and rapidly growing literature on automatic differentiation, going back over 50 years

[Wengert 1964]. Here we focus primarily on work that tackles reverse-mode AD for higher-order
languages with full first-class functions. In Figure 17 we summarise some key works using the four

properties described in the Introduction; we discuss each of these works below.

The original work on AD was aimed at first-order imperative programming languages [Griewank

andWalther 2008], but there has always been interest in extending it to support richer programming

languages. The case of forward mode is easy (indeed, almost trivial) to extend to higher-order;

the dual number representation of the reals means that any form of parameterisation over the

representation of the real number type (eg, Haskell type classes orML functors) suffices to implement

forward-mode AD. This observation is by no means original to functional languages. To our

knowledge it was popularised by [Piponi 2004] in the context of C++ template meta-programming,

and by [Karczmarczuk 1998] and [Elliott 2009] in the context of type-class overloading. However,

the idea was in use in the scientific computing world long before then.

Beginning with the pioneering work of Pearlmutter and Siskind in “Lambda the ultimate back-
propagator” [Pearlmutter and Siskind 2008], there has been significant effort to extend reverse mode
to support higher-order programming languages. Their work uses an elaborate source-to-source

transformation reminiscent of defunctionalisation, which made it possible to apply many of the

techniques for first-order automatic differentiation to the higher-order case. Although it is full

of insights that shaped following research, this work was implementation-focused, and offered

neither an intended semantics nor a correctness proof.

The complexity of the ultimate-backpropagator approach prompted several responses. On the

implementation side, [Wang et al. 2019] observed that much implementation complexity could be

avoided through the strategic use of delimited control to get the same program to perform both the

forward and reverse pass. Combined with the use of staging, this made it possible to write very

efficient implementations of automatic differentiation.

In [Elliott 2018], Elliott argued that a useful lens for understanding automatic differentiation was

to focus on designing transformations which operated in a compositional way. Though this work did

not scale up to higher-order languages
10
, it did offer a smoothly compositional and mathematically

well-behaved treatment of AD, which proved influential in succeeding work. [Plotkin and Abadi

2020] also study a first-order programming language with a differentiation construct. They equip

this language with both operational and denotational semantics, which they show coincide.

10
But see http://conal.net/papers/higher-order-ad/ for Elliott’s work in progress.
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[Brunel et al. 2020] synthesised the ideas of [Elliott 2018] and [Wang et al. 2019], and showed

that their continuation-based approach could be analysed in terms of a language with a linear

negation operator. They do indeed give a formal correctness proof of their transformation, but the

language they study does not include conditionals or looping.

To understand these issues better, [Mazza and Pagani 2021] studied reverse-mode AD in the

context of PCF. To simplify their presentation, they gave up on the linear negation (and hence

were not concerned with the efficiency of implementation), but were able to show that a language

with higher-order functions, branching and recursion has an AD algorithm which was correct

everywhere except a measure 0 set.

[Huot et al. 2020] proposed the approach we most directly base our work upon. They give a

denotational semantics for a higher-order language with bounded iteration and conditionals using

diffeological spaces, and use this semantics to show that the forward-mode AD algorithm is correct.

Roughly, the structure of the category of diffeological spaces encodes the information of a logical

relation, enabling them to model full function spaces. The semantics we give is more “low-tech”,

making it easier to work in things like state monads, but the core insights derive from this paper.

They also briefly sketch a reverse-mode translation phrased in terms of linear continuations of

type R⊸ Ra; [Wang et al. 2019] use “back-propagator” for the same function. However, since these

continuations are always linear, the type R⊸ Ra is isomorphic to the type Ra. By systematically

applying this isomorphism to their reverse-mode translation, we can derive our first inefficient

version of reverse mode in Figure 5, the baseline that we subsequently optimise.

The fact that simple, “geometry-ignorant” optimisations sufficed surprised us, since a priori one
would expect the algebraic properties of derivatives to play a more significant role. In different

ways, [Vákár 2021] and [Mak and Ong 2020] both take this approach. [Vákár 2021] uses a variant

of the enriched effect calculus [Egger et al. 2012] and specifies a translation, while [Mak and Ong

2020] use a version of the differential lambda calculus and give a direct operational semantics.

Despite their differences, both of these approaches emphasise the significance of the linearity

of the derivative in their respective calculi, by making it part of the syntax of the language. Our

deltas, as Lemma 10 shows, never store nonlinear functions in their trace, and our use of lets to

preserve sharing is mirrored in the A-normalising reduction rules of the pullback terms of [Mak

and Ong 2020]. While we cannot yet make any precise claim, the connections are tantalising.

With the exception of [Mazza and Pagani 2021], all of the work above (including our own)

focuses on smooth, differentiable functions. This would seem to prohibit using important activation

functions like RelU, which is not smooth (RelU’s derivative has a discontinuity at 0). This problem

is attacked by [Sherman et al. 2021] (who claim inspiration from [Vákár 2021] and [Elliott 2018]).

This paper takes Elliott’s non-higher-order semantics and considers presheaves over Elliott’s

category, enabling them to model sums and function types. Furthermore, they make use of the

Clarke derivative (or subderivative) in order to give semantics to non-differentiable functions like

ReLU. While this is definitely valid, one puzzling feature of this approach is that subderivatives

were originally invented for convex optimisation, and it is unclear whether it works in principle

for ML-style gradient descent problems. They do have an implementation of λS , but why it works

remains somewhat mysterious – perhaps [Mazza and Pagani 2021] can shed light on this.
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