
The BCPL Cintsys and Cintpos

User Guide
by

Martin Richards

mr10@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr10/

Computer Laboratory

University of Cambridge

Revision date: Sat Feb 7 04:54:13 PM UTC 2026

Abstract

BCPL is a simple systems programming language with a small fast compiler which
is easily ported to new machines. The language was first implemented in 1967
and has been in continuous use since then. It is a typeless and provides machine
independent pointer arithmetic allowing a simple way to represent vectors and
structures. BCPL functions are recursive and variadic but, like C, do not allow
dynamic free variables, and so can be represented by just their entry addresses.
There is no built-in garbage collector and all input-output is done using library
calls.

This document describes both the single threaded BCPL Cintcode System
(called Cintsys) and the Cintcode version of the Tripos portable operating system
(called Cintpos). It gives the definition of standard BCPL including the recently
added features such as floating point expressions and constructs involving oper-
ators such as <> and op:=. The language has recently been extended to include
some of the pattern matching features of MCPL. This manual also describes the
standard library and running environment and the native code version of the
system based on Sial. Installation instructions are included. Since May 2013,
the standard BCPL distribution supports both 32 and 64 bit Cintcode versions.
Since August 2014, standard Cintcode BCPL includes floating point constants
and operators, and since March 2018 it includes the FLT feature to make it easier
to perform floating point calculations. Pattern matching was added in September
2021. These extensions are now in the standard BCPL distribution.

Keywords: Systems programming language, BCPL, Cintcode, Cintpos

2

Contents

Preface vii

1 The System Overview 1
1.1 A Cintsys Console Session . 1
1.2 A Cintpos Console Session . 8

2 The BCPL Language 13
2.1 Language Overview . 14

2.1.1 Comments . 14
2.1.2 The GET Directive . 15
2.1.3 Conditional Compilation 15
2.1.4 Section Brackets . 16

2.2 Expressions . 16
2.2.1 Names . 16
2.2.2 Constants . 16
2.2.3 Function Calls . 20
2.2.4 Method Calls . 21
2.2.5 Prefixed Expression Operators 21
2.2.6 Infixed Expression Operators 22
2.2.7 Boolean Evaluation . 23
2.2.8 MATCH Expressions . 23
2.2.9 EVERY Expressions . 24
2.2.10 VALOF Expressions . 24
2.2.11 Expression Precedence . 25
2.2.12 Manifest Constant Expressions 26

2.3 Commands . 26
2.3.1 Assignments . 27
2.3.2 Routine Calls . 28
2.3.3 Conditional Commands . 28
2.3.4 Repetitive Commands . 28
2.3.5 SWITCHON command . 29
2.3.6 MATCH Command . 29
2.3.7 EVERY Command . 30

i

ii CONTENTS

2.3.8 Flow of Control . 30
2.3.9 Compound Commands . 31
2.3.10 Blocks . 32

2.4 Declarations . 32
2.4.1 Labels . 33
2.4.2 Manifest Declarations . 33
2.4.3 Global Declarations . 33
2.4.4 Static Declarations . 34
2.4.5 LET Declarations . 34
2.4.6 Dynamic Free Variables 37

2.5 Patterns . 38
2.6 Separate Compilation . 41
2.7 The FLT Feature . 42
2.8 The objline1 Feature . 45

3 The Library 47
3.1 Manifest constants . 48
3.2 Global Variables . 59
3.3 Global Functions . 61

3.3.1 Streams . 103
3.3.2 The Filing System . 104

3.4 Random Access . 106
3.5 RAM streams . 106
3.6 Environment Variables . 106
3.7 Coroutine examples . 108

3.7.1 A square wave generator 108
3.7.2 Hamming’s Problem . 109
3.7.3 A Discrete Event Simulator 111

3.8 The BMP Graphics Library . 117
3.8.1 The Graphics Functions 118

3.9 The SDL Graphics Library . 122
3.9.1 sdl.h details . 122
3.9.2 Functions defined in sdl.b 124
3.9.3 sys(Sys sdl,...) calls 129

3.10 The GL Graphics Library . 133
3.11 The Sound Library . 134

3.11.1 The Sound Constants . 134
3.11.2 The Sound Global Variables 134
3.11.3 The Sound Functions . 134

3.12 The EXT Library . 135

CONTENTS iii

4 The Command Language 137
4.1 Bootstrapping Cintsys . 137

4.1.1 Quiet mode execution . 139
4.2 Bootstrapping Cintpos . 140

4.2.1 The Cintpos BOOT module 140
4.2.2 startroot . 142

4.3 Commands . 145
4.4 cli.b and cli init.b . 175

5 Console Input and Output 179
5.1 Cintsys console streams . 179
5.2 Cintpos console streams . 180

5.2.1 Devices . 181
5.2.2 Exclusive Input . 182
5.2.3 Direct access to the screen and keyboard 182

6 Cintpos Devices 183
6.0.1 The Clock Device . 183
6.0.2 The Keyboard Device . 184
6.0.3 The Screen Device . 184
6.0.4 TCP/IP Devices . 184

7 The Debugger 187
7.1 The Cintsys Debugger . 187
7.2 The Cintpos Debugger . 191
7.3 Debugging Techniques . 192
7.4 Finding a bug during the development of playmus.b 199

8 The Design of OCODE 201
8.1 Representation of OCODE . 201
8.2 The OCODE Abstract Machine 202
8.3 Loading and Storing values . 203
8.4 Field Selection Operators . 205
8.5 Expression Operators . 206
8.6 Functions and Routines . 207
8.7 Control . 209
8.8 Directives . 210
8.9 Discussion . 211

9 The Design of Cintcode 213
9.1 Designing for Compactness . 214

9.1.1 Global Variables . 216
9.1.2 Composite Instructions . 216

iv CONTENTS

9.1.3 Relative Addressing . 216
9.2 The Cintcode Instruction Set . 217

9.2.1 Byte Ordering and Alignment 217
9.2.2 Loading Values . 219
9.2.3 Indirect Load . 220
9.2.4 Expression Operators . 221
9.2.5 Simple Assignment . 222
9.2.6 Indirect Assignment . 222
9.2.7 Function and Routine Calls 223
9.2.8 Flow of Control and Relations 225
9.2.9 Switch Instructions . 225
9.2.10 Miscellaneous . 227
9.2.11 Floating-point Instructions 228
9.2.12 Select Instructions . 228
9.2.13 Undefined Instructions . 229
9.2.14 Corruption of B . 229
9.2.15 Exceptions . 229

9.3 Example translation of code fragments 229
9.3.1 Translation of mk1 . 233
9.3.2 Translation of mk2 . 233
9.3.3 Translation of rnamelist 234
9.3.4 Translation of trnext . 235
9.3.5 Translation of tst in patcmpltest.b 237
9.3.6 Translation of coins and c in patdemos/coins.b 239
9.3.7 Translation of rotleft from patdemos/splay.b 241

10 The BCPL Compiler 245
10.1 Lexical Analyser . 246
10.2 Syntax analyser . 247
10.3 The translation phase . 254
10.4 The Codegenerator . 254

11 The Design of Sial 255
11.1 The Sial Specification . 258
11.2 Compaction of Sial . 269

12 The MC Package 271
12.1 MC Example . 272
12.2 MC Library Functions . 275
12.3 The MC Language . 277
12.4 MC Debugging Aids . 285
12.5 The n-queens Demonstration . 285

CONTENTS v

13 Installation 289
13.1 Linux Installation . 290
13.2 Command Line Arguments . 293
13.3 Installation on Other Machines 294
13.4 Installation for Windows XP . 294
13.5 Installation using Cygwin . 295
13.6 Installation for Windows CE2.0 296
13.7 The Native Code Version . 296

14 Example Programs 299
14.1 Coins . 299
14.2 Primes . 300
14.3 Queens . 300
14.4 Fridays . 301
14.5 Lambda Evaluator . 302
14.6 Fast Fourier Transform . 307

Bibliography 311

A BCPL Syntax Diagrams 313

B The Syntax of Lexical Token 320

vi CONTENTS

Preface

The concept for BCPL originated in 1966 and was first outlined in my PhD
thesis [4]. Its was first implemented early in 1967 when I was working at M.I.T.
Its heyday was perhaps from the mid 70s to the mid 80s, but even now it is still
continues to be used at some universities, in industry and by private individuals.
It is a useful language for experimenting with algorithms and for research in
optimizing compilers. Cintpos is the multi-tasking version of the system based
on the Tripos [5]. It is simple and easy to maintain and can be used for real-time
applications such as process control. BCPL was designed many years ago but
is still useful in areas where small size, simplicity and portability are important.
Recently I have decided to augment BCPL with some of the features of MCPL
including particularly the pattern matching mechanism used in the definition of
functions.

This document is intended to provide a record of the main features of the
BCPL in sufficient depth to allow a serious reader to obtain a proper understand-
ing of philosophy behind the language. An efficient interpretive implementation
is presented, the source of which is freely available via my home page [3]. The
implementation is machine independent and should be easy to transfer to almost
any architecture both now and in the future.

The main topics covered by this report are:

� A specification of the BCPL language.

� A description of its runtime library and the extensions used in the Cintpos
system.

� The design and implementation of command language interpreters for both
the single and multi-threaded versions of the system.

� A description of OCODE, the intermediate code used in the compiler, and
Cintcode, the compact byte stream target code used by the interpreter.

� A description of the single and multi-threaded interactive debugger and
other debugging aids.

� The efficient implementation of the Cintcode interpreter for several proces-
sors including both RISC and i386/Pentium based machines.

vii

viii CONTENTS

� The profiling and statistics gathering facilities offered by the system.

� The SIAL intermediate code that allows easy translation of BCPL in native
code for most architectures, including, for instance, the Raspberry Pi.

� The MC package that allows machine independent dynamic compilation
and execution of native machine code.

For many example BCPL programs see bcpl4raspi.pdf available from my
home page.

MR

Chapter 1

The System Overview

This document contains a full description of an interpretive implementation of
BCPL that supports a command language and low level interactive debugger. As
an introduction, two example console sessions are presented to exhibit some of
the key features of both the single threaded version of the system (Cintsys) and
the interpretive version of Tripos (Cintpos).

1.1 A Cintsys Console Session

The BCPL Cintcode system can be entered using the cintsys shell command
under the host operating system. If cintsys is called with the -h option it will
output the following information about other possible options.

Valid arguments:

-h Output this help information

-m n Set Cintcode memory size to n words

-t n Set Tally vector size to n words

-g n Set the default global vector upb to n

-q Set quiet mode. This stops the resident system

fromm outputing text other than error messages and

and debugging aids. It also stops the CLI from

outputting prompts and stops the echoing of

standar input (normally the keyboard).

-c args Pass args to interpreter as CLI input

-- args Pass args to interpreter as CLI input,

then re-attach stdin

-s file args Invoke the interpreter with this file as CLI input

-cin name Set the pathvar environment variable name

-f Trace use of environment variables in pathinput

-v Trace the bootstrapping process

-vv As -v, but include some Cincode level tracing

1

2 CHAPTER 1. THE SYSTEM OVERVIEW

-d Cause a dump of the Cintcode memory to DUMP.mem

if a fault/error is encountered

-slow Force the slow interpreter to always be selected

The Cintsys system is normally started using the cintsys shell command.
This demonstration was run when I was logged in as user mr on a machine called
Cobham. The BCPL Cintcode system was already properly installed. The demon-
stration was run in the root directory of the BCPL Cintcode system as was entered
as follows.

mr@Cobham~$ cd $BCPLROOT
mr@Cobham~/distribution/BCPL/cintcode$
mr@Cobham~/distribution/BCPL/cintcode$ cintsys

BCPL 32-bit Cintcode System (18 Jul 2022)
0.000>

The characters 0.000> are followed by a space character and is the command
language prompt string inviting the user to type a command. The number gives
the execution time in seconds of the preceding command. A program called
fact.b in directory cintcode/com to compute factorials can be displayed using
the type command as follows:

0.000> type com/fact.b
GET "libhdr"

LET start() = VALOF
{ FOR i = 1 TO 5 DO writef("fact(%n) = %i4*n", i, fact(i))

RESULTIS 0
}

AND fact(n) = n=0 -> 1, n*fact(n-1)
0.000>

The directive GET "libhdr" causes the standard library declarations to be
inserted at that position. The text:

LET start() = VALOF

is the heading for the declaration of the function start which, by convention, is
the first function to be called when a program is run. The empty parentheses ()
indicate that the function expects no arguments. The text

FOR i = 1 TO 5 DO

1.1. A CINTSYS CONSOLE SESSION 3

introduces a for-loop whose control variable i successively takes the values from
1 to 5. The body of the for-loop is a call of the library function writef whose
effect is to output the format string after replacing the substitution items %n

and %i4 by appropriately formatted representations of i and fact(i). Within
the string *n represents the newline character. The statement RESULTIS 0 exits
from the VALOF construct providing the result of start that indicates the program
completed successfully. The text:

AND fact(n) =

introduces the definition of the function fact which take one argument (n) and
yields n factorial. The word AND causes fact and start to be defined simulta-
neously allow start to call fact. This program can be compiled by using the
following command:

0.000> bcpl com/fact.b to fact

32 bit BCPL (18 Jul 2022) with pattern matching, 32 bit target
Code size = 104 bytes 0f 32-bit little ender Cintcode
0.034>

This command compiles the source file fact.b creating an executable object
module in the file called fact. The program can then be run by simply typing
the name of this file.

0.034> fact
fact(1) = 1
fact(2) = 2
fact(3) = 6
fact(4) = 24
fact(5) = 120
0.006>

When the BCPL compiler is invoked, it can be given additional arguments
that control the compiler options. One of these (d1) directs the compiler to
output the compiled code in a readable form, as follows:

0.010> bcpl com/fact.b to fact d1

BCPL (3 Sep 2019) 32 bit with the FLT feature
0: DATAW 0x00000000
4: DATAW 0x0000DFDF
8: DATAW 0x6174730B

12: DATAW 0x20207472
16: DATAW 0x20202020

// Entry to: start
20: L10:
20: L1
21: SP3
22: L12:

4 CHAPTER 1. THE SYSTEM OVERVIEW

22: LP3
23: LF L2
25: K9
26: SP9
27: LP3
28: SP8
29: LLL L19920
31: K4G 94
33: L15:
33: L1
34: AP3
35: SP3
36: L5
37: JLE L12
39: L14:
39: L13:
39: L0
40: RTN
44: L19920:
44: DATAW 0x6361660F
48: DATAW 0x6E252874
52: DATAW 0x203D2029
56: DATAW 0x0A346925
60: DATAW 0x0000DFDF
64: DATAW 0x6361660B
68: DATAW 0x20202074
72: DATAW 0x20202020

// Entry to: fact
76: L11:
76: JNE0 L16
78: L1
79: RTN
80: L16:
80: LM1
81: AP3
82: LF L11
84: K4
85: LP3
86: MUL
87: RTN
88: DATAW 0x00000000
92: DATAW 0x00000001
96: DATAW 0x00000014
100: DATAW 0x0000005E

Code size = 104 bytes 0f 32-bit little ender Cintcode
0.050>

This output shows the sequence of Cintcode instructions compiled for the func-
tions start and fact. In addition there are some data words holding the string
constant, initialisation data and symbolic information for the debugger. The
data word at location 4 holds a special bit pattern indicating the presence of a
function name placed just before the entry point. As can be seen the name in
this case is start. Similar information is packed at location 60 for the function
fact. Most Cintcode instructions occupy one byte and perform simple opera-

1.1. A CINTSYS CONSOLE SESSION 5

tions on the registers and memory of the Cintcode machine. For instance, the
first two instructions of start (L1 and SP3 at locations 20 and 21) load the
constant 1 into the Cintcode A register and then stores it at word 3 of the cur-
rent stack frame (pointed to by P). This corresponds to the initialisation of the
for-loop control variable i. The start of the for-loop body has label L12 corre-
sponding to location 22. The compilation of fact(i) is LP3 LF L11 K9 which
loads i and the entry address of fact and enters the function incrementing P

by 9 locations. The result of this function is returned in A which is stored in
the stack using SP9 in the appropriate position for the third argument of the
call of writef. The second argument, i, is setup using LP3 SP8, and the first
argument which is the format string is loaded by LLL L19920. The next instruc-
tion (K4G 94) causes the routine writef, whose entry point is in global variable
94, to be called incrementing P by 4 words as it does so. Thus the compilation
of the call writef("fact(%n) = %i5*n", i, f(i)) occupies just 11 bytes from
location 22 to 32, plus the 16 bytes at location 44 where the string is packed.
The next three instructions (L1 AP3 SP3) increment i, and L5 JNE L12 jumps
to label L12 if i is less than or equal to 5. If the jump is not taken, control falls
through to the instructions L0 RTN causing start to return with result 0. Each
instruction of this function occupies one byte except for the LF, LLL, K4G and JNE

instructions which each occupy two. The body of the function fact is equally
easy to understand. It first tests whether its argument is zero (JNE0 L10). If it
is, it returns one (L1 RTN). Otherwise, it computes n-1 by loading -1 and adding
n (LM1 AP3) before calling fact (LF L11 K4). The result is then multiplied by n

(LP3 MUL) and returning (RTN). The space occupied by this code is just 12 bytes.
The debugger can be entered using the abort command.

0.030> abort

!! ABORT 99: User requested
*

The asterisk is the prompt inviting the user to enter a debugging command. The
debugger provides facilities for inspecting and changing memory as well as setting
breakpoints and performing single step execution. As an example, a breakpoint
is placed at the first instruction of the routine clihook which is used by the
command language interpreter (CLI) to transfer control to a command. Consider
the following commands:

* g4 b1
* b
1: clihook
*

This first loads the entry point of clihook (held in global variable 4) and sets
(b1) a breakpoint numbered 1 at this position. The command b, without an

6 CHAPTER 1. THE SYSTEM OVERVIEW

argument, lists the current breakpoints confirming that the correct one has been
set. Normal execution is continued using the c command.

* c
0.006>

If we now try to execute the factorial program, we immediately hit the break-
point.

0.000> fact

!! BPT 1: clihook
A= 0 B= 0 25172: K4G 1 (=G1)

*

This indicates that the breakpoint occurred when the Cintcode registers A and
B were both zero, and that the program counter is set to 25172 where the next
instruction to be obeyed is K4G 1. Single step exection can now be performed
using the \ command.

* \ A= 0 B= 0 60124: L1
* \ A= 1 B= 0 60125: SP3
* \ A= 1 B= 0 60126: LP3
*

After each single step execution, a summary of the current state is printed. In
the above sequence we see that the execution of the instruction L1 loading 1 into
the A register. The execution of SP3 does not have an immediately observable
effect since it updates a local variable held in the current stack frame, but the
stack frame can be displayed using the t command.

* p t4

P 0: 60276 25174 start 1
*

This confirms that location P3 contains the value 1 corresponding to the initial
value of the for-loop control variable i. At this stage it is possible to change its
value to 3, say.

* 3 sp3
* p t4

P 0: 60276 25174 start 3
*

If single stepping is continued for a while we observe the evaluation of the
recursive call fact(3).

1.1. A CINTSYS CONSOLE SESSION 7

* \ A= 3 B= 1 60127: LF 60180
* \ A= fact B= 3 60129: K9
* \ A= 3 B= 3 60180: JNE0 60184
* \ A= 3 B= 3 60184: LM1
* \ A= -1 B= 3 60185: AP3
* \ A= 2 B= 3 60186: LF 60180
* \ A= fact B= 2 60188: K4
* \ A= 2 B= 2 60180: JNE0 60184
* \ A= 2 B= 2 60184: LM1
* \ A= -1 B= 2 60185: AP3
* \ A= 1 B= 2 60186: LF 60180
* \ A= fact B= 1 60188: K4
* \ A= 1 B= 1 60180: JNE0 60184
* \ A= 1 B= 1 60184: LM1
* \ A= -1 B= 1 60185: AP3
* \ A= 0 B= 1 60186: LF 60180
* \ A= fact B= 0 60188: K4
* \ A= 0 B= 0 60180: JNE0 60184
* \ A= 0 B= 0 60182: L1
* \ A= 1 B= 0 60183: RTN
* \ A= 1 B= 0 60189: LP3
* \ A= 1 B= 1 60190: MUL
* \ A= 1 B= 1 60191: RTN
* \ A= 1 B= 1 60189: LP3
* \ A= 2 B= 1 60190: MUL
* \ A= 2 B= 1 60191: RTN
* \ A= 2 B= 1 60189: LP3
* \ A= 3 B= 2 60190: MUL
* \ A= 6 B= 2 60191: RTN
* \ A= 6 B= 2 60130: SP9
* \ A= 6 B= 2 60131: LP3
* \ A= 3 B= 6 60132: SP8
* \ A= 3 B= 6 60133: LLL 60148
* \ A= 15037 B= 3 60135: K4G 94 (=G94)
*

At this moment the routine writef is just about to be entered to print an message
about factorial 3. We can unset breakpoint 1 and continue normal execution by
typing 0b1 c.

* 0b1 c
fact(3) = 6
fact(4) = 24
fact(5) = 120
0.036>

As one final example in this session we will re-compile the BCPL compiler.

0.010> bcpl com/bcpl.b to junk

32 bit BCPL (18 Jul 2022) with pattern matching, 32 bit target
Code size = 21824 bytes of 32-bit little ender Cintcode
Code size = 20544 bytes of 32-bit little ender Cintcode
Code size = 15832 bytes of 32-bit little ender Cintcode
0.569>

8 CHAPTER 1. THE SYSTEM OVERVIEW

This shows that the total size of the compiler is 58,200 bytes and that it can be
compiled (on a 2.17GHz CPU) in 0.569 seconds. Since this involves executing
54,579,958 Cintcode instructions, the rate is about 96 million Cintcode instruc-
tions per second with the current interpreter. This Cintcode execution rate can
be confirmed by running the sysinfo command.

0.569> sysinfo

TGZDATE: Fri 3 Mar 16:55:54 GMT 2023
Build: Linux
Flags: SOUND CALLC
The hst is a little ender machine
Host address size = 64 bits
BCPL word size = 32 bits
Execution rate = 96,796,486 Cintcode instrctions per second

1.642>

1.2 A Cintpos Console Session

When the Cintpos system is started (on a machine called meopham) in the di-
rectory Cintpos/cintpos, its opening message is as follows:

meopham$ cintpos

Cintpos System (09 Mar 2010)
0.000 1>

There is a directory called com that holds the BCPL source code of several
Cintpos commands, such as bcpl.b, bench100.b and fact.b. We can inspect
fact.b using the type command as follows.

0.000 1> type com/fact.b
SECTION "fact"

GET "libhdr"

LET f(n) = n=0 -> 1, n*f(n-1)

LET start() = VALOF
{ FOR i = 1 TO 10 DO

writef("f(%i2) = %i8*n", i, f(i))
RESULTIS 0

}
0.000 1>

It can be compiled and run as follows.

0.000 1> c bc fact
bcpl com/fact.b to cin/fact hdrs POSHDRS

1.2. A CINTPOS CONSOLE SESSION 9

BCPL (20 Oct 2009)
Code size = 120 bytes
0.020 1> fact
f(1) = 1
f(2) = 2
f(3) = 6
f(4) = 24
f(5) = 120
f(6) = 720
f(7) = 5040
f(8) = 40320
f(9) = 362880
f(10) = 3628800
0.000 1>

There is a benchmark program called bench100.b which can be compiled and
run as follows.

0.000 1> c bc bench100
bcpl com/bench100.b to cin/bench100 hdrs POSHDRS

BCPL (20 Oct 2009)
Code size = 1444 bytes
0.040 1> bench100

bench mark starting, Count=1000000

starting

finished
qpkt count = 2326410 holdcount = 930563
these results are correct
end of run
9.170 1>

The latest prompt (9.170 1>) indicates that the benchmark program took 9.17
seconds to run and that we are connected to the root command language inter-
preter running as task one.

When Cintpos starts these are six resident tasks which can be seen using the
status command as follows.

0.000 1> status
Task 1: Root_Cli running CLI Loaded command: status
Task 2: Debug_Task waiting DEBUG
Task 3: Console_Handler waiting COHAND
Task 4: File_Handler waiting FH0
Task 5: MBX_Handler waiting MBXHAND
Task 6: TCP_Handler waiting TCPHAND
0.010 1>

Task 2 is an interactive debugging aid, task 3 handles communication between
tasks and the keyboard and display devices, task 4 handles communication be-
tween tasks and the filing system, task 5 provides a mailbox facility that allows

10 CHAPTER 1. THE SYSTEM OVERVIEW

communication of short text messages between tasks and, finally, task 6 handles
TCP/IP communication between tasks and the internet.

Tasks may be dynamically created and destoyed. For instance, the run com-
mand will create a new CLI task giving it a command to run.

0.010 1> run status
0.000 1> Task 1: Root_Cli waiting CLI No command loaded
Task 2: Debug_Task waiting DEBUG
Task 3: Console_Handler waiting COHAND
Task 4: File_Handler waiting FH0
Task 5: MBX_Handler waiting MBXHAND
Task 6: TCP_Handler waiting TCPHAND
Task 7: Run_Cli running CLI Loaded command: status

Notice that the root CLI (task 1) completes the execution of the run command
and issues a prompt (0.000 1>) before the newly created CLI (task 7) has had
time to load and run the status command. As soon as task 7 finishes running
the status command it commits suicide leaving the original 6 tasks.

The bounce.b program provides a demonstration of how communication be-
tween Cintpos tasks works.

0.000 1> type com/bounce.b
SECTION "bounce"

GET "libhdr"

LET start() BE qpkt(taskwait()) REPEAT
0.000 1>

It can be compiled and run as follows.

0.000 1> c bc bounce
bcpl com/bounce.b to cin/bounce hdrs POSHDRS

BCPL (20 Oct 2009)
Code size = 60 bytes
0.010 1> run bounce
0.000 1> status
Task 1: Root_Cli running CLI Loaded command: status
Task 2: Debug_Task waiting DEBUG
Task 3: Console_Handler waiting COHAND
Task 4: File_Handler waiting FH0
Task 5: MBX_Handler waiting MBXHAND
Task 6: TCP_Handler waiting TCPHAND
Task 7: Run_Cli waiting CLI Loaded command: bounce
0.000 1>

The status output shows that the bounce program is running as task 7 and is
suspended in taskwait waiting for another task to send it a packet. When it
receives a packet it immediately returns it to the sender and waits for another to
arrive. We can send a suitable packet to bounce using the send command whose
source code is as follows.

1.2. A CINTPOS CONSOLE SESSION 11

0.000 1> type com/send.b
SECTION "send"

GET "libhdr"

GLOBAL { task: 200; count: 201 }

LET start() BE
{ LET pkt = VEC 2
LET argv = VEC 50

UNLESS rdargs("TASK/n,COUNT/n", argv, 50) DO
{ writef("Bad arguments for SEND*n")
stop(20)

}

task, count := 7, 1_000_000
IF argv!0 DO task := !argv!0
IF argv!1 DO count := !argv!1

pkt!0, pkt!1, pkt!2 := notinuse, task, count

writef("*nSending a packet to task %n, %n times*n", task, count)

{ LET k = pkt!2
UNLESS k BREAK
pkt!2 := k-1
qpkt(pkt)
pkt := taskwait()

} REPEAT

writes("Done*n")
}
0.010 1>

This program creates a packet consisting of a vector (one dimensional array) of
three elements. The first is used by the system for chaining packets together
and must be initialised the the special value notinuse. The next element of the
packet (pkt!1) holds the destination task number and the final element (pkt!2)
holds a value (initially 1000000) which is going to be used as a counter. The
REPEAT loop decrements this counter field and sends the packet using qpkt to
the bounce task suspending itself in taskwait until the packet returns. Control
leaves the REPEAT loop when the counter reaches zero, causing send to output
the message Done. We can compile and run send as follows.

0.010 1> c bc send
bcpl com/send.b to cin/send hdrs POSHDRS

BCPL (20 Oct 2009)
Code size = 252 bytes
0.020 1> send

Sending a packet to task 7, 1000000 times
Done
3.940 1>

12 CHAPTER 1. THE SYSTEM OVERVIEW

This demonstration shows that a packet may be sent from one task to another
2 million times in 3.94 seconds. This corresponds to a rate of just over half a
million times per second.

Chapter 2

The BCPL Language

The design of BCPL owes much to the work done on CPL (originally Cambridge
Programming Language) which was conceived at Cambridge to be the main lan-
guage to run on the new and powerful Ferranti Atlas computer to be installed
in 1963. At that time there was another Atlas computer in London and it was
decided to make the development of CPL a joint project between the two Uni-
versities. As a result the name changed to Combined Programming Language. It
could reasonably be called Christopher’s Programming Language in recognition
of Christpher Strachey whose bubbling enthusiasm and talent steered the course
of its development.

CPL was an ambitious language in the ALGOL tradition but with many novel
and significant extensions intended to make its area of application more general.
These included a greater richness in control constructs such as the now well known
IF, UNLESS, WHILE, UNTIL, REPEATWHILE, SWITCHON statements. It could handle
a wide variety of data types including string and bit patterns and was one of the
first strictly typed languages to provided a structure mechanism that permitted
convenient handling of lists, trees and directed graphs. Work on CPL ran from
about 1961 to 1967, but was hampered by a number of factors that eventually
killed it. It was, for instance, too large and complicated for the machines available
at the time, and the desire for elegance and mathematical cleanliness outweighed
the more pragmatic arguments for efficiency and implementability. Much of the
implementation was done by research students who came and left during the
lifetime of the project. As soon as they knew enough to be useful they had
to transfer their attention to writing theses. Another problem (that became of
particular interest to me) was that the implementation at Cambridge had to
move from EDSAC II to the Atlas computer about halfway through the project.
The CPL compiler thus needed to be portable. This was achieved by writing it
in a simple subset of CPL which was then hand translated into a sequence of
low level macro calls that could be expanded into the assembly language of either
machine. The macrogenerator used was GPM[6] designed by Strachey specifically
for this task. It was a delightfully elegant work of art in its own right it is well

13

14 CHAPTER 2. THE BCPL LANGUAGE

worth study. A variant of GPM, called BGPM, is included in the standard BCPL
distribution.

BCPL was initially similar to this subset of CPL used in the encoding of
the CPL compiler. An outline of BCPL’s main features first appeared in my
PhD thesis [4] in 1966 but it was not fully designed and implemented until early
the following year when I was working at Project MAC of the Massachussetts
Institute of Technology. Its first implementation was written in Ross’s Algol
Extended for Design (AED-0)[1] which was the only language then available on
CTSS, the time sharing system at Project MAC, other than LISP that allowed
recursion.

2.1 Language Overview

A BCPL program is made up of separately compiled sections, each consisting of a
list of declarations that define the constants, static data and functions belonging
to the section. Within functions it is possible to declare dynamic variables and
vectors that exist only as long as they are required. The language is designed so
that these dynamic quantities can be allocated space on a runtime stack. The
addressing of these quantities is relative to the base of the stack frame belonging
to the current function activation. For this to be efficient, dynamic vectors have
sizes that are known at compile time. Functions may be called recursively and
their arguments are called by value. The effect of call by reference can be achieved
by passing pointers. Input and output and other system operations are provided
by means of library functions.

The main syntactic components of BCPL are: expressions, commands, and
declarations. These are described in the next few sections. In general, the pur-
pose of an expression is to compute a value, while the purpose of a command is
normally to change the value of one or more variables or to perform input/output.

2.1.1 Comments

There are two form of comments. One starts with the symbol // and extends
up to but not including the end-of-line character, and the other starts with the
symbol /* and ends at a matching occurrence of */. Comment brackets (/* and
*/may be nested, and within such a comments the lexical analyser is only looking
for /* and */ and so special care is needed when commenting out fragments of
program containing // comments and string constants. Comments are equivalent
to white space and so may not occur within of multi-character symbols such as
identifiers or constants.

2.1. LANGUAGE OVERVIEW 15

2.1.2 The GET Directive

A directives of the form GET "filename" is replaced by the contents of the named
file. Early versions of the compiler only inserted the file up to the first occurring
dot but now the entire file is inserted. By convention, GET directives normally
appear on separate lines. If the filename does not end in .h or .b the extension
.h is added.

The name is looked up by first searching the current directory and then
the directories specified by the environment variable whose name is held in the
rtn hdrsvar of the rootnode, but this can be overridden using the hdrs com-
piler option. The default environment variable for BCPL headers is BCPLHDRS

under Cintsys and POSHDRS under Cintpos. Header files are normally in the g/

directory in the root directory of the current system. To check whether the envi-
ronment variables are set correctly, enter cintsys or cintpos with the -f option
as suggested in Section 3.6.

2.1.3 Conditional Compilation

A simple mechanism, whose implementation takes fewer than 20 lines of code
in the lexical analyser allows conditional skipping of lexical symbols. It uses
directives of the following form:

$$tag
$<tag
$~tag
$>tag

where tag is conditional compilation tag composed of letters, digits, dots and
underlines. All tags are initially unset, but may be complemented using the $$tag
directive. All the lexical tokens between $<tag and $>tag are skipped (treated as
comments) unless the specified tag is set. All the lexical tokens between $~tag
and $>tag are skipped unless the specified tag is not set.

The following example shows how this conditional compilation feature can be
used.

$$Linux // Set the Linux conditional compilation tag

$<Linux // Include if the Linux tag is set
$<WinXP $$WinXP $>WinXP // Unset the WinXP tag if set
writef("This was compiled for Linux")

$>Linux
$<WinXP // Include if the WinXP tag is set
writef("This was compiled for Windows XP")

$>WinXP

16 CHAPTER 2. THE BCPL LANGUAGE

2.1.4 Section Brackets

Historically BCPL used the symbols $(and $) to bracket commands and decla-
rations. These symbols are called section brackets and are allowed to be followed
by tags composed of letters, digits, dots and underlines. A tagged closing sec-
tion bracket is forced to match with its corresponding open section bracket by
the automatic insertion of extra closing brackets. Use of this mechanism is no
longer recommended since it often leads to obscure programming errors. BCPL
has been extended to allow all untagged section brackets to be replaced by { and
} as appropriate.

2.2 Expressions

Expressions are composed of names, constants and expression operators and may
be grouped using parentheses. The precedence and associativity of the different
expression constructs is given in Section 2.2.11. BCPL expressions always vield
values of the same size, normally of length 32 or 64 bits.

2.2.1 Names

A name is of a sequence of letters, digits, dots and underlines starting with a
letter, but it must not one of the reserved words (such as IF, WHILE or RESULTIS).
The use of dots in names is no longer recommended, and should be replaced by
underscores. Double dots are no longer permitted in names because .. is the
range operator used in the pattern matching extension.

A name may be declared as a local variable, a static variable, a global variable,
a manifest constant, a label or a function or routine. Since the language is
typeless, the value of a name is just a bit pattern whose interpretation depends
on how it is used. This is similar to the way values in central registers of most
computers are used.

2.2.2 Constants

Decimal numbers consist of a sequence of digits, while binary, octal or hexadeci-
mal are represented, respectively, by #B, #O or #X followed by digits of the appro-
priate sort. Letters in hexadecimal numbers may use both upper and lower case
and the case of the letters B, O or X after #. The O may be omitted in octal num-
bers. Underlines may be inserted within numbers to improve their readability.

2.2. EXPRESSIONS 17

The following are examples of valid numbers:

1234
1_234_456
#B_1011_1100_0110
#o377
#X3fff
#x_DEADC0DE

Since August 2014, floating point constants are now allowed, such as the
following:

1234.0
12.
.34
1.234_456e-5
10e6

Note that 12.34 is a floating point number, but 12..34 is 12 followed by
the range operator .. and 34. A floating point constant must contain a decimal
point (.) or an exponent sign (e or E). A decimal point can start or end a floating
point number.

BCPL uses the standard IEEE representation for floating point numbers using
the same word length as other BCPL values For 32-bit BCPL the format is as
follows. The left most bit is the sign with 1 representing negative. The next 8
bits hold an unsigned number e in the range 0 to 255. e = 0 and e = 255 are used
to specify in the representation of some special values such as zero, infinity or
various error values. The values between 1 and 254 specify binary exponents in
the range -126 to +127 equal to e−127. The remaining 23 bits are the fractional
bits of the significand. For non zero values, the significand has 24 bits with its
left most bit being 1 followed by these 23 fractional bits. This represents a value
greater than or equal to 1.0 and less than 2.0. Note that 1+8+23=32. The value
of the floating point number is the significand multiplied by 2e−127. As a special
case, the number 0.0 is represented by a bit pattern of zeroes.

For 64-bit numbers the exponent has 11 bits and the significand has 53. Note
that 1+11+52=64.

The compiler does not use any floating point operators or constants using,
where necessary, calls of the form sys(Sys flt,...) to perform any floating
point calculations needed. This allows the compiler to be compiled using older
versions of the compiler. Floating point constants are currently only compiled
correctly if the BCPL word length of the compiler is the same as that of the
target code.

TRUE and FALSE are reserved words that have values -1 and 0, respectively,
representing the two truth values. They can be used in manifest constant ex-
pressions. Whenever a boolean test is made, the value is compared with with
FALSE (=0). BITSPERBCPLWORD is also a reserved word whose value is 32 or 64

18 CHAPTER 2. THE BCPL LANGUAGE

giving the BCPL word length currently being used. This constant was added on
16 May 2013 to allow the same header file to be used on both 32- and 64-bit
BCPL systems. It is used in the MANIFEST declarations of constants such as
bytesperword and minint that are word length dependent. If you are using an
older BCPL compiler with the latest version of libhdr.h you will need to un-
comment a line that declares BITSPERBCPLWORD as a MANIFEST constant with
the appropriate value for the system you are using.

The commands BREAK, LOOP, NEXT, EXIT, ENDCASE, RETURN, RESULTIS E

and GOTO E are permitted in expressions and have the same effect as the
corresponding commands as described in Section 2.3.8. They all provide a way
to escape from the normal flow of execution of expressions. Except for RESULTIS
E they provide nothing new since they could all be prefixed by VALOF] and

have the same effect they have always had. The only new feature

is that RESULTIS E will escape to an already existing VALOF block

enclosing the current expression.

these could have been prefiexed by VALOF without changing their

effects.

A question mark (?) may be used as a constant with undefined

value. It can also be used in statements such as:

LET a, b, count = ?, ?, 0
sendpkt(notinuse, rdtask, ?, ?, Read, buf, size)

Constants of the form: SLCT len:shift:offset pack the three

constants len, shift and offset into a word. Such packed

constants are used by the field selection operator OF to access

fields of given length, shift and offset relative to a pointer

as described in Section 2.2.6. The len and shift components are

optional. Their omission has the following effect.

SLCT shift:offset means SLCT 0:shift:offset

SLCT offset means SLCT 0:0:offset

Character constants consist of a single character enclosed

in single quotes (’). Character constants behave like integers

typically in the range 0 to 255 corresponding to its normal ASCII

encoding, but can be larger using unicode characters as describer

below.

Character (and string) constants may use the following escape

sequences.

2.2. EXPRESSIONS 19

Escape Replacement

*n A newline (end-of-line) character.

*c A carriage return character.

*p A newpage (form-feed) character.

*s A space character.

*b A backspace character.

*t A tab character.

*e An escape character.

*" "

*’ ’

** *

*xhh The single character with number hh (two

hexadecimal digits denoting an integer in the

range [0,255]).

*ddd The single character with number ddd (three

octal digits denoting an integer in the range

[0,255]).

*#g Set the encoding mode to GB2312 for the rest

of this string or character constant. The

default encoding is UTF8 unless speified

by the GB2312 compiler option, See the

specification of the bcpl command on page 147.

*#u Set the encoding mode explicitly to UTF8 for

the rest of this string or character constant.

*#hhhh In UTF8 mode, this specifies a single Unicode

character with up to four hexadecimal

digits. In string constants, this is

converted to a sequence of bytes giving

its UTF-8 representation. In character

constants, it yields the integer hhhh. Thus

’*#C13F’=#xC13F.

*##h..h In UTF8 mode, this specifies a Unicode

character with up to eight hexadecimal digits,

but is otherwise treated as the *#hhhh escape.

*#dddd In GB2312 mode, this specifies the GB2312

decimal code (dddd) for an extended

character. In string constants, this is

converted to a sequence of bytes giving

its GB2312 representation. In character

constants, it yields the integer dddd. Thus

’*#g*#4566’=4566.

f..f This sequence is ignored, where f..f stands

for a sequence of white space characters. In

this context, comments introduced by ’//’ are

treated as white space, but those introduced

by ’/*’ are not.

20 CHAPTER 2. THE BCPL LANGUAGE

A string constant consists of a sequence of zero or more

characters enclosed within quotes ("). Both string and character

constants use the same character escape mechanism described above.

The value of a string is a pointer where the length and bytes of

the string are packed. If s is a string then s%0 is its length

and s%1 is its first character, see Section 2.2.6. The *# escapes

allow Unicode and GB2312 characters to be handled. For instance,

if the following statements output to a suitable UTF8 configured

device:

writef("*#uUnicode hex 2200 prints as: ’*#2200’*n")
writef("%%# in writef can also be used: ’%#’*n", #x2200)

the result is as follows

Unicode hex 2200 prints as: ’∀’ %# in writef can also be used: ’∀’

A static vector can be created using an expression of the

following form: TABLE K0, . . . , Kn where K0, . . . , Kn are manifest

constant expressions, see Section 2.2.12. The space for a static

vector is allocated for the life time of the program and its

elements are updateable.

2.2.3 Function Calls

Syntactically, a function call is an expression followed by a,

possibly empty, argument list enclosed in paretheses as in the

following examples.

newline()
mk3(Mult, x, y)
writef("f(%n) = %n*n", i, f(i))
f(1,2,3)
(fntab!i)(p, @a)

The parentheses are required even if no arguments are given.

The last example above illustrates a call in which the function

is specified by an expression. If the function being called

was defined by a routine definition, the result of the call

will be undefined. The arguments are evaluated and laid out in

consecutive stack locations where they become the initial values

of the formal parameters of the called function or routine. There

is no need for the number of arguments to be the same as the

number of formal parameters. See Section 2.4.5 for more details.

If the expression specifying the function to be called has the FLT

tag the so does the result of the call.

2.2. EXPRESSIONS 21

2.2.4 Method Calls

Method calls are designed to make an object oriented style of

programming more convenient. They are syntactically similar to a

function calls but uses a hash symbol (#) to separate the function

specifier from its arguments. The expression:

E#(E1,..,En)

is defined to be equivalent to:

(E1!0!E)(E1,..,En)

Here, E1 points to the fields of an object, with the convention

that its zeroth field (E1!0) is a pointer to the methods vector

containing the possible functions to call. Element E of this

vector is applied to the given set of arguments. E is normally

a manifest constant. An example program illustrating method

calls can be found in BCPL/bcplprogs/demos/objdemo.b in the BCPL

distribution.

2.2.5 Prefixed Expression Operators

An expression of the form !E returns the contents of the memory

word pointed to by the value of E.

An expression of the form @E returns a pointer to the BCPL word

sized location specified by E. E can only be a variable name or

an expression with leading operator !. Pointers to consecutive

locations are consecutive integers.

Expressions of the form: +E, -E, ABS E, ~E and NOT E return

the result of applying the given prefixed operator to the value

of the expression E. The operator + returns the value unchanged,

- returns the integer negation, ABS returns the absolute value, ~

return the bitwise complement of the value.

FLOAT E converts the integer E to its corresponding floating

point value. FIX E converts the floating point value E to its

closest integer representation. #ABS E returns the absolute value

of the floating point number E, and #+ and #- perform monadic plus

and minus on floating point values.

22 CHAPTER 2. THE BCPL LANGUAGE

2.2.6 Infixed Expression Operators

An expression of the form E1!E2 evaluates E1 and E2 to yield

respectively a pointer, p say, and an integer, n say. The value

returned is the contents of the nth word relative to p. Since

words of memory have consecutive integer addresses, the expression

E1!E2 is exactly equivalent to !(E1+E2).

An expression of the form E1[E2] has recently been added. It

is syntactically like a function call but is equivalent to E1!E2.

An expression of the form E1%E2 evaluates E1 and E2 to yield a

pointer, p say, and an integer, n say. The expression returns the

unsigned byte at position n relative to p.
An expression of the form K OF E accesses a field of

consecutive bits in memory. K must be a manifest constant (see

section 2.2.12) equal to SLCT length:shift:offset and E must

yield a pointer, p say. The field is contained entirely in the

word at position p+offset. It has a bit length of length and

is shift bits from the right hand end of the word. A length of

zero is interpreted as the longest length possible consistent with

shift and the word length of the implementation.

An OF expression can be used on right and left hand sides of

assignments but not as the operand of @. When used in a right

hand context the selected field is shifted to the right with

vacated positions filled with zeros. A shift to the left is

performed when a field is updated. Suppose p!3 holds #x12345678,

the expression (SLCT 12:8:3) OF p yields #x456 and after the

assignment:

(SLCT 12:8:3) OF p := #xABC

the value of p!3 will be #x123ABC78.

The operator :: is a synonym of OF.

An expression of the form E1<<E2 (or E1>>E2) evaluates E1

and E2 to yield a bit pattern, w say, and an integer, n say,

and returns the result of shifting w to the left (or right) by n
bit positions. Vacated positions are filled with zeroes. Shifts

of the word length or more return 0, and negative shifts return

undefined typically zero results, although on some versions of

BCPL they reverse the direction of the shift.

Expressions of the form: E1*E2, E1/E2, E1 MOD E2, E1+E2,

E1-E2. E1 EQV E2 and E1 XOR E2 return the result of applying

the given operator to the two operands. The operators are,

respectively, integer multiplication, integer division, remainder

2.2. EXPRESSIONS 23

after integer division, integer addition, integer subtraction,

bitwise equivalent and bitwise not equivalent (exclusive OR).

Expressions of the form: E1&E2 and E1|E2 return, respectively,

the bitwise AND or OR of their operands unless the expression is

being evaluated in a boolean context such as the condition in a

while command, in which case the operands are tested from from

left to right until the value of the condition is known.

An expression of the form: E relop E relop ... relop E where

each relop is one of =, ~=, <=, >=, < or > returns TRUE if all

the individual relations are satisfied and FALSE, otherwise. The

operands are evaluated from left to right, and evaluation stops as

soon as the result can be determined. Operands may be evaluated

more than once, so don’t try ’0’<=rdch()<=’9’.

An expression of the form: E1->E2,E3 evaluates E1 in a boolean

context, and, if this yields FALSE, it returns the value of E3,

otherwise it returns the value of E2.

The floating point operators #*, #/, #+, #-, #=, \#~=, #<,

#>, #<=, #>= and #-> have recently been added to standard BCPL.

They have the same binding power as the corresponding integer

operators. Beware that, with older versions of the BCPL compiler

that do not implement the FLT feature, it is easy make mistakes

such as -1.2 which performs integer negation of the bit patterns

representing 1.2. The expression should have been written #-1.2.

With the FLT feature - would have been automatically replaced by

#- in this situation. See Section 2.7 for details.

2.2.7 Boolean Evaluation

Expressions used to control the flow of execution in coditional

constructs, as in IF and WHILE commands, are evaluated in a

Boolean context. This effects the treatment of the operators ~

& and | whose operands are evaluated in Boolean contexts. In a

Boolean context, the operands of & and | are evaluated from left

to right until the value of the condition is known, and ~ negates

the condition.

2.2.8 MATCH Expressions

A MATCH expression has the following form:

24 CHAPTER 2. THE BCPL LANGUAGE

MATCH (args)

: P ,.., P => E

...

: P ,.., P => E

.

It consists of the word MATCH followed by a list of arguments

enclosed in parentheses, followed by a sequence of one or more

match items terminated by an optional dot. The match items are

applied to the arguments as described in Section 2.5, yielding the

value of the expression in the first match item to be satisfied.

If the MATCH expression is being evaluated in FLT mode, all

its result expressions are evalated in FLT mode. If none are

satisfied the result is zero (either 0 or 0.0).

Within a match item the command NEXT causes control to pass

to the next match item, and EXIT causes the MATCH expression to

terminate yielding the value 0 or 0.0.

2.2.9 EVERY Expressions

An EVERY expression has the following form:

EVERY (args)

: P ,.., P => E

...

: P ,.., P => E

.

It consists of the word EVERY followed by a list of arguments

enclosed in parentheses, followed by a squence of one or more

match items terminated by an optional dot. The match items are

applied to the arguments as described in Section 2.5, yielding the

sum of the values of the expressions of successful match items.

IF the EVERY expression is being evaluated in FLT mode, all it

result expressions are also evaluated in FLT mode and the sum

performed using #+. If none are succesful the result is 0 or 0.0.

Within a match item the command NEXT causes control to pass

to the next match item, and EXIT causes the EVERY expression to

terminate yielding the sum accumulated so far.

2.2.10 VALOF Expressions

An expression of the form VALOF C, where C is a command, is

evaluated by executing the command C. On encountering a command

of the form RESULTIS E within C, execution terminates, returning

2.2. EXPRESSIONS 25

the value of E as the result. VALOF expressions are often used as

the bodies of functions.

2.2.11 Expression Precedence

So that the separator semicolon (;) can be omitted at the end of

lines, there is the restriction that infixed operators may not

occur as the first token of a line. If the first token on a line

is !, + or -, these must be prefixed operators.

The syntax of BCPL is specified by the diagrams in Appendix

A, but a summany of the precendence of expression operators is

given in table 2.1. The precedence values are in the range 0 to

10, with the higher values signifying greater binding power. The

letters L and R denote the associativity of the operators. For

instance, the dyadic operator - is left associative and so a-b-c

is equivalent to (a-b)-c, while a->x,b->y,z is right associative

and so is equivalent to a->x,(b->y,z).

10 Names, Literals, ?,
TRUE, FALSE, BITSPERBCPLWORD,
BREAK, LOOP, ENDCASE,
NEXT, EXIT
RETURN, RESULTIS
(E),
Function and method calls
Subscripted expressions using [and]

10 SLCT : SLCT constant
9L ! % OF Dyadic
8 FLOAT FIX ! @ Monadic
8L * / MOD #* #/ #MOD

7 + - ABS #+ #- #ABS Monadic and Dyadic
6 = ~= <= >= < > Extended Relations

#= #~= #<= #>= #< #>

5L << >>

4 ~ Bitwise and Boolean operators
4L &

3L |

2L EQV XOR

1R -> , Conditional expressions
0 MATCH EVERY VALOF TABLE

Table 2.1: Operator precedence

26 CHAPTER 2. THE BCPL LANGUAGE

Notice that these precedence values imply that

! f (x,y) means ! (f (f,y))

FLOAT v!i means FLOAT (v!i)

! @ x means ! (@ x)

@ ! x means @ (! x)

! v ! i ! j means ! ((v!i)!j)

@ v ! i ! j means @ ((v!i)!j)

x << 1+y >> 1 means (x<<(1+y))>>1)

~ x!y means ~ (x!y)

~ x=y means ~ (x=y)

b1-> x, b2 -> y,z means b1 -> x, (b2 -> y, z)

b1-> b2 -> x,y, z means b1 -> (b2 -> x, y), z

2.2.12 Manifest Constant Expressions

Manifest constant expressions are expressions whose values can be

determined before the program is run. They may only consist of

manifest constant names, numbers and character constants, TRUE,

FALSE, BITSPERBCPLWORD, ?, the operators MOD, SLCT, FIX, FLOAT,

, /, +, -, ABS, the relational operators, #, #/, #+, #-, #ABS,

#MOD, the floating point relational operators, <<, >>, NOT, ~, &,

|, EQV, XOR, and conditional expressions. Manifest expressions

are used in MANIFEST, GLOBAL and STATIC declarations, the upper

bound in vector declarations and the step length in FOR commands,

and as the left hand operand of OF.

Manifest constants are evaluated at compile time using

arithmetic of the word length of the compiler. So on a 32 bit

compiler, integers can only be represented correctly if they have

no more than about 9 decimal digits and floating point constants

will have a precision limited to 6 or 7 digits, and this will

be true even when compiling for a 64 bit target. When using a

64 bit compiler integers may have up to 18 of 19 digits and the

precision of floating point numbers is about 15 digits. If a

64 bit compiler has a 32 bit target the range and precision of

constants is, of course, limited to what can be represented by 32

bit words.

2.3 Commands

The primary purpose of commands is to update variables, to perform

input/output operations, and to control the flow of control. They

are described in the following sections.

2.3. COMMANDS 27

2.3.1 Assignments

Simple assignments have the following possible forms:

L:=E
L#:=E
Lop:=E

where op is one of the following operators: !, *, /, MOD, +,

-, #*, #/, #MOD, #*, #-, <<, >>, &, |, EQV or XOR and L is a

variable name or an expression of one of the following forms:

E1!E2, !E, E1%E2, %%E or K OF E. K is normally a selector

of the form SLCT length:shift:offset. For := and #:= assignments,

the right hand side is evaluated and used to update the location

specified by the left hand side. For op:= assignments, the value

to assign is Lop:=R. If # is present a floating point assignment

is performed. This causes the right hand side to be evaluated in

FLT mode with the restriction that the left hand side must refer

to a full word. See Section 2.7 for details. Typical simple

assignments are as follows:

cg_x := 1000
v!i := x+1
!ptr := mk3(op, a, b)
str%k := ch
%strp := ’A’
SLCT 8:10:1 OF p +:= 1
p &:= #x7F
w!p #*:= a

Assignments are not permitted to start with any of the following

keywords: MATCH, EVERY, BREAK, LOOP, ENDCASE, NEXT or EXIT.

A multiple assignment has the following possible forms:

L1,..,Ln := E1,..,En

L1,..,Ln #:= E1,..,En

L1,..,Ln op:= E1,..,En

These constructs allows a single command to make several

assignments without the need to have to enclose them in section

brackets. The assignments are done strictly from left to right

and are exactly eqivalent to:

L1:=E1 ;...; Ln := En

L1#:=E1 ;...; Ln #:= En

L1op:=E1 ;...; Ln op:= En

This conversion is performed before the application of the

rules of the FLT feature. See Section 2.7 for details.

28 CHAPTER 2. THE BCPL LANGUAGE

2.3.2 Routine Calls

Both function calls and method calls as described in sections

2.2.3 and 2.2.4 are allowed to be executed as commands. Any

results produced are discarded.

2.3.3 Conditional Commands

The syntax of the three conditional commands is as follows:

IF E DO C1

UNLESS E DO C2

TEST E THEN C1 ELSE C2

where E denotes an expression and C1 and C2 denote commands.

The symbols DO and THEN are synonyms and may be omitted whenever

they are followed by a command keyword. To execute a conditional

command, the expression E is evaluated in a Boolean context. If

it yields a non zero value and C1 if present is executed. If it

yields zero and C2 if present is executed.

2.3.4 Repetitive Commands

The syntax of the repetitive commands is as follows:

WHILE E DO C
UNTIL E DO C
C REPEAT

C REPEATWHILE E
C REPEATUNTIL E
FOR N = E1 TO E2 BY K DO C
FOR N = E1 TO E2 DO C
FOR N = E1 BY K DO C
FOR N = E1 DO C

The symbol DO may be omitted whenever it is followed by a

command keyword. The WHILE command repeatedly executes the

command C as long as E is non-zero. The UNTIL command executes

C until E is zero. The REPEAT command executes C indefinitely.

The REPEATWHILE and REPEATUNTIL commands first execute C then

behave like WHILE E DO C or UNTIL E DO C, respectively.

A FOR command declares the control variable N as a new local

variable initialised with the value of E1. The scope of the

control variable is the body of the FOR command. The control

2.3. COMMANDS 29

variable may not be given the FLT tag. If BY is present, the

step length is K which must be a manifest constants (see Section

2.2.12), but if omitted BY 1 is assumed. If TO is present, the

end limit is E2, but if omitted an infinite end limit with the

same sign as the step length is assumed, requiring no termination

test. If the step value is negative N is stepped until it is

less than the end limit, otherwise it is stepped until greater

than the end limit.

Since January 2026 the effect of BREAK and LOOP have been

slightly modified. They are now only valid when withing the body

of a repetive command. LOOP causes control to jump to the end

of the body when the repetition condition is normally tested.

BREAK causes a transfer of control to the point just after the

petitive command. Note that BREAK and LOOP occurring in the

initial value or end limit expression must be within the body

of an enclosing repetitive command. Similarly BREAK and LOOP

within the repetition conditions in WHILE, UNTIL, REPEATWHILE

and REPEATUNTIL command must be within the body of enclosing

repetitive commands.

2.3.5 SWITCHON command

A SWITCHON command has the following form:

SWITCHON E INTO { C1 ;...; Cn }

Labels of the form DEFAULT: or CASE K: are permitted in the

command sequence. E is evaluated and control is passed to the

matching case label if it exists, otherwise a jump is made to the

default label but, if that is not given, control passes to the

point just after the switchon command.

2.3.6 MATCH Command

A MATCH command has the following form:

MATCH (args)

: P ,.., P BE C

...

: P ,.., P BE C

.

It consists of the word MATCH followed by a list of zero or more

arguments enclosed in parentheses. This is followed by followed

by one or more match items and optionally terminated by a dot.

30 CHAPTER 2. THE BCPL LANGUAGE

The match items are applied in turn to the arguments as described

in Section 2.5 executing the command in the first match item to be

satisfied. If none are satisfied the match command has no effect.

Within a match item the the command NEXT causes control to pass to

the next match item, if any, and the command EXIT causes the MATCH

command to terminate.

2.3.7 EVERY Command

An EVERY command has the following form:

EVERY (args)

: P ,.., P BE C

...

: P ,.., P BE C

.

It consists of the word EVERY followed by a list of arguments

enclosed in parentheses, followed by a sequence of one or more

match items optionally terminated by a dot. The match items

are applied in turn to the arguments as described in Section 2.5

executing the commands of every match item that is satisfied.

Within a match item the commands NEXT causes control to pass

to the next match item, if any, and EXIT causes termination of

the entire match list. If in a MATCH expression or a function

definition the result is zero, but if in an EVERY expression the

result is the sum accumulated so far. MATCH and EVERY commands

and routines do not return results.

2.3.8 Flow of Control

The commands in this section affect the flow of control.

RESULTIS E causes E to be evaluated and returned as the result

of the smallest textually enclosing VALOF expression which must be

within the current function or routine.

RETURN normally causes a return from the current routine, but if

encountered in a function it returns with the value zero.

LOOP causes a jump to the point just after the end of the body

of the smallest textually enclosing repetitive command (see

Section 2.3.4). The destination of the jump must be within the

current function or routine. For a REPEAT command, LOOP causes

the body to be executed again. For a FOR command, it causes a

jump to where the control variable is incremented, and for the

2.3. COMMANDS 31

REPEATWHILE and REPEATUNTIL commands, it causes a jump to the

place where the controlling expression is re-evaluated.

BREAK causes a jump to the point just after the smallest enclosing

repetitive command which must be within the current function or

routine.

ENDCASE causes execution to jump to the point just after the end

of the smallest enclosing SWITCHON command which must be within

the current function or routine.

GOTO E command jumps to the point whose address is the value of

E. E is typically a label. See Section 2.4.1 for details on how

labels are declared. The destination of a GOTO must be within the

current function or routine.

NEXT is a newly added command that can only be used inside a the

pattern or body of a match item. It causes control to pass to the

start of the next match item, if any.

EXIT is a newly added command that can only be used inside a the

pattern or body of a match item. It causes termination of the

match construct.If in a Match expression or function body, it

returns a zero result. If in an EVERY expresion, it returns the

sum acccumulated so far. MATCH and EVERY commands and routine do

not return results.

FINISH only remains in BCPL for historical reasons and should

not be used. It is equivalent to the call stop(0, 0) which

causes the current program to terminate. See the description of

stop(code, res) page 81.

2.3.9 Compound Commands

It is often useful to be able to execute commands in a sequence,

and this can be done by writing the commands one after another,

separated by semicolons and enclosed in section brackets. The

syntax is as follows:

{ C1;...; Cm }

where C1 to Cm are commands. It is permissible to have no

commands in a command sequence, thus {} is allowed and performs

no commands.

Any semicolon occurring at the end of a line may be omitted.

For this rule to work, infixed expression operators may never

start a line (see Section 2.2.11).

32 CHAPTER 2. THE BCPL LANGUAGE

A command sequence can also be formed using the symbol <> which

behaves like semicolon but is more binding than DO, THEN, ELSE,

REPEATWHILE, REPEATUNTIL and REPEAT. It purpose is to reduce the

need for section brackets ({ and }) as in

IF x<y DO t:=x <> x:=y <> y:=t

which is equivalent to:

IF x<y DO { t:=x; x:=y; y:=t }

This sequencing operator has been included since it was in the

extended non standard version of BCPL at MIT and extensively used

in the PAL compiler. See for instance com/pal75.b.

2.3.10 Blocks

A block is similar to a compound command but may start with some

declarations. The syntax is as follows:

{ D1;...; Dn; C1;...; Cm }

where D1 to Dn are delarations and C1 to Cm are commands. The

declarations are executed in sequence to initialise any variables

declared. A name may be used on the right hand side of its own

and succeeding declarations and the commands (the body) of the

block.

2.4 Declarations

Each name used in BCPL program must in the scope of its

declaration. The scope of names declared at the outermost level

of a program include the right hand side of its own declaration

and all the remaining declarations in the section. The scope of

names declared at the head of a block include the right hand side

of its own declaration, the succeeding declarations and the body

of the block. Such declarations are introduced by the keywords

MANIFEST, STATIC, GLOBAL and LET. A name is also declared when it

occurs as the control variable of a for loop. The scope of such a

name is the body of the for loop.

2.4. DECLARATIONS 33

2.4.1 Labels

The only other way to declare a name is as a label of the form

N:. This may prefix a command or occur just before the closing

section bracket of a compound command or block. The scope of a

label is the body of the block or compound command in which it was

declared.

2.4.2 Manifest Declarations

A MANIFEST declaration has the following form:

MANIFEST { N1 = K1;...; Nn = Kn }

where N1,...,Nn are names (see Section 2.2.1) and K1,...,Kn are

manifest constant expressions (see Section 2.2.12). Each name is

declared to have the constant value specified by the corresponding

manifest expression. The details have recently changed due to

the introduction of the FLT feature, see Section 2.7 on page 42.

Manifest names with the FLT tag have floating point values

otherwise they are integers. If a value specification (=K1)

is omitted in the declaration of the first name, the value 1

or 1.0 is assumed. If a value specification (=Ki) is omitted

in later declarations a value 1 or 1.0 greater than the value

of the previous name is used. An automatic conversion between

integer and floating point is performed if necessary. Thus, the

declaration:

MANIFEST { A; B; FLT C=10; D; E=C+100 }

declares A, B, C, D and E to have manifest values 0, 1, 10.0, 11

and 110, respectively.

2.4.3 Global Declarations

The global vector is a permanently allocated region of memory that

may be directly accessed by any (separately compiled) section of a

program (see Section 2.6). It provides a mechanism for linking

together separately compiled sections. A GLOBAL declaration

allows a names to be explicitly associated with elements of the

global vector. The syntax is as follows:

GLOBAL { N1:K1;...; Nn:Kn }

34 CHAPTER 2. THE BCPL LANGUAGE

where N1,...,Nn are names possibly prefixed by FLT (see

Section 2.2.1) and K1,...,Kn are manifest constants (see Section

2.2.12). Each constant specifies which global vector element

is associated with each variable, and if FLT is specified the

variable is assumed to hold a floating point number.

If a global number (:Ki) is omitted, the next global variable

element is implied. If :K1 is omitted, then :0 is assumed. Thus,

the declaration:

GLOBAL { a; b:200; c; d:251 }

declares the variables a, b, c and d occupy positions 0, 200, 201

and 251 of the global vector, respectively.

2.4.4 Static Declarations

A STATIC declaration has the following form:

STATIC { N1=K1;...; Nn=Kn }

where N1,...,Nn are names possibly prefixed by FLT (see

Section 2.2.1) and K1,...,Kn are manifest constant expressions

(see Section 2.2.12). Each name is declared to be a statically

allocated variable initialised to the corresponding manifest

expression. If a value specification (=Ki) is omitted, the a

value 0 or 0.0 is implied. Thus, the declaration:

STATIC { A; B; FLT C=10; D; E=100 }

declares A, B, C, D and E to be static variables having initial

values 0, 0, 10.0, 0 and 100, respectively.

2.4.5 LET Declarations

LET declarations are used to define local variables, local

vectors, and functions. The textual scope of names declared in

a LET declaration is the right hand side of its own definition

(to allow recursive functions), and subsequent definitions,

declarations and commands.

Local variable, local vector, function definitions can be

combined using the word AND. The only effect of this is to extend

the scope of names defined back to the word LET, thus allowing the

definition of mutually recursive functions.

2.4. DECLARATIONS 35

Local Variable Definitions

A local variable definition has the following form:

N1,..., Nn = E1,..., En

where N1,...,Nn are names possibly prefixed by FLT (see

Section 2.2.1) and E1,...,En are expressions. The names, Ni,

are allocated space in the current stack frame and are initialized

with the corresponding values of Ei. Such variables are called

dynamic variables since they are allocated when the definition is

executed and cease to exist when control leaves their scope.

The variables N1,...,Nn are allocated consecutive locations

in the stack frame of the current function and so, for instance,

the variable Ni may be accessed by the expression (@N1)!(i− 1).
This feature is a recent addition to the language. When a local

variable has the FLT tag it initial value expression is evaluated

in FLT mode. For details see Section 2.7 on page 42.

The query expression (?) should be used on the right hand side

when a variable does not need a specified initial value.

Local Vector Definitions

N = VEC K

where N is a name which may not be qualified by the FLT tag and

K is a manifest constant. A location is allocated for N and

initialized to point to a vector whose lower bound is 0 and whose

upper bound is K. The variable N and the vector elements (N!0

to N!K) reside in the stack frame of the current function and

only continue to exist while control remains within the function.

Function Definitions

These definitions have the following form:

N (N1,..., Nn) = E
N (N1,..., Nn) BE C

where N is the name possibly prefixed by FLT of the function

being defined, and N1,...,Nn are its formal parameters, each of

which may be prefixed by FLT. A function defined using = returns

E as result, but one defined using BE and executes the command C
and does not return a defined a result. Functions defined using

BE are often called routines. If the function name has the FLT

prefix, the result, if any, of a call is assumed to be a floating

point value. For details see Section 2.7 on page 42.

36 CHAPTER 2. THE BCPL LANGUAGE

Some example functions definitions are as follows.

LET wrpn(n) BE { IF n>9 DO wrpn(n/10)

wrch(n MOD 10 + ’0’)

}

LET gray(n) = n XOR n>>1

LET next() = VALOF { c := c+1

RESULTIS !c

}

A function can be defined using pattern matching by giving its

name, which may be prefixed by FLT, followed a one or more match

items of the form:

: Plist => E.

optionally followed by a dot. The way patterns work is described

in on page 38.

A routine can be defined using pattern matching by giving its

name followed a one or more match items of the form:

: Plist BE C.

optionally followed by a dot. The way patterns work is described

in on page 38.

If the name of a pattern function has an FLT prefix, its result

is assumed to be a floating point number.

If a function or routine is defined in the scope of a global

variable with the same name, the global variable is given

an initial value representing that function or routine (see

section 2.6).

Since March 2023, functions, routine and pattern functions

and routines to can have their names prefixed by FLT. Calls of

functions with the FLT tag are assumed to return floating point

results. If a function is declared having the FLT tag is in the

scope of a global variable of the same name, the global must also

have been declared with the FLT tag. If the function did not have

the FLT tag, the global should also not have the tag. If a match

expression is evaluated in FLT mode, all its result expressions

are evaluated in FLT mode. Likewise, if an EVERY expression is

evaluated in FLT mode the result is the floating point sum of its

successful result expressions.

If a function is called as a command its result is thrown away,

and if a routine is called when a result is required its result is

2.4. DECLARATIONS 37

undefined. See section 2.2.3 for information about the syntax of

function and routine calls.

The arguments of a functions and routines behave like named

elements of a dynamic vector and so exist only for the lifetime

of the call. This vector has as many elements as there are formal

parameters and they receive their initial values from the actual

parameters of the call. Functions and routines are variadic; that

is, the number of actual parameters need not equal the number of

formals. If there are too few actual parameters, the missing

ones are left uninitialized, and if there are too many actual

parameters, the extra ones are evaluated and then discarded.

Notice that arguments can be accessed by the expressions (@x)!0,

(@x)!1, (@x)!2,...where x is the first argument. This feature is

useful in the definition of functions, such as writef, having a

variable number of arguments. The scope of the formal parameters

is the body of the function or routine.

Function and routine calls are cheap in both space and

execution time, with a typical space overhead of three words of

stack per call plus one word for each formal parameter. In the

Cintcode implementation, the execution overhead is typically just

one Cintcode instruction for the call and one for the return.

There are two important restrictions concerning functions

and routines. One is that a GOTO command cannot make a jump

to a label not declared within the current function or routine,

although such non local jumps can be made using level and

longjump, described on page 72. The other is that dynamic free

variables are not permitted.

2.4.6 Dynamic Free Variables

Free variables of a function or routine are those that are

used but not declared in the function or routine, and they are

restricted to be either manifest constants, static variables,

global variables, functions, routines or labels. This implies

that they are not permitted to be dynamic variables (ie local

variables) of another function or routine. There are several

reasons for this restriction, including the ability to represent a

function or routine by a single BCPL word, the ability to provide

a safe separate compilation with the related ability to assign

functions and routines to variables. It also allows calls to

be efficient. Programmers used to languages such as Algol or

Pascal will find that they need to change their programming style

somewhat; however, most experienced BCPL users agree that the

38 CHAPTER 2. THE BCPL LANGUAGE

restriction is well worthwhile. Note that C adopted the same

restriction, although in that language it is imposed by the simple

expedient of insisting that all functions are declared at the

outermost level, thus making dynamic free variables syntactically

impossible.

A style of programming that is often be used to avoid the

dynamic free variable restriction is exemplified below.

GLOBAL { var:200 }

LET f1(...) BE

{ LET oldvar = var // Save the current value of var

var := ... // Use var during the call of f1

...

f2(...) // var may be used in f2

...

IF ... DO f1(...) // f1 may be called recursively

var := oldvar // restore the original value of var

}

AND f2(...) BE // f2 uses var as a free variable

{ ... var ... }

2.5 Patterns

This section describes the MCPL style pattern matching mechanism

that is now included in BCPL.

Pattern matching is an important feature since it provides a

mechanism to select an outcome based on the values of locations

in a structure referenced directly or indirectly from a set of

arguments. Names, called pattern variables, can be associated

with locations in the structure. Such variables have much

in common with ordinary local variables. A name declared in

the pattern of a match item can only be used in the pattern,

expression or command in the match item.

Patterns are used in function and routine definitions and in

MATCH and EVERY commands and expressions. They are applied to the

arguments given by the function or routine calls or the arguments

of MATCH and EVERY constructs.

Each match construct contains a list of one or more match

items, each consisting of a pattern followed by either => and an

expression or BE and a command.

The list of match items is optionally terminated by a dot. If

the first match item in the list uses the operator => then all the

2.5. PATTERNS 39

subsequent items must also use =>, otherwise all the match items

must use BE.

For functions, routines and MATCH expressions and commands, the

patterns are tested in turn and the first to be successful causes

the related expression or command to be evaluated.

For an EVERY command, the commands in all successful match

items are executed, and for an EVERY expression the values of the

expressions of all successful match items are summed and returned

as the result.

A pattern is composed of terms and three pattern operators:

comma (,), vertical bar (|) and juxaposition. The syntax

specification is given in Figure A.4 on page 316. A term

typically tests the contents of a memory location. It can be a

relational operator such as <= or #> which compares the contents

of the current location with the value of its right hand operand.

It can be a possibly sign constant which is directly compared

with the location. It can be a range test consisting of the

operator .. or #.. applied to two operands which must be names

or possibly signed numerical constants. This construct succeeds

if the value in the current location is not less than the left

operand and not greater than the right hand one.

The term query (?) always matches its location. If a term

is just a manifest constant name it behaves as an explicit

constant with that value. If it is a non manifest name, it is

a local variable declaration associating the name with the current

location and, as with other local variables, the name can have

a FLT prefix. Such declarations always successfully match their

locations.

A term can also be one of the escape commands BREAK, LOOP,

ENDCASE, NEXT or EXIT. They provide an escape mechanism behaviing

in exactly the same way as the corresponding commands.

If T1 and T2 are two terms, the juxtaposition T1 T2 matches

if T1 and T2 both successfully match the current location. The

pattern T1|T2 is successful if one or both terms match the current

location. The pattern T1,T2 matches if T1 matches the current

location and T2 matches the location whose address is one greater

than that of the current location. Juxtaposition has the highest

precedence and comma has the lowest. Vertical bar is less binding

than juxtaposition but more binding than comma. A term may use

parentheses to override the normal precedence of these operators.

The last form of term encloses a pattern in square brackets as

in [P] where P is a pattern. This construct matches P with the

location pointed to by the contents of current location.

40 CHAPTER 2. THE BCPL LANGUAGE

The following examples illustrate how pattern matching can be

used.

LET ways

: 0, ? => 1

: ?, [0] => 0

: s, coins[>s] => ways(s, coins+1)

: s, coins[v] => ways(s, coins+1) + ways(s-v, coins)

LET eval

: [Id, x], e => lookup(x, e)

: [Num, k], ? => k

: [Mul, x, y], e => eval(x, e) * eval(y, e)

: [Div, x, y], e => eval(x, e) / eval(y, e)

: [Add, x, y], e => eval(x, e) + eval(y, e)

: [Sub, x, y], e => eval(x, e) - eval(y, e)

If a pattern variable is associated with an argument of the

match construct it behaves exactly like an ordinary local variable

addressing a location with a known offset relative to the P

pointer. But if the variable is inside one or more square bracket

terms its location is determined by a sequence of indirections.

For example consider the following routine.

LET r : a, b[x, [y]], c BE { b:=c; x:=y }

Here x is treated as tt b!0 and y is equivalent to b!1!0, so

the assignment x:=y is equivalent to b!0:=b!1!0 which is executed

after the assignment b:=c.

A more significant example is the function rotleft defined

in bcplprogs/patdemos/splay.b. This function is worth diligent

study. It performs a transformation of a binary tree represented

by nodes of the form [key,val,parent,left,right].

AND rotleft // Promote right child p p

: n[key, val, // | |

np[?,?,?,npl,npr], // n => r

nx, // / \ / \

nr[?,?,nrp,nry[?,?,nryp,?,?],nrz] // x r n z

] BE // / \ / \

// y z x y

{ LET y = nry

// The order of the assigments was chosen with great care.

2.6. SEPARATE COMPILATION 41

TEST np // Test if n has a parent.

THEN TEST n=npl

THEN npl := nr // Update the parent’s left branch.

ELSE npr := nr // Update the parent’s right branch.

ELSE root := nr // n has no parent, so r is the new root.

IF nry DO nryp := n // If y exists, its parent should be n.

nrp := np

nry := n

np := nr

nr := y

}

2.6 Separate Compilation

Large BCPL programs can be split up into sections that can be

compiled separately. When loaded into memory they can communicate

with each other using a special area of store called the Global

Vector. This mechanism is simple and machine independent and was

put into the language since linkage editors at the time were so

primitive and machine dependent.

Variables residing in the global vector are declared by GLOBAL

declarations (see section 2.4.3). Such variables can be shared

between separately compiled sections. This mechanism is similar

to the used of BLANK COMMON in Fortran, however there is an

additional simple rule to permit access to functions and routines

declared in different sections.

If the definition of a function or routine occurs within the

scope of a global declaration for the same name, it provides

the initial value for the corresponding global variable.

Initialization of such global variables takes place at load time.

The three files shown in Table 2.1 form a simple example of how

separate compilation can be organised.

42 CHAPTER 2. THE BCPL LANGUAGE

File demohdr File demolib.b File demomain.b

GET "libhdr" GET "demohdr" GET "demohdr"

GLOBAL { f:200 } LET f(...) = VALOF LET start() BE

{ ... { ...

} f(...)

}

Table 2.1 - Separate compilation example

When these sections are loaded, global 200 is initialized to

the entry point of function f defined in demolib.b and so can be

called from the function start defined in demomain.b.

The header file, libhdr, contains the global declarations of

all the resident library functions and routines making all these

accessible to any section that started with: GET "libhdr". The

library is described in the next chapter. Global variable 1

is called start and is, by convention, the first function to be

called when a program is run.

Automatic global initialisation also occurs if a label declared

by colon (:) occurs in the scope of a global of the same name.

Although the global vector mechanism has disadvantages,

particularly in the organisation of library packages, there are

some compensating benefits arising from its extreme simplicity.

One is that the output of the compiler is available directly for

execution without the need for a link editing step. Sections may

also be loaded and unloaded dynamically during the execution of a

program using the library functions loadseg and unloadseg, and so

arbitrary overlaying schemes can be organised easily. An example

of where this is used is in the implementation of the Command

Language Interpreter described in Chapter 4. The global vector

also allows for a simple but effective interactive debugging

system without the need for compiler constructed symbol tables.

Again, this was devised when machines were small, disc space was

very limited and modern day linkage editors had not been invented;

however, some of its advantages are still relevant today.

2.7 The FLT Feature

BCPL was originally designed for the implemention of compilers and

other system software such as text editors, pagination programs

and operating systems. These applications typically did not

require floating arithmetic and so the language did not include

2.7. THE FLT FEATURE 43

such features. Indeed, many early machines on which BCPL ran

had word lengths of 16 or 24 bits which were of insufficient

for useful floating point numbers. Even on 32-bit machines the

precision of floating point numbers is limited to about 6 decimal

digits which is insufficient for serious scientific calculation.

For 50 years I resisted putting floating point into BCPL but have

recently given in. This is mainly due to the need to use 32-bit

floating point in the BCPL interface with the OpenGL graphics

library described bcplraspi.pdf. The same document also describes

a flight simulator where the inaccuracy of 32-bit floating point

can be put down to random turbulence of the air through which

the aircraft is flying. Single precision floating point is also

useful when representing samples in digital sound.

The FLT feature was added to BCPL in March 2018 to make

computations involving floating point numbers more convenient.

This feature may look as if data types have been added to BCPL,

but the language still retains its typeless nature in the sense

that all expression values are the same size and the compiler

generates no error messages relating to data types. The sole

effect of this feature is to cause some integer operators such

as + and - to be replaced automatically by their floating point

versions #+ and #- and to automatically replace some integer

constants by floating point ones when required. These conversions

are specified by some simple rules, but before applying them it is

assumed that all simultaneous assignments and variable definitions

have been automatically replaced by sequences of non simultaneous

constructs.

Some expressions such are the operands of #+ are evaluated in

FLT mode meaning that they are expected to yield floating point

results. Expressions may also have the FLT tag when they are

believed to return floating point values. The rules relating to

FLT tag and FLT evaluation are as follows.

(1) Global, static and manifest, local variable and formal

parameter names can be prefixed by FLT giving them the FLT tag.

All other names, namely FOR loop control variables, vectors and

program labels, may not be given the FLT tag. A global variable

with an FLT tag is assumed to hold a floating point value, or if

it holds a function its result is assumed to be a floating point

value.

(2) An expression has the FLT tag if it is a name declared with

the FLT tag, a floating point constant or it has one of the

44 CHAPTER 2. THE BCPL LANGUAGE

following leading operators FLOAT, #ABS, #*, #/, #MOD, #+, #- and

#->.

(3) If one of the operators ABS, *, /, MOD, +, -, =, ~=, <, <=, >,

>=, :=, ABS:=, *:=, /:=, MOD:=, += or -= has an operand with the

FLT tag, the operator is replaced by the corresponding floating

point version. The operator -> is replaced by #-> if its second

or third operand has the FLT tag.

(4) Expressions are evaluated in either FLT or non-FLT mode.

Expressions are evaluated in FLT mode if they are operands of

FIX, #ABS, #*, #/, #MOD, #+, #-, #=, #~=, #<, #<=, #> or #>=. The

second and third operands of #-> and the second operand of #:=,

#ABS:=, #*:=, #/:=, #MOD:=, #+:= and #-:= are evaluated in FLT

mode. Expressions giving the values of static, manifest and local

variable names with the FLT tag are also evaluated in FLT mode.

All other expressions are evaluate in non-FLT mode.

(5) If the leading operator of an expression evaluated in FLT

mode is one of ABS, *, /, MOD, +, - or -> it is replaced by the

floating point version. If an integer constant is evaluated

in FLT mode it is replaced by the corresponding floating point

constant.

(6) If a function is declared in the scope of a global of the

same name they must either both have FLT tags or neither should

have that tag.

These rules are applied repeatedly until there is no further

change. As an example, the following function:

LET f(a, FLT b, c) = VALOF

{ a, b, c := 1/2, 1/2, 2 * (a + b)

RESULTIS a + 2.0 * c + (0|#x3840000)

}

is automatically converted to:

LET f(a, FLT b, c) = VALOF

{ { a := 1/2; b #:= 1.0#/2.0; c #:= 2.0 #* (a #+ b) }

RESULTIS a #+ 2.0 #* c #+ (0|#x3840000)

}

Notice that the user almost never needs to use # to specify

floating point operations. Note also that the expression

(0|#x3840000|) is a way to protect an expression (#x38400000)

from being evaluated in FLT mode. See com/xcmpltest.b and

2.8. THE OBJLINE1 FEATURE 45

bcpl4raspi.pdf from my home page for examples of the use of the

FLT feature.

To see why the name in a vector declarations may not be given

the FLT tag, consider LET v = VEC 5. This initialises v with a

pointer to a vector with 6 elements and the expression v+1 would

point to the element at subscript position one. Had v been given

the FLT tag, v+1 would have been automatically converted to v#+1.0

which is clearly meaningless.

The FLT tag is not permitted to qualify FOR loop control

variables since, due to floating point truncation and

rounding errors, the number of iterations of a loop such as

FOR FLT x = 0.0 TO 10.0 BY 0.1 DO... is properly defined since

0.1 cannot be represented precisely by a floating point number.

2.8 The objline1 Feature

If a file named objline1 is found in the current directory or the

other directories searched by GET directives, its first line is

copied as the first line of the compiled Cintcode module. This

will typically put a line such as:

#!/usr/local/bin/cintsys -c

as the first line of the compiled object module. This line is

ignored by the CLI but under Linux it allows Cintcode programs

to be called directly from a Linux shell. If objline1 cannot be

found no such line is inserted at the start of the object module.

46 CHAPTER 2. THE BCPL LANGUAGE

Chapter 3

The Library

This manual describes three variants of the BCPL system. The

simplest is invoked by the shell command cintsys and provides a

single threaded command language interpreter. The system invoked

by cintpos provides a multi-threaded system where the individual

threads (called tasks) are run in parallel and are pre-emptible.

A third version is available for some architectures and provides a

single threaded version in which the BCPL source is compiled into

native machine code. Although this version is faster, it is more

machine dependent, has fewer debugging aids and will only run a

single command.

The libraries of these three systems have much in common and

so are all described together. The description of all constants,

variables and functions have a right justified line such as the

following

CIN:y, POS:y, NAT:n

where CIN:, POS: and NAT: denote the single threaded,

multi-threaded and native code versions, respectively, and

the letters y and n stand for yes and no, showing whether the

corresponding constant, variable or function is available on that

version of the system.

The resident library functions, variables and manifest

constants are declared in the standard library header file

g/libhdr.h. Most of the functions are defined in BCPL in either

sysb/blib.b or sysb/dlib.b, but three functions (sys, chgco and

muldiv) are in the hand written Cintcode file cin/syscin/syslib.

Most functions relating to the multi-threaded version are defined

in klib.b.

The following three sections describe the manifest constants,

variables and functions (in alphabetical order) provided by the

47

48 CHAPTER 3. THE LIBRARY

standard library.

3.1 Manifest constants

B2Wsh CIN:y, POS:y, NAT:y

This constant holds the shift required to convert a BCPL pointer

into a byte address. Most implementations pack 4 bytes into 32-bit

words requiring B2Wsh=2, but on 64-bit implementations, such as native

code on the DEC Alpha or the 64-bit Cintcode version of BCPL, its value

is 3.

bootregs CIN:y, POS:y, NAT:n

This is the location in Cintcode memory used in Cintpos to hold

Cintcode registers during system startup.

bytesperword CIN:y, POS:y, NAT:y

Its value is 1<<B2Wsh being the number of bytes that can be packed

into a BCPL word. On 32-bit implementations it is 4, and on 64-bit

versions it is 8.

bitsperbyte CIN:y, POS:y, NAT:y

This specifies the number of bits per byte. On most systems

bitsperbyte is 8.

bitsperword CIN:y, POS:y, NAT:y

It value is bitsperbyte*bytesperword being the number of bits per

BCPL word. It is usually 32, but can be 64.

CloseObj CIN:y, POS:y, NAT:y

This identifies the position of the close method in objects using

BCPL’s version of object oriented programming. Typical use is as

follows:

CloseObj#(obj)

For more details, see mkobj described on page 73.

co c, co fn, co list, co parent, co pptr, co size CIN:y, POS:y, NAT:y

These are the system fields as the base of coroutine stacks. If a

coroutine is suspended, its pptr field holds the stack frame pointer

(P) at the time it became suspended. The parent field points to the

parent coroutine, if it has one, or is -1 for root coroutines, and is

zero otherwise. The list field holds the next coroutine in the list

of coroutines originating from global colist. The fn and size fields

hold the coroutine’s main function and stack size, and the c field is

3.1. MANIFEST CONSTANTS 49

a system work location. For more information about coroutines, see

createco described on page 64.

deadcode CIN:y, POS:y, NAT:n

To aid debugging, the entire Cintcode memory is initialised to

deadcode. Typically deadcode=#xDEADC0DE.

endstreamch CIN:y, POS:y, NAT:y

This is the value returned by rdch when reading from a stream that

is exhausted. Its value is normally -1.

entryword CIN:y, POS:y, NAT:n

To aid debugging, every functions entry point is marked by

entryword. This is normally followed by a function name compressed

into a string of 11 characters. If the function name is too long its

first and last five character are packed into the string separated by a

single quote ’. Typically entryword=#x0000DFDF.

fl . . . CIN:y, POS:y, NAT:n

Constants of the form fl ... are mnemonics for the floating point

operations performed by the call sys(Sys flt, op, ...) as described

near page 85.

globword CIN:y, POS:y, NAT:n

This constant is used to assist the debugging of Cintcode programs.

If the ith global variable is not otherwise set, its value is

globword+i. Typically globword=#x8F8F0000.

id inscb, id inoutscb, id outscb CIN:y, POS:y, NAT:n

These constants are mnemonics for the possible values of the id

field of a stream control block. See scb id below.

InitObj CIN:y, POS:y, NAT:y

This identifies the position of the init method in objects using

BCPL’s version of object oriented programming. Typical use is as

follows:

InitObj#(obj, arg1, arg2)

For more details, see mkobj described on page 73.

isrregs CIN:n, POS:y, NAT:n

Under Cintpos this is the location in Cintcode memory used to hold

the Cintcode registers representing the state at the start of the

interrupt service routine.

klibregs CIN:n, POS:y, NAT:n

Under Cintpos This is the location in Cintcode memory used to hold

Cintcode registers during system startup.

50 CHAPTER 3. THE LIBRARY

mcaddrinc CIN:y, POS:y, NAT:y

This is the difference between machine addresses of consecutive

words in memory and is usually 4 or 8. Very occasionally, BCPL

implementions have negatively growing stacks, in which case mcaddrinc

will be negative.

maxint, minint CIN:y, POS:y, NAT:y

The constant minint is 1<<(bitsperword-1) and maxint is =minint-1.

They hold the most negative and largest positive numbers that can

be represented by a BCPL word. On 32-bit implementations, they are

normally #x80000000 and #x7FFFFFFF.

pollingch CIN:n, POS:y, NAT:n

This is the value returned by rdch if a charcter is not immediately

available from the currently selected stream. Its value is normally

-3. Currently only TCP streams under Cintpos provide the polling

mechanism.

rootnodeaddr CIN:y, POS:y, NAT:n

This manifest constant is used in Cintsys and Cintpos to hold the

address of the root node. Its value is otherwise zero.

rtn . . . CIN:y, POS:y, NAT:y

The root node is a vector accessible to all running programs to

provide access to all global information. It is available in all

versions of BCPL but many of its fields are only used in Cintpos.

The global variable rootnode holds a pointer to the root node. On

some systems the address of the root node is also held in the manifest

constant rootnodeaddr. Manifest constants starting with rtn give the

positions of the fields within the root node.

rtn abortcode CIN:y, POS:y, NAT:n

This rootnode field holds the most recent return code from a command

language interpreter (CLI). It is used by commands such as dumpsys and

dumpdebug when inspecting Cintcode memory dumps.

rtn adjclock CIN:y, POS:y, NAT:n

This rootnode field holds a correction in minutes to be added to the

time of day supplied by the system. It is normally set to zero.

rtn blklist CIN:y, POS:y, NAT:y

All blocks of memory whether free or in used are chained together in

increasing address order. This rootnode field points to the first in

the chain.

rtn blib CIN:y, POS:y, NAT:n

Under Cintsys and Cintpos this rootnode field holds the appropriate

versions of the modules BLIB, SYSLIB and DLIB chained together.

3.1. MANIFEST CONSTANTS 51

rtn boot CIN:y, POS:y, NAT:n

Under Cintsys and Cintpos this rootnode field holds the appropriate

version of the BOOT module.

rtn boottrace CIN:y, POS:y, NAT:n

Under Cintsys and Cintpos this rootnode field holds 0, 1, 2 or 3.

The default value is 0 but can be incremented using the -v option.

Larger values of boottace generate more tracing information.

rtn bptaddr, rtn bptinstr CIN:y, POS:y, NAT:n

These each hold vectors of 10 elements used by the standalone

debugger to hold breakpoint addresses and operation codes overwritten

by BRK instructions. They are in the rootnode to make them accessible

to the debug task in Cintpos and to the dumpdebug command.

rtn clkintson CIN:n, POS:y, NAT:n

Under Cintpos, this boolean field controls whether clock interrupts

are enabled. It is provided to make single step execution possible

within the interactive debugger without interference from clock

interrupts. For more details see the chapter on the debugger starting

on page 187.

rtn clwkq CIN:n, POS:y, NAT:n

Under Cintpos, this field is used to holds the ordered list of

packets waiting to be released by the clock device.

rtn context CIN:y, POS:y, NAT:n

Under certain circumstances the entire Cintcode memory is dumped in

a compacted form to the file DUMP.mem for later inspection by commands

such as dumpsys and dumpdebug. This field is set at the time a dump

file is written to specify why the dump was requested. The possible

values are as follows:
1: dump caused by second SIGINT

2: dump caused by SIGSEGV

3: fault in BOOT or standalone debug

4: dump by user calling sys(Sys_quit, -2)

5: dump caused by non zero user fault code

6: dump requested from standalone debug

rtn crntask CIN:y, POS:y, NAT:n

Under Cintpos, this rootnode field point to the TCB of the currently

running task, which is the highest priority task that can run.

rtn days CIN:y, POS:y, NAT:n

This field holds the number of days since 1 January 1970. It is

updated by the interpreter normally within a milli-second of the date

changing.

52 CHAPTER 3. THE LIBRARY

rtn dbgvars CIN:y, POS:y, NAT:n

This rootnode field holds vectors of 10 elements used by the

standalone debugger to hold the debugger variables V0 to V9. It is

in the rootnode to make it accesible to the debugger and to programs

that inspect Cintcode memory dumps.

rtn dcountv CIN:y, POS:y, NAT:n

This holds a pointer to the debug count vector. These counters can

be incremented by calls of the form sys(Sys incdcount, n) or by similar

calls in C within the Cintcode interpreter. The zeroth element of

dcountv holds it upper bound which is typically 511.

rtn devtab CIN:y, POS:y, NAT:n

Under Cintpos, this holds the Cintpos device table. The zeroth

entry is the table’s upperbound and each other entries is either

zero, or points to the device control block (DCB) of the corresponding

device. Some devices are handled by polling in the interpreter thread

based on the count of Cintcode instructions obeyed. Currently the

clock (device -1) and ttyout (device -3) are handled in this way. This

improved the performance of output to the screen and causes the clock

to have a resolution of about 1 milli-second although the actual clock

precision is usually limited by the underlying operating system.

rtn dumpflag CIN:y, POS:y, NAT:n

If dumpflag is TRUE when Cintsys or Cintpos exits, the entire

Cintcode memory is dumped in a compacted form to the file DUMP.mem

for later inspection by commands such as dumpsys or dumpdebug.

rtn envlist CIN:y, POS:y, NAT:n

This rootnode field holds the list of logical name-value pairs

used by the functions setlogval and getlogval, and the CLI command

setlogval. The environment variable held in envlist are distinct from

those such as BCPLROOT held by the underlying operating system but have

a similar purpose.

rtn hdrsvar CIN:y, POS:y, NAT:n

This field holds the name of the environment variable giving the

directories holding BCPL headers, typically "BCPLHDRS" or "POSHDRS".

See Section 3.6 for more details.

rtn idletcb CIN:n, POS:y, NAT:n

This rootnode field holds the TCB of the IDLE task for used by the

standalone debugger and the commands dumpsys and dumpdebug. The task

number of the IDLE task is zero but it is not a proper task and does

not have an entry in the task table. The Cintpos scheduler gives it

control when all other tasks are suspended.

3.1. MANIFEST CONSTANTS 53

rtn info CIN:y, POS:y, NAT:n

This rootnode field holds a vector of information that can be shared

between all tasks. It is typically a vector of 50 elements. The use

of these elements are system dependent.

rtn insadebug CIN:n, POS:y, NAT:n

This rootnode field is used by the keyboard input device of Cintpos

to tell it whether to place a newly received character in a request

packet or just store it in the lastch field.

rtn intflag CIN:y, POS:y, NAT:n

This flag is set to TRUE on receiving an interrupt from the user

(typically a SIGINT signal generated by ctrl-C) and is reset to FALSE

whenever the standalone debugger is entered. Cintsys or cintpos exits

if a user interrupt is received when intflag is TRUE or if control is

within BOOT or sadebug.

rtn gvecsize CIN:y, POS:y, NAT:n

This field holds the size of global vectors created from now on.

The default size is now 2000 but it can be set using the -g argument

when entering cintsys or cintpos.

rtn keyboard CIN:y, POS:y, NAT:n

This rootnode field holds the stream control block for the standard

keyboard device.

rtn klib CIN:y, POS:y, NAT:n

Under Cintpos this rootnode filed holds the the KLIB module. It is

otherwise zero.

rtn lastch CIN:n, POS:y, NAT:n

This rootnode field holds the most recent character received from

the keyboard device. The standalone debugger uses it for polling

input. On reading this field the standalone debugger resets it to

pollingch=-3.

rtn lastg, rtn lastp, rtn lastst CIN:y, POS:y, NAT:n

These rootnode fields hold the most recent settings of the Cintcode

P, G and ST registers. They are used by the commands dumpsys and

dumpdebug when inspecting a Cintcode memory dump caused by faults such

as memory violation (SIGSEGV) when all other Cintcode dumped registers

are invalid.

rtn mc0, rtn mc1, rtn mc2, rtn mc3 CIN:y, POS:y, NAT:n

These hold the machine address of the start of the Cintcode memory

and other values used by the MC package.

54 CHAPTER 3. THE LIBRARY

rtn membase, rtn memsize CIN:y, POS:y, NAT:n

These rootnode fields hold, respectively, the start of the memory

block chain and the upper bound in words of the Cintcode memory.

rtn msecs CIN:y, POS:y, NAT:n

This field holds the number of milli-seconds since midnight. It is

repeatedly updated by the interpreter and its value is normally correct

to the nearest milli-second.

rtn pathvar CIN:y, POS:y, NAT:n

This field holds the name of the environment variable giving the

directories searched by loadseg, typically "BCPLPATH" or "POSPATH".

See Section 3.6 for more details.

rtn quietflag CIN:y, POS:y, NAT:n

This field holds TRUE if cintsys or cintpos was entered with the -q

option. This implies that the system is running in quiet mode.

rtn rootvar CIN:y, POS:y, NAT:n

This field holds the name of the environment variable holding

the system root directory, typically "BCPLROOT" or "POSROOT". See

Section 3.6 for more details.

rtn scriptsvar CIN:y, POS:y, NAT:n

This field holds the name of the environment variable giving the

directories holding CLI script files, typically "BCPLSCRIPTS" or

"POSSCRIPTS". See Section 3.6 for more details.

rtn screen CIN:y, POS:y, NAT:n

This rootnode field holds the stream control block for the standard

screen device.

rtn sys CIN:y, POS:y, NAT:n

Under Cintsys and Cintpos, this holds the entry point to the sys

function.

rtn system CIN:y, POS:y, NAT:y

This rootnode field holds 1 when Cintsys is running or 2 when

Cintpos is running. It is otherwise zero.

rtn tallyv CIN:y, POS:y, NAT:n

This rootnode field points to a vector used to hold profile

execution counts. When tallying is enabled, the value of tallyv!i is

the count of how often the Cintcode instruction at location i has been

executed. The upper bound of tallyv is held in tallyv!0. For more

information about the profile facility see the stats command described

on page 171.

3.1. MANIFEST CONSTANTS 55

rtn tasktab CIN:y, POS:y, NAT:n

Under Cintpos, this rootnode field holds the Cintpos task table.

The zeroth entry is the table’s upperbound and the other entries

are either zero or points to the task control block (TCB) of the

corresponding task. Note that the IDLE task is not held in this

table since it is not a proper task. The IDLE task TCB is held in

the rootnode’s idletcb field.

rtn tcblist CIN:y, POS:y, NAT:n

Under Cintpos, all TCBs are chained together in decreasing priority

order. This rootnode field points to the first TCB in this chain and

so refers to the highest priority task. The last TCB on the chain has

priority zero and represents the idle task. If not in Cintpos this

field holds zero. If not in Cintpos this field holds zero.

rtn upb CIN:y, POS:y, NAT:n

This is the upperbound of the rootnode. It value is typically 80.

rtn vecstatsv CIN:y, POS:y, NAT:n

This points to a vector holding counts of how many blocks of each

requested size have been allocated by getvec but not yet returned. It

is used by the vecstats command.

rtn vecstatsvupb CIN:y, POS:y, NAT:n

This field hold the upper bound of vecstatsv.

saveregs CIN:n, POS:y, NAT:n

This is the location in Cintcode memory used in Cintpos to hold the

Cintcode registers at the time of the most recent interrupt.

scb . . . CIN:y, POS:y, NAT:n

Each currently open stream has a stream control block (SCB) that

holds all that the system needs to know about the stream. Manifest

constants beginning scb allow convenient access to the SCB fields.

These are described below.

scb blength CIN:y, POS:y, NAT:n

This SCB field holds the length of the buffer in bytes. It is

typically 4096.

scb block CIN:y, POS:y, NAT:n

This SCB field holds the current block number of a disc file. The

first block of a file has number zero.

scb buf CIN:y, POS:y, NAT:n

This SCB field is either zero or points the buffer of bytes,

allocated by getvec, associated with the stream.

56 CHAPTER 3. THE LIBRARY

scb bufend CIN:y, POS:y, NAT:n

This SCB field holds the size of the buffer in bytes.

scb encoding CIN:y, POS:y, NAT:n

This SCB field controls how codewrch treats extended characters

written to this stream. If its value is GB2312, the extended character

is translated into one or two bytes in GB2312 format, otherwise the

translation is to a sequence of bytes in UTF-8 format. This field is

normally set using either codewrch(UTF8) or codewrch(GB2312).

scb end CIN:y, POS:y, NAT:n

This SCB field hold the number of valid bytes in the buffer or -1,

if the stream is exhausted.

scb endfn CIN:y, POS:y, NAT:n

This SCB field is either zero or the function to close the stream.

It is given the SCB as its argument and it returns TRUE if the call is

successful. It otherwise returns FALSE with an error code in result2.

scb fd scb fd1 CIN:y, POS:y, NAT:n

These SCB fields hold a machine dependent file or mailbox descriptor

which is often implemented as a native machine code address. On some

machines machine addresses are 64 bits long and so cannot be held in

a variable of a 32 bit version of BCPL. So the BCPL system allocates

two consecutive words to hold such values. In order to allow the

same header files be used for 32 and 64 bit BCPL and for 32 and 64

bit machines, two words are allocated even when one word would be

sufficient. How a machine addresse is packed in a pair of BCPL words

is implementation dependent except that null pointers cause both words

to be set to zero. This mechanism is used whenever native machine

addresses are held in BCPL variables.

scb id CIN:y, POS:y, NAT:n

This SCB field holds one of the values id inscb, id outscb or

id inoutscb, indicating whether the stream is for input, output or

both.

scb lblock CIN:y, POS:y, NAT:n

This SCB field holds the number of last block. The first block of a

stream is numbered zero.

scb ldata CIN:y, POS:y, NAT:n

This SCB field holds the number of bytes in the last block of a

stream.

scb pos CIN:y, POS:y, NAT:n

This SCB field points to the position within the buffer of the

3.1. MANIFEST CONSTANTS 57

next character to be transferred. This field is updated every time

a character is transferred to or from a stream.

scb rdfn CIN:y, POS:y, NAT:n

This SCB field is zero if the stream cannot perform input, otherwise

it is the function to refill (or replenish) the buffer with more

characters. It is given the SCB as its argument and returns TRUE if

it successfully replenishes the buffer with at least one character. It

otherwise returns FALSE setting result2 to -1 if the end of file has

been encountered, -2 if there was a timeout before any character were

read, -3 no character was available in polling mode. Any other value

in result2 is an error code.

scb reclen CIN:y, POS:y, NAT:n

A file is normally regarded as a potentially huge sequence of bytes,

but can also be treated as a sequence of fixed length records. The

reclen SCB field holds the length in bytes of such records. The first

record of a file has number zero. Unless the length of a file is a

multiple of the record length, the length of last record of a file will

be too short.

scb size CIN:y, POS:y, NAT:n

This constant is equal to the number of words in a stream control

block.

scb timeout CIN:y, POS:y, NAT:n

This SCB field holds the stream timeout value for TCP streams. If

it is zero no timeout is applied. If it is negative, data is only

tranferred if it is immediately available. If it is strictly positive

it represents a timeout value in milli-seconds.

scb timeoutact CIN:y, POS:y, NAT:n

This SCB field controls the effect of a time out on this stream

while reading using rdch. A value of 0 causes the time out to be

ignored, a value of -1 caused the rdch to return with the value

endstreamch, and a value of -2 causes rdch to return with the value

timeoutch.

scb type CIN:y, POS:y, NAT:n

This SCB field holds the type of the stream which will be one of

the following: scbt net, scbt file, scbt ram, scbt console or scbt mbx,

scbt tcp. The last three have strictly positive values causing output

to be triggered by end-of-line characters, while the first three are

negative and only trigger output when the IO buffer is full. TCP

streams have type net or tcp, streams to and from disk file have type

file, stream to or from a vector in main memory have type ram, mbx

58 CHAPTER 3. THE LIBRARY

specifies mailbox streams, and console indicates that the stream is

either to standard output or from standard input which are normally the

screen and keyboard, respectively.

scb task CIN:y, POS:y, NAT:n

Under Cintpos, this SCB field holds either zero or the number of the

handler task associated with the stream, if it has one.

scb upb CIN:y, POS:y, NAT:n

This constant is the upperbound of a stream control block. its

value is scb size-1.

scb wrfn CIN:y, POS:y, NAT:n

This SCB field is zero if the stream cannot perform output,

otherwise it is the function to output (or deplete) the buffer. It

is given the SCB as its argument and returns TRUE if it successfully

outputs the contents of the buffer. It otherwise returns FALSE with an

error code in result2.

scb write CIN:y, POS:y, NAT:n

This SCB field is TRUE if the buffer has been updated by functions

such as wrch since it was last written out (depleted).

scbt net, scbt file, scbt ram, scbt console, scbt mbx, scbt tcp
CIN:y, POS:y, NAT:n

These constants are mnemonics for the possible values of the type

field of a stream control block. See scb type above.

sectword CIN:y, POS:y, NAT:n

This word occurs near the start of a section of code just before

a compiled string of 11 character representing the section name if a

section name is specified in the source code. If the name is less than

11 characters long it is padded with spaces at the end. If the name

has more than 11 characters, the string consists of the first and last

five separated by a prime (’). Typically sectword=#x0000FDDF.

stackword CIN:y, POS:y, NAT:n

As an aid to debugging, all words in runtime stacks are initialised

to stackword. Typically stackword=#xABCD1234.

Sys . . . CIN:y, POS:y, NAT:y

Manifest constants of the form Sys ... provide mnemonics for the

operations invoked by the sys function. The use of these manifest

constants is described in pages following Section 3.3 starting on

page 82.

t bhunk, t bhunk64, t end, t end64, t hunk, t hunk64, t reloc, t reloc64
CIN:y, POS:y, NAT:n

3.2. GLOBAL VARIABLES 59

These are constants identifying components of Cintcode object

modules. Cintcode modules hold the relocatable byte stream

interpretive code used by all BCPL interpretive systems. Constants

with names ending with 64 are used in the 64-bit version of Cintcode.

For more details, see the description of loadseg on page 90.

tickspersecond CIN:y, POS:y, NAT:n

This constant no longer exists since time is now measured in

milli-seconds (and dates in days). In both Cintsys and Cintpos,

delays measured in milli-seconds can be achieved using delay(msecs)

and delays until a specified absolute time can be done using

delayuntil(days, msecs). Under Cintpos, the clock device now takes

packets that specify absolute times (in days since 1 January 1970

and milli-second since midnight) for their release. For example,

sendpkt(notinuse, -1, 0, 0, 0, days, msecs) will resume execution when

the time specified by days and msecs is reached. The second argument

(-1) specifies the clock device.

timeoutch CIN:n, POS:y, NAT:n

This is the value returned by rdch when a timeout occurs while

trying to read from a stream. Its value is normally -2. Currently

only TCP streams under Cintpos provide the timeout mechanism.

ug CIN:y, POS:y, NAT:y

This constant specified the first Global variable available to user

programs. Currently ug=200 so globals below this value are reserved

for system use and the standard library. Since ug may change it would

be wise to use it.

3.2 Global Variables

This section describes the global variables declared in libhdr.h.

cis, cos CIN:y, POS:y, NAT:y

These are, respectively, the currently selected input and output

streams. Zero indicates that no stream is selected.

colist CIN:n, POS:y, NAT:n

This holds the list of currently existing coroutines.

consoletask CIN:n, POS:y, NAT:n

This is a variable used by command language interpreters.

currco CIN:n, POS:y, NAT:n

This points to the currently executing coroutine.

60 CHAPTER 3. THE LIBRARY

currentdir CIN:n, POS:y, NAT:n

This is a string holding the name of the current working directory.

globsize CIN:y, POS:y, NAT:y

This variable is in global zero and holds the size of the global

vector. Its value is normally 1000.

mainco busy CIN:n, POS:y, NAT:n

This is a variable used in the implementation of gomultievent under

Cintpos.

multi count CIN:n, POS:y, NAT:n

This is a variable used in the implementation of gomultievent under

Cintpos.

pktlist CIN:n, POS:y, NAT:n

Under Cintpos when running in multi-event mode, pktlist contains

mapping from packets to their corresponding coroutines.

randseed CIN:y, POS:y, NAT:y

This is the seed used by the random number generator randno.

result2 CIN:y, POS:y, NAT:y

This global variable is used by some functions to return a second

result.

returncode CIN:y, POS:y, NAT:n

This holds the return code of the command most recently executed by

the command language interpreter.

rootnode CIN:y, POS:y, NAT:n

This points to the rootnode.

start CIN:y, POS:y, NAT:y

This is global 1 and is, by convention, the main function of a

program. It is the first user function to be called when a program

is run by the Command Language Interpreter.

taskid CIN:n, POS:y, NAT:n

Under Cintpos this is the identifier of the currently executing

task. It in not available under Cintsys.

tcb CIN:n, POS:y, NAT:n

Under Cintpos this is a pointer to the currently executing task.

userenv CIN:y, POS:y, NAT:y

This variable is available to the user to hold information that

3.3. GLOBAL FUNCTIONS 61

is preserved from one CLI command to the next. The standard command

language interpreter resets all global variable from ug to the end of

the global vector between commands. userenv is not in this region of

the global vector and so is preserved. Normally userenv is either zero

or points to a user defined structure holding environmental data.

3.3 Global Functions

One of the main purposes of the global vector is hold entry points

of functions defined in one module and used in a different module.

This section describes the function defined in the standard resident

library. Most of these are defined in BCPL in the files: sysb/klib.b,

sysb/blib.b and sysb/dlib.b, one library (cin/syscin/syslib) is in

hand written Cintcode since it contains instructions that cannot be

generated by the BCPL compiler. The functions defined in syslib are

sys, changeco and muldiv.

The standard library functions are described in alphabetical order.

abort(code) CIN:y, POS:y, NAT:n

This causes an exit from the current invocation of the interpreter,

returning code as the error code. If code is zero execution exits

from the Cintcode system. If code is -1 execution resumes using the

faster version of the interpreter (fasterp). If code is -2 the entire

Cintcode memory is written to file DUMP.mem is a compacted form for

processing by CLI commands such as dumpsys or dumpdebug. If code is

positive, under normal conditions, the interactive debugger is entered.

res := appendstream(scb) CIN:y, POS:y, NAT:y

This function sets the position of stream scb to the end so that

anything written to the stream will be appended. The result is

FALSE if scb is not an inout stream or cannot be positioned for other

reasons. It returns TRUE otherwise.

ch := binrdch() CIN:y, POS:y, NAT:y

This call behaves like rdch() but does not skip over carriage return

(’*c’) characters.

ch := binwrch(ch) CIN:y, POS:y, NAT:y

This call behaves like wrch(ch) but does treat ch as a special

character and so does not call deplete at the end of lines and does

not insert carriage return (’*c’) characters.

res := callco(cptr, arg) CIN:y, POS:y, NAT:y

This call suspends the current coroutine and transfers control to

the coroutine pointed to by cptr. It does this by resuming execution

of the function that caused its suspension, which then immediately

62 CHAPTER 3. THE LIBRARY

returns yielding arg as result. When callco(cptr,arg) next receives

control it yields the result it is given. The definition of callco is

in blib.b and is as follows.

LET callco(cptr, a) = VALOF
{ IF cptr!co_parent DO abort(110)
cptr!co_parent := currco
RESULTIS changeco(a, cptr)

}

callco always leaves the global currco is set to point to the target

coroutine. This is done by the Cintcode instruction CHGCO invoked by

changeco.

res := callseg(name, a1, a2, a3, a4) CIN:y, POS:y, NAT:y

This function loads the compiled program from the file name,

initialises its global variables and calls start with the four

arguments a1,...,a4. It returns the result of this call, after

unloading the program.

ch := capitalch(ch) CIN:y, POS:y, NAT:y

This function converts lowercase letters to uppercase, leaving other

characters unchanged.

res := changeco(val, cptr) CIN:y, POS:y, NAT:y

This function is used in the functions that implement the coroutine

mechanism. In callco, resumeco and cowait, it causes the current

coroutine to become suspended and store cptr in the global currco

before giveing control to the specified coroutine. Strangely,

execution continues just after the call of changeco but with the P

pointer pointing to the stack frame of the function that caused the

target coroutine to become suspended. The call of changeco in each

of callco, cowait and resumeco is immediately followed by a RETURN

statement which causes the corresponding function to return with result

val. The only other use of changeco is in createco. This is more

subtle but can be understood by looking at the description of createco

on page 64.

res := changepri(taskid, pri) CIN:n, POS:y, NAT:n

This Cintpos function attempts to change the priority of the

specified task to pri. It moves the specified task control block

to its new position in the priority chain. If the specified task is

runnable and of higher priority than the current task, it is given

control leaving the current task suspended in RUN state. The result is

non zero if successful, otherwise it is zero with result2 set to 101 if

taskid is invalid or to 102 if the change would cause two tasks to have

the same priority.

3.3. GLOBAL FUNCTIONS 63

res := clihook(arg) CIN:y, POS:y, NAT:y

This function simply calls start(arg) and returns its result. Its

purpose is to assist debugging by providing a place to set a breakpoint

in the command language interpreter (CLI) just before a command in

entered. Occassionally, a user may find it useful to override the

standard definition of clihook with a private version.

codewrch(code) CIN:y, POS:y, NAT:y

This routine uses wrch to write the Unicode character code as a

sequence of bytes in either UTF8 or GB2312 format. If the encoding

field of the current output stream is UTF8, the output is in UTF8

format as described in the following table.

Code range Binary value UTF8 bytes

0-7F zzzzzzz 0zzzzzzz

80-7FF yyyyyzzzzzz 110yyyyy 10zzzzzz

800-FFFF xxxxyyyyyyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz

1000-1FFFFF wwwxxxxxxyyyyyyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

etc etc etc

If the encoding field of the current output stream is GB2312, the

output is in GB2312 format as described in the following table.

Decimal range GB2312 bytes

0 < dd < 127 <dd>

128 < xxyy < 9494 <xx+160> <yy+160>

res := compch(ch1, ch2) CIN:y, POS:y, NAT:y

This function compares two characters ignoring case. It yields -1

(+1) if ch1 is earlier (later) in the collating sequence than ch2, and

0 if they are equal.

res := compstring(s1, s2) CIN:y, POS:y, NAT:y

This function compares two strings ignoring case. It yields -1 (+1)

if s1 is earlier (later) in the collating sequence than s2, and 0 if

the strings are equal.

res := cowait(arg) CIN:y, POS:y, NAT:y

This call suspends the current coroutine and returns control to

its parent by resuming execution of the function that caused its

suspension, yielding arg as result. When cowait(arg) next receives

64 CHAPTER 3. THE LIBRARY

control it yields the result it is given. The definition of cowait is

in blib.b and is as follows.

LET cowait(a) = VALOF
{ LET parent = currco!co_parent
currco!co_parent := 0
RESULTIS changeco(a, parent)

}

cowait always leaves the global currco is set to point to the resumed

coroutine. This is done by the Cintcode instruction CHGCO invoked by

changeco.

cptr := createco(fn, size) CIN:y, POS:y, NAT:y

BCPL uses a stack to hold function arguments, local variables and

anonymous results, and it uses the global vector and static variables

to hold non-local quanitities. It is sometimes convenient to have

separate runtime stacks so that different parts of the program can run

in pseudo parallelism. The coroutine mechanism provides this facility.

Coroutines have distinct stacks but share the same global vector,

and it is natural to represent them by pointers to their stacks. At

the base of each stack there are six words of system information as

shown in figure 3.1.

Figure 3.1: A coroutine stack

The resumption point is P pointer belonging to the function that

caused the suspension of the coroutine. It becomes the value of

the P pointer when the coroutine next resumes execution. The parent

link points to the coroutine that called this one, or is zero if the

coroutine not active. The outermost coroutine (or root coroutine)

is marked by the special value -1 in its parent link. As a debugging

aid, all coroutines are chained together in a list held in the global

colist. The values fn and sz hold the main function of the coroutine

and its stack size, and c is a private variable used by the coroutine

mechanism.

3.3. GLOBAL FUNCTIONS 65

Figure 3.2: The effect of changeco(a, cptr)

At any time just one coroutine (the current coroutine) has control,

and all the others are said to be suspended. The current coroutine

is held in the global variable currco, and the Cintcode P register

points to a stack frame within its stack. Passing control from one

coroutine to another involves saving the resumption point in the

current coroutine, and setting new values for the program counter (PC),

the P pointer and currco. This is done by changeco(a,cptr) as shown

in figure 3.2. The function changeco is defined by hand in syslib used

by cintsys and cintpos and its body consists of the single Cintcode

instruction CHGCO. As can be seen its effect is somewhat subtle. The

only uses of changeco are in the definitions of createco, callco,

cowait and resumeco, and these are the only functions that cause

coroutine suspension. In the native code version of BCPL changeco

is defined in mlib.s

66 CHAPTER 3. THE LIBRARY

Figure 3.3: The state just after changeco(0,c) in createco

The definition of createco is in blib.b and is as follows.

LET createco(fn, size) = VALOF
{ LET c = getvec(size+6)
UNLESS c RESULTIS 0
FOR i = 6 TO size+6 DO c!i := stackword

c!0 := c<<B2Wsh // resumption point
c!1 := currco // parent link
c!2 := colist // colist chain
c!3 := fn // the main function
c!4 := size // the coroutine size
c!5 := c // the new coroutine pointer

colist := c // insert into the list of coroutines

changeco(0, c)

c := fn(cowait(c)) REPEAT
}

The function createco creates a new coroutine by allocating its

stack by the call gevec(size+6). The variable c holds a pointer to

the new coroutine stack and, as can been seen, its first six words are

initialised to hold system information, as follows.

3.3. GLOBAL FUNCTIONS 67

c!0 resumption point

c!1 parent link

c!2 colist chain

c!3 fn -- the main function

c!4 size -- the coroutine size

c!5 c -- the new coroutine pointer

The coroutine list colist is also set to c.

The call changeco(0, c) causes the P pointer to be set to c!0 which

has been initialied to the address of the base of the new coroutine

stack. Execution continues just after the call, namely at the REPEAT

loop in the body of createco, but in the coroutine environment of the

newly created coroutine. The compiled code for this loop will assume

fn, size and c reside in positions 3, 4 and 5 relative to P, ie in

memory locations c!3, c!4 and c!5 so execution behaves as (naively)

expected. The first time cowait(c) is called in this loop, execution

returns from createco with the result c pointing to the newly created

coroutine.

When control is next transferred to this new coroutine, the value

passed becomes the result of cowait and hence the argument of fn. If

fn(..) returns normally, its result is assigned to c which is returned

to the parent coroutine by the repeated call of cowait. Thus, if fn is

simple, a call of the coroutine convert the value passed, val say, into

fn(val). However, in general, fn may contain calls of callco, cowait

or resumeco, and so the situation is not always quite so simple.

To help to fully understand the subtle effect of effect of

changeco(0,c), look at figure 3.3 which shows the state just after

changeco transfers control to the newly created coroutine. At this

moment the newly created coroutine immediately suspends it self by

calling cowait in the loop:

c := fn(cowait(c)) REPEAT

at the end of createco.

devid := createdev(dcb) CIN:n, POS:y, NAT:n

This Cintpos function creates a device using the first available

slot in devtab. The device control block dcb must have already been

initialised and linked to its device driver. If successful it returns

a negative value identifying the device. On failure it returns zero

with result2 set to 104 if the devtab is full, or to 106 if device

initialisation failed.

res := createtask(seglist, stsize, pri) CIN:n, POS:y, NAT:n

This Cintpos function creates a task using the first free slot in

the task table. It allocates space for the new task control block

(TCB) and a copy of the specified segment list, and initialises them

both. It inserts the new TCB in priority chain of tasks and returns

68 CHAPTER 3. THE LIBRARY

the id of the newly created task if successful. It is left in DEAD

state with no stack or global vector and no packets on its work queue.

If there is an error, it returns zero with result2 set to 102 if there

is already a task with priority pri, or to 103 if there is insufficient

memory or to 105 if the task table is full. A segment list is a

small vector whose zeroth element holds its upperbound and whose other

elements hold lists of sections of code typically loaded by loadseg.

datstamp(datv) CIN:y, POS:y, NAT:y

This sets datv!0 to the number of days since 1 January 1970,

and datv!1 to the number of milli-seconds since midnight, and for

compatability with the older version of datstamp datv!2=-1 indicating

the new date and time format is being used.

dat to string(datv, v) CIN:y, POS:y, NAT:y

This call causes the time stamp in datv to be converted to three

strings v, v+5 and v+10. The string at v is set to the date in the

form dd-mmm-yyyy. The string at v+5 is set to the the current time

in the form hh:mm:ss, and the string at v+10 is set to the day of the

week. The upper bound of v should be at least 14 to be safe. The

time stamp is typically obtained by a call of datstamp(datv) which sets

datv!0 to the number of days since 1 January 1970, datv!1 to the number

of milli-seconds since midnight and datv!2 to -1 indicting that the new

date and time format is being used.

delay(msecs) CIN:y, POS:y, NAT:y

This call suspends execution for at least msecs milli-seconds.

Under Cintpos, this is achieved by sending a suitable packet to the

clock device (using sendpkt) and waiting for it to be returned.

delayuntil(days, msecs) CIN:y, POS:y, NAT:y

This call suspends execution until the specified date and time is

reached. days specifies the date as the number of days since 1 January

1970 and msecs is the number of milli-seconds since midnight. Under

Cintpos, the delay is achieved by sending a suitable packet to the

clock device (using sendpkt) and waiting for it to be returned.

deleteco(cptr) CIN:y, POS:y, NAT:y

This call takes a coroutine pointer as argument and, after checking

that the corresponding coroutine has no parent, deletes it by returning

its stack to free store.

dcb := deletedev(devid) CIN:n, POS:y, NAT:n

This Cintpos function closes down the specified device and

deallocates it device identifier, but it does not return its device

control block (DCB) to free store. It returns any packets still on its

work queue to the requesting tasks with both the pkt res1 and pkt res2

3.3. GLOBAL FUNCTIONS 69

fields set to -1. If successful, it returns the DCB of the deleted

device. On failure, it returns zero with result2 set to 101 indicating

that devid was invalid. If any of the released packets cause a higher

priority task to become runnable, the control passes to the highest

priority one leaving the current task suspended in RUN state. The

clock device has identifier -1 and is permanently resident and cannot

be deleted.

flag := deletefile(name) CIN:y, POS:y, NAT:y

This call deletes the named file, returning TRUE if successful, and

FALSE otherwise.

res := deleteself(pkt, seg) CIN:n, POS:y, NAT:n

This Cintpos function first calls qpkt to return the packet if

pkt is non zero, then calls unloadseg(seg�) if seg is non zero, before

deleting the current task. This function is defined in klib since it

would be unsafe for it to be in a segment that may be unloaded while it

is being executes. It returns a non zero value if successful but, of

course, this value will never be seen! On failure, it return zero with

result2 set to 108 indicating that the current task is not deletable.

res := deletetask(taskid) CIN:n, POS:y, NAT:n

This Cintpos function attempts to delete the specified task which

must have an empty work queue and be either the current task or in DEAD

state. Its task control block (TCB) is unlinked from the priority

chain and removed from tasktab. Finally its segment list and the

TCB itself returned to free store. It returns a non zero value if

successful. On failure, it returns zero with result2 set to 101 if

taskid is invalid, or to 108 if the task is not deletable.

res := dqpkt(id, pkt) CIN:n, POS:y, NAT:n

This Cintpos function attempts to dequeue the given packet from

the task or device specified by id. If not found there, it may

have already been returned to the current task so its work queue is

searched. The result is the id of the task or device whose work queue

contained the packet. If there is an error, the result is zero with

result2 set to 101 for invalid id or 109 if the packet was not found.

The id field of the packet is set to the id of the task or device whose

work queue contained the packet provided that this is not the id of the

current task.

endread() CIN:y, POS:y, NAT:y

This routine closes the currently selected input stream by calling

endstream(cis).

endstream(scb) CIN:y, POS:y, NAT:y

This routine closes the stream whose control block is scb.

70 CHAPTER 3. THE LIBRARY

endwrite() CIN:y, POS:y, NAT:y

This routine closes the currently selected output stream by calling

endstream(cos).

scb := findappend(name) CIN:y, POS:y, NAT:y

This function opens an output stream specified by the file name name

in append mode causing all output to be appended onto the end of the

file. If the file name is relative and the prefix string is set, it

is prepended to the name before attempting to open the stream. If the

file does not exist a zero length file of the given name is created.

If there is an error the result is zero.

n := findarg(keys, item) CIN:y, POS:y, NAT:y

The function findarg was primarily designed for use by rdargs but

since it is sometimes useful on its own, it is publicly available.

Its first argument, keys, is a string of keys of the form used by

rdargs and item is a string. If the result is positive, it is the

argument number of the keyword that matches item, otherwise the result

is -1. During matching all letters are converted to uppercase, but

this convention may change in future.

scb := findinput(name) CIN:y, POS:y, NAT:y

This function opens an input stream. If name is the string "*"

then it opens the standard input stream which is normally from the

keyboard, otherwise name is taken to be a device or file name. If the

file name is relative and the prefix string is set, it is prepended to

the name before attempting to open the stream. If the stream cannot be

opened the result is zero. See Section 3.3.2 for information about the

treatment of filenames.

scb := findinoutput(name) CIN:y, POS:y, NAT:y

This function opens a stream specified by the device or file name

name that can be used for both input and output. If name is the string

"*" then output is normally to the screen and input comes from the

keyboard. If the file name is relative and the prefix string is set,

it is prepended to the name before attempting to open the stream. If

the stream cannot be opened, the result is zero. See Section 3.3.2 for

information about the treatment of filenames.

scb := findoutput(name) CIN:y, POS:y, NAT:y

This function opens an output stream specified by the device or file

name name. If name is the string "*" then it opens the standard output

stream which is normally to the screen. If the file name is relative

and the prefix string is set, it is prepended to the name before

attempting to open the stream. If the stream cannot be opened, the

result is zero. See Section 3.3.2 for information about the treatment

of filenames.

3.3. GLOBAL FUNCTIONS 71

res := get record(v, recno, scb) CIN:y, POS:y, NAT:y

This attempts to read the record numbered recno from the file whose

stream control block is scb into the vector v. The record length must

have been set already by a call of setrecordlength. If get record is

successful it returns TRUE, otherwise it returns FALSE possibly because

the end of file was reached before the whole record had been read.

v := getlogname(logname) CIN:y, POS:y, NAT:y

This function searches the list of logical variables held in the

root node and returns its value if found, otherwise it returns zero.

v := getvec(upb) CIN:y, POS:y, NAT:y

This function allocates space using a first fit algorithm based

on a list of blocks chained together in memory order. Word zero

of each block in the chain contains a flag in its least significant

bit indicating whether the block is allocated or free. The rest of

the word is an even number giving the size of the block in words. A

pointer to the first block in the chain is held in the rootnode.

getvec allocates a vector with upper bound upb from the first

large enough free block on the block list. If no such block exists

it returns zero. A vector previously allocated by getvec can be freed

by the above call of freevec. Coalescing of adjacent free blocks is

performed by getvec.

An extra word is allocated just before the start of each block to

hold its size, and four or five words are added to the end of each

block and filled with special data that is checked when the block is

returned to free store. This catches many common space allocation

errors.

res := globin(segl) CIN:y, POS:y, NAT:y

This function initialises the global variables defined in the list

of program modules given by its argument segl. It returns zero if the

global vector was too small, otherwise it returns segl.

res := hold(taskid) CIN:n, POS:y, NAT:n

This Cintpos function sets the HOLD bit in the task control block

of the specified task. It returns a non zero value if successful. If

there is an error, it returns zero with result2 set to 101 if taskid

was invalid, and 110 if the specified task was already in HOLD state.

If the task holds itself control is given to next lower priority

runnable task.

cptr := initco(fn, size,a,b,c,d,e,f,g,h,i,j,k) CIN:y, POS:y, NAT:y

This function provides a convenient method of creating and

72 CHAPTER 3. THE LIBRARY

initialising coroutines. It definition is as follows:

LET initco(fn, size, a, b, c, d, e, f, g, h, i, j, k) = VALOF
{ LET cptr = createco(fn, size)

result2 := 0
IF cptr DO result2 := callco(cptr, @a)
RESULTIS cptr

}

A coroutine with main function fn and given size is created and,

if successful, it is initialised by callco(cptr, @a). Thus, fn should

expect a vector containing up to 11 elements. Once the newly created

coroutine has initialised itself, it returns control to initco by

means a call of cowait. The result of initco is the newly created

coroutine pointer, or zero on failure. The second result (in result2)

is the value returned by the first call of cowait in the newly created

coroutine.

scb := input() CIN:y, POS:y, NAT:y

This function returns cis, the SCB of the currently selected input

stream.

count := instrcount(fn,a,b,c,d,e,f,g,h,i,j,k) CIN:y, POS:y, NAT:n

This function returns the number of Cintcode instructions executed

when evaluating the call: fn(a,b,c,d,e,f,g,h,i,j,k).

Counting starts from the first instruction of the body of fn and

ends when its final RTN instruction is executed. Thus when f was

defined by LET f(x) = 2*x+1, the call instrcount(f, 10) returns 4 since

its body executes the four instructions: L2; MUL; A1; RTN. The value

returned by fn(a,b,c,d,e,f,g,h,i,j,k) is saved by instrcount in the

global variable result2.

flag := intflag() CIN:y, POS:y, NAT:n

This function provides a machine dependent test to determine whether

the user is asking to interrupt the normal execution of a program.

p := level() CIN:y, POS:y, NAT:y

This call returns the current stack frame pointer for use in a later

call of longjump.

segl := loadseg(name) CIN:y, POS:y, NAT:n

This function calls sys(Sys loadseg, name) to loads the specified

compiled program into memory. See Sys loadseg on page 90 for details.

longjump(P, L) CIN:y, POS:y, NAT:y

This call causes execution to resume at label L in the body of a

function or routine that owns the stack frame given by P that must

have been obtained by a previous call of level. Jumps may only be used

3.3. GLOBAL FUNCTIONS 73

to points within the current coroutine. Jumps to labels within the

current function or routine can be performed using the GOTO command, so

level and longjump are only needed for non local jumps.

res := memoryfree() CIN:y, POS:y, NAT:n

This function checks that the free store chain is valid, outputting

a error message and calling abort(999) if not. If the chain is valid,

it returns the current number of unused words, and sets result2 to the

memory size. This function can assist debugging and helps with the

detection of space leaks.

obj := mkobj(upb,fns,a,b,c,d,e,f,g,h,i,j,k) CIN:y, POS:y, NAT:y

This function creates and initialises an object. It definition is

as follows:

LET mkobj(upb, fns, a, b, c, d, e, f, g, h, i, j, k) = VALOF
{ LET obj = getvec(upb)

IF obj DO
{ !obj := fns
InitObj#(obj, @a) // Send the init message to the object

}
RESULTIS obj

}

As can be seen, it allocates a vector for the fields of the object,

initialises its zeroth element to point to the methods vector and calls

the initialisation method that is expected to be in element InitObj

of fns. The result is a pointer to the initialised fields vector. If

it fails, it returns zero. As can be seen the initialisation method

receives a vector of up to 11 initialisation arguments.

res := muldiv(a, b, c) CIN:y, POS:y, NAT:y

The result is the value obtained by dividing c into the double

length product of a and b, the remainder of this division is left in

the global variable result2. The result is undefined if it is too

large to fit into a single length word or if c is zero. The result is

also undefined if any of a, b or c is the largest negative integer.

This version of muldiv is defined in the hand written Cintcode

library syslib and invokes the MDIV Cintcode instruction which

is implemented efficiently. The older version is invoked by

sys(Sys muldiv,a,b,c) and uses binary long division implemented in C.

Both versions are believed to produce identical results except possibly

when c=0.

74 CHAPTER 3. THE LIBRARY

As an example, the function defined below calculates the cosine of

the angle between two unit vectors in three dimensions using scaled

integers to represent numbers with 6 digits after the decimal point.

MANIFEST { Unit=1000000 } // Scaling factor for numbers of the
// form ddd.dddddd

FUN inprod(v, w) = muldiv(v!0, w!0, Unit) +
muldiv(v!1, w!1, Unit) +
muldiv(v!2, w!2, Unit)

Remember that scaled fixed point values can be output conveniently

using writef as in:

writef("%10.6d*n", 123_456789)

which will output the following:

123.456789

newline() CIN:y, POS:y, NAT:y

This simply outputs the newline character (’*n’) to the currently

selected output stream.

newpage() CIN:y, POS:y, NAT:y

This simply outputs the newline character (’*p’) to the currently

selected output stream.

res := note(scb, posv) CIN:y, POS:y, NAT:y

If scr is a file stream, this function sets posv!0 and posv!1 to the

current block number and position within that block. For RAM streams,

posv!0 and posv!1 are set to zero and the position within the stream

buffer. The result is TRUE if scb is a file or RAM stream, and FALSE

otherwise.

scb := output() CIN:y, POS:y, NAT:y

This function returns cos, the SCB of the currently selected output

stream.

scb := pathfindinput(name, pathname) CIN:y, POS:y, NAT:y

This function opens an input stream. If name is the string "*"

then input comes from standard input which is normally the keyboard,

otherwise name is taken to be a filename. If name is a relative file

name and pathname is non zero, the directories specified by the shell

variable pathname are searched. The directories specified by the shell

variable are separated by either semicolons or colons, although under

Windows only semicolons are allowed. If the prefix string is non null

and the filename, possibly prefixed by a directory name, is relative

3.3. GLOBAL FUNCTIONS 75

then the prefix string is prepended before the file is opened. If the

file cannot be opened pathfindinput returns zero.

res := point(scb, posv) CIN:y, POS:y, NAT:y

This function sets the position of stream scb to that specified

in posv whose elements are scb!0 the block number and scb!1 the byte

position within the block. If the new position is in a different block

the contents of the buffer buffer may have to be written out and data

from the new block read in. point may therefore fail if the stream

was not opened using findinput or findinoutput. It returns TRUE if

successful, even if positioned just after the last block of the file,

ie block=lblock+1 and pos=end=0. It returns FALSE, otherwise, possibly

because the stream is not pointable or the posv is out of range. It is

advisable to test the result of point every time it is used.

For RAM streams posv!0 should be zero and posv!1 should be a

position in the buffer (which is entirely held in RAM).

res := put record(v, recno, scb) CIN:y, POS:y, NAT:y

This attempts to write a record numbered recno to the file whose

stream control block is scb taking data from the vector v. The record

length must have been set already by a call of setrecordlength. If

put record is successful it returns TRUE, otherwise it returns FALSE.

If the last record of a file has number n, it is permissible to extend

the file by writing record n+1, but not one with a larger record

number.

res := qpkt(pkt) CIN:n, POS:y, NAT:n

This Cintpos function queues the given packet on the end of the

work queue of the destination task or device (specified by pkt id!pkt).

If this field is positive it refers to a task, if it is -1 it refers

to the clock device and other negative values refer to other devices.

If the packet is queued successfully this field is updated to hold

the current task’s identifier and the result is non zero, otherwise

the result is zero with result2 set to 101 if the destination id is

invalid, and to 111 if pkt link was not equal to notinuse (=-1). If

the destination was a runnable task of higher priority than the current

one, then the current task immediately becomes suspended in RUN state

and control is given to the destination, otherwise the current task

continues to run normally. Interaction with the resident Cintpos

devices is described in Chapter 6.

n := randno(upb) CIN:y, POS:y, NAT:y

This function returns a random integer in the range 1 to upb. It

76 CHAPTER 3. THE LIBRARY

uses a seed held in global variable randseed which can be set using

setseed described below. Its implementation is as follows:

LET randno(upb) = VALOF
{ randseed := randseed*2147001325 + 715136305

RETURN ABS(randseed/3) MOD upb + 1
}

res := rdargs(keys, argv, upb) CIN:y, POS:y, NAT:y

This implementation of BCPL incorporates a command language

interpreter which is described in Chapter 4. Most commands require

arguments and these are easily read using rdargs.

The first argument (keys) specifies the argument format. The second

and third arguments provide a vector (argv) with a given upper bound

(upb) into which the decoded arguments will be placed. If rdargs is

successful, it returns the number of words used in argv to represent

the decoded command arguments, but on failure, it returns zero.

The string keys holds the list of argument keywords separated by

commas (,). Alternative keywords for a given argument are separated by

equal signs (=). The expected number of arguments is one more than the

number of commas in the key string. If rdargs returns successfully,

this number of elements at the start of argv will hold the decoded

arguments.

Arguments can have qualifiers of the form /A, /K, /N, /S and /P.

The qualifier letters can be in either upper or lower case. The

qualifier /A means that the argument must be given. /K means that,

if the argument is given, it must include its keyword. /N specifies

that the argument must be a number. /S indicates that the argument

is a switch parameter set to TRUE by its keyword. /P indicates that

a prompt will be given for the argument if it has not already been

set. Prompting only happens if the currently selected input and output

streams are both connected to an interactive terminal. If the prompt

is for a switch argument (/S) it expects a yes/no response. Typing

yes or y is treated as yes, any other response is treated as no. If

rdargs returns successfully argv!0, argv!1 etc will hold the arguments

settings. A setting of zero means the argument was not given. A

setting of -1 means the argument was a switch set the TRUE. Otherwise,

if /N was specified the setting will point to a word in argv where the

decoded integer is stored. If a /N was not specified, the setting will

be a BCPL string with its characters packed into argv. Note that an

argument should not have both /N and /S specified.

Command arguments are read from the currently selected input stream

using a decoding mechanism that permits both positional and keyed

arguments to be freely mixed. A typical use of rdargs occurs in the

source of the input command as follows:

3.3. GLOBAL FUNCTIONS 77

UNLESS rdargs("FROM/A,TO=AS/K,DATA/N/P,N/S", argv, 50) DO
{ writef("Bad arguments for: FROM/A,TO=AS/K,DATA/N/P,N/S*n")
...

}

In this example, there are four possible arguments and their values

will be placed in the first four elements of argv. The first argument

has keyword FROM and must receive a value because of the qualifier /A.

The second has alternative keywords TO and AS with qualifier /K that

insists the argument is introduced by one of its keywords. The third

argument has the qualifiers /N and /P indicating that it expects a

number and that it will be prompted for if not already given, and the

last argument has the qualifier /S indicating that it is a switch that

can be set by the presence of its keyword.

Table 3.4 shows the values in placed in argv and the result when the

call:

rdargs("FROM/A,TO=AS/K,DATA/N/P,N/S", argv, 50)

is given various argument strings. This example illustrates that

keyword synonyms can be defined using = within the key string.

Positional arguments are those not introduced by keywords. When one

is encountered, it becomes the value of the lowest numbered unset

non-switch argument.

Arguments argv!0 argv!1 argv!2 argv!4 Result

abc TO xyz "abc" "xyz" 0 0 ~=0

to xyz from abc "abc" "xyz" 0 0 ~=0

as xyz abc n "abc" "xyz" 0 -1 ~=0

abc xyz - - - - =0

"from" to "to" "from" "to" 0 0 ~=0

abc data 123 to "to" "abc" "to" ->123 0 ~=0

data 123 to junk - - - - =0

Figure 3.4: rdargs("FROM/A,TO=AS/K,DATA/N/P,N/S", argv, 50)

To consolidate your understanding of rdargs, try compiling and

running the program: bcplprogs/tests/tstrdargs.b.

res := rdargs2(keys1, keys2, argv, upb) CIN:y, POS:y, NAT:y

This function behaves just like rdargs, specified above, except it

uses key data that is the concatenation of strings keys1 and keys2 thus

allowing the key data to have up to than 510 characters.

ch := rdch() CIN:y, POS:y, NAT:y

This call reads the next character from the currently selected input

78 CHAPTER 3. THE LIBRARY

stream. If the stream is exhausted, it returns the special value

endstreamch. Input from the keyboard is buffered until the ENTER

(or RETURN) key is pressed to allow simple line editing in which the

backspace key may be used to delete the most recent character typed.

See Section 3.3.1 for more detailed information.

kind := rditem(v, upb) CIN:y, POS:y, NAT:y

This function is usually called from rdargs to read an item from

the currently selected input stream. After ignoring leading spaces and

tabs, it packs the item into the vector v whose upper bound is upb and

returns an integer describing the kind of item read. Table 3.5 gives

the kinds of item that can be read and corresponding item codes.

Example items Kind of item Item code

= 5
; 4
carriage return 3
"from"

"*ntwo words*n" Quoted string 2
abc

123-45*6 Unquoted string 1
end-of-stream Terminator 0

An error -1

Figure 3.5: rditem results

Within quoted strings *n represents the newline character, *s

represents a space, ** represents an asterisk and *" represents a

double quote character.

n := readflt() CIN:y, POS:y, NAT:y

This reads an optionally signed floating point number from the

currently selected input stream. Leading spaces, tabs and newlines

are ignored. If the number is syntactically correct, it returns its

value with result2 set to zero, otherwise it returns zero with result2

set to -1. In either case, it uses unrdch to replace the terminating

character.

n := readn() CIN:y, POS:y, NAT:y

This reads an optionally signed decimal integer from the currently

selected input stream. Leading spaces, tabs and newlines are ignored.

If the number is syntactically correct, it returns its value with

result2 set to zero, otherwise it returns zero with result2 set to -1.

In either case, it uses unrdch to replace the terminating character.

3.3. GLOBAL FUNCTIONS 79

res := recordnote(scb) CIN:y, POS:y, NAT:y

This call returns the number of the record containing the character

pointed to by the file position pointer of stream scb. The record

length must have already been set by a call of setrecordlength. The

result is -1 if the stream is not suitable.

res := recordpoint(scb, recno) CIN:y, POS:y, NAT:y

This call sets the file position pointer of stream scb to point to

the first byte of the record whose number is recno. The record length

must have already been set by a call of setrecordlength. It returns

TRUE if successful and FALSE otherwise.

res := release(taskid) CIN:n, POS:y, NAT:n

This Cintpos function will clear the HOLD bit in the specified task

thus making it potentially runnable. It returns a non zero value if

successful. If the specified task does not exist it returns zero

with 101 in result2. If the released task has higher priority and

is runnable it gains control leaving the current task suspended in RUN

state. This function is also called unhold.

flag := renamefile(oldname, newname) CIN:y, POS:y, NAT:y

The call renames the file oldname as file newname, deleting newname

if necessary, returning TRUE if the renaming was successful, and FALSE

otherwise. Both oldname and newname are strings.

res := resumeco(cptr, arg) CIN:y, POS:y, NAT:y

The effect of resumeco is almost identical to that of callco,

differing only in the treatment of the parent. With resumeco the

parent of the calling coroutine becomes the parent of the called

coroutine, leaving the calling coroutine suspended and without a

parent. Systematic use of resumeco reduces the number of coroutines

having parents and hence allows greater freedom in organising the flow

of control between coroutines. The definition of resumeco is in blib.b

and is as follows.

LET resumeco(cptr, a) = VALOF
{ LET parent = currco!co_parent

currco!co_parent := 0
IF cptr!co_parent DO abort(111)
cptr!co_parent := parent
RESULTIS changeco(a, cptr)

}

resumeco always leaves the global currco is set to point to the resumed

coroutine. This is done by the Cintcode instruction CHGCO invoked by

changeco.

80 CHAPTER 3. THE LIBRARY

res := rewindstream(scb) CIN:y, POS:y, NAT:y

This function set the position of stream scb to its start, returning

TRUE if successful, and FALSE otherwise.

ch := sardch() CIN:y, POS:y, NAT:y

This function calls sys(Sys sardch) to read the next character from

the keyboard as soon as it is available. The character is echoed to

the screen unless the system is running in quiet mode.

sawrch(ch) CIN:y, POS:y, NAT:y

This function calls sys(Sys sawrch, ch) to write the specified

character to the screen.

sawritef(format,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)
CIN:y, POS:y, NAT:y

This function is similar to writef but performs its output using

sawrch.

selectinput(scb) CIN:y, POS:y, NAT:y

This call executes cis := scb to select scb as the current input

stream. It aborts (with code 186) if scb is not an input stream.

selectoutput(scb) CIN:y, POS:y, NAT:y

This routine selects scb as the currently selected output stream.

It aborts (with code 187) if scb is not an output stream.

res := setbit(bitno, bitvec, state) CIN:y, POS:y, NAT:y

This function sets the specified bit in bitvec to 1 or 0 depending

on whether state is TRUE or FALSE, respectively. It returns a non-zero

value if and only if the previous setting of the bit was a one. See

testbit below.

res := setflags(taskid, flags) CIN:n, POS:y, NAT:n

This Cintpos function sets the specified flags in the task control

block of the specified task. If successful it returns a non zero value

with result2 set to the previous setting of the flags field, otherwise

it returns zero with result2 set to 101 indicating that taskid was

invalid. For more information about flags see testflags described

below.

oldlogname := setlogname(logname, logvalue) CIN:y, POS:y, NAT:y

This sets the value of logical variable logname to the logvalue. By

convention logvalue should be a string. The list of logical name-value

pairs is held in the root node.

prevseed := setseed(newseed) CIN:y, POS:y, NAT:y

The current seed can be set to newseed by the call setseed(newseed).

This function returns the previous seed value.

3.3. GLOBAL FUNCTIONS 81

sxpushval(sxv, val) CIN:y, POS:y, NAT:y

This pushes value val into the self expanding vector sxv. sxv

points to the two word control block of the self expanding vector.

Initially both elements must be zero. When non empty sxv!1 will be a

vector, v say, containing the elements with v!0 will be the subscript

of the latest element in v. sxv!0 holds the upper bound of v. When

the self expanding vector needs more space, it allocates a new vector

v using newvec freeing the previous one after copying its elements

into the new one. Clearly pointers to elements of v may become invalid

after any call of sxpushval. When the self expanding vector is no

longer needed, freevec(v) must be called.

srchwk(tcb) CIN:n, POS:y, NAT:n

This function is the Cintpos scheduler which is normally only called

from within one of the klib library functions or from the interrupt

service routine. Its argument points to the highest priority task

control block that could possibly run. It searches down the priority

chain from this point until it finds the highest priority runnable

task. After setting the globals tcb and taskid appropriately, it gives

this task control using a call of sys(Sys rti,...).

res := stackfree(hwm) CIN:y, POS:y, NAT:n

If hwm=TRUE, this function returns the number of unused stack words

above the high water mark, otherwise it returns the number of words

between the current stack frame pointer and the end of stack. In

either case it sets result2 to the stack size.

code := start(a1, a2, a3, a4) CIN:y, POS:y, NAT:y

This function is, by convention, the main function of a program. If

it is called from the command language interpreter (see section 4), its

first argument is zero and its result should be the command completion

code; however, if it is the main function of a module run by callseg,

defined below, then it can take up to 4 arguments and its result is

up to the user. By convention, a command completion code of zero

indicates successful completion and larger numbers indicate errors

of ever greater severity

res := stepstream(scb, n) CIN:y, POS:y, NAT:y

This function advances the position of stream scb by n words,

returning TRUE if successful, and FALSE otherwise.

stop(code, reason) CIN:y, POS:y, NAT:y

This function is provided to stop the execution of the current

command running under control of the CLI. The arguments code and reason

are placed in the CLI globals cli returncode and cli result2 where they

can be inspected by commands such as if and why.

82 CHAPTER 3. THE LIBRARY

n := str2numb(str) CIN:y, POS:y, NAT:y

This function converts the string str into an integer. Characters

other than 0 to 9 and - are ignored. The result is negative or zero

if str%1=’-’. This function is no longer recommended, string to number

should be used instead.

n := string to number(str) CIN:y, POS:y, NAT:y

This attempts to set result2 to the integer represented by the

string str. It returns TRUE is successful and FALSE otherwise. The

following are examples of acceptable strings: "’A’", "123", "-99",

"+63", "#377", "-#x7FF" and "+#b1011011".

res := sys(op,...) CIN:y, POS:y, NAT:y

The file sysc/cintsys.c contains the main program of the Cintsys

system. It also includes the definition of an important function

dosys which provide access to I/O operations and many other operating

system primitives. The file sysc/cinterp.c contains a C implementation

of the Cintcode interpreter. With different compile time settings

this file can generate a faster version by reducing the number of

debugging aids present. Sometimes there is an even faster version

of the interpreter implemented in assembly language, see, for instance,

sysasm/linux/cintasm.s. The BCPL function sys provides an interface

between BCPL and dosys.

The file sysc/cintpos.c contains the main program of the Cintpos

system. It has much is common with sysc/cintsys.c including the

function dosys.

The sys function is defined by hand in cin/syscin/syslib and just

invokes the SYS Cintcode instruction. When SYS is encountered by

the interpreter, it normally just calls dosys passing the BCPL P

and G pointers as arguments. But certain sys operations such as

sys(Sys quit,code) are processed directly by the interpreter.

As might be expected there are many sys operations concerned with

interrupts that are only available under Cintpos.

res := sys(Sys buttons) CIN:y, POS:y, NAT:y

On non standard machines such as the GP2X gaming machine there

are buttons that can be pressed. This call returns a bit pattern

indicating which buttons are currently pressed.

res := sys(Sys callc, fno, a1, a2 ...) CIN:y, POS:y, NAT:y

This makes the call cfuncs(args, g) where cfuncs is a C function

defined in sysc/cfuncs.c. The argument args points to memory locations

holding fno, a1, a2, etc., and g points to the base of the global

vector.

The following table summarises the callc operations currently

available (when running under Linux).

3.3. GLOBAL FUNCTIONS 83

res := sys(Sys callc, c name2ipaddr, a1) CIN:y, POS:y, NAT:y

The name or dotted decimals of a host is given in a1 and the result

is its IP address or -1 if there is an error.

res := sys(Sys callc, c name2port, a1) CIN:y, POS:y, NAT:y

The name or decimals of a port is given in a1 and the result is its

IP address or -1 if there is an error.

res := sys(Sys callc, c newsocket) CIN:y, POS:y, NAT:y

The result is the file descriptor of a new socket or -1 if there is

an error.

res := sys(Sys callc, c reuseaddr, a1, a2) CIN:y, POS:y, NAT:y

The file descriptor of a socket is given in a1. Id a2=1 the

specified socket may be reused. If there is an error the result is

-1.

res := sys(Sys callc, c setsndbufsz, a1, a2) CIN:y, POS:y, NAT:y

This sets the send buffer size of socket a1 to a2 bytes. If there

is an error the result is -1.

res := sys(Sys callc, c setrcvbufsz, a1, a2) CIN:y, POS:y, NAT:y

This sets the receive buffer size of socket a1 to a2 bytes. If

there is an error the result is -1.

res := sys(Sys callc, c bind, a1, a2, a3) CIN:y, POS:y, NAT:y

This bind socket a1 to remote IP address a2 and remote port a3. If

there is an error the result is -1.

res := sys(Sys callc, c tcpconnect, a1, a2, a3) CIN:y, POS:y, NAT:y

This make a TCP/IP connection through socket a1 to remote IP address

a2 and remote port a3. If there is an error the result is -1.

res := sys(Sys callc, c tcplisten, a1, a2) CIN:y, POS:y, NAT:y

This causes socket a1 to wait for a TCP/IP connection to be

requested by a remote host. The maximum number of connections waiting

to be accepted is given in a2. If there is an error the result is -1.

res := sys(Sys callc, c tcpaccept, a1) CIN:y, POS:y, NAT:y

This accepts a TCP/IP connection through socket a1. The result is

the socket number to be used for this connection or -1 if there is an

error.

res := sys(Sys callc, c tcpclose, a1) CIN:y, POS:y, NAT:y

This closes socket a1. The result is -1 if there is an error.

84 CHAPTER 3. THE LIBRARY

res := sys(Sys callc, c fd zero, a1) CIN:y, POS:y, NAT:y

This clear every bit in the bit vector a1. The result is -1 if

there is an error.

res := sys(Sys callc, c fd set, a1, a2) CIN:y, POS:y, NAT:y

This sets bit a1 in the bit vector a2. The result is -1 if there is

an error.

res := sys(Sys callc, c fd isset, a1, a2) CIN:y, POS:y, NAT:y

This inspects bit a1 in the bit vector a2. The result is 1 if the

bit was set and 0 otherwise.

res := sys(Sys callc, c fd select, a1, a2, a3, a4, a5) CIN:y, POS:y,

NAT:y

This inspects bit a1 in the bit vector a2. The result is 1 if the

bit was set and 0 otherwise.

The number of the bits to test is in a1. The bit vector identifying

read sockets of interest is in a2, The bit vector identifying write

sockets of interest is in a3, The bit vector identifying other sockets

of interest is in a4. A pointer to two words holding the timeout

in seconds and microseconds is in a5. The result is the number of

sockets that can now be read or written to, or 0 if the timeout period

has elapsed before any sockets are ready. A result of -1 indicate an

error.

res := sys(Sys callnative, f, a1, a2, a3) CIN:y, POS:y, NAT:y

This function is used to enter a subroutine in native machine code.

res := sys(Sys close, fp) CIN:y, POS:y, NAT:y

This closes the file whose file pointer is fp. It return 0 if

successful.

res := sys(Sys cputime) CIN:y, POS:y, NAT:y

This returns the CPU time in milliseconds since the Cintcode system

was entered.

res := sys(Sys datstamp, datv) CIN:y, POS:y, NAT:y

This sets datv!0 to the number of days since 1 January 1970,

and datv!1 to the number of milli-seconds since midnight, and for

compatability with the older version of datstamp datv!2=-1 indicating

the new date and time format is being used.

res := sys(Sys delay, msecs) CIN:y, POS:y, NAT:y

In both Cintsys and Cintpos this call suspends Cintcode execution

until the time period has elapsed. It is normally better to use the

library functions delay(msecs) or delayuntil(days, msecs).

3.3. GLOBAL FUNCTIONS 85

res := sys(Sys deletefile, name) CIN:y, POS:y, NAT:y

This deletes the file whose name is given by name. See page 104 for

information about the treatment of file names.

res := sys(Sys devcom, com, arg) CIN:n, POS:y, NAT:n

This is used in Cintpos to send commands from the interpreter thread

to Cintpos device threads.

res := sys(Sys dumpmem, context) CIN:y, POS:y, NAT:y

This call will dump the whole of Cintcode memory to the file

DUMP.mem in a compacted form that is typically inspected by either the

commands dumpsys or dumpdebug. By convention, context = 1 if SIGINT

has been received, context = 2 if SIGSEGV has been received, context =

3 if the dump was caused by BOOT detecting a fault, context = 4 if the

dump by the user call sys(Sys quit, -2), context = 5 if the dump by a

non zero return code from the interpreter, context = 6 if the dump by

the D command in the interactive debugger.

res := sys(Sys filemodtime, name, datv) CIN:y, POS:y, NAT:y

This sets the elements of the time stamp vector datv to represent

the date and time of the last modification of the file given by

name returning TRUE if successful. The first element datv!0 holds

the number of days since 1 January 1970, datv!1 is the number of

milli-seconds since midnight and datv!2=-1 indicating that the new

date format is being used. If the file does not exist the call

returns FALSE and setting the three elements of datv to 0, 0 and -1,

respectively.

res := sys(Sys filesize, fd) CIN:y, POS:y, NAT:y

This call return the size in bytes of the currently opened disk file

whose file descriptor is fd. The file descriptor is typically obtained

by the expression scb!scb fd.

res := sys(Sys flt, op ,...) CIN:y, POS:y, NAT:y

This call provides all the floating point operations available

to BCPL. The required operation is specified by op normally using

a manifest constant (declared in libhdr) such as fl mk, fl add or

fl sin. All such operations are described below. BCPL floating point

numbers must fit in BCPL words and so are typically only 32 bits long

causing their precision and range to be somewhat limited. On 64-bit

implementations of BCPL, floating point numbers are much more precise.

res := sys(Sys flt, fl avail) CIN:y, POS:y, NAT:y

This call attempts returns -1 if all the Sys flt operations are

available. It otherwise return zero.

86 CHAPTER 3. THE LIBRARY

res := sys(Sys flt, fl mk, a, e) CIN:y, POS:y, NAT:y

This call attempts to return a floating point approximimation to the

number a× 10e where a and e are signed integers.

res := sys(Sys flt, fl unmk, a) CIN:y, POS:y, NAT:y

This call decomposes the floating point number a returning the

signed integer mantissa and leaving the decimal exponent in result2.

For example, sys(Sys flt, fl unmk, 1234.5678) might return 12345678

leaving -4 in result2. However, the result may vary depending on the

BCPL word length and the floating point representation used.

res := sys(Sys flt, fl float, a)

res := sys(Sys flt, fl fix, a) CIN:y, POS:y, NAT:y

The first call returns a floating point approximation of the

integer a, and the second attempts to return the closest integer to

the floating point number a.

res := sys(Sys flt, fl abs, a)

res := sys(Sys flt, fl pos, a)

res := sys(Sys flt, fl neg, a)

res := sys(Sys flt, fl mul, a, b)

res := sys(Sys flt, fl div, a, b)

res := sys(Sys flt, fl add, a, b)

res := sys(Sys flt, fl sub, a, b) CIN:y, POS:y, NAT:y

The first three calls return, respectively, the absolute value of a,

the value of a and the negated value of a where a is a floating point

number. The last four calls perform floating point multiplication,

division, addition and subtraction on their arguments.

res := sys(Sys flt, fl eq, a, b)

res := sys(Sys flt, fl ne, a, b)

res := sys(Sys flt, fl ls, a, b)

res := sys(Sys flt, fl gr, a, b)

res := sys(Sys flt, fl le, a, b)

res := sys(Sys flt, fl ge, a, b) CIN:y, POS:y, NAT:y

These six calls return TRUE if the corresponding floating point

comparisons are satisfied. Otherwise the result is FALSE.

res := sys(Sys flt, fl acos, a)

res := sys(Sys flt, fl asin, a)

res := sys(Sys flt, fl atan, a) CIN:y, POS:y, NAT:y

These calls return floating point approximations to the arc cosine,

arc sine and arc tangent of em a. The argument a is in radians and for

acos the result is between 0 and π. For asin and atan it is between

−π/2 and π/2.

3.3. GLOBAL FUNCTIONS 87

res := sys(Sys flt, fl atan2, y, x) CIN:y, POS:y, NAT:y

This call return the angle in radians between x-axis and the line

from the origin to the point with cartesian coordinates (x, y). The

result lies between −π and π.

res := sys(Sys flt, fl cos, a)

res := sys(Sys flt, fl sin, a)

res := sys(Sys flt, fl tan, a) CIN:y, POS:y, NAT:y

These calls return the cosine, sine and tangent of a.

res := sys(Sys flt, fl cosh, a)

res := sys(Sys flt, fl sinh, a)

res := sys(Sys flt, fl tanh, a) CIN:y, POS:y, NAT:y

These calls return the hyperbolic cosine, sine and tangent of a.

res := sys(Sys flt, fl exp, a)

res := sys(Sys flt, fl log, a)

res := sys(Sys flt, fl log10, a) CIN:y, POS:y, NAT:y

The first call returns an approximation to ea where e is the base of

natural logarithms. The second call return the natural logarithm of a,
and the third call returns log to the base 10 of a.

res := sys(Sys flt, fl frexp, a)

res := sys(Sys flt, fl ldexp, f, n) CIN:y, POS:y, NAT:y

The first call splits a floating-point number (a) into a fraction

(f) and exponent (n) such that a is approximately equal to f × 2n.
If possible the absolute value of f will be between 0.5(inclusive)

and 1.0(exclusive). The call returns f and stores n in result2 as

an integer. The second call is the inverse of frexp returning an

approximation to f × 2n.

res := sys(Sys flt, fl modf, a)

res := sys(Sys flt, fl mod, x, y) CIN:y, POS:y, NAT:y

The first call returns the fractional part (f) of a storing the

integer part (i) as a floating-point number in result2. The sign of

both f and i is the same as the sign of a and a will equal i+ f.
The second call returns f such that f has the same sign as x, the

absolute value of f is less than the absolute value of y, and there

exists and integer k such that k × y + f equals x.

res := sys(Sys flt, fl pow, a, b)

res := sys(Sys flt, fl sqrt, a) CIN:y, POS:y, NAT:y

The first call returns an approximation to ab, and the second call

attempts to return the non negative square root of a.

res := sys(Sys flt, fl ceil, a)

res := sys(Sys flt, fl floor, a) CIN:y, POS:y, NAT:y

88 CHAPTER 3. THE LIBRARY

The first call returns the smallest floating-point number not less

than a whose value is an exact integer and the second call returns

the largest floating-point number not greater than a whose value is an

exact integer.

res := sys(Sys flt, fl F2N, s, x) CIN:y, POS:y, NAT:y

This returns the integer part of s × x. This is the scaled fixed

point representation of x when s is the scaled value representing 1.0.

For example:

sys(Sys_flt, fl_F2N, 1_000, -1.234) => -1234

res := sys(Sys flt, fl N2F, s, n) CIN:y, POS:y, NAT:y

This returns the floating point value corresponding to n/s. This is

the floating point number representing the fixed point scaled value n
when the scaled number s represents 1.0. For example:

sys(Sys_flt, fl_N2F, 1_000, 1_234) = 1.234

res := sys(Sys flt, fl radius2, a, b)

res := sys(Sys flt, fl radius3, a, b, c) CIN:y, POS:y, NAT:y

The first call returns the square root of a2 + b2 and the second

returns the square root of a2 + b2 + c2. For example:

sys(Sys_flt, fl_radius2, 3.0, 4.0) => 5.000

sys(Sys_flt, fl_radius3, 1.0, 2.0, 2.0) => 3.000

sys(Sys freevec, ptr) CIN:y, POS:y, NAT:y

If ptr is zero it does nothing, otherwise it returns to free store

the space pointed to by ptr which must have previously been allocated

by sys(Sys getvec,...). It checks that the block is not already free

and attempt to check that it has not been corrupted.

res := sys(Sys getpid) CIN:y, POS:y, NAT:y

This function returns the process id of the currently executing

process.

str := sys(Sys getprefix) CIN:y, POS:y, NAT:y

This returns a pointer to prefix string which is in space allocated

when Cintsys or Cintpos was started. See sys(Sys setprefix,...) on

page 94.

res := sys(Sys getsysval, addr) CIN:y, POS:y, NAT:y

This function return the contents of the machine memory location

3.3. GLOBAL FUNCTIONS 89

whose word address is addr which may be outside the normal range of the

Cintcode memory.

res := sys(Sys gettrval, count) CIN:y, POS:y, NAT:n

This returns a value from the low level trace buffer. See

Sys trpush for more details.

res := sys(Sys getvec, upb) CIN:y, POS:y, NAT:y

This allocates a vector whose lower bound is 0 and whose upper bound

is upb. It returns zero if the request cannot be satisfied. A word

is allocated just before the start of the vector to hold its size, and

several (typically 4 or 5) words are allocated just past the end of the

vector and filled with redundant data that is checked when the space is

returned to free store.

res := sys(Sys globin, seg) CIN:y, POS:y, NAT:n

This initializes the global variables defined in the loaded module

pointed to by seg. It returns zero is there is an error.

res := sys(Sys graphics,...) CIN:y, POS:y, NAT:y

This is currently only useful on the Windows CE version of the BCPL

Cintcode system. It performs operations on the graphics window. The

graphics window is a fixed size array of 8-bit pixels which can be

written to and whose visibility can be switched on and off.

res := sys(Sys inc, addr, amount) CIN:y, POS:y, NAT:y

This function adds amount atomically to the specified memory

location and returns it new value.

res := sys(Sys incdcount, n) CIN:y, POS:y, NAT:y

This function increments the specified counter held in the vector

pointed to by the field rtn dcountv in the rootnode. This operation is

also available to the interpreter code written in C.

res := sys(Sys interpret, regs) CIN:y, POS:y, NAT:n

This function enters the Cintcode interpreter recursively with

the Cintcode registers set to values specified in the vector regs.

On return the result is a return code indicating why the interpreter

returned, and the elements of regs hold the final state of the Cintcode

registers. These registers are described in the chapter on the design

of Cintcode starting on page 213 and the correspondence between the

elements of regs and the Cintcode registers is given on page 93. The

return codes are given on page 94.

res := sys(Sys intflag) CIN:y, POS:y, NAT:y

This returns TRUE if the user has pressed a particular combination

90 CHAPTER 3. THE LIBRARY

of keys to interrupt the program that is currently running. On many

systems this mechanism not implemented and just returns FALSE.

res := sys(Sys loadseg, name) CIN:y, POS:y, NAT:n

This attempts to load a Cintcode module from file name looking first

in the current directory. If a valid module is not found there and

name is a relative file name, it searches through the directories

specified by the environment variable whose name is in the rtn pathvar

element of the rootnode. This name is normally BCPLPATH under Cintsys

and POSPATH under Cintpos. See Section 3.6 for more information about

environment variables.

If loading is successful, loadseg returns the list of loaded program

sections, otherwise it returns zero. Before the loaded code can be

used, its globals must be initialised using globin.

Cintcode modules generated by the BCPL compiler are typically

text files containing the compiled code encoded in hexadecimal. The

compiled form of the logout command:

SECTION "logout"
GET "libhdr"
LET start() BE abort(0)

is

000003E8 0000000E
0000000E 0000FDDF 474F4C0B 2054554F 20202020
0000DFDF 6174730B 20207472 20202020 7B1C2310
00000000 00000001 00000024 0000001C

The first two words (000003E8 0000000E) indicate the presence of

a ‘‘hunk’’ of code of size 14(000000E) words which then follow. The

first word of the hunk (000000E) is again its length. The next four

words (0000FDDF 474F4C0B 2054554F 20202020) contain the SECTION name

"logout". These are followed by the four words 0000DFDF 6174730B

20207472 20202020 which hold the name of the function "start". The

body of start is compiled into one word (7B1C2310) which correspond to

the Cintcode instructions:

L0 Load A with 0

K3G 28 Call the function in global 28, incrementing the stack by 3

RTN Return from start -- never reached

The remaining 4 words contain global initialisation data that is read

backwards during global initialisation invoked by sys(Sys globin,...).

0000001C (=28) is the highest global variable referenced by this

section. The pair 00000001 00000024 specifies that the entry point

at position 36 is the initial value of global 1, and the next entry

(00000000) marks the end of the global initialisation data.

3.3. GLOBAL FUNCTIONS 91

The manifest constants t hunk, t reloc, t end, t hunk64, t reloc64,

t end64, t bhunk, and t bhunk64 are declared in libhdr for the

convenience of programs that generate or read Cintsys and Cintpos

object modules. The example above shows t hunk loading n 32-bit words

encoded in hex bytes. Although the BCPL compiler used in both Cintsys

and Cintpos generates position independent code and has no need to

modify the loaded words of a hunk, other languages may need to perform

relocation. This can be done using t reloc which is followed by a

32-bit word n encoded in hex followed by a further n words which each

give the position of a word in the most recently loaded hunk that needs

to be modified by the addition of the base address of the hunk. The

code t bhunk is similar to t hunk only the data words (not the length

field) are provided in binary rather than hex characters. Such hunks

are thus about half the size of character based ones. The code t end

marks the end of an object module, but end-of-file has the same effect.

Those codes containing the characters 64 provide equivalent facilities

for 64-bit versions of BCPL. Neither t reloc nor t reloc64 are currently

available in Cintsys or Cintpos.

sys(Sys lockirq) CIN:y, POS:y, NAT:y

Under cintpos, this call disables interrupts.

sys(Sys memmovebytes, dest, src. n) CIN:y, POS:y, NAT:y

This copies n bytes from BCPL byte address src to BCPL byte address

dest. The source and destination regions may overlap. This function

behaves as if the source region is first copied to a non overlapping

place before copying it to the destination.

sys(Sys memmoveword, dest, src. n) CIN:y, POS:y, NAT:y

This copies n words from BCPL word address src to BCPL word address

dest. The source and destination regions may overlap. This function

behaves as if the source region is first copied to a non overlapping

place before copying it to the destination.

res := sys(Sys muldiv, a, b, c) CIN:y, POS:y, NAT:y

This invoke the C implementation of muldiv. It returns the result

of dividing c into the double length product of a and b. It sets

result2 to the remainder. This function is little used since a

more efficient muldiv function is now defined in syslib invoking the

Cintcode instruction MDIV, see section 3.3.

fp := sys(Sys openappend, name) CIN:y, POS:y, NAT:y

This function opens an output stream specified by the file name name

in append mode causing all output to be appended onto the end of the

file. If the file does not exist a zero length file of the given name

is created. If successful it returns the file pointer to the given

file, otherwise it returns zero.

92 CHAPTER 3. THE LIBRARY

fp := sys(Sys openread, name, envname) CIN:y, POS:y, NAT:y

This opens for reading the file whose name is given by the string

name. It returns 0 if the file cannot be opened, otherwise it returns

the file pointer for the opened file. See page 104 for information

about the treatment of file names. If name is a relative filename,

the file is first searched for in the current directory, otherwise,

if envname is non null, the directories specified by the environment

variable envname are searched.

res := sys(Sys openreadwrite, name) CIN:y, POS:y, NAT:y

This opens for reading and writing the file whose name is given by

the string name. It returns 0 if the file cannot be opened, otherwise

it returns the file pointer for the opened file. See Section 3.3.2

for information about the treatment of file names and Section 3.4 for

information about random access files.

fp := sys(Sys openwrite, name) CIN:y, POS:y, NAT:y

This opens for writing the file whose name is given by the string

name. It returns 0 if the file cannot be opened, otherwise it returns

the file pointer for the opened file. See page 104 for information

about the treatment of file names.

res := sys(Sys platform) CIN:y, POS:y, NAT:n

This returns a machine dependent value indicating under which

architecture Cintsys or Cintpos is running.

res := sys(Sys pollsardch) CIN:y, POS:y, NAT:y

This returns the next character from standard input if it is

immediately available, otherwise it returns pollingch (=-3). If the

input stream is exhausted it returns endstreamch (=-1). The character

is not echoed to the standard output stream.

res := sys(Sys putsysval, addr, val) CIN:y, POS:y, NAT:n

This function sets atomically the contents of the machine memory

location whose word address is addr to val returning its previous

setting. The address may point to system work space outside the normal

Cintcode memory.

sys(Sys quit, code) CIN:y, POS:y, NAT:n

This saves the Cintcode registers in the vector of registers given

to the interpreter when it was invoked and returns with the result

code to the (C) program that called this invocation of the interpreter.

This is normally used to exit from the Cintcode system, but can also

be used to return from recursive invocations of the interpreter (see

sys(Sys interpret,regs) above). A code of zero denotes successful

3.3. GLOBAL FUNCTIONS 93

completion and, if invoked at the outermost level, causes the BCPL

Cintcode System to terminate.

n := sys(Sys read, fp, buf, len) CIN:y, POS:y, NAT:y

This reads upto len bytes from the file specified by the

file pointer fp into the byte buffer buf. The file pointer fp

must have been created by a call of sys(Sys openread,...) or

sys(Sys openreadwrite,...). The number of bytes actually read is

returned as the result.

res := sys(Sys renamefile, old, new) CIN:y, POS:y, NAT:y

This renames file old to new. It return 0 if successful.

sys(Sys rti, regs) CIN:n, POS:y, NAT:n

Under Cintpos, this returns from an interrupt by setting the

Cintcode registers to the values specified by regs.

ch := sys(Sys sardch) CIN:y, POS:y, NAT:y

This returns the next character from standard input (normally

the keyboard). Unlessrunning in quietmode the character is echoed

to standard output (normally the screen). If the -c or -- command

options are given when cintsys or cintpos is invoked, standard

input is prefixed with text from the command line. For details, see

Section 13.2 on page 293.

sys(Sys saveregs, regs) CIN:n, POS:y, NAT:n

Under Cintpos, this saves the current Cintcode registers in regs.

sys(Sys sawrch, ch) CIN:y, POS:y, NAT:y

This sends character repesented by the least significant 8 bit of ch

to the standard output (normally the screen). If ch=10, the characters

carriage return followed by linefeed are transmitted.

res := sys(Sys seek, fd, pos) CIN:y, POS:y, NAT:y

This will set the file position pointer of the opened file whose

descriptor is fd to pos. The file descriptor is normally in the scb fd

field of the stream control block for that file. The value of pos

must be between zero and the current number of bytes in the file. See

Section 3.4 for more information about random access files.

oldcount := sys(Sys setcount, newcount) CIN:y, POS:y, NAT:n

One of the Cintcode registers is called count which is inspected

just before the interpreter processes the next instruction. If count>0

it is decremented and the instruction processed. If count=0 the

interpreter returns to the calling (C) program with error code 3.

The Cintcode System normally has two resident interpreters. One

is called cinterp implemented in C and the other is called fasterp

94 CHAPTER 3. THE LIBRARY

which is sometimes implemented in assembly language. fasterp is faster

than cinterp since it provides fewer debugging aids, does not count

instruction executions and does not implement the profiling feature.

Setting count to a negative value causes this faster interpreter to

be invoked and setting count to a positive value causes the slower

interpreter to be used. Normally the CLI command interpreter is used

to make this switch, see Section 4.3.

With some debugging versions of fasterp, setting count to -2 causes

it to execute just one instruction before returning with error code 10.

This feature assists the debugging of a new versions of fasterp and is

particularly useful when fasterp is implemented in assembly language.

regs!0 A register -- work register

regs!1 B register -- work register

regs!2 C register -- work register

regs!3 P register -- the stack frame pointer

regs!4 G register -- the base of the global vector

regs!5 ST register -- the status register (unused)

regs!6 PC register -- the program counter

regs!7 Count register -- see below

regs!8 MW register -- Used only on 64-bit systems, see below

Both interpreter cinterp and fasterp returns when a fault such as

division by zero occurs or when a call of sys(Sys_quit,...) is made.

Before returning, the interpreter save the Cintcode registers in regs.

The returned result is either the second argument of sys(Sys_quit,...)

or one of the builtin return codes in the following table:

-1 Re-enter the interpreter with a new value in the

the count register

0 Normal successful completion (by convention)

1 Non existent Cintcode instruction

2 BRK instruction encountered

3 Count has reached zero

4 PC set to a negative value

5 Division by zero

10 Single step interrupt from the fast interpreter

(debugging)

11 The value of the watched location in the Cincode

memory has changed in the course of executing the

previous instruction

12 Indirect address out of range

13 SIGINT received

res := sys(Sys setprefix, prefix) CIN:y, POS:y, NAT:y

This is primarily a function for the Windows CE version of the

3.3. GLOBAL FUNCTIONS 95

BCPL Cintcode System for which there is no current working directory

mechanism. The prefix string is held in space that was allocated when

the system started. It sets the prefix that is prepended to all future

relative file names. See Section 3.3.2 and the CLI prefix command

described on page 164.

res := sys(Sys setraster, n, arg) CIN:y, POS:y, NAT:n

There is a variant of cintsys called rastsys that provides a way

to generate data for time-memory images, and cintpos has a similar

variant called rastpos. These systems can also generate bit streams

that can be converted in sound related to the execution of programs.

The setraster operation controls the rastering feature as follows. If

n=3, it returns 0 if rastering is available and -1 otherwise. If n=2,
the memory granularity is set to arg bytes per pixel, the default being

12. If n=1, the number of Cintcode instructions executed per raster

line is set to arg, the default being 1000. If n is zero and arg is

non-zero, rastering is activated sending its output to the file with

name arg (the rastering data file). Raster information is normally

collected for the duration of the next CLI command. If n and arg are

both zero, the rastering data file is closed. If n = 4 and arg=1,

the system generated a bit stream file based on the fifth bit of the

address of every access to the Cintcode memory. This file can later be

converted to sound using the command rast2wav. The generated sound is

somewhat similar to that generated by the Edsac 2 computer in Cambridge

in the early 1960s.

When not representing bit stream data, the raster file contains text

using run length encoding to represent raster lines. Typical output is

as follows:

K1000 S12 1000 instruction per raster line, 12 bytes per pixel

W10B3W1345B1N 10 white, 3 black, 1345 white, 1 black, newline

W13B3W12B2N etc

...

See the CLI commands raster and rast2ps on page 167 for more

information on how to use the rastering facility. See also the command

bits2ps.

res := sys(Sys settrcount, count) CIN:y, POS:y, NAT:n

This sets the private variable trcount used by the low level tracing

mechanism to the specified value returning it previous setting.

Setting it to a negative value disables the tracing mechanism. See

Sys trpush for more details.

res := sys(Sys sound, fno, a1, a2 ...) CIN:y, POS:y, NAT:y

This calls sound(args, g) where sound is a C function defined in

96 CHAPTER 3. THE LIBRARY

sysc/sound.c. The argument args points to memory locations holding

fno, a1, a2, etc., and g points to the base of the global vector. Note

that it may be necessary to run alsamixer to enable the sound device

and adjust its volume setting. The available sound functions have

mnemonic names declared in g/sound.h and are described below.

res := sys(Sys sound, snd test) CIN:y, POS:y, NAT:y

This returns TRUE is the Sys sound functions are available on the

current system.

res := sys(Sys sound, snd waveInOpen, a1, a2 , a3 , a4) CIN:y, POS:y,

NAT:y

This opens a sound wave device for input. a1 is typically

"/dev/dsp", "/dev/dsp1" or a small integer, a2 is the sample format,

eg 16 for S16 LE, 8 for U8. a3 is the number of channels, typically 1

or 2 and a4 is the number of samples per second, typically 44100. The

result is the file (or device) descriptor of the opened device or -1 if

error.

res := sys(Sys sound, snd waveInPause, a1) CIN:y, POS:y, NAT:y

This will pause sound wave sampling from device a1. Recently read

samples can still be read (to flush the buffered data).

res := sys(Sys sound, snd waveInRestart, a1) CIN:y, POS:y, NAT:y

Restart sound wave sampling.

res := sys(Sys sound, snd waveInRead, a1, a2 , a3) CIN:y, POS:y, NAT:y

Read samples from a sound wave input device a1, returning

immediately. a2 is the buffer in which to receive the samples and

a3 is the number of bytes to read. The result is the number of bytes

actually transferred into the buffer.

res := sys(Sys sound, snd waveInClose, a1) CIN:y, POS:y, NAT:y

This closes sound wave input device a1.

res := sys(Sys sound, snd waveOutOpen, a1, a2 , a3) CIN:y, POS:y, NAT:y

This opens a sound wave device for output. a1 is typically

"/dev/dsp", "/dev/dsp1" or a small integer, a2 is the sample format,

eg 16 for S16 LE, 8 for U8. a3 is the number of channels, typically 1

or 2 and a4 is the number of samples per second, typically 44100. The

result is the file (or device) descriptor of the opened device or -1 if

error.

res := sys(Sys sound, snd waveOutWrite, a1, a2 , a3)CIN:y, POS:y, NAT:y

Write samples from a sound wave output device a1. a2 is the buffer

holding the samples and a3 is the number of bytes to be written. The

result is the number of bytes actually transferred from the buffer.

3.3. GLOBAL FUNCTIONS 97

res := sys(Sys sound, snd waveOutClose, a1) CIN:y, POS:y, NAT:y

This closes sound wave output device a1.

res := sys(Sys sound, snd midiInOpen, a1) CIN:y, POS:y, NAT:y

This opens MIDI device for input specified by a1 which is typically

"/dev/midi", "/dev/dmmidi1" or a small integer. The result is the file

(or device) descriptor of the opened device or -1 if error.

res := sys(Sys sound, snd midiInRead, a1, a2 , a3) CIN:y, POS:y, NAT:y

This reads bytes from MIDI input device a1 into buffer a2. a3 is

the number of MIDI bytes to read. The result is the actual number of

bytes transferred or -1 if there was an error.

res := sys(Sys sound, snd midiInClose, a1) CIN:y, POS:y, NAT:y

This close MIDI input device a1.

res := sys(Sys sound, snd midiOutOpen, a1) CIN:y, POS:y, NAT:y

This opens a MIDI device for output. a1 is typically "/dev/midi",

"/dev/dmmidi1" or a small integer. The result is the file (or device)

descriptor of the opened device or -1 if error.

res := sys(Sys sound, snd midiOutWrite1, a1, a2) CIN:y, POS:y, NAT:y

This writes a one byte MIDI message (a2) to MIDI device a1.

res := sys(Sys sound, snd midiOutWrite2, a1, a2 , a3) CIN:y, POS:y,

NAT:y

This writes a two byte MIDI message (a2 a3) to MIDI device a1.

res := sys(Sys sound, snd midiOutWrite3, a1, a2 , a3 , a4)CIN:y, POS:y,

NAT:y

This writes a three byte MIDI message (a2 a3 a3) to MIDI device a1.

res := sys(Sys sound, snd midiOutWrite, a1, a2 ...) CIN:y, POS:y, NAT:y

This write a3 MIDI bytes from buffer a2 to MIDI output device a1.

The result is the number of bytes actually sent.

res := sys(Sys sound, snd midiOutClose, a1) CIN:y, POS:y, NAT:y

This closes MIDI output device a1.

sys(Sys setst, val) CIN:n, POS:y, NAT:n

Under Cintpos, this sets the Cintcode ST register to val.

Interrupts are enabled only when ST is zero. By convention, ST=1 while

execution is within klib, ST=2 when executing within the interrupt

routine, and ST=3 during the initial bootstrapping process.

res := sys(Sys shellcom, comstr) CIN:y, POS:y, NAT:y

This causes the command comstr to be executed by the command

98 CHAPTER 3. THE LIBRARY

language shell of the operating system under which Cintsys or Cintpos

is running.

sys(Sys tally, val) CIN:y, POS:y, NAT:n

This call provides a profiling facility that uses a globally

accessible tally vector to hold frequency counts of Cintcode

instructions executed. When val is TRUE the tally vector is cleared

and tallying is enabled. When val is FALSE tallying is disabled. When

tallying is active, the ith element of the tally vector is incremented

every time the instruction at location i of the Cintcode memory is

executed. The size of the tally vector can be specified by the -t

command line argument (see Section 13.2) when the interpreter is

entered. The default size being typically 80000 words. The tally

vector is held in rootnode!rtn tallyv with the upper bound stored in

its zeroth element. It can thus be inspected by any program.

Statistics of program execution is normally gathered and analysed

using the CLI command stats (see Section 4.3).

pos := sys(Sys tell, fd) CIN:y, POS:y, NAT:y

This returns the current file position pointer of the opened file

whose descriptor is fd. The file descriptor is normally in the scb fd

field of the stream control block for that file. See Section 3.4 for

more information about random access files.

sys(Sys tracing, val) CIN:y, POS:y, NAT:n

This sets the Cintcode tracing mode to val. When the tracing mode

is TRUE, the Cintcode interpreter outputs a one line trace of every

Cintcode instruction executed.

sys(Sys trpush, val) CIN:y, POS:y, NAT:n

There is a low level circular trace buffer that can hold 4096

values, and a private variable trcount that holds the number of values

currently pushed into this buffer. If trcount<0, low level tracing is

disabled, but otherwise trpush pushes val into the buffer at position

trcount MOD 4096 and increments trcount. The call sys(Sys settrcount,

count) sets trcount to the specified value (possibly disabling tracing)

and returns its previous setting. The call sys(Sys gettrval, count)

gets the value in the trace buffer at position trcount MOD 4096.

Normally this function is only called when tracing is disabled. Under

both Cintsys and Cintpos, trpush can also be called from the parts of

the system implemented in C.

This tracing mechanism is available both to the BCPL user and

parts of the system such as cintpos.c, cinterp.c and devices.c. Under

Cintpos these low level tracing functions use a mutex to control access

to trcount and the circular buffer. It is thus thread safe and so can

be used to help debug subtle timing problems in the system software.

3.3. GLOBAL FUNCTIONS 99

For an example of the use of this tracing mechanism see the command

com/testtr.b.

res := sys(Sys unloadseg, seg) CIN:y, POS:y, NAT:y

This unloads the the loaded module given by seg. If seg is zero it

does nothing. Unloading a module just returns the space it occupied to

freestore.

sys(Sys unlockirq) CIN:n, POS:y, NAT:n

Under cintpos, this call enables interrupts.

res := sys(Sys usleep, usecs) CIN:y, POS:y, NAT:y

Under cintsys, this call causes the system to sleep for usecs

micro-seconds. Under cintpos, it causes the current task to sleep

for usecs micro-seconds.

sys(Sys waitirq, msecs) CIN:n, POS:y, NAT:n

This call is typically only made from the body of the Cintpos Idle

task. It suspends the interpreter until either some Cintpos device

issues an interrupt request or the specified timeout occurs. It is

typically implemented by waiting with a timeout on a host operating

system condition variable. When a device thread wishes to interrupt

the interpreter it send a signal via the appropriate condition

variable. Unfortunately some operating systems may take hundreds of

milliseconds to reschedule the interpreter thread. A possible but

selfish solution is for the Idle task to execute a busy loop instead of

calling waitirq.

sys(Sys watch, addr) CIN:y, POS:y, NAT:n

This sets the address of a location of Cintcode memory to be

inspected every time the interpreter executes and instruction. When

the watched value changes it returns with result 12. The watch feature

is disabled if addr is zero or if fasterp is being used.

n := sys(Sys write, fp, buf, len) CIN:y, POS:y, NAT:y

This writes len bytes to the file specified by the file pointer fp

from the byte buffer buf. The file pointer must have been created by

a call of sys(Sys openwrite,...) or sys(Sys openreadwrite,...). The

result is the number of bytes transferred, or zero if there was an

error.

pkt := taskwait() CIN:n, POS:y, NAT:n

If there is a packet in the task’s queue it is dequeued and returned

as the result. If there was no packet on the work queue this task is

suspended in WAIT state and control given to a lower priority task.

100 CHAPTER 3. THE LIBRARY

res := testbit(bitno, bitvec) CIN:y, POS:y, NAT:y

This function returns a non zero value if and only if the specified

bit in bitvec is a one. The bits are numbered from zero starting

at the least significant bit of bitvec!0. bitvec!0 holds bits 0 to

bitsperword-1, bitvec!1 holds bits bitsperword to 2*bitsperword-1, etc.

res := testflags(flags) CIN:n, POS:y, NAT:n

This Cintpos function tests and clears specified flags in the task

control block of the current task. Flags are bits in the tcb flags

field of the task control block, and they are normally called A, B, etc

corresponding to consecutive bits from the least significant end of the

field. A flag is set if the corresponding bit is a one. The argument

flags is a bit pattern identifying which flags are being inspected.

The result is FALSE if none of the specified flags were set, and TRUE

if at least one was, in which case result2 is set to a bit pattern

representing the flags that were set and have now been cleared.

unloadseg(segl) CIN:y, POS:y, NAT:y

This routine unloads the list of loaded program modules given by

segl.

res := unrdch() CIN:y, POS:y, NAT:y

This attempts to step the current input stream back by one character

position. It returns TRUE if successful, and FALSE otherwise. A call

of unrdch will always succeeds the first time after a call of rdch. It

is useful in functions such as readn where single character lookahead

is necessary. See Section 3.3.1 for more detailed information.

wrch(ch) CIN:y, POS:y, NAT:y

This routine writes the character ch to the currently selected

output stream. If output is to the screen, ch is transmitted

immediately. It aborts (with code 189) if there is a write failure.

writed(n, d) CIN:y, POS:y, NAT:y

writeu(n, d) CIN:y, POS:y, NAT:y

writen(n) CIN:y, POS:y, NAT:y

These routines output the integer n in decimal to the currently

selected output stream. For writed and writeu, the output is padded

with leading spaces to fill a field width of d characters. If writen

is used or if d is too small, the number is written without padding.

If writeu is used, n is regarded as an unsigned integer.

writehex(n, d) CIN:y, POS:y, NAT:y

writeoct(n, d) CIN:y, POS:y, NAT:y

writebin(n, d) CIN:y, POS:y, NAT:y

These routines output, repectively, the least significant d

3.3. GLOBAL FUNCTIONS 101

hexadecimal, octal or binary digits of the integer n to the currently

selected output stream.

writes(str) CIN:y, POS:y, NAT:y

writet(str, d) CIN:y, POS:y, NAT:y

These routines output the string str to the currently selected

output stream. If writet is used, trailing spaces are added to fill

a field width of d characters.

writef(format,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)
CIN:y, POS:y, NAT:y

The first argument (format) is a string that is copied character by

character to the currently selected output stream until a substitution

item such as %s or %i5 is encountered when a value (usually the next

argument) is output in the specified format. The substitution items

are given in table 3.6.

When a field width (denoted by n in the table) is required, it is

specified by a single character, with 0 to 9 being represented by the

corresponding digit and 10 to 35 represented by the letters A to Z.

Format characters are case insensitive but field width characters are

not. A recent entension allows the field width to be specified as a

decimal integer immediately following the percent, as in %12i meaning

%iB.

Some examples of the %n.md substitution item are given below.

writef("%9.2d", 1234567) writes 12345.67

writef("%9.2d", -1234567) writes -12345.67

writef("%9.0d", 1234567) writes 1234567

writef("%9d", 1234567) writes 1234567

As an example of how the %p substitution item can be used, the

following code:

FOR count = 0 TO 2 DO
writef("There %p\ is\are\ %-%n thing%-%ps.*n", count)

outputs:

There are 0 things.
There is 1 thing.
There are 2 things.

The implementation of writef (in sysb/blib.b) is a good example of

how a variadic function can be defined.

writeflt(x, w, p) CIN:y, POS:y, NAT:y

This routine outputs the floating point number x to the currently

selected output stream in a field of width w with p digits after the

decimal point.

102 CHAPTER 3. THE LIBRARY

Item Substitution

%s Write the next argument as a string using writes.
%nt %tn Write the next argument as a left justified string in a field width of

n characters using writet.
%c Write the next argument as a character using wrch.
%# Write the next argument as a in UTF-8 or GB2312 character using

codewrch.
%nb %bn Write the next argument as a binary number in a field width of n

characters using writebin.
%no %on Write the next argument as an octal number in a field width of n

characters using writeoct.
%nx %xn Write the next argument as a hexadecimal number in a field width

of n characters using writehex.
%ni %in Write the next argument as a decimal number in a field width of n

characters using writed.
%n Write the next argument as a decimal number in its natural field

width using writen.
%nu %un Write the next argument as an unsigned decimal number in a field

width of n characters using writeu.
%n.md Write the next argument as a scaled decimal number in a field with

of n with m digits after the decimal point.
%+ Skip over the next argument.
%- Step back to the previous argument.
%% Write the character %.
%pc Plural formation. Write character c if the next argument is not 1.
%p\a\b\ Plural formation. Write text a if the next argument is 1, otherwise

write text b.
%f Take the next argument as a writef format string and call writef

recursively to process it passing it the remaining arguments. The
argument pointer is advanced by the appropriate amount.

%n.mf Write the next argument as a floating point number in a field with
of n with m digits after the decimal point. The output is generated
using writeflt.

%n.me Write the next argument as a floating point number in exponential
form in a field with of n with m digits after the decimal point. The
output is generated using writee.

%m The next argument is taken as a message number and processes
as for %f above using the message format string obtained by the
call get text(messno, str, upb) where str is a vector local to
writef to hold the message string. This provides an easy way
to generate messages in different languages. get text is a global
function typically defined by the user. The default version always
yields the message string "<mess:%-%n>".

Figure 3.6: writef substitution items

3.3. GLOBAL FUNCTIONS 103

writee(x, w, p) CIN:y, POS:y, NAT:y

This routine outputs the floating point number x to the currently

selected output stream in exponential form in a field of width w with p
digits after the decimal point.

3.3.1 Streams

BCPL uses streams as a convenient method of obtaining device

independent input and output. All the information needed to process

a stream is held in a vector called a stream control block (SCB) whose

fields have already been summarized in Section 3.1.

The element buf is either zero or holds the stream’s byte buffer

which must have been allocated using getvec and must be freed using

freevec when the stream is closed. The elements pos and end hold

positions within the byte buffer, file holds a file pointer for file

streams or -1 for streams connected to the console. The element id

indicates whether the stream is for input, output or both and work is

private work space for the action function rdfn, wrfn which are called,

repectively, when the byte buffer becomes empty on reading or full on

output. The function endfn is called to close the stream.

Input is read from the currently selected input stream whose SCB

is held in the global variable cis. For an input stream, pos holds

the position of the next character to be read, and end points to just

past the last available character in the buffer. Characters are read

using rdch whose definition is given in figure 3.7. If a character

is available in the buffer it is returned after incrementing pos.

Exceptionally, the character carriage return (CR) is ignored since

on some systems, such as Windows, lines are terminated with carriage

return and linefeed while on others, such as Linux, only linefeed is

used. If the buffer is exhausted, replenish is called to refill it,

returning TRUE if one or more character are transferred. If replenish

fails it returns FALSE with the reason why in result2. Possible

reasons are: -1 indicating end of file, -2 indicating a timeout has

occurred and -3 meaning input is in polling mode and no character is

currently available. By setting the timeoutact field of the SCB to -1,

a timeout is treated as end of file.

Whenever possible, the buffer contains the previously read

character. This is to allow for a clean and simple implementation of

unrdch whose purpose is to step input back by one character position.

Its definition is given in figure 3.8.

Output is sent to the currently selected output stream whose SCB

is held in the global variable cos. The SCB field pos of an output

stream holds the position in the buffer of the next character to be

written, and end holds the position just past the end of the buffer.

Characters are written using the function wrch whose definition is

104 CHAPTER 3. THE LIBRARY

AND rdch() = VALOF
{ LET pos = cis!scb_pos // Position of next byte, if any

UNLESS cis DO abort(186)
IF pos<cis!scb_end DO { LET ch = cis!scb_buf%pos

cis!scb_pos := pos+1
IF ch=’*c’ LOOP // Ignore CR
RESULTIS ch

}

// If replenish returns FALSE, it failed to read any characters
// and the reason why is placed in result2 as follows
// result2 = -1 end of file
// result2 = -2 timeout
// result2 = -3 polling mode with no characters available.
// result2 = code error code
UNTIL replenish(cis) DO
{ IF result2=-2 DO
{ LET act = cis!scb_timeoutact // Look at the timeout action

IF act=-2 RESULTIS timeoutch // Timed out
IF act=-1 RESULTIS endstreamch // End of file reached
LOOP // Try replenishing again

}
RESULTIS result2<0 -> result2, endstreamch

}
} REPEAT

Figure 3.7: The definition of rdch

LET unrdch() = VALOF
{ LET pos = cis!scb_pos

IF pos<=scb_bufstart RESULTIS FALSE // Cannot UNRDCH past origin.
cis!scb_pos := pos-1
RESULTIS TRUE

}

Figure 3.8: The definition of unrdch

given in figure 3.9. The character ch is copied into the byte buffer

and pos incremented. If the buffer is full, it is emptied by calling

the element wrfn. If writing fails it return FALSE, causing wrch to

abort.

3.3.2 The Filing System

BCPL uses the filing system of the host operating system and so some

details such as the maximum length of file names are machine dependent.

Previously, BCPL used to follow the syntax of target machine files

names, but recently BCPL attempts to be more machine independent

by mainly adopting the Linux style of names and converting them to

target machine form at runtime. The target machine format is set by a

3.3. GLOBAL FUNCTIONS 105

AND wrch(ch) = VALOF
{ LET pos = cos!scb_pos

IF pos >= cos!scb_bufend DO
{ // The buffer is full
UNLESS deplete(cos) RESULTIS FALSE
UNLESS cos!scb_buf RESULTIS TRUE // Must be writing to NIL:
pos := cos!scb_pos

}

// Pack the character and advance pos.
cos!scb_buf%pos := ch
pos := pos+1
cos!scb_pos := pos
// Advance end of valid data pointer, if necessary
IF cos!scb_end < pos DO cos!scb_end := pos
cos!scb_write := TRUE // Set flag to indicate the buffer has changed.

UNLESS ch<’*s’ & cos!scb_type<0 RESULTIS TRUE // Normal return

// The stream is interactive and ch is a control character.

IF ch=’*n’ DO wrch(’*c’) // Fiddle for Cygwin

// Call deplete at the end of each interactive line.
IF ch=’*n’ | ch=’*p’ RESULTIS deplete(cos)
RESULTIS TRUE

}

Figure 3.9: The definition of wrch

configuration parameter set when the system was installed. The formats

currently available are for Unix, Windows and VMS.

Within BCPL file names slashs (/) and back slashes (\) are regarded

as separators between the components of file names. File names may

start with a colon prefix consisting of letters and digits followed

by a colon, as in TCP:shep.cl.cam.ac.uk:9000 or G:test.b. Such

prefixes allow access to special features such as URLs used in TCP/IP

communication or to other filing systems. These are often dependent on

the host operating system.

A file name starting ’/’ or ’\’ or containing a colon is treated

as an absolute name; all others are relative names and are interpreted

relative to the current directory. A file name consisting of a single

asterisk (*) is special and represents standard input (normally the

keyboard) or standard output (normally the screen) depending on

context. Within a file name, the components dot (.) and double dot

(..) represent the current and parent directories, respectively. As

an example, the file name ../bcplprogs/demos/queens.b is valid and

automatically converted when used to ..\bcplprogs\demos\queens.b under

Windows or to [-.bcplprogs.demos]queens.b under VMS.

106 CHAPTER 3. THE LIBRARY

Some operating systems such as Windows CE2.0 have no concept of

a current working directory. For such systems there is a feature

that allows users to specify a character string to be automatically

prepended to any relative (non absolute) file name before it is used.

The prefix string is stored in static Cintcode space allocated when

Cintsys or Cintpos starts up. It can be inspected and changed using

the calls: sys(Sys getprefix) and sys(Sys setprefix, prefix), or the

CLI command prefix described on page 164. The prefix string is only

used with relative file names not already prefixed with directories

given by path variables such as BCPLPATH or POSPATH.

3.4 Random Access

Disk files can be regarded as potentially huge vectors of bytes with

the first byte being at position zero of the file. An opened stream

to or from a file has a file position pointer that holds the position

relative to the start of where the next byte will be transferred. For

any such stream this position can be read using note(scb, posv) or

updated using point(scb, posv). For read-write streams it is possible

to read or write data at any position in the file.

Disk files can also be regarded as potentially huge collections of

fixed length records. The user must specify the record size by calling

setrecordlength. The records of a file are given consecutive numbers

starting with zero, and can be read or written using get record and

put record. The record number of the next record to be transferred can

be obtained by calling recordnote and can be set using recordpoint.

3.5 RAM streams

A special form of random access stream is a RAM stream which can be

created by the call findinoutput("RAM:"). RAM streams hold all the

data in main memory in the stream buffer. As data is written to a

RAM stream, its buffer is automatically enlarged as needed. The data

can be read back by calling rewindstream followed by calls of rdch.

Alternatively it can be accessed from the buffer held in scb!scb buf.

The number of valid bytes in the buffer is scb!scb end. When a RAM

stream is closed its buffer and scb are returned to free store.

3.6 Environment Variables

Most operating systems allow the user to set environment variables

whose names consist of letters and digits and whose values are

arbitrary character strings. Both Cintsys and Cintpos use such

variables to specify directories to be searched when looking up files

3.6. ENVIRONMENT VARIABLES 107

in certain contexts. These directories are separated by semicolons or

colons, but when running under Windows only semicolons are allowed.

In the standard Cintsys system the environment variable BCPLROOT

holds the file name of the root directory of the system. BCPLPATH

holds a list of directories that are searched when attempting to load

the Cintcode compiled form of a BCPL program. BCPLHDRS holds the

directories to be searched when the BCPL compiler is processing a GET

directive and BCPLSCRIPTS specified the directories to be searched when

the c command is looking for a command-command script.

In the standard Cintpos system these variables are called POSROOT,

POSPATH, POSHDRS and POSSCRIPTS. It is sometimes convenient to use

other names, for instance, NBCPLROOT, NBCPLPATH, NBCPLHDRS and

NBCPLSCRIPTS might be used when developing a new version of Cintsys.

To make this possible the system allocates static space to hold the

names and provides the command setroot described on page 170 to allow

the user to change them. These names may be up to 63 characters long

are accessible to commands such as bcpl, c and setroot via the rootnode

fields rtn rootvar, rtn pathvar, rtn hdrsvar and rtn scriptsvar.

When Cintsys (or Cintpos) starts up it requires a valid setting of

rtn pathvar in order to locate Cintcode modules such as BOOT and BLIB.

The default setting of this field is BCPLPATH (or POSPATH) but can be

changed using the -cin argument at startup as in

cintsys -cin NBCPLPATH

After loading the resident system control is passed to BOOT which

updates the variable names appropriately for the system being run. It

is unlikely that the user will want change them using setroot although

it might be useful to use setroot to see what names are currently being

used.

If the value of an environment variable represents a list of

directories, they should be given using Linux style slash (/)

separators and the directories separated by semicolons (rather than the

Linux style colons). This allows colon prefixes such as G: to be used

in, for instance, Windows version of the system. For compatibility

with older systems, colons may be used as an alternative to semicolons

when not running under Windows.

When Cintpos starts up the process is similar except the setting of

rtn pathvar is POSPATH unless explicitly changed using -cin.

When installing cintsys or cintpos for the first time it is common

to fail to set the environment variables correctly. To help repair

such mistakes, use the -f option when calling cintsys or cintpos.

This will output a trace of every time any file is looked up using

an environment variable. Even more information is generated if the

108 CHAPTER 3. THE LIBRARY

-v argument is also given (or even -vv). Until the system is working

correctly it is recommended that it is started using

cintsys -f

or

cintpos -f -v

3.7 Coroutine examples

This section contains examples that use the coroutine mechanism.

3.7.1 A square wave generator

The following function is the main function of a coroutine that

generates square wave samples.

LET squarefn(args) = VALOF
{ LET freq, amplitude, rate = args!0, args!1, args!2

LET x = 0
cowait(@freq) // Return a pointer -> [freq, amplitude, rate]

{ // freq is a scaled fixed point value with
// three digits after the decimal point.
LET currfreq = freq // These only change at the
LET curramplitude = amplitude // start of a complete cycle.
LET q4 = rate*1000
LET q2 = q4/2
UNTIL x > q2 DO { cowait(+curramplitude) // First half cycle

x := x + currfreq
}

UNTIL x > q4 DO { cowait(-curramplitude) // Second half cycle
x := x + currfreq

}
x := x - q4

} REPEAT
}

The following call creates a coroutine that initially generates a

square wave with frequency 440Hz and amplitude 5000 at a rate of 44100

3.7. COROUTINE EXAMPLES 109

samples per second.

sqco := initco(squarefn, 300, 440_000, 5_000, 44_100)
sqparmv := result2 // sqparmv -> [freq, amplitude, rate]

One second’s worth of samples can now be obtained by:

FOR i = 1 TO 44100 DO
{ LET sample = callco(sqco)
...

}

The frequency and amplitude can be changed by assignments such as:

sqparmv!0 := newfrequency
sqparmv!1 := newamplitude

Note that the new frequency and amplitude take effect at the start of

the next complete cycle.

Other examples of the use of initco can be found below.

3.7.2 Hamming’s Problem

A following problem permits a neat solution involving coroutines.

Generate the sequence 1,2,3,4,5,6,8,9,10,12,...

of all numbers divisible by no primes other than

2, 3, or 5".

This problem is attributed to R.W.Hamming. The solution given

here shows how data can flow round a network of coroutines. It is

illustrated in figure 3.10 in which each box represents a coroutine and

the edges represent callco/cowait connections. The end of a connection

corresponding to callco is marked by c, and an end corresponding

to cowait is marked by w. The arrows on the connections show the

direction in which data moves. Notice that, in tee1, callco is

sometimes used for input and sometimes for output.

The coroutine BUF1 controls a queue of integers. Non-zero values

can be inserted into the queue using callco(BUF1,val), and values

can be extracted using callco(BUF1,0). The coroutines BUF2 and BUF3

are similar. The coroutine TEE1 is connected to BUF1 and BUF2 and

is designed so that callco(TEE1) executed in coroutine X2 will yield

a value that TEE1 extracted from BUF1, after sending a copy to BUF2.

TEE2 similarly takes values from BUF2 passing them to BUF3 and X3.

Values passing through X2, X3 and X5 are multiplied by 2, 3 and 5,

respectively. MER1 merges two monotonically increasing streams of

numbers produced by X2 and X3. The resulting monotonic stream is then

merged by MER2 with the stream produced by X5. The stream produced by

110 CHAPTER 3. THE LIBRARY

Figure 3.10: Coroutine data flow

MER2 is the required Hamming sequence, each value of which is printed

by MAIN and then inserted into BUF1.

The BCPL code for this solution is as follows:

GET "libhdr"

LET buf(args) BE // Body of BUF1, BUF2 and BUF3
{ LET p, q, val = 0, 0, 0

LET v = VEC 200

{ val := cowait(val)
TEST val=0 THEN { IF p=q DO writef("Buffer empty*n")

val := v!(q MOD 201)
q := q+1

}
ELSE { IF p=q+201 DO writef("Buffer full*n")

v!(p MOD 201) := val
p := p+1

}
} REPEAT

}

LET tee(args) BE // Body of TEE1 and TEE2
{ LET in, out = args!0, args!1

cowait() // End of initialisation.

{ LET val = callco(in, 0)
callco(out, val)
cowait(val)

} REPEAT
}

AND mul(args) BE // Body of X2, X3 and X5
{ LET k, in = args!0, args!1

cowait() // End of initialisation.

cowait(k * callco(in, 0)) REPEAT
}

3.7. COROUTINE EXAMPLES 111

LET merge(args) BE // Body of MER1 and MER2
{ LET inx, iny = args!0, args!1
LET x, y, min = 0, 0, 0
cowait() // End of initialisation

{ IF x=min DO x := callco(inx, 0)
IF y=min DO y := callco(iny, 0)
min := x<y -> x, y
cowait(min)

} REPEAT
}

LET start() = VALOF
{ LET BUF1 = initco(buf, 500)
LET BUF2 = initco(buf, 500)
LET BUF3 = initco(buf, 500)
LET TEE1 = initco(tee, 100, BUF1, BUF2)
LET TEE2 = initco(tee, 100, BUF2, BUF3)
LET X2 = initco(mul, 100, 2, TEE1)
LET X3 = initco(mul, 100, 3, TEE2)
LET X5 = initco(mul, 100, 5, BUF3)
LET MER1 = initco(merge, 100, X2, X3)
LET MER2 = initco(merge, 100, MER1, X5)

LET val = 1
FOR i = 1 TO 100 DO { writef(" %i6", val)

IF i MOD 10 = 0 DO newline()
callco(BUF1, val)
val := callco(MER2)

}

deleteco(BUF1); deleteco(BUF2); deleteco(BUF3)
deleteco(TEE1); deleteco(TEE2)
deleteco(X2); deleteco(X3); deleteco(X5)
deleteco(MER1); deleteco(MER2)
RESULTIS 0

}

3.7.3 A Discrete Event Simulator

This is a benchmark test for a discrete event simulator using

coroutines. It simulates a network of n nodes which each receive,

queue, process and transmit messages to other nodes. The nodes are

uniformly spaced on a straight line and the network delay is assumed

to be proportional to the linear distance between the source and the

destination. When a message arrives at a node it is queued if the node

was busy, otherwise it is processed immediately. After processing the

message for random time, it is sent to another randomly chosen node.

After dispatching the message, the node dequeues its next message and

processes it if there is one, otherwise the node becomes suspended.

Initially every node is processing a message and every queue is empty.

There are n coroutines to simulate the progress of each message and the

discrete event priority queue is implemented using the heapsort heap

112 CHAPTER 3. THE LIBRARY

structure. The simulation stops at a specified simulated time. The

result is the number of messages that have been processed. A machine

independent random number generator is used so the resulting value

should be independent of implementation language and machine being

used.

The program is given below. When it is run using the default

settings, it executes 435,363,350 Cintcode instructions and has

2,510,520 coroutine changes.

SECTION "cosim"

GET "libhdr"

GLOBAL {
priq:ug // The vector holding the priority queue
priqupb // The upper bound
priqn // Number of items in the priority queue
wkqv // The vector of work queues
count // count of messages processed
nodes // The number of nodes
ptmax // The maximum processing time
stopco // The stop coroutine
cov // Vector of message coroutines
ranv // A vector used by the random number generator
rani; ranj // subscripts of ranv
simtime // Simulated time
stoptime // Time to stop the simulation
tracing

// Functions
rnd; initrnd; closernd; prq; insertevent; upheap
downheap; getevent; waitfor; prwaitq; qitem; dqitem
stopcofn; messcofn

}

// ################### Random number generator #######################

// The following random number generator is based on one given
// in Knuth: The art of programming, vol 2, p 26.
LET rnd(n) = VALOF
{ LET val = (ranv!rani + ranv!ranj) & #x_FFF_FFFF

ranv!rani := val
rani := (rani + 1) MOD 55
ranj := (ranj + 1) MOD 55
RESULTIS val MOD n

}

3.7. COROUTINE EXAMPLES 113

AND initrnd(seed) = VALOF
{ LET a, b = #x_234_5678+seed, #x_536_2781
ranv := getvec(54)
UNLESS ranv RESULTIS FALSE
FOR i = 0 TO 54 DO
{ LET t = (a+b) & #x_FFF_FFFF
a := b
b := t
ranv!i := t

}
rani, ranj := 55-55, 55-24 // ie: 0, 31
RESULTIS TRUE

}

AND closernd() BE IF ranv DO freevec(ranv)

// ################### Priority Queue functions ######################

AND prq() BE
{ FOR i = 1 TO priqn DO writef(" %i4", priq!i!0)
newline()

}

AND insertevent(event) BE
{ priqn := priqn+1 // Increment number of events
upheap(event, priqn)

}

AND upheap(event, i) BE
{ LET eventtime = event!0
//writef("upheap: eventtime=%n i=%n*n", eventtime, i)

{ LET p = i/2 // Parent of i
UNLESS p & eventtime < priq!p!0 DO
{ priq!i := event

RETURN
}
priq!i := priq!p // Demote the parent
i := p

} REPEAT
}

AND downheap(event, i) BE
{ LET j, min = 2*i, ? // j is left child, if present
IF j > priqn DO
{ upheap(event, i)
RETURN

}
min := priq!j!0
// Look at other child, if it exists
IF j<priqn & min>priq!(j+1)!0 DO j := j+1
// promote earlier child
priq!i := priq!j
i := j

} REPEAT

114 CHAPTER 3. THE LIBRARY

AND getevent() = VALOF
{ LET event = priq!1 // Get the earliest event

LET last = priq!priqn // Get the event at the end of the heap
UNLESS priqn>0 RESULTIS 0 // No events in the priority queue
priqn := priqn-1 // Decrement the heap size
downheap(last, 1) // Re-insert last event
RESULTIS event

}

AND waitfor(ticks) BE
{ // Make an event item into the priority queue

LET eventtime, co = simtime+ticks, currco
insertevent(@eventtime) // Insert into the priority queue
cowait() // Wait for the specified number of ticks

}

// ###################### Queueing functions #########################

AND prwaitq(node) BE
{ LET p = wkqv!node

IF -1 <= p <= 0 DO { writef("wkq for node %n: %n*n", node, p); RETURN }
writef("wkq for node %n:", node)
WHILE p DO
{ writef(" %n", p!1)
p := !p

}
newline()

}

AND qitem(node) BE
// The message has reached this node
// It currently not busy, mark it as busy and return to process
// the message, other append it to the end of the work queue
// for this node.
{ // Make a queue item

LET link, co = 0, currco
LET p = wkqv!node
UNLESS p DO
{ // The node was not busy
wkqv!node := -1 // Mark node as busy
IF tracing DO

writef("%i8: node %i4: node not busy*n", simtime, node)
RETURN

}
// Append item to the end of this queue
IF tracing DO
writef("%i8: node %i4: busy so appending message to end of work queue*n",

simtime, node)
TEST p=-1
THEN wkqv!node := @link // Form a unit list
ELSE { WHILE !p DO p := !p // Find the end of the wkq

!p := @link // Append to end of wkq
}

cowait() // Wait to be activated (by dqitem)
}

3.7. COROUTINE EXAMPLES 115

AND dqitem(node) BE
// A message has just been processed by this node and is ready to process
// the next, if any.
{ LET item = wkqv!node // Current item (~=0)
UNLESS item DO abort(999)
TEST item=-1
THEN wkqv!node := 0 // The node is no longer busy
ELSE { LET next = item!0

AND co = item!1
wkqv!node := next -> next, -1 // De-queue the item
callco(co) // Process the next message

}
}

// ######################## Coroutine Bodies ##########################

AND stopcofn(arg) = VALOF
{ waitfor(stoptime)
IF tracing DO
writef("%i8: Stop time reached*n", simtime)

RESULTIS 0
}

AND messcofn(node) = VALOF
{ qitem(node) // Put the message on the work queue for this node

{ // Start processing the first message
LET prtime = rnd(ptmax) // a random processing time
LET dest = rnd(nodes) + 1 // a random destination node
LET netdelay = ABS(node-dest) // the network delay

IF tracing DO
writef("%i8: node %i4: processing message until %n*n",

simtime, node, simtime+prtime)
waitfor(prtime)
count := count + 1 // One more message processed
IF tracing DO

writef("%i8: node %i4: message processed*n",
simtime, node, dest, simtime+netdelay)

dqitem(node) // De-queue current item and activate the next, if any
IF tracing DO

writef("%i8: node %i4: sending message to node %n to arrive at %n*n",
simtime, node, dest, simtime+netdelay)

waitfor(netdelay)
node := dest // The message has arrived at the destination node
IF tracing DO

writef("%i8: node %i4: message reached this node*n",
simtime, node)

qitem(node) // Queue the message if necessary
// The node can now process the first message on its work queue

} REPEAT
}

116 CHAPTER 3. THE LIBRARY

// ######################### Main Program ############################

LET start() = VALOF
{ LET seed = 0

LET argv = VEC 50

UNLESS rdargs("-n/n,-s/n,-p/n,-r/n,-t/s", argv, 50) DO
{ writef("Bad arguments for cosim*n")
RESULTIS 0

}

nodes, stoptime, ptmax := 500, 1_000_000, 1000
IF argv!0 DO nodes := !(argv!0) // -n/n
IF argv!1 DO stoptime := !(argv!1) // -s/n
IF argv!2 DO ptmax := !(argv!2) // -p/n
IF argv!3 DO seed := !(argv!3) // -r/n
tracing := argv!4 // -t/s

writef("*nCosim entered*n*n")
writef("Network nodes: %n*n", nodes)
writef("Stop time: %n*n", stoptime)
writef("Max processing time: %n*n", ptmax)
writef("Random number seed: %n*n", seed)
newline()

UNLESS initrnd(seed) DO
{ writef("Can’t initialise the random number generator*n")
RESULTIS 0

}

stopco := 0
wkqv, priq, cov := getvec(nodes), getvec(nodes+1), getvec(nodes)
UNLESS wkqv & priq & cov DO
{ writef("Can’t allocate space for the node work queues*n")
GOTO ret

}

FOR i = 1 TO nodes DO wkqv!i, cov!i := 0, 0
priqn := 0 // Number of events in the priority queue
count := 0 // Count of message processed
simtime := 0 // Simulated time

IF tracing DO writef("%i8: Starting simulation*n", simtime)

// Create and start the stop coroutine
stopco := createco(stopcofn, 200)
IF stopco DO callco(stopco)
// Create and start the message coroutines
FOR i = 1 TO nodes DO
{ LET co = createco(messcofn, 200)
IF co DO callco(co, i)
cov!i := co

}

3.8. THE BMP GRAPHICS LIBRARY 117

// Run the event loop

{ LET event = getevent() // Get the earliest event
UNLESS event BREAK
simtime := event!0 // Set the simulated time
IF simtime > stoptime BREAK
callco(event!1)

} REPEAT

IF tracing DO writef("*nSimulation stopped*n*n")
writef("Messages processed: %n*n", count)

ret:
FOR i = nodes TO 1 BY -1 IF cov!i DO deleteco(cov!i)
IF cov DO freevec(cov)
IF wkqv DO freevec(wkqv)
IF priq DO freevec(priq)
IF stopco DO deleteco(stopco)
closernd()
RESULTIS 0

fail:
writef("Unable to initialise the simulator*n")
GOTO ret

}

3.8 The BMP Graphics Library

The graphics library provides facilities for drawing pictures and

outputing them to file. This library is designed to generate .bmp

files representing potentially large images using 8-bit or 24-bit

coloured pixels. It is designed to create files representing 2

dimensional rectangular images using the .bmp file format. It should

not be confused with the SDL and GL libraries (described later) used to

generate images on the display screen suitable for interactive graphics

typically used in computer games.

This library is initialised by a call of opengraphics which

specifies the size of the image to be drawn and whether 8 or 24 bit

pixels are to be used. It also sets up a palette of 256 colours

if 8 bit pixels are to be used. The graphics header file is in

g/graphics.h. It declares the constants mode8bit, mode8bitalt and

mode24bit for use in the call of opengraphics. It also declares

several variables starting at position g grbase which is declared

with value 450 in libhdr.h but can be redefined, if necessary, before

inserting graphics.h. The graphics global variables are as follows.

xsize, ysize
These hold the the number of pixels in each row and column of the

canvas.

118 CHAPTER 3. THE LIBRARY

bmpmode
This is set by opengraphics to mode8bit, mode8bitalt or mode24bit.

bpp
This holds the the number of bytes (1 or 3) per pixel in canvas.

rowlen
This holds bpp*xsize, the number of bytes in canvas to represent a

row.

canvassize
This holds the number of bytes (rowlen*ysize) in canvas.

canvasupb
This holds the UPB of canvas in words.

canvas
This holds the vector, allocated by getvec(canvasupb), of pixel

bytes to represent the image. Each pixel is either an 8-bit byte

identifying a colour in the palette or 3 bytes giving the blue, green

and red components of the colour directly.

palettev
If 8-bit pixels are being used, this holds the palette vector of 256

colours. The colours are specified by values of the form #Xrrggbb in

the least significant 24 bits of each element of palettev. palettev is

set to zero when 24 bit pixels are being used.

col white, col majenta, col blue, col cyan, col green, col yellow,

col red, col black
These variables hold either various 8 or 24 bit colour values.

currx, curry, currcolour
These variables hold the current pixel location and the current 8

or 24 bit colour. This library uses the convention that the bottom

leftmost pixel has coordinate (0,0). The direction of the x axis is

to the right and the direction of the y axis is up. The primary use

of currx and curry is their use in drawto, drawby and drawch to make

drawing sequences of lines and characters more convenient.

3.8.1 The Graphics Functions

The BMP global functions are defined in g/graphics.b. They are as

follows. Except for opengraphics, closegraphics and wrgraph they are

the same as those in the SDL library.

3.8. THE BMP GRAPHICS LIBRARY 119

opengraphics(xsize, ysize, mode)

This function sets bmpmode to mode and allocates the vector canvas.

If 8 bit pixels are specified by mode it allocates palettev and fills

it with one of two sets of palette colours. It also initialised all

the other graphics variables. The canvas is initially filled with

white pixels (like a blank sheet of paper).

closegraphics()

This function closes the graphics library returning canvas to

freestore and if palettev was allocated it is also returned.

drawpoint(x, y)

This function places a pixel with colour specified by currcolour at

position (x, y) on the canvas.

drawpoint33(x, y)

This function places a 3x3 square of pixels with the colour

specified by currcolour centred at position (x, y) on the canvas.

drawch(ch)

This function draws a 8x12 array of pixels representing the

given character. Its colour is specified by currcolour on a white

background. The bottom leftmost pixel of the character is at

(currx,curry). If ch is ’*n’, currx is set to 10 and curry is

decremented by 14, otherwise currx is incremented by 9.

drawstr(x, y,str)

This function calls drawch for each character in the given string

starting at position (x, y),

moveto(x, y)

This function sets currx and curry to x and y, respectively.

moveby(dx, dy)

This function increments currx and curry by dx and dy, respectively.

drawto(x, y)

This function draws a straight line of colour currcolour from

(currx, curry) to (x, y). It leaves (currx and curry) to x and y.

drawby(dx, dy)

This function draws a straight line of colour currcolour from

(currx, curry) to (currx+dx, curry+dy). It then increments currx and

curry by dx and dy, respectively.

drawrect(x, y, w, h)

This function draws the outline of the rectangle of width w and

height h with the bottom left corner at (x, y) using currcolour.

120 CHAPTER 3. THE LIBRARY

drawrndrect(x, y, w, h, radius)

This function draws the outline of the rectangle of width w and

height h with its bottom left corner at (x, y) with rounded corners of

given radius. Its colour is specified by currcolour. If radius is

less than or equal to zero the corners are square, and if radius is

greater than half the shorter side length it is reduced to this value.

currx and curry are set to x1 and y1, respectively.

fillrect(x, y, w, h)

This function draws a rectangle of width w and height h with its

bottom left corner at (x, y). It is filled with the colour specified by

currcolour.

fillrndrect(x, y, w, h, radius)

This function draws the rectangle of width w and height h with

rounded corners of given radius. The bottom left corner is at (x, y).
It colour is specified by currcolour. If radius is less than or equal

to zero the corners are square, and if radius is greater than half the

shorter side length it is reduced to this value.

drawcircle(x, y, radius)

This function draws a circle centred at (x, y) with given radius. Its

colour is specified by currcolour.

fillcircle(x, y, radius)

This function draws a filled circle centred at (x, y) with given

radius. Its colour is specified by currcolour.

drawellipse(x, y, rx, ry)

This function draws an ellipse centred at (x, y) with given x and y

radii. Its colour is specified by currcolour.

fillellipse(x, y, rx, ry)

This function draws a filled ellipse centred at (x, y) with given x

and y radii. Its colour is specified by currcolour.

wrgraph(filename)

This function writes the image held in canvas to the given file

in .bmp format. The image is (currently) scaled to 300 DPI which

corresponds to 11811 pixels per metre. At this scale the size of an

A4 page is 2490x3510 pixels.

There are two programs to illustrate how this graphics

library can be used. They are bcplprogs/tests/grtst.b and

bcplprogs/tests/grpalette.b. If you are using BCPL under Linux you

can compile and run them as follows.

3.8. THE BMP GRAPHICS LIBRARY 121

cd ~/distribution/BCPL/bcplprogs/test

cintsys

c b grtst

grtst

ctrl-c

gimp grtst.bmp

ctrl-c

cintsys

c b grpalette

grpalette b8

ctrl-c

gimp palette.bmp

ctrl-c

cintsys

grpalette b24

ctrl-c

gimp palette.bmp

The image displayed by the last call of gimp is shown in figure 3.11

illustrating some of the colours available when using 24 bit pixels.

Figure 3.11: The image created by grpalette b24

122 CHAPTER 3. THE LIBRARY

3.9 The SDL Graphics Library

The SDL Graphics Library implemented in C is available for many

platforms including Linux, Windows and OSX and BCPL has an interface

with this library allowing the user to create a window on the screen

and repeatedly draw simple images allowing simple interactive games to

be implemented. It also provides access to the keyboard, the mouse and

joysticks. In due course this interface will allow the generation of

sound.

To include these features it is necessary to install the SDL

libraries on you machine and then build cintsys using a Makefile such

as MakefileSDL or MakefileRaspiSDL.

The SDL operations are invoked by calls of the form

sys(Sys sdl,...). There is a header file (g/sdl.h) declaring the

various constants and globals available, and g/sdl.b contains the

definitions of several functions providing the interface. The constant

g sdlbase is set in libhdr.h to be the first global used in the SDL

library. It can be overridden by re-defining g sdlbase before GETting

sdl.h.

A program using the SDL library should start with the following

lines.

GET "libhdr"

MANIFEST { g_sdlbase=nnn } // Only used if the default setting of 450 in

// libhdr is not suitable.

GET "sdl.h"

GET "sdl.b" // Insert the library source code

.

GET "libhdr"

MANIFEST { g_sdlbase=nnn } // Only used if the default setting of 450 in

// libhdr is not suitable.

GET "sdl.h"

There are several programs that use SDL described in Chapter 4 of

bcpl4raspi.pdf available from my home page.

3.9.1 sdl.h details

The BCPL SDL functions make use of functions provided by the SDL

library implemented in C. These sometimes use machine addresses

pointing to structures such as those representing windows and surfaces.

Such addresses are stored in BCPL in a pair of words as described in

the description of scb fd on page 56.

The global variables screen, screen1, currsurf, currsurf1, format,

format1, joystick and joystick1 hold address pairs for The SDL window,

3.9. THE SDL GRAPHICS LIBRARY 123

the currently selected surface, the format structure for that window

and a joystick.

A call of mkscreen sets the variables screenxsize and screenysize to

the number of pixels in the width and height of the created window. It

alse sets fscreenxsize and fscreenysize to the floating point versions

of these variables. The variable fscreencentrex and fscreencentrey are

the floating point coordinates of the center of the screen.

The width and height of the currently seclected surface is held in

currxsize and currysize.

The vectors leftxv, leftzv, rightxv and rightzv are used by the

functions such as drawtriangle and drawtriangle3d defined in g/sdl.b

that draw filled objects. The variables miny and maxy are also used by

these functions.

The vector depthv and variables miny and maxy are used by functions

in g/sdl.b and should not be touched by the user. The 3D drawing

functions use depthv to implement the hiding of pixels that are further

from the eye than other pixel at the same position on the screen.

The upperbound of depthv is depthvupb (=screenxsize*screenysize-1).

The elements of depthv are scaled integers with zfac units of depth

corresponding to a distance of one pixel. The variab;e zfac is

actually a floating point number since the 3D drawing functions

typiclally take floating point pixel coordinates. If zfac is too small

the the line of intersection of two nearly parallel plane can become

inaccurate. The maximum allowable scaled depth is held in maxdepth

(=-1 000 000 000).

Whenever anything is drawn it is given the colour held in the

variable currclour. The variables currx and curry give the starting

position of 2D lines and characters. They are updated after each

line or characte is drawn. This allows long sequences of 2D lines

or charaters to be drawn conveniently.

There is a similar mechanism for drawing 3D lines using the

variables currx3d, curry3d and currsz3d. These hold the integer x

and y pixel coordindates of the next 3D line to be drawn with currsx3d

being its scaled integer depth.

The variables mousex and mousey hold the current pointer position

0n the screen, and mousebuttons is a bitpattern indicating which mouse

buttons are currently pressed.

Some or all of the variables eventtype, eventa1, eventa2, eventa3,

eventa4 and eventa5 are set by the function pollevents as described

below.

sdle_active

sdle_keydown

sdle_keyup

sdle_mousemotion

sdle_mousebuttondown

124 CHAPTER 3. THE LIBRARY

sdle_mousebuttonup

sdle_joyaxismotion

sdle_joyballmotion

sdle_joyhatmotion

sdle_joybuttondown

sdle_joybuttonup

sdle_quit

sdle_syswmeven

sdle_videoresize

sdle_userevent

sdle_arrowup

sdle_arrowdown

sdle_arrowright

sdle_arrowleft

sdl_init_everything

sdl_SWSURFACE // Surface is in system memory

sdl_HWSURFACE // Surface is in video memory

sdl_ANYFORMAT // Allow any video depth/pixel-format

sdl_HWPALETTE // Surface has exclusive palette

sdl_DOUBLEBUF // Set up double-buffered video mode

sdl_FULLSCREEN // Surface is a full screen display

sdl_OPENGL // Create an OpenGL rendering context

sdl_OPENGLBLIT // Create an OpenGL context for blitting

sdl_RESIZABLE // This video mode may be resized

sdl_NOFRAME // No window caption or edge frame

3.9.2 Functions defined in sdl.b

This section describes all the functions defined in g/sdl.b in

alphabetical order.

alloc2dvecs()

this function is only used in drawtriangle. It allocates and

initialises the vectors leftxv and rightxv.

alloc3dvecs()

this function is only used in drawtriangle2d. It allocates and

initialises the vectors leftxv, lefttszv, rightxv and rightszv. .

blitsurf(srcptr, dstptr, x, y)

This copies the source surface into the specified position of the

destination surface.

3.9. THE SDL GRAPHICS LIBRARY 125

bltsurfrect(srcptr, srcrect, dstptr, x, y)

Copy the specified rectangle from the source surface to the

specified position in the destination surface.

rc := closesdl()

This closes down the SDL library returning all allocated space to

freestore.

crossprod(v1, v2, v3)

This computes the cross product of v1 and v2 which are both vectors

with three floating point elements. The result is thus a vector

orthogonal to v1 and v2 whose length is the sine of the angle between

the vectors multiplied by the product of their lengths. The vectors

v1, v1 and v1 are in right handed orientation.

drawby(dx, dy)

This is just calls drawto(currx+dx, curry+dy).

drawby3d(FLT dx, FLT dy, FLT dz)

This is just calls drawto3d(currx+dx, curry+dy, currz+dz).

drawch(ch)

Draw a 12x8 character at the position specified b y and curry and

increment curry by 9. If ch was ’*n’ set currx to 10 and decrement

curry by 11.

drawcircle(x0,y0, radius)

Not yet described

drawf(x, y, form, a, b, c,..., t)

Not yet described

drawfillcircle(x, y, radius)

Not yet described

drawfillrect(x0,y0, x1,y1)

Not yet described

drawfillrndrect(x0, y0, x1, y1, radius)

Not yet described

drawpoint(x, y)

This draws a point at location (x,y) on the currently selected

surface. It colour is te one set by the most recent call of setcolour.

drawpoint3d(FLT x, FLT y, FLT z)

This draws a point at location (x,y) on the currently selected

126 CHAPTER 3. THE LIBRARY

surface. If the z value at that position is greater than z the pixel

is not updated.

drawpoint3di(x, y, sz)

Not yet described

drawquad(x1,y1, x2,y2, x3,y3, x4,y4)

Not yet described

drawquad3d(FLT x1, FLT y1, FLT z1, FLT x2, FLT y2, FLT z2, FLT x3, FLT

y3, FLT z3, FLT x4, FLT y4, FLT z4)

Not yet described

drawrect()

Not yet described

drawrndrect()

Not yet described

drawstr()

Not yet described

drawto()

Not yet described

drawto3d()

Not yet described

drawto3d()

Not yet described

drawto3di()

Not yet described

drawtriangle()

Not yet described

drawtriangle3d(FLT x1, FLT y1, FLT z1, FLT x2, FLT y2, FLT z2, FLT x3,

FLT y3, FLT z3)

Not yet described

drawwrch(ch)

Not yet described

fillsurf(col)

Not yet described

3.9. THE SDL GRAPHICS LIBRARY 127

freesurface(surfptr)

Not yet described

getevent()

Not yet described

getmousestate()

Not yet described

hidecursor()

Not yet described

rc := initsdl()

This initialises the SDL library and sets the global variables used

by sdl.b. It must be called before any other SDL operations can be

performed. It returns TRUE if successful.

res := inprod(v1, v2)

This returns the inner product of v1 and v2 which are both vectors

with three floating point elements. The result is thus the cosine

of the angle between the vectors multiplied by the product of their

lengths.

colour := maprgb(r,g,b)

This return a value representing the colour specified by its r, r

and r components. It uses the colour represention chosen during the

call of mkscreen.

rc := mkscreen(title, xsize, ysize)

This creates a window of specified size with the given title. It

returns TRUE if sucessful.

mksurface(w, h, surfptr)

Not yet described

moveby(dx, dy)

This is just calls moveto(currx+dx, curry+dy).

moveby3d(FLT dx, FLT dy, FLT dz)

This is just calls moveto3d(currx+dx, curry+dy, currz+dz).

moveto(x, y)

This selects position (x,y) in the currently selected surface used

by subsequent calls of drawch, drawto and drawby. Its depth coordinate

is given the value zero.

moveto3d(FLT x, FLT y, FLT z)

This selects position (x,y,z) in the currently selected surface

128 CHAPTER 3. THE LIBRARY

used by subsequent calls of drawch, drawto and drawby. By convention

smaller values of z are deeper into the screen.

sdldelay(msecs) This causes a real time delay of the specified

number of milliseconds.

sdlmsecs()

This return the number of real time milliseconds since the current

command was entered.

selectsurface(surfptr, xsize, ysize)

This selects a surface for use in subsequent drawing commands. The

arguments xsize and ysize specify the size of the surface in pixels.

The pair of BCPL word used to represent the machine address of the

surface is pointed to by surfptr. See scb fd on page ?? for more

details.

rc := setcaption(title)

This resets the title of the window created by mkscreen. It returns

TRUE if successful.

setcolour(col)

This sets the colour to be used in subsequent drawing commands. The

colour should be one returned by a call of maprgb.

setcolourkey(col)

This sets the colour that has the special property that when

an attempt is made to to draw a pixel with this colour the pixel

is left with its previous colour. This mechanism is used, for

example, when displaying the moving coloured circles by the program

bcplprogs/raspi/bucket.b.

setlims(x0,y0, x1,y2) This function is used by drawtriangle which

draws a filled 2D triangle. It updates entries in leftxv and rightxv

for each value of y between y0 and y1.

setlims3d(x0,y0,sz0, x1,y2,sz1) This function is used by

drawtriangle3d when drawing a filled 3D triangle. It updates entries

in leftxv, leftszv, rightxv and rightszv for each value of y between

y0 and y1. The arguments are all integers with the z components being

scaled to cause zfac units to correspond to a distance of one pixel.

showcursor()

This causes the cursor to be displayed.

standardize(v)

This divides the three floating point elements of the vector v by

3.9. THE SDL GRAPHICS LIBRARY 129

length of the vector leaving the elements of v set to the direction

cosines of the given vector.

updatescreen()

This causes the surface that is currently being drawn to be copied

the display screen.

write ch slice(x, y, ch, line)

This function is used by drawch to plot a row pixels of a 8x12

character.

The pixels to be drawn on the screen by the next call of

updatescreen are held in a vector pointed to by the global variable

screen. In order to implement hidden surface removal there is a second

vector �depthv holding the z coordinates of pixels in screen. This

vector is only used by the 3D drawing functions. The depth values were

held as scaled integers with zfac units corresponding to a distance of

one pixel.

This eliminated some of the problems caused by using integers to

represent depth which was particularly noticable when two nearly

parallel 3D plane interected. Unfortunately floating point numbers

caused other problems mainly due to their lack of precision so integers

are again going to be used but 64 units of an element of depthv will

now represent a distance of one pixel. Even though these units are

used in depthv, all the 3D drawing functions will use the convention

that one unit in x, x and x will represent a distance of one pixel.

The fractional values in depthv only occur when drawing 3D lines and

triangles. The vertices of lines and triangles always occur on pixel

boundaries.

3.9.3 sys(Sys sdl,...) calls

rc := sys(Sys sdl, sdl avail

This return TRUE if the SDL facilities are available.

rc := sys(Sys sdl, sdl init)

This ...

rc := sys(Sys sdl, sdl setvideomode, width, height, bbp, flags)

rc := sys(Sys sdl, sdl quit)

rc := sys(Sys sdl, sdl locksurface, surfptr)

130 CHAPTER 3. THE LIBRARY

rc := sys(Sys sdl, sdl unlocksurface, surfptr)

rc := sys(Sys sdl, sdl getsurfaceinfo, surfptr, ptr)

rc := sys(Sys sdl, sdl getfmtinfo. fmtptr)

rc := sys(Sys sdl, sdl geterror, str)

rc := sys(Sys sdl, sdl updaterect, surfptr, left, top, right, bottom)

rc := sys(Sys sdl, sdl loadbmp, filename of a .bmp image)

rc := sys(Sys sdl, sdl blitsurface. src, srcrect, dest, destrect)

rc := sys(Sys sdl, sdl setcolourkey, surfptr, flags, colorkey)

rc := sys(Sys sdl, sdl freesurface, surfptr)

rc := sys(Sys sdl, sdl setalpha, surfptr, flags, alpha)

rc := sys(Sys sdl, sdl imgload, filename)

rc := sys(Sys sdl, sdl delay, msecs)

rc := sys(Sys sdl, sdl flip, surfptr)

rc := sys(Sys sdl, sdl displayformat, surfptr)

rc := sys(Sys sdl, sdl waitevent, pointer)

rc := sys(Sys sdl, sdl pollevent, pointer)

3.9. THE SDL GRAPHICS LIBRARY 131

rc := sys(Sys sdl, sdl getmousestate, pointer)

rc := sys(Sys sdl, sdl loadwav, file, spec, buff, len)

rc := sys(Sys sdl, sdl freewav, buffer)

rc := sys(Sys sdl, sdl wm setcaption, string)

rc := sys(Sys sdl, sdl videoinfo, v)

rc := sys(Sys sdl, sdl maprgb. formatptr, r, g, b)

rc := sys(Sys sdl, sdl drawline,)

rc := sys(Sys sdl, sdl drawhline,)

rc := sys(Sys sdl, sdl drawvline,)

rc := sys(Sys sdl, sdl drawcircle,)

rc := sys(Sys sdl, sdl drawrect,)

rc := sys(Sys sdl, sdl drawpixel,)

rc := sys(Sys sdl, sdl drawellipse,)

rc := sys(Sys sdl, sdl drawfillellipse,)

rc := sys(Sys sdl, sdl drawround.)

rc := sys(Sys sdl, sdl drawfillround,)

132 CHAPTER 3. THE LIBRARY

rc := sys(Sys sdl, sdl drawfillcircle,)

rc := sys(Sys sdl, sdl drawfillrect,)

rc := sys(Sys sdl, sdl fillrect,)

rc := sys(Sys sdl, sdl fillsurf,)

rc := sys(Sys sdl, sdl numjoysticks)

rc := sys(Sys sdl, sdl joystickopen, index, jpyptr)

rc := sys(Sys sdl, sdl joystickclose, index)

rc := sys(Sys sdl, sdl joystickname, index)

rc := sys(Sys sdl, sdl joysticknumaxes, joyptr)

rc := sys(Sys sdl, sdl joysticknumbuttons, joyptr)

rc := sys(Sys sdl, sdl joysticknumballs, joyptr)

rc := sys(Sys sdl, sdl joysticknumhats, joyptr)

rc := sys(Sys sdl, sdl joystickeventstate, aeg

rc := sys(Sys sdl, sdl getticks)

rc := sys(Sys sdl, sdl showcursor)

rc := sys(Sys sdl, sdl hidecursor)

3.10. THE GL GRAPHICS LIBRARY 133

rc := sys(Sys sdl, sdl mksurface)

rc := sys(Sys sdl, sdl setcolourkey)

rc := sys(Sys sdl, sdl joystickgetbutton)

rc := sys(Sys sdl, sdl joystickgetaxis)

rc := sys(Sys sdl, sdl joystickgetball)

rc := sys(Sys sdl, sdl joystickgethat)

3.10 The GL Graphics Library

This library is still under development

OpenGL is a sophisticated graphics library allowing 3D images

to be drawn on the screen efficiently using the full power of the

graphics hardware available on most machines. On most desktop and

laptop machines the full OpenGL library is available, but on handheld

devices only a simplified version called OpenGL ES is available. The

BCPL interface is designed to work with whichever version of OpenGL is

available. This library essentially provides a subset of the OpenGL ES

features. Note that the GL interface on the Raspberry Pi uses OpenGL

ES.

To include these features in cintsys it is necessary to install the

OpenGL libraries on you machine and then build cintsys using a Makefile

such as MakefileGL, MakefileRaspiGL or MakefileVCGL.

The GL library uses the sys(Sys gl,...) functions. There is a

header file (g/gl.h) declaring the various constants and globals

available in the GL library, and g/gl.b contains the definitions of

several functions providing the interface to OpenGL. The constant

g glbase is set in libhdr to be the first global used in the GL

library. It can be overridden by re-defining g glbase after GETting

libhdr.

A program wishing to use the OpenGL library should start with the

following lines.

GET "libhdr"

MANIFEST { g_glbase=nnn } // Only used if the default setting of 450 in

134 CHAPTER 3. THE LIBRARY

// libhdr is not suitable.

GET "gl.h"

GET "gl.b" // Insert the library source code

.

GET "libhdr"

MANIFEST { g_glbase=nnn } // Only used if the default setting of 450 in

// libhdr is not suitable.

GET "gl.h"

This library will be described in Chapter 5 of bcpl4raspi.pdf available

from my home page.

3.11 The Sound Library

This library is under development

The sound library uses the sys(Sys sound,...) functions to provide

facilities for reading, writing and analysing sound data. There

is a sound header file (g/sound.h) declaring various constants and

globals available in the sound library. The sound library itself

is in g/sound.b and can be inserted into a program by the following

statements.

GET "libhdr"

MANIFEST { g_sndbase=nnn } // Only used if the default setting of 400 in

// libhdr is not suitable.

GET "sound.h"

GET "sound.b" // Insert the library source code

The manifest constant g sndbase specifies the position of the first

global variable to be used by the sound library.

3.11.1 The Sound Constants

The sound library is not yet available.

3.11.2 The Sound Global Variables

The sound library is not yet available.

3.11.3 The Sound Functions

The sound library is not yet available.

3.12. THE EXT LIBRARY 135

3.12 The EXT Library

This library is designed to allow users to construct their own

extension library involving code in C and assembly language. Its

structure is similar to that of the SDL and GL libraries.

It uses the sys(Sys ext,...) functions to interface with C code

defined in sysc/extfn.c, and has two header files ext.h and ext.b

providing the BCPL interface. Programs using the EXT library should

start with the following statements.

GET "libhdr"

MANIFEST { g_extbase=nnn } // Only used if the default setting of 900 in

// libhdr is not suitable.

GET "ext.h"

GET "ext.b" // Insert the library source code

136 CHAPTER 3. THE LIBRARY

Chapter 4

The Command Language

The Command Language Interpreter (CLI) is a simple interactive

interface between the user and the system. It loads and executes

previously compiled programs that are held either in the current

directory or one of the directories specified by the shell

environment variable (typically BCPLPATH or POSPATH) whose name is

in rootnode!rtn path. These commands are described in Section 4.3

and their source code can be found in the com directory. The command

language is a combination of the features provided by the CLI and the

collection of commands that can be invoked. Under Cintpos, a similar

CLI program provides command language interpreters in several contexts

such as those created by the commands: run, newcli, tcpcli and mbxcli.

Details of the implementation of both CLIs are given at the end of this

chapter from page 175.

Commands can set a return code in the global returncode with

zero meaning successful termination and other values indicating the

severity of the fault. Commands that set a non zero return code are

expected to leave a reason code in result2. The CLI copies the return

code and reason code of the previous command into the CLI variables

cli returncode and cli result2, respectively. These can be inspected

by commands such as if and why and also used by the CLI to terminate a

command-command if the failure was severe enough. For details, see the

command failat on page 158 below.

4.1 Bootstrapping Cintsys

When Cintsys is started, control is passed to the interpreter which,

after a few initial checks, allocates vectors for the memory of

the Cintcode abstract machine and the tally vector available for

statistics gathering. The Cintcode memory is initialised suitably

for sub-allocation by getvec, which is then used to allocate space for

the root node, the initial stack and the initial global vector. The

137

138 CHAPTER 4. THE COMMAND LANGUAGE

initial state shown in figure 4.1 is completed by loading the object

modules SYSLIB, BLIB and BOOT, and initialising the root node, the

stack and global vector. Interpretation of Cintcode instructions

now begins with the Cintcode register PC, P and G set as shown in the

figure, and Count set to -1. The other registers are cleared. The

first Cintcode instruction to be executed is the first instruction

of the body of the function start defined in sysb/boot.b. Since no

return link has been stored into the stack, this call of start must not

attempt to return in the normal way; however, its execution can still

be terminated using sys(Sys quit,0).

The global vector and stack shown in figure 4.1 are used by start

and form the running environment both during initialization and while

running the debugger. The CLI, on the other hand, is provided with

a new stack and a separate global vector, thus allowing the debugger

to use its own globals freely without interfering with the command

language interpreter or running commands. The global vector of 1000

words is allocated for the CLI and this is shared by the CLI program

and its running commands. The stack, on the other hand, is used

exclusively by the command language interpreter since it creates a

coroutine for each command it runs.

Figure 4.1: The initial state

Control is passed to the CLI by means of the call

sys(Sys interpret,regs) which recursively enters the intepreter from an

initial Cintcode state specified by the vector regs in which that P and

G are set to point to the bases of a new stack and a new global vector

for CLI, respectively, PC is the location of the first instruction of

startcli, and count is set to -1. This call of sys(Sys interpret,regs)

4.1. BOOTSTRAPPING CINTSYS 139

is embedded in the loop shown below that occurs at the end of the body

of start.

{ LET res = sys(Sys_interpret, regs) // Call the interpreter
IF res=0 DO sys(Sys_quit, 0)
debug res // Enter the debugger

} REPEAT

At the moment sys(Sys interpret,regs) is first called, only

globsize, sys and rootnode have been set in CLI’s global vector and

so the body of startroot must be coded with care to avoid calling

global functions before their entry points have be placed in the global

vector. Thus, for instance, instead of calling globin to initialise

the globals defined in BLIB, SYSLIB and DLIB, the following code is

used:

sys(Sys_globin, rootnode!rtn_blib)

If a fault occurs during the execution of CLI or a command that

it is running, the call of sys(Sys interpret,regs) will return with

the fault code and regs will hold the dumped Cintcode registers. A

result of zero, signifying successful completion, causes execution of

Cintsys to terminate; however, if a non zero result is returned, the

debugger in entered by means of the call debug(res). Note that the

Cintcode registers are available to the debugger since regs is a global

variable. When debug returns, the REPEAT-loop ensures that the command

language interpreter is re-entered. The debugger is briefly described

in the Chapter 7.

On entry to startroot, the coroutine environment is initialised by

setting currco and colist to point to the base of the current stack

which is then setup as the root coroutine. The remaining globals are

the initialised and the standard input and output streams opened before

loading the CLI program by means of the following statement:

rootnode!rtn_cli := globin(loadseg("syscin/cli"))

The command language interpreter is now entered by the call start().

4.1.1 Quiet mode execution

Normal execution expects standard input and output to be from the

keyboard and to the screen. This allows the user to interact with the

system by typing CLI commands. When started in this mode the system

outputs an initial message before entering the CLI to read and execute

user commands from the keyboard. It generates CLI prompts and echoes

keyboard input to the screen.

It is sometimes useful run BCPL programs non interactively in what

is called quiet mode. This is done by entering cintsys (or cintpos)

140 CHAPTER 4. THE COMMAND LANGUAGE

with the -q option. This enters the BCPL system without generating the

initial message, it disables CLI prompts and does not echo keyboard

input. In this mode all standard output is explicitly written by

the program, except for possible error messages and debugging output.

As an example, the program com/add2.b which outputs the sum of two

integers read from standard input, can be run from a Linux shell by

either of the following two commands:

echo "111 222" | cintsys -q -- add2

cintsys -q -c add2 111 222

Boh commands just output the result 333.

4.2 Bootstrapping Cintpos

Bootstrapping Cintpos is somewhat more complicated than bootstrapping

Cintsys since there are more resident modules of code, and the Cintpos

system structures and resident tasks must be set up. Bootstrapping

starts when the cintpos program is entered. It first decodes the

command arguments, possibly changing the Cintcode memory or tally

vector sizes. It then allocates these vectors, initialising every word

of the Cintcode memory with the value #xDEADCODE. It also allocates

a vector to hold counts of how many blocks of each requested size

have been allocated getvec but not yet freed. It then allocates

and initialises the stack and global vector to be used by BOOT. The

rootnode is then initialised, including the setting of the fields:

rtn boot (holding the module boot), rtn klib (holding the module

klib), rtn blib (holding the modules blib, syslib and dlib) and rtn sys

(holding the entry point to the function sys).

The initial values of the Cintcode registers are now placed in the

register set bootregs. The Cintcode interpreter is entered to start

execution from this initial state. If the interpreter returns a non

zero result, a message containing this value is written to the standard

output stream, and, if the rtn dumpflag field of the root node is TRUE,

the entire Cintcode memory is dumped to the file DUMP.mem in compacted

form suitable for inspection by commands such as dumpsys or dumpdebug.

4.2.1 The Cintpos BOOT module

The function start in boot is the very first BCPL compiled code to be

entered when Cintpos starts. On entry, the Cintcode registers A, B

and C are zero, P and G point to BOOT’s stack and global vector, and

ST is set to 2, indicating that we are in boot and that interrupts are

disabled. The global vector has already been initialised to hold all

the entry points in boot, klib, blib, syslib and dlib, but the stack

4.2. BOOTSTRAPPING CINTPOS 141

currently is filled entirely with the value stackword=#xABCD1234 except

for its zeroth word which was set by cintpos to hold the stacksize. To

improve the behaviour of the standalone debugger, this stack is turned

into a root coroutine stack of the specified size, initialising the

globals currco and colist appropriately.

All console input and output within BOOT and the standalone

debugger is done using the standalone version of rdch and wrch, so

these globals are updated appropriately. BOOT next initialises the

variables used by the standalone debugger. These include the vectors

bpt addr, bpt instr and bpt dbgvars which respectively hold breakpoint

addresses, breakpoint instructions that have been overwritten by the

BRK instruction, and the vector of the 10 standalone debugger variables

V0 to V9. These three vectors are placed in the rootnode to make

them accessible both to the DEBUG task and to dumpdebug when it is

inspecting a system dump.

BOOT now creates and initialises a global vector and a stack to

be used during the further initialisation of the Cintpos system.

The all elements of the global vector are given values of the form

globword(=#x8F8F0000)+n, except for the globals globsize, sys,

rootnode, currco and colist, the last two being set to zero. Every

element of the stack is set to stackword (=#xABCD1234). The register

set klibregs is initialised, giving zero to A, B and C, the stack and

global vector pointers to P and G, the value one to ST to indicate

execution is in KLIB and interrupts are disabled, and the entry point

startroot in PC. This register set is then handed to a recursive call

of the interpreter. This inner call is the one than performs the rest

of the initialisation and enters the normal execution of Cintpos. In

due course the interpreter will return with a completion code which

controls what BOOT should do next.

A completion code of zero signifies successfully completion and BOOT

causes the termination of cintpos. A return code of -1 is special,

causing BOOT to re-enter the interpreter immediately. Its purpose is

to allow a running program to change which interpreter is used. There

are typically two interpreters: a slow one in which all debugging aids

are turned on, and a fast one in which most aids are turned off. The

call sys(Sys interpret, regs) selects the fast interpreter if the count

register in regs is -1, otherwise it selects the slow interpreter. The

return code -2 allows a running program to invoke the dumpmem mechanism

to write the file DUMP.mem representing the current state of the entire

Cintcode memory. All other completion codes causes BOOT to invoke the

standalone debugger.

BOOT cunningly places a private version of the sys function in

its global vector so that, even if a breakpoint is set in the public

version of sys, BOOT and in particular the standalone debugger can

continue to work as normal. When BOOT invokes the interpreter for

142 CHAPTER 4. THE COMMAND LANGUAGE

the first time execution begins at the start of startroot which is

described in the next section.

4.2.2 startroot

This function creates the Cintpos running environment and loads all

the resident system tasks. Finally it enters the Cintpos scheduler

which, in turn, gives control to the Idle task which sends a packet

to the root CLI task. After some initialisation, this issues the

first CLI prompt inviting the user to type in a command. Knowledge

of the underlying structures used by Cintpos is key to understanding

how Cintpos works. They are described in this section in the order in

which startroot creates them.

startroot is entered by the recursive call of interpret from BOOT

with a new stack and a different global vector from that used by BOOT.

If the interpreter subsequently detects a fault it returns to BOOT’s

running environment giving control to the interactive debugger allowing

the user to inspect the stack and global vector that were current at

the time the fault.

Althought startroot has three formal parameters fn, size and c,

it was entered in a non standard way and these have not been given

values. However, the base of startroot’s stack is at @fn-3. This

points to the zeroth element holding the stack size with all other

elements are already set by BOOT to stackword (#xABCD1234). This stack

is turned into a coroutine stack by updating its bottom six elements

appropriately. Care is taken to ensure that the code that performs

this initialisation is not itself using the stack locations that it

is updating. This is one of the reasons why startroot was given three

parameters.

The function rootcode is now called to create the Cintpos resident

structures. At this moment the base of the global vector is at

@globsize (=Global 0), all its elements are filled with words of the

form globword+n (=#8F8F0000+n), except for globsize which holds the

upper bound of the global vector, sys which holds the entry point of

the sys function, rootnode which points to the rootnode, and currco

and colist which both point to the newly created coroutine stack. The

other globals are now initialised by two calls of sys(Sys_globin,...).

Cintpos has two vectors tasktab and devtab that provide access to

all Cintpos tasks and devices. These are allocated and cleared, and

pointers to them are placed in the rootnode.

The resident Cintpos devices are now created. These have device

identifiers -1, -2 and -3 corresponding to the clock, the keyboard

and the screen. Most Cintsys devices are implemented using separate

threads of the underlying operating system. Such devices have device

control blocks (DCBs) held their entries in devtab. A DCB has fields

4.2. BOOTSTRAPPING CINTPOS 143

used for communication between its device thread and the interpreter.

One of these is the work queue of packets sent by client tasks but not

yet processed by the device. It has been found that interaction with

some device threads is too slow to be satisfactory and so have been

replaced by an implementation based on polling by the interpreter.

This currently applies to the clock and screen devices. As far as the

user is concerned, these devices still have the same indentifiers and

still work as before but are faster. An entry in devtab points to a

DCB. Devices not using the polling mechanism use threads of the host

operating system, other devices are handled entirely by the interpreter

thread. The only resident devices currently using a separate threads

are the keyboard and TCP devices. Device threads are created using the

kernel function createdev defined in sysb/klib.b, and the C code for

the resident device threads can be found in sysc/devices.c.

The Cintcode abstract machine can receive interrupts. The mechanism

is as follows. If a device wishes to interrupt the interpreter

it sets the variable irq to TRUE, and just before the interpreter

starts to execute an instruction, if the Cintpos ST register is zero

(indicating that interrupts are enabled), it saves the current Cintpos

registers and enters the interrupt service routine using the register

set in isrregs. The interrupt service routine has its own stack but

shares the same global vector a the Cintpos kernel. It always starts

execution at the start of the function irqrtn with Cintcode register

ST set to 3 to indicate that an interrupt is being serviced. The

interrupt sevice routine may return control to the interrupted task

or it may enter the scheduler if another task deserves to gain control.

Before creating the resident tasks, startroot initialises a few

more rootnode fields. These are rtn tcblist and rtn crntask both set

to zero since there are currently no Cintpos tasks, rtn blklist set

to the start of the memory block list used by getvec and freevec,

rtn clkintson set to FALSE to globally disable interrupts, rtn clwkq

set to zero representing an empty list of packets for the clock device,

and rtn info set to a cleared table of 50 elements.

The resident tasks are now created using suitable calls of

createtask. Each time createtask is called it allocates a task

control block (TCB) giving it the next available task identifier and

updating the appropriate entry in tasktab to point to it. Such tasks

are initially given a state of #b1100 indicating that they are DEAD,

not HELD and have no packets in the work queue. The first task to be

created is a special one called Idle whose body is in cin/syscin/idle

and although createtask will have chosen identifier one for it, this

must be replaced by zero and it entry in tasktab removed. It is given

a startup packet and an initial state of #b1101 indicating it is DEAD,

not HELD but has a packet and so can be given control by the scheduler

when it is run.

144 CHAPTER 4. THE COMMAND LANGUAGE

Six more resident tasks are now created, all have state #b1100.

They are the root command language interpreter that initially waits for

commands from the keyboard, and interactive debugging task, the console

handler providing communication between the keyboard and tasks, the

file handler providing access to disk files, the mailbox handler that

provides a mechanism that lets tasks send and receive short messages

via named mailboxes and the TCP handler providing TCP/IP communication.

Just after Cintpos starts up the status command will output the

following.

Task 1: Root_Cli running CLI Loaded command: status
Task 2: Debug_Task waiting DEBUG
Task 3: Console_Handler waiting COHAND
Task 4: File_Handler waiting FH0
Task 5: MBX_Handler waiting MBXHAND
Task 6: TCP_Handler waiting TCPHAND

Once the kernel structure and all the resident tasks have been set

up, the system can be started by entering the scheduler which is a

function called srchwk defined in sysb/klib.b. It take one argument

which is a pointer to the highest priority TCB that could possibly run.

It searches through the chain of TCBs that are linked in decreasing

priority order looking at only the status field of each. This field

is sufficient to tell whether the corresponding task can run or not.

It has 4 bits IWHP. The I bit is a 1 if the task has been interrupted

in which case its Cintcode registers will be packed elsewhere in the

TCB. The W bit is a 1 if the task is suspended in taskwait waiting

for a packet to arrive from another task or a device. The H bit is 1

if the task is in HOLD state indicating that it cannot run even if it

otherwise would be ready to do so, and the P bit is a 1 if the tasks’s

work queue is not empty. A task cannot be both interrupted and waiting

for a packet and the setting of both the I and W bits have a special

meaning, namely that the task is in DEAD state having no runtime stack

or global vector. There are thus 16 posible states a task can have of

which only six indicate that it is runnable, they are as follows.

#b0000

This task is runnable but has no packet on its work queue. It is

either the current task or it gave up control voluntarily by for

instance sending a packet to a higher priority task. When it next

gains control it will immediately return from the function that

caused it to give up control.

#b0001

This is just like the case above except there is a packet on its

work queue.

4.3. COMMANDS 145

#b0101

This indicates that the task is waiting for a packet and that one

has arrived. It is thus runnable and when given control the first

packet on its work queue will be dequeued and returned as the

result of the taskwait call that caused its suspension.

#b1000

This indicates the task is in interrupted state with an empty work

queue. It is thus runnable and when given control it will resume

execution using the Cintcode register values saved in the TCB when

it was interrupted.

#b1001

This indicates the task is in interrupted state with a non empty

work queue. It is thus runnable and when given control it will

resume execution using the Cintcode register values save in the

TCB when it was interrupted.

#b1101

This is a task in DEAD state (with no stack or global vector)

but it now has a startup packet on its work queue. It is thus

runnable and when given control will be initialised with a new

stack and global vector and its main function start in global

variable 1 will be called with the startup packet as its first

argument. This packet will have been dequeued.

4.3 Commands

This section describes the Command Language Interpreter commands whose

source code can be found in either cintcode/com or cintpos/com. The

rdargs argument format string for each command is given.

abort NUMBER CIN:y, POS:y, NAT:y

The command: abort n calls the BLIB function abort with argument n.
If n is zero, this causes a successful return from the BCPL system. If

n is non zero, the interactive debugger is entered with fault code n.
The default value for n is 99. The interactive debugger is described

in section 7.

adjclock OFFSET CIN:y, POS:y, NAT:y

The syntax of the OFFSET argument is [-][h][:m], that is: an

optional minus sign, followed by an optional number of hours, possibly

followed by :m to specify a number of minutes. The offset is

converted into a signed integer representing the number of minutes

to be added to the time of day as supplied by the system. If adjclock

is not given an argument, it just outputs the current offset.

146 CHAPTER 4. THE COMMAND LANGUAGE

alarm AT/A,MESSAGE CIN:n, POS:y, NAT:n

This command is only available under Cintpos. Its first parameter

has the format: [+][[hours:]minutes:]seconds. If + is present

the time is relative to now. The command suspends itself until the

specified time, then outputs the time followed by the message. Typical

usage is as follows:

run alarm +3:30 "Your time is up!"

After three and a half minute a message such as the following will

appear.

*** Alarm: time is 15:13:14 - Your time is up!

append FROM,TO/K CIN:y, POS:y, NAT:y

This command appends the FROM file on to the end of the TO file. If

the TO file does not initially exist, an empty one is created.

bbcbcpl FROM/A,TO/K,REPORT/K,NONAMES/S,MAX/S,SECTLEN/S
CIN:y, POS:y, NAT:y

This invokes a reconstruction of the BCPL compiler for the BBC

Microcomputer marketed by my brother’s company RCP in the early 1970s.

The FROM argument specifies the BCPL source file. The TO argument

specifies the desination file for the compiled 16-bit Cintcode.

The REPORT argument specifies a file to hold error messages. The

NONAMES argument causes the compiler not to embed function names in

the compiled code. The MAX argument has no effect in this version of

the compiler and SECTLEN controls whether the length of a section of

compiled code includes it length in its first word.

This reconstruction was created to possibly help reconstruct the

BBC Domesday Project that ran on the BBC Microcomputer using a Philips

12" laser disc. Related commands are mapcode and prbbcocode. For more

information, see bcplprogs/bbcmicro/ in the standard BCPL distribution.

bbcbcpl32 FROM/A,TO/K,REPORT/K,NONAMES/S,MAX/S,SECTLEN/S

CIN:y, POS:y, NAT:y

This command is similar to bbcbcpl but generates 32-bit Cintcode

suitable for the current BCPL Cintcode system. The BBC BCPL programs

may need minor changes needed because the BCPL word length has

increased from 16 to 32 bits.

This command is now obsolete since using bbc2bcpl is a more

satisfactory way to run BBC BCPL on the modern BCPL Cintcode system.

bbcbcpl32 will soon be deleted.

bbc2bcpl FROM/A,TO/K,HARD/S,EQCASES/S,T64/S,-h/S CIN:y, POS:y, NAT:y

4.3. COMMANDS 147

This command convert the BBC BCPL program given by FROM to a

destination file given by TO. The result can be compiled and run under

the modern BCPL Cintcode system. HARD causes the program to abort

on every detected error, EQCASES toggles whether the case of letters

in reserved word and identifiers are ignored. By default the case

of letters is ignored. Several minor replacements are made, such

as LOGAND, LOGOR, LSHIFT, EQ and LE are replaved by &, |, <<. = and

<=. Missinf close sections brackets are automatically inserted with

the correct indentation when multiple sections are closed by a tagged

closing bracket. All dots in identediters are replaced by underscores.

The cases of letters used in identifiers is modified to agree with the

way each identifier was written when first encountered. To do this the

program reads GET files but leave the GET directives unchanged.

bcpl FROM/A,TO/K,VER/K,SIZE/K/N,TREE/S,NONAMES/S,
D1/S,D2/S,OENDER/S,EQCASES/S,BIN/S,XREF/S,GDEFS/S,HDRS/K,

GB2312/S,UTF8/S,SAVESIZE/K/N,HARD/S,T32/S,T64/S,

OPT/K,TREE2/S,NOSELST/S CIN:y, POS:y, NAT:y

This invokes the BCPL compiler. The FROM argument specified the

name of the file to be compiled. If the TO argument is given, the

compiler generates code to the specified file. Without the TO argument

the compiler will output the OCODE intermediate form to the file ocode

as a compiler debugging aid. This file can be converted to a more

readable form using the procode command, described below. The VER

argument redirects the standard output to a named file. The SIZE

argument specified the size of the compiler’s work space. The default

is 100,000 words. The NONAMES switch causes the compiler not include

section and function names in the compiled code. The switches D1 and

D2 control compiler debugging output. D1 causes a readable form of

the compiled Cintcode to be output. D2 causes a detailed trace of

the internal working of the codegenerator to be output. D1 and D2

together causes a slightly more detailed trace of the internal working

of the codegenerator. OENDER causes code to be generated for a machine

with the opposite endianess of the machine on which the compiler is

running. EQCASES causes all identifiers to be converted to uppercase

during compilation. This allows very old BCPL programs to be compiled.

BIN causes the target Cintcode to be in binary rather than the ASCII

encoded hexadecimal normally used. The XREF option causes a line to be

output by the compiler for each non local identifier occurring in the

program. A typical such line is as follows:

all G:201 LG queens.b[9] all&~(ld|col|rd)

It shows that the variable all was declared as global variable

201 and its was loaded in the compilation of statements on

line 9 of the program queens.b and the context of its use was:

148 CHAPTER 4. THE COMMAND LANGUAGE

all&~(ld|col|rd). These lines can be filtered and sorted to form a

cross reference listing of a program. See, for instance, the file

BCPL/cintcode/xrefdata or Cintpos/cintpos/xrefdata. If both VER

and XREF are specified the xref data is appended to the verification

stream. This allows the xref data generated by several separate

compilations to be concatenated. The resulting file can be filtered

and sorted by the sortxref command. Typical usage is as follows:

delete -f rawxref
c compall "ver rawxref xref"
sort rawxref to xrefdata
delete rawxref

The GDEFS switch is a debugging aid to output the global numbers of

any global function defined in the program. For example:

bcpl gdefs com/bench100.b to junk

generates the following output:

BCPL (3 July 2007)
G 1 = start
G259 = trace
G260 = schedule
G261 = qpkt
G262 = wait
G263 = holdself
G264 = release
G270 = idlefn
G271 = workfn
G272 = handlerfn
G273 = devfn
Code size = 1436 bytes

The UTF8 and GB2312 options specify the default encoding for

extended characters in string and character constants. This default

can be overridden in individual constants using the *#u and *#g escape

sequences, as described on page 18.

The SAVESIZE option allows the user to specify the number of words

in the argument stack used to hold function return information. The

default value is three making room for the old P pointer, the return

address and the entry point of the current function. When compiling

into native code using the Sial mechanism, the save space size may be

different, since, for instance, some or all of this information may be

stored in the hardware (SP) stack.

The HARD options causes both syntax and translation phase errors to

call abort(100). This is useful in commands such as: c compall hard

allowing each error in a long sequence of compilations to be inspected

separately.

4.3. COMMANDS 149

The arguments T32 and T64 specify whether the target architecture

is for 32 or 64 bit BCPL. Note that when using a compiler with a 32 bit

word length, manifest constants are calculated using 32 bit integer and

floating point arithmetic. If compiling for a 64 bit target integers

will be limited to a 32 bt bit range and floating point constants will

only have a precision of about 6 of 7 decimal digits. But note that

many such constants will still be represented precisely. To obtain the

full range and precision on a 64 bit target, a compiler with a 64 bit

word length must be used.

The argument OPT gives a list of conditional compilation option

names consisting of letters, digits, underline and dot, separated by

plus signs or any other characters not allowed in option names. These

options are declared at the start of compilation of every BCPL section.

The debugging options TREE and TREE2 cause the parse tree to be

output before and after the the conversions caused by the FLT feature.

The option NOSELST causes the compiler to avoid using the Ocode

instructions SELLD and SELST when compiling the OF operator. Less

efficient code is compiler using shifts and logical instructions. This

option causes the bcpl2sial command not to use the new SIAL function

codes selld, selst and xselst, enabling older Sial codegenerators to

continue to work.

bcpl2sial FROM/A,TO/K,VER/K,SIZE/K/N,TREE/S,NONAMES/S,
D1/S,D2/S,OENDER/S,EQCASES/S,BIN/S,XREF/S,GDEFS/S,HDRS/K,

GB2312/S,UTF8/S,SAVESIZE/K/N,HARD/S,T32/S,T64/S,

OPT/K,TREE2/S,NOSELST/S CIN:y, POS:y, NAT:y

This command compiles a BCPL program into the internal assembly

language Sial which is designed as a low level intermediate target

code for BCPL and is described in Section 11.1. The command sial-sasm,

described below, can be used to convert Sial into a human readable form

and various commands, such as sial-386, sial-alpha and sial-arm will

convert Sial to assembly language for corresponding architectures. The

bcpl2sial command uses the same front end as bcpl and so takes the same

command arguments as the bcpl command.

bcplxref FROM/A,TO/K,PAT/K CIN:y, POS:y, NAT:y

This command outputs a cross reference listing of the program given

by the FROM argument. This consists of a list of all identifiers used

in the program each having a list of line numbers where the identifier

was used and a letter indicating how the identifier was declared. The

letters have the following meanings:

150 CHAPTER 4. THE COMMAND LANGUAGE

V Local variable

P Function or Routine

L Label

G Global

M Manifest

S Static

F FOR loop variable

The TO argument can be used to redirect the output to a file, and

the PAT argument supplies a pattern to restrict which names are to be

cross referenced. Within a pattern an asterisk will match any sequence

of characters, so the pattern a*b* will match identifiers such as ab,

axxbor axbyy. Upper and lower case letters are equated. This command

has largely been superceded by the xref option in the bcpl command and

the related sortxref command.

bench100 CIN:y, POS:y, NAT:y

This is a simple benchmark program used to test the efficiency of

systems implementation languages.

bgpm FROM,TO/K,UPB/K CIN:y, POS:y, NAT:y

This is an implementation of Christopher Strachey’s GPM

macrogenerator. It takes input from the FROM file if specified,

otherwise it reads from the standard input stream. The TO argument

specifies the file to receive the macrogenerated result, otherwise this

is sent to the standard output stream. The UPB argument specified the

amount of memory that bgpm may use.

A macro call is enclosed in square brackets ([and]) and contains

arguments separated by backslash characters (\). The arguments are

macro expanded as they are read in. To avoid macro expansion text can

be enclosed within nested quotation marks ({ and }). On reaching the

close square bracket at the end of a macro call, the zeroth argument

is looked up in the environment of defined macros and macrogeneration

continues from the beginning of its value. When the end of this value

is reached the expansion of the call is complete and macrogeneration

continues from just after the closing square bracket. While a macro

call is being expanded, a parameter of the form ^n is replaced by a

copy of the nth argument of the current call. The number n is given

as a sequence of decimal digits. The character ’‘’ introduces a

comment consisting of all remaining character of the current line

followed by all white space characters including newlines up to but

not including the next non white space character. The following macros

are predefined.

[def\name\value]

This causes a macro with the given name and value to be declared.

4.3. COMMANDS 151

[set\name\value]

This updates a named macro with a new value which may be truncated

if necessary.

[eval\expression]

This evaluate the given integer expression consisting of numbers and

the numeric operators *, /, %, + and -. Parentheses may be used for

grouping and spaces may appear anywhere except within numbers.

[lquote]

[rquote]

These macros expand to the quotation marks { and } respectively.

[eof]

This macro generates the end of file symbol and can be used to

terminate input from the standard input stream.

A simple definition and call is the following.

[def\xxx\{arg0 is ^0, arg1 is ^1 and arg2 is ^2}]
[xxx\yyy\zzz]

This would generate:

arg0 is xxx, arg1 is yyy and arg2 is zzz

For an extremely obscure example see: BCPL/cintcode/perm.bgpm.

bin-hex FROM/A,TO/K CIN:y, POS:y, NAT:y

This outputs the bytes of the FROM in hex. For instance, if the

file xxx was

ABCDEFGH
12345678

Then the command bin-hex xxx would generate

41 42 43 44 45 46 47 48 0A 31 32 33 34 35 36 37
38 0A

Unless TO is specified output is sent to the terminal.

bin-x8 FROM/A,TO/K CIN:y, POS:y, NAT:y

This outputs the words of the FROM in hex. For instance, if the

file xxx was

ABCDEFGH
12345678

Then the command bin-x8 xxx would generate

44434241 48474645 3332310A 37363534 00000A38

The default TO file name is JUNK.

152 CHAPTER 4. THE COMMAND LANGUAGE

bits2wav FROM,TO/K,B/N,S/N,A/N,D/N,T/S CIN:y, POS:y, NAT:y

This commands converts a bit stream file generated by the raster

command to a .wav sound file. FROM and TO specify the source and

destination files. B specified the bit rate in bits per second. S

specifies the .wav sample rate which should be 11025, 22050 or 44100.

A and D control the signal filtering and T turns on tracing as a

debugging aid. The default FROM file is RASTER.bits. The default

TO file is RASTER.wav and the default sample rate is 11025 samples per

second.

bmake TARGET,FROM/K,TO/K,-m/S,-l/S,-p/S,-r/S,-s/S,-c/S,-d/S

CIN:y, POS:y, NAT:n

This command provides an approximation the make command found in

other systems. It uses a makefile (normally bmakefile) to generate a

CLI sequence of commands to bring a specified target up to date. The

makefile is expanded using the BGPM macrogenerator and parsed to form

a set of pattern rules and explicit rules. Each rule has a target, an

optional set of items on which the target depends and a possibly empty

CLI command sequence to execute if the target need to be brought up to

date.

Pattern rules generate explicit rules when needed. They contain

parameters of the form <tag>. Within a pattern all tags must be the

same and must be declared in the target of the rule.

The optional first argument (TARGET) is normally a file name and

specifies the target to make. If no target is specified, the target

of the first rule is used. The optional FROM argument specified the

makefile name. The default makefile is bmakefile. The optional TO

argument specifies where the output is to be sent.

The -m argument causes bmake to output the makefile file after

macrogeneration. The -l argument outputs the makefile as a sequence

of lexical tokens. The -p argument outputs the set of rule patterns.

The arguments -r and -s output the explicit rules before and after

the application of the rule patterns, respectively. The -c argument

outputs the sequence of commands required to bring the target up to

date. The -d argument generates a debugging trace of the execution of

bmake.

The BGPM macrogenerator is described elsewhere, but the version use

in bmake uses the following special characters:

4.3. COMMANDS 153

% Comment - skip all characters until a non white

space character on a later input line.
[Start of a new macro call.

! Argument separator in macro calls.

Argument item prefix.

] End of macro argument list.

{ Open quote character.

} Close quote character.

A typical macro definition and call is as follows:

[def!xxx!{This output results from the call {[xxx!}#1{]}}]
[xxx!yyy]

This would generate:

This output results from the call [xxx!yyy]

The syntax of bmake rules is as follows:

target-item <= item ... item << command-sequence >>

Every rule must have a target item and a body consisting of a

possibly empty command sequence enclosed in << and >> brackets. The

command-sequence is an arbitrary sequence of characters not containing

>>. The item list may be empty and, if so, the symbol <= may be

omitted. White space including newlines are allowed anywhere between

items.

Pattern rules contain parameter of the form <tag> as in:

cin/<f> <= com/<f>.b g/hdr.h << c bc <f> >>

Such rules are only used when there is no explicit rule for a given

target. When a rule pattern is applied all occurrences of its

parameter are replaced by the text that allowed the target item to

match the required target. So if cin/echo must be brought up to date

and has no explicit rule, the above pattern will automatically add the

following explicit rule to the set:

cin/echo <= com/echo.b g/hdr.h << c bc echo >>

A target is out of date if it does not exist or if any of the items

it depends on are out of date or have a modify dates later than that

of the target. A target is brought up to date by, first, bringing

the items it depends on up to date and then executing the CLI command

sequence given by the body.

Items may consist of any sequence of characters not including

%, [, !,], {, }, =, or white space, and < and > may only appear in

parameters.

154 CHAPTER 4. THE COMMAND LANGUAGE

In normal use, bmake generates a command-command file to bring

the target up to date and then returns to the CLI to cause this file

to be executed. The -c option allows the command-command file to be

inspected without execution.

bounce CIN:n, POS:y, NAT:n

This command is part of the bounce demonstration that is only

available under Cintpos. It is normally invoked by the command: run

bounce which creates a new CLI task and then enters the bounce program

whose main loop is:

qpkt(taskwait()) REPEAT

which repeatedly suspends the task until a packet is received then

immediately returns it to the sender. Packets are normally sent to the

bounce task using the send command, described below.

break TASK/A,A/S,B/S,C/S,D/S,E/S,ALL/S CIN:n, POS:y, NAT:n

This Cintpos command is used to break the normal execution of a

specified task. The first argument gives the task number and the

remaining arguments specify which flags to set. If no flags are

specified flag B is set. If ALL is specified all the flags from A

to E are set.

c command-file arguments CIN:y, POS:y, NAT:y

The c command allows a file of commands to be executed as though

they had just been typed in. The argument command-file gives the

name of the file containing the command sequence. It first looks in

the current directory then the directories specified by the scripts

environment variable whose name is in the rtn scriptsvar field of

the rootnode, and finally, if that fails, it looks in the directory

specified by the root environment variable whose name is in the

rtn rootsvar field of the rootnode.

Unless explicitly changed, the characters ’=’, ’<’, ’>’, ’$’ and

’.’ have special meanings within a command command. A dot ’.’ at

the start of a line starts a directive which can specify the command

command’s argument format, or replace one of the special character with

an alternative. There are six possible directives as follows:

.KEY or .K str Argument format string.

.DEFAULT or .DEF key value Give key a default value, optionally, = is

allowed between the key and value.

.BRA ch Use ch instead of <

.KET ch Use ch instead of >

.DOLLAR ch Use ch instead of $

.DOT ch Use ch instead of .

4.3. COMMANDS 155

All directives must occur at the start of the command file. The

.KEY directive specifies a format string of the form used by rdargs

(see page 77) that describes what arguments can follow the command

file name. The .DEFAULT directive specifies the default value that a

specified key should have if the corresponding argument was omitted.

The remaining directives allow the special characters to be changed.

The command sequence occurs after all the directives and may contain

items of the form <key$value> or <key> where key is one of the keys

in the format string and value is a default value. Such items are

textually replaced by its corresponding argument or a default value.

If $value is present, this overrides (for this item only) any default

that might have been given by a .DEFAULT directive.

casech FROM/A,TO/A,DICT/K,U/S,L/S,A/S CIN:y, POS:y, NAT:y

This command systematically converts all reserved words of a BCPL

program to upper case and changing all identifiers to upper case

(U), lower case (L, or in the form given by a specified dictionary

(DICT). The A switch causes all letters including those in strings to

be converted to upper case.

changepri TASK/N/A,PRI=PRIORITY/N CIN:n, POS:y, NAT:n

This Cintpos command changes the priority of the specified task to

a specified value. If two arguments are given the first identifies the

task and the second the new priority. If only one argument is given it

is treated as the new priority of the current task. A Cintpos priority

can be any positive integer but there is the restiction that no two

tasks can have the same priority.

checksum FROM/A,TO/K CIN:y, POS:y, NAT:y

This command calculates a check sum for the file specified by the

FROM argument, sending the result to the file specified by the TO

argument.

cmpltest CIN:y, POS:y, NAT:y

This is a test program that checks for errors in the BCPL compiler

and Cintcode interpreter.

cobench CIN:y, POS:y, NAT:y

This is a benchmark program to test the efficiency of coroutines.

cobounce CIN:y, POS:y, NAT:y

This is a simple coroutine benchmark that bounces a message between

two coroutines. On my 1.66Ghz Pentium laptop it outputs the following:

0.000> cobounce

Calling the bounce coroutine 10000000 times

156 CHAPTER 4. THE COMMAND LANGUAGE

About 7812500 coroutine changes per second

done

2.560>

This shows that transferring control between coroutines is about

12 time faster than transferring control between Cintpos tasks as

demonstrated by the send command described below.

compare FILE1/A,FILE2/A,TO/K,OPT/K CIN:y, POS:y, NAT:y

This command compares two files outputting a description of how

they differ to the TO file if specified, or to standard output if not.

The OPT string consists of items of the form Wn, Mn and Rn, separated

by spaces or commas. Each n is a number greater than zero. Wn means

truncate all input lines to no more than n characters. Mn search for

up to n mismatching lines. Rn means that n lines must match before

synchronisation is restored after a mismatch.

cosim -n/n,-s/n,-p/n,-r/n,-t/s CIN:y, POS:y, NAT:y

This is a demonstration program showing how to write a discrete

event simulator using coroutines, and it is also be used as a

benchmark. Its arguments can set the variables n, s, p and r that

configure the test, and the -t switch turns on run time tracing to

check that the simulator is behaving correctly. For a full description

and listing of this program see Section 3.7.3.

dat TO/K,MSECS/S CIN:y, POS:y, NAT:y

This commands output the current date and time to the TO file, if

specified, otherwise it is sent to the standard output stream. The

MSECS options causes the time to have higher precision. Typical output

is as follows:

Monday 23-Apr-2010 14:04:12
Monday 23-Apr-2010 14:04:14.392

date TO/K CIN:y, POS:y, NAT:y

This commands output the current date to the TO file, if specified,

otherwise it is sent to the standard output stream. Typical output is

as follows:

Monday 23-Apr-2010

delete ,,,,,,,,,-f/S CIN:y, POS:y, NAT:y

This command will delete up to ten given files. If the -f argument

is given, no error message is generated if any file to be deleted does

not exist.

4.3. COMMANDS 157

detab FROM/A,TO/K,SEP/K CIN:y, POS:y, NAT:y

This command copies the file give by the FROM argument to the file

given by the TO argument replacing all tab characters by spaces. The

tabs are separated by a distance specified by the SEP argument. The

default is 8.

dumpmem ON/S,OFF/S CIN:y, POS:y, NAT:y

The ON switch causes Cintsys or Cintpos to set the dumpflag in

the rootnode to TRUE. OFF causes the dumpflag to be set to FALSE.

If the dumpflag is TRUE when a fault occurs or when a return from

the interpreter occurs, the entire Cintcode memory is output in a

compacted form. Such memory dumps are sent to the file DUMP.mem for

later inspection by commands such as sysdebug, dumpsys, posdebug and

dumppos. Calling dumpmem without arguments causes an immediate memory.

dumppos FROM,TO/K CIN:y, POS:y, NAT:y

This outputs a readable form of a Cintpos memory dump specified by

the FROM argument. If FROM is not given it uses the file DUMP.mem.

The output is sent to the TO file if given, otherwise it goes to

standard output.

dumpsys FROM,TO/K CIN:y, POS:y, NAT:y

This outputs a readable form of a Cintsys memory dump specified by

the FROM argument. If FROM is not given it uses the file DUMP.mem.

The output is sent to the TO file if given, otherwise it goes to

standard output.

easter YEAR/N,CYCLE/S CIN:y, POS:y, NAT:y

This command outputs the date of Easter Sunday for 10 years from the

year given by the YEAR argument. If the YEAR argument is nott given

the output starts from the current year.

After many years the sequence of Easter dates repeats. Giving the

CYCLE option causes the program to discover the length of this cycle.

echo TEXT,TO/K,APPEND/S,N/S CIN:y, POS:y, NAT:y

This command outputs its first argument TEXT, if given. The text

will be followed by a newline unless the switch N is set. If the

TO argument is given, text is sent to the specified file othewise

it goes to the standard output stream. The APPEND switch causes the

output to be appended to the TO stream, after creating an empty file if

necessary.

edit FROM/A,TO,WITH/K,VER/K,OPT/K CIN:y, POS:y, NAT:y

This command is meant to provide a simple line editor. It used

to run on the Tripos Portable Operating System but has not yet been

modified to run on this version of the system.

158 CHAPTER 4. THE COMMAND LANGUAGE

endcli CIN:n, POS:y, NAT:n

This Cintpos command causes a CLI task to commit suicide.

enlarge /A,TO/K CIN:y, POS:y, NAT:y

This command output a large version of its first argument either to

file or to standard output. For instance: enlarge Hello will generate

the following:

######
########
##
######## ###### ## ## ## ##
##
##
########
######

fact CIN:y, POS:y, NAT:y

This is a simple example program used in the console session

demonstration presented on page 8.

fail RC/N,REASON/N CIN:y, POS:y, NAT:y

This command returns to the CLI with the specified return code and

second result. The default return code is 10 and the default second

result is zero. Unlike the quit command described below, it does not

cause the current command-command to terminate.

failat FAILLEVEL/N CIN:y, POS:y, NAT:y

This sets the CLI fail level to its argument if given, otherwise it

outputs the current setting. The CLI only issues a warning message if

a command yields a return code greater than or equal to the fail level

value.

fast CIN:y, POS:y, NAT:n

This is a program selects the fast interpreter.

getlogname NAME CIN:y, POS:y, NAT:y

This command outputs the value of a given logical variable name. If

none is given it lists the names and values of all logical variables.

The list of logical name value pairs is held in the root node element

rtn envlist.

harness CIN:n, POS:y, NAT:n

This is Cintpos command whose purpose test a system by generating a

sequences of timed events specified by a script.

help ,,,,,,,,,,,,,,,#HELPDIR/K,#TO/K,#TRACE/S CIN:y, POS:y, NAT:y

This command is meant to provide a help facility but has not yet

been transferred to Cintsys or Cintpos.

4.3. COMMANDS 159

hex-bin FROM/A,TO/K CIN:y, POS:y, NAT:y

This is the inverse of the bin-hex command. It reads pairs hex

digit outputting the corresponding 8-bit bytes.

hexdump FROM/A,N/N,P/N,RL/K/N,RLB/K/N,TO/K,

X1/S,X2/S,X4/S,LIT/S,BIG/S CIN:y, POS:y, NAT:y

This program dumps a file specified by FROM in a combination of hex

and character forms. If either RL or RLB is given the file is treated

as a sequence of records. RL gives the record length in BCPL words

and RLB gives it in bytes. The P and N arguments give the number of

the first record to dump and N specifies how many to dump. If neither

RL nor RLB is given P gives the number of the first byte to dump and

N gives the number of bytes to dump. X1 causes the file to be dumped

as a sequence of individual bytes. X2 causes the file to be dumped

as a sequence of 16-bit words, and X4 causes the file to be dumped

as a sequence of 32-bit words. LIT or BIG specify whether to use

little-ender or big-ender ordering when dumping words. It neither

are specified the enderness of the current computer is used. If the

file bc is as follows:

#!/home/mr/distribution/BCPL/cintcode/cintsys -s
.k file/a,arg
echo "bcpl com/<file>.b to cin/<file> hdrs BCPLHDRS <arg>"
bcpl com/<file>.b to cin/<file> hdrs BCPLHDRS <arg>

then the command: hexdump bc 64 would generate the following:

Dump of bc from 0 to 63 little-ender mode

0/ 0: 682F2123 2F656D6F 642F726D 72747369 #!/h ome/ mr/d istr
16/ 4: 74756269 2F6E6F69 4C504342 6E69632F ibut ion/ BCPL /cin
32/ 8: 646F6374 69632F65 7973746E 732D2073 tcod e/ci ntsy s -s
48/ 12: 206B2E0A 656C6966 612C612F 650A6772 ..k file /a,a rg.e

hold TASK/N/A CIN:n, POS:y, NAT:n

This is only available under Cintpos. It causes the specified

task to be put into HOLD state to stop it being available to run. Its

inverse is unhold described below.

idvec ADDRESS/A CIN:n, POS:y, NAT:n

This Cintpos command attempts to identify the vector at a given

address. Two example call are given below:

0.000 1> idvec 23522
Stack of task 4
0.000 1> idvec 15994
Code section of task 5: MBXHAND
0.000 1>

if ,NOT/S,WARN/S,ERROR/S,FAIL/S,EQ/K,VAREQ/K,EXISTS/K: CIN:y, POS:y,

NAT:y

160 CHAPTER 4. THE COMMAND LANGUAGE

This command normally ends with a semicolon and the remainder of

the line is conditionally executed by the CLI depending on whether

the if condition is satisfied. The return code and second result of

the previous CLI command are held in the globals cli returncode and

cli result2. If one of WARN, ERROR or FAIL was given, the if command

tests whether the previous command’s return code greater or equal to

warn(=5), error(=10) or fail(=20). If the EQ argument was given,

it tests whether the return code is the same as the first argument.

If VAREQ is given, it specifies is a logical variable name and the

value of this variable is compared with the first argument. The EXISTS

argument is a file name whose existence is tested. The NOT switch

complements the condition.

input TO/A,TERM/K CIN:y, POS:y, NAT:y

This command will copy text from the current input sending it the

the file specified by the AS argument. The input is terminated by a

line starting with /* or the value of the TERM argument if given.

interpreter FAST/S,SLOW/S| CIN:y, POS:y, NAT:y

This command allows the user to select the fast (cintasm) or the

slow (cinterp) version of the interpreter. If no arguments are given

the fast one is selected. It is implemented using sys(Sys quit,-1) or

sys(Sys quit,-2) as described on page 92.

join ,,,,,,,,,,,,,,,AS/A/K,CHARS/S CIN:y, POS:y, NAT:y

This command will concatenat several files sending the result to the

file specified by the AS argument. If the CHARS switch is given the

files are treated as text files, otherwise they are copied in binary.

lab LABEL/A CIN:y, POS:y, NAT:y

This command has no effect. Its sole purpos is be the destination

of skip commands.

library FROM,OVERRIDE/S,CANCEL/K,LIST/S,-g/S,TO/K CIN:n, POS:y, NAT:n

This rather dangerous command allows the user to add or delete

sections of resident system code. If the FROM argument is given the

specified file is loaded and its sections added to the end of the

chain of BLIB sections pointed to by the root node field rtn blib.

If OVERRIDE is given the newly loaded sections are allowed to replace

previous ones with the same section names, otherwise all newly loaded

sections must have names distinct from those already in the BLIB chain.

The CANCEL argument specifies the name of a section to remove from

the BLIB chain. The LIST switch argument causes a list of the section

names in the BLIB chain to be output. The argument -g causes a list

of all the global functions defined in the BLIB chain to be output

including the names of the sections they are in. The TO argument

4.3. COMMANDS 161

specifies the name of a file where the output is to be sent. It

is often useful to sort this file using sortlines. Normally the

library command is only used during the initialisation of special

purpose versions of Cintsys or Cintpos, or when one wishes to see which

functions are defined in BLIB.

logout CIN:y, POS:y, NAT:y

This command causes an exit from the BCPL Cintcode System, typical

returning to an operating system shell.

makeinit ,,,,,,,,,,,TO/A/K,STKSIZE/K,GLOBSIZE/K CIN:y, POS:y, NAT:y

This command is used by the native code version of BCPL to generate

a C program used to initialise a native code compilation of BCPL

program. It takes a list of BCPL source files and writes to the TO

file a C program that will perform the necessary runtime initialisation

of them. This program also sets the runtime stack size and global

vector size to 50000 and 1000, respectively, unless overridden by

the STKSIZE and GLOBSIZE arguments. The resulting C program should

compiled and linked with the native code compilations of the BCPL

files and various library modules. For more information look in the

directory BCPL/natbcpl of the standard BCPL distribution. An example

of the use of makeinit is given on page 268.

map BLOCKS/S,NAMES/S,CODE/S,MAPSTORE/S,TO/K,PIC/S CIN:y, POS:y, NAT:y

This command outputs the Cintcode memory in a form that depends on

the arguments given. The output goes to the screen unless a filename

is given using the TO keyword. BLOCKS outputs a list of all blocks

whether allocated or free in the block chain used by getvec. CODE

outputs a list of all code sections currently in memory. MAPSTORE

output the code sections and function entry points currently in memory,

and PIC outputs a picture of what memory is currently allocated.

map BLOCKS/S,NAMES/S,CODE/S,MAPSTORE/S,TO/K,PIC/S CIN:y, POS:y, NAT:y

This command outputs the Cintcode memory in a form that depends on

the arguments given. The output goes to the screen unless a filename

is given using the TO keyword. BLOCKS outputs a list of all blocks

whether allocated or free in the block chain used by getvec. CODE

outputs a list of all code sections currently in memory. MAPSTORE

output the code sections and function entry points currently in memory,

and PIC outputs a picture of what memory is currently allocated.

mapcode FILE/A,TO/K,-r/N,-t/S,-f/S CIN:y, POS:y, NAT:y

This command inspects both 16-bit Cintcode and 6502 machine code

used on the BBC Microcomputer displaying such data in a readable

form. FROM specifies the data file, TO specified the output file.

The -r specifies the address of the first byte of machine code to

162 CHAPTER 4. THE COMMAND LANGUAGE

display. The -t argument turns on debugging tracing and -f causes

extra information to be displayed about each byte of data being

inspected.

mbxcli MBXNAME CIN:n, POS:y, NAT:n

This command creates a new CLI task taking input from the specified

mailbox, typically MBX:name. If no argument is specified the default

mailbox MBX:commands is used. Any task can write command lines to

a mailbox in a first come first served manner and any CLI created

by mbxcli can read and perform them, similarly in a first come first

served manner. If a mailbox CLI performs the endcli command it commits

suicide.

mbxrx -n/N,-d/N,-b/K CIN:n, POS:y, NAT:n

This command is designed to test the mailbox system under Cintpos.

It will read a number of mailbox lines specified by the -n argument.

Each line read is written to the standard output stream. It then

delays for a number of milli-seconds specified by the -d argument

before reading the next mailbox line. The mailbox is specified by

the -b argument with the default being MBX:junk.

mbxtx -n/N,-d/N,-b/K CIN:n, POS:y, NAT:n

This command is designed to test the mailbox system under Cintpos.

It will write a number of lines specified by the -n argument to a

mailbox. Each line sent is written to the standard output stream. It

then delays for a number of milli-seconds specified by the -d argument

before sending the next mailbox line. The mailbox is specified by the

-b argument with the default being MBX:junk.

mcpl CIN:y, POS:y, NAT:y

This command compiles an MCPL program into Mintcode. See the MCPL

distribution for more details.

mcpl2mial CIN:y, POS:y, NAT:y

This command compiles an MCPL program into MIAL.

mial-386.b CIN:y, POS:y, NAT:y

This translates the MIAL form of an MCPL program into Pentium

assembly language.

mial-masm CIN:y, POS:y, NAT:y

This translates the MIAL form of an MCPL program into a mnemonic

form.

mkdata NAME,SIZE/N CIN:y, POS:y, NAT:y

This creates a file with given name and size. The default name is

junk and the default size is 4096*3+10 bytes. Byte i of the created

4.3. COMMANDS 163

file is i MOD 256 except every 64th character is a newline and the

first 6 characters of every line hold a decimal number giving the

position of the first character of that line.

mkjunk NAME,SIZE/N CIN:y, POS:y, NAT:y

This creates a file as described in the mkdata command and then

tests random access to this file by overwriting some of its bytes.

newcli CIN:n, POS:y, NAT:n

This Cintpos command creates a new CLI task.

nlconv FILE,TOUNIX/S,TODOS/S,Q/S CIN:y, POS:y, NAT:y

This command replaces the specified file with one in which line

endings have been replaced by those appropriate for the desination

system which is specified by the switches TOUNIX (the default) or

Windows systems (TODOS). The Q argument quietens the command.

origbcpl CIN:y, POS:y, NAT:y

This is an old version of the BCPL compiler dated 13 August 2001

sometimes used for benchmarking purposes.

origbcpl2bmp CIN:y, POS:y, NAT:y

This is a program to convert the raster data corresponding to the

self compilation of origbcpl.b into a .bmp image showing how memory is

used by the origbcpl compiler compiling itself. When the bash shell

under Linux this image can be built by typing the following commands.

cd $(BCPLROOT)

rastsys

slow

raster

origbcpl com/origbcpl.b to junk

c bc origbcpl2bmp

origbcpl2bmp to origbcpl.bmp

gimp origbcpl.bmp

This image appears in this manual.

playback FROM/A,WAIT/S,NOTIME/S CIN:y, POS:y, NAT:y

This plays back a console session recording made using the record

command.

playfast FROM,TO/K CIN:y, POS:y, NAT:y

This copies a specified recording file (created by the record

command) to the specified output enclosing timing bytes in square

brackets.

164 CHAPTER 4. THE COMMAND LANGUAGE

playtime FROM/A CIN:y, POS:y, NAT:y

This outputs how long a specified recording (created by the record

command) will take to playback.

posdebug FROM CIN:y, POS:y, NAT:y

This is an interactive debugger that allows the user to inspect a

given Cintpos memory dump file. The default file name is DUMP.mem.

See dumpmem described above.

prbbcocode FROM,TO/K CIN:y, POS:y, NAT:y

This command converts a 16-bit OCODE file used by the BCPL compiler

for the BBC Microcoputer into a more readable form. FROM specifies the

Ocode file. The TO argument specifies the destination file. If it is

missing it sends the result to the screen.

prefix PREFIX,UNSET/S CIN:y, POS:y, NAT:y

This command is primarily for systems that do not have the concept

of a current working directory. If the first argument is given, it

becomes the current prefix string. If UNSET is specified, the prefix

string is unset, and if no argument is given the current prefix is

output. This command is implemented using sys(Sys setprefix,prefix)

and sys(Sys getprefix) described on page 94. See also Section 3.3.2.

preload ,,,,,,,,, CIN:y, POS:y, NAT:y

This command will preload up to 10 commands into the Cintcode

memory. Without arguments, it outputs the list of all preloaded

commands and their sizes. Preloading improves the efficiency of

command execution and is also useful in conjunction with the stats

command, see below. Preloaded commands can be removed using the

unpreload command.

prmcode CIN:y, POS:y, NAT:y

This command converts an MCODE (intermediate code for MCPL) file

specified by FROM to a more readable form. If FROM is missing it reads

from the file MCODE. If the TO argument is missing it sends the result

to the screen. The file MCODE is a byproduct of the mcpl command, see

mcpl above.

procode FROM,TO/K CIN:y, POS:y, NAT:y

This command converts an OCODE (intermediate code for BCPL) file

specified by FROM to a more readable form. If FROM is missing it reads

from the file OCODE. If the TO argument is missing it send the result

to the screen.

prompt PROMPT,P0/S,P1/S,P3/S,P4/S,NO/S CIN:y, POS:y, NAT:y

If the NO switch is given prompts are disabled, otherwise they

will be enabled. Under Cintpos, disabling prompts is useful, for

4.3. COMMANDS 165

instance, if a CLI task is taking input from a TCP/IP connection where

the source of the commands is another program. The PROMPT argument

is optional, but if present will be the new prompt format string. The

switch parameters P0 to P4 select commonly used prompt formats. The

CLI generates prompts using a call of the following form.

writef(prompt, cpumsecs, taskno, hours, mins, secs, msecs)

where prompt is the prompt format string, cpumsecs is the time in

milliseconds used by the previous command, taskno is the current task

number under Cintpos and zero otherwise. The arguments hours, mins,

secs and msecs represent the current time of day. The default prompt

format under Cintpos is: "%+%n> " and under the other systems is:

"%5.3d> ". An example of how it might be used is as follows.

0>
0> prompt "%+%+%z2:%z2:%z2 %-%-%-%-%-%5.3d> "
15:11:52 0.000>
15:11:55 0.000> bench100

bench mark starting, Count=1000000

starting

finished
qpkt count = 2326410 holdcount = 930563
these results are correct
end of run
15:12:14 10.690>

This shows that bench100 finished execution 14 seconds after 3:12pm

after running for 10.690 seconds.

quit RC/N,REASON/N CIN:y, POS:y, NAT:y

This causes a CLI command-command to terminate returning a

completion code of zero unless overridden by the RC argument. If

REASON is given it is placed in result2. This command differs from

fail since it terminates the execution of a command-command while fail

allows a command-command to continue run.

rast2ps FROM,SCALE/N,TO/K,ML/N,MH/N,MG/N,FL/N,FH/N,FG/N,

DPI/K/N,INCL/K,A5/S,A4/S,A3/S,A2/S,A1/S,A0/S CIN:y, POS:y, NAT:y

This command has been superseded by programs such as

com/origbcpl2bmp.b. This command used to be used to converts a raster

data file (written using the raster command described below) into a

postscript file suitable for printing.

The FROM parameter specifies the name of the raster data file.

RASTER is the default. SCALE specifies a magnification as a

166 CHAPTER 4. THE COMMAND LANGUAGE

percentage. The default is 80. The TO parameter specifies the name

of the postscript file to be generated. RASTER.ps is the default. The

parameters ML and MH specify the low and high limits of the address

space to be processed. MG specifies the separation of the grid line on

the memory axis. The default values of MH and FH are given by the FROM

file. The default values of ML and FL are both zero. Unless MG and FG

are given, suitable values are chosen automatically. The units are in

bytes. The parameters FL and FH specify the low and high limits of the

instruction count axis to be displayed. FG specifies the separation

of the grid line on the memory axis. DPI specified the approximate

number of dots per inch used by the output device. The default is

300. An specified the output page size. The default is A4. The INCL

parameter specifies the name of a file to be copied into the postscript

file. This file allows annotations to be made in the picture. The

file cintcode/origbcplps.h was used to annotate the memory time graph

shown in Figure 4.2. This file contains lines such as:

F2 setfont
(SYN) 1.1 35 2 PDL
(TRN) 8.1 30 1.7 PUL
(CG) 15.3 36 2.1 PUR
(GET Stream) 0.45 270 1.7 PUL
...
(OCODE Buffer) 13.9 245 2 PDR
% 8.5 150 MVT (HELLO WORLD) SC
F3 setfont
(Self Compilation of the Cintcode BCPL Compiler) TITLE

The postscript macros PDL, PUL, PUR and PDR draw arrows with

specified labels, byte address, instruction count and arrow lengths.

The arrow directions are respectively: down left, up left, up right

and down right. The macro MVT moves to the specified position in the

graph and SC draws a string centered at that position. The TITLE macro

draws the graph title and F2 and F3 are fonts suitable for the labels

and title. The resulting postscript file can, of course, be further

edited by hand.

rast2wav FROM,TO/K,n/N,s=secs/N,r/N,d/N,stereo/N,t/N CIN:y, POS:y, NAT:y

This command converts a raster data file (written using the raster

command described below) into .wav sound file based on the pattern of

memory accesses during the CLI command following the call of raster.

The FROM parameter specifies the name of the raster data file.

RASTER is the default. The TO parameter specifies the name of the

.wav file to be generated. RASTER.wav is the default. By default, the

program only generated notes that are equal temperament semitone (12

per octave), but the n argument allows the user to specify a different

number of notes per octave, susch as 24 or 41. The duration of the

generated sound file can be specified using the s or secs argument.

4.3. COMMANDS 167

The default .wav sample rate is 44100 per second, but 22050 or 11025

can be specified using the r argument. By default notes are numbered

upwards from 0 to 60 with 12 notes per octave the lowest note id C two

octaves below middle C. The d option is a debugging aid that causes

all notes other that a specified one to be silent. This allows the

algorithm to choose when to sound a note to be tested including how

it volumes envelope changes. The t argument is not yet implemented

but willin due course generate trace output during the execution of

rast2wav. This command was written the sound generated by EDSAC 2’s

loudspreaker in the 1960s was a remarkably useful debugging aid.

As a demonstration, origbcpl.wav or origbcpl.mp3 is the sound of the

early version of the BCPL compiler compiling itself, and the following

command sequence from a bash prompt will generate an approximation

to Bach’s Invention no 10, bwv 784. These demonstrations are not yet

ready.

rastsys
c bc bwv784
raster
bwv784
rast2wav
ctrl-c
audacity RASTER.wav

raster COUNT/N,SCALE/N,TO/K,BITS/S,HELP/S CIN:y, POS:y, NAT:y

This command controls the generation of raster data but only

works when the BCPL Cintcode system is running under the rastering

interpreter rasterp. The implementation uses sys(Sys setraster,...)

calls that are described on page 95. If raster is called without the

BITS options it activates the rastering mechanism for the duration of

the next CLI command. Without the BITS option the default TO file is

RASTER. The format of this file is outlined on page 95.

The COUNT argument specifies the number of Cintcode instructions to

obey per raster line. The default is 1000. The SCALE argument gives

the number of byte addresses per unit on the memory axis. The default

being 8.

The raster data file can be processed and converted to Postscript

using the rast2ps command described above. Typical use of the raster

command is following script, starting from a linux bash prompt:

rastsys
raster
origbcpl com/origbcpl.b to junk
rast2ps incl origbcplps.h
ctrl-c
ps2pdf RASTER.ps
okular RASTER.pdf

This will create a .pdf file for an early version of the BCPL compiler

168 CHAPTER 4. THE COMMAND LANGUAGE

compiling itself, similar to that shown in Figure 4.2. For a more

detailed view of the parse tree while SYN is being compiled, try:

rastsys
raster
origbcpl com/origbcpl.b to junk
rast2ps incl origbcplps.h ml 350000 mh 500000 fh 6000000
ctrl-c
ps2pdf RASTER.ps
okular RASTER.pdf

Figure 4.2: Self compilation memory-time graph

Noth that rast2ps is now obsolete having been superseded by programs

such as com/origbcpl2bmp which can be used to convert the raster data

files into a .bmp image files.

If raster is called with the BITS option, the next CLI command

will generate a bit stream file corresponding to the fifth bit of

every Cintcode byte address accessed. The default TO file name is

RASTER.bits. This file contains one byte for every 8 memory references

so can become very large. It can be converted to a .wav sound file

using the bits2wav command.

4.3. COMMANDS 169

record TO,OFF/S CIN:n, POS:y, NAT:n

This Cintpos command starts sending a recording data including

timing information of the current console sessions to the specified

file. The recording is stopped by the command record off. See the

commands playback, playfast, and playtime.

rename FROM/A,TO=AS/A/K CIN:y, POS:y, NAT:y

This will rename the file given by FROM to that specified by the AS

argument.

repeat CIN:y, POS:y, NAT:y

This attempt to reposition CLI input to the start of the current

command line thereby causing it to be executed again. For example:

wait 3; echo hello; repeat

will output hello to the screen every 3 seconds until interrupted by

the D flag (set by @d).

run command-line CIN:n, POS:y, NAT:n

This Cintpos command creates a new CLI task giving it command-line

to execute. On complete this new CLI task commits suicide.

send TASK/N,COUNT/N CIN:n, POS:y, NAT:n

This is part of the Cintpos bounce demonstration. It repeatedly

sends a packet to the specified task the specified number of times.

The default task number is 7 and the default count is 1000000. It can

be used to measure the efficiency of inter-task communication. On my

1.66Ghz Pentium laptop, send runs for 3.19secs corresponding to about

630000 task changes per second.

setflags TASK,A/S,B/S,C/S,D/S,E/S,QUIET/S CIN:n, POS:y, NAT:n

This Cintpos command sets the specified flags in the task control

block of the given task. Unless QUIET is given it outputs the previous

setting of the flags.

setlogname NAME,VALUE CIN:y, POS:y, NAT:y

This command sets or possible displays Cintsys or Cintpos logical

variables. These must not be confused with shell environments

variables described in Section 3.6. Cintsys and Cintpos logical

variables are held in a linked list held in the rootnode element

rtn envlist. If both NAME and VALUE are given, the given logical

variable name is given the specified value, but if no value is given

the specified variable is unset. If setlogname is called without

arguments, the names and values of all logical variables are output.

A running program can lookup and set logical variables using the

functions getlogname and setlogname.

170 CHAPTER 4. THE COMMAND LANGUAGE

setroot ROOT,PATH,HDRS,SCRIPTS CIN:y, POS:y, NAT:y

If no arguments are given it just outputs the current settings

of the four environment variable names. Otherwise, the specified

variables are given new names.

shellcom COMMAND/A CIN:y, POS:y, NAT:y

This command causes its argument to be processed by the command

language interpreter shell of the underlying operating system

(typically Linux or Windows). It does not return until the shell has

completed processing the command.

sial-arm FROM,TO/K CIN:y, POS:y, NAT:y

This command converts the Sial intermediate code generated by

bcpl2sial to the equivalent assembly language for machines using the

ARM processor.

sial-386 FROM,TO/K CIN:y, POS:y, NAT:y

This command converts the Sial intermediate code generated by

bcpl2sial to the equivalent assembly language for i386 machines such

as Pentiums.

sial-alpha CIN:y, POS:y, NAT:y

This command converts the Sial intermediate code generated by

bcpl2sial to the equivalent assembly language for DEC Alpha machines.

sial-sasm CIN:y, POS:y, NAT:y

This command converts the Sial intermediate code generated by

bcpl2sial into a human readable form.

sial-vax CIN:y, POS:y, NAT:y

This command converts the Sial intermediate code generated by

bcpl2sial to the equivalent assembly language for VAX machines.

skip LABEL CIN:y, POS:y, NAT:y

The command skip label skips through the command stream until a line

starting with lab label is encountered. It then skips until the end

of that line before resuming normal command execution from there. The

skip command is only allowed within command-commands.

slow CIN:y, POS:y, NAT:n

This is a program selects the slow interpreter.

sortlines FROM/A,TO/K CIN:y, POS:y, NAT:y

This command sorts the lines specified by the FROM file sending the

result to the TO file, removing duplicate lines. Output is sent to the

screen if the TO parameter is not given. This can be used to sort the

data generated by the command: library -g to junk.

4.3. COMMANDS 171

sortxref FROM/A,TO/K,FNS/S CIN:y, POS:y, NAT:y

This command sorts the lines specified by the FROM file sending

the result to the TO file, removing duplicate lines. Output is sent

to the screen if the TO parameter is not given. Only lines lines

containing G:, M:, F: or S: are included, and if FNS is specified,

only lines also containing FN or RT are included. This is useful when

processing cross reference data generated by the BCPL compiler when the

XREF parameter is specified. A typical cross reference listing can be

found in cintcode/xrefdata.

stack SIZE CIN:y, POS:y, NAT:y

The command stack n causes the size of the coroutine stack allocated

for subsequent commands to be n words long. Without an argument it

outputs the current setting.

stats TO/K,PROFILE/S,ANALYSIS/S CIN:y, POS:y, NAT:y

This command controls the tallying facility which counts the

execution of individual Cintcode instructions. If no arguments are

given, stats turns on tallying by clearing the tally vector and causing

tallying to be enabled for the next command to be executed. Subsequent

commands are not tallied, making it possible to process the tally

vector while it is in a static state. Typical usage of the stats

command is illustrated below:

preload queens Preload the program to study

stats on Enable stats gathering on next command

queens Execute the command to study

interpreter Select the fast interpreter (cintasm)

stats automatically selects the slow one

stats to STATS Send instruction frequencies to file

or

stats profile to PROFILE Send detailed profile info to file

or

stats analysis to ANALYSIS Generate statistical analysis to file

status TASK,FULL/S,TCB/S,SEGS/S,CLI=ALL/S CIN:n, POS:y, NAT:n

This Cintpos command outputs information about all currently

existing Cintpos tasks.

syncdemo CIN:n, POS:y, NAT:n

This is a program to demonstrate various synchronisation mechanisms

implemented using coroutines and multi-event tasks.

sysdebug FROM CIN:y, POS:y, NAT:y

This is an interactive debugger that allows the user to inspect a

given Cintsys memory dump file. The default file name is DUMP.mem.

See dumpmem described above.

172 CHAPTER 4. THE COMMAND LANGUAGE

sysinfo CIN:y, POS:y, NAT:y

This outputs some information about the current BCPL system and the

host machine on which it is running. Typical output is as follows:

This version of BCPL is running on a little ender machine

The BCPL word length is 32 bits

The host address size = 64 bits

system CIN:y, POS:y, NAT:y

This command outputs a message indicating whether the current system

is Cintsys, Cintpos or Unknown. It determines which by inspecting the

rootnode field rtn system.

taskid FORMAT CIN:n, POS:y, NAT:n

This command calls writef with the given format and the current task

number as the second argument. The default format is "Taskid=%n*n".

tcpaddr HOST,PORT CIN:n, POS:y, NAT:n

This attempts to output the IP address and port number given the

names of the host and port.

tcpbench -n/K,-k/K,-s/K,-h/K,-t/S,master/s,slave/s CIN:n, POS:y, NAT:n

This is a benchmark program to test the efficiency of TCP/IP

communication. For information about what it does and how to use it,

see the comments at the start of the source code.

tcpcli PORT,NOPROMPT/S CIN:n, POS:y, NAT:n

This command creates a new CLI task communicating through the given

port. The default port number is 8000. If NOPROMPT is specified the

newly created CLI will not issue prompts.

tcpdump CIN:n, POS:y, NAT:n

This outputs the list of Cintpos TCP/IP devices that currently

exist. The list includes information about sockets, states and

associated hosts and port numbers.

tcprx HOST,PORT CIN:n, POS:y, NAT:n

This is a TCP/IP demonstration program to be used in conjuction

with tcptx. It will output data received from a specified host via a

specified port. If no host is specified wait for a connection from any

host. The default port number is 9000.

tcptest -n/K,-k/K,-s/K,-h/K,-t/S CIN:n, POS:y, NAT:n

This is a TCP/IP test program. See its source code for details.

tcptx HOST,PORT,N CIN:n, POS:y, NAT:n

This is a TCP/IP test program to be used in conjunction with tcprx.

It attempts to send the message hello world to a specified host via a

4.3. COMMANDS 173

specified port. The number of times the message is sent is given by

the N argument.

testtime CIN:y, POS:y, NAT:y

This command tests the real time clock, outputting a line such as:

days=14876 hours=11 mins=59 secs=11 msecs=982

time TO/K,MSECS/S CIN:y, POS:y, NAT:y

This command outputs the current time of day to the TO file, if

specified, otherwise it is sent to the standard output stream. The

MSECS options causes the time to have higher precision. Typical output

is as follows:

14:12:36.069

type FROM/A,TO,N/S CIN:y, POS:y, NAT:y

This command will output the file given by the FROM argument,

sending it to the screen unless the TO argument is given. The swirch

argument N causes line numbers to be added.

typehex FROM/A,TO/K CIN:y, POS:y, NAT:y

This will convert the file specified by FROM in hexadecimal and send

the result to the TO file if this argument is given. Its output should

be compared with that generated by the hexdump command.

unhold TASK/N/A CIN:n, POS:y, NAT:n

This Cintpos command resets the HOLD status bit of a specified task.

That task is then immediately available to run unless suspended of

other reasons.

unpreload ,,,,,,,,,,ALL/S CIN:y, POS:y, NAT:y

This command will remove up to 10 specified preloaded commands from

the Cintcode memory. The ALL switch will cause all preloaded commands

to be removed. Commands can be preloaded into memory using the preload

which can also be used to list all preloaded commands.

vecstats CIN:y, POS:y, NAT:y

This command output information about blocks of Cintcode memory

that are currently allocated. Typical output (from Cintpos) is the

following:

3: 12 4: 2 6: 1 15: 2 22: 1 23: 7
27: 4 28: 1 41: 1 80: 1 200: 2 291: 1

306: 2 316: 1 406: 1 462: 1 500: 1 506: 3
571: 1 597: 1 757: 1 982: 1 1000: 10 1006: 6
1025: 2 1901: 1 2422: 1 3303: 1 20000: 1

This indicates, for instance, that there are currently 7 blocks of

requested size 23 allocated.

174 CHAPTER 4. THE COMMAND LANGUAGE

wait N/N,SEC=SECS/S,MIN=MINS/S,UNTIL/K CIN:y, POS:y, NAT:y

This causes the CLI to wait for a specified number of seconds or

minutes, or until a specified time is reached.

why CIN:y, POS:y, NAT:y

This command attempts to give the reason why the previous command

failed. For fun you can type why several times.

x8-bin FROM/A,TO/K CIN:y, POS:y, NAT:y

This converts a file of 32-bit words in hex into a file of the

corresponding bytes. For instance, it will convert the file:

44434241 48474645 4C4B4A49 504F4E4D 54535251 58575655 310A5A59 35343332
39383736 00000A30

to

ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

xcmpltest CIN:y, POS:y, NAT:y

This is a test program that checks for errors in the XBCPL compiler

and extended features in the Cintcode interpreter.

xcdecode FROM/A,LIST/S,BIN/S CIN:y, POS:y, NAT:y

This command is the inverse of xcencode. With the LIST option it

will inspect the FROM file listing the names of the files it contains.

Without the LIST option it will extract and decode these files. If

BIN is set, files are written using binwrch so that carriage return

characters (’*c’) are not ignored. All characters before the first

file separator are ignored.

xcencode FILE,LIST/K,TO/K/A,BIN/S CIN:y, POS:y, NAT:y

This command is designed to encode one or more files in such a

way that they can be passed as the body of an email message without

interferring with the email mechanism. It uses a simple form of run

length encoding to reduce the size of the resulting file. Either FILE

or LIST or both must be supplied. If given FILE is the first filename

to be encoded followed by those given in LIST file, if present. If BIN

is set, files are read using binrdch so that carriage return characters

(’*c’) are not ignored. Each encoded file is preceded by a separator

of the form:

#####filename#

followed by the encoded file in which all characters with ASCII codes

in the range 33 to 126 except for ’#’, ’=’ and ’.’ are copied, spaces

4.4. CLI.B AND CLI INIT.B 175

are replaced by dots (’.’) and all other characters (including ’#’ ’=’

and ’.’) are encoded by #hh where hh is the ASCII code in hex. The

encoded files are broken into lines of about 50 characters. The last

file to be encoded is terminated by ######+#.

Such xencode’d files can be decoded by the xdecode command.

4.4 cli.b and cli init.b

The Command Language Interpreter is a simple program implemented

in BCPL whose source code can be found in the files sysb/cli.b and

sysb/cli init.b. This section mainly describes the Cintpos version.

The CLI is the first program the interacts with after starting the

system. Under Cintpos it runs as task one (named Root Cli). It

uses variables in the global vector to hold its state during command

execution. These variables have reserved global numbers typically

in the range 133 to 149. They are declared in g/clihdr.b. Since

running commands use the same global vector they can access (and

even modify) these variables -- a feature that is both dangerous and

useful. Commands such as run and c rely on this feature. The CLI

global variables are as follows.

cli init CIN:y, POS:y, NAT:y

This holds the function used to initialise the CLI, and depends on

which context the CLI is to run in. It is called when the CLI is first

entered using the following code.

{ LET f = cli_init(parm.pkt)
IF f DO f(result2) // Must get result2 after calling cli_init

}

As can be seen cli init must either return zero or a function that

can be applied to result2. The function is typically deletetask or

unloadseg with result2 being suitably set.

cli returncode, cli result2 CIN:y, POS:y, NAT:y

These hold the return code and the value of result2 of the most

recently executed command.

cli faillevel CIN:y, POS:y, NAT:y

cli data CIN:y, POS:y, NAT:y

This holds CLI data dependant on the context in which the CLI is

running.

176 CHAPTER 4. THE COMMAND LANGUAGE

cli commanddir CIN:y, POS:y, NAT:y

cli prompt CIN:y, POS:y, NAT:y

This variable holds the current prompt which should be a writef

format string since it used in the CLI as follows:

writef(cli_prompt,
cpumsecs, // msecs used by last command
taskid, // The task number, if running under Cintpos
hours, mins, secs, msecs) // The time of day

where hours, mins and secs correspond to the current time of day. On

single threaded BCPL systems taskid is set to 1.

cli currentinput, cli currentoutput, cli standardinput, cli standardoutput
CIN:y, POS:y, NAT:y

The standard input and output streams are those that were setup

when the CLI was started. Sometimes a CLI will change its currently

selected streams. For instance, while executing a command-command the

currently selected input will be from a temporary file of commands. On

reaching the end of file input will revert to the standard input.

cli commandfile CIN:y, POS:y, NAT:y

This is either zero or holds the name of temporary command file

used in command-commands.

cli status CIN:y, POS:y, NAT:y

This holds a collection of bits specifying the context in which the

CLI is running. The mnemonics for these bits and their meanings are as

follows.

clibit noprompt Do not output prompts even when not in a

command-command.
clibit eofdel Delete this task when EOF is received under

Cintpos.
clibit comcom This CLI is currently in a command-command

executing commands from a temporary file.
clibit maincli This CLI is the task 1 CLI under Cintpos or the

main CLI under other systems.
clibit newcli This CLI was created by the newcli command under

Cintpos.
clibit runcli This CLI was created by the run command under

Cintpos.
clibit mbxcli This CLI was created by the mbxcli command under

Cintpos.
clibit tcpcli This CLI was created by the tcpcli command under

Cintpos.
clibit endcli The endcli command has been executed on this CLI

under Cintpos.

4.4. CLI.B AND CLI INIT.B 177

cli background CIN:y, POS:y, NAT:y

This is an obsolete variable that mainly controlled the generation

of prompts. It is to be superceded by the noprompt bit in cli status.

cli defaultstack CIN:y, POS:y, NAT:y

This holds the size of the coroutine stack that the CLI creates

every time it runs a command. Its value can be changed by the stack

command.

cli commandname CIN:y, POS:y, NAT:y

This holds the name of the current command

cli module CIN:y, POS:y, NAT:y

This is either zero or the module of loaded code corresponding

to the currently executing command. It is used by the CLI to unload

commands after they have been run.

178 CHAPTER 4. THE COMMAND LANGUAGE

Chapter 5

Console Input and Output

When cintsys or cintpos is started a stream is opened to receive input

from standard input which is normally the keyboard and a second stream

is opened to allow output to standard output which is normally the

screen. This combination of keyboard and screen is called the console.

The treatment of console streams depends on whether cintsys or cintpos

is being used.

5.1 Cintsys console streams

The stream control block for the keyboard is obtained by calling

findinput("**"). The stream is created the first time it is called.

Subsequent calls yield exactly the same stream control block. This

stream has a buffer large enough to hold 4096 characters. Characters

are read from the keyboard using sardch which reads and echoes each

character to the screen. Exceptionally, ctrl-c (code 3) causes a

SIGINT interrupt, RUBOUT (code 127) is translated to backspace (code

8), ctrl-j, ctrl-m and the ENTER (or RETURN) key all yield code 10 (the

BCPL newline character) but they all echo carriage return and linefeed

to the screen unless running in quiet mode.

Simple line editing of keyboard input is performed as follows. As

characters are typed they are normally transferred into the buffer, but

if a backspace is received, the latest character, is any, in the buffer

is removed. Unless running i quiet mode its echoed symbol is removed

from the screen. The contents of the buffer is not made available to

the user until either a newline character is received or the buffer

becomes full.

A user can receive keyboard characters as soon as they are typed

using calls of sardch. It is also possible to read keyboard characters

by polling them using the call sys(Sys pollsardch). This yields the

next character if one is available, otherwise it returns pollingch=-3,

allowing the program to do other work before trying again.

179

180 CHAPTER 5. CONSOLE INPUT AND OUTPUT

The program BCPL/bcplprogs/test/inputtst.b can be used to demonstate

some of the features of console input.

The stream control block for the screen is obtained by calling

findoutput("**"). The stream is created the first time it is called.

Subsequent calls yield exactly the same stream control block. This

stream has a buffer large enough to hold 4096 characters. Calls of

wrch places characters in this buffer, and when a newline or newpage

character is written, or when the buffer becomes full, or a call of

deplete is made, the contents of the buffer is transmitted to the

screen by calls of sawrch.

5.2 Cintpos console streams

Under Cintpos interaction with the console is somewhat more complicated

since Cintpos can have several tasks all wishing to communicate with

the keyboard and screen. This interaction is controlled by a task

called the Console Handler (typically task 3). Tasks wishing to read

from the keyboard or write to the screen must send request packets to

this task where they will be properly scheduled.

The call findinput("**") yields a new stream control block connected

to the keyboard. Initially it has no buffer. When the client task

tries to read from this stream, a read request packet is sent to the

console handler which will in due course return with a buffer of one or

more characters or an indication that the keyboard stream is exhausted.

Keyboard read requests can be sent simultaneously from several tasks

and, indeed, a single task can send multiple requests. These are

queued in the console handler and processed on a first come first

served basis.

The console handler obtains characters from the keyboard by sending

ttyin request packets to the keyboard device (typically device -2).

This device returns keyboard characters to the console handler as they

are typed without echoing them to the screen. It does no translation

except that the characters ctrl-j, ctrl-m and the ENTER key all yield

code 10 (the BCPL newline character). Keyboard characters received by

the console handler are normally packed into an input buffer to form

input lines. Simple line editing is performed using the backspace

key (code 8 or 127) which causes the most recent character in the line

buffer to be removed. When a newline is received or the buffer is full

or the escape sequence @e is typed, the line buffer is ready to send

to the currently selected task. Initially this is task 1 (the main

CLI task) but can be changed by the user using the escape mechanism

described below. While a user is typing an input line, it will appear

on the screen and other screen output requests will be held until the

input line is complete. At any time if there is a completed input line

for a task that has sent a read request packet, it will be returned

5.2. CINTPOS CONSOLE STREAMS 181

to the client with the line buffer and number of characters in its two

result fields. Lines that have not yet been requested are queued as

are read requests that are not yet satisfied. Note that a simple way

to temporally stop output to the screen is to type a character such as

SPACE, and then delete it later using backspace.

Cintpos console input has the following escape mechanism. All

escape sequence start with an at sign (@) and their effects are shown

in the following table.

Sequence Purpose

@A Set flag 1 in the currently selected task

@B Set flag 2 in the currently selected task

@C Set flag 3 in the currently selected task

@D Set flag 4 in the currently selected task

@E Send the current incomplete line to the currently

selected task

@F Throw away the current incomplete line and all

outstanding completed lines

@H Hold the currently selected task

@L Throw away the current incomplete line

@Sdd Set the currently selected task to task dd and

allow output from any task

@Tdd Set the currently selected task to task dd and

only allow output from task dd

@U Unhold the currently selected task

@Xhh Input the character with hex code hh

@Y Toggle message tagging. When tagging is enabled

every line of output identifies the originating

task

@Z Toggle echo mode. When echoing is off subsequent

characters are not echoed to the screen. This is

useful for typing passwords.

@ddd Input the character with octal code ddd

@@ Input @

5.2.1 Devices

The input and output device intentifiers may be inspected and changed

by the following call:

old_in_devid := sendpkt(notinuse, console_task, Action_devices,
?, ?,
new_in_devid,
new_out_devid)

old_out_devid := result2

The device identifiers are only changed if the new identifiers are

non zero. This call is used, for instance, by the record command

182 CHAPTER 5. CONSOLE INPUT AND OUTPUT

to change replace the screen output device with a task that forwards

each character to the screen while recording timing information. For

details, see the programs com/record.b and com/recordtask.b

5.2.2 Exclusive Input

The console handler can be set to exclusive input mode by the call:

sendpkt(notinuse, console_task, Action_exclusiveinput,
?, ?,
TRUE)

While in exclusiveinput mode normal input line editing by the console

handler is suspended and client tasks have direct access to the

keyboard input device on a first come first served basis by the call:

ch := sendpkt(notinuse, console_task, Action_exclusiverdch,
?, ?)

Sending an exclusiveinput request with argument FALSE returns the

console handler to its normal line editing mode and causes all

outstanding exclusiverdch requests to return end-of-file characters

(-1) to their client tasks.

5.2.3 Direct access to the screen and keyboard

Although it is not recommended, client task can send read

(Action ttyin) and write (Action ttyout) requests to keyboard and screen

devices. These will be serviced in a first come first served basis

and since the console handler is making such requests you can expect

strange results.

Finally the functions sardch and sawrch provide direct access to

the keyboard and screen but are mainly only used for system debugging

particularly when the console handler is not running. Note that sawrch

is the character output function used by sawritef whose output may be

merged with output from the console handler.

The following test programs can be used to demonstate some of the

console handlers features.

Cintpos/posprogs/test/inputtst.b
Cintpos/posprogs/test/sardchtst.b
Cintpos/posprogs/test/devrdchtst.b
Cintpos/posprogs/test/xintst.b

Chapter 6

Cintpos Devices

Cintpos allows asynchronous communication with peripheral devices

using the qpkt and taskwait functions. If the pkt id field of packet

given to qpkt is negative, the packet is sent to the identified

device. It is returned when the device has completed the requested

operation. Most devices have device control blocks (DCBs) that

contain device related data. There is a device table pointed to by

rootnode!rtn_devtab whose upper bound is held in its zeroth element.

The nth element of the device table is zero if the device does not

exist, otherwise it points to the DCB of device -n. Most devices

are implemented using threads of the host operating system, but

some devices such as the clock and screen are special and use a

polling mechanism implemented entirely within the interpreter thread.

The extra overhead for this is small since the interpreter only

performs the polling operation about once every 10000 or so Cintcode

instructions. This figure is typically adjusted to cause polling to

take place about once per millisecond. When Cintpos has no work to do

it should enter the Idle task and stop executing Cintcode instructions

so that other programs can run. For the polling mechanism to work,

such suspensions must be short. This is normally implemented using

the waitirq sys function with a short timeout. Each time waitirq

returns, a counter in the intepreter is set to zero to cause the

polling mechanism to be activated.

The resident Cintpos devices are described below.

6.0.1 The Clock Device

This device has identifier -1 and is treated specially by both qpkt

and the interpreter. The pkt arg1 field of its packet holds the number

of milliseconds that the packet should remain with the clock before

being returned. The time stamp of when it should be returned is

calculated by qpkt and placed in the pkt res1 and pkt res2 fields of

the packet. It is then inserted into the time ordered clock queue

183

184 CHAPTER 6. CINTPOS DEVICES

held in rootnode!rtn_clwkq. Every time the interpreter performs the

polling operation it tests the packets at the start of the clock queue

returning though that have expired to their task.

6.0.2 The Keyboard Device

This device has identifier -2 and is currently not treated specially,

and so it has a DCB, and a device thread that is continually trying

to read character from standard input which is normally the keyboard.

Packets for this device are placed on the end of the work queue held

in the dcb wkq field of the DCB. When a character becomes available it

is placed in the pkt res1 field of the first packet in the queue before

returning the packet to its task.

It is planned to modify keyboard packets to allow them to handle

timeouts. This will be done by setting the pkt arg1 field to a timeout

value. If it is is negative no timeout is used and the packet will

remain with the device until a character is received, otherwise it

specifies a timeout in milliseconds. If no character is received

within that time, pollingch (=-2) is returned in the res1 field, but

if a character becomes available within that time it it returned in the

normal way.

6.0.3 The Screen Device

This device has identifier -3 and is treated specially. The pkt arg1

field of the packet holds the next character to send to the screen and

when this transfer is complete the packet is returned to the client

task. Normally output to the screen causes no real time delay.

6.0.4 TCP/IP Devices

TCP/IP devices provide a mechanism to communicate with other machines

over the internet. The pkt type field specified the TCP/IP operation

required and the argument field provide additional information about

the request. The possible packet type are as follows.

Tcp name2ipaddr arg1: name

This looks up the URL name and returns its IP address. Names such

as 127.0.0.1 are allowed.

Tcp name2port arg1: name

This looks up the the given port name and returns its its number.

Tcp socket
This attempts to create a port for a two way byte stream using the

185

IPv4 protocol. If the result is -1 there was an error, otherwise it

returns the number of the new socket.

Tcp reuseaddr arg1: sock arg2: flag

If flag=1 this modifies the socket sock to allow reuse of local

addresses, otherwise these are disallowed. A result of zero indicates

success.

Tcp sndbufsz arg1: sock arg2: size

This sets the send buffer size of the given socket to size bytes. A

zero result indicates success.

Tcp rcvbufsz arg1: sock arg2: sz

This sets the receive buffer size of the given socket to size bytes.

A zero result indicates success.

Tcp bind arg1: sock arg2: ipaddr arg3: port

This assigns local host and port numbers to the specified socket. A

zero result indicates success.

Tcp connect arg1: sock arg2: ipaddr arg3: port arg4: timeout

This attempts to establish a connection to a remote host via the

given socket within the given timeout. If timeout is greater than zero

it specifies a timeout time in milli-seconds, if it is zero there is

no timeout and if it is -1 polling will be used but this is not yet

implemented. The result is zero if a connection was established,

otherwise it is negative and the second result indicates why the

connection was not established. A value greater than zero indicates

an error, the value -1 the connection was closed by the remote host,

-2 indicates that the connection was not established within the timeout

period, and -3 indicates that when polling the connection has not yet

been established.

Tcp listen arg1: sock arg2: n

This causes the specified socket to be willing to accept incoming

calls from remote hosts. The queue limit for incoming connections is

specified by n. A zero result indicates success.

Tcp accept arg1: sock arg2: tcp, arg4: timeout

BEWARE: the implementation does not yet quite match the following

specification. This attempts to accept a connection from a remote

host via a listening socket within a specified timeout period. If

timeout is greater than zero it is the timeout period in milli-seconds,

if it is zero there is no timeout and if it is negative the packet

is returned immediately having accepted a connection if possible. A

positive result indicates success and is the number of a new socket

to to be used by the connection. A negative result indicates failure

186 CHAPTER 6. CINTPOS DEVICES

with a reason in the second result. A second result of -1 indicates

the connection was closed by the remote host, -2 means a connection was

not accepted within the timeout period, and -3 indicates that there is

currently no connection to accept when polling.

Tcp recv arg1: sock arg2: buf arg3: len arg4: timeout

This attempts to read up to len bytes into the given buffer from

the specified socket within a specified timeout period. If timeout is

greater than zero it is the timeout period in milli-seconds, if it is

zero there is no timeout and if it is negative the packet is returned

immediately with as many characters as are currently available. A

negative result indicates failure with a reason given in the second

result, otherwise it is the number of bytes actually read.

Tcp send arg1: sock arg2: buf arg3: len arg4: timeout

This attempts to send len bytes from the given buffer via the

specified socket within a specified timeout period. If timeout is

greater than zero it is the timeout period in milli-seconds, if it is

zero there is no timeout and if it is negative the packet is returned

immediately having written as many bytes as are currently possible. A

negative result indicates failure with a reason given in the second

result, otherwise it is the number of bytes actually sent.

Tcp close arg1:sock

This closes the specified socket. A zero result indicates success.

Chapter 7

The Debugger

Both Cintsys and Cintpos have interactive debuggers but these are

slightly different and so will be described separately.

7.1 The Cintsys Debugger

When the Cintsys starts up, control first passes to BOOT which

initialises the system and creates a running environment for the

command language interpreter (CLI). This is run by a recursive

invocation of the interpreter and so when faults occur control returns

to BOOT which then enters an interactive debugger. This allows the

user to inspect the state of the registers and memory, and perform

other debugging operations on the faulted program. The debugger can

also be entered using the abort command, as follows:

560> abort

!! ABORT 99: User requested
*

The asterisk (*) is the debugger’s prompt character. A brief

description of the available debug commands can be display using the

query (?) command.

187

188 CHAPTER 7. THE DEBUGGER

* ?
? Print list of debug commands
Gn Pn Rn Vn Variables
G P R V Pointers
n #b101 #o377 #x7FF ’c Constants
*e /e %e +e -e |e &e ^e Dyadic operators
!e Subscription
< > Shift left/right one place
$b $c $d $e $f $o $s $u $x Set the print style
SGn SPn SRn SVn Store in variable
= Print current value
TRn Trace the next n instructions
Tn Print n consecutive locations
I Print current instruction
N Print next instruction
Q Quit
B 0Bn eBn List, Unset or Set breakpoints
C Continue execution
X Equivalent to G4B9C
Z Equivalent to P1B9C
\ Execute one instruction
, Move down one stack frame
. ; [] Move to current/parent/first/next coroutine
*

The debugger has a current value that can be loaded, modified and

displayed. For example:

* 12 Set the current value to 12
* -2 Subtract 2
* *3 Multiply by 3
* = 30 Display the current value
* < Shift left one place
* = 60 Display the current value
* 12 -2 *3 < = 60 Do it all on one line
*

Four areas of memory, namely: the global vector, the current stack

frame, the Cintcode register, and 10 scratch variables are easily

accessed using the letters G, P, R, V, respectively.

* 10sv1 11sv2 Put 10 and 11 in variables 1 and 2
* vt5 Display the first 5 variables

V 0: 0 10 11 0 0
*
* v1*50+v2= 511 A calculation using variables
* g0= 1000 Display global zero (globsize)
* g= 3615 Display the address of global zero
* ! = 1000 Indirect and display
* gt10 Display the first 10 globals

G 0: 1000 start stop sys clihook
G 5: GLOB 5 changec 6081 6081 52
*

7.1. THE CINTSYS DEBUGGER 189

Notice that values that appear to be entry points display the

first 7 characters of the function’s name. Other display styles

can be specified by the commands $C, $D, $F, $B, $O, $S, $U or $X.

These respectively display values as characters, decimal number, in

function style (the default), binary, octal, string, unsigned decimal

and hexadecimal.

It is possible to display Cintcode instructions using the commands I

and N. For example:

* g4= clihook Get the entry to clihook
* n 3340: K4G 1 Call global 1, incremeting P by 4
* n 3342: RTN Return from the function
*

A breakpoint can be set at the first instruction of clihook and

debugged program re-entered by the following:

* g4= clihook Get the entry to clihook
* b9 Set break point 9
* c Resume execution
20>

The X command could have been used since it is a shorhand for G4B9C.

The function clihook is defined in BLIB and is called whenever a

command is invoked. For example:

10> echo ABC Invoke the echo command

!! BPT 9: clihook Break point hit
A= 0 B= 0 3340: K4G 1

*

Notice that the values of the Cintcode registers A and B are displayed,

followed by the program counter PC and the Cintcode instruction at that

point. Single step execution is possible, for example:

* \A= 0 B= 0 24228: LLP 4
* \A= 6097 B= 0 24230: SP3
* \A= 6097 B= 0 24231: SP 89
* \A= 6097 B= 0 24233: L 80
* \A= 80 B= 6097 24235: SP 90
* \A= 80 B= 6097 24237: LLL 24272
* \A= 6068 B= 80 24239: LG 78
* \A= rdargs B= 6068 24241: K 85
* \A= 6068 B= 6068 5480: LP4
*

At this point the first instruction of rdargs is about to be executed.

Its return address is in P1, so a breakpoint can be set to catch the

return, as follows:

190 CHAPTER 7. THE DEBUGGER

* p1b8
* c

!! BPT 8: 24243
A= createc B= 1 24243: JNE0 24254

*

A breakpoint can be set at the start of sys, as follows:

* g3b1 Set breakpoint 1
* b Display the currently set of breakpoints
1: sys
8: 24243
9: clihook
* 0b8 0b9 Unset breakpoints 8 and 9
* b Display the remaining breakpoint
1: sys
*

The next three calls of sys will be to write the characters ABC. The

following example steps through these and displays the state of the

runtime stack just before the third call, before leaving the debugger.

* c

!! BPT 1: sys
A= 11 B= 65 21188: SYS

* c
A
!! BPT 1: sys

A= 11 B= 66 21188: SYS
* c
B
!! BPT 1: sys

A= 11 B= 67 21188: SYS
* . 42844: Active coroutine clihook Size 20000 Hwm 127

43284: sys 11 67 312 43228
* , 43268: cnslwrf 37772
* , 43248: wrch 67 32
* , 43228: writes 42915 67
* , 42888: start 42904 42912 0 4407873
* , 42872: clihook 0
* , Base of stack
* 0b1c Clear breakpoint 1 and resume
C
210>

The following debugging commands allow the coroutine structure to be

explored.

Command Effect

. Select current coroutine

, Display next stack frame

; Select parent coroutine

[Select first coroutine

] Select next coroutine

7.2. THE CINTPOS DEBUGGER 191

Finally, the command Q causes a return from the Cintcode system.

7.2 The Cintpos Debugger

Under Cintpos, the interactive debugger can be entered by connecting

the console to task 2 (using @s02). This allows debugging to take

place while other tasks are running. Alternatively, the debugger is

automatically entered in standalone mode when a fault is encountered or

by an explicit call of abort. Most of its facilities are the same as

for the Cintsys version, however a few more operations are available to

access Cintpos features. The ? command prints the following.

? Print list of debug commands
Gn Pn Rn Vn Wn An Variables
G P R V W A Pointers
123 #o377 #FF03 ’c Constants
*e /e %e +e -e |e &e ^e Dyadic operators
!e Subscription
< > Shift left/right one place
$b $c $d $f $o $s $u $x Set the print style
SGn SPn SRn SVn SWn SAn Store current value
Sn Select task n
S. Select current task
H Hold/Release selected task
K Disable/Enable clock interrupts
= Print current value
TRn Trace the next n instructions
Tn Print n consecutive locations
I Print current instruction
N Print next instruction
D Dump Cintcode memory to DUMP.mem
Q Quit -- leave the cintpos system
M Set/Reset memory watch address
B 0Bn eBn List, Unset or Set breakpoints
X (G4B9C) Set breakpoint 9 at start of clihook
Z (P1B9C) Set breakpoint 9 at return of current function
C Continue normal execution
\ Single step execute one Cintcode instruction
. ; [] Move to current/parent/first/next coroutine
, Move down one stack frame
a1#

The main additions as Sn to select a task, S. to select the current

task and H to hold or unhold the currently selected task. Since

interrupts (particularly from the clock device) interfere with single

stepping of Cintcode instructions, the K command is provided to turn

clock interrupts on and off. The address of the task control block of

the currently selected task is given by W. Thus the first locations of

the control block can be printed by the command Wt10.

The debugger prompt contains a letter indicating whether the next

instruction is to be executed in user mode (a), in kernel mode (k) or

192 CHAPTER 7. THE DEBUGGER

within the interrupt service routine (i). It also contains a number

indicating which user task was running.

7.3 Debugging Techniques

This section explores techniques that can be used to find and eliminate

errors in programs. To ensure this process is realistic a program

called com/rast2wav.b of about 1000 lines has been chosen as a case

study. This program contains various pairs of lines one correct

and the other containing a a bug. Normally the line with the bug is

commented out. By changing which line is commented, it is possible to

see the effect of a bug and demonstrate how it can be found.

The program is intended to create a .wav sound file based on raster

data created by the rastering version of the BCPL system called rastsys

with the aid of the command raster. Raster data in the file RASTER can

be created by the following sequence of commands.

rastsys

c b testrast -- Compile testraster.b.

raster -- Cause the next command to

-- generate raster data.

testraster -- Actually generate the data.

This creates the raster data file RASTER representing the accesses of

memory locations during the execution of the program testraster.b whose

source is:

GET "libhdr"

LET start() = VALOF

{ FOR p = 1 TO 250000 DO IF !p LOOP

RESULTIS 0

}

As can be seen this is a simple test program that that reads

every Cintcode memory word from 0 to 250000. Under 32-bit BCPL these

correspond to byte addresses in the range 0 to 1000000. The resulting

file RASTER starts as follows:

F1750051 M1000000 K1000 S8

W0B71W3073B1W858B1W23B3W562B1W2B1W396B1W43B4W1B1

W213B1W5B1W2135B2W67B3W7B6W1B1N

W70B72W7325B2W14B1N

W142B71W7254B2W14B1N

7.3. DEBUGGING TECHNIQUES 193

W213B72W7182B2W14B1N

W284B72W7111B2W14B1N

W356B72W7039B2W14B1N

The first line specifies the rastering parameters. F1750051 states

that the program executed 1750051 Cintcode instructions. M1000000

specifies that the highest byte address referenced was 1000000. K1000

indicates that 1000 Cintcode instructions were executed per raster line

and S8 says that one unit in the raster lines correspond to 8 address

bytes. What then follows are raster lines with each indentifying which

addresses have been referenced by the previous 1000 instructions. They

use run length encoding with Wn indicating that none the next n units

of address space have been referenced and Bn states that all the next

n have been referenced. Each raster line is terminated by an N. This

file and others, some hand written, are used as test data for rast2wav.

The output generated by the program is a .wav file and so it is

necessary to fully understand the format of such a file. The structure

is quite simple with a small header block that describes such things as

whether mono or stereo is being used and what the sample rate is. This

block is followed by 16-bit samples. Luckily it is easy to check that

the .wav file structure is correct using the freely available audacity

program. This allows the user inspect, edit and play .wav files.

Probably the most important advice on debugging is to spend

sufficient time proof reading the source code with great care. This

is likely to save time in the long run. It is, of course, essential

to thoroughly understand the meaning of every construct in the code.

Misunderstanding the meaning of a statement can lead to bugs that

are hard to find. Luckily BCPL is simple and is easy to learn.

Additionally, there are compile options that help the user to check the

meaning of any construct. The precedence of expression operators such

as +, -, * and / are fairly intuitive, and can be checked by console

sessions such as the following.

0.000>

0.000> type t24.b

LET f(x,y,z) = x * y / z

0.012> c b t24 tree

bcpl t24.b to t24 tree

BCPL (3 Sep 2019) 32 bit with the FLT feature

bcpl compiling to file: t24

Parse Tree

LET t24.b[1]

*-FNDEF t24.b[1]

! *-NAME: f

! *-COMMA

194 CHAPTER 7. THE DEBUGGER

! ! *-NAME: x

! ! *-COMMA

! ! *-NAME: y

! ! *-NAME: z

! *-DIV

! *-MUL

! ! *-NAME: x

! ! *-NAME: y

! *-NAME: z

*-Nil

Code size = 36 bytes of 32-bit little ender Cintcode

0.044>

This shows that x*y is computed before dividing by z. Using integer

arithmetic the result would often be different if the division

was done first. This difference is significant in the meaning of

q := memvupb * (n+1) / (C7-C2+1) taken from rast2wav.b. The D1 option

is also sometimes helpful, as in:

00.000> c b t24 d1

bcpl t24.b to t24 d1

BCPL (3 Sep 2019) 32 bit with the FLT feature

bcpl compiling to file: t24

0: DATAW #x00000000

4: DATAW #x0000DFDF

8: DATAW #x2020660B

12: DATAW #x20202020

16: DATAW #x20202020

// Entry to: f

20: L1:

20: LP4

21: MUL

22: LP5

23: DIV

24: RTN

25: L2:

28: DATAW #x00000000

32: DATAW #x00000000

Code size = 36 bytes of 32-bit little ender Cintcode

0.045>

Note that the three arguments of f are held in positions 3, 4 and 5

relative to the P pointer.

The precedence of non arithmetic operators are not so intuitive

and, indeed, tend to be different in different languages. A typical

7.3. DEBUGGING TECHNIQUES 195

BCPL error is the belief that IF a&7 = b&7 DO means IF (a&7)=(b&7) DO.

BCPL uses operators such as & and | for both Boolean and bit pattern

operations and gives them the precedence normally given to Boolean

operators.

The transformations performed by the FLT feature and not always

understood but can be checked using the TREE2 compiler option that

outputs the parse tree after these transformations have been done

by the translation phase. As an example study the following console

session.

0.000> type t25.b

LET f(x, FLT y, z) BE

x, y, z +:= 1, FLOAT x + y * 2, FIX y / z

0.012> c b t25 tree2

bcpl t25.b to t25 tree2

BCPL (3 Sep 2019) 32 bit with the FLT feature

bcpl compiling to file: t25

Parse Tree after calling translate

LET t25.b[1]

*-RTDEF t25.b[1]

! *-NAME: f

! *-COMMA

! ! *-NAME: x

! ! *-COMMA

! ! *-FLT

! ! ! *-NAME: y

! ! *-NAME: z

! *-SEQ

! *-ASSADD t25.b[2]

! ! *-NAME: x

! ! *-NUMBER: 1

! *-SEQ

! *-ASSFADD t25.b[2]

! ! *-NAME: y

! ! *-FADD

! ! *-FLOAT

! ! ! *-NAME: x

! ! *-FMUL

! ! *-NAME: y

! ! *-FNUM: 2.000000

! *-ASSADD t25.b[2]

! *-NAME: z

! *-DIV

! *-FIX

196 CHAPTER 7. THE DEBUGGER

! ! *-NAME: y

! *-NAME: z

*-Nil

Code size = 68 bytes of 32-bit little ender Cintcode

0.047>

This shows that the so called simultaneneous assignment is, in fact, a

sequence of three assignments with the second one promoted to floating

point. It shows that FLOAT and FIX are monadic operators more binding

that multiplication and division. It also shows that FLOAT x+y*2 is

transformed to FLOAT x#+y#*2.0.

Another useful debugging aid is BCPL’s cross referencing facility.

A cross reference file xrast2wav can be created by the command

make xrast2wav. This uses the following commands in Makefile.

xrast2wav: allcompiled com/rast2wav.b

cintsys -c c bc rast2wav xref >rawxref

cintsys -c sortxref rawxref to xrast2wav

rm rawxref

A few lines from xrast2wav are as follows:

fcount G:226 DEF com/rast2wav.b[97] fcount=

fcount G:226 LG com/rast2wav.b[643]

line_fsecs#:=ftotalsecs#*FLOAT fcount#/fmaxfcount

fcount G:226 LG com/rast2wav.b[705] fcount:=fcount+kval

fcount G:226 LG com/rast2wav.b[706] line_fsecs#:=pos2secs(fcount)

fcount G:226 SG com/rast2wav.b[360] fcount:=0

fcount G:226 SG com/rast2wav.b[440] fcount:=maxfcount

fcount G:226 SG com/rast2wav.b[705] fcount:=fcount+kval

filter G:209 DEF com/rast2wav.b[71] filter=

filter G:209 LG com/rast2wav.b[725] filter(notev,C7)

filter G:209 RT com/rast2wav.b[923] LET filter(v,upb)BE..

This shows that fcount was declared as global variable 226 on line

97 of rast2wav.b. This variable is used to hold the number of Cintcode

instructions obeyed to reach the current raster line. On line 643

it is used to compute the time in seconds as a floating point number

corressponding to the time of the current raster line. The actual

statement in rast2wav.b is:

line_fsecs := ftotalsecs * FLOAT fcount / fmaxfcount

The last three lines show that the function filter was declared to

be global 209 and was defined on line 923 and used just once on line

7.3. DEBUGGING TECHNIQUES 197

725. We can see that the arguments in the call matches the parameters

in its definition. Careful reading of the cross reference listing can

sometime find errors in the program. This is worth doing occasionally

as the program is being developed.

Another vital tool to assist debugging is the interactive debugger.

This is entered automatically when a fault is detected but can also

be entered explicitly by the user. At an early stage of debugging the

following sequence of commands are useful.

0.000> abort

!! ABORT 99: User requested

* x

Breakpoint 9 at start of clihook

0.011> rast2wav

!! BPT 9: clihook

A= 0 B= 0 25100: K4G 1

*

This sets breakpoint 9 to be in clihook which is in the resident

system. It causes a breakpoint just as the rast2wav command is about

to be entered after it has been loaded into memory and initialised.

The instruction K4G 1 is about to call the function start in

rast2wav.b. At this point we can inspect the global vector, as in:

* g+200t15

G 200: smoot’mples wrsample mark0 mark1 rdn

G 205: read_’arams read_’lines testmem notecofn filter

G 210: addnote note2str #G0212# #G0213# #G0214#

*

This shows that the 13 global functions in rast2wav.b have been

correctly initionalised. These are useful since they allow the user

to set breakpoints at the the the first instruction of any of these

functions, as in:

* g209= filter

* b1

* b

1: filter

9: clihook

* c

Converting file RASTER to RASTER.wav

198 CHAPTER 7. THE DEBUGGER

sample_rate = 44100

mono 16-bit samples

Total time with the extra second: 11 seconds

maxaddress = 460876

maxfcount = 58862328

kval=1000 sval=8

c2=0 C3=0 C4=24 C5=36 C6=48 C7=60

Data bytes = 970184

Total number of samples: 440992

debugnote=-1

!! BPT 1: filter

A= 145563 B= 60 63920: LM1

*

Another good way to enter the debugger is to insert calls of

abort in the code usually preceded by a call of writef or sawritef

to output the values of some relevant variables. In the early stages

of debugging it is useful to call abort after the command arguments

have been decoded. For example:

0.000> c bc rast2wav

bcpl com/rast2wav.b to cin/rast2wav

BCPL (3 Sep 2019) 32 bit with the FLT feature

bcpl compiling to file: cin/rast2wav

Code size = 5516 bytes of 32-bit little ender Cintcode

0.151> rast2wav

Converting file RASTER to RASTER.wav

sample_rate = 44100

mono 16-bit samples

Total time with the extra second: 11 seconds

maxaddress = 460876

maxfcount = 58862328

kval=1000 sval=8

!! ABORT 8889: Unknown fault

*

This method means we do not need to set the breakpoint in clihook.

Giving the call of abort an essentially random argument makes it easier

to find the call in the source code later.

More to follows.

7.4. FINDING A BUG DURING THE DEVELOPMENT OF PLAYMUS.B 199

7.4 Finding a bug during the development of

playmus.b

This is a case study of how I tracked down a bug in the program

com/playmus.b in the early stages of developing that program. playmus

is a program ultimately intended to accompany a soloist playing a

musical composition, using realtime data from a microphone to allow

it to synchronise with the soloist. This program is currently over

9000 lines long.

This program starts by reading a specification of the complete score

in the MUS language which gives all the notes to be played by the

accompanist and the soloist including fine detail of how they should

be played. These annotations include the information about how the

tempo, volume, legatoness and many other aspects of the performance

should change as it is played. Details of the MUS language can be

found in musman.pdf and the Musprogs distribution both available from

my homepage.

A bug was detected when applying playmus to the following MUS file.

$get!mushdr;

\score "Opus 1" [

\conductor (s1 ||)

\part (4c4 d e f ||)

]

}

200 CHAPTER 7. THE DEBUGGER

Chapter 8

The Design of OCODE

BCPL was designed to be a portable language with a compiler that

is easily transferred from machine to machine. To help to achieve

this, the compiler is structured as shown in figure 8.1 so that the

codegenerator (CG), which is inherently machine dependent, is separated

from the frontend of the compiler. The front end performs syntax

analysis producing a parse tree (Tree) which is then translated by

the translation phase (TRN) to produce an intermediate form (OCODE)

suitable for code generation.

Figure 8.1: The structure of the compiler

8.1 Representation of OCODE

Since OCODE is output by TRN to be read in by CG, there is little

need for it to be readable by humans and so is encoded as a sequence

of integers which, in the current Cintcode implementation the OCODE

is buffered in memory, however if the compiler is not given the TO

argument it does not invoke the codegenerator but, instead, outputs

the OCODE data to the file ocode in text form as a sequence of signed

decimal numbers. This numerical representation of OCODE can be

transformed to a more readable mnemonic form using the procode command,

described on page 164. As an example, if the file test.b is the

201

202 CHAPTER 8. THE DESIGN OF OCODE

following:

GET "libhdr"

LET start() BE { LET a, b, c = 1, 0, -1
writef("Answer is %n*n", a+b+c)

}

then the command: bcpl test.b would write the following text to the

file ocode.:

85 2 94 1 5 115 116 97 114 116 95 3 42 1 42 0 42 -1 92 91 9 43
13 65 110 115 119 101 114 32 105 115 32 37 110 10 40 4 40 3 14
40 5 14 41 74 51 6 97 91 3 103 91 3 90 2 92 76 1 1 1

These numbers encode the OCODE statements in a natural way as can be

verified by comparing them with the following more readable form of the

same statements, generated by the procode command:

JUMP L2
ENTRY L1 5 ’s’ ’t’ ’a’ ’r’ ’t’
SAVE 3 LN 1 LN 0 LN -1 STORE STACK 9
LSTR 13 ’A’ ’n’ ’s’ ’w’ ’e’ ’r’ ’ ’ ’i’ ’s’ ’ ’ ’%’ ’n’ 10
LP 4 LP 3 ADD LP 5 ADD LG 74 RTAP 6 RTRN STACK 3
ENDPROC STACK 3 LAB L2 STORE GLOBAL 1 1 L1

8.2 The OCODE Abstract Machine

OCODE was specifically designed for BCPL and is a compromise between

the desire for simplicity and the conflicting demands of efficiency and

machine independence. OCODE is an assembly language for an abstract

stack based machine that has a global vector and an area of memory for

program and static data as shown in figure 8.2.

The OCODE machine has four registers G, P, PC and A. G points to

the global vector and P points to the stack frame of the currently

executing function. PC points to the next instruction to execute and

A is a register used hold the results of function calls and in the

compilation of VALOF expressions. The symbol S holds the current size

of the stack frame. It is not a register since its value is known

at every point in the program by both the frontend of the compiler

and the codegenerator. They both know the effect on S of every OCODE

statement. Program labels are of the form Ln where n is an integer.

These point to positions in the program such as the entry points of

function, the desinations of jumps and the location of static data. As

with S labels do not need registers since their values are known.

Static variables, tables and string constants are allocated space

embedded in the compiled code. All global, local and static variables

are of the same size which is commonly 32 or 64 bits. Some old

8.3. LOADING AND STORING VALUES 203

Figure 8.2: The BCPL abstract machine

versions of BCPL have other word length, such as 16 bits for the Intel

6502 or Zilog Z80.

OCODE is normally encoded as a sequence of integers since

it is generated by the frontend of the compiler and read by the

codegenerator. A more readable form can be created using the procode

command described on page 164. An OCODE statement consists of a

function code or directive followed by operands that are either

optionally signed integers, quoted characters or labels such as L13

or␣L97). The following are examples of mnemonic OCODE statements:

LSTR 5 ’H’ ’e’ ’l’ ’l’ ’o’
LP 3
GETBYTE
SL L36

There are OCODE statements for loading and storing values, for

applying expression operators, for the implementation of functions

and routines, and for controlling the flow of execution. There are

also directives for the allocation of static storage.

8.3 Loading and Storing values

BCPL variables may be local, global or static, and may be accessed

in various ways depending on its context. The Ocode 9 statements for

accessing variables as shown in the following table.

204 CHAPTER 8. THE DESIGN OF OCODE

Statement Meaning

LP n P!S := P!n; S := S+1

LG n P!S := G!n; S := S+1

LL Ln P!S := Ln; S := S+1

LLP n P!S := @P!n; S := S+1

LLG n P!S := @G!n; S := S+1

LLL Ln P!S := @Ln; S := S+1

SP n S := S-1; P!n := P!S

SG n S := S-1; G!n := P!S

SL Ln S := S-1; Ln := P!S

RSTACK n P!n := A; S := n+1

The RSTACK statement is used in conjunction with the RES statement

in the compilation of VALOF expressions. See page 209 for details.

The following tables shows the statements for loading constants.

Statement Meaning

LF Ln P!S := Ln; S := S+1

LN n P!S := n; S := S+1

TRUE P!S := TRUE; S := S+1

FALSE P!S := FALSE; S := S+1

QUERY P!S := ?; S := S+1

LSTR n C1 . . . Cn P!S := "C1 . . . Cn"; S := S+1

LF Ln loads the entry address of a non global function onto the

stack. LN n loads the signed integer constant n onto the stack.

If LN is loading a floating point value n will be a 32 or 64 bit

integer has a bit pattern corresponding to a single or double length

floating point number. The statements TRUE and FALSE are present

to improve portability between machines that may use ones complement

representation for integers. On such machines TRUE is not equivalent

to LN -1. QUERY loads an undefined value onto the stack, and the LSTR

statement allocates a string in static memory and loads a pointer to it

onto the stack.

Indirect assignments and assignments to elements of word and byte

arrays normally use the statements STIND and PUTBYTE whose meanings are

given in table 5.3.

Statement Meaning

STIND !(P!(S-1)) := P!(S-2); S := S-2

PUTBYTE (P!(S-2))%(P!(S-1)) := P!(S-3); S := S-3

Assuming ptr is in global 200, the following assignments:

!ptr := 12; ptr!3 := 99; ptr%3 := 65

8.4. FIELD SELECTION OPERATORS 205

translate into the following OCODE:

LN 12 LG 200 STIND
LN 99 LG 200 LN 3 ADD STIND
LN 65 LG 200 LN 3 PUTBYTE

8.4 Field Selection Operators

Accessing and updating fields as required by the OF operator are

implemented using the OCODE operators SELLD and SELST.

SELLD takes two argments len and sh. It effect is equivalent to

P!(S-1) := !(P!(S-1)) >> sh & mask

where mask is a bit pattern containing len right justified ones. If em

len is zero no masking is done.

SELST takes three argments op, len and sh. If op is zero, its effect

is equivalent to

SLCT len:sh:0 OF (P!(S-1)) := P!(S-2); S := S-2

but if op is non zero it represents and assignment operator (assop) and

the statement is equivalent to:

SLCT len:sh:0 OF (P!(S-1)) assop:= P!(S-2); S := S-2

The mapping between op and assop is given by the following table.

op assop op assop op assop

0 none 1 ! 2 #*

3 #/ 4 #MOD 5 #+

6 #- 7 * 8 /

9 MOD 10 + 11 -

12 << 13 >> 14 &

15 | 16 EQV 17 XOR

The floating-point assignment operators are only allowed when the

specified field is a full word, typically with len and sh both zero.

The SELST operator with len and sh both zero is used in the compilation

assop:= assignments where the left hand side is a simple variable or

a subscripted expression. For instance, the assigment v!3+:=1 might

generate the following OCODE.

LN 1
LN 3 LG 200 ADD
SELST ADD 0 0

206 CHAPTER 8. THE DESIGN OF OCODE

8.5 Expression Operators

The monadic expression operators only affect the topmost item of the

stack and do not change the value of S. They are shown in the next

table.

Statement Meaning

RV P!(S-1) := ! P!(S-1)

ABS P!(S-1) := ABS P!(S-1)

FABS P!(S-1) := FABS P!(S-1)

FLOAT P!(S-1) := FLOAT P!(S-1)

FIX P!(S-1) := FIX P!(S-1)

NEG P!(S-1) := - P!(S-1)

FNEG P!(S-1) := #- P!(S-1)

NOT P!(S-1) := ∼ P!(S-1)

All dyadic expression operators take two operands from stack

replacing them the result and decrementing S by 1. These operators

are shown in the following table.

8.6. FUNCTIONS AND ROUTINES 207

Statement Meaning

GETBYTE S := S-1; P!(S-1) := P!(S-1) % P!S

MUL S := S-1; P!(S-1) := P!(S-1) * P!S

FMUL S := S-1; P!(S-1) := P!(S-1) #* P!S

DIV S := S-1; P!(S-1) := P!(S-1) / P!S

FDIV S := S-1; P!(S-1) := P!(S-1) #/ P!S

MOD S := S-1; P!(S-1) := P!(S-1) MOD P!S

ADD S := S-1; P!(S-1) := P!(S-1) + P!S

FADD S := S-1; P!(S-1) := P!(S-1) #+ P!S

SUB S := S-1; P!(S-1) := P!(S-1) - P!S

FSUB S := S-1; P!(S-1) := P!(S-1) #- P!S

EQ S := S-1; P!(S-1) := P!(S-1) = P!S

FEQ S := S-1; P!(S-1) := P!(S-1) #= P!S

NE S := S-1; P!(S-1) := P!(S-1) ∼= P!S

FNE S := S-1; P!(S-1) := P!(S-1) #∼= P!S

LS S := S-1; P!(S-1) := P!(S-1) < P!S

FLS S := S-1; P!(S-1) := P!(S-1) #< P!S

GR S := S-1; P!(S-1) := P!(S-1) > P!S

FGR S := S-1; P!(S-1) := P!(S-1) #> P!S

LE S := S-1; P!(S-1) := P!(S-1) <= P!S

FLE S := S-1; P!(S-1) := P!(S-1) #<= P!S

GE S := S-1; P!(S-1) := P!(S-1) >= P!S

FGE S := S-1; P!(S-1) := P!(S-1) #>= P!S

LSHIFT S := S-1; P!(S-1) := P!(S-1) << P!S

RSHIFT S := S-1; P!(S-1) := P!(S-1) >> P!S

LOGAND S := S-1; P!(S-1) := P!(S-1) & P!S

LOGOR S := S-1; P!(S-1) := P!(S-1) | P!S

EQV S := S-1; P!(S-1) := P!(S-1) EQV P!S

XOR S := S-1; P!(S-1) := P!(S-1) XOR P!S

Vector subscription (E1!E2 is implemented using PLUS and RV. The

value of x MOD y is either zero or it has the same sign as x and its

magnitude is less than ABS y. Shifts by a negative amounts yield

undefined results, but on some versions of BCPL the shift direction

is reversed. Shifts greater than the word length yield zero.

8.6 Functions and Routines

The design of the OCODE statements for the implementation of function

and routine calls have been designed with care to allow code generators

as much freedom as possible. The mechanism allows some arguments to

be passed in registers if this is worthwhile, and the distribution of

work between the code for a call and the code at the entry point is up

to the implementer. In a typical program there are about five calls

for each function or routine and so there is some incentive to keep

208 CHAPTER 8. THE DESIGN OF OCODE

the size of the call small by transferring some of the work to the save

sequence.

The compilation of a function or routine definition generates an

OCODE sequence of the following form:

ENTRY Li n C1 ... Cn
SAVE s
body of function or routine

ENDPROC

Li is the label allocated for the entry point. As a debugging

aid, the length of the function or routine name is given by n and its

characters by the C1...Cn. The SAVE statement specifies the initial

setting of S, which is just the save space size (typically 3) plus

the number of formal parameters. For functions defined using pattern

matching the number of formal parameters is determined by the patterns

in the match list. The state of the stack just after entry is shown in

figure 8.3.

Figure 8.3: The stack frame on function or routine entry

The save space is used to hold P1 the previous value of P, L the

return address and B the function entry address. Although in some

versions of BCPL the save space is reduced to two word by omitting the

function entry address. This saves a little stack space but makes

certain debugging aids impossible. Thus, the first argument of a

function is normally at position 3 relative to the P pointer.

The end of the body is marked by an ENDPROC statement which is

non executable but allows the code generator to keep track of nested

function definitions.

The language insists that arguments are laid out in consecutive

locations on the stack and that there is no limit to their number.

This suggests that a good strategy is to place the arguments of a

call in the locations they will occupy when the function or routine

is entered. Thus, a typical call E(E1, . . . , En) is compiled by first

incrementing S to leave room for the save space in the new stack

frame, then generate code to evaluate the arguments E1, . . . , En before

generating code for to make a subroutine jump to E. The state is

8.7. CONTROL 209

then as shown in figure 8.4. The subroutine jump is made using FNAP

k or RTAP k, depending on whether a function or routine call is being

compiled. Notice that k is the distance between the old and new stack

frames.

Figure 8.4: The moment of calling E(E1,E2,...En)

The return from a routine is performed by RTRN which restores the

previous value of P and resumes execution at the return address. The

return from a function is performed by FNRN just after the function

result has been evaluated on the top of the stack. FNRN performs the

same action as RTRN, after placing the function result in a special

register (A) ready for FNAP to store it in the required location in the

previous stack frame.

8.7 Control

The PC register holds the address of the next instructions to be

executed. For most OCODE statements it is incremented by the size of

the instruction, but for control statements PC is set specifically as

needed by, for instance, conditional jumps or SWITCHON commands. The

OCODE statements concerned with function and routine calls have already

been described above. The remaining control statements are described

here.

LAB Ln Ln := PC

This directive sets the value of label Ln to the current position in

the compiled code.

JUMP Ln PC := Ln
JT Ln s := S-1; IF P!S DO PC := Ln
JF Ln S := S-1; UNLESS P!S DO PC := Ln

JUMP causes an unconditional jump to the instruction labelled by Ln.
Both JT and JF pop the top item from the stack then conditionally jump

to label Ln depending on its value.

GOTO S := S-1; PC := P!S

210 CHAPTER 8. THE DESIGN OF OCODE

This is used in the translation of the BCPL GOTO command.

RES Ln S := S-1; A := P!S; PC := Ln
This is used in the compilation of RESULTIS commands. The result

is evaluated and placed on the top of the stack, followed by a RES

statement which pops the result from the stack and places the it in

register A before jumping to Ln. This label points to the first

instruction after the code for the VALOF block where there is an

RSTACK statement will push A onto the top of the stack after setting

S appropriately for this point in the program.

If the VALOF block is the body of a function, the compiled code for

its RESULTIS commands is optimised using FNRN rather than RES.

SWITCHON n LdK1L1 . . .KnLn

This is used in the compilations of switches. It makes a jump

determined by the value on the top of the stack. Its first argument

(n) is the number of cases in the switch and the second argument

(Ld) is the default label. K1 to Kn are the case constants and L1

to Ln are the corresponding labels. This is normally compiled as a

squence of tests, a label vector switch or a mechanism involving binary

chopping, depending on the number and range of the case constants.

FINISH Ln S := S-1; A := P!S; PC := Ln
This statement is the compilation of the BCPL FINISH command. It

should be converted by the codegenerator into code equivalent to

stop(0) by the code generator. Users are strongly discourage from

using FINISH

8.8 Directives

Sometimes the size of the stack frame changes other than in the course

of expression evaluation. This happens, for instance, when control

leaves a block in which local variables were declared. The statement

STACK s informs the code generator that the size of the current stack

frame is now s.
The STORE statement is used to inform the code generator that the

point separating the declarations and body of a block has been reached

and that any anonymous results on the stack are actually initialised

local variables and so should be stored in their true stack locations.

Static variables and tables are allocated space in the program area

using statements of the form ITEMN n, where n is the initial value

of the static cell. The elements of table are placed in consecutive

locations by consective ITEMN statements. A label may be set to

the address of a static cell by preceding the ITEMN statement by a

statement of the form DATALAB Ln.
The SECTION and NEEDS directives in a BCPL program translate into

SECTION and NEEDS statements of the form:

8.9. DISCUSSION 211

SECTION n C1 . . . Cn

NEEDS n C1 . . . Cn

where C1 to Cn are the characters of the SECTION or NEEDS name and n
is the length.

The end of an OCODE module is marked by the GLOBAL statement which

contains information about global functions, routines and labels. The

form of the GLOBAL statement is as follows:

GLOBAL n K1L1 . . .KnLn

where n is the number of items in the global initialisation list. Ki

is the global number and Li is its label. When a module is loaded its

global entry points must be initialised.

8.9 Discussion

A very early version of OCODE used a three address code in which the

operands were allowed to be the sum of up to three simple values with

a possible indirection. The intention was that reasonable code should

be obtainable even when codegenerating one statement at a time. It was

soon found more convenient to use an intermediate code that separates

the accessing of values from the application of operators. This

improved portability by making it possible to implement very simple

non optimising codegenerators. Optimising codegenerators could absorb

several OCODE statements before emitting compiled code.

The TRUE and FALSE statements were added in 1968 to improve

portability to machines using sign and modulus or one’s complement

arithmetic. Luckily two’s complement arithmetic has now become the

norm. Other extensions to OCODE, notably the ABS, QUERY, GETBYTE and

PUTBYTE statements were added as the corresponding constructs appeared

in the language.

In 1980, the BCPL changed slightly to permit position independent

code to be compiled. This change specified that non global functions,

routines and labels were no longer variables, and the current version

of OCODE reflects this change by the introduction of the LF statement

and the removal of the old ITEML statement that used to allocate static

cells for such entry points.

Another minor change in this version of OCODE is the elimination of

the ENDFOR statement that was provided to fix a problem on 16-bit word

addressed machines with more than 64 Kbytes of memory.

212 CHAPTER 8. THE DESIGN OF OCODE

Chapter 9

The Design of Cintcode

The original version of Cintcode was a byte stream interpretive code

designed to be both compact and capable of efficient interpretation

on small 16 bit machines based on 8 bit micro processors such as the

Z80 and 6502. Versions that ran on the BBC Microcomputer and under

CP/M were marketed by RCP Ltd [2]. The current version of Cintcode was

extended for 32 bit implementations of BCPL and mainly differs from the

original by the provision of 32 bit operands and the removal of a size

restriction of the global vector.

There is now also a version of Cintcode for 64-bit implementations

of BCPL. This is almost identical to the 32-bit version. A nineth

Cintcode register (MW) has been added. This is normally zero but

can be set by a new Cintcode instruction (MW), see below. On 64-bit

implementations, the instructions that take four byte immediate

operands, namely KW, LLPW, LW, LPW, SPW, APW, and AW, sign extend the

four byte immediate operand before adding the MW register into the

senior half of the 64-bit result before resetting the MW to zero. In

this version static variables are allocated in 64-bit 8 byte aligned

locations.

The Cintcode machine has nine registers as shown in figure 9.1.

The registers A and B are used for expression evaluation, and C is

used in in byte subscription. P and G are pointers to the current

stack frame and the global vector, respectively. ST is used as a

status register in the Cintpos version of Cintcode, and PC points to

the first byte of the next Cintcode instruction to execute. Count

is a register used by the debugger. While it is positive, Count

is decremented on each instruction execution, raising an exception

(code 3) on reaching zero. When negative, it causes a second (faster)

interpreter to be used.

Cintcode encodes the most commonly occurring operations as single

byte instructions, using multi-byte instructions for rarer operations.

The first byte of an instruction is the function code. Operands of

size 1, 2 or 4 bytes immediately follow some function bytes. The two

213

214 CHAPTER 9. THE DESIGN OF CINTCODE

Figure 9.1: The Cintcode machine

instructions used to implement switches have inline data following the

function byte. Cintcode modules also contains static data for stings,

integers, tables and global initialisation data.

9.1 Designing for Compactness

To obtain a compact encoding, information theory suggests that each

function code should occur with approximately equal frequency. The

self compilation of the BCPL compiler, as shown in figure 4.2, was

the main benchmark test used to generate frequency information and a

summary of how often various operations are used during this test is

given in table 9.1. This data was produced using the tallying feature

controlled by the stats command, described on page 171.

The statistics from different programs vary greatly, so while

encoding the common operations really compactly, there is graceful

degradation for the rarer cases ensuring that even unusual programs

are handled reasonably well. There are, for instance, several one

byte instructions for loading small integers, while larger integers

are handled using 2, 3 and 5 byte instructions. The intention is that

small changes in a source program should cause small small changes in

the size of the corresponding compiled code.

Having several variant instructions for the same basic operation

does not greatly complicate the compiler. For example the four

variants of the AP instruction that adds a local variable into

register A is dealt with by the following code fragment taken from

the codegenerator.

TEST 3<=n<=12 THEN gen(f_ap0 + n)
ELSE TEST 0<=n<=255

THEN genb(f_ap, n)
ELSE TEST 0<=n<=#xFFFF

THEN genh(f_aph, n)
ELSE genw(f_apw, n)

9.1. DESIGNING FOR COMPACTNESS 215

Operation Executions Static count

Loading a local variable 3777408 1479

Updating a local variable 1965885 1098

Loading a global variable 5041968 1759

Updating a global variable 796761 363

Using a positive constant 4083433 1603

Using a negative constant 160224 93

Conditional jumps (all) 2013013 488

Conditional jumps on zero 494282 267

Unconditional direct jump 254448 140

Unconditional indirect jumps 152646 93

Procedure calls 1324206 1065

Procedure returns 1324204 381

Binary chop switches 43748 12

Label vector switches 96461 17

Addition 2135696 574

Subtraction 254935 111

Other expression operations 596882 74

Loading a vector element 1356315 429

Updating a vector element 591268 137

Loading a byte vector element 476688 53

Updating a byte vector element 405808 29

Table 9.1: Counts from the BCPL self compilation test

It is clear from table 9.1 that accessing variables and constants

requires special care, and that conditional jumps, addition, calls

and indirection are also important. Since access to local variables

accounts for about a quarter of the operations performed, about this

proportion of codes were allocated to instructions concerned with local

variables. Local variables are allocated words in the stack starting

at position 3 relative to the P pointer and, as one would expect,

small numbered locals are used far more frequently than the others,

so operations on low numbered locals often have single byte codes.

Although not shown here, other statistics, such as the distribution

of relative addressing offsets and operand values, influenced the

design of Cintcode.

216 CHAPTER 9. THE DESIGN OF CINTCODE

9.1.1 Global Variables

Global variables are referenced as frequently as locals and therefore

have many function codes to handle them. The size of the global vector

in most programs is less than 512, but Cintcode allows this to be

as large are 65536 words. Each operation that refers to a global

variable is provided with three related instructions. For instance,

the instructions to load a global into register A are as follows:

Here, b and h are unsigned 8 and 16 bit values, respectively.

9.1.2 Composite Instructions

Compactness can be improved by combining commonly occurring pairs (and

triples) of operations into a single instructions. Many such composite

instructions occur in Cintcode; for instance, AP3 adds local 3 to the A

register, and L1P6 will load v!1 into register A, assuming v is held in

local 6.

9.1.3 Relative Addressing

A relative addressing mechanism is used in conditional and

unconditional jumps and the instructions: LL, LLL, SL and LF. All

these instructions refer to locations within the code and are optimised

for small relative distances. To simplify the codegenerator all

relative addressing instructions are 2 bytes in length. The first

being the function code and the second being an 8 bit relative address.

Figure 9.2: The relative addressing mechanism

9.2. THE CINTCODE INSTRUCTION SET 217

All relative addressing instructions have two forms: direct and

indirect, depending on the least significant bit of the function

byte. The details of both relative address calculations are shown

in figure 9.2, using the instructions J and J$ as examples. For the

direct jump (J), the operand (a) is a signed byte in the range -128 to

+127 which is added to the address (x) of the operand byte to give the

destination address (dest). For the indirect jump, J$, the operand (b)

is an unsigned byte in the range 0 to 255 which is doubled and added

to the rounded version of x to give the address (q) of a 16 bit signed

value hh which is added to q to give the destination address (dest).

The compiler places the resolving half word as late as possible to

increase the chance that it can be shared by other relative addressing

instructions to the same desination, as could happen when several

ENDCASE statements occur in a large SWITCHON command. The use of a

16 bit resolving word places a slight restriction on the maximum size

of relative references. Any Cintcode module of less than 64K bytes

will have no problem.

9.2 The Cintcode Instruction Set

The resulting selection of function codes is shown in Table 9.2 and

they are described in the sections that follow. In the remaining

sections of this chapter the following conventions hold:

Symbol Meaning

n An integer encoded in the function byte.

Ln The one byte operand of a relative addressing instruction.

b An unsigned byte, range 0 ≤ b ≤ 255.
h An unsigned halfword, range 0 ≤ h ≤ 65535.
w A signed 32 bit word.

filler Optional filler byte to round up to a 16 bit boundary.

A The Cintcode A register.

B The Cintcode B register.

C The Cintcode C register.

P The Cintcode P register.

G The Cintcode G register.

PC The Cintcode PC register.

MW The Cintcode MW register used in 64-bit Cintcode.

9.2.1 Byte Ordering and Alignment

A Cintcode module is a vector of 32 bit words containing the compiled

code and static data of a section of program. The first word of a

module holds its size in words that is used as a relative address to

218 CHAPTER 9. THE DESIGN OF CINTCODE

0 32 64 96 128 160 192 224

0 - K LLP L LP SP AP A
1 FLTOP KH LLPH LH LPH SPH APH AH
2 BRK KW LLPW LW LPW SPW APW AW
3 K3 K3G K3G1 K3GH LP3 SP3 AP3 L0P3
4 K4 K4G K4G1 K4GH LP4 SP4 AP4 L0P4
5 K5 K5G K5G1 K5GH LP5 SP5 AP5 L0P5
6 K6 K6G K6G1 K6GH LP6 SP6 AP6 L0P6
7 K7 K7G K7G1 K7GH LP7 SP7 AP7 L0P7
8 K8 K8G K8G1 K8GH LP8 SP8 AP8 L0P8
9 K9 K9G K9G1 K9GH LP9 SP9 AP9 L0P9

10 K10 K10G K10G1 K10GH LP10 SP10 AP10 L0P10
11 K11 K11G K11G1 K11GH LP11 SP11 AP11 L0P11
12 LF S0G S0G1 S0GH LP12 SP12 AP12 L0P12
13 LF$ L0G L0G1 L0GH LP13 SP13 XPBYT S
14 LM L1G L1G1 L1GH LP14 SP14 LMH SH
15 LM1 L2G L2G1 L2GH LP15 SP15 BTC MDIV
16 L0 LG LG1 LGH LP16 SP16 NOP CHGCO
17 L1 SG SG1 SGH SYS S1 A1 NEG
18 L2 LLG LLG1 LLGH SWB S2 A2 NOT
19 L3 AG AG1 AGH SWL S3 A3 L1P3
20 L4 MUL ADD RV ST S4 A4 L1P4
21 L5 DIV SUB RV1 ST1 XCH A5 L1P5
22 L6 MOD LSH RV2 ST2 GBYT RVP3 L1P6
23 L7 XOR RSH RV3 ST3 PBYT RVP4 L2P3
24 L8 SL AND RV4 STP3 ATC RVP5 L2P4
25 L9 SL$ OR RV5 STP4 ATB RVP6 L2P5
26 L10 LL LLL RV6 STP5 J RVP7 L3P3
27 FHOP LL$ LLL$ RTN GOTO J$ ST0P3 L3P4
28 JEQ JNE JLS JGR JLE JGE ST0P4 L4P3
29 JEQ$ JNE$ JLS$ JGR$ JLE$ JGE$ ST1P3 L4P4
30 JEQ0 JNE0 JLS0 JGR0 JLE0 JGE0 ST1P4 SELLD
31 JEQ0$ JNE0$ JLS0$ JGR0$ JLE0$ JGE0$ MW SELST

Table 9.2: The Cintcode function codes

9.2. THE CINTCODE INSTRUCTION SET 219

the end of the module where the global initialisation data is placed.

The last word of a module holds the highest referenced global number,

and working back, there are pairs of words giving the global number and

relative entry address of each global function or label defined in the

module. A relative address of zero marks the end of the initialisation

data. See section 8.3 for more details.

The compiler can generate code for either a big- or little-endian

machine. These differ only in the byte ordering of bytes within words.

For a little endian machine, the first byte of a 32 bit word is at

the least significant end, and on a big-endian machine, it is the most

significant byte. This affect the ordering of bytes in 2 and 4 byte

immediate operands, 2 byte relative address resolving words, 4 byte

static quantities and global initialisation data. Resolving words are

aligned on 16 bit boundaries relative to the start of the module, and 4

byte statics values are aligned on 32 bit boundaries. The 2 and 4 byte

immediate operands are not aligned.

For efficiency reasons, the byte ordering is chosen to suit the

machine on which the code is to be interpreted. The compiler option

OENDER causes the BCPL compiler to compile code with the opposite

endianess to that of the machine on which the compiler is running,

see the description of the bcpl command on page 147.

9.2.2 Loading Values

The following instructions are used to load constants, variables, the

addresses of variables and function entry points. Notice that all

loading instructions save the old value of register A in B before

updating A. This simplifies the translation of dyadic expression

operators.

Ln 0 ≤ n ≤ 10 B := A; A := n
LM1 B := A; A := -1
L b B := A; A := b
LM b B := A; A := -b
LH h B := A; A := h
LMH h B := A; A := -h
LW w B := A; A := w
MW w MW := w

These instructions load integer constants. Constants are in the range

-1 to 10 are the most common and have single byte instructions. The

other cases use successively larger instructions. The MW instruction

is only used in 64-bit Cintcode. See page 213 for more details.

LPn 3 ≤ n ≤ 16 B := A; A := P!n
LP b B := A; A := P!b

220 CHAPTER 9. THE DESIGN OF CINTCODE

LPH h B := A; A := P!h
LPW w B := A; A := P!w

These instructions load local variables and anonymous results addressed

relative to P. Offsets in the range 3 to 16 are the most common and

use single byte instructions. The other cases use succesively larger

instructions.

LG b B := A; A := G!b
LG1 b B := A; A := G!(b+ 256)
LGH h B := A; A := G!h

LG loads the value of a global variables in the range 0 to 255, LG1

load globals in the range 256 to 511, and LGH can load globals up to

65535. Global numbers must be in the range 0 to 65535.

LL Ln B := A; A := variable Ln
LL$ Ln B := A; A := variable Ln
LF Ln B := A; A := entry point Ln
LF$ Ln B := A; A := entry point Ln

LL loads the value of a static variable and LF loads the entry address

of a function, routine or label in the current module.

LLP b B := A; A := @P!b
LLPH h B := A; A := @P!h
LLPW w B := A; A := @P!w
LLG b B := A; A := @G!b
LLG1 b B := A; A := @G!(b+ 256)
LLGH h B := A; A := @G!h
LLL Ln B := A; A := @(variable Ln)
LLL$ Ln B := A; A := @(variable Ln)

These instructions load the BCPL pointers to local, global and static

variables.

9.2.3 Indirect Load

GBYT A := B%A
RV A := A!0
RVn 1 ≤ n ≤ 6 A := A!n
RVPn 3 ≤ n ≤ 7 A := P!n!A
L0Pn 3 ≤ n ≤ 12 B := A; A := P!n!0
L1Pn 3 ≤ n ≤ 6 B := A; A := P!n!1
L2Pn 3 ≤ n ≤ 5 B := A; A := P!n!2
L3Pn 3 ≤ n ≤ 4 B := A; A := P!n!3

9.2. THE CINTCODE INSTRUCTION SET 221

L4Pn 3 ≤ n ≤ 4 B := A; A := P!n!4
LnG b 0 ≤ n ≤ 2 B := A; A := G!b!n
LnG1 b 0 ≤ n ≤ 2 B := A; A := G!(b+256)!n
LnGH h 0 ≤ n ≤ 2 B := A; A := G!h!n

These instructions are used in the implementation of byte and word

indirection operators % and ! in right hand contexts.

9.2.4 Expression Operators

NEG A := -A
NOT A := ~A

These instructions implement the three monadic expression operators.

MUL A := B * A
DIV A := B / A
MOD A := B MOD A
ADD A := B + A
SUB A := B - A
LSH A := B << A
RSH A := B >> A
AND A := B & A
OR A := B | A
XOR A := B XOR A

These instructions provide for all the normal arithmetic and bit

pattern dyadic operators. The instructions DIV and MOD generate

exception 5 if the divisor is zero. Evaluation of relational operators

in non conditional contexts involve conditional jumps and the FHOP

instruction, see page 225. Addition is the most frequently used

arithmetic operation and so there are various special instructions

improve its efficiency.

An 1 ≤ n ≤ 5 A := A + n
Sn 1 ≤ n ≤ 4 A := A - n
A b A := A + b
AH h A := A + h
AW w A := A + w
S b A := A - b
SH h A := A - h

These instructions implement addition and subtraction by constant

integer amounts. There are single byte instructions for incrementing

by 1 to 5 and decremented by 1 to 4. For other values longer

instructions are available.

222 CHAPTER 9. THE DESIGN OF CINTCODE

APn 3 ≤ n ≤ 12 A := A + P!n
AP b A := A + P!b
APH h A := A + P!h
APW w A := A + P!w
AG b A := A + G!b
AG1 b A := A + G!(b+256)
AGH h A := A + G!h

These instructions allow local and global variables to be added to A.

Special instructions for addition by static variables are not provided,

and subtraction by a variable is not common enough to warrant special

treatment.

9.2.5 Simple Assignment

SPn 3 ≤ n ≤ 16 P!n := A
SP b P!b := A
SPH h P!h := A
SPW w P!w := A
SG b G!b := A
SG1 b G!(b+256) := A
SGH h G!h := A
SL Ln variable Ln := A
SL$ Ln variable Ln := A

These instructions are used in the compilation of assignments to named

local, global and static variables. The SP instructions are also used

to save anonymous results and to layout function arguments.

9.2.6 Indirect Assignment

PBYT B%A := C
XPBYT A%B := C
ST A!0 := B
STn 1 ≤ n ≤ 3 A!n := B
ST0Pn 3 ≤ n ≤ 4 P!n!0 := A
ST1Pn 3 ≤ n ≤ 4 P!n!1 := A
STPn 3 ≤ n ≤ 5 P!n!A := B
S0G b G!b!0 := A
S0G1 b G!(b+256)!0 := A
S0GH h G!h!0 := A

These instructions are used in assignments in which % or ! appear as

the leading operator on the left hand side.

9.2. THE CINTCODE INSTRUCTION SET 223

9.2.7 Function and Routine Calls

At the moment a function or routine is called the state of the stack

is as shown in figure 9.3. At the entry point of a function or routine

the first argument, if any, will be in register A and in memory P!3.

Figure 9.3: The moment of calling E(E1,E2,...En)

224 CHAPTER 9. THE DESIGN OF CINTCODE

Kn 3 ≤ n ≤ 11
K b
KH h
KW w

These instructions call the function or routine whose entry point is

in A and whose first argument (if any) is in B. The new stack frame at

position k relative to P where k is n, b, h or w depending on which

instruction is used. The effect of these instructions is as follows:

P!k := P // Save the old P pointer
P := P+k // Set its new value
P!1 := PC // Save the return address
PC := A // Set PC to the entry point
P!2 := PC // Save it in the stack for debugging
A := B // Put the first argument in A
P!3 := A // Save it in the stack

As can be seen, three words of link information (the old P pointer,

the return address and entry address) are stored in the base of the new

stack frame.

KnG b 3 ≤ n ≤ 11
KnG1 b 3 ≤ n ≤ 11
KnGH h 3 ≤ n ≤ 11

These instructions deal with the common situation where the entry point

of the function is in the global vector and the stack increment is in

the range 3 to 11. The global number gn is b, b + 256 or h depending on

which function code is used and stack increment k is n. The first

argument (if any) is in A. The effect of these instructions is as

follows:

P!k := P // Save the old P pointer
P := P+k // Set its new value
P!1 := PC // Save the return address
PC := G!gn // Set the new PC value from the global value
P!2 := PC // Save it in the stack for debugging
P!3 := A // Save the first argument in the stack

RTN

This instruction causes a return from the current function or routine

using the previous P pointer and the return address held in P!0 and

P!1. The effect of the instruction is as follows:

PC := P!1 // Set PC to the return address
P := P!0 // Restore the old P pointer

When returning from a function the result will be in A.

9.2. THE CINTCODE INSTRUCTION SET 225

9.2.8 Flow of Control and Relations

The following instructions are used in the compilation of conditional

and unconditional jumps, and relational expressions. The symbol rel
denotes EQ, NE, LS, GR, LE or GE indicating the relation being tested.

J Ln PC := Ln
J$ Ln PC := Ln
Jrel Ln IF B rel A DO PC := Ln
Jrel$ Ln IF B rel A DO PC := Ln
Jrel0 Ln IF A rel 0 DO PC := Ln
Jrel0$ Ln IF A rel 0 DO PC := Ln

The destinations of these jump instructions are computed using the

relative addressing mechanism described in Section 9.1.3. Notice

than when the comparison is with zero, A holds the left operand of

the relation.

GOTO PC := A

This instruction is only used in the compilation of the GOTO command.

FHOP A := 0; PC := PC+1

The FHOP instruction is only used in the compilation of relational

expressions in non conditional contexts as in the compilation. The

assignment: x := y < z is typically compiled as follows:

LP4 Load y
LP5 Load z
JLS 2 Jump to the LM1 instruction if y<z
FHOP A := FALSE; and hop over the LM1 instruction
LM1 A := TRUE
SP3 Store in x

9.2.9 Switch Instructions

The instructions are used to implement switches are SWL and SWB,

switching on the value held in A. They both assume that all case

constants are in the range 0 to 65535, with the compiler taking

appropriate action when this constraint is not satisfied.

SWL filler n dlab L0 ...Ln−1

This instruction is used when there are sufficient case constants all

within a small enough range. It performs the jump by selecting an

element from a vector of 16 bit resolving half words. The quantities

226 CHAPTER 9. THE DESIGN OF CINTCODE

n, dlab, and L0 to Ln−1 are 16 bit half words, aligned on 16 bit

boundaries by the optional filler byte. If A is in the range 0 to

n − 1 it uses the appropriate resolving half word LA, otherwise it

uses the resolving half word dlab to jump to the default label. See

Section 9.1.3 for details on how resolving half words are interpreted.

SWB filler n dlab K1 L1 ...Kn Ln

This instruction is used when the range of case constants is too large

for SWL to be economical. It performs the jump using a binary chop

strategy. The quantities n, dlab, K1 to Kn and L1 to Ln are 16 bit

half words aligned on 16 bit boundaries by the option filler byte.

This instruction successively tests A with the case constants in the

balanced binary tree given in the instruction. The tree is structured

in a way similar to that used in heapsort with the children of the node

at position i at positions 2i and 2i + 1. References to nodes beyond n
are treated as null pointers. Within this tree, Ki is greater than all

case constants in the tree rooted at position 2i, and less than those in

the tree at 2i + 1. The search starts at position 1 and continues until

a matching case constant is found or a null pointer is reached. If A

is equal to some Ki then PC is set using the resolving half word Li,

otherwise it uses the resolving half word dlab to jump to the default

label. See Section 9.1.3 for details on how resolving half words are

interpreted.

The use of this structure is particularly good for the hand written

machine code interpreter for the Pentium where there are rather few

central registers. Cunning use can be made of the add with carry

instruction (adcl). In the following fragment of code, %esi points

to n, %eax holds i and A is held in %eab. There is a test elsewhere to

ensure that A is in the range 0 to 65535.

swb1: cmpw (%esi,%eax,4),%bx ; { compare A with Ki
je swb3 ; Jump if A=Ki
adcl %eax,%eax ; IF A>Ki THEN i := 2i

; ELSE i := 2i+1
cmpw (%esi),%ax ;
jle swb1 ; } REPEATWHILE i<=n

The compiler ensures that the tree always has at least 7 nodes allowing

the code can be further improved by preceding this loop with two copies

of:

cmpw (%esi,%eax,4),%bx ; compare Ki with A
je swb3 ; Jump if match found
adcl %eax,%eax ; IF A>Ki THEN i := 2i

; ELSE i := 2i+1

The above code is a great improvement on any straightforward

implementation of the standard binary chop mechanism.

9.2. THE CINTCODE INSTRUCTION SET 227

9.2.10 Miscellaneous

XCH Exchange A and B
ATB B := A
ATC C := A
BTC C := B

These instructions are used move values between register A, B and C.

NOP

This instruction has no effect.

SYS

This instruction is used in body of the hand written library routine

sys. If A is zero, the interpreter returns with exception code P!4.

If A is -1 it sets register count to P!4, setting A to the previous

value of count. Changing the value of count may change which of the

two interpreters is used. For more details see Section 4.3.

Otherwise, it performs a system operation returning the result

in A. In the C implementation of the interpreter this is done by the

following code:

c = dosys(p, g);

MDIV

This instruction is used as the one and only instruction in the body of

the hand written library routine muldiv, see Section 3.3. It divides

P!5 into the double length product of P!3 and P!4 placing the result in

A and the remainder in the global variable result2. It then performs a

function return (RTN). Its effect is as follows:

A := <the result>
G!Gn_result2 := <the remainder>
PC := P!1 // PC := P!1
P := P!0 // P := P!0

CHGCO

This instruction is used in the implementation of coroutines. It is

the one and only instruction in the body of the hand written library

routine changeco(val,cptr) where val is passed in Cintcode register

A and cptr is in P!4. Its effect, which is rather subtle, is shown

below. For more information see page 62.

228 CHAPTER 9. THE DESIGN OF CINTCODE

G!Gn_currco!0 := P!0 // !currco := !P -- changeco’s old P pointer
PC := P!1 // PC := P!1 -- changeco’s return address
G!Gn_currco := P!4 // currco := cptr
P := P!4!0 // P := !cptr

BRK

This instruction is used by the debugger to implement break points. It

causes the interpreter to return with exception code 2.

9.2.11 Floating-point Instructions

Floating-point operations other than those performed by SELST are

provided by the FLTOP instruction. They are as follows.

FLTOP 1 b A := floating point(A× 10b)
FLTOP 3 A := FLOAT A
FLTOP 4 A := FIX A
FLTOP 5 A := #ABS A
FLTOP 6 A := A #* B
FLTOP 7 A := A #/ B
FLTOP 8 A := A #+ B
FLTOP 9 A := A #- B
FLTOP 10 A := #+A
FLTOP 11 A := #-A
FLTOP 12 A := A #= B
FLTOP 13 A := A #~= B
FLTOP 14 A := A #< B
FLTOP 15 A := A #> B
FLTOP 16 A := A #<= B
FLTOP 17 A := A #>= B

In the above table, b is a signed byte representing a decimal exponent

in the range -128 to +127. Floating point numbers with exponents

outside this range can be generated using sys(Sys flt, fl mk, x, e)

as described on page 3.3.

9.2.12 Select Instructions

Access to fields and some op:= assignment are performed using the

following instructions.

SELLD len sh A := SLCT len:sh:0 OF A
SELST 0 len sh SLCT len:sh:0 OF A := B
SELST op len sh SLCT len:sh:0 OF A op:= B

9.3. EXAMPLE TRANSLATION OF CODE FRAGMENTS 229

The mapping between op and its corresponding expression operator is

given by the table on page 205.

9.2.13 Undefined Instructions

There is now only one undefined instruction and it code is 0. It will

cause the interpreter to return with exception code of 1.

9.2.14 Corruption of B

To improve the efficiency of some hand written machine code

interpreters, the following instructions are permitted to corrupt the

value held in B:

K KH KW Kn KnG KnG1 KnGH
SWL SWB MDIV CHGCO

All other instructions either set B explicitly or leave its value

unchanged.

9.2.15 Exceptions

When an exception occurs, the interpreter saves the Cintcode registers

in its register vector and yields the exception number as result. For

exceptions caused by non existent instructions, BRK, DIV or MOD the

program counter is left pointing to the offending instruction. For

more details see the description of sys(Sys interpret,...) on page 89.

9.3 Example translation of code fragments

This section contains fragments of BCPL code and their translation into

Cintcode. The purpose of these examples is to consolidate the reader’s

understanding of BCPL and show the simplicity of its translation into

Cincode. It also shows the level of optimisation performed by the

compiler. It is easy to see how a fragment of code is compiled. For

instance, consider the program in z.b.

GLOBAL { w:200; f }

LET f(x) BE WHILE x<10 DO

{ w := x

IF x=5 BREAK

x := x+2

}

230 CHAPTER 9. THE DESIGN OF CINTCODE

The parse tree for this program can be printed using the following

command.

0.000> bcpl z.b tree

32 bit BCPL (30 Oct 2021) with pattern matching, 32 bit target

Parse Tree

GLOBAL z.b[1]

*-CONSTDEF z.b[1]

! *-CONSTDEF z.b[1]

! ! *-Nil

! ! *-NAME: f

! ! *-Nil

! *-NAME: w

! *-NUMBER: 200

*-LET z.b[3]

*-RTDEF z.b[3]

! *-NAME: f

! *-NAME: x

! *-WHILE z.b[3]

! *-LS

! ! *-NAME: x

! ! *-NUMBER: 10

! *-SEQ

! *-ASS z.b[4]

! ! *-NAME: w

! ! *-NAME: x

! *-SEQ

! *-IF z.b[5]

! ! *-EQ

! ! ! *-NAME: x

! ! ! *-NUMBER: 5

! ! *-BREAK z.b[5]

! *-ASS z.b[6]

! *-NAME: x

! *-ADD

! *-NAME: x

! *-NUMBER: 2

*-Nil

OCODE size: 52/400000

This shows that the parse tree for the WHILE command on line 3 of

z.b has a first argument representing x<10 and a second argument

9.3. EXAMPLE TRANSLATION OF CODE FRAGMENTS 231

representing a sequence of three commands, the first being the

assigment to w. the second being the IFstatement and the third being

the assignment to x.

In addition to outputing the pase tree this command also creates

a file ocode of the corresponding Ocode of the program. This can be

printed using the procode commnd.

0.000> procode

converting ocode to *

ENTRY L10 1 ’f’

SAVE 4

LP 3

LN 10

LS

JF L12

LAB L11

LP 3

SG 200

LN 5

LP 3

EQ

JT L12

LN 2

LP 3

ADD

SP 3

LP 3

LN 10

LS

JT L11

LAB L12

RTRN

RTRN

ENDPROC

STACK 3

STORE

GLOBAL 1

201 L10

The corresponding Cintcode translation can be seen using the compiler’s

d1 option.

232 CHAPTER 9. THE DESIGN OF CINTCODE

0.001> c b z d1

bcpl z.b to z d1

32 bit BCPL (30 Oct 2021) with pattern matching, 32 bit target

0: DATAW #x00000000

4: DATAW #x0000DFDF

8: DATAW #x2020660B

12: DATAW #x20202020

16: DATAW #x20202020

// Entry to: f

20: L10:

20: L10

21: JGE L12

23: L11:

23: LP3

24: SG 200

26: L5

27: JEQ L12

29: L2

30: AP3

31: SP3

32: L10

33: JLS L11

35: L12:

35: RTN

36: DATAW #x00000000

40: DATAW #x000000C9

44: DATAW #x00000014

48: DATAW #x000000C9

Code size = 52 bytes of 32-bit little ender Cintcode

0.040>

You can see from this output that most of the compiled Cintcode

instructions occupy one byte, the only exceptions are the conditional

jumps and the SG instruction. Note that the WHILE loop conditions

x<10 is evaluated before the body is executed for the first time and

also at the end of the body. This strategy is used since the code at

both places can be compiled more efficiently, and if the result of the

initial test can be determined at compile time, a conditional jump is

not required.

The actual compiled code was placed in the file z which is a text

file of hexdecimal words.

0.001> type z

000003E8 0000000D

9.3. EXAMPLE TRANSLATION OF CODE FRAGMENTS 233

0000000D 0000DFDF 2020660B 20202020 20202020 830DBC1A 1C15C831 A3C31207

7BF55C1A 00000000 000000C9 00000014 000000C9

Note that this contains the bytes of the compiled code prefixed by the

two words 000003E8 0000000D saying that the compiled code is a hunk

consisting of 13 (0000000D) 32 bit words. The word at location zero

has been updated with this size now that it is known.

Most of the BCPL code fragments in this section are take from

programs in the directories cintcode/com and cintcode/sysb. The

Cintcode translation of the BCPL compiler was placed in bcpl.cin by

the command:

bcpl com/bcpl.b to junk d1 ver bcpl.cin.

9.3.1 Translation of mk1

The definition of mk1 is:

AND mk1(x) = VALOF

{ LET p = newvec(0)

p!0 := x

RESULTIS p

}

Its Cintcode translation is:

// Entry to: mk1

9200: L576:

9200: L0

9201: K4G1 67

9203: SP4

9204: LP3

9205: ST0P4

9206: LP4

9207: RTN

The call newvec(0) is compiled as L0 K4G1 67 because newvec is in

global 323 (=67+256). The variable p is in stack location P4 so the

assignment to p!0 can be performed by ST0P4.

9.3.2 Translation of mk2

The definition of mk2 is:

234 CHAPTER 9. THE DESIGN OF CINTCODE

AND mk2(x, y) = VALOF

{ LET p = newvec(1)

p!0, p!1 := x, y

RESULTIS p

}

Its Cintcode translation is:

// Entry to: mk2

9224: L577:

9224: L1

9225: K5G1 67

9227: SP5

9228: LP3

9229: XCH

9230: ST

9231: LP4

9232: LP5

9233: ST1

9234: LP5

9235: RTN

Here the assignment to p!0 is compiled by LP3 XCH ST since Cintcode

does not have the instruction ST0P5. Note that even though p is in the

A register just before the instruction ST1 it must be reloaded after

the indirect assignment since the compiler cannot assume that ST1 will

not change the value of p.

9.3.3 Translation of rnamelist

The definition of rnamelist is:

AND rnamelist() = VALOF

{ // Read a list of names each possibly prefixed by FLT

LET a = rname()

UNLESS token=s_comma RESULTIS a

lex()

RESULTIS mk3(s_comma, a, rnamelist())

}

Its Cintcode translation is:

9.3. EXAMPLE TRANSLATION OF CODE FRAGMENTS 235

// Entry to: rnamelist

11152: L641:

11152: K3G1 47

11154: SP3

11155: L 37

11157: LG1 18

11159: JEQ L678

11161: LP3

11162: RTN

11163: L678:

11163: K4G1 23

11165: K9G1 46

11167: SP9

11168: LP3

11169: SP8

11170: L 37

11172: K4G1 60

11174: RTN

It starts by calling rname (G303=47+256) and saving the result in stack

location P3 for variable a. If token is not equal to s comma (=37),

it returns from rnamelist with a as the result. If the token was

s comma it calls lex (G279) then makes a recursive call of rnamelist

storing the result in stack location P9, the position of mk3’s third

argument. The second argument at P8 is given the value a (P3), and the

first argument s comma (=37) is loaded into register A. The call of mk3

(G316) is made by K4G1 60 and its result immediately becomes the result

of rnamelist.

9.3.4 Translation of trnext

The definition of trnext is:

LET trnext(next) BE

{ // Compile code to follow a command

// next is >0, =0 or =-1

IF next=0 RETURN // No code to compile.

IF next>0 DO { out2(s_jump, next); RETURN }

// next must be =-1

TEST proccontext=s_fnrn

THEN { out2(s_ln, 0); out1(s_fnrn) }

ELSE { out1(s_rtrn) }

}

236 CHAPTER 9. THE DESIGN OF CINTCODE

Its Cintcode translation is:

// Entry to: trnext

664: L37:

664: JNE0 L38

666: RTN

667: L38:

667: LP3

668: JLE0 L39

670: SP8

671: L 146

673: K4G1 148

675: RTN

676: L39:

676: L 156

678: LG1 135

680: JNE L40

682: L0

683: SP8

684: L 136

686: K4G1 148

688: L 156

690: K4G1 147

692: RTN

693: L40:

693: L 157

695: K4G1 147

697: RTN

If the argument next is zero it returns from trnext immediately. At

label L39 we know that the A register still holds next but since the

compiler assumes that there may be other instructions jumping to this

label it has to reload next using LP3 before testing whether it is

greater than zero. If it is A still holds next and can be placed in

stack location P8, the location of the second argument of out2. The

first argument s jump (=146) is then loaded into A ready for the call

H4G1 148 of out2 (G404=148+256). The remaining code for this routine

is straightforward.

9.3. EXAMPLE TRANSLATION OF CODE FRAGMENTS 237

9.3.5 Translation of tst in patcmpltest.b

The definition of trt is:

// p -> [101, 102, 103, [201, [301,302,303], 203], 105, 106]

LET tst : [a1, a2, a3, [a41, [a421,a422,a423], a43], a5, a6] BE

{ t(a1, 101)

t(a2, 102)

t(a3, 103)

t(a41, 201)

t(a421, 301)

t(a422, 302)

t(a423, 303)

t(a43, 203)

t(a5, 105)

t(a6, 106)

}

As can be seen in the Cintcode translation below pattern variables

can be accessed with reasonable efficiency. The table below shows the

code sequence used to access each of the pattern variables used in this

function.

Variable Code to load the value Equivalent to

a1 L0P3 p!0

a2 L1P3 p!1

a3 L2P3 p!2

a41 L3P3 RV p!3!0

a421 L3P3 RV1 RV p!3!1!0

a422 L3P3 RV1 RV1 p!3!1!1

a423 L3P3 RV1 RV2 p!3!1!2

a43 L3P3 RV2 p!3!2

a5 L4P3 p!4

a6 LP3 RV5 p!5

If we call the argument of tst p, we see that the pattern variable

a1 is equivalent to p!0 so if the argument is updated the location

referenced by a1 will change. Similarly, a41 depends on both p and

p!3, so if either of these change the location referenced by a41

may change. This effect means great care is needed when defining

functions which update pattern variables during their evaluation.

The function splay is a prime example of this kind of function

and should be studied with care. The source code can be found in

BCPL/bcplprogs/patdemos/splay.b.

238 CHAPTER 9. THE DESIGN OF CINTCODE

// Entry to: tst

768: L52:

768: L 101

770: SP8

771: L0P3

772: K4G 207

774: L 102

776: SP8

777: L1P3

778: K4G 207

780: L 103

782: SP8

783: L2P3

784: K4G 207

786: L3P3

787: RV

788: L 201

790: SP8

791: XCH

792: K4G 207

794: L3P3

795: RV1

796: RV

797: LH 301

800: SP8

801: XCH

802: K4G 207

804: L3P3

805: RV1

806: RV1

807: LH 302

810: SP8

811: XCH

812: K4G 207

814: L3P3

815: RV1

816: RV2

817: LH 303

820: SP8

821: XCH

822: K4G 207

824: L3P3

825: RV2

826: L 203

828: SP8

9.3. EXAMPLE TRANSLATION OF CODE FRAGMENTS 239

829: XCH

830: K4G 207

832: L 105

834: SP8

835: L4P3

836: K4G 207

838: LP3

839: RV5

840: L 106

842: SP8

843: XCH

844: K4G 207

846: RTN

848: DATAH L21-$

850: L54:

850: L0

851: RTN

The DATAH statement near the end is a 16 bit relative address resolving

word for label L21 which has nothing to do with the compilation of tst.

9.3.6 Translation of coins and c in patdemos/coins.b

The following function definitions are taken from the coins program

coins.b.

LET coins

: sum => c(sum,

TABLE 200, 100, 50, 20, 10, 5, 2, 1)

AND c

: <0 => 0

: 0 | (?,[1]) => 1

: sum, t[d] => c(sum, t+1) + c(sum-d, t)

The translation of coins is as follows.

// Entry to: coins

36: L10:

36: LLL L13

38: SP8

39: XCH

40: LF L11

42: K4

43: RTN

44: L12:

240 CHAPTER 9. THE DESIGN OF CINTCODE

44: L0

45: RTN

48: L13:

48: DATAW #x000000C8

52: DATAW #x00000064

56: DATAW #x00000032

60: DATAW #x00000014

64: DATAW #x0000000A

68: DATAW #x00000005

72: DATAW #x00000002

76: DATAW #x00000001

The only oddity here is the code labelled L12 can never be executed

since the match item pattern will always be successful. The

translation of the function c is as follows and is more interesting.

// Entry to: c LET c

96: L11:

96: JGE0 L14 : <0

98: L0 => 0

99: RTN

100: L14:

100: LP3 : 0 |

101: JEQ0 L16

103: L0P4 (?,[1])

104: L1

105: JNE L15

107: L16:

107: L1 => 1

108: RTN

109: L15: : sum, t[d]

109: L1 => c(sum, t+1) +

110: AP4

111: SP9

112: LP3

113: LF L11

115: K5

116: SP5

117: LP3 c(sum-d, t)

118: L0P4

119: SUB

120: LP4

121: SP10

9.3. EXAMPLE TRANSLATION OF CODE FRAGMENTS 241

122: XCH

123: LF L11

125: K6

126: AP5

127: RTN

128: L19: Unnecessary code

128: L0

129: RTN

In the second call of c it would have been better to place t in P10

before evaluating sum-d.

9.3.7 Translation of rotleft from patdemos/splay.b

The definition of rotleft is:

AND rotleft // Promote right child p p

: n[key, val, // | |

np[?,?,?,npl,npr], // n => r

nx, // / \ / \

nr[?,?,nrp,nry[?,?,nryp,?,?],nrz] // x r n z

] BE // / \ / \

// y z x y

{ LET y = nry

// The order of the assigments was chosen with great care.

TEST np // Test if n has a parent.

THEN TEST n=npl

THEN npl := nr // Update the parent’s left branch.

ELSE npr := nr // Update the parent’s right branch.

ELSE root := nr // n has no parent, so r is the new root.

IF nry DO nryp := n // If y exists, its parent should be n.

nrp := np

nry := n

np := nr

nr := y

}

This function makes a simple rearrangement of the nodes close

to a given node n in a splay tree. A splay tree of a binary

tree of key-value pairs with each node being of the form:

[key val parent left right]. The fields parent, left and right are

pointers to other nodes but may be null.

242 CHAPTER 9. THE DESIGN OF CINTCODE

The function has just one match item which contains a pattern that

only contains pattern variable declarations so always matches its

argument. The variable names are chosen to make it easy to tell which

variables depend on other pattern variables. For instance nryp depends

on nrp, nr and n. We therefore know that an assignment to nryp must

typically be made before updating nr.

The pattern and its declared variables are valid even when some of

the pointers are null. For instance, the variables npl and npr should

only be accessed when np is known to be non null.

The Cintcode translation of rotleft starts as follows:

// Entry to: rotleft

392: L18:

392: L4P3 LET y = nry

393: RV3

394: SP4

Notice that the pattern variable nry is accessed efficiently by two

single byte Cintcode instructions. As will be seen even deeply nested

pattern variables are accessed with reasonable efficiency.

395: L2P3 TEST np

396: JEQ0 L45

398: RV3 THEN TEST n=npl

399: LP3

400: JNE L47

402: L4P3 THEN npl := nr

403: L2P3

404: ST3

405: J L46

407: L47:

407: L2P3 ELSE npr := nr

408: A4

409: L4P3

410: XCH

411: ST

412: J L46

414: L45:

414: L4P3 ELSE root := nr

415: SG 204

417: L46:

Notice that the assignment to npr is slightly less efficient than the

assignment to npl. This is because Cintcode has the instruction ST3

but not ST4.

9.3. EXAMPLE TRANSLATION OF CODE FRAGMENTS 243

417: L4P3 IF nry

418: RV3

419: JEQ0 L48

421: L4P3 DO nryp := n

422: RV3

423: LP3

424: XCH

425: ST2

426: L48:

Even though the pattern variable nryp is deeply nested the assignment

is still reasonably efficient.

426: L2P3 nrp := np

427: L4P3

428: ST2

429: LP3 nry := nr

430: L4P3

431: ST3

432: L4P3 np := nr

433: LP3

434: ST2

435: LP4 nr := y

436: L4

437: STP3

438: RTN

Note that the four assignments above are each implemented by three

single byte Cintcode instructions.

244 CHAPTER 9. THE DESIGN OF CINTCODE

Chapter 10

The BCPL Compiler

The previous chapters have given the definition of BCPL, Ocode and

Cintcode. This chapter gives a brief outline of design of the BCPL

compiler. The reason for this chapter is the it provides a example of

how BCPL can be used to implement a reasonably significant program, and

it may help to consolidate the readers understanding of the language.

The compiler is quite small and easy to understand partly because

BCPL is so simple and its translation into Cintcode needs little

optimisation. It is just an ordinary command with its source code in

the directory cintcode/com which contains the source of all the other

standard commands.

If the system has been installed in the standard way, all its

files will be in the directory distribution/BCPL in the user’s home

directory. The directory BCPL contains various subdirectories.

The directory g holds header files such as libhdr.h which contains

declarations of all the standard library functions. It also declares

library variables and constants needed by most programs. Other header

files such as sdl.h and gl.h provide optional declarations of less

frequently used packages, in this case the SDL graphics library and

Open GL. Some files in g such as sdl.b and gl.b contain contain actual

definitions of functions needed by these packages. One header file of

particular relevence to the BCPL compiler is bcplfecg.h. This is used

by programs closely related to the compiler such as com/bcplsyn.b and

bcplcgcin.b. Files in directory g are normally included in programs

using GET directives.

The main source of the BCPL compiler is the file com/bcpl.b

but this essentially just contains GET directives to include the

three components of the compiler, namely bcplsyn.b, bcpltrn.b and

bcplcgcin.b. If run under the BCPL Cintcode system when the current

working directory is ~/distribution/BCPL/cintcode, the compiler can be

recompiled using the command: c bc bcpl. This places the compiled

code in directory cintcode/cin which is the normal place for all

compiled standard commands. On a Raspberry Pi 5 compiling the compiler

245

246 CHAPTER 10. THE BCPL COMPILER

takes less a second. The components of the compiler are briefly

described in turn.

10.1 Lexical Analyser

The lexical analyser and syntax analyser are combined in the file

bcplsyn.b. When the syntax analyser requires another lexical token

it calls the lexical analyser function lex() which updates the variable

token with a value representing the next token. Sometimes lex places

additional information in other variables such as wordnode decval,

fltval, It also sets lineno to hold word containing the packed file

and line number of the latest token. It sets nlpending to TRUE if the

latest token is the first token on an input line.

Much of the implementation of lex is trivially simple switching on

the next character of input, normally held in the variable ch to decide

what to do. Some characters such as spaces and tabs are just skipped

over and several others such as ’;’, ’,’ and ’@’ repesent tokens

directly, while others such as ’<’ may require a single character

lookahead to determine whether the token is <=, << or just <. The

lexical analysis of names is more involved since some names, such as

WHILE or ABS, are reserved words. When a name in not a reserved word,

token is set to s name with wordnode pointing to its parse tree node.

Multiple occurrences of the same name share the same name node. This

allows the equality of pointers to be used an efficient test of whether

two names are indeed the same. To implement this, a hash table is used

to hold lists of name nodes. When a name is encountered its hash value

is determined and only name nodes with the same hash value need to be

inspected. To implement this name nodes have a link field holding a

pointer to the next node in its hash chain. In the translation phase

when name nodes are no longer being created this link field is used for

another purpose.

The first word of every node of the parse tree identifies what what

it represents. For name nodes this field is given the constant value

s name. The use of this hash table mechanism allows the table to be

preset with nodes for all the reserved words, placing the appropriate

token values in their first words.

The hash table is also used to hold section bracket tags and the

tags used by the conditional compilation mechanism. These nodes have

their name strings starting with dollar signs to avoid confusion with

ordinary variable names and reserved words.

Parse tree nodes could be allocated using getvec but it is more

convenient and efficient to use an alternative space allocator called

newvec. This obtains fairly large blocks of memory as needed using

getvec allocating the typically small parse tree nodes from such

blocks. When the parse tree is no longer needed it can be returned

10.2. SYNTAX ANALYSER 247

efficiently to free store without having to return every parse tree

node individually.

Integer constants have their values placed in decval and floating

point constants use fltval to hold the floating point value. String

constants do not use the hash table but do use wordnode to pass newly

created string constant nodes to the syntax analyser.

There is a vector charv that holds a circular buffer of recent

characters of input. This is used when generating error messages

detected during lexical and syntax analysis. The vector getv is used

in the implementation of GET directives. It holds a stack of items

containg the current selected input stream, the current file and line

number.

10.2 Syntax analyser

The syntax analyser takes a stream of lexical tokens obtained by

successive calls of lex(). It recognises the syntactic constructs

and creates a tree representing the parsed program in a form that

is convenient for the next phase of the compilation. The program

is easy to understand since it is a direct implementaions of the

recursive descent parser specified by the flow graphs in Appendix A.

To illustrate the way these flow graphs are implemented in BCPL we will

look at the definition of rdmatchlist which reads sequences of match

items used in MATCH expressions and some function definitions. This

function is given the argument s yields or s be indicating whether the

match list is selecting an expression or a command. This argument is

zero if the kind of match list is not yet known. The flow graph for

match lists is as follows:

The defintion of rdmatchlist is as follows:

AND rdmatchlist(sort) = VALOF

{ // Return the parse tree for the match list.

// Return in result2 {\tt s_yields} or {\tt s_be}

// indicating which kind of match list was found.

LET res = rdmatchitem(sort) // Read the first match item

LET lastitem = res

sort := result2

248 CHAPTER 10. THE BCPL COMPILER

WHILE token=s_colon DO

{ LET item = rdmatchitem(sort)

h4!lastitem := item

lastitem := item

}

IF token = s_dot DO lex() // The final dot is optional

result2 := sort

RESULTIS res

}

This function calls rdmatchitem to read match items forming them into

a list. Match item nodes have five elements the first is the operator

s matchiteme or s matchitemc indicating the kind of match item. The h2

and h3 fields hold the item’s pattern list and expresion or command.

The h4 field holds a link to the next match item, if any, and the

final field holds the packed file and line number. The deinition of

rdmatchitem is as follows:

AND rdmatchitem(sort) = VALOF

{ // sort is either s_yields or s_be or zero if not yet known.

// It returns a pointer to a match item with a null link, ie

// [matchiteme, Plist, E, 0, ln]

// or [matchitemc, Plist, C, 0, ln]

// result2 is set to s_yields or s_be, as appropriate

LET res = 0

LET patlist = 0

LET ln = lineno

UNLESS token = s_colon DO

synerr("A match item must start with a ’:’")

lex() // Skip over the colon

UNLESS token=s_yields | token=s_be DO

{ // There must be a pattern if token is not => or BE

patlist := rpat(0)

UNLESS token=s_yields | token=s_be DO

synerr("token is %s when => or BE expected", opname(token))

}

UNLESS sort DO sort := token

ln := lineno // The line number of => or BE

10.2. SYNTAX ANALYSER 249

// Check that then defining operator in all match item are the same.

UNLESS sort=token

TEST sort=s_yields

THEN paterr("*nThe defining operator in this match item should be ’=>’")

ELSE paterr("*nThe defining operator in this match item should be ’BE’")

TEST sort=s_yields

THEN res := mk5(s_matchiteme, patlist, rnexp(0), 0, ln)

ELSE res := mk5(s_matchitemc, patlist, rncom(), 0, ln)

result2 := sort

RESULTIS res

}

Notice that the pattern between : and => or BE is optional as

specified by the flow graph. If a pattern is present it is read by

the call of rpat(0) correponding to . If after the pattern it

then encounters => it calls rnexp(0) which calls lex() before returning

the result of rexp(0), but if it encounters BE it calls rncom() to read

a command.

As the syntax analyser runs it creates a parse tree of typically

small nodes. They are allocated using newvec as used by lex when

allocating name nodes. For convenience most tree nodes are allocated

using functions such mk5 that allocates a node of specified size and

sets its elements. Notice that the packed file and line number of the

: at the start of the current match item was saved in ln and placed in

the fifth element of the match item node.

Every recursive descent function, such as rdmatchitem and rexp,

follow the same convention that on entry token will be the first token

of the construct to be parsed, and on exit token will be the first

token following the construct just read. For many such functions it is

useful to have auxiliary functions that call lex() before calling the

recursive descent function itself. We have already seen two examples

rnpat and rnexp.

The function rpat parses a pattern based on the folllowing flow

graph.

250 CHAPTER 10. THE BCPL COMPILER

It definition is as follows:

AND rpat(n) = VALOF

{ // Returns zero if token cannot start a pattern.

// otherwise return it parse tree.

LET pat = rspat() // Read a simple pattern not involving

// comma, vertical bar or juxtapositions.

UNLESS pat RESULTIS 0

{ // Repeatedly combine pat with other simple patterns

// separated by commas, vertical bars and juxtapositions

// depending on the precedence n.

SWITCHON token INTO

{ DEFAULT:

// token is not s_comma or s_logor but

// juxtaposition is possible.

IF n<3 DO

{ // Juxtaposition is allowable

LET b = rpat(3)

IF b DO

{ pat := mk3(s_patand, pat, b)

LOOP

}

}

// Juxtaposition was not possible

RESULTIS pat

CASE s_comma:

UNLESS n<1 RESULTIS pat // Comma is not allowed

lex()

pat := mk3(s_comma, pat, rpat(1))

10.2. SYNTAX ANALYSER 251

LOOP

CASE s_logor:

UNLESS n<2 RESULTIS pat // Vertical bar not allowed

lex()

pat := mk3(s_pator, pat, rpat(2))

LOOP

}

} REPEAT

}

This function starts by calling rspat to read a simple pattern not

involving commas, vertical bars or juxtapositions. This corresponds

to the left side of the flowgraph. It then enters a loop that combines

this pattern with other simple patterns forming s comma, s pator or

s patand nodes, as appropriate provided the precedence value n is

suitable.

The function that reads a simple pattern is straightforward and is

as follows:

AND rspat() = VALOF

{ // Attempt to read a simple basic, ie one that does not

// include comma. vertical bar or juxtaposition at the

// outermost level.

// It returns zero if token cannot start a pattern.

LET pat = 0

LET op = token

SWITCHON op INTO

{ DEFAULT:

{ pat := rbpat()

UNLESS pat RESULTIS 0

IF token=s_range | token=s_frange DO

{ LET op = token

LET b = rnbpat()

UNLESS b DO

synerr("Problem with the right hand operand of a range")

RESULTIS mk3(op, pat, b)

}

RESULTIS pat

}

// All the tokens in relop

CASE s_eq: CASE s_feq:

252 CHAPTER 10. THE BCPL COMPILER

CASE s_ne: CASE s_fne:

CASE s_le: CASE s_fle:

CASE s_ge: CASE s_fge:

CASE s_ls: CASE s_fls:

CASE s_gr: CASE s_fgr:

{ LET patrelop = rel2patrel(token)

lex()

IF token=s_lparen DO

{ pat := mk2(patrelop, rnexp(0)) // patrelop (E)

UNLESS token=s_rparen DO

synerr("*n There is a problem with the expression enclosed*n*

* in parentheses following a relational operator.")

lex() // Skip over the close parenthesis

RESULTIS pat

}

{ // The operand must be a bpat

LET b = rbpat()

UNLESS b DO

synerr("Bad relational expression in a pattern")

RESULTIS mk2(relop, b)

}

}

// All the tokens belonging to jcom.

CASE s_break:

CASE s_loop:

CASE s_endcase:

CASE s_next:

CASE s_exit:

CASE s_return:

RESULTIS rbcom()

CASE s_lparen:

pat := rnpat(0) // (P0)

UNLESS pat & token=s_rparen DO

synerr("There is a problem with a pattern enclosed in parentheses")

lex() // Skip over the close parenthesis

RESULTIS mk2(s_patseq, pat)

CASE s_sbra:

pat := rnpat(0) // [P0]

UNLESS pat & token=s_sket DO

synerr("There is a problem with a pattern enclosed in square brackets")

lex() // Skip over the close square bracket

10.2. SYNTAX ANALYSER 253

RESULTIS mk2(s_patptr, pat)

CASE s_flt:

// Note a name not preceeded by FLT will have been read

// rbpat() above.

lex()

UNLESS token=s_name DO synerr("A name must follow FLT")

RESULTIS mk2(s_flt, wordnode)

}

}

As can be seen it follows precisely the parsing algorithm specified

by the flow graph. It uses rbpat whenever it needs to read a basic

pattern. The definition of rbpat is as follows:

AND rbpat() = VALOF

{ // Attempt to read a basic pattern,

// ie a possibly signed integer or floating point constant.

// a character constant, TRUE, FALSE, BITSPERBCPLWORD, ?,

// or a name not preceeded by FLT.

SWITCHON token INTO

{ DEFAULT:

RESULTIS 0

CASE s_number:

CASE s_fnum:

CASE s_true:

CASE s_false:

CASE s_query:

CASE s_name:

RESULTIS rbexp()

CASE s_add: CASE s_fadd:

CASE s_sub: CASE s_fsub:

CASE s_abs: CASE s_fabs:

{ LET op = token

lex()

UNLESS token=s_number | token=s_fnum DO

synerr("A number must follow a monadic sign operator in a pattern")

RESULTIS mk2(op=s_add -> s_pos, // Use the monadic version

op=s_fadd -> s_fpos, // of + and -.

op=s_sub -> s_neg,

op=s_fsub -> s_fneg,

op, // op is s_abs or s_fabs

254 CHAPTER 10. THE BCPL COMPILER

rbexp())

}

}

}

Notice that dyadic operators are converted to their monadic versions

as necessary, and that the operator ABS is treated as a sign since

it corresponds to monadic plus or minus depending on the sign of its

operand.

This completes the summary of how patterns are parsed. The parsing

of expressions, command and definitions are done using the functions

rexp, rcom and rdef. Their implementation is as easy to understand as

those that parsed patterns and so will not be described here.

There are however some slight subtleties. One is in the treatment

of so called simultaneous assignments. In BCPL these are not

simultaneous but are executed as a sequence of simple assignments from

left to right. For instance the asignment:

a, b, c := x, y, z

is precisely equivalent to the following:

{ a := x; b := y; c := z }

This tranformation is done during syntax analysis using the function

cvassign. This became necessary when the FLT feature was added to

the language since some of the individual assignments may be given the

FLT tag. There is a similar transformation required in simultaneous

definitions.

One function plist is defined in bcplsyn.b but is not strictly part

of the syntax analyser since it is only used as a debugging aid to

output the parse tree is a readable form. But its definition is useful

since it can be regarded as a description of the structure of every

kind of node in the parse tree. If you compile the following program

with the tree option it will output the following representation of the

parse tree.

LET f : a, [-2, y] => a + y

OCODE size: 40/400000

10.3 The translation phase

10.4 The Codegenerator

Chapter 11

The Design of Sial

Sial is an internal intermediate assembly language designed for BCPL.

The first version was called Cial (Compact Internal Assembly Language)

was pronounced ‘‘seal’’. It was essentially an assembly language for

Cintcode with the same function code mnemonics and the same abstract

machine registers. It was soon found that rather than having a variety

of codes to load an integer constant (such as L0, L1, L2, LM1, LW,

LH or L), it was better to have one function code to load positive

integers and another for negative ones with the values specified by

operands. This form is more convenient for translation and easier to

compress. The new language is called Sial (also pronouced ‘‘seal’’)

with the S standing for smaller. Sial therefore has fewer function

codes than Cintcode and most of them take operands but still uses the

same abstract machine registers. Although Cintcode load instructions

save the value of the A register in B before setting A, Sial loads

typically do not. The current version of Sial has not yet been updated

to deal with the extended BCPL features such as floating point and op:=

assignments.

As as example of the use of Sial, consider the program com/hello.b

which is as follows:

GET "libhdr"

LET start() = VALOF
{ writef("Hello*n")
RESULTIS 0

}

This can be translated into Sial using bcpl2sial com/hello.b to
hello.sial. The resulting file is:

F104
F113 K5 C115 C116 C97 C114 C116
F111 L1
F112 M9001

255

256 CHAPTER 11. THE DESIGN OF SIAL

F32 P3 G94
F11 K0
F77
F107 M9001 K6 C72 C101 C108 C108 C111 C10
F106 K1 G1 L1 G94
F105

This can be converted into something slightly more readable using the

command: sial-sasm hello.sial to * giving: This can be translated

into Sial using the bcpl2sial command as follows.

0.010> sial-sasm hello.sial to *
Converting hello.sial to *
MODSTART

//Entry to: start
ENTRY K5 C115 C116 C97 C114 C116
LAB L1
LSTR M9001
KPG P3 G94
L K0
RTN
STRING M9001 K6 C72 C101 C108 C108 C111 C10
GLOBAL K1
G1 L1
G94
MODEND
Conversion complete
0.000>

Alternatively, the Sial can be translated, statement by statement, into

the assembly language of a machine such as the Pentium as follows.

0.000> sial-386 hello.sial to hello.s
Converting hello.sial to hello.s
Conversion complete
0.010> type hello.s
Code generated by sial-386

.text

.align 16
MODSTART

Entry to: start
ENTRY K5 C115 C116 C97 C114 C116
LAB L1

LA1:
movl %ebp,0(%edx)
movl %edx,%ebp
popl %edx
movl %edx,4(%ebp)
movl %eax,8(%ebp)

257

movl %ebx,12(%ebp)
LSTR M9001
leal MA9001,%ebx
shrl $2,%ebx
KPG P3 G94
movl 376(%esi),%eax
leal 12(%ebp),%edx
call *%eax
L K0
xorl %ebx,%ebx
RTN
movl 4(%ebp),%eax
movl 0(%ebp),%ebp
jmp *%eax
STRING M9001 K6 C72 C101 C108 C108 C111 C10
.data
.align 4
MA9001:
.byte 6
.byte 72
.byte 101
.byte 108
.byte 108
.byte 111
.byte 10
.text
GLOBAL K1

.globl prog

.globl _prog
prog:
_prog:
movl 4(%esp),%eax
G1 L1
movl $LA1,4(%eax)
G94
ret

MODEND
0.020>

Sial was designed as an experiment in the compact representation

of algorithms that can be just-in-time compiled easily into code for

any target machine. Its secondary purpose was to allow an easy way to

generate native code translations of BCPL programs giving typically

a ten fold speedup over the Cintcode interpretive version. An

experienced programmer can normally modify an existing Sial translator

to generate reasonable code for a new target in one or two days.

The following sections give a specification of Sial and an outline

of how the translator sial-686 works.

258 CHAPTER 11. THE DESIGN OF SIAL

11.1 The Sial Specification

Sial consists of a stream of directives and instructions each starting

with an opcode followed by operands. Both opcodes and operands and

encoded using integers each prefixed by a letter specifying what kind

of value it represents. The prefixes are as follows:

F An opcode or directive

P A stack offset, 0 to #xFFFFFF

G A global variable number, 0 to 65535

K A 24-bit unsigned constant, often small in value

W A signed integer, used for static data and large constants

C A byte in range 0 to 255

L A label generated by translation phase

M A label generated by the Sial codegenerator

The instructions are for an abstract machine with the following

internal registers.

a The main accumulator, function first arg and result register

b The second accumulator used in dyadic operations

c Register used by pbyt and xpbyt, and possibly currupted by

some other instructions, such as mul, div, rem, xdiv and xrem

P Pointer to the base of the current stack frame

G Pointer to the base of the Global Vector

PC Set by jump and call instrunctions

The opcodes and directives are as follows:

Mnemonic Operand(s) Meaning

lp Pn a := P!n

lg Gn a := G!n

ll Ln a := !Ln

llp Pn a := @ P!n

llg Gn a := @ G!n

lll Ln a := @ !Ln

lf Ln a := address of entry point Ln

l Kn a := n

lm Kn a := - n

sp Pn P!n := a

sg Gn G!n := a

sl Ln !Ln := a

ap Pn a := a + P!n

ag Gn a := a + G!n

a Kn a := a + n

s Kn a := a - n

11.1. THE SIAL SPECIFICATION 259

lkp Kk Pn a := P!n!k

lkg Kk Gn a := G!n!k

rv a := ! a

rvp Pn a := P!n!a

rvk Kn a := a!k

st !a := b

stp Pn P!n!a := b

stk Kn a!n := b

stkp Kk Pn P!n!k := a

skg Kk Gn G!n!k := a

xst !b := a

k Pn Call a(b,...) incrementing P by n

leaving b in a

kpg Pn Gg Call Gg(a,...) incrementing P by n

neg a := - a

not a := ~ a

abs a := ABS a

xdiv a := a / b; c := ?

xmod a := a MOD b; c := ?

xsub a := a - b; c := ?

mul a := b * a; c := ?

div a := b / a; c := ?

mod a := b MOD a; c := ?

add a := b + a

sub a := b - a

eq a := b = a

ne a := b ~= a

ls a := b < a

gr a := b > a

le a := b <= a

ge a := b >= a

eq0 a := a = 0

ne0 a := a ~= 0

ls0 a := a < 0

gr0 a := a > 0

le0 a := a <= 0

ge0 a := a >= 0

260 CHAPTER 11. THE DESIGN OF SIAL

lsh a := b << a

rsh a := b >> a

and a := b & a

or a := b | a

xor a := b XOR a

eqv a := b EQV a

gbyt a := b % a

xgbyt a := a % b

pbyt b % a := c

xpbyt a % b := c

swb Kn Ld K1 L1 ... Kn Ln Binary chop switch, Ld default

swl Kn Ld L1 ... Ln Label vector switch, Ld default

xch Swap a and b

atb b := a

atc c := a

bta a := b

btc c := b

atblp Pn b := a; a := P!n

atblg Gn b := a; a := G!n

atbl Kk b := a; a := k

j Ln Jump to Ln

rtn Function or routine return

goto PC := a

ikp Kk Pn a := P!n + k; P!n := a

ikg Kk Gn a := G!n + k; G!n := a

ikl Kk Ln a := !Ln + k; !Ln := a

ip Pn a := P!n + a; P!n := a

ig Gn a := G!n + a; G!n := a

il Ln a := !Ln + a; !Ln := a

jeq Ln Jump to Ln if b = a

jne Ln Jump to Ln if b ~= a

jls Ln Jump to Ln if b < a

jgr Ln Jump to Ln if b > a

jle Ln Jump to Ln if b <= a

jge Ln Jump to Ln if b >= a

jeq0 Ln Jump to Ln if a = 0

jne0 Ln Jump to Ln if a ~= 0

jls0 Ln Jump to Ln if a < 0

jgr0 Ln Jump to Ln if a > 0

jle0 Ln Jump to Ln if a <= 0

jge0 Ln Jump to Ln if a >= 0

jge0m Mn Jump to Mn if a >= 0

11.1. THE SIAL SPECIFICATION 261

brk Breakpoint instruction

nop No operation

chgco Change coroutine

mdiv a := muldiv(P!3, P!4, P!5)

sys System function

section Kn C1 ... Cn Name of section

modstart Start of module

modend End of module

global Kn G1 L1 ... Gn Ln Global initialisation data

string Ml Kn C1 ... Cn String constant

const Mn Ww Large integer constant

static Ln Kk W1 ... Wk Static variable or table

mlab Mn Destination of jge0m

lab Lm Program label

lstr Mn a := Mn (pointer to string)

entry Kn C1 ... Cn Start of a function

The following Sial operators were added in August 2014 to allow

native code compilation of the floating point code. All floating point

operators may corrupt global 11 (tempval).

float a := FLOAT a; b := ?

fix a := FIX a; b := ?

fabs a := #ABS a; b := ?

fneg a := #- a; b := ?

fmul a := b #* a; b := ?

fdiv a := b #/ a; b := ?

fmod a := b #MOD a; b := ?

fadd a := b #+ a; b := ?

fsub a := b #- a; b := ?

feq a := b #= a; b := ?

fne a := b #~= a; b := ?

fls a := b #< a; b := ?

fgr a := b #> a; b := ?

fle a := b #<= a; b := ?

fge a := b #>= a; b := ?

feq0 a := a #= 0; b := ?

fne0 a := a #~= 0; b := ?

fls0 a := a #< 0; b := ?

fgr0 a := a #> 0; b := ?

fle0 a := a #<= 0; b := ?

fge0 a := a #>= 0; b := ?

The floating point conditional jump instructions are as follows.

262 CHAPTER 11. THE DESIGN OF SIAL

jfeq Ln Jump to Ln if b #= a; b := ?

jfne Ln Jump to Ln if b #~= a; b := ?

jfls Ln Jump to Ln if b #< a; b := ?

jfgr Ln Jump to Ln if b #> a; b := ?

jfle Ln Jump to Ln if b #<= a; b := ?

jfge Ln Jump to Ln if b #>= a; b := ?

jfeq0 Ln Jump to Ln if a #= 0; b := ?

jfne0 Ln Jump to Ln if a #~= 0; b := ?

jfls0 Ln Jump to Ln if a #< 0; b := ?

jfgr0 Ln Jump to Ln if a #> 0; b := ?

jfle0 Ln Jump to Ln if a #<= 0; b := ?

jfge0 Ln Jump to Ln if a #>= 0; b := ?

Notice that all floating point instructions currently leave register

b undefined, but this may be changed later. They may also may corrupt

global 11 (tempval).

A second example of the use of Sial is the following program

(com/fact.b):

SECTION "fact"

GET "libhdr"

LET start() = VALOF
{ FOR i = 1 TO 5 DO writef("fact(%n) = %i4*n", i, fact(i))

RESULTIS 0
}

AND fact(n) = n=0 -> 1, n*fact(n-1)

It translation in Sial code is as follows:

F104
F103 K4 C102 C97 C99 C116
F113 K5 C115 C116 C97 C114 C116
F111 L1
F11 K1
F13 P3
F111 L4
F3 P3
F69
F9 L2
F31 P9
F13 P9
F3 P3
F13 P8
F112 M1
F32 P4 G94
F79 K1 P3
F75 K5
F89 L4

11.1. THE SIAL SPECIFICATION 263

F11 K0
F77
F107 M1 K15 C102 C97 C99 C116 C40 C37 C110
C41 C32 C61 C32 C37 C105 C52 C10
F113 K4 C102 C97 C99 C116
F111 L2
F92 L5
F11 K1
F77
F111 L5
F12 K1
F16 P3
F69
F9 L2
F31 P4
F73 P3
F39
F77
F106 K1 G1 L1 G94
F105

Using the sial-sasm command we obtain the following more readable

version:

MODSTART
SECTION K4 C102 C97 C99 C116

//Entry to: start
ENTRY K5 C115 C116 C97 C114 C116
LAB L1
L K1
SP P3
LAB L4
LP P3
ATB
LF L2
K P9
SP P9
LP P3
SP P8
LSTR M1
KPG P4 G94
IKP K1 P3
ATBL K5
JLE L4
L K0
RTN
STRING M1 K15 C102 C97 C99 C116 C40 C37 C110 C41 C32

C61 C32 C37 C105 C52 C10

//Entry to: fact
ENTRY K4 C102 C97 C99 C116
LAB L2
JNE0 L5
L K1
RTN

264 CHAPTER 11. THE DESIGN OF SIAL

LAB L5
LM K1
AP P3
ATB
LF L2
K P4
ATBLP P3
MUL
RTN
GLOBAL K1
G1 L1
G94
MODEND

This can be translated into assembly language using the program

com/sial-686.b which is a simple program based on sial-sasm.b. This

version can now compile the floating point instructions recently added

to Sial. It generates the readable version of the Sial source as

comments interspersed with the corresponding Pentium assembly code.

For the example program given above, it outputs the following assembly

language.

Code generated by sial-686

.text

.align 16
MODSTART
SECTION K4 C102 C97 C99 C116

Entry to: start
ENTRY K5 C115 C116 C97 C114 C116
LAB L1

LA1:
movl %ebp,0(%edx)
movl %edx,%ebp
popl %edx
movl %edx,4(%ebp)
movl %eax,8(%ebp)
movl %ebx,12(%ebp)

L K1
movl $1,%ebx

SP P3
movl %ebx,12(%ebp)

LAB L4
LA4:
LP P3
movl 12(%ebp),%ebx

ATB
movl %ebx,%ecx

LF L2
leal LA2,%ebx

K P9
movl %ebx,%eax

11.1. THE SIAL SPECIFICATION 265

movl %ecx,%ebx
leal 36(%ebp),%edx
call *%eax
SP P9
movl %ebx,36(%ebp)
LP P3
movl 12(%ebp),%ebx
SP P8
movl %ebx,32(%ebp)
LSTR M1
leal MA1,%ebx
shrl $2,%ebx
KPG P4 G94
movl 376(%esi),%eax
leal 16(%ebp),%edx
call *%eax
IKP K1 P3
movl 12(%ebp),%ebx
incl %ebx
movl %ebx,12(%ebp)
ATBL K5
movl %ebx,%ecx
movl $5,%ebx
JLE L4
cmpl %ebx,%ecx
jle LA4
L K0
xorl %ebx,%ebx
RTN
movl 4(%ebp),%eax
movl 0(%ebp),%ebp
jmp *%eax
STRING M1 K15 C102 C97 C99 C116 C40 C37 C110 C41 C32
C61 C32 C37 C105 C52 C10
.data
.align 4
MA1:
.byte 15
.byte 102
.byte 97
.byte 99
.byte 116
.byte 40
.byte 37
.byte 110
.byte 41
.byte 32
.byte 61
.byte 32
.byte 37
.byte 105
.byte 52
.byte 10
.text

Entry to: fact

266 CHAPTER 11. THE DESIGN OF SIAL

ENTRY K4 C102 C97 C99 C116
LAB L2

LA2:
movl %ebp,0(%edx)
movl %edx,%ebp
popl %edx
movl %edx,4(%ebp)
movl %eax,8(%ebp)
movl %ebx,12(%ebp)

JNE0 L5
orl %ebx,%ebx
jne LA5

L K1
movl $1,%ebx

RTN
movl 4(%ebp),%eax
movl 0(%ebp),%ebp
jmp *%eax

LAB L5
LA5:
LM K1
movl $-1,%ebx

AP P3
addl 12(%ebp),%ebx

ATB
movl %ebx,%ecx

LF L2
leal LA2,%ebx

K P4
movl %ebx,%eax
movl %ecx,%ebx
leal 16(%ebp),%edx
call *%eax

ATBLP P3
movl %ebx,%ecx
movl 12(%ebp),%ebx

MUL
movl %ecx,%eax
imul %ebx
movl %eax,%ebx

RTN
movl 4(%ebp),%eax
movl 0(%ebp),%ebp
jmp *%eax

GLOBAL K1

.globl fact

.globl _fact
fact:
_fact:
movl 4(%esp),%eax

G1 L1
movl $LA1,4(%eax)

G94

11.1. THE SIAL SPECIFICATION 267

ret

MODEND

When implementing sial-686 it was necessary to decide how the Intel

registers were to be used and what the BCPL calling sequence should be.

The chosen register allocation was as follows:

Intel register Use

%eax A work register

%ebx The A register

%ecx The B register

%edx The C register

%esi The G pointer

%edi A work register

%ebp The P pointer

%st(0) The X register used

in the

compilation of floating point operations

%sp(0) The S register used

when transferring

floating

point numbers between X and A or B

The chosen BCPL calling sequence is as follows:

Entry address must be in %eax
The first argument must be in %ebx

leal <stack increment>(%ebp),%edx # Set %edx to the new P pointer
call *%eax # Subroutine jump to the entry point

The entry sequence is as follows:

The first argument is in %ebx(=A)
The new P pointer is in %edx(=C)

movl %ebp,0(%edx) # C!0 := P
movl %edx,%ebp # P := C
popl %edx # Get the return address
movl %edx,4(%ebp) # P!1 := return address
movl %eax,8(%ebp) # P!2 := entry address
movl %ebx,12(%ebp) # P!3 := the first argument

The return sequence is as follows:

The result is in %ebx(=A)
movl 4(%ebp),%eax # Get the return address
movl 0(%ebp),%ebp # P := the saved P pointer
jmp *%eax # Jump to the return address

The structure of sial-686 is simple. It mainly consists of a large

switch within the function scan that has a case for each Sial function

code and directive. For example, the case for the function code kpg is

approximately as follows:

268 CHAPTER 11. THE DESIGN OF SIAL

CASE f_kpg: cvfpg("KPG") // Call Gg(a,...) incrementing P by n
writef("*n movl %n(%%esi),%%eax", 4*gval)
writef("*n leal %n(%%ebp),%%edx", 4*pval)
writef("*n call **%%eax")
ENDCASE

The call cvfpg("KPG") reads the Sial statement knowing it is of the

form: KPG Pk Gn. This outputs the statement as an assembly language

comment after placing k and n in pval and gval, respectively. The

three writef calls then output the three assembly language instructions

for the KPG operation, and ENDCASE transfers control to where the next

Sial statement is processed. All the other cases are equally simple.

To improve the efficiency of the floating point code, instructions

that normally load a value into A or B are delay until it is known how

the value is to be used. If a floating point operation is about to

be performed it is better to load the value into X. Where possible,

sial-686.b remembers what value (such as which local or global) is

currently held in A, B, X and S.

The section name of the program, which must be present, compiles

into a C callable function that initialises the BCPL global vector

with the entry points defined within this module. To complete the 686

implementation, there is a short handwritten assembly language library

natbcpl/sysasm/mlib.s that defines the BCPL callable functions sys,

changeco and muldiv. The program must be linked the compiled versions

of the BCPL library modules BLIB and DLIB, and also clib whose source

is in natbcpl/sysc/clib.c.

Every section must contain the definition of a function to

initialise the global vector with the entry points of functions

defined in the section. For a section defined in BCPL, the name of

the initialisation function is the section name which must have been

specified in the BCPL source. A C program such as initprog.c must be

provided to with a definition of a function called initsections that

calls the initialisation function of every section of the program.

The command makeinit, described on page 161, can be used to create

the initialiation program. For the program prog.b given above, the

following command:

makeinit prog.b to initprog.c

will create the file initprog.c which is as follows:

// Initialisation file written by makeinit version 2.0

#include "bcpl.h"

WORD stackupb=50000;

11.2. COMPACTION OF SIAL 269

WORD gvecupb=1000;

// BCPL sections
extern BLIB(WORD *); // file (run-time library)
extern DLIB(WORD *); // file (system dependent library)
extern prog(WORD *); // file prog.b

void initsections(WORD *g) {
BLIB(g); // file (run-time library)
DLIB(g); // file (system dependent library)
prog(g); // file prog.b

return;
}

If needed, the runtime stack size and the size of the global vector

can be specified by arguments to makeinit. The compilation of initprog

must be linked in with the object code of all the other sections needed

by prog.b when building its executable. Assuming the executable is

placed in bin/prog, it can be executed by the bash shell command

./bin/prog or possibly just prog if the PATH environment variable is

suitably set.

11.2 Compaction of Sial

In order to transmit program to a device such as a mobile phone or

space probe over a slow connection it is useful to have a compact

representation of the code. Sial is both target machine independent

and can be compacted with ease. This section gives a brief overview of

an experimental compaction technique that seems to performs well.

Since the types of operands and their number depend only on the Sial

operator, an Sial stream can be split into several streams of which the

main one is the stream of Sial operators. Others are streams holding

global variable numbers, local variable offsets, program label numbers,

data labels, integer constants, character codes and a some others.

These streams can be separately compressed taking advantage of the

special properties of each. Some ideas are given below.

Local variable offsets have a very skew distribution and so are

susceptible to Huffman (or possibly arithmetic) coding after some

preprocessing to deal with large values and the implementation of

a mechanism to take advantage of the observation that, if an offset

is used once, the same offset is likely to be used again in the near

future. This might suggest the use of move-to-front buffering.

Program labels have the property that, in any section, they are

each only set once using a LAB or ENTRY statement. If they are

systematically renumbered so that successive label setting statements

take successive label numbers, there is no need for these statements

270 CHAPTER 11. THE DESIGN OF SIAL

to take a label argument. The remaining labels in the stream are

typically nearly monotonic the compaction algorithm can take advantage

of this.

The operation code stream often contains repeated patterns that

are susceptible to the conventional techniques used to compress text,

and the same applies to the stream of characters. It might be worth

separating out the integers representing the character string lengths

from other integers and place them either in a stream of their own or

insert them into the stream of characters.

Some preliminary experiments on Sial compression can be found in the

directory bcplprogs/sial in the standard BCPL distribution.

Chapter 12

The MC Package

This chapter describes the MC package which provides a machine

independent way to generate and execute native machine code at runtime.

The work on this package started in January 2008 and is still under

development, however, it currently works well enough to run the

n-queens problem on i386 machines about 24 times faster than the normal

Cintcode interpretive version. MC package development is performed

in the directory BCPL/bcplprogs/mc/ and fairly stable versions

are copied to BCPL/cintcode/g/mc.h, BCPL/cintcode/com/mci386.b and

BCPL/cintcode/cin/mci386 which can be used from any working directory.

Currently the MC package does not have any floating point operations.

This will be rectified in due course.

The package is based on a simple machine independent abstract

machine code called MC which is easily translated into machine

instructions for most architectures. Although native code is

generated by MC calls such as mcRDX(mc add, mc b, 20, mc d), MC has

a corresponding assembly language to assist debugging. The assembly

form of the instruction generated by the previous call is ADD B,20(D)

meaning set register B to the sum of B and the contents of the

memory location whose address is 20 plus the value of register D.

MC instructions are fairly low level and typically translate into

single native code instructions for most architectures. This example

translates into the i386 GNU statement: addl 20(%edx),%ebx.

The first operand is the destination for any instruction that

updates a register or memory location. Thus assignments are always

from right to left as in most programming languages but unlike many

assembly codes where, for instance, movl 20(%edx),%ebx updates the

second operand.

The MC machine has six registers A, B, C, D, E and F that are

directly available to the programmer, and also a program counter, stack

pointer, stack frame pointer and a condition code register, although

these cannot be accessed explicitly.

271

272 CHAPTER 12. THE MC PACKAGE

12.1 MC Example

The following program is a simple demonstration of the i386 version of

the MC package.

GET "libhdr"
GET "mc.h"

MANIFEST {
A=mc_a; B=mc_b; C=mc_c; D=mc_d; E=mc_e; F=mc_f
a1=1; a2; a3

}

LET start() = VALOF
{ // Load the dynamic code generation package for i386 machines.

LET mcseg, mcb, n = globin(loadseg("mci386")), 0, 0
UNLESS mcseg DO
{ writef("Trouble with MC package: mci386*n")
GOTO fin

}
// Create an MC instance for 10 functions with a data space
// of 100 words and code space of 4000 words.
mcb := mcInit(10, 100, 4000)
UNLESS mcb DO
{ writef("Unable to create an mci386 instance*n")
GOTO fin

}
mc := 0 // Currently no selected MC instance.
mcSelect(mcb) // Select the new MC instance.

mcK(mc_debug, #b0011) // Trace comments and MC instructions.

mcKKK(mc_entry, 1, 3, 5) // Entry point for function 1
// having 3 arguments and 5 local variables

mcK(mc_debug, #b1111) // Trace comments, MC instructions, target
// instructions and the compiled code.

mcRA(mc_mv, A, a1) // A := <arg 1>
mcRA(mc_add, A, a2) // A := A + <arg 2>

n := mcNextlab()
mcL(mc_lab, n) // Ln:
mcRA(mc_add, A, a3) // A := A + <arg 3>
mcR(mc_dec, A) // A := A - 1
mcRK(mc_cmp, A, 100)
mcJS(mc_jlt, n) // IF A<100 JMP Ln

mcK(mc_debug, #b0011) // Trace only comments and MC instructions.
mcF(mc_rtn) // Return from function 1 with result in A.
mcF(mc_endfn) // End of function 1 code.
mcF(mc_end) // End of dynamic code generation.

writef("*nF1(10, 20, 30) => %n*n", mcCall(1, 10, 20, 30))
fin:

IF mcseg DO unloadseg(mcseg)

12.1. MC EXAMPLE 273

RESULTIS 0
}

When this program runs it outputs the following.

// ENTRY 1 3 5
// DEBUG 15
// MV A,A1

movl 20(%ebp), %eax
573: 8B 45 14

// ADD A,A2
addl 24(%ebp), %eax

576: 03 45 18

// LAB L1
lab L1

579: L1:
// ADD A,A3

addl 28(%ebp), %eax
579: 03 45 1C

// DEC A
decl %eax

582: 48
// CMP A,$100

cmpl $100, %eax
583: 83 F8 64

// JLT L1
jl L1

586: 7C F7
// DEBUG 3
// RTN
// ENDFN
// END

F1(10, 20, 30) => 117

The result of 117 (= 10+20+(30-1)*3) shows that the body of the loop

was correctly executed three times.

The header file (mc.h) defines manifests (such as mc mv

and mc add) and globals (such as mcK and mcRA) provided by the

package. The package itself must be dynamically loaded (by

globin(loadseg("mci386"))) and then selected (by mcSelect(mcb)). MC

instructions are compiled by calls such as mcRA(op,... or mcRK(op,...

where op specifies the instruction or directive and the letters

following mc (eg RA or RK) specify the sort of operands supplied.

A register operand is denoted by R and an integer operand by K.

There are 9 possible kinds of memory operands denoted by A, V, G, M,

L, D, DX, DXs and DXsB. A denotes an specified argument of the current

function, V denotes a specified local variable of the current function,

G denotes a specified BCPL global variable, M denotes a location in

Cintcode memory specified by a BCPL pointer, L denotes the position

within the data or code areas of the compiled code corresponding to a

274 CHAPTER 12. THE MC PACKAGE

given label, D denotes a specified absolute machine address, DX denotes

a location whose machine address is the sum of a given byte offset and

register, DXs is similar to DX only the index register is scaled by

a given factor of 1, 2, 4 or 8 and finally DXsB is like DXs but has a

second specified register added into the effective address.

The following table summarises the MC code generation functions.

The first argument is always specifies the directive or instruction and

the remaining arguments specify the operands. The destination of any

instruction that updates a register or memory location is always the

first operand.

Function Operands

mcF No operand

mcK One integer operand

mcR One MC register operand

mcA One operand specifying an argument number

mcV One operand specifying an local variable number

mcG One operand specifying a global variable number

mcM One operand giving the word address of a location in

Cintcode memory

mcL One numeric label operand, defaulting to 32-bit relative

mcD One operand giving an absolute machine address

mcDX One memory operand specified by an offset added to an

index register

mcDXs One memory operand specified by an offset added to an

index register scaled by s which must be 1, 2, 4 or 8

mcDXsB One memory operand specified by an offset added to a

base register and an index register scaled by s which

must be 1, 2, 4 or 8

mcJS Jump instructions with near relative destinations

mcJL Jump instructions with possibly distant relative

destinations

mcJR Jump instructions with destination given by resister

mcRA Two operands, R and A

mcRV Two operands, R and V

mcRG Two operands, R and G

mcRM Two operands, R and M

mcRL Two operands, R and L

mcRD Two operands, R and D

mcRDX Two operands, R and DX

mcRDXs Two operands, R and DXs

mcRDXsB Two operands, R and DXsB

12.2. MC LIBRARY FUNCTIONS 275

mcRR Two operands, R and R

mcAR Two operands, A and R

mcVR Two operands, V and R

mcGR Two operands, G and R

mcMR Two operands, M and R

mcLR Two operands, L and R

mcDR Two operands, D and R

mcDXR Two operands, DX and R

mcDXsR Two operands, DXs and R

mcDXsBR Two operands, DXsB and R

mcRK Two operands, R and K

mcAK Two operands, A and K

mcVK Two operands, V and K

mcGK Two operands, G and K

mcMK Two operands, M and K

mcLK Two operands, L and K

mcDK Two operands, D and K

mcDXK Two operands, DX and K

mcDXsK Two operands, DXs and K

mcDXsBK Two operands, DXsB and K

mcKK Two integer operands

mcKKK Three integer operands

mcPRF One printf format string and one register

12.2 MC Library Functions

mcb := mcInit(maxfno, dsize, csize)

Create an instance of the MC package, allocating space for maxfno

functions, dsize words of data space and csize words of code space.

The MC control block is assigned to mcb.

mcSelect(mcb)

Select an instance of the MC package by assigning mcb to the global

variable mc. For efficiency reasons, mcSelect copies various field

in the control block to global variables. If mc was non zero, the

previous setting of the globals are saved in the previously selected MC

instance. It is thus important to set mc to zero before the first call

od mcSelect.

res := mcCall(fno, a1, a2, a3)

Call the function with number fno giving it the three arguments a1,

a2, a3. The result is assigned to res. Function fno must have been

defined to expect three arguments.

276 CHAPTER 12. THE MC PACKAGE

mcClose()

Close the currently selected MC instance deleting all its workspace

and compiled code. It also sets mc to zero.

mcPRF(mess, reg)

This function is an invaluable debugging aid which compiles code to

call the C function printf with the given format string (packed in the

data area) and the value of the specified register. All registers,

including the condition code, are preserved. The register argument may

be omitted if the format string requires no register argument. Typical

use of mcPRF is as follows:

mcRK(mc_mv, D, #x01234567)
mcRK(mc_mv, A, #x89ABCDEF)
mcRK(mc_mv, A, #x10000000)
mcPRF("With D=%8x ", D)
mcPRF("A=%8x ", A)
mcPRF("B=%8x*n", B)
mcR(mc_div, B)
mcPRF("the instruction: DIV B*n")
mcPRF("gives D=%8x ", D)
mcPRF("A=%8x ", A)
mcPRF("B=%8x*n", B)

This causes the following output:

With D= 1234567 A=89abcdef B=10000000
the instruction: DIV B
gives D= 9abcdef A=12345678 B=10000000

n := mcNextlab()

Allocate the next available label assigning its number to n.

Labels are use by instructions that refer to static data and in jump

instructions. There is essentially no limit to the number of labels

that may be allocated.

mcComment(format, a, b,..., k)

This is a debugging aid to make the compiled code more readable

using writef to write a message to the listing output during code

generation if the least significant bit of mcDebug is a one. The

variable mcDebug is set by the DEBUG directive described below.

res := mcDatap()

res := mcCodep()

These calls return the current positions in the data and code area

respectively.

All the other functions compile MC directives and instructions and

are described below.

12.3. THE MC LANGUAGE 277

12.3 The MC Language

The MC abstract machine language is fairly low level and is somewhat

influenced by the i386 architecture. Particularly the rather small

number of MC registers allowed, the rich variety of memory addressing

modes and the specification of the instructions for multiplication,

division and shifts. However, it is machine independent and reasonably

easy to compile into native machine code for most machines. Before

describing the MC instructions, a few key features will be introduced.

As mentioned earlier the MC machine has six registers named A to F

which are typically mapped directly onto machine registers of the

target architecture. These can be used for any purpose except for a

few instructions such as MUL, DIV and the shifts which may implicitly

use some of them implicitly.

When an MC function is declared it has a specified number of

arguments and local variables (see the ENTRY statement below). When

a function is called by the CALL instruction, the required number of

arguments must have already been pushed onto the stack. On return

these arguments will have been automatically popped from the stack. If

the wrong number of arguments are given, the effect is undefined. By

convention, the result of a function is returned in register A.

Numeric labels are used to refer to static data and positions in the

code. They are allocated by calls of mcNextlab, described above. Many

architectures allow both conditional and unconditional jumps to use

short offsets (typically single bytes) to specify the relative address

of the destination. Jump instructions automatically use short relative

addresses for backward jumps if possible, but, for forward jumps, the

programmer is required to give a hint. Jump instructions compiled by

mcJS expect forward jumps to use short relative addresses while mcJL

specifies that larger relative addresses are to be used. If a short

relative address proves insufficent and error message is generated

telling the programmer that mcJL should have been used. The function

mcJR is used when the destination address of a jump instruction is in a

register.

Conditional jump instructions inspect the condition code to

determine whether or not to jump. The condition code is set by

the CMP, ADD, ADDC, SUB and SUBC instructions and preserved by jump

instructions (JMP and Jcc). All other instructions (including INC and

DEC leave the condition code undefined.

All MC directives and instructions are described below in

alphabetical order. The name of the operation is given in bold

caplital letters together with the list of possible operand

types. The BCPL manifest for the operation consists of the name

in lower case letters preceded by mc . For example, mc add is the

manifest constant for the ADD operation, and since RDXs appears

278 CHAPTER 12. THE MC PACKAGE

in its list of operand types, it can be compiled by, for instance,

mcRDXs(mc add, mc a, 20, mc d, 4).

ADD RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Add the second operand into the first and set the condition code

appropriately. For example, mcRG(mc add, mc d, 150) will compile code

to add global 150 in register D.

ADDC RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Add the condition code carry bit and the second operand into the

first and set the condition code appropriately. Adding 1 into the

64-bit value held in B:A can be done by the code generated by:

mcRK(mc_add, mc_a, 1) // Don’t use INC here!
mcRK(mc_addc, mc_b, 0)

ALIGNC K

Align the next instruction to an address which is a multiple of k

which must be 2, 4 or 8.

ALIGND K

Align the next item of data to an address which is a multiple of k

which must be 2, 4 or 8.

AND RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Perform the bit wise AND of the second operand into the first.

CALL KK

Call the function who number is the first argument with n arguments

that have already been pushed onto the stack when n is the second

operand. On return these arguments will have been popped and, by

convention, the result will be in register A.

CDQ F

Sign extend register A into D. That is, if A is positive set D

to zero, otherwise it is to #xFFFFFFFF. This is normally used in

conjuction with DIV.

CMP RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

12.3. THE MC LANGUAGE 279

RK AK VK GK MK LK DK DXK DXsK DXsBK

Set the condition code to difference between the first operand

and the second. The condition code is used by conditional jumps and

conditional setting instructions. For example,

mcRK(mc_cmp, mc_b, 100)
mcJL(mc_jle, 25)

will compile code to jump the label L25 is B<=100, using signed

arithmetic.

DATAB K

Assemble one byte of data with the specified value.

DATAK K

Assemble one aligned word of data with the specified value.

DATAL L

Assemble one aligned word of data initialised with the absolute

address of code or data specified by the given label.

DEBUG K

Set the debug tracing level (mcDebug) to the specified value. The

least significant four bits of mcDebug control the level of tracing as

follows.

#b0001 Output any mcComment comments.

#b0010 Output the MC instructions.

#b0100 Output the target machine instructions.

#b1000 Output the compiled binary code.

DEC R A V G M L D DX DXs DXsB

Decrement the specified register or memory word by 1, leaving the

condition code undefined.

DIV K R A V G M L D DX DXs DXsB

Divide the double length value in D:A by the specified operand.

The result is left in A and the remainder in D. The DIV instruction

performs signed arithmetic.

DLAB L

Set the specified label to the absolute address of the next

available byte in the data area.

ENDFN F

This marks the end of the body of the current function.

END F

This directive specifies that no more code generation will be done.

280 CHAPTER 12. THE MC PACKAGE

The system will free all temporary work space only preseving the MC

control block, the function dispatch table, and the data and code

areas.

ENTRY KKK

This specifies the entry point of the function whose number is given

by the first operand. The second operand specifies how many arguments

the function takes and the third specified how many local variables

the function may use. Calls to this function must have the required

number of arguments pushed onto the stack, and on return this number

of values will be automatically popped from the stack. Functions

called directly from BCPL using mcCall always take three arguments,

but functions called using the CALL instruction can take any number of

arguments.

INC R A V G M L D DX DXs DXsB

Increment the specified register or word of memory by one, leaving

the condition code undefined.

JEQ JS JL JR

Jump to the specified location if the first operand of a previous

CMP instruction was equal to its second operand.

JGE JS JL JR

Jump to the specified location if the first operand of a previous

CMP instruction was greater than or equal to its second operand using

signed arithmetic.

JGT JS JL JR

Jump to the specified location if the first operand of a previous

CMP instruction was greater than its second operand using signed

arithemetic.

JLE JS JL JR

Jump to the specified location if the first operand of a previous

CMP instruction was less than or equal to its second operand using

signed arithmetic.

JLT JS JL JR

Jump to the specified location if the first operand of a previous

CMP instruction was less than its second operand using signed

arithmetic.

JMP JS JL JR

Unconditionally jump to the specified location.

12.3. THE MC LANGUAGE 281

JNE JS JL JR

Jump to the specified location if the first operand of a previous

CMP instruction was not equal to its second operand.

LAB L

Set the specified label to the machine address of the current

position in the code area.

MV RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Move the second operand into the first.

MVB AR VR GR MR LR DR DXR DXsR DXsBR

AK VK GK MK LK DK DXK DXsK DXsBK

Move the least significant byte of the second operand into the

memory byte location specified by the first.

MVH AR VR GR MR LR DR DXR DXsR DXsBR

AK VK GK MK LK DK DXK DXsK DXsBK

Move the least significant 16 bits of the second operand into the

16-bit memory location specified by the first.

MVSXB RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Move the sign extended byte value specified by the second operand

into the first.

MVSXH RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Move the sign extended 16-bit value specified by the second operand

into the first.

MVZXB RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Move the zero extended byte value specified by the second operand

into the first.

MVZXH RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Move the zero extended 16-bit value specified by the second operand

into the first.

282 CHAPTER 12. THE MC PACKAGE

LEA RA RV RG RM RL RD RDX RDXs RDXsB

Load the register specified by the first operand with the absolute

address of the memory location specified by the second operand.

LSH RK RR

Shift to the left the value in the register specified by the first

operand by the amount specified by the second operand. If the second

operand is a register is must be C. Vacated positions are filled with

zeros. The effect is undefined if the shift distance is not in the

range 0 to 31.

MUL K R A V G M L D DX DXs DXsB

Multiply register A by the operand placing the double length result

in D:A. Signed arithmetic is used. Unsigned arithmetic is used.

Immediate (K) operands may sometimes be packed in the data area.

NEG R A V G M L D DX DXs DXsB

Negate the value specified by the operand.

NOP F

Performs no operation.

NOT R A V G M L D DX DXs DXsB

Perform the bitwise complement of the value specified by the

operand.

OR RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Perform the bitwise OR of the second operand into the first.

POP R A V G M L D DX DXs DXsB

Pop one word off the stack placing it in the specified register or

memory location.

PUSH K R A V G M L D DX DXs DXsB

Push the specified constant, register or memory location onto the

stack.

RSH RR RK

Shift to the right the value in the register specified by the first

operand by the amount specified by the second operand. If the second

operand is a register is must be C. Vacated positions are filled with

zeros. The effect is undefined if the shift distance is not in the

range 0 to 31.

12.3. THE MC LANGUAGE 283

RTN F

This causes a return from the current function. The result, if any,

should be in A.

SEQ R

Set the specified register to one if the first operand of a previous

CMP instruction was equal to its second operand, otherwise set it to

zero.

SGE R

Set the specified register to one if the first operand of a previous

CMP instruction was greater than or equal to its second operand using

signed arithmetic, otherwise set it to zero.

SGT R

Set the specified register to one if the first operand of a previous

CMP instruction was greater than its second operand using signed

arithmetic, otherwise set it to zero.

SLE R

Set the specified register to one if the first operand of a previous

CMP instruction was less than or equal to its second operand using

signed arithmetic, otherwise set it to zero.

SLT R

Set the specified register to one if the first operand of a

previous CMP instruction was less than its second operand using signed

arithmetic, otherwise set it to zero.

SNE R

Set the specified register to one if the first operand of a previous

CMP instruction was not equal to its second operand, otherwise set it

to zero.

SUB RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Subtract the second operand from the first, and set the condition

code appropriately.

SUBC RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Subtract the condition code carry bit and the second operand from

the first, and set the condition code appropriately. Subtracting 1

from the 64-bit value held in B:A can be done by the code generated by:

284 CHAPTER 12. THE MC PACKAGE

mcRK(mc_sub, mc_a, 1) // Don’t use DEC here!!
mcRK(mc_subc, mc_b, 0)

UDIV K R A V G M L D DX DXs DXsB

Divide the double length value in D:A by the specified operand.

The result is left in A and the remainder in D. The UDIV instruction

performs unsigned arithmetic.

UJGE JS JL JR

Jump to the specified location if the first operand of a previous

CMP instruction was greater than or equal to its second operand using

unsigned arithmetic.

UJGT JS JL JR

Jump to the specified location if the first operand of a previous

CMP instruction was greater than its second operand using unsigned

arithmetic.

UJLE JS JL JR

Jump to the specified location if the first operand of a previous

CMP instruction was less than or equal to its second operand using

unsigned arithmetic.

UJLT JS JL JR

Jump to the specified location if the first operand of a previous

CMP instruction was less than its second operand using unsigned

arithmetic.

UMUL K R A V G M L D DX DXs DXsB

Multiply register A by the operand placing the double length result

in D:A. Unsigned arithmetic is used. Immediate (K) operands may

sometimes be packed in the data area.

USGE R

Set the specified register to one if the first operand of a previous

CMP instruction was greater than or equal to its second operand using

unsigned arithmetic, otherwise set it to zero.

USGT R

Set the specified register or memory word to one if the first

operand of a previous CMP instruction was greater than its second

operand using unsigned arithmetic, otherwise set it to zero.

USLE R

Set the specified register to one if the first operand of a previous

CMP instruction was less than or equal to its second operand using

unsigned arithmetic, otherwise set it to zero.

12.4. MC DEBUGGING AIDS 285

USLT R

Set the specified register to one if the first operand of a previous

CMP instruction was less than its second operand using unsigned

arithmetic, otherwise set it to zero.

XCHG RR RA RV RG RM RL RD RDX RDXs RDXsB

Exchange the values specified by the two operands.

XOR RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Exclusive OR the second operand into the first.

12.4 MC Debugging Aids

The primary debugging aid is to inspect the generated code and the

is controlled by the DEBUG directive which sets the tracing level

held in the global variable mcDebug. Assuming bimc are the least

significant four bit of mcDebug, if c = 1, print comments compiled by

mcComment. If m = 1, print MC instructions and directives. If i = 1,
print the corresponding target instruction(s) and if b = 1, print the

resulting binary code in hexadecimal. To fully understand this output

it is, of course, necessary to have a good understanding of the target

architecture being used.

A second important debugging aid is provided by the mcPRF function

which compiler code to output the value of a specified register using

a given printf format string. On return all registers including the

condition code are preserved. A typical call of mcPRF is as follows.

mcPRF("The value of register A is %8x*n", mc_a)

As an aid to debugging MC packages themselves, there is a test

program called bcplprogs/mc/mcsystest.b which systematically tests

all MC instructions, directives and addressing modes generating error

messages for each error found. Each such error message includes a

test number which helps to locate the source of the of the problem.

If mcsystest is given a test number as argument, it provides a

detailed compilation trace of the specified test. This should provide

sufficient information to locate the error in the package.

12.5 The n-queens Demonstration

This section shows how the algorithm to solve the n-queens problem as

described in Section 14.3 on page 300 can be reimplemented using the MC

package. The MC version of the program is as follows.

286 CHAPTER 12. THE MC PACKAGE

GET "libhdr"
GET "mc.h"

MANIFEST {
// Register mnemonics
ld = mc_a
col = mc_b
rd = mc_c
poss = mc_d
p = mc_e
count = mc_f

}

LET start() = VALOF
{ // Load the dynamic code generation package

LET argv = VEC 50
LET lo, hi, dlevel = 1, 16, #x0000
LET mcname = "mci386" // Default setting
LET mcseg = 0
LET mcb = 0

UNLESS rdargs("mc,lo/n,hi/n,-c/s,-m/s,-a/s,-b/s", argv, 50) DO
{ writef("Bad arguments for mcqueens*n")
RESULTIS 0

}

IF argv!0 DO mcname := argv!0 // mc
IF argv!1 DO lo := !argv!1 // lo/n
IF argv!2 DO hi := !argv!2 // hi/n
IF argv!3 DO dlevel := dlevel | #b0001 // -c/s comments
IF argv!4 DO dlevel := dlevel | #b0010 // -m/s mc instructions
IF argv!5 DO dlevel := dlevel | #b0100 // -a/s assembler
IF argv!6 DO dlevel := dlevel | #b1000 // -b/s binary

mcseg := globin(loadseg(mcname))

UNLESS mcseg DO
{ writef("Trouble with MC package: mci386*n")
GOTO fin

}

// Create an MC instance for hi functions with a data space
// of 10 words and code space of 4000
mcb := mcInit(hi, 10, 40000)

UNLESS mcb DO
{ writef("Unable to create an mci386 instance*n")
GOTO fin

}

mc := 0 // Currently no selected MC instance
mcSelect(mcb)

mcK(mc_debug, dlevel)

FOR n = lo TO hi DO

12.5. THE N-QUEENS DEMONSTRATION 287

{ mcComment("*n*n// Code for a %nx%n board*n", n, n)
gencode(n) // Compile the code for an nxn board

}

mcF(mc_end)

writef("Code generation complete*n")

FOR n = lo TO hi DO
{ LET k = 0
writef("Calling mcCall(%n)*n", n)
k := mcCall(n)
writef("Number of solutions to %i2-queens is %i9*n", n, k)

}

fin:
IF mc DO mcClose()
IF mcseg DO unloadseg(mcseg)

writef("*n*nEnd of run*n")
}

AND gencode(n) BE
{ LET all = (1<<n) - 1
mcKKK(mc_entry, n, 3, 0)

mcRK(mc_mv, ld, 0)
mcRK(mc_mv, col, 0)
mcRK(mc_mv, rd, 0)
mcRK(mc_mv, count, 0)

cmpltry(1, n, all) // Compile the outermost call of try

mcRR(mc_mv, mc_a, count) // return count
mcF(mc_rtn)
mcF(mc_endfn)

}

AND cmpltry(i, n, all) BE
{ LET L = mcNextlab()

mcComment("*n// Start of code from try(%n, %n, %n)*n", i, n, all)

mcRR(mc_mv, poss, ld) // LET poss = (~(ld | col | rd)) & all
mcRR(mc_or, poss, col)
mcRR(mc_or, poss, rd)
mcR (mc_not, poss)
mcRK(mc_and, poss, all)

mcRK(mc_cmp, poss, 0) // IF poss DO
TEST n-i<=2
THEN mcJS(mc_jeq, L) // (use a short jump if near the last row)
ELSE mcJL(mc_jeq, L)

TEST i=n
THEN { // We can place a queen in the final row.

288 CHAPTER 12. THE MC PACKAGE

mcR(mc_inc, count) // count := count+1
}

ELSE { // We can place queen(s) in a non final row.
LET M = mcNextlab()

mcL (mc_lab, M) // { Start of REPEATWHILE loop

mcRR(mc_mv, p, poss) // LET p = poss & -poss
mcR (mc_neg, p)
mcRR(mc_and, p, poss) // // p is a valid queens position
mcRR(mc_sub, poss, p) // poss := poss - p

mcR (mc_push, ld) // Save current state
mcR (mc_push, col)
mcR (mc_push, rd)
mcR (mc_push, poss)

// Call try((ld+p)<<1, col+p, (rd+p)>>1)
mcRR(mc_add, ld, p)
mcRK(mc_lsh, ld, 1) // ld := (ld+p)<<1
mcRR(mc_add, col, p) // col := col+p
mcRR(mc_add, rd, p)
mcRK(mc_rsh, rd, 1) // rd := (rd+p)>>1

cmpltry(i+1, n, all) // Compile code for row i+1

mcR (mc_pop, poss) // Restore the state
mcR (mc_pop, rd)
mcR (mc_pop, col)
mcR (mc_pop, ld)

mcRK(mc_cmp, poss, 0)
mcJL(mc_jne, M) // } REPEATWHILE poss

}

mcL(mc_lab, L)
mcComment("// End of code from try(%n, %n, %n)*n*n",

i, n, all)
}

In this implementation all the working variables are held in

registers and all recursive calls are unwound knowing that the depth

of recursion will be limited, in this case to no more than 16. The

stack is used to save the state at the moment when a recursive call

would have been made in the original program. An optimisation is done

based on the knowledge that if a queen can be placed on the nth row of

n× n board then the solution count can be incremented.

When running on a Pentium IV this implementation executes

approximately 24 times faster than the normal interpretive Cintcode

version and 25% faster than the corresponding optimised C version of

the algorithm.

Chapter 13

Installation

The implementation of BCPL described in this report is freely available

via my Home Page [3] to individuals for private use and to academic

institutions. If you install the system, please send me an email (to

mr10@cl.cam.ac.uk) so I can keep a record of who is interested in it.

This implementation is designed to be machine independent being

based on an interpreter written in C. There are, however, hand written

assembly language versions of the interpreter for several architectures

(including i386, MIPS, ALPHA and Hitachi SH3), although these are

now little used and are no longer maintained. For Windows XP and

Windows 10 there are precompiled .exe files such as wincintsys.exe and

winrastsys.exe. These were constructed under Windows XP using Visual

Studio an have not been updated since I moved to Windos 10 and so may

no longer work. To try them, these files should be copied into the

appropriate bin directory and renamed as cintsys.exe and rastsys.exe.

For all the other architectures it is necessary to rebuild the

system, but this is reasonably easy to do. The simplest installation

is for 32 and 64-bit Linux machines which will be covered in detail

here. Both the single threaded BCPL Cintcode System called cintsys

and the Cintcode version of the Tripos Portable Operating System

called cintpos can be constructed providing a BCPL word length of

32 or 64 bits. BCPL continues to change including the addition of

floating points operations, the FLT feature and more recently the MCPL

style pattern matching features. I have recently updated the syntax

specification of BCPL using the new transition diagrams given in the

Appendix of this manual, and there is now a program (checksyn.b to test

whether BCPL programs conform to this new syntax specification. In

due course this program will be modified to attempt to find minimum

cost syntactic corrections to erroneous programs. Such corrections are

unlikely to produce semantically correct programs but should provide

better syntactic error messages.

I repeatedly test the cintsys and cintpos systems on the machines

I currently own, and maintain a log of these tests in the files

289

290 CHAPTER 13. INSTALLATION

CintsysTestLog.txt in the BCPL distribution and CintposTestLog.txt

in the Cintpos distribution.

13.1 Linux Installation

This section describes how to install the BCPL Cintcode System on a

Linux machine using an Intel 386 or later Intel processors. It can be

installed on both 32 and 64 bit architectures, and the size of the BCPL

word can be either 32 or 64 bits. To rebuild the BCPL Cintcode system

perform the followwing steps.

First create a directory typically named distribution in your home

directory ($HOME) and extract the BCPL distribution files in bcpl.tgz

by, typically, typing the commands:

ch $HOME/distribution

tar zxvf ../Downloads/bcpl.tgz

This creates the directory BCPL containing all the files needed to

rebuild the system. Next enter the cintcode directory by typing the

following command.

cd BCPL/cintcode

You are now ready to rebuild the system, but first you must

ensure that the environment variables BCPLROOT, BCPLHDRS, BCPLPATH,

BCPLSCRIPTS are properly defined. For convenience, there is a bash

shell script in os/Linux/setbcplenv. This script also adds the

directory cintcode/bin to the PATH variable. To set all the variables

run the following command.

. $(HOME)/distribution/BCPL/cintcode/os/linux/setbcplenv

It is probably even better to place this line near the end of ~/.bashrc

so that the environment variables are setup every time a new shell

window is created.

You are now ready to rebuild the BCPL system by typing the following

commands.

cd $(HOME)/distribution/BCPL/cintcode

make clean

make

This should recompile all the C and BCPL code required by the BCPL

system and leave it waiting for the user to type a BCPL Cmmand Language

(CLI) command. To test it type the following commands.

13.1. LINUX INSTALLATION 291

type com/hello.b

c bc hello

hello

bcpl com/bcpl.b to junk

junk com/bcpl.b to junk

c bc bcpl

bench100

c bc cmpltest

cmpltest

What the make command did perhaps needs some explanation. Without

arguments make reads the file Makefile from the current directory and

performs the first action it finds in this file. This first causes

bin/cintsys to be created by compiling and linking all the source

files needed to build cintsys. But before doing this it creates the

#include file sysc/INT.h by compiling and running sysc/mkint-h.c.

INT.h contains several #define macros that that allow the C programs

to determine important properties of the host machine, such as the

C types for signed and unsigned characters. The C source files for

cintsys are all in the directory sysc/ and are: cintsys.c, cinterp.c,

kblib.c, cfuncs.c, joyfn.c, sdlfn.c, glfn.c and extfn.c.

Although cintsys can now be called, it will only work if precompiled

Cintcode compilations of sysb/boot.b, sysb/blib.b, sysb/dlib.b,

sysb/cli.b, are placed in the directorie cin/syscin/. The hand written

Cintcode file syslib must also be placed there for the (trivial)

definitions of the functions sys, changeco and muldiv. Compiled

versions of the commands abort, c, echo and bcpl are then placed in

cin/. Finally several scripts such as b, bc and bs are placed in

cintcode/. Most of these files have different versions depending on

whether the host is a big or little ender machine.

Finally, make causes the command c compall to be executed on the

newly created system. This compiles all the resident system components

contained in sysb and the standard commands in com/. The system is

then ready for use.

You will notice that directory BCPL contains BCPL/cintcode,

BCPL/bcplprogs and BCPL/natbcpl. The directory BCPL/cintcode contains

all the source files of the BCPL Cintcode System, BCPL/bcplprogs

contains a collection of directories holding demonstration programs,

and BCPL/natbcpl contains a version of BCPL that compiles into native

code (for Intel and ALPHA machines) using a mechanism based on the Sial

abstract machine code.

Once the system hase been built it is normally entered using the

command cintsys which can be called when in any directory. If anything

has gone wrong various debugging aids can be turned on using either

cintsys -f -v

292 CHAPTER 13. INSTALLATION

or

cintsys -f -vv

The output should be studied in conjunction with sysc/cintsys.c and

sysb/boot.b. Hopefully, there will be enough information there to

diagnose and correct the problem. It includes, in particular, a trace

of all uses of the shell environment variables which are a common

source of trouble.

Read the documentation in cintcode/doc/ and any README files you can

find. A log of recent changes can be found in cintcode/doc/changes. A

log of recent tests under different machines and operating systems can

be found in cintcode/CintsysTestsLog.txt. The current version of this

BCPL manual is available from my home page as a .pdf file. There is an

extensive demonstration script of commands in cintcode/doc/notes.

To create the 64-bit version of Cintcode BCPL, type the following.

make clean64
make sys64
cintsys64

The resulting system is almost identical to the standard 32-bit

Cintcode BCPL system but uses a BCPL word length of 64 bits rather

that the normal 32.

Other versions of the system that can be created using other make

files, for instance:

make -f MakefileSDL clean
make -f MakefileSDL

This will provide a version with an interface to the SDL graphics

library. An interface to the OpenGL graphics library is provided if

MakefileGL is used. The GL version can be demonstrated by the follow

sequence of commands.

cd $(HOME)
cd ../bcplprogs/raspi
cintsys
sysinfo
c b engine
engine
c b dragon
dragon
c b bucket
bucket
c b gltst
gltst

When you enter cintsys you can choose one of two Cintcode

interpreters. These can be selected by the commands fast and

13.2. COMMAND LINE ARGUMENTS 293

slow. The slow interpreter performs more runtime checks and has

mode debugging aids than the fast interpreter and is thus somewhat

slower. Both interpreters are compilations of the same source

file sysc/cinterp.c with the differences controlled by conditional

compilation statements such as #ifdef FASTERPyes.

The make command actually creates rastsys in addition to cintsys.

This is a verion of the system that allows the user to generate raster

data that can be used to make graphs such as the one in Figure 4.2 on

page 168 showing memory references during the compilation of a BCPL

compiler. This version is built from the same the source programs in C

using conditional compilation statements such as #ifdef RASTERPyes.

There is a different but related system called cintpos that is

closely related to cintsys. It is a Cintcode based implementation

of the Tripos Portable Operating System originally implemented at

Cambridge in the late 1970s. This system allows the user to create

tasks which in modern terminology would be called threads since they

all use the same address space. Information can be sent from one task

to another using the call qpkt(pkt). This appends the packet on the

end of a work queue belonging to the destination task. A task can

extract the first packet on its work queue using a call of taskwait().

If the work queue is empty the task becomes suspended. Every task has

a distinct integer priority and there is a scheduler that ensures the

highest priority task that can run is given control. As with the BCPL

distribution, Cintpos has its own directory ~/distribution/Cintpos and

all its files are contained in cintpos.tgz. Two of the main programs

of Cintpos are called cintpos.c and cinterp.c. These have much in

common with cintsys.c and cinterp.c of the BCPL distribution and the

plan is make the C programs in Cintpos identical to the corresponding

ones in the BCPL distribution with the the differences controlled

by conditional compilation statements such as #ifdef CINTSYSyes and

#ifdef CINTPOSyes. This change is still under development.

13.2 Command Line Arguments

The commands cintsys, cintsys64 and cintpos that invoke the Cintcode

interpreter can be given various arguments. These are:

294 CHAPTER 13. INSTALLATION

-m n Set the Cintcode memory size to n words.

-t n Set the tally vector size to n words.

-s Enter the Cintcode system giving the name of this

file as the command for the CLI to run.

-q Set quiet mode. This stops the resident system from

outputting text other than error or debugging messages.

It also stops the CLI from outputting prompts or

echoing standard input (normally the keyboard).

-c text Enter cintsys with standard input

setup to read the characters from text followed by

an end-of-stream character.

-- text Enter cintsys with standard input

setup to read the characters in text followed by

the characters of the old standard input.

-f Trace the use of environment variables in pathinput

-v Trace the bootstrapping process

-vv As -v, but also include some Cincode level tracing

-h Output some help information.

The rastering versions of the interpreter rastsys, rastsys64 can

receive the same arguments.

13.3 Installation on Other Machines

Carry out steps 1 to 4 above. In the directory BCPL/cintcode/sysasm

you will find directories for different architectures, e.g. ALPHA,

MIPS, SUN4, SPARC, MSDOS, MAC, OS2, BC4, Win32, CYGWIN32 and shWinCE.

These contain files that are architecture (or compiler) dependent,

typically including cintasm.s (or cintasm.asm). For some old versions

of Linux, it is necessary to change _dosys to dosys (or vice-versa) in

the file sysasm/LINUX/cintasm.s.

Edit Makefile (typically by adding and removing comment symbols) as

necessary for your system/machine and then execute make in the cintcode

directory, e.g:

make

Variants of the above should work for the other architectures running

Unix.

13.4 Installation for Windows XP

The files wincintsys.exe and winrastsys.exe are included in the

standard distribution and should work under many versions of the

Windows operating systems (such as Windows XP) just by typing the

command:

13.5. INSTALLATION USING CYGWIN 295

wincintsys

It may be more convenient to move them into a different directory

and rename them as cintsys.exe and rastsys.exe.

I have recently upgraded the Windows version of BCPL so that it can

be compiled and run using the freely available Microsoft C compiler and

libraries. On a new PC I installed the freely available .NET Framework

3.5 and the corresponding SDK 3.5. This provided amongst many other

things a C compiler and all the relevant libraries.

I then created a shortcut on the desktop with

Target: %SystemRoot%\system32\cmd.exe /q /k os\windows\VC8env.bat

and

Start in: E:\distribution\BCPL\cintcode

Double clicking on this shortcut opens a Shell window with the

required environment variable all set up C compilation and the BCPL

running environment. If they are not correct you may have to edit

VC8env.bat. The BCPL system was then rebuilt by the commands:

nmake /f os/windows/MakefileVC clean

nmake /f os/windows/MakefileVC

This should recompile and link all the C code of the BCPL Cintcode

system and then recompile all the standard BCPL system programs and

commands. For good measure, once the BCPL Cintcode system has been

entered, recompile all the BCPL code again by typing:

c compall

13.5 Installation using Cygwin

I recommend using the GNU development tools and utilities for Windows

that are available from http://sourceware.cygnus.com/cygwin/.

Edit the cintcode/Makefile to comment out the LINUX version

CC = gcc -O9 -DforLINUX -DSOUND -DCALLC -lm
SYSM = ../cintcode/sysasm/linux

and enable the CYGWIN32 version

CC = gcc -O9 -DforCYGWIN32 -DSOUND -DCALLC -lm
SYSM = ../cintcode/sysasm/CYGWIN32

Then type:

make

This should recompile the system and create the executable

cintsys.exe.

296 CHAPTER 13. INSTALLATION

Remember to include the cintcode directory in your PATH and BCPLPATH

shell variables, so that the cintsys can be run in any directory.

Careful inspection of the Makefile and directories in

cintcode/sysasm will show that versions also exist that use Microsoft

C++ 5.0 and Borland C4.0, but these are likely to be out of date and

their use is not recommended.

13.6 Installation for Windows CE2.0

A version of the BCPL Cintcode System is available for handheld

machines running Windows CE version 2.0. For installation details

see the README file in sysasm/shwince. This system provides a

scrollable window for interaction with the CLI. It also provides a

simple graphical facilities using a graphics window. The system has

only been tested on an HP 620LX handheld machine.

13.7 The Native Code Version

A BCPL native mode system for 686/Pentium based machines is in

directory BCPL/natbcpl. It can be re-built and tested by changing

to the directory BCPL/natbcpl and running make. If you have the SDL

libraries installed (see bcpl4raspi.pdf), you could try

make -f MakefileSDL clean
make -f MakefileSDL bucket
./bucket

A version (64 bit) for the DEC Alpha is also available but is now

out of date and has not been tested recently. To re-build it, it is

necessary to comment out the lines for Linux and uncomment the lines

for the ALPHA in Makefile, before running make.

Recently, a version for the ARM processor has been added,

particularly for the Raspberry Pi machine. In directory BCPL/natbcpl

on the Raspberry Pi, try typing

make -f MakefileRaspi clean
make -f MakefileRaspi

If you have the SDL libraries installed (see bcpl4raspi.pdf), you could

try

make -f MakefileRaspiSDL clean
make -f MakefileRaspiSDL bucket
./bucket

It is useful to know how the make commands such as those above work.

Here is a brief explanation.

13.7. THE NATIVE CODE VERSION 297

The command make clean just deletes all previously built executables

together with all files in the directories obj, sial, temps and tempc

since these can easily be recreated.

The call make prog causes the required BCPL programs to be compiled,

if necessary, into Pentium assembly language by executing the following

CLI commands. This also ensures the C program tempc/initprog.c is up

to date.

bcpl2sial ./prog.b to sial/prog.sial noselst
sial-686 -t sial/prog.sial to temps/prog.s

bcpl2sial sysb/blib.b to sial/blib.sial noselst
sial-686 -t sial/blib.sial to temps/blib.s

bcpl2sial ../cintcode/sysb/dlib.b to sial/dlib.sial noselst
sial-686 -t sial/dlib.sial to temps/dlib.s

makeinit prog.b to tempc/initprog.c

If necessary make prog also updates the header file tempc/INT.h

needed by clib.c using the following bash commands.

gcc -o mkint-h sysc/mkint-h.c
./mkint-h >sysc/INT.h
rm -f mkint-h
cp sysc/INT.h tempc
cp sysc/bcpl.h tempc

Finally it updates the executable prog, if necessary, by compiling

and linking all the required C and assembly language programs.

gcc -O9 -DforLINUX -o obj/initprog.o -c tempc/initprog.c
gcc -O9 -DforLINUX -o obj/clib.o -c sysc/clib.c
gcc -O9 -DforLINUX -o obj/kblib.o -c sysc/kblib.c
gcc -O9 -DforLINUX -o obj/sdlfn.o -c sysc/sdlfn.c

gcc -O9 -DforLINUX -o obj/prog.o -c temps/prog.s
gcc -O9 -DforLINUX -o obj/blib.o -c temps/blib.s
gcc -O9 -DforLINUX -o obj/dlib.o -c temps/dlib.s
gcc -O9 -DforLINUX -o obj/mlib.o -c i386/mlib.s

gcc -O9 -DforLINUX -o prog
obj/initprog.o obj/prog.o
obj/mlib.o obj/clib.o obj/blib.o
obj/dlib.o obj/kblib.o obj/sdlfn.o -lm

The native code program can now be executed in a bash shell using

the command prog or possibly ./prog.

298 CHAPTER 13. INSTALLATION

Chapter 14

Example Programs

14.1 Coins

The following program prints out how many different ways a sum of money

can be composed from coins of various denominations.

GET "libhdr"

LET coins(sum) = c(sum, (TABLE 200, 100, 50, 20, 10, 5, 2, 1, 0))

AND c(sum, t) = sum<0 -> 0,
sum=0 -> 1,
!t=0 -> 0,
c(sum, t+1) + c(sum-!t, t)

LET start() = VALOF
{ writes("Coins problem*n")
t(0); t(1); t(2); t(5); t(21); t(100); t(200)
RESULTIS 0

}

AND t(n) BE writef("Sum = %i3 number of ways = %i6*n", n, coins(n))

299

300 CHAPTER 14. EXAMPLE PROGRAMS

14.2 Primes

The following program prints out a table of all primes less than 1000,

using the sieve method.

GET "libhdr"

GLOBAL { count: ug }

MANIFEST { upb = 999 }

LET start() = VALOF
{ LET isprime = getvec(upb)

count := 0
FOR i = 2 TO upb DO isprime!i := TRUE // Until proved otherwise.

FOR p = 2 TO upb IF isprime!p DO
{ LET i = p*p

UNTIL i>upb DO { isprime!i := FALSE; i := i + p }
out(p)

}

writes("*nend of output*n")
freevec(isprime)
RESULTIS 0

}

AND out(n) BE
{ IF count MOD 10 = 0 DO newline()

writef(" %i3", n)
count := count + 1

}

14.3 Queens

The following program calculates the number of ways n queens can be

placed on a n × n chess board without any two occupying the same row,

column or diagonal.

GET "libhdr"

GLOBAL { count:200; all:201 }

LET try(ld, col, rd) BE TEST col=all

THEN count := count + 1

ELSE { LET poss = all & ~(ld | col | rd)
UNTIL poss=0 DO
{ LET p = poss & -poss
poss := poss - p
try(ld+p << 1, col+p, rd+p >> 1)

}
}

14.4. FRIDAYS 301

LET start() = VALOF
{ all := 1

FOR i = 1 TO 16 DO
{ count := 0
try(0, 0, 0)
writef("Number of solutions to %i2-queens is %i9*n", i, count)
all := 2*all + 1

}

RESULTIS 0
}

14.4 Fridays

The following program prints a table of how often the 13th day of the

month lies on each day of the week over a 400 year period. Since there

are an exact number of weeks in 4 centuries, program shows that the 13th

is most of a Friday!

GET "libhdr"

MANIFEST { mon=0; sun=6; jan=0; feb=1; dec=11 }

LET start() = VALOF
{ LET count = TABLE 0, 0, 0, 0, 0, 0, 0

LET daysinmonth = TABLE 31, ?, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31

LET days = 0

FOR year = 1973 TO 1973+399 DO
{ daysinmonth!feb := febdays(year)

FOR month = jan TO dec DO
{ LET day13 = (days+12) MOD 7

count!day13 := count!day13 + 1
days := days + daysinmonth!month

}
}
FOR day = mon TO sun DO
writef("%i3 %sdays*n",

count!day,
select(day,

"Mon","Tues","Wednes","Thurs","Fri","Sat","Sun")
)

RESULTIS 0
}

AND febdays(year) = year MOD 400 = 0 -> 29,
year MOD 100 = 0 -> 28,
year MOD 4 = 0 -> 29,
28

AND select(n, a0, a1, a2, a3, a4, a5, a6) = n!@a0

302 CHAPTER 14. EXAMPLE PROGRAMS

14.5 Lambda Evaluator

The following program is a simple parser and evaluator for lambda

expressions.

14.5. LAMBDA EVALUATOR 303

GET "libhdr"

MANIFEST {
// selectors
H1=0; H2; H3; H4

// Expression operators and tokens
Id=1; Num; Pos; Neg; Mul; Div;Add; Sub
Eq; Cond; Lam; Ap; Y
Lparen; Rparen; Comma; Eof
}

GLOBAL {
space:200; str; strp; strt; ch; token; lexval
}

LET lookup(bv, e) = VALOF
{ WHILE e DO { IF bv=H1!e RESULTIS H2!e

e := H3!e
}

writef("Undeclared name %c*n", H2!bv)
RESULTIS 0

}

AND eval(x, e) = VALOF SWITCHON H1!x INTO
{ DEFAULT: writef("Bad exppression, Op=%n*n", H1!x)

RESULTIS 0
CASE Id: RESULTIS lookup(H2!x, e)
CASE Num: RESULTIS H2!x
CASE Pos: RESULTIS eval(H2!x, e)
CASE Neg: RESULTIS - eval(H2!x, e)
CASE Add: RESULTIS eval(H2!x, e) + eval(H3!x, e)
CASE Sub: RESULTIS eval(H2!x, e) - eval(H3!x, e)
CASE Mul: RESULTIS eval(H2!x, e) * eval(H3!x, e)
CASE Div: RESULTIS eval(H2!x, e) / eval(H3!x, e)
CASE Eq: RESULTIS eval(H2!x, e) = eval(H3!x, e)
CASE Cond: RESULTIS eval(H2!x, e) -> eval(H3!x, e), eval(H4!x, e)
CASE Lam: RESULTIS mk3(H2!x, H3!x, e)

CASE Ap: { LET f, a = eval(H2!x, e), eval(H3!x, e)
LET bv, body, env = H1!f, H2!f, H3!f
RESULTIS eval(body, mk3(bv, a, env))

}
CASE Y: { LET bigf = eval(H2!x, e)

// bigf should be a closure whose body is an
// abstraction eg Lf Ln n=0 -> 1, n*f(n-1)
LET bv, body, env = H1!bigf, H2!bigf, H3!bigf
// Make a closure with a missing environment
LET yf = mk3(H2!body, H3!body, ?)
// Make a new environment including an item for bv
LET ne = mk3(bv, yf, env)
H3!yf := ne // Now fill in the environment component
RESULTIS yf // and return the closure

}
}

304 CHAPTER 14. EXAMPLE PROGRAMS

// *************** Syntax analyser ***********************

// Construct Corresponding Tree

// a ,.., z --> [Id, ’a’] ,.., [Id, ’z’]
// dddd --> [Num, dddd]
// x y --> [Ap, x, y]
// Y x --> [Y, x]
// x * y --> [Times, x, y]
// x / y --> [Div, x, y]
// x + y --> [Plus, x, y]
// x - y --> [Minus, x, y]
// x = y --> [Eq, x, y]
// b -> x, y --> [Cond, b, x, y]
// Li y --> [Lam, i, y]

LET mk1(x) = VALOF { space := space-1; !space := x; RESULTIS space }

AND mk2(x,y) = VALOF { mk1(y); RESULTIS mk1(x) }

AND mk3(x,y,z) = VALOF { mk2(y,z); RESULTIS mk1(x) }

AND mk4(x,y,z,t) = VALOF { mk3(y,z,t); RESULTIS mk1(x) }

AND rch() BE
{ ch := Eof

IF strp>=strt RETURN
strp := strp+1
ch := str%strp

}

AND parse(s) = VALOF
{ str, strp, strt := s, 0, s%0

rch()
RESULTIS nexp(0)

}

14.5. LAMBDA EVALUATOR 305

AND lex() BE SWITCHON ch INTO
{ DEFAULT: writef("Bad ch in lex: %c*n", ch)
CASE Eof: token := Eof

RETURN
CASE ’ ’:
CASE ’*n’ :rch(); lex(); RETURN

CASE ’a’:CASE ’b’:CASE ’c’:CASE ’d’:CASE ’e’:
CASE ’f’:CASE ’g’:CASE ’h’:CASE ’i’:CASE ’j’:
CASE ’k’:CASE ’l’:CASE ’m’:CASE ’n’:CASE ’o’:
CASE ’p’:CASE ’q’:CASE ’r’:CASE ’s’:CASE ’t’:
CASE ’u’:CASE ’v’:CASE ’w’:CASE ’x’:CASE ’y’:
CASE ’z’:

token := Id; lexval := ch; rch(); RETURN

CASE ’0’:CASE ’1’:CASE ’2’:CASE ’3’:CASE ’4’:
CASE ’5’:CASE ’6’:CASE ’7’:CASE ’8’:CASE ’9’:

token, lexval := Num, 0
WHILE ’0’<=ch<=’9’ DO
{ lexval := 10*lexval + ch - ’0’

rch()
}
RETURN

CASE ’-’: rch()
IF ch=’>’ DO { token := Cond; rch(); RETURN }
token := Sub
RETURN

CASE ’+’: token := Add; rch(); RETURN
CASE ’(’: token := Lparen; rch(); RETURN
CASE ’)’: token := Rparen; rch(); RETURN
CASE ’**’: token := Mul; rch(); RETURN
CASE ’/’: token := Div; rch(); RETURN
CASE ’L’: token := Lam; rch(); RETURN
CASE ’Y’: token := Y; rch(); RETURN
CASE ’=’: token := Eq; rch(); RETURN
CASE ’,’: token := Comma; rch(); RETURN

}

306 CHAPTER 14. EXAMPLE PROGRAMS

AND prim() = VALOF
{ LET a = TABLE Num, 0

SWITCHON token INTO
{ DEFAULT: writef("Bad expression*n"); ENDCASE
CASE Id: a := mk2(Id, lexval); ENDCASE
CASE Num: a := mk2(Num, lexval); ENDCASE
CASE Y: RESULTIS mk2(Y, nexp(6))
CASE Lam: lex()

UNLESS token=Id DO writes("Id expected*n")
a := lexval
RESULTIS mk3(Lam, a, nexp(0))

CASE Lparen: a := nexp(0)
UNLESS token=Rparen DO writef("’)’ expected*n")
lex()
RESULTIS a

CASE Add: RESULTIS mk2(Pos, nexp(3))
CASE Sub: RESULTIS mk2(Neg, nexp(3))

}
lex()
RESULTIS a

}

AND nexp(n) = VALOF { lex(); RESULTIS exp(n) }

AND exp(n) = VALOF
{ LET a, b = prim(), ?

{ SWITCHON token INTO
{ DEFAULT: BREAK

CASE Lparen:
CASE Num:
CASE Id: UNLESS n<6 BREAK

a := mk3(Ap, a, exp(6)); LOOP
CASE Mul: UNLESS n<5 BREAK

a := mk3(Mul, a, nexp(5)); LOOP
CASE Div: UNLESS n<5 BREAK

a := mk3(Div, a, nexp(5)); LOOP
CASE Add: UNLESS n<4 BREAK

a := mk3(Add, a, nexp(4)); LOOP
CASE Sub: UNLESS n<4 BREAK

a := mk3(Sub, a, nexp(4)); LOOP
CASE Eq: UNLESS n<3 BREAK

a := mk3(Eq, a, nexp(3)); LOOP
CASE Cond: UNLESS n<1 BREAK

b := nexp(0)
UNLESS token=Comma DO writes("Comma expected*n")
a := mk4(Cond, a, b, nexp(0)); LOOP

}
} REPEAT
RESULTIS a

}

14.6. FAST FOURIER TRANSFORM 307

AND try(expr) BE
{ LET v = VEC 2000
space := v+2000
writef("Trying %s*n", expr)
writef("Answer: %n*n", eval(parse(expr), 0))

}

AND start() = VALOF
{ try("(Lx x+1) 2")
try("(Lx x) (Ly y) 99")
try("(Ls Lk s k k) (Lf Lg Lx f x (g x)) (Lx Ly x) (Lx x) 1234")
try("(Y (Lf Ln n=0->1,n**f(n-1))) 5")
RESULTIS 0

}

14.6 Fast Fourier Transform

The following program is a simple demonstration of the algorithm for

the fast fourier transform. Instead of using complex numbers, it uses

integer arithmetic modulo 65537 with an appropriate Nth root of unity.

GET "libhdr"

MANIFEST {
modulus = #x10001 // 2**16 + 1

$$ln10 // Set condition compilation flag to select data size
//$$walsh

$<ln16 omega = #x00003; ln = 16 $>ln16 // omega**(2**16) = 1
$<ln12 omega = #x0ADF3; ln = 12 $>ln12 // omega**(2**12) = 1
$<ln10 omega = #x096ED; ln = 10 $>ln10 // omega**(2**10) = 1
$<ln4 omega = #x08000; ln = 4 $>ln4 // omega**(2**4) = 1
$<ln3 omega = #x0FFF1; ln = 3 $>ln3 // omega**(2**3) = 1

$<walsh omega=1 $>walsh // The Walsh transform

N = 1<<ln // N is a power of 2
upb = N-1
}

STATIC { data=0 }

308 CHAPTER 14. EXAMPLE PROGRAMS

LET start() = VALOF
{ writef("fft with N = %n and omega = %n modulus = %n*n*n",

N, omega, modulus)

data := getvec(upb)

UNLESS omega=1 DO // Unless doing Walsh tranform
check(omega, N) // check that omega and N are consistent

FOR i = 0 TO upb DO data!i := i
pr(data, 7)

// prints -- Original data
// 0 1 2 3 4 5 6 7

fft(data, ln, omega)
pr(data, 7)

// prints -- Transformed data
// 65017 26645 38448 37467 30114 19936 15550 42679

fft(data, ln, ovr(1,omega))
FOR i = 0 TO upb DO data!i := ovr(data!i, N)
pr(data, 7)

// prints -- Restored data
// 0 1 2 3 4 5 6 7

RESULTIS 0
}

AND fft(v, ln, w) BE // ln = log2 n w = nth root of unity
{ LET n = 1<<ln

LET vn = v+n
LET n2 = n>>1

// First do the perfect shuffle
reorder(v, n)

// Then do all the butterfly operations
FOR s = 1 TO ln DO
{ LET m = 1<<s
LET m2 = m>>1
LET wk, wkfac = 1, w
FOR i = s+1 TO ln DO wkfac := mul(wkfac, wkfac)
FOR j = 0 TO m2-1 DO
{ LET p = v+j

WHILE p<vn DO { butterfly(p, p+m2, wk); p := p+m }
wk := mul(wk, wkfac)

}
}

}

AND butterfly(p, q, wk) BE { LET a, b = !p, mul(!q, wk)
!p, !q := add(a, b), sub(a, b)

}

14.6. FAST FOURIER TRANSFORM 309

AND reorder(v, n) BE
{ LET j = 0
FOR i = 0 TO n-2 DO
{ LET k = n>>1
// j is i with its bits is reverse order
IF i<j DO { LET t = v!j; v!j := v!i; v!i := t }
// k = 100..00 10..0000..00
// j = 0xx..xx 11..10xx..xx
// j’ = 1xx..xx 00..01xx..xx
// k’ = 100..00 00..0100..00
WHILE k<=j DO { j := j-k; k := k>>1 } //) "increment" j
j := j+k //)

}
}

AND check(w, n) BE
{ // Check that w is a principal nth root of unity
LET x = 1
FOR i = 1 TO n-1 DO { x := mul(x, w)

IF x=1 DO writef("omega****%n = 1*n", i)
}

UNLESS mul(x, w)=1 DO writef("Bad omega**%n should be 1*n", n)
}

AND pr(v, max) BE
{ FOR i = 0 TO max DO { writef("%I5 ", v!i)

IF i MOD 8 = 7 DO newline()
}

newline()
}

AND dv(a, m, b, n) = a=1 -> m,
a=0 -> m-n,
a<b -> dv(a, m, b MOD a, m*(b/a)+n),
dv(a MOD b, m+n*(a/b), b, n)

AND inv(x) = dv(x, 1, modulus-x, 1)

AND add(x, y) = VALOF
{ LET a = x+y
IF a<modulus RESULTIS a
RESULTIS a-modulus

}

AND sub(x, y) = add(x, neg(y))

AND neg(x) = modulus-x

AND mul(x, y) = x=0 -> 0,
(x&1)=0 -> mul(x>>1, add(y,y)),
add(y, mul(x>>1, add(y,y)))

AND ovr(x, y) = mul(x, inv(y))

310 CHAPTER 14. EXAMPLE PROGRAMS

Bibliography

[1] D.T. Ross et al. AED-0 programmer’s guide and user kit. Technical

report, Electronic Systems Laboratory M.I.T, 1964.

[2] C. Jobson and J.M. Richards. BCPL for the BBC Microcomputer.

Acornsoft Ltd, Cambridge, 1983.

[3] M. Richards. My WWW Home Page. www.cl.cam.ac.uk/users/mr/.

[4] M. Richards. The Implementation of CPL-like programming languages.

Phd thesis, Cambridge University, 1966.

[5] M. Richards, A.R. Aylward, P. Bond, R.D. Evans, and B.J.

Knight. The Tripos Portable Operating System for Minicomputers.

Software-Practice and Experience, 9:513--527, June 1979.

[6] Christopher Strachey. A General Purpose Macrogenerator. Computer

Journal, 8(3):225--241, 1965.

311

312 BIBLIOGRAPHY

Appendix A

BCPL Syntax Diagrams

This appendix gives the precise syntax of BCPL as it is now, at least

in February 2022. It includes the floating point operators, the

FLT feature and the newly added pattern matching constructs. It

also contains some constructs from older versions of BCPL to make

compilation of older BCPL programs easier.

The syntax of programming languages is often specified using

Backus Naur Form or BNF. Mathematicians like BNF notation because

of its simplicity, power and interesting properties, while language

designers like it because the rules just confirm their understanding

of the language grammar they are designing. For users, understanding

a grammar from its BNF specification is harder. There are typically

a hundreds of syntactic categories, many with artificial names, and

a greater number of rules. Understanding the rules is hard because

they mostly depend on each other. There is also sometimes a problem

noticing whether a BNF grammar is ambiguous. Indeed it is not

possible, in general, to write a program that can determine whether

a BNF grammar is ambiguous, and it is also not always easy to write a

parser that precisely agrees with the BNF specification.

The BCPL syntax is given using the diagrams shown in figures A.1,

A.2, A.3, A.4, A.5, A.6 and A.7 for the syntactic categories Prog,

D, Mlist, Pn, C, Bexp and En. In the diagrams these categories are

represented by the rounded boxes:

, , , , , , and .

A rectangular boxes are called a test boxes and may contain a

terminal symbols as in or , or a label representing

a set of terminal symbols or some other condition. These test box

labels are specified in the following table.

313

314 APPENDIX A. BCPL SYNTAX DIAGRAMS

Label Possible symbols or condition

name A name not preceded by FLT

fname A name possibly preceded by FLT

number Integer or floating point constant

bpat Possibly signed integer or floating point constant,

character constant, TRUE, FALSE, ?,

or a name not preceded by FLT

string A string constant

mulop * / MOD #* #/ #MOD

posop + - ABS #+ #- #ABS

addop + - #+ #-

relop = ~= < <= > >=

#= #~= #< #<= #> #>=

fcond -> #->

range .. #..

jcom NEXT EXIT BREAK LOOP ENDCASE RETURN

assop := *:= /:= MOD:= +:= -:=

#:= #*:= #/:= #MOD:= #+:= #-:=

<<:= >>:= &:= |:= EQV:= XOR:=

iscall This is only satisfied if the most recent construct

was a function, routine or method call

isname This is only satisfied if the most recent construct

was a name not enclosed in parentheses

nonl This is only satisfied if the previous and current

tokens are on the same line

defop This is satisfied when reading a GLOBAL

declaration if the current token is :

This is also satisfied when reading a MANIFEST

or STATIC declaration if the current token is =

eof This is only satisfied if the program file is exhausted

For compatibility with older versions of BCPL some terminal symbols

have synonyms as follow.

315

Symbol Possible synonyms

{ $(, possibly tagged

} $), possibly tagged

DO THEN

THEN DO

MOD REM

NOT ~

OF ::

= ~= EQ NE

< <= LS LE

> >= GR GE

<< >> LSHIFT RSHIFT

& | LOGAND LOGOR

XOR NEQV

Figure A.1: The definition of

316 APPENDIX A. BCPL SYNTAX DIAGRAMS

Figure A.2: The definition of

Figure A.3: The definition of

Figure A.4: The definition of

317

Figure A.5: The definition of

318 APPENDIX A. BCPL SYNTAX DIAGRAMS

Figure A.6: The definition of

319

Figure A.7: The definition of

Appendix B

The Syntax of Lexical Token

This appendix is currently under construction

The previous appendix specifies the syntax of BCPL based on a

stream of lexical tokens. This appendix given a precise description

of the function lex which reads the source characters of a BCPL program

creating the corresponding stream of lexical tokens.

Rectangular boxes are called a test boxes and may contain a terminal

symbols as in or , or a label representing a set of

terminal symbols or some other condition. These test box labels are

specified in the following table.

320

321

Label Possible symbols or condition

[..] This is successful if the next two characters

are both dots. Input is only advanced if the

match was successful.

[:=] This is successful if the next two characters

are :=. Input is advanced on success.

[is ..] This is successful if the next 2 character are

both dots. Input is not advanced.

[letter] This is successful if the next character is

an upper or lower case letter.

[tagch] This is successful if the next character is

a letter, decimal digit, an underscore or a dot

not immediately followed by another dot.

[digit] This is successful if the next character is

a decimal digit.

[bindigit] This is successful if the next character is

a 0 ot 1.

[octdigit] This is successful if the next character is

an octal digit.

[hexdigit] This is successful if the next character is

a hexadecimal digit.

[is text] This is successful if the input matches the

specified text.

[rtn token] This causes lex to return the spefied

token.

[deal with dot] If reading a GET file, resume the previous

input, otherwise return a dot.

[deal with $tag] If skiptag=0 and the value of tag

is false set skiptag to tag and skip

tokens until a matching $>tag is found,

or eof or end of a section is encountered.

[deal with $ tag] If skiptag=0 and the value of tag

is true set skiptag to tag and skip

tokens until a matching $>tag is found,

or eof or end of a section is encountered.

[deal with $>tag] If skiptag=tag set skiptag=0 to indicate

that tokens are no longer being skipped

and read another token.

[deal with $$tag] If not skipping, complement the value of

tag and read another token.

[eof] This is only satisfied if the input stream is

exhausted.

Underscores are permitted before any digit in an integer or floating

point constant but may not occur before the first digit has been

encountered. Similarly underscores are allowed before binary, octal

322 APPENDIX B. THE SYNTAX OF LEXICAL TOKEN

and hexadecimal digits in bit pattern constants starting with #. Note

that no floating point operator stats with #B, #O, #X.

What follows is a summary of the flow diagrams the will be drawn

properly in due course.

---[.]---[.]--[rtn ..]

| |

| | ------

| | | |

| |---[0-9]--------------------

| | |

| ..[deal with dot] |

| ------- |

| | | |

|---|0-9]----[is ..]--[rtn number] |

| | |

| | -[0-9]- | -------

| | | | | | |

| |--[.]---------------------[e]---[+]----[0-9]---[rtn number]

| | | | | |

| --------------- | |-[-]-|

| | | |

| | -----

| ------- --[rtn number]

| | |

|--[#]---[b]---[0-1]---[rtn number]

| | -------

| | | |

| |-[o]----[0-7]---[rtn number]

| | |

| |------

| | -----------

| | | |

| |-[x]---[0-9 a-f]---[rtn number]

| |

| | For any op in the following list

| |

| |--[op]---[:=]--[rtn #op:=]

| | |

| | --[rtn op]

| |

| |--[->]--[rts #->]

| |--[:=]--[rtn #:=]

| |

| --[(]---[rtn #(]

|

323

| -[tagch]-

| | |

|--[letter]-------------[deal with word]

|

| -[stringch]-

| | |

|--["]----------------["]--[rtn string]

|--[’]---[stringch]---[’]--[rtn string]

|

|--[#]---[<]--[rdtag]--[deal with $<tag]

| |-[>]--[rdtag]--[deal with $<tag]

| |-[~]--[rdtag]--[deal with $~tag]

| |-[S]--[rdtag]--[deal with $$tag]

| |-[{]--[rdtag]--[deal with $(]

| -[)]--[rdtag]--[deal with $)]

|

| For any op in the following list

|

| => <= << >>

|

|--[op]---[:=]--[rtn op:=]

| |

| --[rtn op]

|

| For any op in the following list

|

| { } [] () ? , : @ %

|

|--[op]--[rtn op]

|

--[rtn fail]

-----[word=GET]--(string)--[deal with GET string]

|

|--[word=EQ]--------[:=]--[rtn =:=]

| |

| --[rtn =]

|

|--[word=EQV]-------[:=]--[rtn EQV:=]

| |

| --[rtn EQV]

|

|--[word=GE]--------[:=]--[rtn >=:=]

| |

324 APPENDIX B. THE SYNTAX OF LEXICAL TOKEN

| --[rtn >=]

|

|--[word=XOR]-------[:=]--[rtn XOR:=]

| |

| --[rtn >=]

|

|--[word=GE]--------[:=]--[rtn >=:=]

| |

| --[rtn >=]

|

|--[word=GE]--------[:=]--[rtn >=:=]

| |

| --[rtn >=]

|

|--[word=GR]--------[:=]--[rtn >:=]

| |

| --[rtn >]

|

|--[word=LE]--------[:=]--[rtn <=:=]

| |

| --[rtn <=]

|

|--[word=LS]--------[:=]--[rtn <:=]

| |

| --[rtn <]

|

|--[word=LOGAND]----[:=]--[rtn &:=]

| |

| --[rtn &]

|

|--[word=LOGOR]------[:=]--[rtn |:=]

| |

| --[rtn |]

|

|--[word=LSHIFT]-----[:=]--[rtn <<:=]

| |

| --[rtn <<]

|

|--[word=RSHIFT]-----[:=]--[rtn >>:=]

| |

| --[rtn >>]

|

|--[word=RV]--------[:=]--[rtn !:=]

| |

| --[rtn !]

325

|

| If token is any of

| AND ABS BITSPERBCPLWORD BE BREAK BY CASE DEFAULT DO

| ELSE ENDCASE EVERY EXIT FALSE FINISH FIX FLOAT FLT

| FOR GOTO GLOBAL IF INTO LET LOOP LV MANIFEST

| MATCH NEEDS NEXT NOT OF OR REM RESULTIS REPEAT

| REPEATUNTIL REPEATWHILE RETURN SECTION SKIP SLCT

| STATIC SWITCHON TABLE TEST THEN TO TRUE UNLESS

| UNTIL VEC VALOF WHILE

|

|--[WORD=TOKEN]--[rtn token]

|

|--[word=LV]--[rtn @]

|--[word=OF]--[rtn ::]

|

--[rtn name]

--

| |

| ------------------------- |

| | | |

|--[*]----[white space]----------| |

| | | |

| |--[//]---[skip to eol]-- |

| | | |

| | -------------------------- |

| | | |

| |--[newline]--[white space]---[//]- |

| | | |

| | --[*]---

| |

| |--[simple escape ch]--[deal with escape ch]

| |

| | The simple escapes are:

| | *" *’ *n *s *t *e *b *p and *c

| |

| |--[x]--[rtn 2 hex digits]

| |

| |---------------------------

| | |

| |--[#u]--[set UTF8 mode]----|

| | |

| |--[#g]--[set CB2312 mode]--

| |

| |--[in GB2312]--[return ch value]

326 APPENDIX B. THE SYNTAX OF LEXICAL TOKEN

| |

| |--[##]--[rtn UTF8 8 hex digits]

| |

| |--[#]---[rtn UTF8 4 hex digits]

| |

| --[is 0-7]]---[rtn 3 oct digits]

|

--[any ch other than " or ’]--[rtn ch]

